

Engineering Architecture Environmental Planning

# Phase II Environmental Site Assessment

Location: Corning Hospital and Associated Parcels Corning, New York

Prepared for: Corning Hospital One Guthrie Square Sayre, PA 18840

LaBella Project No. 2150606 May, 2015

Relationships, Resources, Results.

# **Table of Contents**

| 1.0<br>1.1        |              | ODUCTION                                                        |
|-------------------|--------------|-----------------------------------------------------------------|
| 1.2               | 1            | nitations & Exceptions                                          |
| 2.0<br>2.1        |              | CGROUND                                                         |
| 2.2               | Phy          | vsical Setting                                                  |
| 2.3               | Site         | e History & Land Use                                            |
| 2.4               | Adj          | acent Property Use                                              |
| 2.5               | Sur          | nmary of Previous Environmental Studies                         |
| 3.0<br>4.0<br>5.0 | SCOP<br>FIND | CTIVE                                                           |
| 5.1               |              | ting Locations & Field Observations10                           |
|                   | 5.1.1        | Summary of Fill Material                                        |
| 5                 | 5.1.2        | Soil Screening Results                                          |
| 5.2               | Site         | e Geology and Hydrology                                         |
| 5                 | 5.2.1        | Geology                                                         |
| 5                 | 5.2.2        | Hydrogeology14                                                  |
| 5.3               | Lab          | oratory Analytical Results14                                    |
| 5                 | 5.3.1        | 176 Denison Parkway East                                        |
| 5                 | 5.3.2        | 132 Denison Parkway East                                        |
| 5                 | 5.3.3        | 129 Chemung Street                                              |
| 5                 | 5.3.4        | 144 East First Street                                           |
| 5                 | 5.3.5        | Former Pearl Street                                             |
| 5                 | 5.3.6        | 202 Denison Parkway East                                        |
| 5                 | 5.3.7        | 210 Denison Parkway East17                                      |
| 5                 | 5.3.8        | 201 East First Street                                           |
| 6.0<br>7.0<br>8.0 | RECO         | CLUSIONS17DMMENDATIONS19ATURES OF ENVIRONMENTAL PROFESSIONALS20 |

# TABLE OF CONTENTS

# Continued

| Figures                                | Figure 1 – Site Location Map<br>Figure 2 – Site Features<br>Figure 3 – Testing Locations<br>Figure 4 – Fill Contour Map<br>Figure 4A – Inferred Extent of Subsurface Fill Material<br>Figure 5 – Groundwater Contour Map |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tables                                 | Table 1 – Summary of Analytical Results in Soil<br>Table 2 – Summary of Analytical Results in Groundwater<br>Table 3 – Survey Datum                                                                                      |
| Appendix 1<br>Appendix 2<br>Appendix 3 | Field Logs<br>Laboratory Reports<br>1991 Soil Boring Report Appendices                                                                                                                                                   |

Appendix 4Test Pit Photograph Log

# 1.0 INTRODUCTION

LaBella Associates, D.P.C. ("LaBella") was retained by Corning Hospital to conduct a Phase II Environmental Site Assessment (ESA) at the former Corning Hospital addressed as 176 Denison Parkway East and eight associated parcels addressed as 132 Denison Parkway East, 129 Chemung Street, 144 East First Street, an unnumbered parcel identified as Former Pearl Street and located adjacent to the east of 176 Denison Parkway East, 202 Denison Parkway East, 210 Denison Parkway East (rear), and 201 East First Street, in the City of Corning, Steuben County, New York, hereinafter referred to as the "Site" (refer to Figure 1). This Phase II ESA has been performed in conformance with the scope and limitations of ASTM Practice E 1903-11.

# 1.1 Special Terms & Conditions

The findings of this Phase II ESA are based on the scope of work and project objectives as stated in LaBella Proposal number P150628 dated April 14<sup>th</sup>, 2015.

# 1.2 Limitations & Exceptions

Work associated with this Phase II ESA was performed in accordance with generally accepted environmental engineering and environmental contracting practices for this region. LaBella Associates, D.P.C., makes no other warranty or representation, either expressed or implied, nor is one intended to be included as part of its services, proposals, contracts or reports.

In addition, LaBella cannot provide guarantees, certifications or warranties that the property is or is not free of environmental impairment or other regulated solid wastes. The Client shall be aware that the data and representative samples from any given soil sampling point or monitoring well may represent conditions that apply only at that particular location, and such conditions may not necessarily apply to the general Site as a whole.

# 2.0 BACKGROUND

# 2.1 Site Description & Features

The following table includes a summary of the existing conditions at the nine parcels that comprise the Site.

| Parcel                      | Acres<br>(+/-) | Current Use                 | Structures                                                                                  | Year Built                                                                                                                                                  |
|-----------------------------|----------------|-----------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 176 Denison<br>Parkway East | 4.05           | Hospital<br>(vacant)        | <ul> <li>166,292 square<br/>feet hospital</li> <li>5,172 square<br/>feet storage</li> </ul> | <ul> <li>Early 1900s (Section<br/>A)</li> <li>1920s (Powerhouse)</li> <li>1950 (Section B)</li> <li>1960s (Section C)</li> <li>1990s (Section D)</li> </ul> |
| 132 Denison<br>Parkway East | 0.53           | Automobile<br>Shop (vacant) | - 1,296 square<br>feet auto repair<br>shop                                                  | 1960                                                                                                                                                        |



| 129 Chemung<br>Street | 0.09 | Parking Lot   | None           | N/A  |
|-----------------------|------|---------------|----------------|------|
| 144 East First        | 0.11 | Residential   | - 5,364 square | 1900 |
| Street                |      | (vacant)      | feet residence |      |
| Former Pearl          | 0.51 | Parking Lot   | None           | N/A  |
| Street                |      | -             |                |      |
| 202 Denison           | 0.24 | Parking Lot   | None           | N/A  |
| Parkway East          |      |               |                |      |
| 210 Denison           | 0.22 | Parking Lot   | None           | N/A  |
| Parkway East          |      |               |                |      |
| 210 Denison           | 0.06 | Parking Lot   | None           | N/A  |
| Parkway East          |      | -             |                |      |
| (rear)                |      |               |                |      |
| 201 East First        | 0.72 | Commercial    | None           | N/A  |
| Street                |      | Land (vacant) |                |      |

Notes:

Acreage figures obtained from Steuben County and City of Corning Tax Maps

# 2.2 Physical Setting

The Site parcels are located on Denison Parkway East between Wall Street and Columbia Street, Chemung Street between Denison Parkway East and Cintra Lane East, and East First Street between Wall Street and Columbia Street in the City of Corning, Steuben County, New York within an urban area that consists of a mix of residential and commercial properties. The Chemung River is located approximately 0.15 miles to the north of the Site.

# 2.3 Site History & Land Use

LaBella reviewed a Phase I ESA completed by Stantec dated March 27<sup>th</sup>, 2014 for Corning Hospital and associated parcels which consisted of an assessment of nineteen parcels, including the nine parcels evaluated in this Phase II ESA. The following historic information was obtained from review of the Phase I ESA.

#### 176 Denison Parkway East:

Residential structures occupied portions of this parcel from at least 1888 to at least 1968. Since approximately 1905, portions of this parcel operated as Corning Hospital with additions constructed in the 1920s, 1950s, 1960s, and 1990s. The hospital was in operation until 2014 at which time the facility was moved to a different location. Additional former uses include a railroad in the northeast portion of the parcel from approximately 1888 through the 1950s, Corning Machine Co. in at least 1908, a tin shop/plumber from at least the early 1920s through the late 1940s, and a gasoline filling station in the northeast corner of the parcel in at least 1930. In 1998, a 10,000 gallon fiberglass underground storage tank (UST) used to store fuel oil replaced a 15,000 gallon UST installed in the 1960s to the east of the Powerhouse Building. A 1,000 gallon above ground storage tank (AST) used to store fuel oil is located in the Powerhouse Building. A drawing from 1949 indicated an abandoned dry well was located near the center of the former hospital.

Currently the facility is vacant with the exception of essential maintenance activities (operation of heating system during winter and routine maintenance activities). The facility has a groundwater extraction well for non-contact cooling water and a foundation drain system dewaters groundwater around the building basement to a central sump where it is pumped to the storm sewer.

#### 132 Denison Parkway East

Residential structures occupied this parcel from at least 1888 through the late 1950s. This parcel operated as a gasoline filling station/service station from approximately 1958 until the 1970s and the building is currently used as storage by Corning Hospital. Permit records indicate three 10,000 gallon USTs were installed. No additional information regarding these USTs was obtained.

Currently the building on this parcel is vacant and only utilized for storage.

#### 129 Chemung Street

A residential structure occupied this parcel from at least 1888 until 2000. Since 2001, this parcel has been utilized as a parking lot and is currently vacant.

#### 144 East First Street

A residential structure has occupied this parcel since at least 1893 and is currently unoccupied.

#### Former Pearl Street

This parcel has operated as a street beginning in at least 1888. A railroad transected this parcel from at least 1888 through the1950s. Currently this parcel is being utilized as a street.

#### 202 Denison Parkway East

A railroad transected this parcel from at least 1888 through the 1950s. A residential structure occupied this parcel from at least 1888 to at least 2004 which was also utilized as a dentist's office following 1974. The residence was demolished in 2004. This parcel is currently vacant.

# 210 Denison Parkway East

A residential structure occupied this parcel from at least 1888 until 1997 at which time it was demolished. This parcel is currently vacant.

# 210 Denison Parkway East (rear)

A railroad transected this parcel from at least 1888 through the 1950s. This parcel is currently vacant.

#### 201 East First Street

Residential structures occupied this parcel from at least 1888 until the 1960s. A railroad transected this parcel from at least 1888 through the 1950s. A gasoline filling station occupied the southwest portion of this parcel in at least 1948. Permit records indicate structures at this parcel were demolished in 1968, and 2007. This parcel is currently vacant.

Refer to Figure 2 for locations of these historic uses. Several of these uses were identified as Recognized Environmental Concerns (RECs) in the Phase I ESA completed by Stantec in 2014 (refer to section 2.5). Not all of the uses listed above were identified as RECs in the Phase I ESA, but may represent a potential for subsurface impacts.

# 2.4 Adjacent Property Use

The Site has been surrounded by residential and commercial properties since at least 1888. The Site is bordered by the following uses:

| Direction | Land Use                                                 |
|-----------|----------------------------------------------------------|
| North     | Commercial/Civic (City Hall, Police Department, Hotel)   |
| East      | Residential, Commercial (Doctors' offices, Nursing Home) |
| South     | Residential                                              |
| West      | Residential, Commercial (Laundry)                        |

It should be noted that a laundry facility is located adjacent to the west of 132 Denison Parkway East; however, at the time of the Phase II ESA, the facility did not appear to provide dry cleaning services.

# 2.5 Summary of Previous Environmental Studies

The following environmental reports relevant to the parcels comprising the Site were available for review:

- Soil Boring Report, 1991 (Appendices only)
- Phase I Environmental Hazard Audit by The Sear-Brown Group dated September 17<sup>th</sup>, 1991
- *Soil Core Investigation* by The Sear-Brown Group dated September 24<sup>th</sup>, 1997 (appendices including laboratory data not available for review).
- *Underground Storage Tank Removal and Remediation* by the Sear-Brown Group dated October 30<sup>th</sup>, 1998 (appendices including laboratory data not available for review).
- SPDES Permitting Review by the Sear-Brown Group dated March 10<sup>th</sup>, 1998
- *Corning Hospital and Associated Parcels Phase I Environmental Site Assessment* by Stantec Consulting Services Inc. dated March 27<sup>th</sup>, 2014

In addition, LaBella reviewed architectural drawings for the former Corning Hospital at 176 Denison Parkway East to identify additional information regarding environmental concerns, in particular, the "dry well" noted in the Phase I ESA by Stantec. A drawing from 1949 indicated the location of an abandoned dry well to be located near the center of the building (refer to Figure 2 for approximate location).

A summary of the environmental reports reviewed by LaBella is included below.

#### Soil Boring Report 1991

An investigation was completed in 1991 prior to constructing the easternmost building addition of the former Corning Hospital (Section D). Appendices from the report were provided to LaBella for review, which include a figure showing boring locations, and soil boring logs. Eight soil borings were completed on the eastern portion of 176 Denison Parkway East to depths ranging from 28-feet to 32-feet below ground surface (bgs). Approximate locations of these borings are included on Figure 4. Fill material was encountered in all eight borings at depths up to 9-feet bgs.

# Phase I Environmental Hazard Audit 1991

This environmental study included a Phase I Audit for 176 Denison Parkway East, 205 East First Street (not included in this Phase II ESA) and 201 East First Street. A summary of the findings is as follows:

- Asbestos containing material (ACM) was noted in buildings at all three parcels
- Radon gas was detected at levels slightly above United States Environmental Protection Agency (USEPA) action levels at one location in the central part of the former Corning Hospital
- Tank testing was recommended to determine the volume of the fuel oil UST at 176 Denison Parkway East due to discrepancies in tank records and recorded volumes (this UST was replaced in 1998).
- Removal of light ballasts that contain possible PCBs was recommended.

• A report from 1984 *Preliminary Contamination Investigation* investigated volatile organic compound (VOC)-contamination in Corning's drinking water supply. The report determined the contamination was present south of the Chemung River. The source of drinking water at the Site is north of the Chemung River and it was determined that the contaminated aquifer does not pose a health threat to the subject properties. In addition, the 1984 Report also referenced samples of groundwater from the extraction well (see below) with concentrations of trichloroethene (TCE) at 58 parts per billion (ppb) and 35 ppb.

# Soil Core Investigation 1997

A soil core investigation was conducted in proximity to the former UST to the east of the Powerhouse Building located at 176 Denison Parkway East. Six soil borings were advanced to 12-feet bgs to evaluate the presence of petroleum-impacted soils as a result of a release from the UST. The investigation determined that petroleum impacts were present at depths of 5.5-feet to 12-feet bgs and New York State Department of Environmental Conservation (NYSDEC) Spill #9705200 was opened on July 30th, 1997. The report recommended a tightness test be completed to evaluate the potential for a leak in the UST and/or associated piping. It should be noted that the appendices from this report containing analytical reports and data summary tables were not provided to LaBella for review.

# Underground Storage Tank Removal and Remediation 1998

Following the soil core investigation, the 15,000 gallon UST was removed and replaced with a 10,000 gallon fiberglass UST used to store fuel oil in 1998. Tank contents of the 15,000 gallon UST were removed using a vac-truck and disposed of at an approved facility. The tank was excavated, removed, stored on polyethylene sheeting, and recycled at an approved facility. Soils from the excavation exhibiting photoionization detector (PID) readings above 5 milligrams per kilogram (mg/kg) or parts per million (ppm), totaling 384 tons of soil, were removed and disposed of at an approved facility. Confirmatory soil samples were collected from the excavation and resulted in one slight exceedance of benzene above NYSDEC TCLP Extraction Guidance Values from the east sidewall. Following tank removal, the Sear-Brown Group requested closure of NYSDEC spill #9705200 and the spill was closed on January 5<sup>th</sup>, 1999. It should be noted that the appendices from this report containing analytical reports and data summary tables were not provided to LaBella for review (i.e., the above information was provided in the text of the report).

The existing 10,000 gallon fiberglass UST was installed in the same location as the former 15,000 gallon UST. According to Corning Hospital personnel, approximately 6,000 gallons of fuel oil remain in the existing UST.

# SPDES Permitting Review 1998

In 1998, the Sear Brown Group completed a review of the State Pollutant Discharge Elimination System (SPDES) permit requirements for the former Corning Hospital at 176 Denison Parkway East. One groundwater extraction/supply well is present at 176 Denison Parkway East to supply the former Corning Hospital with non-contact cooling water and discharged to the storm sewer after use. It should be noted that a second well is also present and is utilized as an injection well during large rain events when the storm sewer capacity is overloaded. The report recommended Corning Hospital determine the flow rate of groundwater influent and effluent, sample the groundwater at the groundwater supply/extraction well to determine if contaminants are present, and pursue obtaining a SPDES permit.

# Phase I ESA 2014

In 2014, Stantec conducted a Phase I ESA for Corning Hospital which included nineteen parcels. Nine Recognized Environmental Conditions (RECs) were identified, all of which are associated with parcels investigated as part of this Phase II ESA. The following table summarizes the RECs and indicates which subject parcels each REC is associated with. Refer to Figure 2 for more specific locations associated with these RECs.

| REC<br># | SUMMARY OF REC                                                 | 176 Denison<br>Parkway East | 132 Denison<br>Parkway East | 201 East First Street | 202 Denison<br>Parkway East | 210 Denison<br>Parkway East | 210 Denison<br>Parkway East (rear) | Former Pearl Street | 144 East First Street |
|----------|----------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------|-----------------------------|-----------------------------|------------------------------------|---------------------|-----------------------|
| 1        | Former Railroad (1888-1960s)                                   | Х                           |                             | Х                     | Х                           | Х                           | Х                                  | Х                   |                       |
| 2        | Three former gasoline filling stations                         | Х                           | Х                           | Х                     |                             |                             |                                    |                     |                       |
| 3        | In ground lifts and trench drain                               |                             | Х                           |                       |                             |                             |                                    |                     |                       |
| 4        | Historic uses as machine shop, tin shop, plumber (1920s-1940s) | X                           |                             |                       |                             |                             |                                    |                     |                       |
| 5        | Note from 1949 indicating presence<br>of fuel oil UST          | X                           |                             |                       |                             |                             |                                    |                     |                       |
| 6        | Dry well noted on 1949 and 1965<br>drawings                    | X                           |                             |                       |                             |                             |                                    |                     |                       |
| 7        | Laundry facility since 1930s                                   | Х                           |                             |                       |                             |                             |                                    |                     |                       |
| 8        | Potential UST                                                  |                             |                             |                       |                             |                             |                                    |                     | Х                     |
| 9        | Detection of benzene during tank<br>removal in 1998            | X                           |                             |                       |                             |                             |                                    |                     |                       |

Agency records included as an Appendix to the Phase I ESA indicate that trichloroethene (TCE) is present in portions of the aquifer throughout the City of Corning, and air strippers are in operation on backup public drinking water supply wells. The Phase I ESA indicates that samples of discharge water collected from February 2013 through January 2014 detected TCE at concentrations ranging from below laboratory detection limits to 38.8 micrograms per liter ( $\mu$ g/L) or parts per billion (ppb). A SPDES permit included in an Appendix to the Phase I ESA indicates a discharge of 600,000 gallons per day (GPD) of non-contact cooling water and a maximum allowable concentration of 270 ppb TCE in discharge water to the Chemung River.

# **3.0 OBJECTIVE**

The objective of this Phase II ESA was to evaluate subsurface conditions based on the RECs identified from the Phase I ESA. Each of the eight parcels where RECs were identified in the Phase I ESA is included in this Phase II ESA. In addition, 129 Chemung Street was included due to its proximity to the former gasoline station at 132 Denison Parkway East.

# 4.0 SCOPE OF WORK

To achieve the project objectives the following Scope of Work was performed:

- 1. Prior to the initiation of subsurface work, underground utility stake-outs, via *Dig Safely New York*, were completed at the Site (ticket numbers 04205-186-081 through 04205-186-088) to locate utilities in the areas where the subsurface assessment would take place.
- 2. A direct push soil boring and sampling program of the overburden at the Site was implemented.

LaBella Project No. 2150606

Initially, soil borings were advanced with a track-mounted Geoprobe<sup>®</sup> Systems Model 54LT direct-push sampling system. Due to early refusal in some locations additional equipment was also utilized (see below). The use of direct-push technology allows for rapid sampling, observation, and characterization of overburden soils. The Geoprobe<sup>®</sup> utilizes a 4-foot MacroCore<sup>®</sup> sampler with disposable polyethylene sleeves. Soil cores are retrieved in 4-foot sections and can be easily cut from the polyethylene sleeves for observation and sampling. The MacroCore<sup>®</sup> sampler was decontaminated between boring locations using an alconox and potable water solution. A total of 29 soil borings (SB-01 through SB-26, excluding SB-21, in addition to SB-08A, SB-13A, and SB-14A where shallow refusal warranted off-setting the original borings) were advanced at the Site with the 54LT Geoprobe to depths ranging from 8-feet to 24-feet bgs.

- 3. One soil boring (SB-21) was advanced manually to a depth of 9-feet bgs using a 2-foot MacroCore<sup>®</sup> sampler and a jackhammer.
- 4. Due to shallow refusal with the Geoprobe<sup>®</sup> Systems Model 54LT at 132 Denison Parkway East, two soil borings (SB-27/MW-05 and SB-28/MW-06) were advanced using a rotary drill rig to 25-feet bgs. Augers were decontaminated between boring locations using an alconox and potable water solution. The same drill rig was used to advance SB-32 through SB-35 at 176 Denison Parkway East to 4-feet bgs using split spoon sampling methods.
- 5. Three interior soil borings (SB-29, SB-30, and SB-31/MW-11) were advanced with a Geoprobe<sup>®</sup> Systems Model 420M using a 2-foot and 4-foot MacroCore<sup>®</sup> sampler. The MacroCore<sup>®</sup> sampler was decontaminated between boring locations using an alconox and potable water solution.
- 6. Seven test pits were advanced to depths ranging from 4-feet to 7-feet bgs using a Takeuchi miniexcavator to evaluate the subsurface for the presence of fill materials. A test pit photograph log is included as Appendix 4.
- 7. Soils from the borings and test pits (with the exception of SB-27/MW-05 and SB-28/MW-06 which were advanced to 25-feet bgs for the purpose of installing two groundwater monitoring wells) were continuously assessed for visible impairment, olfactory indications of impairment, and/or indication of detectable VOCs with a MiniRAE 3000 PID. Positive indications from any of these screening methods are collectively referred to as "evidence of impairment." In addition, soils were continuously screened with an x-ray fluorescence (XRF) analyzer for detection of metals. A Ludlum 2241-2 RK Digital Ratemeter was used to screen soils retrieved from within the former Corning Hospital building for detection of radiation.
- 8. Thirteen soil borings were converted to 1-inch diameter temporary overburden groundwater monitoring wells. Each well was completed with 5-feet or 10-feet of 0.010-slot well screen connected to an appropriate length of solid PVC well riser to complete the well. The annulus was sand packed with quartz sand to a nominal depth of 1-foot above the screen section. A 1-foot bentonite seal was placed above the sand pack. Protective casings were placed on all wells outside of the fenced in area at 176 Denison Parkway East. Wells installed at 176 Denison Parkway East were cut to the ground surface completed with a PVC cap.
- 9. Monitoring wells were developed by purging three well volumes or evacuating all the water in the well; whichever occurred first. Monitoring wells were left to recharge for a minimum of 24-hours prior to sampling.
- 10. Eleven monitoring wells were sampled using modified low-flow techniques (i.e., peristaltic pump) and the following parameters were recorded in 5-minute intervals until the well was stabilized within the specified parameters or until the well ran dry:
  - pH (+/- 0.1)

LaBella Project No. 2150606

- temperature
- conductivity (+/-3%)
- turbidity (<50 NTU)
- dissolved oxygen (+/-10%)
- redox potential (+/-10 mV)
- depth to groundwater
- 11. Soil borings and monitoring wells were surveyed by a licensed surveyor using a Topcon GPS with a vertical accuracy of 0.04 feet and a horizontal accuracy of 0.02 feet (note that SB-30 was not surveyed due to its location and the location shown on Figure 3 is approximate).
- 12. Soil and groundwater samples were placed in a cooler on ice and sent under standard chain of custody procedures to Spectrum Analytical in Agawam, Massachusetts. The following laboratory analysis was performed:
  - a. Soil

|                          |                   |                       | LA   | BOR   | ATOR   | YAN     | ALYS       | SIS  |
|--------------------------|-------------------|-----------------------|------|-------|--------|---------|------------|------|
| PARCEL                   | SOIL BORING<br>ID | SAMPLE<br>DEPTH (ft.) | VOCs | SVOCs | Metals | Cyanide | Pesticides | PBCs |
|                          | SB-01             | 3-4                   |      | Х     | Х      | Х       |            |      |
|                          | SB-02             | 10.6-11.6             | Х    |       |        |         |            |      |
|                          | SB-03             | 3-4                   | Х    | Х     | Х      | Х       | Х          | Х    |
|                          | SB-04             | 14-16                 | Х    |       |        |         |            |      |
|                          | SB-05             | 7-8                   |      | Х     | Х      | Х       |            |      |
|                          | SB-06             | 5-6                   |      | Х     | Х      | Х       |            |      |
|                          | SB-07             | 19-20                 | Х    |       |        |         |            |      |
|                          | SB-22             | 5-6                   |      |       | Х      |         |            |      |
| 176 Denison Parkway East | SB-22             | 19-20                 | Х    |       |        |         |            |      |
|                          | SB-23             | 17-18                 | Х    |       |        |         |            |      |
|                          | SB-35             | 0-4                   |      |       | Х      |         |            |      |
|                          | *TP-02            | 5.5                   |      |       | Х      |         |            |      |
|                          | **TP-03           | 2                     |      |       | Х      |         |            |      |
|                          | TP-04             | 2.5                   |      | Х     | Х      |         |            |      |
|                          | TP-05             | 3                     |      |       | Х      |         |            |      |
|                          | TP-06             | 1.5                   |      |       | Х      |         |            |      |
|                          | TP-07             | 3                     |      | Х     | Х      |         |            |      |
|                          | SB-08A            | 9-10.4                |      | Х     |        |         |            |      |
| 132 Denison Parkway East | SB-09             | 2-3                   |      | Х     | Х      | Х       |            |      |
|                          | SB-09             | 8-10.4                | Х    |       |        |         |            |      |
| 129 Chemung Street       | SB-10             | 4-5                   |      |       | Х      |         |            |      |
| 144 East First Street    | SB-25             | 20-24                 | Χ    |       |        |         |            |      |
| Former Pearl Street      | SB-20             | 7-8                   |      |       | Х      |         |            |      |
| 202 Denison Parkway East | SB-16             | 7-8                   | Х    | Х     | Х      | Х       | Х          | Х    |
| 210 Denison Parkway East | SB-15             | 2-3                   |      | Х     | Х      |         |            |      |

LaBella Project No. 2150606

| 210 Denison Parkway East (rear) | -         |         |    |    |    |   |   |   |
|---------------------------------|-----------|---------|----|----|----|---|---|---|
|                                 | SB-17     | 2.5-3.5 |    | Х  | Х  |   |   |   |
| 201 East First Street           | SB-17 6-8 |         |    | Х  | Х  |   |   |   |
|                                 | SB-18     | 1-3     | Х  |    |    |   |   |   |
| T                               | OTAL      |         | 10 | 12 | 19 | 6 | 2 | 2 |

Notes:

\*indicates the sample was analyzed for mercury and lead only \*\*indicates the sample was analyzed for cadmium only BGS indicates below ground surface

#### b. Groundwater

|                                 |         |                               | LABORATORY ANALYSIS |       |        |         |            |      |  |  |
|---------------------------------|---------|-------------------------------|---------------------|-------|--------|---------|------------|------|--|--|
| PARCEL                          | WELL ID | SCREENED<br>INTERVAL<br>(ft.) | VOCs                | SVOCs | Metals | Cyanide | Pesticides | PBCs |  |  |
|                                 | *MW-01  | 11-16                         |                     |       |        |         |            |      |  |  |
|                                 | *MW-02  | 6-11                          |                     |       |        |         |            |      |  |  |
|                                 | MW-03   | 7.5-17.5                      | Х                   |       |        |         |            |      |  |  |
| 176 Denison Parkway East        | MW-04   | 9-19                          | Х                   |       |        |         |            |      |  |  |
| 170 Demson Farkway East         | MW-07   | 8-18                          | Х                   | Х     | Х      | Х       | Х          | Х    |  |  |
|                                 | MW-11   | 7-17                          | Х                   |       |        |         |            |      |  |  |
|                                 | MW-13   | 12-22                         | Х                   |       |        |         |            |      |  |  |
|                                 | Sump-1  | -                             | Х                   |       |        |         |            |      |  |  |
| 122 Davis an Davis France       | MW-05   | 15-25                         | Х                   |       |        |         |            |      |  |  |
| 132 Denison Parkway East        | MW-06   | 15-25                         | Х                   |       |        |         |            |      |  |  |
| 129 Chemung Street              | _       | -                             |                     |       |        |         |            |      |  |  |
| 144 East First Street           | MW-12   | 12-22                         | Х                   |       |        |         |            |      |  |  |
| Former Pearl Street             | -       | -                             |                     |       |        |         |            |      |  |  |
| 202 Denison Parkway East        | MW-08   | 9-19                          | Х                   |       |        |         |            |      |  |  |
| 210 Denison Parkway East        | -       | -                             |                     |       |        |         |            |      |  |  |
| 210 Denison Parkway East (rear) | -       | -                             |                     |       |        |         |            |      |  |  |
| 201 East Einst Stuast           | MW-09   | 8-18                          | Х                   |       |        |         |            |      |  |  |
| 201 East First Street           | MW-10   | 9-19                          | Х                   |       |        |         |            |      |  |  |
| TOTAL                           |         |                               | 12                  | 1     | 1      | 1       | 1          | 1    |  |  |

Notes:

\*Indicates the well was dry and a water sample was not obtained

The sump sample (Sump-1) was collected using a bailer; groundwater quality parameters were not collected "Screened interval" indicates the approximate depths of each well where slotted PVC was installed and the approximate depths of groundwater samples collected

The following analytical laboratory methods were used.

- United States Environmental Protection Agency (USEPA) Target Compound List (TCL) and NYSDEC Commissioner Policy List (CP-51) volatile organic compounds (VOCs) by USEPA Method 8260
- TCL and CP-51 semi-volatile organic compounds (SVOCs) by USEPA Method 8270
- Resource Conservation and Recovery Act (RCRA) Metals by USEPA Methods 6010/7470 and Cyanide by USEPA Method 9012
- Pesticides by USEPA Method 8081
- Polychlorinated biphenyls by USEPA Method 8082

# 5.0 FINDINGS

# 5.1 Testing Locations & Field Observations

# <u>176 Denison Parkway East</u>

The testing locations at this parcel were completed to assess the following specific areas of potential subsurface impacts and to evaluate the general site-wide subsurface conditions:

- **Former Gasoline filling station in the northeast corner** SB-01/MW-01, SB-02/MW-02, and SB-03 were advanced in the location of the former gasoline filling station in the northeast corner of this parcel. Light brown fine sand, potentially indicative of fill material in a former tank pit was identified in SB-02 at 8-feet to 10-feet bgs. Evidence of impairment (i.e., elevated PID readings, odors, and/or staining) was not identified in this location during boring advancement.
- **Former and Existing UST** SB-04/MW-03 and SB-05 were installed in the location of the former 15,000 gallon fuel oil UST and existing 10,000 gallon fuel oil UST. Evidence of petroleum impacts was not identified in this location. Note that a metal plate is installed in the sidewalk just north of the UST labeled "Monitoring Well". The casing was accessed in anticipation of sampling the "well"; however, this casing holds electrical wiring and is not a groundwater monitoring well.
- **Potential historic petroleum spill** According to Corning Hospital personnel, during installation of a subsurface utility north of the Powerhouse Building, evidence of petroleum impacts were encountered in the soils (i.e., petroleum-like odors). SB-06 and SB-07/MW-04 were installed to evaluate the apparent petroleum impacts in this location; however, subsurface utilities in this area (electric and gas services) limited safe accessibility. As such, these borings were advanced in the nearest safely accessible areas and not directly adjacent the utilities where impacts were reported. Evidence of impairment was not identified during advancement of these two borings.
- **Former Waste Storage & Laundry Area** SB-22 was advanced in the former waste storage area, and adjacent to the west of the former laundry room. Evidence of impairment was not identified in this area during boring advancement.
- <u>Former Dry Well</u> SB-21 and SB-31/MW-07 were installed in proximity to the abandoned dry well as noted on the 1949 architectural drawing. Evidence of impairment was not identified during advancement of these two borings.
- **Former Railroad** SB-32, SB-33, SB-34, and SB-35 were advanced to 4-feet bgs to evaluate the presence of shallow subsurface fill in the location of the former railroad. Fill material was encountered in one boring (SB-35).

• <u>General Site Coverage</u> – To evaluate the overall parcel subsurface conditions and potential fill materials at the Site (i.e., areas not associated with a historic use/location), four (4) soil borings and seven (7) test pits were advanced, two (2) monitoring wells were installed and a sample of water within a sump in the basement of the building was collected.

The soil borings included SB-23, SB-24, SB-26, and SB- 29. Evidence of impairment was not encountered in these soil borings during advancement. MW-11 and MW-13 were installed in bore holes SB-23 and SB-26, respectively.

Seven test pits (TP-01 through TP-07) were advanced in areas of the eastern portion of the Site to assess fill material identified in soil borings completed during the Phase II ESA (such as SB-35) and to assess fill materials reported in geotechnical soil borings advanced in 1991 by Atlantic Testing Laboratories, Limited prior to constructing Section D of the former Corning Hospital ('Section D' of the hospital is the eastern most addition). The 1991 soil borings are shown on Figure 4 and copies of the relevant portions of the geotechnical report are included in Appendix 3. Fill material was encountered in all seven test pits.

A sump within the basement of the main hospital building appears to be connected to a foundation drain system. A sample of the water in the sump (Sump-1) was collected for VOC analysis. Corning Hospital maintenance staff indicated that the basement sump routinely operates and that two pumps are located within the sump. The pumps are rated for up to 450 gallons per minute and in the Spring one pump will often run continually and the second pump will cycle off and on. At the time of the Phase II ESA, there was a continuous flow of water into/pumped out of the sump, and the pumps were on intermittently. The sump pump reportedly discharges to the storm sewer. In addition, SB-30 was installed proximate the sump. Evidence of impairment was not identified in this location during boring advancement.

In addition to above, a groundwater extraction well is located within the basement of the former main hospital building. The groundwater extraction well is permitted under a SPDES permit which indicates the groundwater extraction well operates with an average flowrate of 600,000 GPD (417 gallons per minute (GPM)). The groundwater extraction well is utilized for pumping groundwater to be used as non-contact cooling water for the hospital. The non-contact cooling water is reported to discharge to the storm sewer separate from the sump discussed above. As such, combined discharges to the storm sewer may approach 1,000 GPM during portions of the year.

# 132 Denison Parkway East

The testing locations at this parcel were completed to assess the following specific areas of potential subsurface impacts and to evaluate the general site-wide subsurface conditions:

# • Former Gasoline Filling Station

<u>Potential USTs-</u> According to Corning Hospital personnel, the former USTs associated with the gasoline filling station at this parcel were located in the northwest corner of the parcel. SB-08, SB-08A, SB-14, SB-14A, and SB-27/MW-05 were advanced in the location of the apparent USTs. Evidence of impairment was not identified in this area during boring advancement.

- <u>Former Pump Island-</u> SB-09 and SB-28/MW-06 were advanced in the location of the former pump island on the eastern portion of this parcel. Evidence of impairment was not identified in this location during boring advancement.
- <u>In Ground Lifts-</u> Two in ground lifts were identified in the building at this parcel. SB-11 and SB-12 were advanced proximate each lift. Evidence of impairment was not identified. It should be noted that the trench drain referenced in the Phase I ESA conducted by Stantec in 2014 was not identified.
- <u>General Site Coverage-</u>SB-13 and SB-13A were installed to evaluate the potential for a UST associated with the former automobile shop and for general coverage. Evidence of impairment was not identified during boring advancement.

# **129 Chemung Street**

• <u>Former Adjacent Property Use as Gasoline Filling Station</u>- SB-10 was advanced at this parcel to evaluate for the presence of impacts associated with the former gasoline filling station adjacent to the west at 132 Denison Parkway East. Evidence of impairment was not identified at this location during boring advancement.

# <u>144 East First Street</u>

• <u>Apparent UST-</u> An apparent vent associated with a UST is present on the east side of the residence at this parcel. In addition, an apparent fill port is located approximately 6.5-feet from the vent. The depth from the ground surface to the bottom of the apparent UST was measured to be 8-feet. No liquids were present in the apparent UST and the fill port cap was not present. SB-25/MW-12 was advanced approximately 10-feet east of the apparent fill port to evaluate the presence of impacts associated with the apparent UST. Evidence of impairment was not identified in this location during boring advancement.

# Former Pearl Street

• <u>Former Adjacent Property Use as Gasoline Filling Station-</u>SB-20 was advanced at this parcel to evaluate the presence of impacts associated with the former gasoline filling station adjacent to the east at 201 East First Street. Evidence of impairment was not identified at this location during boring advancement.

# 202 Denison Parkway East

• <u>Former Railroad</u>- SB-16/MW-08 was advanced at this parcel to evaluate for impacts associated with the former railroad that transected this parcel. Fill material was not present in this boring; however, fill material was present in the nearest soil borings (SB-15, SB-18, and SB-02/MW-02) surrounding SB-16/MW-08.

# 210 Denison Parkway East

• <u>Former Railroad-</u>SB-15 was advanced at this parcel to evaluate for impacts associated with the former railroad that transected this parcel. Fill material, specifically glass and brick, was present in this soil boring at 2-feet to 3.5-feet bgs.

# <u>201 East First Street</u>

• <u>Former Gasoline Filling Station-</u>SB-17/MW-09, SB-18, and SB-19/MW-10 were advanced in the location of the former gasoline filling station that occupied this parcel. Evidence of impairment was identified in soils retrieved from SB-19 at 1.5-feet to 14-feet bgs.

# 5.1.1 Summary of Fill Material

Fill material was encountered at the followings parcels at the overall Site: 176 Denison Parkway East, 210 Denison Parkway East, 132 Denison Parkway East, and 201 East First Street. Specifically, fill materials were encountered in ten of the thirty-nine soil borings and all seven test pits advanced at the Site to depths of up to 9-feet bgs. Fill material encountered included ash, cinders, brick, concrete, metal, ceramic, glass and wood. The materials observed appear representative of industrial operations and likely include local industrial uses. In addition, a portion of the Site included a railroad and fill materials may also be representative of former railroad operations. It should also be noted that an apparent concrete floor slab indicative of a residential basement foundation was encountered in TP-04. Residential structures were historically located in this area and fill material encountered in this area is consistent with demolition debris.

Figure 4A indicates the inferred horizontal limits of subsurface fill material based on the work completed during this Phase II ESA. This area was determined based on locations where fill material was encountered and interpolated based on similar types of fill between locations. Based on the data obtained to date, fill material is generally not present beneath 9-feet bgs and is on average present from 2-feet to 5-feet bgs. Based on these data points, it is possible that 150,000 square feet of fill material 3-feet in thickness is present at the Site, which would equate to 450,000 cubic feet (16,667 cubic yards). It should be noted that this area (and thus volume) does not include the eastern portion of the former hospital building. It is unknown if the materials identified in the geotechnical borings in 1991 were removed or left in-place. In the event that fill materials were left in-place there may be additional fill beyond that estimated above.

Fill thickness contours are included on Figure 4. These contours were developed using the approximate thickness of fill material encountered in soil borings and test pits across the Site. Note that Figure 4 includes fill material encountered in the 1991 soil borings; it is unknown whether or not this material was removed during building construction. A test pit photograph log is included as Appendix 4.

# 5.1.2 Soil Screening Results

All soil cores and test pits were continuously assessed by a LaBella Environmental Engineer for soil type and evidence of impairment. Elevated PID readings (i.e., greater than 1 ppm) were observed in one boring, SB-19 located at 201 East First Street, at depths of 1-foot to 14-feet bgs, with the highest PID reading of approximately 138 ppm at 1.5-feet bgs. A slight petroleum odor was also noted in this boring from 1-foot to 4-feet bgs.

Radiation was not detected above background levels in soils screened with the Ratemeter (note than only interior borings at 176 Denison Parkway were screened with the Ratemeter). Concentrations of several metals were detected with the XRF with the most common elevated metals being barium, arsenic, lead, copper, zinc, and titanium in soils above 8-feet bgs. Molybdenum, chromium, cadmium, and mercury were detected in fewer locations on the eastern portion of the Site.

# 5.2 Site Geology and Hydrology

# 5.2.1 Geology

Thirty-nine soil borings were advanced at the Site from April 27<sup>th</sup> to May 5<sup>th</sup>, 2015 designated SB-01 through SB-31, plus SB-8A, SB-13A, and SB-14A. The borings were advanced to equipment refusal or several feet into the water table. Terminal depths of the borings ranged from approximately 8-feet bgs to 25-feet bgs.

Seven test pits were advanced at the Site (176 Denison Parkway East only) on May 8<sup>th</sup>, 2015 designated TP-01 through TP-07. Test pits were advanced to equipment refusal or to the depth of apparent native material (i.e., no fill material encountered). Terminal depths of test pits ranged from approximately 4-feet to 9-feet bgs.

The subsurface of the eastern half of the Site, as well as southwest portion of 176 Denison Parkway East and northwest portion of 132 Denison Parkway East, contained fill material generally consisting of ash, cinders, brick, and concrete with lesser amounts of metal, ceramic, glass, and wood, to depths ranging from 1-feet to 9-feet bgs. The fill material ranged in thickness between 0.5-feet and 5.5-feet, with an average thickness of 3-feet. Beneath the fill layer, glacial till comprised of brown sand, sandy silts and fine to coarse gravel was encountered to 25-feet bgs. The subsurface of the western portion of the Site, in particular 132 Denison Parkway East, contained significant amounts of coarse gravel, with lesser amounts to no fill material observed.

Soil boring and monitoring well locations are shown on Figure 3. Copies of the Soil Boring, Test Pit and Monitoring Well Logs are included in Appendix 1.

# 5.2.2 Hydrogeology

Thirteen temporary overburden groundwater monitoring wells (designated as MW-01 through MW-13) were installed at the Site. The wells were completed with 5-feet or 10-feet of 0.01-in slotted screen below PVC risers, to total depths ranging from 15.7-feet to 24.9-feet. Measured depth to water ranged from approximately 14.9-feet bgs to 22.1-feet bgs. Surveyed elevations of groundwater monitoring wells were used to evaluate the groundwater flow direction(s) at the site and are shown on Figure 5. Groundwater elevations in the monitoring wells across the Site vary only by approximately 1.18 feet, with the lowest elevations as noted above in the central portion of the former hospital building and the water level within the sump was noted to be at approximately 907.85 feet MSL, which is lower than the well elevations. Survey datum used to develop the groundwater contour map (Figure 5) is included as Table 3.

Groundwater at the Site generally flows towards the center of the former hospital building and is influenced by the groundwater extraction well (operating at approximately 417 GPM) and also likely by the basement foundation drain system and sump, which at the time of the Phase II ESA may also have been pumping approximately 400 to 500 GPM.

# 5.3 Laboratory Analytical Results

This section summarizes the overall results across the Site and then details the results for each parcel.

#### Soil

Metals (lead, arsenic, mercury, cadmium, and barium) were detected at four of the nine parcels (176 Denison Parkway East, 129 Chemung Street, 210 Denison Parkway East, and 201 East First Street) at levels above NYSDEC Part 375-6.8(a) Unrestricted Use SCOs. Concentrations of metals exceeded NYSDEC Part 375-6.8(b) Commercial Use SCOs at three parcels; 176 Denison Parkway East, 210 Denison Parkway East, and 201 East First Street.

VOCs were detected at two parcels (methylene chloride at 132 Denison Parkway East and acetone at 201 East First Street) above NYSDEC Part 375-6.8(a) Unrestricted Use and Protection of Groundwater SCOs.

SVOCs and cyanide were detected at levels below NYSDEC Part 375-6.8(a) Unrestricted Use SCOs. Pesticides and PCBs were not detected in soil samples above laboratory method detection limits (MDLs).

Refer to Table 1 for a summary of detected compounds in soil. Testing locations are included on Figure 3.

#### Groundwater

VOCs were detected above NYSDEC Part 703 Groundwater Quality Standards (Groundwater Standards) at three of the nine parcels; 176 Denison Parkway East, 132 Denison Parkway East, and 144 East First Street. Chlorinated VOCs (CVOCs), specifically TCE, were detected at all three parcels above Groundwater Standards. Cis-1,2-dichloroethene was also detected at 176 Denison Parkway East above Groundwater Standards. Petroleum-related VOCs were detected at 132 Denison Parkway East including benzene, 1,2,4-trimethylbenzene, and m,p-xylene at levels above Groundwater Standards.

Metals and cyanide were detected at 176 Denison Parkway East below Groundwater Standards. PCBs and pesticides were not detected in groundwater above laboratory MDLs.

Refer to Table 2 for a summary of detected compounds in groundwater. Testing locations are included on Figure 3.

A detailed description of laboratory results by parcel is included below.

# 5.3.1 176 Denison Parkway East

Soil

Nineteen soil borings (SB-01 through SB-07, SB-21, through SB-24, SB-26, SB-29 through SB-35) were advanced at this parcel. Seven soil borings (SB-01, SB-02, SB-04, SB-07, SB-23, SB-26, and SB-31) were converted to temporary overburden groundwater monitoring wells designated MW-01 through MW-04, MW-07, MW-11, and MW-12. Seven test pits were advanced at this parcel designated TP-01 through TP-07.

A total of seventeen soil samples collected from this parcel were submitted for laboratory analysis; six were analyzed for VOCs, seven for SVOCs, ten for metals, four for cyanide, one for PCBs, one for pesticides, one for mercury only, one for lead only, and one for cadmium only.

Nine of the twelve soil samples analyzed for metals resulted in concentrations detected above NYSDEC Part 375 Unrestricted Use SCOs; nine for mercury and lead, two for arsenic, one for barium, and one for cadmium. Four of these samples exceeded NYSDEC Restricted Residential Use SCOs (SB-03-3-4' for lead, SB-35-0-4' for lead and mercury, TP-02-5.5' for mercury, and TP-07-3' for lead, arsenic, barium, and mercury) and two of these samples exceeded NYSDEC Commercial Use SCOs (SB-35-0-4' for mercury, and TP-07-3' for lead, arsenic, barium, and TP-07-3' for lead, arsenic, and barium).

Several VOCs and SVOCs were detected at levels below NYSDEC Unrestricted Use SCOs. Cyanide was detected in one soil sample (SB-03-3-4') at levels below NYSDEC Unrestricted Use SCOs. Pesticides and PCBs were not detected above laboratory MDLs.

# Groundwater

Five groundwater samples and one sump sample were analyzed for VOCs. In addition, the monitoring well installed in proximity to the abandoned dry well (MW-07) was analyzed for full suite parameters (VOCs, SVOCs, metals, cyanide, pesticides, and PCBs). It should be noted that MW-01 and MW-02 did not contain sufficient sample volume for analysis and were not analyzed.

VOCs, specifically TCE were detected in two of the groundwater samples (MW-07 at 14.3 ppb and MW-13 at 10 ppb) as well as the sump sample (24.4 ppb) at levels above Groundwater Standards. In addition, MW-07

exceeded Groundwater Standards for cis-1,2-dichloroethene (6.8 ppb). MW-07 was installed in the location of the former dry well and MW-13 was installed on the south side of the former Corning Hospital.

Metals and cyanide were detected below Groundwater Standards, and PCBs and pesticides were not detected above laboratory MDLs in the sample analyzed for full suite parameters (MW-07).

# 5.3.2 132 Denison Parkway East

Soil

Eleven soil borings (SB-08, SB-08A, SB-09, SB-11, SB-12, SB-13, SB-13A, SB-14A, SB-14A, SB-27, and SB-28) were advanced at this parcel. Due to shallow refusal with the Geoprobe<sup>®</sup> Systems Model 54LT, a rotary drill rig was used to advance two soil borings into the water table (SB-27 and SB-28) using augers. MW-05 and MW-06 were installed in boreholes SB-27 and SB-28, respectively.

Three soil samples collected from this parcel were submitted for laboratory analysis; one for VOCs (SB-09-8-10.4'), two for SVOCs (SB-08A-9-10.4' and SB-09-2-3'), and one for metals and cyanide (SB-09-2-3').

One VOC, methylene chloride, was detected in the sample analyzed for VOCs (SB-09-8-10.4') at levels above NYSDEC Unrestricted Use SCOs (52.1 ppb). Several SVOCs and metals were detected in soil samples from this parcel at levels below NYSDEC Unrestricted Use SCOs.

#### Groundwater

Two groundwater samples, MW-05 and MW-06, were submitted for laboratory analysis of VOCs. VOCs were detected in both samples. Acetone (13.8 ppb), benzene (2.8 ppb), toluene (6.4 ppb), 1,2,4-trimethylbenzene (13.3 ppb), and m,p-xylene (7.8 ppb) were detected in MW-06 at levels above NYSDEC Groundwater Quality Standards. VOCs detected in MW-05 were below NYSDEC Groundwater Quality Standards. MW-06 was installed in the location of the former pump island associated with the former gasoline filling station.

# 5.3.3 129 Chemung Street

Soil

One soil boring (SB-10) was advanced at this parcel and one soil sample was submitted for analysis of metals (SB-10-4-5'). Lead was detected in this sample above NYSDEC Unrestricted Use SCOs at 95.9 ppb.

# 5.3.4 144 East First Street

Soil

One soil boring (SB-25) was advanced at this parcel and one soil sample was submitted for analysis of VOCs (SB-25-20-24'). VOCs were not detected above laboratory MDLs in this soil sample.

# Groundwater

MW-12 was installed in bore hole SB-25 and one groundwater sample was submitted for analysis of VOCs. TCE was detected in this groundwater sample at the NYSDEC Groundwater Quality Standards of 5.0 ppb.

# 5.3.5 Former Pearl Street

Soil

One soil boring (SB-20) was advanced at this parcel and one soil sample was submitted for analysis of metals (SB-20-7-8'). Metals were detected at levels below NYSDEC Unrestricted Use SCOs.

# 5.3.6 202 Denison Parkway East

#### Soil

One soil boring (SB-16) was advanced at this parcel and one soil sample (SB-16-7-8') was submitted for full suite analysis (VOCs, SVOCs, metals, cyanide, PCBs, and pesticides). Metals were detected at levels below NYSDEC Unrestricted Use SCOs in this soil sample. VOCs, SVOCs, cyanide, pesticides, and PCBs were not detected above laboratory MDLs in this soil sample.

#### Groundwater

MW-08 was installed in bore hole SB-16 and one groundwater sample was submitted for analysis of VOCs. VOCs were detected in this monitoring well; however, the concentrations detected are at levels below NYSDEC Groundwater Quality Standards.

# 5.3.7 210 Denison Parkway East

<u>Soil</u>

One soil boring (SB-15) was advanced at this parcel and one soil sample (SB-15-2-3') submitted for analysis of SVOCs and metals. Lead (234 ppm), arsenic (16 ppm), and mercury (0.232 ppm) were detected above NYSDEC Unrestricted Use SCOs. The concentration of arsenic is equal to the NYSDEC Commercial Use SCO.

# 5.3.8 201 East First Street

Soil

Three soil borings (SB-17, SB-18, and SB-19) were advanced at this parcel. Two soil samples (SB-17-2-3' and SB-17-6-8') were submitted for analysis of SVOCs and metals and one soil sample (SB-19-1-3') was submitted for analysis of VOCs.

Lead (291 ppm), arsenic (89.8 ppm), cadmium (14 ppm), and mercury (0.232 ppm) were detected in SB-17-2.5-3.5' at levels above NYSDEC Unrestricted Use SCOs. The concentrations of arsenic and cadmium exceed NYSDEC Commercial Use SCOs. SVOCs were not detected above laboratory MDLs in this sample.

Lead (251 ppm), arsenic (14.7 ppm), and mercury (1.01 ppm) were detected in SB-17-6-8' at levels above NYSDEC Unrestricted Use SCOs. The concentration of mercury exceeded NYSDEC Restricted Residential SCOs. SVOCs were detected in this sample at levels below NYSDEC Unrestricted Use SCOs.

One VOC, acetone, was detected in SB-19-1-3' at levels above NYSDEC Restricted Residential Use SCOs at 105 ppb.

# Groundwater

MW-09 and MW-10 were installed in bore holes SB-17 and SB-19, respectively. A groundwater sample from each well was submitted for analysis of VOCs. VOCs were detected in both groundwater samples at levels below NYSDEC Groundwater Quality Standards.

# 6.0 CONCLUSIONS

LaBella was retained by Corning Hospital to conduct a Phase II ESA at the former Corning Hospital addressed as 176 Denison Parkway East and eight associated parcels (132 Denison Parkway East, 129 Chemung Street, 144 East First Street, Former Pearl Street, 202 Denison Parkway East, 210 Denison Parkway East, 210 Denison Parkway East (rear), and 201 East First Street) in the City of Corning, Steuben County, New York. The ESA consisted of the advancement of thirty-nine soil borings, installation of thirteen temporary groundwater

LaBella Project No. 2150606

monitoring wells, advancement of seven test pits, and laboratory analysis of soil and groundwater samples. This ESA was performed to evaluate the Site subsurface based on RECs identified during a Phase I ESA conducted by Stantec in 2014 and additional information provided by Corning Hospital.

Based on the investigation described herein, the following findings are summarized and conclusions made:

- Concentrations of CVOCs were detected in groundwater samples above Groundwater Standards in three groundwater monitoring wells (MW-07, MW-13, and MW-12) on two parcels; 176 Denison Parkway East and 144 East First Street, and in a sump at 176 Denison Parkway East.
- The greatest concentrations of CVOCs in groundwater monitoring wells were at 176 Denison Parkway East and specifically proximate the abandoned dry well (MW-07) and to the south of the former hospital building (MW-13). However, a sample of water from the basement sump identified the highest concentration detected of CVOCs. The basement sump reportedly dewaters the basement foundation and thus is likely collecting groundwater from a relatively large drainage area. Although the extent of the foundation drain system has not been determined as part of this assessment, it is likely that the foundation drain system is a perimeter drain around the entire basement area. One CVOC (TCE at 24.4 ppb) was detected in the water sample collected from the sump at 176 Denison Parkway East. This concentration is above Groundwater Standards and is greater than concentrations of CVOCs detected in groundwater monitoring wells across the Site. As such, it is anticipated that CVOCs may be present in groundwater in proximity to or beneath the building (i.e., within the radius of influence of the sump). Note that the sump is an open cistern tank and the sample was taken from the top of the tank using a bailer. The top of the influent pipe was located above the water level at the time the sample was collected thus allowing for aeration and volatilization of contaminants (i.e., concentrations of CVOCs entering the foundation drain system are likely higher than the sample). Furthermore, it is likely that higher concentrations of CVOCs are present within the influence of the sump but the sample from the sump is diluted with unimpacted groundwater entering the drainage system.
- The groundwater sampled at the site is from the uppermost portion of the water bearing zone and as such is not likely to be from the same elevation as water removed by the drinking water supply wells that require air strippers due to area wide TCE impacts.
- Petroleum related VOCs were detected in groundwater at 132 Denison Parkway above Groundwater Standards in the location of the former pump island associated with the former gasoline filling station. Due to the porous subsurface material (i.e., sand and gravel), there is a potential for higher concentrations of groundwater contaminates to be present at greater depths in the aquifer than those sampled during this Phase II ESA. The exact locations of former USTs associated with the former gasoline filling station are unknown.
- Shallow petroleum impacts at 201 East First Street are present in soil in the location of the former USTs indicated on the 1948 Sanborn Fire Insurance Map. Due to the porous subsurface material (i.e., sand and gravel), there is a potential for higher concentrations of groundwater contaminates to be present at greater depths in the aquifer than those sampled during this Phase II ESA. The exact locations of the former USTs associated with the former gasoline filling station are unknown.
- Evidence of impairment associated with USTs from the former gasoline station at 176 Denison Parkway East was not identified.
- Due to the lack of tank records for all three former gasoline filling stations at the Site, it is unknown whether USTs associated with the three former gasoline filling stations are present.
- VOCs were detected in soil samples collected from two parcels, 201 East First Street and 132 Denison Parkway East, above NYSDEC Part 375 Restricted Residential Use SCOs.
- Fill material was identified in ten soil borings and seven test pits at four of the nine parcels that comprise the Site. Fill materials are widespread and consist generally of ash, cinders, brick, and concrete with lesser amounts of metal, ceramic, glass, and wood, to depths ranging from 1-foot to 9-feet

bgs. The fill material is likely from local industrial operations as well as demolition debris from former structures. It is estimated that 150,000 square feet of the Site contains subsurface fill material up to 9-feet bgs. Figure 4 presents an estimate of the limits of fill material based on existing data. A greater sample density would be required to better define the limits of fill material.

- Thirteen soil samples across four parcels (176 Denison Parkway East, 129 Chemung Street, 210 Denison Parkway East, and 201 East First Street) exceeded NYSDEC Part 375 Unrestricted Use SCOs for metals. Three of these parcels (176 Denison Parkway East, 210 Denison Parkway East, and 201 East First Street) contained fill material with detections of metals above NYSDEC Part 375 Commercial Use SCOs as well. It should be noted that some metals concentrations detected in the fill material are high enough that the fill material may fail toxicity characteristic leaching procedure (TCLP) for characteristic hazardous waste due to toxicity; specifically lead in sample TP-7 at 3 ft. bgs was detected at a concentration of 1,560 ppm which exceeds the "1/20<sup>th</sup> rule" applied to the lead toxicity standard of 5.0 mg/L.
- Soil and groundwater samples collected from the location of the former 15,000 gallon UST/ existing 10,000 gallon UST at 176 Denison Parkway East did not exceed NYSDEC Part 375 Unrestricted Use SCOs or Groundwater Standards. Evidence of impairment was not encountered in this location. Based on a review of the tank removal report, tank removal in 1998, spill closure in 1999, and the lack of impacts identified during this investigation further evaluation of this REC does not appear warranted. However, it should be noted that petroleum impacts may be present in proximity to the UST and the building in inaccessible areas.
- Evidence of impairment was not encountered in the locations of the former in ground lifts at 132 Denison Parkway East.
- Evidence of impairment was not identified in soil borings proximate the former laundry facility (SB-22, SB-24, and SB-29) at 176 Denison Parkway East. Due to the lack of records indicating that dry cleaning was conducted at the Site, it is anticipated that the laundry facility associated with the former Corning Hospital did not conduct dry cleaning services.
- A vent pipe and fill port were identified on the east side of the residence at 144 East First Street. The apparent UST was empty and evidence of impairment was not detected in the soil boring (SB-25) advanced in this location. TCE was detected in groundwater in this location (MW-12) at levels above Groundwater Standards.

# 7.0 **RECOMMENDATIONS**

Based on the work completed to date, LaBella recommends the following:

- Due to the concentrations of CVOCs in groundwater predominately located around the main hospital building and the potential for higher concentrations beneath and/or in proximity to the former hospital building, further investigation is warranted to determine if a source of contamination in groundwater is present on-Site and the nature and extent of such impacts. This investigation should also include additional sampling of the sump and groundwater extraction well discharges to assess whether there are variations in concentrations and mass of TCE.
- A geophysical survey is recommended to determine if USTs are present in the locations of the former gasoline stations at 176 Denison Parkway East, 132 Denison Parkway East, and 201 East First Street.
- A test pit is recommended in the location of the apparent UST at 144 East First Street to confirm a UST is present and if present, the UST should be removed.
- The fill materials encountered should be further evaluated to determine the nature and extent of fill materials present at the Site. Due to petroleum impacts at 132 Denison Parkway East and 201 East First

Street, additional testing is warranted to determine the nature and extent of petroleum impacts present in soil and/or groundwater.

A copy of all information collected during this assessment, including maps, notes, analytical data and other material will be kept on file at the offices of LaBella Associates, D.P.C. This information is available upon request.

# 8.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

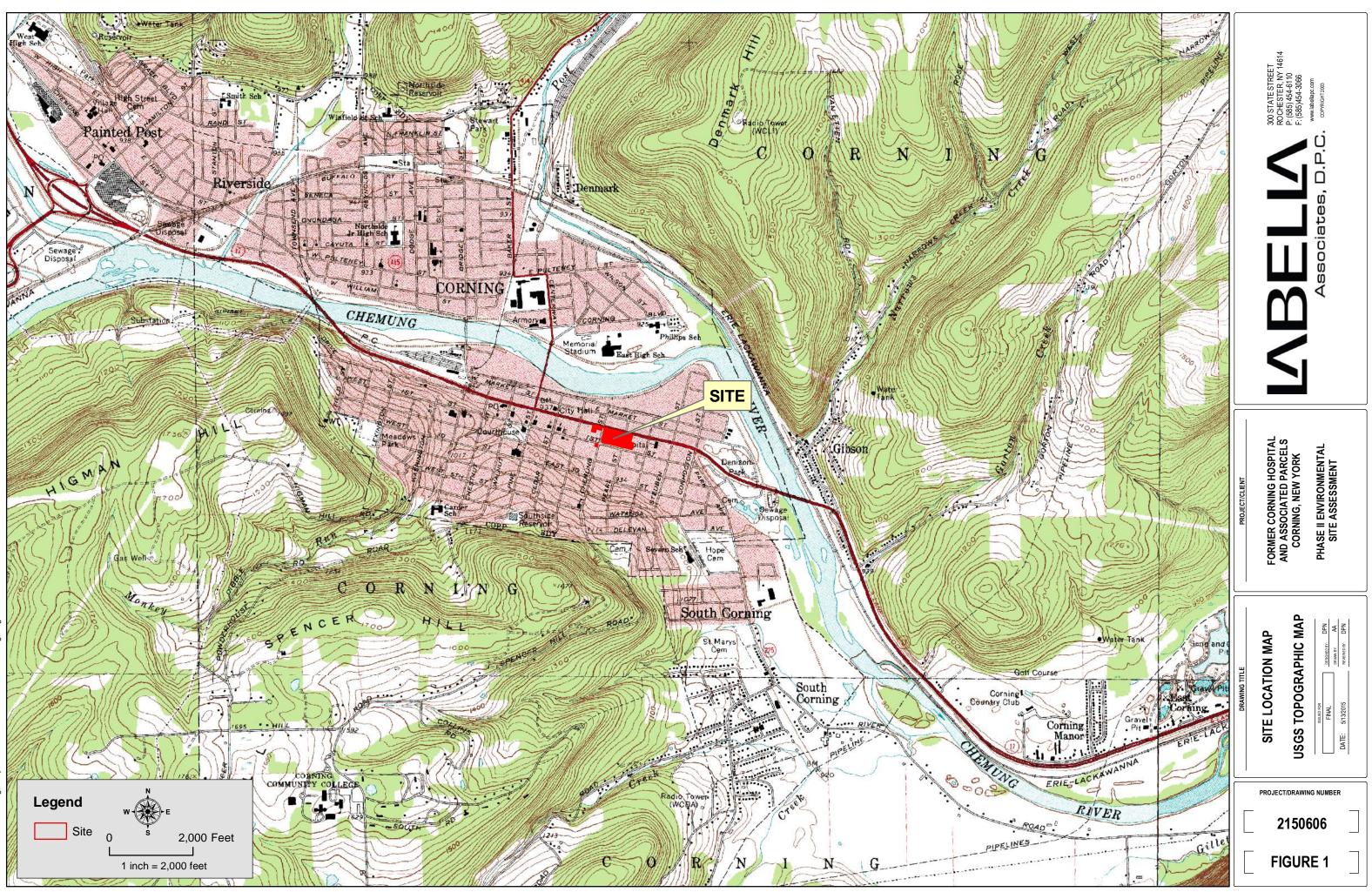
**Report Prepared By:** 

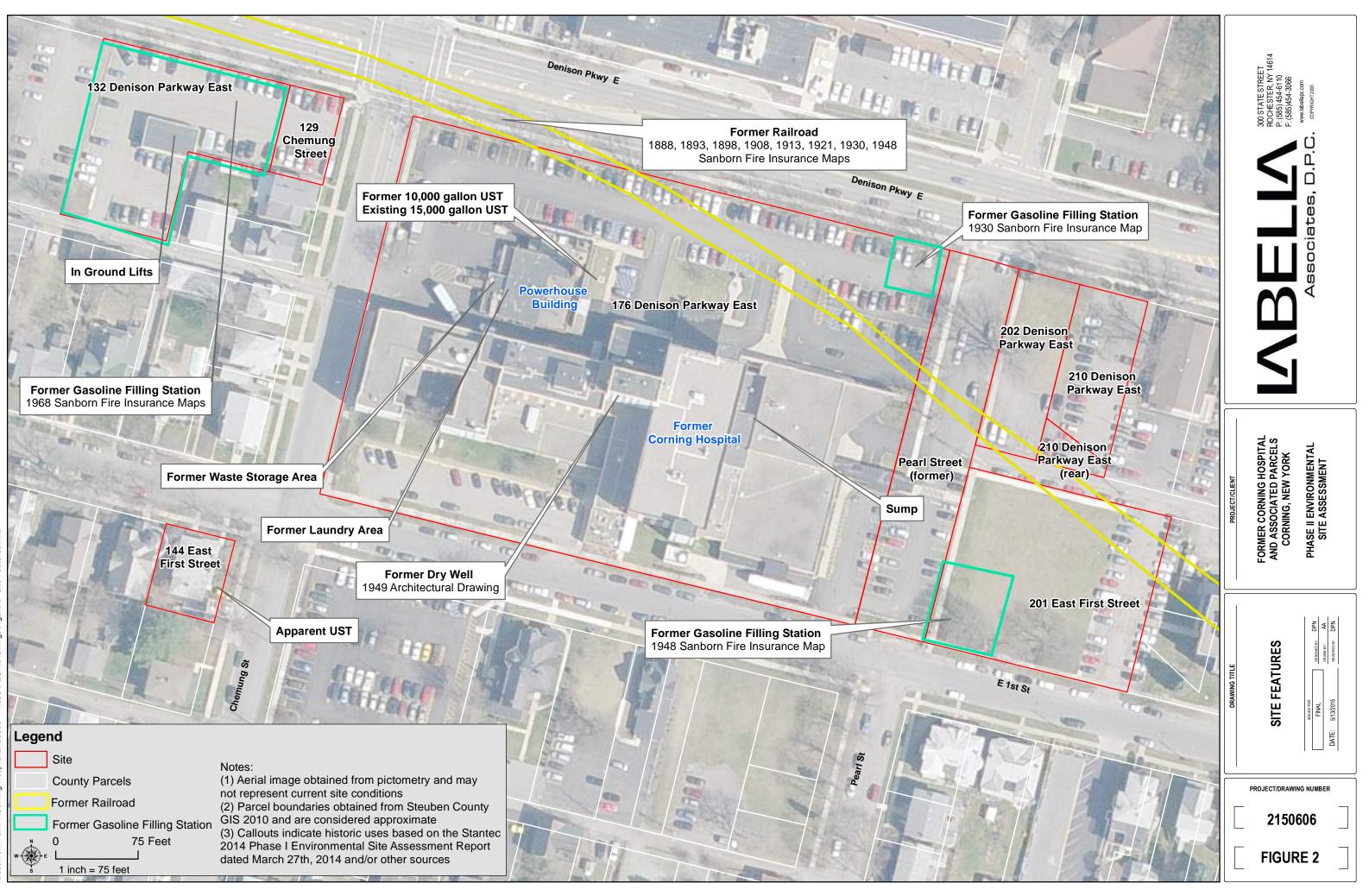
Un

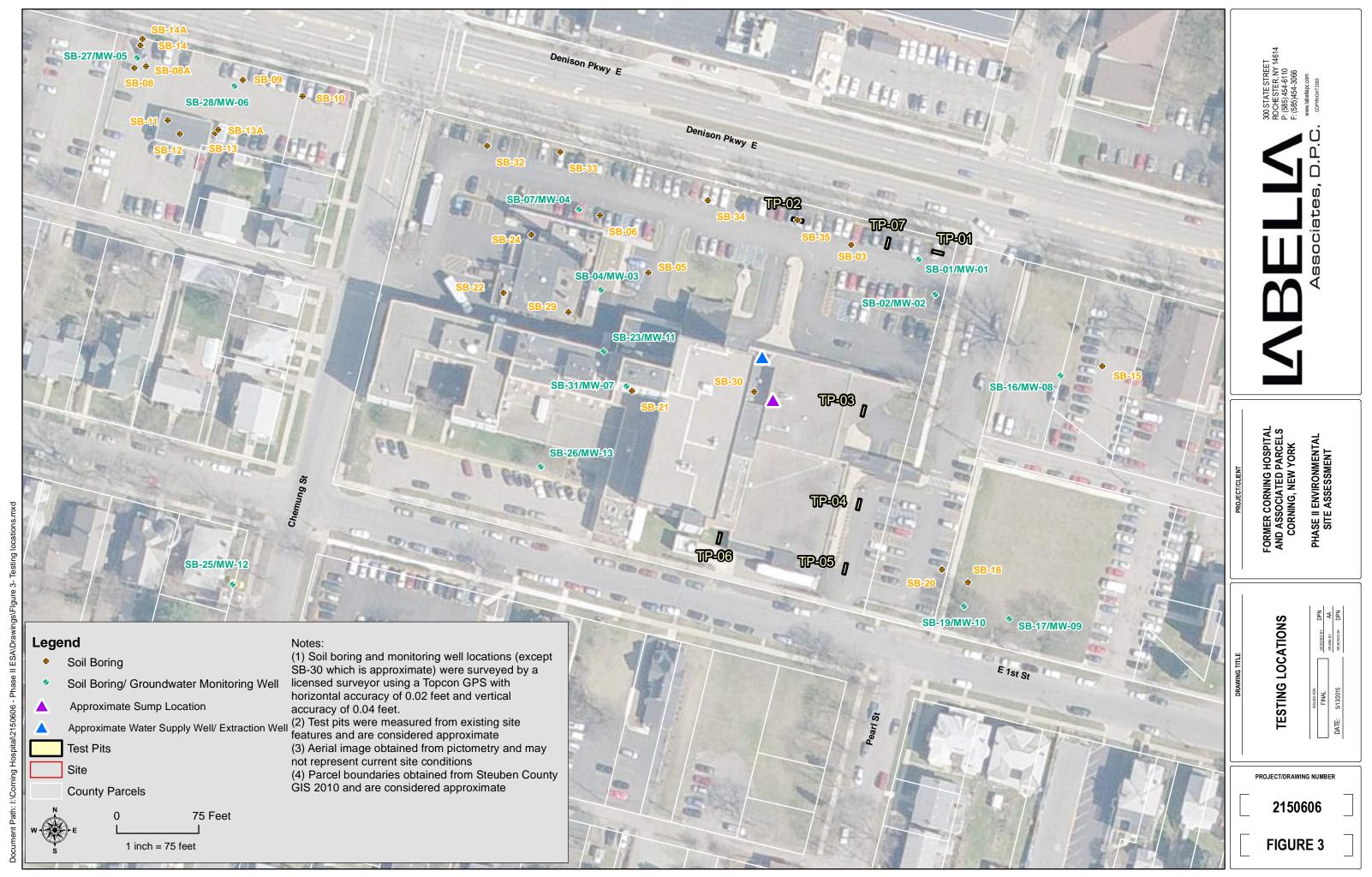
Ann Aquilina Environmental Engineer

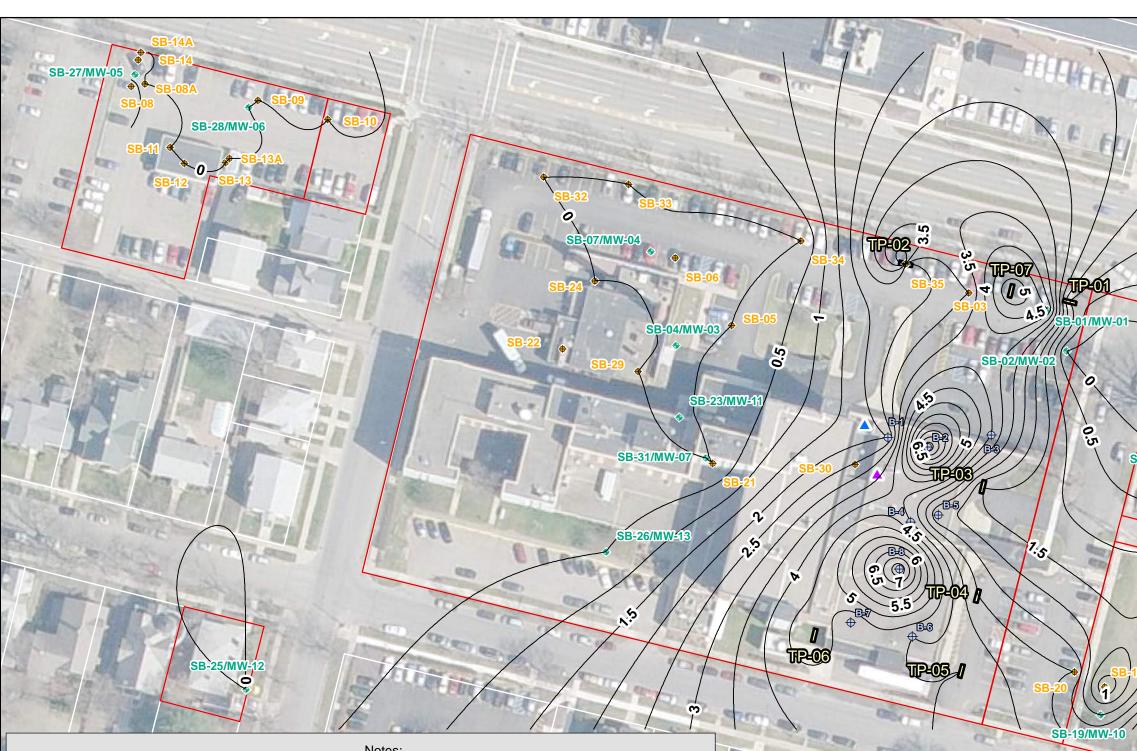
Report Reviewed By:

NI


Daniel P. Noll, P.E. Project Manager


I:\CORNING HOSPITAL\2150606 - PHASE II ESA\REPORTS\PHASE II ESA\RPT.2015.05.22.CORNING HOSPITAL PHASE II ESA.docx



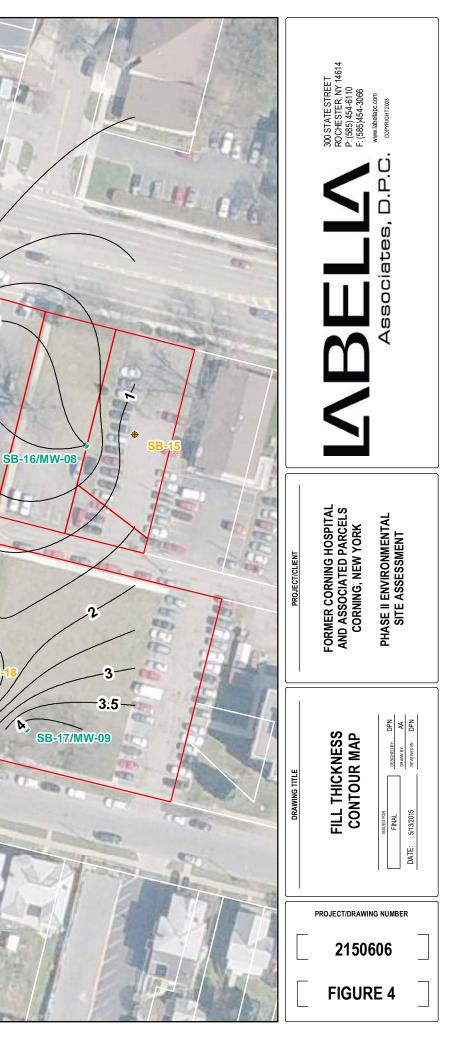


Engineering Architecture Environmental

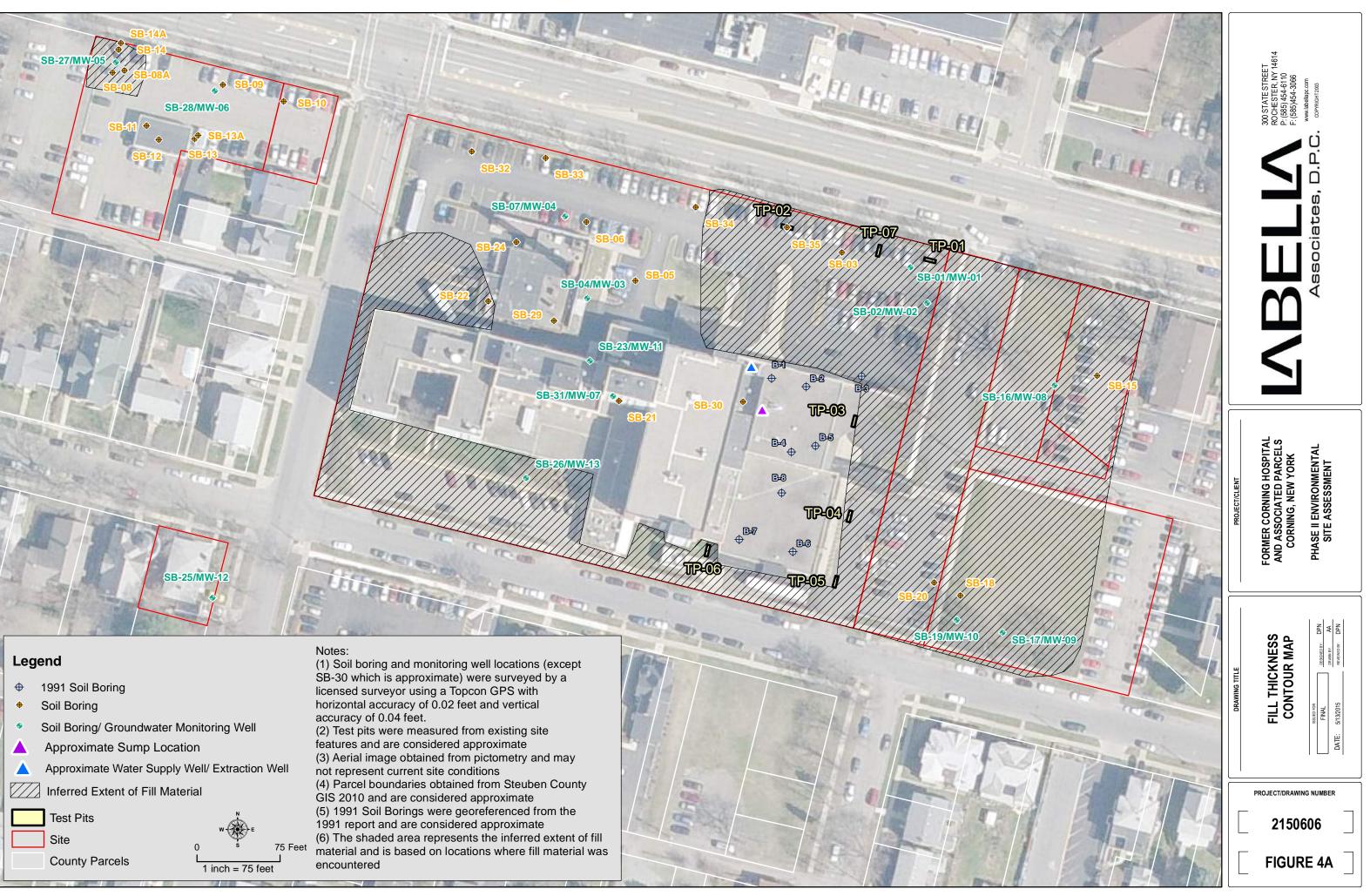
# **FIGURES**

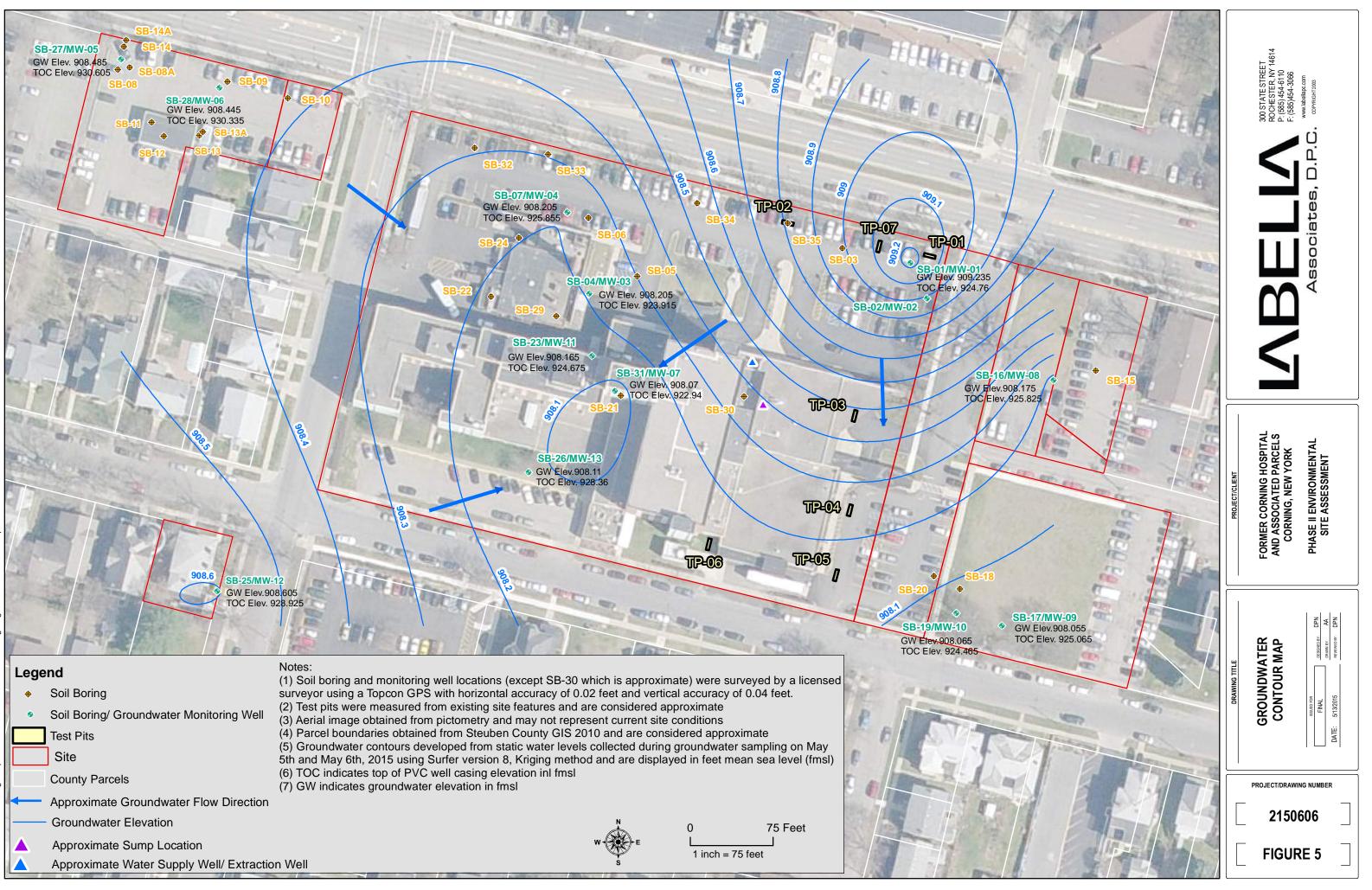










# Legend


- 1991 Soil Boring  $\oplus$
- Soil Boring ¢
- Soil Boring/ Groundwater Monitoring Well ۲
- Approximate Sump Location
- Approximate Water Supply Well/ Extraction Well
- Fill Thickness Contours
- Test Pits Site 75 Feet **County Parcels** 1 inch = 75 feet

# Notes:

- (1) Soil boring and monitoring well locations (except SB-30 which is approximate) were surveyed by a licensed surveyor using a Topcon GPS with horizontal accuracy of 0.02 feet and vertical accuracy of 0.04 feet.
- (2) Test pits were measured from existing site features and are considered approximate (3) Aerial image obtained from pictometry and may not represent current site conditions (4) Parcel boundaries obtained from Steuben County GIS 2010 and are considered approximate (5) 1991 Soil Borings were georeferenced from the 1991 report and are considered approximate (6) Fill contours developed using Surfer version 8, Kriging method, and represent thickness of fill material encountered in soil borings and test pits, in feet









Engineering Architecture Environmental

# **TABLES**

|                               |                                    |                                             |                                       |                                                |                         |                               |                         |                           |                                | 176 Deniso              | on Parkway East         |                           |                        |                          |                          |                        |
|-------------------------------|------------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------------|-------------------------|-------------------------------|-------------------------|---------------------------|--------------------------------|-------------------------|-------------------------|---------------------------|------------------------|--------------------------|--------------------------|------------------------|
| Sample ID<br>Sample Date      | NYSDEC<br>Unrestricted Use<br>SCOs | NYSDEC Protection<br>of Groundwater<br>SCOs | NYSDEC Restricted<br>Residential SCOs | <u>NYSDEC</u><br>Commercial Use<br><u>SCOs</u> | SB-01-3-4'<br>27-Apr-15 | SB-02-10.6-11.6'<br>27-Apr-15 | SB-03-3-4'<br>27-Apr-15 | SB-04-14-16'<br>27-Apr-15 | Blind Duplicate 1<br>27-Apr-15 | SB-05-7-8'<br>27-Apr-15 | SB-06-5-6'<br>27-Apr-15 | SB-07-19-20'<br>27-Apr-15 | SB-22-5-6<br>30-Apr-15 | SB-22-19-20<br>30-Apr-15 | SB-23-17-18<br>30-Apr-15 | SB-35-0-4'<br>5-May-15 |
| METALS (ppm)<br>Lead          | 63                                 | 450                                         | 400                                   | 1.000                                          | 246                     | 1                             | 455                     | 1                         | 1                              | 12.3                    | 22.1                    | 1                         | 85.5                   | 1                        |                          | 435                    |
| Selenium                      | 3.9                                | 3.9                                         | 400                                   | 1,000                                          | 1.2                     | -                             | <u>435</u><br>1.3       | _                         |                                | ND(0.437)               | 0.846                   |                           | ND(1.66)               | -                        |                          | 435<br>ND(0.936)       |
| Arsenic                       | 13                                 | 16                                          | 16                                    | 1,300                                          | 13.5                    |                               | 9.85                    |                           |                                | 6.18                    | 5.17                    |                           | 8.64                   |                          |                          | 12.5                   |
| Barium                        | 350                                | 820                                         | 400                                   | 400                                            | 153                     |                               | 136                     |                           |                                | 66.2                    | 159                     |                           | 92.1                   |                          |                          | 274                    |
| Cadmium                       | 2.5                                | 7.5                                         | 400                                   | 9.3                                            | 0.925                   | NOT ANALYZED                  | 2.23                    | NOT ANALYZED              | NOT ANALYZED                   | 0.0361                  | 0.0652                  | NOT ANALYZED              | ND(0.554)              | NOT ANALYZED             | NOT ANALYZED             | 0.513                  |
| Chromium (trivalent)          | 30                                 | NS                                          | 180                                   | 1,500                                          | 13.2                    | NOT ANALIZED                  | 19.5                    | NOT ANALIZED              | NOT ANALIZED                   | 12.6                    | 9.48                    | NOT ANALIZED              | 12.1                   | NOT ANALIZED             | NOT ANALIZED             | 22.8                   |
| Silver                        | 2                                  | 8.3                                         | 180                                   | 1,500                                          | ND(0.121)               |                               | ND(0.109)               |                           |                                | ND(0.128)               | ND(0.134)               |                           | ND(1.66)               |                          |                          | 0.299                  |
| Mercury                       | 0.18                               | 0.73                                        | 0.81                                  | 2.80                                           | 0.211                   |                               | 0.522                   |                           |                                | 0.011                   | 0.0474                  |                           | 0.411                  |                          |                          | 3.62                   |
| Cyanide                       | 27                                 | 40                                          | 27                                    | 2.00                                           | ND(0.457)               | -                             | 0.541                   | -                         |                                | ND(0.413)               | ND(0.437)               |                           | NOT ANALYZED           |                          |                          | NOT ANALYZED           |
| VOCs (ppb)                    | 21                                 | +0                                          | 21                                    | 21                                             | 140(0.437)              | ļļ                            | 0.541                   |                           |                                | 110(0.413)              | ND(0.451)               | ļ                         | NOT ANALIZED           | ļ                        |                          | NOT ANALIZED           |
| Acetone                       | 50                                 | 50                                          | 100.000                               | 500.000                                        | 1                       | ND(36.9)                      | ND(35.2)                | ND(38.3)                  | ND(41.2)                       |                         |                         | ND(203)                   |                        | ND(64.8)                 | ND(73.3)                 |                        |
| Methylene chloride            | 50                                 | 50                                          | 100,000                               | 500,000                                        |                         | 3.3                           | ND(1.5)                 | 3.5                       | 2.9                            |                         |                         | 10.3                      |                        | ND(13.0)                 | 16.9                     | -                      |
| 1.2.4-Trimethylbenzene        | 3.600                              | 3.600                                       | 52,000                                | 190.000                                        |                         | ND(1.4)                       | ND(1.3)                 | ND(1.4)                   | ND(1.5)                        |                         |                         | ND(7.6)                   |                        | ND(6.5)                  | ND(7.3)                  | -                      |
| 1.3.5-Trimethylbenzene        | 8,400                              | 8,400                                       | 52,000                                | 190,000                                        |                         | ND(1.6)                       | ND(1.5)                 | ND(1.6)                   | ND(1.8)                        |                         |                         | ND(8.7)                   |                        | ND(6.5)                  | ND(7.3)                  |                        |
| o-Xylene                      | 260                                | 1.600                                       | 100.000                               | 500.000                                        |                         | ND(1.2)                       | ND(1.1)                 | ND(1.2)                   | ND(1.3)                        |                         |                         | ND(6.5)                   |                        | ND(6.5)                  | ND(7.3)                  |                        |
| VOC TICs                      |                                    | .,                                          |                                       |                                                |                         |                               |                         | ()                        |                                |                         |                         |                           |                        |                          |                          |                        |
| Ethane, 1.1-difluoro-         | NS                                 | NS                                          | NS                                    | NS                                             | NOT ANALYZED            |                               |                         |                           |                                | NOT ANALYZED            | NOT ANALYZED            | 239                       | NOT ANALYZED           |                          |                          | NOT ANALYZED           |
| Cvclohexane, 1,1,3-trimethyl- | NS                                 | NS                                          | NS                                    | NS                                             |                         |                               |                         |                           |                                |                         |                         | ND                        |                        |                          |                          |                        |
| Cyclohexane, 1.1-dimethyl-    | NS                                 | NS                                          | NS                                    | NS                                             |                         |                               |                         |                           |                                |                         |                         | ND                        |                        |                          |                          |                        |
| Cyclohexane, 1.2.4-trimethy   | NS                                 | NS                                          | NS                                    | NS                                             |                         | None found                    | None found              | None found                | None found                     |                         |                         | ND                        |                        | None found               | None found               |                        |
| Cyclohexane, 1.2.4-trimethyl- | NS                                 | NS                                          | NS                                    | NS                                             |                         |                               |                         |                           |                                |                         |                         | ND                        |                        |                          |                          |                        |
| Cyclohexane, 1,2-dimethyl-    | NS                                 | NS                                          | NS                                    | NS                                             |                         |                               |                         |                           |                                |                         |                         | ND                        |                        |                          |                          |                        |
| SVOCs (ppb)                   |                                    |                                             |                                       |                                                |                         |                               |                         |                           |                                |                         |                         |                           |                        |                          |                          |                        |
| Acenapthene                   | 20,000                             | 98,000                                      | 100,000                               | 500,000                                        | ND(184)                 |                               | 50.8                    |                           |                                | ND(18.2)                | ND(19.1)                |                           |                        |                          |                          |                        |
| Acenapthylene                 | 100,000                            | 107,000                                     | 100,000                               | 500,000                                        | 260                     |                               | ND(15.2)                |                           |                                | ND(16.6)                | ND(17.4)                |                           |                        |                          |                          |                        |
| Anthracene                    | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | ND(181)                 |                               | 146                     |                           |                                | ND(17.9)                | ND(18.8)                |                           |                        |                          |                          |                        |
| Benzo(a)anthracene            | 1,000                              | 1,000                                       | 1,000                                 | 5,600                                          | 643                     |                               | 398                     |                           |                                | ND(16.2)                | ND(17.0)                |                           |                        |                          |                          |                        |
| Benzo(a)pyrene                | 1,000                              | 22,000                                      | 1,000                                 | 1,000                                          | 667                     |                               | 355                     |                           |                                | ND(16.3)                | ND(17.1)                |                           |                        |                          |                          |                        |
| Benzo(b)fluoranthene          | 1,000                              | 1,700                                       | 1,000                                 | 5,600                                          | 805                     |                               | 461                     |                           |                                | ND(17.8)                | ND(18.7)                |                           |                        |                          |                          |                        |
| Benzo(g,h,i)perylene          | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | 296                     | j                             | 206                     |                           |                                | ND(16.9)                | ND(17.8)                |                           |                        |                          |                          |                        |
| Benzo(k)fluoranthene          | 800                                | 1,700                                       | 3,900                                 | 56,000                                         | 308                     |                               | 198                     |                           |                                | ND(17.8)                | ND(18.7)                |                           |                        |                          |                          |                        |
| Chrysene                      | 1,000                              | 1,000                                       | 3,900                                 | 56,000                                         | 761                     | l [                           | 388                     |                           |                                | ND(19.1)                | ND(20.0)                |                           |                        |                          |                          |                        |
| Dibenzo(a,h)anthracene        | 330                                | 1,000,000                                   | 330                                   | 560                                            | ND(145)                 | NOT ANALYZED                  | 46.5                    | NOT ANALYZED              | NOT ANALYZED                   | ND(14.4)                | ND(15.1)                | NOT ANALYZED              | NOT ANALYZED           | NOT ANALYZED             | NOT ANALYZED             | NOT ANALYZED           |
| Dibenzofuran                  | NS                                 | NS                                          | NS                                    | NS                                             | ND(145)                 |                               | 40                      |                           |                                | ND(14.4)                | ND(15.1)                |                           |                        |                          |                          |                        |
| Fluoranthene                  | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | 745                     |                               | 782                     |                           |                                | ND(19.6)                | ND(20.6)                |                           |                        |                          |                          |                        |
| Fluorene                      | 30,000                             | 386,000                                     | 100,000                               | 500,000                                        | ND(189)                 |                               | 57.6                    | 1                         |                                | ND(18.7)                | ND(19.6)                |                           |                        |                          |                          |                        |
| Ideno(1,2,3-cd)pyrene         | 500                                | 8,200                                       | 500                                   | 5,600                                          | 300                     |                               | 229                     | 1                         |                                | ND(16.0)                | ND(16.8)                |                           |                        |                          |                          |                        |
| Phenanthrene                  | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | 375                     |                               | 615                     | 1                         |                                | ND(19.1)                | ND(20.0)                |                           |                        |                          |                          |                        |
| Pyrene                        | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | 1070                    |                               | 818                     | 1                         |                                | ND(16.7)                | ND(17.5)                |                           |                        |                          |                          |                        |
| 2-Methylnaphthalene           | NS                                 | NS                                          | NS                                    | NS                                             | ND(701)                 |                               | 33.6                    | 1                         |                                | ND(69.4)                | ND(16.9)                |                           |                        |                          |                          |                        |
| Naphthalene                   | 12,000                             | 12,000                                      | 100,000                               | 500,000                                        | ND(161)                 |                               | 36.5                    | 4                         |                                | ND(16.1)                | ND(16.7)                |                           |                        |                          |                          |                        |
| SVOC TICs                     | NS                                 | NS                                          | NS                                    | NS                                             | None found              |                               | None found              |                           |                                | None found              | None found              |                           |                        |                          |                          |                        |

Notes: Metals concentrations reported in milligrams per kilogram (mg/kg) or parts per million (ppm) Volatile organic compounds (VOC) and semi-volatile organic compounds (SVOC) reported in micrograms per kilogram (ug/kg) or parts per billion (ppb) Bold indicates the sample exceeds New York State Department of Environmental Conservation (NYSDEC) Part 375-6.8(a) Soil Cleanup Objectives (SCOs) for Unrestricted Use for the given parameter <u>Bold underline</u> indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Protection of Groundwater for the given parameter <u>Bold underline and red font</u> indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Restricted Residential Use for the given parameter <u>Bold underline red font and yellow highlight indicates the samp</u>le exceeds NYSDEC Part 376-6.8(b) SCOs for Commercial Use for the given parameter ND indicates the sample was non-detect above laboratory method detection limits for the given parameter, with the detection limit in parenthesis TICs indicates the statified compounds NS indicates the specified

NS indicates Not Specified

|                               |                                    |                                             |                                       |                                                | 132 Denison Parkway East    |                         |                                |                            |                     |  |
|-------------------------------|------------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------------|-----------------------------|-------------------------|--------------------------------|----------------------------|---------------------|--|
| Sample ID<br>Sample Date      | NYSDEC<br>Unrestricted Use<br>SCOs | NYSDEC Protection<br>of Groundwater<br>SCOs | NYSDEC Restricted<br>Residential SCOs | <u>NYSDEC</u><br>Commercial Use<br><u>SCOs</u> | SB-08A-9-10.4'<br>28-Apr-15 | SB-09-2-3'<br>28-Apr-15 | Blind Duplicate 2<br>28-Apr-15 | SB-09-8-10.4'<br>28-Apr-15 | 129 Che<br>SI<br>28 |  |
| METALS (ppm)                  |                                    |                                             |                                       |                                                |                             |                         |                                |                            |                     |  |
| Lead                          | 63                                 | 450                                         | 400                                   | 1,000                                          |                             | 31.1                    | 22.7                           |                            |                     |  |
| Selenium                      | 3.9                                | 3.9                                         | 180                                   | 1,500                                          |                             | ND(0.389)               | ND(0.411)                      |                            | N                   |  |
| Arsenic                       | 13                                 | 16                                          | 16                                    | 16                                             |                             | 7.23                    | 5.25                           |                            |                     |  |
| Barium                        | 350                                | 820                                         | 400                                   | 400                                            |                             | 139                     | 117                            |                            |                     |  |
| Cadmium                       | 2.5                                | 7.5                                         | 4.3                                   | 9.3                                            | NOT ANALYZED                | 0.0617                  | 0.0328                         | NOT ANALYZED               | N                   |  |
| Chromium (trivalent)          | 30                                 | NS                                          | 180                                   | 1,500                                          |                             | 11.7                    | 11                             |                            |                     |  |
| Silver                        | 2                                  | 8.3                                         | 180                                   | 1,500                                          |                             | ND(0.114)               | ND(0.120)                      |                            | N                   |  |
| Mercury                       | 0.18                               | 0.73                                        | 0.81                                  | 2.80                                           |                             | 0.0484                  | 0.0581                         |                            |                     |  |
| Cyanide                       | 27                                 | 40                                          | 27                                    | 27                                             |                             | ND(0.420)               | ND(0.416)                      |                            | NOT                 |  |
| VOCs (ppb)                    | -                                  |                                             |                                       |                                                | -                           |                         |                                |                            |                     |  |
| Acetone                       | 50                                 | 50                                          | 100,000                               | 500,000                                        |                             |                         |                                | ND(725)                    |                     |  |
| Methylene chloride            | 50                                 | 50                                          | 100,000                               | 500,000                                        |                             |                         |                                | <u>52.1</u>                |                     |  |
| 1,2,4-Trimethylbenzene        | 3,600                              | 3,600                                       | 52,000                                | 190,000                                        |                             |                         |                                | ND(27.3)                   |                     |  |
| 1,3,5-Trimethylbenzene        | 8,400                              | 8,400                                       | 52,000                                | 190,000                                        |                             |                         |                                | ND(31.2)                   |                     |  |
| o-Xylene                      | 260                                | 1,600                                       | 100,000                               | 500,000                                        |                             |                         |                                | ND(23.1)                   |                     |  |
| VOC TICs                      |                                    |                                             |                                       |                                                | NOT ANALYZED                | NOT ANALYZED            | NOT ANALYZED                   |                            | NOT                 |  |
| Ethane, 1,1-difluoro-         | NS                                 | NS                                          | NS                                    | NS                                             |                             |                         |                                |                            |                     |  |
| Cyclohexane, 1,1,3-trimethyl- | NS                                 | NS                                          | NS                                    | NS                                             |                             |                         |                                |                            |                     |  |
| Cyclohexane, 1,1-dimethyl-    | NS                                 | NS                                          | NS                                    | NS                                             |                             |                         |                                | None found                 |                     |  |
| Cyclohexane, 1,2,4-trimethy   | NS                                 | NS                                          | NS                                    | NS                                             |                             |                         |                                |                            |                     |  |
| Cyclohexane, 1,2,4-trimethyl- | NS                                 | NS                                          | NS                                    | NS                                             |                             |                         |                                |                            |                     |  |
| Cyclohexane, 1,2-dimethyl-    | NS                                 | NS                                          | NS                                    | NS                                             |                             |                         |                                |                            |                     |  |
| SVOCs (ppb)                   |                                    |                                             |                                       |                                                |                             |                         | 1                              |                            | -                   |  |
| Acenapthene                   | 20,000                             | 98,000                                      | 100,000                               | 500,000                                        | ND(16.1)                    | ND(84.2)                | ND(86.8)                       |                            |                     |  |
| Acenapthylene                 | 100,000                            | 107,000                                     | 100,000                               | 500,000                                        | ND(14.6)                    | ND(76.6)                | ND(79.0)                       |                            |                     |  |
| Anthracene                    | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | ND(15.8)                    | ND(82.6)                | ND(85.2)                       |                            |                     |  |
| Benzo(a)anthracene            | 1,000                              | 1,000                                       | 1,000                                 | 5,600                                          | ND(14.3)                    | ND(74.8)                | ND(77.1)                       |                            |                     |  |
| Benzo(a)pyrene                | 1,000                              | 22,000                                      | 1,000                                 | 1,000                                          | ND(14.4)                    | ND(75.3)                | ND(77.6)                       |                            |                     |  |
| Benzo(b)fluoranthene          | 1,000                              | 1,700                                       | 1,000                                 | 5,600                                          | ND(15.7)                    | ND(82.3)                | ND(84.9)                       |                            |                     |  |
| Benzo(g,h,i)perylene          | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | ND(14.9)                    | ND(78.2)                | ND(80.7)                       |                            |                     |  |
| Benzo(k)fluoranthene          | 800                                | 1,700                                       | 3,900                                 | 56,000                                         | ND(15.7)                    | ND(82.3)                | ND(84.9)                       |                            |                     |  |
| Chrysene                      | 1,000                              | 1,000                                       | 3,900                                 | 56,000                                         | ND(16.9)                    | ND(88.3)                | ND(91.0)                       |                            | NOT                 |  |
| Dibenzo(a,h)anthracene        | 330                                | 1,000,000                                   | 330                                   | 560                                            | ND(12.7)                    | ND(66.3)                | ND(68.4)                       | NOT ANALYZED               | NOT                 |  |
| Dibenzofuran                  | NS                                 | NS                                          | NS                                    | NS                                             | ND(12.7)                    | ND(66.3)                | ND(68.4)                       |                            |                     |  |
| Fluoranthene                  | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | ND(17.3)                    | 95.7                    | ND(93.5)                       |                            |                     |  |
| Fluorene                      | 30,000                             | 386,000                                     | 100,000                               | 500,000                                        | ND(16.5)                    | ND(86.5)                | ND(89.2)                       |                            |                     |  |
| Ideno(1,2,3-cd)pyrene         | 500                                | 8,200                                       | 500                                   | 5,600                                          | ND(14.1)                    | ND(73.9)                | ND(76.2)                       |                            |                     |  |
| Phenanthrene                  | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | ND(16.8)                    | 143                     | 101                            |                            | 1                   |  |
| Pyrene                        | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                        | ND(14.7)                    | ND(76.9)                | ND(79.3)                       |                            |                     |  |
| 2-Methylnaphthalene           | NS                                 | NS                                          | NS                                    | NS                                             | ND(14.2)                    | ND(74.5)                | ND(76.8)                       | 1                          |                     |  |
| Naphthalene                   | 12,000                             | 12,000                                      | 100,000                               | 500,000                                        | ND(14.1)                    | ND(73.6)                | ND(75.9)                       |                            |                     |  |
| SVOC TICs                     | NS                                 | NS                                          | NS                                    | NS                                             | None found                  | None found              | None found                     |                            |                     |  |

Notes: Metals concentrations reported in milligrams per kilogram (mg/kg) or parts per million (ppm) Volatile organic compounds (VOC) and semi-volatile organic compounds (SVOC) reported in micrograms per kilogram (ug/kg) or parts per billion (ppb) Bold indicates the sample exceeds New York State Department of Environmental Conservation (NYSDEC) Part 375-6.8(a) Soil Cleanup Objectives (SCOs) for Unrestricted Use for the given parameter <u>Bold underline</u> indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Protection of Groundwater for the given parameter <u>Bold underline and red font</u> indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Restricted Residential Use for the given parameter <u>Bold underline red font and yellow highlight</u> indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Commercial Use for the given parameter ND indicates the sample was non-detect above laboratory method detection limits for the given parameter, with the detection limit in parenthesis TICs indicates the serviced

NS indicates Not Specified

| Chemung Street |
|----------------|
| SB-10-4-5      |
| 28-Apr-15      |
|                |
| 95.9           |
| ND(1.60)       |
| 7.02           |
| 36.3           |
| ND(0.532)      |
| 5.98           |
| ND(1.60)       |
| 0.0342         |
| T ANALYZED     |
|                |
| OT ANALYZED    |
| DT ANALYZED    |
|                |

Corning Hospital and Associated Parcels Phase II Environmental Site Assessment Table 1: Detected Compounds in Soil May 2015

|                               |                                    |                                             |                                       |                                         | 202 Denison<br>Parkway | 210 Denison<br>Parkway East | 201 East First Street |              |              | Pearl Street (former)  | 144 East First Street |
|-------------------------------|------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------------------|------------------------|-----------------------------|-----------------------|--------------|--------------|------------------------|-----------------------|
| Sample ID                     | NYSDEC<br>Unrestricted Use<br>SCOs | NYSDEC Protection<br>of Groundwater<br>SCOs | NYSDEC Restricted<br>Residential SCOs | <u>NYSDEC</u><br>Commercial Use<br>SCOs | SB-16-7-8              | SB-15-2-3                   | SB-17-2.5-3.5         | SB-17-6-8    | SB-19-1-3    | SB-20-7-8              | SB-25-20-24           |
| Sample Date                   |                                    |                                             |                                       |                                         | 29-Apr-15              | 29-Apr-15                   | 29-Apr-15             | 29-Apr-15    | 29-Apr-15    | 29-Apr-15              | 1-May-15              |
| METALS (ppm)<br>Lead          | 63                                 | 450                                         | 400                                   | 1,000                                   | 8.16                   | 234                         | 291                   | 251          | (            | 9.13                   |                       |
| Selenium                      | 3.9                                | 3.9                                         | 180                                   | 1,500                                   | ND(1.51)               | ND(2.30)                    | ND(3.10)              | ND(2.10)     |              | 9.13<br>ND(1.78)       |                       |
| Arsenic                       | 13                                 | 16                                          | 16                                    | 16                                      | 7.4                    | 10(2.30)                    | ND(3.10)              | 14.7         |              | 5.21                   |                       |
| Barium                        | 350                                | 820                                         | 400                                   | 400                                     | 31                     | 201                         | 41.4                  | 101          |              | 58.1                   |                       |
| Cadmium                       | 2.5                                | 7.5                                         | 400                                   | 9.3                                     | ND(0.502)              | ND(0.604)                   | 14                    | ND(0.538)    | NOT ANALYZED | ND(0.595)              | NOT ANALYZED          |
| Chromium (trivalent)          | 30                                 | NS                                          | 4.3                                   | 1,500                                   | 6.94                   | 14.9                        | 5.36                  | 10.3         | NOT ANALIZED | 9.69                   | NOT ANALIZED          |
| Silver                        | 2                                  | 8.3                                         | 180                                   | 1,500                                   | ND(1.51)               | ND(1.81)                    | ND(1.94)              | ND(1.61)     |              | 9.69<br>ND(1.78)       |                       |
| Mercury                       | 0.18                               | 0.73                                        | 0.81                                  | 2.80                                    | ND(0.0324)             | 0.438                       | 0.232                 | 1.01         |              | ND(1.78)<br>ND(0.0354) |                       |
| Cvanide                       | 27                                 | 40                                          | 27                                    | 2.80                                    | ND(0.0324)             | NOT ANALYZED                | NOT ANALYZED          | NOT ANALYZED | -            | NOT ANALYZED           |                       |
| VOCs (ppb)                    | 21                                 | 40                                          | 21                                    | 21                                      | ND(0.540)              | NOT ANALTZED                | NOT ANALIZED          | NOT ANALTZED |              | NOT ANALTZED           |                       |
| Acetone                       | 50                                 | 50                                          | 100.000                               | 500.000                                 | ND(40.0)               |                             |                       | [            | 105          | r                      | ND(52.8)              |
| Methylene chloride            | 50                                 | 50                                          | 100,000                               | 500,000                                 | ND(40.0)               |                             |                       |              | ND(9.0)      |                        | ND(32.8)<br>ND(10.6)  |
| 1.2.4-Trimethylbenzene        | 3.600                              | 3.600                                       | 52.000                                | 190.000                                 | ND(6.0)                |                             |                       |              | 11.1         |                        | ND(10.0)<br>ND(5.3)   |
| 1,2,4-Trimethylbenzene        | 8.400                              | 8.400                                       | 52,000                                | 190,000                                 | ND(4.0)                |                             |                       |              | 64.9         |                        | ND(5.3)               |
| o-Xylene                      | 260                                | 1.600                                       | 100.000                               | 500.000                                 | ND(4.0)                |                             |                       |              |              | 10                     | ND(5.3)               |
| VOC TICs                      | 200                                | 1,000                                       | 100,000                               | 500,000                                 | ND(4.0)                |                             |                       |              | 10           |                        | ND(0.3)               |
| Ethane, 1,1-difluoro-         | NS                                 | NS                                          | NS                                    | NS                                      |                        | NOT ANALYZED                | NOT ANALYZED          | NOT ANALYZED | ND           | NOT ANALYZED           |                       |
| Cyclohexane, 1,1,3-trimethyl- | NS                                 | NS                                          | NS                                    | NS                                      |                        |                             |                       |              | 996          |                        |                       |
| Cyclohexane, 1,1-dimethyl-    | NS                                 | NS                                          | NS                                    | NS                                      |                        |                             |                       |              | 219          |                        | 1                     |
| Cyclohexane, 1,2,4-trimethy   | NS                                 | NS                                          | NS                                    | NS                                      | None found             |                             |                       |              | 396          |                        | None found            |
| Cyclohexane, 1,2,4-trimethyl- | NS                                 | NS                                          | NS                                    | NS                                      | ļ                      |                             |                       |              | 259          |                        |                       |
| Cyclohexane, 1,2-dimethyl-    | NS                                 | NS                                          | NS                                    | NS                                      |                        |                             |                       |              | 420          |                        |                       |
| SVOCs (ppb)                   | NO                                 | NO                                          | 110                                   | NO                                      |                        |                             |                       |              | 420          |                        |                       |
| Acenapthene                   | 20,000                             | 98,000                                      | 100,000                               | 500,000                                 | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Acenapthylene                 | 100.000                            | 107.000                                     | 100,000                               | 500,000                                 | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Anthracene                    | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                 | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Benzo(a)anthracene            | 1.000                              | 1,000                                       | 1,000                                 | 5,600                                   | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Benzo(a)pyrene                | 1,000                              | 22,000                                      | 1,000                                 | 1.000                                   | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Benzo(b)fluoranthene          | 1,000                              | 1.700                                       | 1,000                                 | 5.600                                   | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Benzo(g,h,i)perylene          | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                 | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Benzo(k)fluoranthene          | 800                                | 1,700                                       | 3,900                                 | 56,000                                  | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Chrysene                      | 1.000                              | 1,000                                       | 3,900                                 | 56.000                                  | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Dibenzo(a,h)anthracene        | 330                                | 1,000,000                                   | 330                                   | 560                                     | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     | NOT ANALYZED | NOT ANALYZED           | NOT ANALYZED          |
| Dibenzofuran                  | NS                                 | NS                                          | NS                                    | NS                                      | ND(192)                | ND(204)                     | ND(224)               | ND(188)      |              |                        |                       |
| Fluoranthene                  | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                 | ND(76.7)               | 82                          | ND(89.6)              | 104          |              |                        |                       |
| Fluorene                      | 30.000                             | 386.000                                     | 100,000                               | 500.000                                 | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Ideno(1,2,3-cd)pyrene         | 500                                | 8.200                                       | 500                                   | 5,600                                   | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Phenanthrene                  | 100.000                            | 1.000.000                                   | 100.000                               | 500.000                                 | ND(76.7)               | 83.7                        | ND(89.6)              | 75.8         |              |                        |                       |
| Pyrene                        | 100,000                            | 1,000,000                                   | 100,000                               | 500,000                                 | ND(76.7)               | 97.1                        | ND(89.6)              | 91.5         |              |                        |                       |
| 2-Methylnaphthalene           | NS                                 | NS                                          | NS                                    | NS                                      | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| Naphthalene                   | 12.000                             | 12.000                                      | 100.000                               | 500.000                                 | ND(76.7)               | ND(81.7)                    | ND(89.6)              | ND(75.1)     |              |                        |                       |
| SVOC TICs                     | NS                                 | NS                                          | NS                                    | NS                                      | None found             | None found                  | None found            | None found   |              |                        |                       |

Notes: Metals concentrations reported in milligrams per kilogram (mg/kg) or parts per million (ppm) Volatile organic compounds (VOC) and semi-volatile organic compounds (SVOC) reported in micrograms per kilogram (ug/kg) or parts per billion (ppb) Bold indicates the sample exceeds New York State Department of Environmental Conservation (NYSDEC) Part 375-6.8(a) Soil Cleanup Objectives (SCOs) for Unrestricted Use for the given parameter <u>Bold underline</u> indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Protection of Groundwater for the given parameter <u>Bold underline and red font</u> indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Restricted Residential Use for the given parameter <u>Bold underline red font and yellow highlight</u> indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Commercial Use for the given parameter ND indicates the sample was non-detect above laboratory method detection limits for the given parameter, with the detection limit in parenthesis TICs indicates the startified compounds NS indicates NM Specified

NS indicates Not Specified

#### Corning Hospital and Associated Parcels Phase II Environmental Site Assessment Table 1: Detected Compounds in Soil May 2015

|                          |                                    |                                             |                                          |                                                       | 176 Denison Parkway East |                      |                        |                      |                        |                      |  |  |
|--------------------------|------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------------------|--------------------------|----------------------|------------------------|----------------------|------------------------|----------------------|--|--|
| Sample ID<br>Sample Date | NYSDEC<br>Unrestricted<br>Use SCOs | NYSDEC Protection<br>of Groundwater<br>SCOs | NYSDEC<br>Restricted<br>Residential SCOs | <u>NYSDEC</u><br><u>Commercial Use</u><br><u>SCOs</u> | TP-02-5.5'<br>8-May-15   | TP-03-2'<br>8-May-15 | TP-04-2.5'<br>8-May-15 | TP-05-3'<br>8-May-15 | TP-06-2.5'<br>8-May-15 | TP-07-3'<br>8-May-15 |  |  |
| METALS (ppm)             |                                    |                                             |                                          |                                                       |                          |                      |                        |                      |                        |                      |  |  |
| Lead                     | 63                                 | 450                                         | 400                                      | 1,000                                                 | 283                      |                      | 273                    | 160                  | 176                    | <u>1560</u>          |  |  |
| Selenium                 | 3.9                                | 4                                           | 180                                      | 1,500                                                 | Not Analyzed             | Not Analyzed         | 0.622                  | 1.11                 | 0.434                  | 1.27                 |  |  |
| Arsenic                  | 13                                 | 16                                          | 16                                       | 16                                                    |                          |                      | 7.93                   | 7.21                 | 7.93                   | <u>17</u>            |  |  |
| Barium                   | 350                                | 820                                         | 400                                      | 400                                                   |                          |                      | 153                    | 99.9                 | 102                    | <u>995</u>           |  |  |
| Cadmium                  | 2.5                                | 7.5                                         | 4.3                                      | 9.3                                                   |                          | 0.233                | 2.52                   | 0.448                | 0.406                  | 0.779                |  |  |
| Chromium (trivalent)     | 30                                 | NS                                          | 180                                      | 1,500                                                 |                          | Not Analyzed         | 13.5                   | 10.4                 | 12.7                   | 26.1                 |  |  |
| Silver                   | 2                                  | 8.3                                         | 180                                      | 1,500                                                 |                          |                      | 0.222                  | 0.204                | ND(0.113)              | 0.617                |  |  |
| Mercury                  | 0.18                               | 0.73                                        | 0.81                                     | 2.8                                                   | <u>1.8</u>               |                      | 0.547                  | 0.425                | 0.766                  | <u>1.2</u>           |  |  |
| SVOCs (ppb)              |                                    |                                             |                                          |                                                       |                          |                      |                        |                      |                        |                      |  |  |
| Benzo (a) anthracene     | 1,000                              | 1,000                                       | 1,000                                    | 5,600                                                 |                          |                      | 135                    |                      |                        | ND(20.1)             |  |  |
| Benzo (a) pyrene         | 1,000                              | 22,000                                      | 1,000                                    | 1,000                                                 |                          |                      | 131                    |                      |                        | ND(20.3)             |  |  |
| Benzo (b) fluoranthene   | 1,000                              | 1,700                                       | 1,000                                    | 5,600                                                 |                          | Not Analyzed         | 162                    | Not Analyzed         |                        | ND(22.2)             |  |  |
| Chrysene                 | 1,000                              | 1,000                                       | 3,900                                    | 56,000                                                | Not Analyzed             |                      | 133                    |                      |                        | ND(23.8)             |  |  |
| Fluoranthene             | 100,000                            | 1,000,000                                   | 100,000                                  | 500,000                                               |                          |                      | 219                    |                      |                        | ND(24.4)             |  |  |
| Phenanthrene             | 100,000                            | 1,000,000                                   | 100,000                                  | 500,000                                               |                          |                      | 108                    |                      |                        | ND(23.7)             |  |  |
| Pyrene                   | 100,000                            | 1,000,000                                   | 100,000                                  | 500,000                                               |                          |                      | 223                    |                      |                        | ND(20.7)             |  |  |

#### Notes:

Metals concentrations reported in milligrams per kilogram (mg/kg) or parts per million (ppm)

Semi-volatile organic compounds (SVOC) reported in micrograms per kilogram (ug/kg) or parts per billion (ppb)

**Bold** indicates the sample exceeds New York State Department of Environmental Conservation (NYSDEC) Part 375-6.8(a) Soil Cleanup Objectives (SCOs) for Unrestricted Use for the given parameter **Bold and underline** indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Protection of Groundwater for the given parameter

Bold underline and red font indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Restricted Residential Use for the given parameter

Bold underline red font and yellow highlight indicates the sample exceeds NYSDEC Part 376-6.8(b) SCOs for Commercial Use for the given parameter

ND indicates the sample was non-detect above laboratory method detection limits for the given parameter, with the detection limit in parenthesis

TICs indicates tentatively identified compounds

NS indicates Not Specified

Corning Hospital and Associated Parcels Phase II Environmental Site Assessment Table 2: Detected Compounds in Groundwater May 2015

|                                                        |                          | Г                                                   |                    | 176 Denison Parkway East 132 D |                   |                   |                   |              | 132 Denison       | Parkway East      | 202 Denison<br>Parkway East | 201 East First Street |                   | 144 East First Street |                             |
|--------------------------------------------------------|--------------------------|-----------------------------------------------------|--------------------|--------------------------------|-------------------|-------------------|-------------------|--------------|-------------------|-------------------|-----------------------------|-----------------------|-------------------|-----------------------|-----------------------------|
|                                                        | Sample ID<br>Sample Date | NYSDEC Part 703<br>Groundwater<br>Quality Standards | Sump-1<br>5-Mav-15 | MW-03<br>6-May-15              | MW-04<br>6-May-15 | MW-07<br>6-May-15 | MW-11<br>6-Mav-15 | MW-13        | MW-05<br>6-May-15 | MW-06<br>6-May-15 | MW-08<br>5-May-15           | MW-09<br>6-May-15     | MW-10<br>6-May-15 | MW-12<br>5-May-15     | Blind Duplicate<br>5-May-15 |
| METALS (ppm)                                           | Cample Date              |                                                     | 5-may-15           | 0-may-15                       | 0-may-15          | 0-may-15          | 0-may-15          |              | 0-may-15          | 0-inay-15         | J-indy-13                   | 0-may-15              | 0-may-15          | J-Way-15              | 5-May-15                    |
| lead                                                   |                          | 0.025                                               |                    |                                |                   | ND(0.0039)        |                   |              |                   |                   |                             |                       |                   |                       |                             |
| Selenium                                               |                          | 0.01                                                |                    |                                |                   | ND(0.0071)        |                   |              |                   |                   |                             |                       |                   |                       |                             |
| Arsenic                                                |                          | 0.025                                               |                    |                                |                   | ND(0.0054)        |                   |              |                   |                   |                             |                       |                   |                       |                             |
| Barium                                                 |                          | 1                                                   |                    |                                |                   | 0.217             |                   |              |                   |                   |                             |                       |                   |                       |                             |
| Cadmium                                                |                          | 0.005                                               | Not Analyzed       | Not Analyzed                   | Not Analyzed      | ND(0.0003)        | Not Analyzed      | Not Analyzed | Not Analyzed      | Not Analyzed      | Not Analyzed                | Not Analyzed          | Not Analyzed      | Not Analyzed          | Not Analyzed                |
| Chromium (trivalent)                                   |                          | 0.05                                                | Not Analyzed       | Not Analyzou                   | Not Analyzou      | 0.0049            | Not Analyzou      | Not Analyzou | Not Analyzed      | Not Analyzou      | Not Analyzou                | Not Analyzou          | Not Analyzou      | Not Analyzou          | Not Analyzou                |
| Silver                                                 |                          | 0.05                                                |                    |                                |                   | ND(0.0023)        |                   |              |                   |                   |                             |                       |                   |                       |                             |
| Mercurv                                                |                          | 0.007                                               |                    |                                |                   | ND(0.0023)        |                   |              |                   |                   |                             |                       |                   |                       |                             |
| Cvanide                                                |                          | 0.0007                                              |                    |                                |                   | 0.0161            |                   |              |                   |                   |                             |                       |                   |                       |                             |
|                                                        |                          | 0.2                                                 |                    |                                |                   | 0.0161            |                   |              |                   |                   |                             |                       |                   |                       |                             |
| VOCs (ppb)<br>Acetone                                  |                          | 50                                                  | ND(2.5)            | ND(2.5)                        | ND(2.5)           | 3.5               | 3.0               | 7.3          | 3.9               | 13.8              | ND(2.5)                     | ND(2.5)               | 3.4               | 5.2                   | ND(2.5)                     |
|                                                        |                          | 50                                                  |                    |                                |                   |                   |                   |              | 3.9               |                   |                             |                       |                   |                       |                             |
| Benzene                                                |                          |                                                     | ND(0.2)            | ND(0.2)                        | ND(0.2)           | ND(0.2)           | ND(0.2)           | ND(0.2)      |                   | 2.8               | ND(0.2)                     | ND(0.2)               | ND(0.2)           | ND(0.2)               | ND(0.2)                     |
| 2-Butanone (MEK)                                       |                          | NS                                                  | ND(1.2)            | ND(1.2)                        | ND(1.2)           | ND(1.2)           | ND(1.2)           | ND(1.2)      | ND(1.2)           | 1.5               | ND(1.2)                     | ND(1.2)               | ND(1.2)           | ND(1.2)               | ND(1.2)                     |
| n-Butylbenzene                                         |                          | 5                                                   | ND(0.3)            | ND(0.3)                        | ND(0.3)           | ND(0.3)           | ND(0.3)           | ND(0.3)      | ND(0.3)           | 0.8               | ND(0.3)                     | ND(0.3)               | ND(0.3)           | ND(0.3)               | ND(0.3)                     |
| sec-Butylbenzene                                       |                          | 5                                                   | ND(0.2)            | ND(0.2)                        | ND(0.2)           | ND(0.2)           | ND(0.2)           | ND(0.2)      | ND(0.2)           | 0.5               | ND(0.2)                     | ND(0.2)               | ND(0.2)           | ND(0.2)               | ND(0.2)                     |
| Chloroform                                             |                          | 7                                                   | ND(0.4)            | ND(0.4)                        | ND(0.4)           | 0.4               | 0.4               | ND(0.4)      | 0.4               | ND(0.4)           | ND(0.4)                     | ND(0.4)               | ND(0.4)           | ND(0.4)               | ND(0.4)                     |
| Chloromethane                                          |                          | NS                                                  | ND(0.3)            | ND(0.3)                        | ND(0.3)           | ND(0.3)           | ND(0.3)           | 0.3          | ND(0.3)           | 0.3               | ND(0.3)                     | ND(0.3)               | ND(0.3)           | ND(0.3)               | ND(0.3)                     |
| 1,2-Dichloroethane                                     |                          | 0.6                                                 | ND(0.2)            | ND(0.2)                        | ND(0.2)           | ND(0.2)           | ND(0.2)           | ND(0.2)      | ND(0.2)           | ND(0.2)           | ND(0.2)                     | ND(0.2)               | 0.2               | ND(0.2)               | ND(0.2)                     |
| 1,1-Dichloroethene                                     |                          | 5                                                   | ND(0.2)            | ND(0.3)                        | ND(0.3)           | ND(0.3)           | ND(0.3)           | ND(0.3)      | ND(0.3)           | ND(0.3)           | ND(0.3)                     | ND(0.3)               | ND(0.3)           | ND(0.3)               | ND(0.3)                     |
| cis-1,2-Dichloroethene                                 |                          | 5                                                   | 0.2                | ND(0.2)                        | ND(0.2)           | 6.8               | ND(0.2)           | 4.3          | ND(0.2)           | ND(0.2)           | ND(0.2)                     | ND(0.2)               | ND(0.2)           | ND(0.2)               | ND(0.2)                     |
| Ethylbenzene                                           |                          | 5                                                   | ND(0.2)            | ND(0.2)                        | ND(0.2)           | ND(0.2)           | ND(0.2)           | ND(0.2)      | 0.2               | 2.0               | ND(0.2)                     | ND(0.2)               | ND(0.2)           | ND(0.2)               | ND(0.2)                     |
| Isopropylbenzene                                       |                          | 5                                                   | ND(0.2)            | ND(0.2)                        | ND(0.2)           | ND(0.2)           | ND(0.2)           | ND(0.2)      | ND(0.2)           | 2.0               | ND(0.2)                     | ND(0.2)               | ND(0.2)           | ND(0.2)               | ND(0.2)                     |
| Naphthalene                                            |                          | NS                                                  | ND(0.4)            | ND(0.4)                        | ND(0.4)           | ND(0.4)           | ND(0.4)           | ND(0.4)      | ND(0.4)           | 0.7               | ND(0.4)                     | ND(0.4)               | ND(0.4)           | ND(0.4)               | ND(0.4)                     |
| n-Propylbenzene                                        |                          | 5                                                   | ND(0.6)            | ND(0.2)                        | ND(0.2)           | ND(0.2)           | ND(0.2)           | ND(0.2)      | ND(0.2)           | 2.6               | ND(0.2)                     | ND(0.2)               | ND(0.2)           | ND(0.2)               | ND(0.2)                     |
| Tetrachloroethene                                      |                          | 5                                                   | ND(0.6)            | ND(0.6)                        | ND(0.6)           | 1.2               | 0.6               | 2.0          | 0.9               | ND(0.6)           | ND(0.6)                     | 0.7                   | ND(0.6)           | 1.1                   | 1.1                         |
| Toluene                                                |                          | 5                                                   | ND(0.3)            | ND(0.3)                        | ND(0.3)           | 0.3               | ND(0.3)           | ND(0.3)      | 0.4               | 6.4               | 0.6                         | ND(0.3)               | ND(0.3)           | ND(0.3)               | ND(0.3)                     |
| Trichloroethene                                        |                          | 5                                                   | 24.4               | ND(0.4)                        | 0.6               | 14.3              | 1.6               | 10.0         | 0.8               | ND(0.4)           | 0.4                         | 3.8                   | 2.2               | 5.1                   | 5.0                         |
| 1,2,4-Trimethylbenzene                                 |                          | 5                                                   | ND(0.4)            | ND(0.4)                        | ND(0.4)           | ND(0.4)           | ND(0.4)           | ND(0.4)      | ND(0.4)           | 13.3              | ND(0.4)                     | ND(0.4)               | ND(0.4)           | ND(0.4)               | ND(0.4)                     |
| 1,3,5-Trimethylbenzene                                 |                          | 5                                                   | ND(0.9)            | ND(0.9)                        | ND(0.9)           | ND(0.9)           | ND(0.9)           | ND(0.9)      | ND(0.9)           | 3.3               | ND(0.9)                     | ND(0.9)               | ND(0.9)           | ND(0.9)               | ND(0.9)                     |
| Vinyl chloride                                         |                          | 2                                                   | ND(0.3)            | ND(0.3)                        | ND(0.3)           | 0.3               | ND(0.3)           | ND(0.3)      | ND(0.3)           | ND(0.3)           | ND(0.3)                     | ND(0.3)               | ND(0.3)           | ND(0.3)               | ND(0.3)                     |
| m,p-Xylene                                             |                          | 5                                                   | ND(0.4)            | ND(0.4)                        | ND(0.4)           | ND(0.4)           | ND(0.4)           | ND(0.4)      | ND(0.4)           | 7.8               | 0.7                         | ND(0.4)               | ND(0.4)           | ND(0.4)               | ND(0.4)                     |
| o-Xylene                                               |                          | 5                                                   | ND(0.5)            | ND(0.5)                        | ND(0.5)           | ND(0.5)           | ND(0.5)           | ND(0.5)      | ND(0.5)           | 2.9               | ND(0.5)                     | ND(0.5)               | ND(0.5)           | ND(0.5)               | ND(0.5)                     |
| VOC TICs                                               |                          |                                                     | (0.0)              | (414)                          | (***)             | (415)             | (414)             | (414)        | (0.0)             |                   | (***)                       | (414)                 | (0.0)             | (***)                 | .()                         |
| Ethane, 1.1-difluoro-                                  |                          | NS                                                  |                    |                                |                   |                   |                   |              |                   | ND                |                             | 3.1                   |                   |                       |                             |
| Benzene, 1.2.4.5-tetramet                              | thyl                     | NS                                                  |                    |                                |                   |                   |                   |              |                   | 4.4               | 1                           |                       | 1                 |                       | 1                           |
| Benzene, 1-ethyl-2.3-dime                              |                          | NS                                                  |                    |                                |                   |                   |                   |              |                   | 3.4               | 1                           |                       |                   |                       | 1                           |
| Benzene, 1-ethyl-2-methyl                              |                          | NS                                                  |                    |                                |                   |                   |                   |              |                   | 4.4               | 1                           |                       |                   |                       | 1                           |
| Benzene, 1-ethyl-3-methyl                              |                          | NS                                                  | None found         | None found                     | None found        | None found        | None found        | None found   | None found        | 5.1               | None found                  |                       | None found        | None found            | None found                  |
| Benzene, 1-ethyl-4-methyl                              |                          | NS                                                  | None Iouna         | Nono Iounu                     |                   |                   | Nono Iounu        | Nono Iounu   |                   | 3.9               |                             | ND                    | Nono Iodila       | riono louliu          | i tone iounu                |
| Benzene, 1-methyl-2-meth                               |                          | NS                                                  |                    | 1                              |                   |                   |                   | 1            |                   | 6.2               | 1                           |                       |                   |                       |                             |
| Benzene, 1-metryl-2-metry<br>Benzene, 1-mehtyl-3-propy |                          | NS                                                  |                    | 1                              |                   |                   |                   | 1            |                   | 6.2<br>3.0        | 1                           |                       |                   |                       |                             |
|                                                        |                          |                                                     |                    | 1                              | 1                 |                   |                   |              |                   |                   |                             |                       |                   |                       |                             |

Notes: Metals concentrations reported in miligrams per liter (mg/L) or parts per million (ppm) Volatile organic compounds (VOCs) reported in micrograms per liter (ug/L) or parts per billion (ppb) **Yellow highlight indicates the sample** exceeds New York State Department of Environmental Conservation (NYSDEC) Part 703 Groundwater Quality Standards for Class GA for the given parameter ND indicates the sample was non-detect above laboratory method detection limits for the given parameter, with the detection limit in parenthesis TICs indicates tentatively identified compounds NS indicates Not Specified

## Corning Hospital and Associated Parcels Phase II Environmental Site Assessment Table 3 Survey Datum April 2015

|                      |                     |                  |            |         | Static Water    | Static Water |
|----------------------|---------------------|------------------|------------|---------|-----------------|--------------|
| Grid Northing (USft) | Grid Easting (USft) | Elevation (USft) | SB ID      | MW ID   | Level (ft bgs)* | Level (Usft) |
| 780398.991           | 694487.975          | 924.685          | SB-01      | MW-01   | 15.45           | 909.235      |
| 780366.086           | 694502.936          | 924.76           | SB-02      | MW-02** | -               | -            |
| 780411.911           | 694425.939          | 924.611          | SB-03      | -       | -               | -            |
| 780370.393           | 694196.172          | 923.915          | SB-04      | MW-03   | 15.71           | 908.205      |
| 780386.316           | 694239.684          | 923.825          | SB-05      | -       | -               | -            |
| 780439.076           | 694195.387          | 925.665          | SB-06      | -       | -               | -            |
| 780444.138           | 694176.177          | 925.855          | SB-07      | MW-04   | 17.65           | 908.205      |
| 780574.039           | 693768.068          | 930.847          | SB-08      | -       | -               | -            |
| 780575.873           | 693778.873          | 930.745          | SB-08A     | -       | -               | -            |
| 780563.124           | 693867.69           | 930.194          | SB-09      | -       | -               | -            |
| 780548.127           | 693922.47           | 929.198          | SB-10      | -       | -               | -            |
| 780526.075           | 693798.748          | 930.632          | SB-11      | -       | -               | -            |
| 780513.535           | 693809.902          | 930.753          | SB-12      | -       | -               | -            |
| 780514.417           | 693842.152          | 931.484          | SB-13      | -       | -               | -            |
| 780517.467           | 693845.152          | 931.404          | SB-13A     | -       | -               | -            |
| 780594.769           | 693773.707          | 930.56           | SB-14      | -       | -               | -            |
| 780600.829           | 693775.67           | 930.454          | SB-14A     | -       | -               | -            |
| 780300.39            | 694656.209          | 925.545          | SB-15      | -       | -               | -            |
| 780292.007           | 694617.789          | 925.825          | SB-16      | MW-08   | 17.65           | 908.175      |
| 780068.793           | 694570.934          | 925.065          | SB-17      | MW-09   | 17.01           | 908.055      |
| 780102.431           | 694532.836          | 925.122          | SB-18      | -       | -               | -            |
| 780080.164           | 694529.527          | 924.465          | SB-19      | MW-10   | 16.4            | 908.065      |
| 780113.86            | 694509.091          | 923.486          | SB-20      | -       | -               | -            |
| 780277.838           | 694224.775          | 923.051          | SB-21      | -       | -               | -            |
| 780367.835           | 694106.847          | 928.907          | SB-22      | -       | -               | -            |
| 780313.959           | 694198.702          | 924.675          | SB-23      | MW-11   | 16.51           | 908.165      |
| 780421.029           | 694132.393          | 926.467          | SB-24      | -       | -               | -            |
| 780100.112           | 693858.283          | 928.925          | SB-25      | MW-12   | 20.32           | 908.605      |
| 780208.202           | 694141.026          | 928.36           | SB-26      | MW-13   | 20.25           | 908.11       |
| 780583.338           | 693770.968          | 930.605          | SB-27      | MW-05   | 22.12           | 908.485      |
| 780557.571           | 693860.24           | 930.335          | SB-28      | MW-06   | 21.89           | 908.445      |
| 780350.302           | 694166.24           | 914.186          | SB-29      | -       | -               | -            |
| -                    | -                   | -                | SB-30      | -       | -               | -            |
| 780282.069           | 694219.646          | 922.94           | SB-31      | MW-07   | 14.87           | 908.07       |
| 780502.69            | 694092.014          | 927.125          | SB-32      | -       | -               | -            |
| 780497.109           | 694158.792          | 926.585          | SB-33      | -       | -               | -            |
| 780452.66            | 694294.274          | 925.376          | SB-34      | -       | -               | -            |
| 780434.431           | 694376.495          | 925.106          | SB-35      | -       | -               | -            |
| _                    | _                   | 907.85           | Sump elev. | -       | -               | 907.85       |

Notes:

\*measured from top of PVC casing

\*\*indicates the well was dry and static water level was not measured Horizontal datum: NAD83

Vertical datum: NAVD88



Engineering Architecture Environmental

## **APPENDIX 1**

**Field Logs** 

## SOIL BORING LOGS

| 00 STATE S  | STREET, ROO                             | Deciates, P.C.                                        | 9                                | Corn                                                          | BORING:<br>SHEET<br>JOB:<br>CHKD BY:                         | SB-01<br>1 OF 1<br>2150606<br>DPN                                                            |                        |         |
|-------------|-----------------------------------------|-------------------------------------------------------|----------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------|---------|
| DRILL       | ER:                                     | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                  | BORING LOCAT<br>GROUND SURF<br>START DATE:                    | ACE ELEVATION                                                | 176 Denison Parkway East<br>924.685 (USft)<br>END DATE 4/27/2015                             | DATUM:                 |         |
| AL          | (PE OF DRIL<br>JGER SIZE /<br>VERBURDEI |                                                       | Geoprobe 54LT<br>NA<br>macrocore |                                                               |                                                              | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:                             |                        |         |
| D<br>E<br>P |                                         | SAMPLE                                                |                                  |                                                               |                                                              |                                                                                              | PID<br>FIELD<br>SCREEN |         |
| T<br>H      | SAMPLE<br>DEPTH                         | SAMPLE NO.<br>AND RECOVERY                            | STRATA<br>CHANGE                 | VISUAL CLASSIFICATION                                         |                                                              |                                                                                              | (PPM)                  | REMARKS |
| 0           | 0-4                                     | 60%                                                   |                                  | Grey/black ASPHALT and fine to coarse GRAVEL, moist, no odors |                                                              |                                                                                              | 0                      |         |
| 2           |                                         |                                                       | 2.5'                             | Brown co                                                      | Brown coarse SAND and fine to medium GRAVEL, moist, no odors |                                                                                              |                        |         |
| 4           | 4-8                                     | 5%                                                    | 3.5'                             | Black ASH (fi                                                 | ll) and SAND, some                                           | lors<br>0                                                                                    |                        |         |
| 6           |                                         |                                                       |                                  |                                                               |                                                              |                                                                                              | 0                      |         |
| 8           | 8-12                                    | 5%                                                    | 8'                               |                                                               | coars                                                        | 0                                                                                            |                        |         |
| 10          |                                         |                                                       |                                  |                                                               |                                                              |                                                                                              | 0                      |         |
| 12          | 12-16                                   | <5%                                                   | 12'                              | Brown c                                                       | parse SAND and fin                                           | 0                                                                                            |                        |         |
| 14          |                                         |                                                       |                                  |                                                               |                                                              |                                                                                              | 0                      |         |
| 16          | 16-20                                   | 30%                                                   | 16'                              | Brown coa                                                     | arse SAND and med                                            | lium to coarse GRAVEL, wet, no odors                                                         | 0                      |         |
| 18          |                                         |                                                       |                                  |                                                               |                                                              |                                                                                              | 0                      |         |
| 20          |                                         |                                                       |                                  |                                                               | E                                                            | End at 20'                                                                                   | 0                      |         |
| 22          |                                         |                                                       |                                  |                                                               |                                                              |                                                                                              |                        |         |
| 24          |                                         |                                                       |                                  |                                                               |                                                              |                                                                                              |                        |         |
| 26          |                                         |                                                       |                                  |                                                               |                                                              | NOTES:                                                                                       |                        |         |
|             | WATER                                   | LEVEL DATA                                            | BOTTOM OF                        | DEPTH (FT)<br>BOTTOM OF                                       | GROUNDWATER                                                  | MW-01, 5' screen                                                                             |                        |         |
| DATE        | TIME                                    | ELASPED TIME                                          | CASING                           | BORING                                                        | ENCOUNTERED                                                  |                                                                                              |                        |         |
| 1)<br>2)    | WATER LE                                | ATION LINES REPRES                                    | BEEN MADE AT                     | TIMES AND UND                                                 | DER CONDITIONS                                               | I<br>/PES, TRANSITIONS MAY BE GRADL<br>STATED, FLUCTUATIONS OF GROUI<br>\SUREMENTS WERE MADE |                        |         |

|          |               |                        | PROJECT       |              |                       |                                                                      | BORING:      | SB-02   |
|----------|---------------|------------------------|---------------|--------------|-----------------------|----------------------------------------------------------------------|--------------|---------|
| IN       | RF            |                        |               | Corr         | ning Hospital and Ass | sociated Parcels                                                     | SHEET        | 1 OF 1  |
| _        |               | sociates, P.C.         |               |              | Corning, New          | York                                                                 | JOB:         | 2150606 |
| 200 6747 | E STREET, ROO | NUESTED NY             |               | Pha          | se II Environmental S | Site Assessment                                                      | CHKD BY:     | DPN     |
|          |               | NEERING CONSULTANTS    |               |              |                       |                                                                      |              |         |
| CO       | NTRACTOR:     | LaBella Env. LLC       |               | BORING LOCAT | FION:                 | 176 Denison Parkway East                                             |              |         |
|          |               | M. Pepe                |               |              | ACE ELEVATION         |                                                                      | DATUM:       |         |
| LA       | BELLA REPRES  | SENTATIVE: A. Aquilina |               | START DATE:  | 4/27/2015             | END DATE 4/27/2015                                                   |              |         |
|          | TYPE OF DRIL  | L RIG:                 | Geoprobe 54LT |              |                       | DRIVE SAMPLER TYPE: Direct push                                      |              |         |
|          | AUGER SIZE    |                        | NA            |              |                       | INSIDE DIAMETER: 2"                                                  |              |         |
|          | OVERBURDE     | N SAMPING METHOD:      | macrocore     |              |                       | OTHER:                                                               |              |         |
| _        |               |                        |               |              |                       |                                                                      |              |         |
| D<br>E   |               | SAMPLE                 |               |              |                       |                                                                      | PID<br>FIELD |         |
| Р<br>Т   | SAMPLE        | SAMPLE NO.             | STRATA        |              | VICUAL                | CLASSIFICATION                                                       | SCREEN       | DEMARKS |
| H        | DEPTH         | AND RECOVERY           | CHANGE        |              | VISUAL                | LASSIFICATION                                                        | (PPM)        | REMARKS |
| 0        | 0-4           | 25%                    |               | Bro          |                       | D and GRAVEL, moist, no odors                                        | 0            |         |
| 0        | 0-4           | 2370                   |               | ы            | wingley coarse only   | D and GRAVEE, molal, no odora                                        | 0            |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 2        |               |                        |               |              |                       |                                                                      | 0            |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 4        | 4-8           | no recovery            |               |              |                       |                                                                      | 0            |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 6        |               |                        |               |              |                       |                                                                      | 0            |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 8        | 8-10.6        | 50%                    | 8'            | в            | rown fine SAND (pos   | ssible tank fill), moist, no odors                                   | 0            |         |
| -        |               |                        |               | _            |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 10       | 10.6-11.6     | 50%                    | 10'           | Brown coarse | SAND and SILT, so     | me medium to coarse GRAVEL, moist, no                                | 0            |         |
|          |               |                        |               |              |                       | odors                                                                |              |         |
|          |               |                        |               |              | Ref                   | usal at 11.6'                                                        |              |         |
| 12       |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 14       |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 16       |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 18       |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 20       |               |                        |               |              |                       |                                                                      |              |         |
| 20       |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 22       |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 24       |               |                        |               |              |                       |                                                                      |              |         |
|          |               |                        |               |              |                       |                                                                      |              |         |
| 00       |               |                        |               |              |                       |                                                                      |              |         |
| 26       |               |                        |               | DEPTH (FT)   |                       | NOTES:                                                               | 1            |         |
|          | WATER         | LEVEL DATA             | BOTTOM OF     | BOTTOM OF    | GROUNDWATER           | MW-02, 5' screen (DRY)                                               |              |         |
| DATE     | TIME          | ELASPED TIME           | CASING        | BORING       | ENCOUNTERED           |                                                                      |              |         |
|          |               |                        | 11            | 11.6         | NA                    |                                                                      |              |         |
| 05       | NERAL NOTES   | 1                      |               |              |                       |                                                                      |              |         |
| GE       |               |                        |               |              |                       | PES, TRANSITIONS MAY BE GRADUAL.                                     |              |         |
|          |               |                        |               |              |                       | PES, TRANSITIONS MAY BE GRADUAL.<br>STATED, FLUCTUATIONS OF GROUNDWA | TER          |         |
|          |               |                        |               |              |                       | SUREMENTS WERE MADE                                                  |              |         |
| 1        |               |                        |               |              |                       |                                                                      | BORING:      | SB-02   |

|          |                 |                             | PROJECT             |              |                        |                                                                                | BORING:         | SB-03   |
|----------|-----------------|-----------------------------|---------------------|--------------|------------------------|--------------------------------------------------------------------------------|-----------------|---------|
| IN       | RF              |                             |                     | Corr         | ning Hospital and Ass  | sociated Parcels                                                               | SHEET           | 1 OF 1  |
|          | As              | sociates, P.C.              |                     |              | Corning, New           |                                                                                | JOB:            | 2150606 |
| 300 STAT | E STREET, ROO   | CHESTER. NY                 |                     | Pha          | se II Environmental S  | Site Assessment                                                                | CHKD BY:        | DPN     |
| ENVIRON  | MENTAL ENGI     | NEERING CONSULTANTS         |                     |              |                        |                                                                                |                 |         |
|          |                 | LaBella Env. LLC<br>M. Pepe |                     | BORING LOCAT |                        | 176 Denison Parkway East<br>924.611 (USft)                                     | DATUM:          |         |
|          |                 | SENTATIVE: A. Aquilina      |                     | START DATE:  |                        | END DATE 4/27/2015                                                             | DATOW.          |         |
|          |                 | ·                           |                     |              |                        |                                                                                |                 |         |
|          | TYPE OF DRIL    |                             | Geoprobe 54LT<br>NA |              |                        | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"                         |                 |         |
|          |                 | N SAMPING METHOD:           |                     |              |                        | OTHER:                                                                         |                 |         |
|          | 1               |                             |                     |              |                        |                                                                                |                 |         |
| D        |                 | SAMPLE                      |                     |              |                        |                                                                                | PID             |         |
| E<br>P   |                 |                             |                     |              |                        |                                                                                | FIELD<br>SCREEN |         |
| T<br>H   | SAMPLE<br>DEPTH | SAMPLE NO.<br>AND RECOVERY  | STRATA<br>CHANGE    |              | VISUAL C               | CLASSIFICATION                                                                 | (PPM)           | REMARKS |
|          |                 |                             | OTWITCE             | <b>A B</b>   |                        |                                                                                |                 |         |
| 0        | 0-4             | 60%                         | 1.5'                |              |                        | e to coarse GRAVEL, moist, no odors<br>edium to coarse GRAVEL, moist, no odors | 0               |         |
|          |                 |                             |                     | 0            |                        |                                                                                |                 |         |
| 2        |                 |                             |                     |              |                        |                                                                                | 0               |         |
|          |                 |                             | 3'                  |              | Black ASH and CIN      | DERS (fill), moist, no odors                                                   |                 |         |
|          |                 |                             | 5                   |              | Diack ASI I and City   |                                                                                |                 |         |
| 4        | 4-8             | 5%                          |                     |              |                        |                                                                                | 0               |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 6        |                 |                             | 6'                  | Light brown  | n fine SAND, trace fir | ne to medium GRAVEL, moist, no odors                                           | 0               |         |
|          |                 |                             |                     | -            |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 8        | 8-12            | 5%                          |                     |              |                        |                                                                                | 0               |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 10       |                 |                             |                     |              |                        |                                                                                | 0               |         |
|          |                 |                             | 10.5'               | Brown/grey   | fine SAND and med      | ium to coarse GRAVEL, moist, no odors                                          | Ŭ               |         |
|          |                 |                             |                     |              | Ref                    | usal at 11.2'                                                                  | -               |         |
| 12       |                 |                             |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 14       |                 |                             |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 16       |                 |                             |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 18       |                 |                             |                     |              |                        |                                                                                |                 |         |
| 10       |                 |                             |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 20       |                 |                             |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 22       |                 |                             |                     |              |                        |                                                                                |                 |         |
| 22       |                 |                             |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 24       |                 |                             |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        |                                                                                |                 |         |
| 26       |                 |                             |                     |              |                        |                                                                                |                 |         |
| 26       |                 |                             |                     | DEPTH (FT)   |                        | NOTES:                                                                         | _1              | 1       |
|          | WATER           | LEVEL DATA                  | BOTTOM OF           | BOTTOM OF    | GROUNDWATER            |                                                                                |                 |         |
| DATE     | TIME            | ELASPED TIME                | CASING              | BORING       | ENCOUNTERED            |                                                                                |                 |         |
|          |                 |                             | NA                  | 11.2         | NA                     |                                                                                |                 |         |
| GE       | NERAL NOTES     | 3                           |                     |              |                        |                                                                                |                 |         |
|          |                 |                             |                     |              |                        | PES, TRANSITIONS MAY BE GRADUAL.                                               |                 |         |
|          |                 |                             |                     |              |                        | STATED, FLUCTUATIONS OF GROUNDW.<br>SUREMENTS WERE MADE                        | ATER            |         |
|          |                 |                             |                     | NOOL I KLOCH |                        |                                                                                | BORING:         | SB-03   |

|           |                     |                                                       |                     | PROJECT                                   | BORING:               | SB-04                                                                       |                 |         |
|-----------|---------------------|-------------------------------------------------------|---------------------|-------------------------------------------|-----------------------|-----------------------------------------------------------------------------|-----------------|---------|
| IN        | RF                  | ELIA                                                  |                     | Corr                                      | ning Hospital and Ass | ociated Parcels                                                             | SHEET           | 1 OF 1  |
|           |                     | sociates, P.C.                                        |                     |                                           | Corning, New          | York                                                                        | JOB:            | 2150606 |
|           | E STREET, RO        | -                                                     |                     | Pha                                       | se II Environmental S | tite Assessment                                                             | CHKD BY:        | DPN     |
| CO<br>DRI | NTRACTOR:<br>ILLER: | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                     | BORING LOCA<br>GROUND SURF<br>START DATE: | ACE ELEVATION         | 176 Denison Parkway East<br>932.915 (USft)<br>END DATE 4/27/2015            | DATUM:          |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
|           | TYPE OF DRI         |                                                       | Geoprobe 54LT<br>NA |                                           |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"                      |                 |         |
|           |                     | N SAMPING METHOD:                                     |                     |                                           |                       | OTHER:                                                                      |                 |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             |                 | 1       |
| D         |                     | SAMPLE                                                |                     |                                           |                       |                                                                             | PID             |         |
| E<br>P    |                     |                                                       |                     |                                           |                       |                                                                             | FIELD<br>SCREEN |         |
| T         | SAMPLE              | SAMPLE NO.                                            | STRATA              |                                           | VISUAL C              | LASSIFICATION                                                               | (PPM)           | REMARKS |
| Н         | DEPTH               | AND RECOVERY                                          | CHANGE              |                                           |                       |                                                                             |                 |         |
| 0         | 0-4                 | 60%                                                   | 1.5'                |                                           |                       | e to coarse GRAVEL, moist, no odors<br>um to coarse GRAVEL, moist, no odors | c               |         |
| 2         |                     |                                                       |                     |                                           |                       |                                                                             | C               |         |
|           |                     |                                                       | 2.5'<br>3'          | Brown f                                   | ine SAND and SILT,    | trace fine GRAVEL, moist, no odors                                          |                 |         |
| 4         | 4-8                 | 60%                                                   |                     |                                           |                       |                                                                             | C               |         |
| 6         |                     |                                                       |                     |                                           |                       |                                                                             | C               |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
| 8         | 8-12                | 50%                                                   |                     |                                           |                       |                                                                             | C               |         |
| 10        |                     |                                                       |                     |                                           |                       |                                                                             | c               |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
| 12        | 12-16               | 50%                                                   | 12'                 | Brown                                     | n coarse SAND and r   | nedium GRAVEL, moist, no odors                                              | C               |         |
| 14        |                     |                                                       |                     | Brow                                      | n coarse SAND and     | medium GRAVEL, wet, no odors                                                | c               |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
| 16        |                     |                                                       |                     |                                           | Re                    | fusal at 16'                                                                |                 |         |
| 18        |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
| 20        |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
| 22        |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
| 24        |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
| 26        |                     |                                                       |                     |                                           |                       |                                                                             |                 |         |
|           | ,                   |                                                       |                     | DEPTH (FT)                                | 0000                  | NOTES:                                                                      |                 |         |
|           |                     |                                                       | BOTTOM OF           | BOTTOM OF                                 | GROUNDWATER           |                                                                             |                 |         |
| DATE      | TIME                | ELASPED TIME                                          | CASING<br>NA        | BORING<br>16                              | ENCOUNTERED<br>14     |                                                                             |                 |         |
|           | 1                   | 1                                                     | INA                 | 01                                        | 14                    |                                                                             |                 |         |
| GEI       | NERAL NOTES         |                                                       |                     |                                           |                       |                                                                             |                 |         |
|           |                     |                                                       |                     |                                           |                       | PES, TRANSITIONS MAY BE GRADUAL<br>TATED, FLUCTUATIONS OF GROUND            |                 |         |
|           |                     |                                                       |                     |                                           |                       | SUREMENTS WERE MADE                                                         |                 |         |
|           |                     |                                                       |                     |                                           |                       |                                                                             | BORING:         | SB-04   |

| 00 STATI    | E STREET, RO<br>MENTAL ENGI             | SOCIATES, P.C.<br>CHESTER, NY<br>NEERING CONSULTANT   |                                  | PROJECT     BORING:     SB-05       Corning Hospital and Associated Parcels     SHEET     1       Corning, New York     JOB:     21506       Phase II Environmental Site Assessment     CHKD BY:     DPN       BORING LOCATION:     176 Denison Parkway East |                            |                                                                      |                        |         |
|-------------|-----------------------------------------|-------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|------------------------|---------|
| DRI         | LLER:                                   | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                  |                                                                                                                                                                                                                                                              | ACE ELEVATION              | 176 Denison Parkway East<br>932.915 (USft)<br>END DATE 4/27/2015     | DATUM:                 |         |
|             | TYPE OF DRII<br>AUGER SIZE<br>OVERBURDE |                                                       | Geoprobe 54LT<br>NA<br>macrocore |                                                                                                                                                                                                                                                              |                            | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:     |                        |         |
| D<br>E<br>P |                                         | SAMPLE                                                |                                  |                                                                                                                                                                                                                                                              |                            |                                                                      | PID<br>FIELD<br>SCREEN |         |
| т<br>Н      | SAMPLE<br>DEPTH                         | SAMPLE NO.<br>AND RECOVERY                            | STRATA<br>CHANGE                 | VISUAL CLASSIFICATION                                                                                                                                                                                                                                        |                            |                                                                      | (PPM)                  | REMARKS |
| 0           | 0-4                                     | 40%                                                   |                                  | Grey/black ASPHALT and fine to coarse GRAVEL, moist, no odors                                                                                                                                                                                                |                            |                                                                      | 0                      |         |
| 2           |                                         |                                                       | 2'<br>2.5'                       | Light brown SAND and SILT, some fine to medium GRAVEL, moist, no odors<br>Black/ dark brown coarse SAND, some fine to medium GRAVEL, moist, no odors                                                                                                         |                            |                                                                      |                        |         |
| 4           | 4-8                                     | 60%                                                   | 4'                               | Grey medium GRAVEL, moist, no odors                                                                                                                                                                                                                          |                            |                                                                      |                        |         |
|             |                                         |                                                       | 5'                               | Brov                                                                                                                                                                                                                                                         | vn SANDY SILT, tra         |                                                                      |                        |         |
| 6           |                                         |                                                       |                                  |                                                                                                                                                                                                                                                              |                            |                                                                      |                        |         |
| 8           | 8-12                                    | 40%                                                   |                                  |                                                                                                                                                                                                                                                              |                            | 0                                                                    |                        |         |
| 10          |                                         |                                                       | 10'                              |                                                                                                                                                                                                                                                              | grey                       | 0                                                                    |                        |         |
| 12          | 12-16                                   | 40%                                                   |                                  |                                                                                                                                                                                                                                                              |                            |                                                                      | 0                      |         |
| 14          |                                         |                                                       |                                  |                                                                                                                                                                                                                                                              |                            |                                                                      | 0                      |         |
| 16          | 16-20                                   | 5%                                                    | 16'                              | I                                                                                                                                                                                                                                                            | Brown medium to co         | arse GRAVEL, wet, no odors                                           | 0                      |         |
| 18          |                                         |                                                       |                                  |                                                                                                                                                                                                                                                              |                            |                                                                      | 0                      |         |
| 20          | 20-24                                   | <5%                                                   | 20'                              | Brow                                                                                                                                                                                                                                                         | n coarse SAND and          | d medium GRAVEL,wet, no odors                                        | 0                      |         |
| 22          |                                         |                                                       |                                  |                                                                                                                                                                                                                                                              |                            |                                                                      | 0                      |         |
| 24          |                                         |                                                       |                                  |                                                                                                                                                                                                                                                              | E                          | End at 24'                                                           | 0                      |         |
| 26          |                                         |                                                       |                                  |                                                                                                                                                                                                                                                              |                            |                                                                      |                        |         |
|             |                                         |                                                       |                                  | DEPTH (FT)                                                                                                                                                                                                                                                   |                            | NOTES:                                                               |                        |         |
| DATE        | WATER<br>TIME                           | LEVEL DATA<br>ELASPED TIME                            | BOTTOM OF<br>CASING              | BOTTOM OF<br>BORING                                                                                                                                                                                                                                          | GROUNDWATER<br>ENCOUNTERED | MW-03, 10' screen                                                    |                        |         |
|             |                                         |                                                       | 17.5                             | 24                                                                                                                                                                                                                                                           | 16                         |                                                                      |                        |         |
|             | 2) WATER LE                             | ATION LINES REPRES                                    | BEEN MADE AT                     | TIMES AND UNI                                                                                                                                                                                                                                                | DER CONDITIONS             | PES, TRANSITIONS MAY BE GRADUAL.<br>STATED, FLUCTUATIONS OF GROUNDWA | ATER                   |         |
|             | MAY OCCL                                | JRE DUE TO OTHER F                                    | ACTORS THAN T                    | HOSE PRESENT                                                                                                                                                                                                                                                 | AT THE TIME MEA            | SUREMENTS WERE MADE                                                  | BORING:                | SB-05   |

|          |                     |                                                                              |               | PROJECT                                    |                       |                                                                       | BORING:         | SB-06   |
|----------|---------------------|------------------------------------------------------------------------------|---------------|--------------------------------------------|-----------------------|-----------------------------------------------------------------------|-----------------|---------|
|          | ЪЕ                  | ELLA                                                                         |               | Corr                                       | ing Hospital and Ass  |                                                                       | SHEET           | 1 OF 1  |
|          |                     | sociates, P.C.                                                               |               | Dia                                        | Corning, New          |                                                                       | JOB:            | 2150606 |
|          | E STREET, RO        |                                                                              |               | Pha                                        | se II Environmental S | Dite Assessment                                                       | CHKD BY:        | DPN     |
| CO<br>DR | NTRACTOR:<br>ILLER: | NEERING CONSULTANTS<br>LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |               | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION         | 176 Denison Parkway East<br>925.665 (USft)<br>END DATE 4/27/2015      | DATUM:          |         |
|          | TYPE OF DRII        | LL RIG:                                                                      | Geoprobe 54LT |                                            |                       | DRIVE SAMPLER TYPE: Direct push                                       |                 |         |
|          | AUGER SIZE          |                                                                              | NA            |                                            |                       | INSIDE DIAMETER: 2"                                                   |                 |         |
|          | OVERBURDE           | N SAMPING METHOD:                                                            | macrocore     |                                            |                       | OTHER:                                                                |                 |         |
| _        |                     | 0.11715                                                                      |               |                                            |                       |                                                                       |                 |         |
| D<br>E   |                     | SAMPLE                                                                       |               |                                            |                       |                                                                       | PID<br>FIELD    |         |
| P<br>T   | SAMPLE              | SAMPLE NO.                                                                   | STRATA        |                                            | VISUAL (              | CLASSIFICATION                                                        | SCREEN<br>(PPM) | REMARKS |
| H        | DEPTH               | AND RECOVERY                                                                 | CHANGE        |                                            |                       |                                                                       | (,              |         |
| 0        | 0-4                 | 50%                                                                          | 1'            |                                            |                       | e to coarse GRAVEL, moist, no odors<br>nedium GRAVEL, moist, no odors | 0               |         |
| 2        |                     |                                                                              |               |                                            |                       |                                                                       | 0               |         |
|          |                     |                                                                              | 3.5'          | Brown                                      | n SAND and SILT, tra  | ace fine GRAVEL, moist, no odors                                      |                 |         |
| 4        | 4-8                 | 50%                                                                          |               |                                            |                       |                                                                       | 0               |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 6        |                     |                                                                              |               |                                            |                       |                                                                       | 0               |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 8        | 8-12                | 25%                                                                          |               |                                            |                       |                                                                       | 0               |         |
| 0        | 0-12                | 2376                                                                         |               |                                            |                       |                                                                       | 0               |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 10       |                     |                                                                              |               |                                            |                       |                                                                       | 0               |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 12       | 12-16               | 30%                                                                          | 12'           | Brow                                       | n coarse SAND and     | coarse GRAVEL, moist, no odors                                        | 0               |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 14       |                     |                                                                              |               |                                            |                       |                                                                       | 0               |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 16       | 16-20               | 30%                                                                          |               |                                            |                       | wet                                                                   | 0               |         |
| 10       | 10-20               | 3078                                                                         |               |                                            |                       |                                                                       | 0               |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 18       |                     |                                                                              |               |                                            |                       |                                                                       | 0               |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 20       |                     |                                                                              |               |                                            | E                     | End at 20'                                                            |                 |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 22       |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 24       |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       |                 |         |
| 26       |                     |                                                                              |               | DEPTH (FT)                                 |                       | NOTES:                                                                |                 |         |
|          | WATER               | LEVEL DATA                                                                   | BOTTOM OF     | BOTTOM OF                                  | GROUNDWATER           | NOTED.                                                                |                 |         |
| DATE     | TIME                | ELASPED TIME                                                                 | CASING        | BORING                                     | ENCOUNTERED           |                                                                       |                 |         |
|          |                     |                                                                              | NA            | 20                                         | 16                    |                                                                       |                 |         |
| GE       | NERAL NOTES         | 3                                                                            |               |                                            |                       |                                                                       |                 |         |
|          |                     |                                                                              |               |                                            |                       | PES, TRANSITIONS MAY BE GRADUAL                                       |                 |         |
|          |                     |                                                                              |               |                                            |                       | STATED, FLUCTUATIONS OF GROUND<br>SUREMENTS WERE MADE                 | WATER           |         |
|          |                     |                                                                              |               |                                            |                       |                                                                       | BORING:         | SB-06   |

|             | E STREET, ROO                             | sociates, P.C.<br>CHESTER, NY                                                | PROJECT<br>Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment |                                                               |                   |                                                                         | JOB: 2150606           |         |  |  |
|-------------|-------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|------------------------|---------|--|--|
| COI<br>DRI  | NTRACTOR:<br>LLER:                        | NEERING CONSULTANT:<br>LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                                                                                                   | BORING LOCAT<br>GROUND SURF<br>START DATE:                    | ACE ELEVATION     | 176 Denison Parkway East<br>925.855 (USft)<br>END DATE 4/27/2015        | DATUM:                 |         |  |  |
|             | TYPE OF DRII<br>AUGER SIZE .<br>OVERBURDE |                                                                              | Geoprobe 54LT<br>NA<br>macrocore                                                                                  |                                                               |                   | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:        |                        |         |  |  |
| D<br>E<br>P |                                           | SAMPLE                                                                       |                                                                                                                   |                                                               |                   |                                                                         | PID<br>FIELD<br>SCREEN |         |  |  |
| T<br>H      | SAMPLE<br>DEPTH                           | SAMPLE NO.<br>AND RECOVERY                                                   | STRATA<br>CHANGE                                                                                                  |                                                               | VISUAL            | CLASSIFICATION                                                          | (PPM)                  | REMARKS |  |  |
| 0           | 0-4                                       | 40%                                                                          |                                                                                                                   | Grey/black ASPHALT and fine to coarse GRAVEL, moist, no odors |                   |                                                                         | 0                      |         |  |  |
| 2           |                                           |                                                                              | 2'                                                                                                                | Brown SAND some medium to coarse GRAVEL, moist, no odors      |                   |                                                                         | 0                      |         |  |  |
| 4           | 4-8                                       | 5%                                                                           | 4'                                                                                                                | Brown SAND and medium to coarse GRAVEL, moist, no odors       |                   |                                                                         |                        |         |  |  |
| 6           |                                           |                                                                              |                                                                                                                   |                                                               |                   |                                                                         | 0                      |         |  |  |
| 8           | 8-12                                      | 15%                                                                          |                                                                                                                   |                                                               |                   |                                                                         | 0                      |         |  |  |
| 10          |                                           |                                                                              |                                                                                                                   |                                                               |                   |                                                                         | 0                      |         |  |  |
| 12          | 12-16                                     | 10%                                                                          |                                                                                                                   |                                                               |                   |                                                                         | 0                      |         |  |  |
| 14          |                                           |                                                                              |                                                                                                                   |                                                               |                   |                                                                         | 0                      |         |  |  |
| 16          | 16-20                                     | 30%                                                                          | 16'                                                                                                               |                                                               |                   | wet                                                                     | 0                      |         |  |  |
| 18          |                                           |                                                                              |                                                                                                                   |                                                               |                   |                                                                         | 0                      |         |  |  |
| 20          |                                           |                                                                              |                                                                                                                   |                                                               |                   | End at 20'                                                              |                        |         |  |  |
| 22          |                                           |                                                                              |                                                                                                                   |                                                               |                   |                                                                         |                        |         |  |  |
| 24          |                                           |                                                                              |                                                                                                                   |                                                               |                   |                                                                         |                        |         |  |  |
| 26          |                                           |                                                                              |                                                                                                                   | DEPTH (FT)                                                    |                   | NOTES:                                                                  |                        |         |  |  |
|             | WATER                                     | LEVEL DATA                                                                   | BOTTOM OF                                                                                                         | BOTTOM OF                                                     | GROUNDWATER       | MW-04, 10' screen                                                       |                        |         |  |  |
| DATE        | TIME                                      | ELASPED TIME                                                                 | CASING<br>19                                                                                                      | BORING<br>20                                                  | ENCOUNTERED<br>16 | -                                                                       |                        |         |  |  |
|             | 2) WATER LE                               | ATION LINES REPRES                                                           | ENT APPROXMA<br>BEEN MADE AT                                                                                      | ATE BOUNDARY                                                  | BETWEEN SOIL T    | I<br>YPES, TRANSITIONS MAY BE GRADUAL<br>STATED, FLUCTUATIONS OF GROUND |                        |         |  |  |
|             | MAY UCCL                                  | INC DUE TO UTHER FA                                                          | AUTURS THAN I                                                                                                     | NUSE PRESENI                                                  | AT THE TIME MEA   | ASUREMENTS WERE MADE                                                    | BORING:                | SB-07   |  |  |

|             | ΔΒΕΠΔ                                  |                                                       |                                  | PROJECT                                    |                            |                                                                   | BORING:                | SB-08   |
|-------------|----------------------------------------|-------------------------------------------------------|----------------------------------|--------------------------------------------|----------------------------|-------------------------------------------------------------------|------------------------|---------|
| IN          | RF                                     |                                                       |                                  | Corr                                       | ning Hospital and As       | sociated Parcels                                                  | SHEET                  | 1 OF 1  |
| _           |                                        | sociates, P.C.                                        |                                  |                                            | Corning, New               | York                                                              | JOB:                   | 2150606 |
|             | E STREET, RO                           | CHESTER, NY                                           |                                  | Phas                                       | se II Environmental S      | Site Assessment                                                   | CHKD BY:               | DPN     |
| CO<br>DRI   | NTRACTOR:<br>ILLER:                    | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                  | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION              | 132 Denison Parkway East<br>930.847 (USft)<br>END DATE: 4/28/2015 | DATUM:                 |         |
|             | TYPE OF DRI<br>AUGER SIZE<br>OVERBURDE |                                                       | Geoprobe 54LT<br>NA<br>macrocore |                                            |                            | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:  |                        |         |
| D<br>E<br>P |                                        | SAMPLE                                                |                                  |                                            |                            |                                                                   | PID<br>FIELD<br>SCREEN |         |
| T<br>H      | SAMPLE<br>DEPTH                        | SAMPLE NO.<br>AND RECOVERY                            | STRATA<br>CHANGE                 |                                            | VISUAL (                   | CLASSIFICATION                                                    | (PPM)                  | REMARKS |
| 0           | 0-4                                    | 40%                                                   | 1'                               |                                            |                            | e to coarse GRAVEL, moist, no odors<br>se GRAVEL, moist, no odors | 0                      |         |
| 2           |                                        |                                                       |                                  |                                            |                            |                                                                   | 0                      |         |
| 4           | 4-8                                    | 30%                                                   | 4'                               | E                                          | Black/brown SAND a         | nd ASH (fill), moist, no odors                                    | 0                      |         |
|             |                                        |                                                       | 5'                               | Brown                                      | coarse SAND, some          | medium GRAVEL, moist, no odors                                    |                        |         |
| 6           |                                        |                                                       |                                  |                                            |                            |                                                                   | 0                      |         |
| 8           |                                        |                                                       |                                  |                                            | Re                         | ofusal at 8'                                                      | 0                      |         |
| 10          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
| 12          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
| 14          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
| 16          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
| 18          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
| 20          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
| 22          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
| 24          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
| 26          |                                        |                                                       |                                  |                                            |                            |                                                                   |                        |         |
|             |                                        |                                                       |                                  | DEPTH (FT)                                 |                            | NOTES:                                                            |                        |         |
| DATE        | WATER<br>TIME                          | ELEVEL DATA                                           | BOTTOM OF<br>CASING              | BOTTOM OF<br>BORING                        | GROUNDWATER<br>ENCOUNTERED |                                                                   |                        |         |
|             | <u> </u>                               |                                                       | NA                               | 8                                          | NA                         |                                                                   |                        |         |
| GEI         |                                        | CATION LINES REPRES                                   |                                  |                                            |                            | PES, TRANSITIONS MAY BE GRADUAL<br>STATED, FLUCTUATIONS OF GROUND |                        |         |
|             |                                        |                                                       |                                  |                                            |                            | SUREMENTS WERE MADE                                               |                        |         |
| 1           |                                        |                                                       |                                  |                                            |                            |                                                                   | BORING:                | SB-08   |

|        |                                |                                   |               |              | PROJECT               | r                                                      | BORING:         | SB-08A  |
|--------|--------------------------------|-----------------------------------|---------------|--------------|-----------------------|--------------------------------------------------------|-----------------|---------|
| IN     | RF                             |                                   |               | Corr         | ning Hospital and Ass | ociated Parcels                                        | SHEET           | 1 OF 1  |
| _      |                                | sociates, P.C.                    |               |              | Corning, New          | York                                                   | JOB:            | 2150606 |
|        |                                | -                                 |               | Pha          | se II Environmental S | ite Assessment                                         | CHKD BY:        | DPN     |
|        | TE STREET, ROO<br>MENTAL ENGIN | CHESTER, NY<br>NEERING CONSULTANT |               |              |                       |                                                        |                 |         |
|        |                                | LaBella Env. LLC                  | 1             | BORING LOCAT | FION:                 | 132 Denison Parkway East                               |                 |         |
| DR     | ILLER:                         | М. Рере                           |               | GROUND SURF  | ACE ELEVATION         |                                                        | DATUM:          |         |
| LA     | BELLA REPRES                   | SENTATIVE: A. Aquilina            |               | START DATE:  | 4/28/2015             | END DATE: 4/28/2015                                    |                 |         |
|        | TYPE OF DRIL                   |                                   | Geoprobe 54LT |              |                       | DRIVE SAMPLER TYPE: Direct push                        |                 |         |
|        | AUGER SIZE                     |                                   | NA            |              |                       | INSIDE DIAMETER: 2"                                    |                 |         |
|        |                                | N SAMPING METHOD:                 |               |              |                       | OTHER:                                                 |                 |         |
|        | T                              |                                   |               | •            |                       |                                                        | Т               |         |
| D      |                                | SAMPLE                            |               |              |                       |                                                        | PID             |         |
| E      |                                |                                   |               |              |                       |                                                        | FIELD           |         |
| P<br>T | SAMPLE                         | SAMPLE NO.                        | STRATA        | -            | VISUAL C              | LASSIFICATION                                          | SCREEN<br>(PPM) | REMARKS |
| н      | DEPTH                          | AND RECOVERY                      | CHANGE        |              |                       |                                                        | . ,             |         |
| 0      | 0-4                            | 40%                               |               | Grev/blac    | ck ASPHALT and fine   | e to coarse GRAVEL, moist, no odors                    | 0               |         |
|        |                                |                                   | 1.5'          |              |                       | edium to coarse GRAVEL, moist, no odors                |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 2      |                                |                                   |               |              |                       |                                                        | 0               |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 4      | 4-8                            | 30%                               | 4'            | Brown        | coarse SAND some      | medium GRAVEL, moist, no odors                         | 0               |         |
|        |                                |                                   | 5'            | Brown/grou   |                       | ne to coarse GRAVEL, moist, no odors                   |                 |         |
|        |                                |                                   | 5             | Brown/grey   | COarse SAND and I     | The to coarse GRAVEL, moist, no odors                  |                 |         |
| 6      |                                |                                   |               |              |                       |                                                        | 0               |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        | 0               |         |
| 8      | 8-10.4                         | 50%                               |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 10     |                                |                                   |               |              | Refi                  | ısal at 10.4'                                          | 0               |         |
|        |                                |                                   |               |              | Ken                   | 13di di 10.4                                           |                 |         |
| 10     |                                |                                   |               |              |                       |                                                        |                 |         |
| 12     |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 14     |                                |                                   |               |              |                       |                                                        |                 |         |
| 14     |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 16     |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 18     |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 20     |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 22     |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| 24     |                                |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       |                                                        |                 |         |
| ~~~    |                                |                                   |               |              |                       |                                                        |                 |         |
| 26     | 1                              |                                   |               | DEPTH (FT)   |                       | NOTES:                                                 | 1               |         |
|        | WATER                          | LEVEL DATA                        | BOTTOM OF     | BOTTOM OF    | GROUNDWATER           |                                                        |                 |         |
| DATE   | TIME                           | ELASPED TIME                      | CASING        | BORING       | ENCOUNTERED           |                                                        |                 |         |
| DAIL   |                                |                                   | NA            | 10.4         | NA                    |                                                        |                 |         |
|        | 1                              |                                   |               | 10.4         | 110                   |                                                        |                 |         |
| GE     | NERAL NOTES                    |                                   |               |              |                       |                                                        |                 |         |
|        |                                |                                   |               |              |                       | PES, TRANSITIONS MAY BE GRADUAL.                       | TED             |         |
|        |                                |                                   |               |              |                       | TATED, FLUCTUATIONS OF GROUNDWA<br>SUREMENTS WERE MADE | IEK             |         |
|        |                                |                                   |               |              |                       |                                                        | BORING:         | SB-08A  |

|           |                 |                            |                  |              | PROJECT               | T                                                               | BORING:      | SB-09   |
|-----------|-----------------|----------------------------|------------------|--------------|-----------------------|-----------------------------------------------------------------|--------------|---------|
| $\nabla$  | BF              |                            |                  | Corr         | ing Hospital and Ass  | ociated Parcels                                                 | SHEET        | 1 OF 1  |
|           |                 | sociates, P.C.             |                  |              | Corning, New          | York                                                            | JOB:         | 2150606 |
| 200 67 47 | E STREET, RO    | CHESTED NY                 |                  | Phas         | se II Environmental S | ite Assessment                                                  | CHKD BY:     | DPN     |
|           |                 | NEERING CONSULTANT         |                  |              |                       |                                                                 |              |         |
| CO        | NTRACTOR:       | LaBella Env. LLC           |                  | BORING LOCAT | TON:                  | 132 Denison Parkway East                                        |              |         |
|           |                 | M. Pepe                    |                  |              | ACE ELEVATION         |                                                                 | DATUM:       |         |
| LA        | BELLA REPRE     | SENTATIVE: A. Aquilina     |                  | START DATE:  | 4/28/2015             | END DATE: 4/28/2015                                             |              |         |
|           | TYPE OF DRI     | L RIG:                     | Geoprobe 54LT    |              |                       | DRIVE SAMPLER TYPE: Direct push                                 |              |         |
|           | AUGER SIZE      | AND TYPE:                  | NA               |              |                       | INSIDE DIAMETER: 2"                                             |              |         |
|           | OVERBURDE       | N SAMPING METHOD:          | macrocore        |              |                       | OTHER:                                                          |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| D<br>E    |                 | SAMPLE                     |                  |              |                       |                                                                 | PID<br>FIELD |         |
| Р         |                 |                            |                  |              |                       |                                                                 | SCREEN       |         |
| т<br>Н    | SAMPLE<br>DEPTH | SAMPLE NO.<br>AND RECOVERY | STRATA<br>CHANGE |              | VISUAL C              | LASSIFICATION                                                   | (PPM)        | REMARKS |
|           |                 |                            |                  | 0.41         |                       |                                                                 |              |         |
| 0         | 0-4             | 50%                        |                  | Grey/blac    | ck ASPHALT and fine   | e to coarse GRAVEL, moist, no odors                             | 0            | )       |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 2         |                 |                            | 2'               | Brown/are    | ev SAND and mediur    | n to coarse GRAVEL, moist, no odors                             | 0            |         |
| -         |                 |                            | -                | Dioming.     |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 4         | 4-8             | 20%                        |                  |              |                       |                                                                 | C            |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 6         |                 |                            |                  |              |                       |                                                                 | 0            | )       |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 | C            |         |
| 8         | 8-10.4          | 20%                        |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 10        |                 |                            |                  |              |                       |                                                                 | C            |         |
| 10        |                 |                            |                  |              | Refu                  | ısal at 10.4'                                                   |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 12        |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 14        |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 16        |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 18        |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 20        |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 22        |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 24        |                 |                            |                  |              |                       |                                                                 |              |         |
|           |                 |                            |                  |              |                       |                                                                 |              |         |
| 00        |                 |                            |                  |              |                       |                                                                 |              |         |
| 26        |                 |                            |                  | DEPTH (FT)   |                       | NOTES:                                                          |              |         |
|           | WATER           | LEVEL DATA                 | BOTTOM OF        | BOTTOM OF    | GROUNDWATER           | -                                                               |              |         |
| DATE      | TIME            | ELASPED TIME               | CASING           | BORING       | ENCOUNTERED           |                                                                 |              |         |
|           |                 |                            | NA               | 10.4         | NA                    |                                                                 |              |         |
|           |                 |                            |                  |              | •                     |                                                                 |              |         |
| GE        | 1) STRATIEIC    |                            |                  |              |                       |                                                                 | M            |         |
|           |                 |                            |                  |              |                       | PES, TRANSITIONS MAY BE GRADUA<br>TATED, FLUCTUATIONS OF GROUNI |              |         |
|           |                 |                            |                  |              |                       | SUREMENTS WERE MADE                                             |              |         |
|           |                 |                            |                  |              |                       |                                                                 | BORING:      | SB-09   |

|          | ΙΔΒΕΓΙΔ      |                                   |               | PROJECT<br>Corning Hospital and Associated Parcels |                            |                                                                     |                 | SB-10   |
|----------|--------------|-----------------------------------|---------------|----------------------------------------------------|----------------------------|---------------------------------------------------------------------|-----------------|---------|
| L        | BE           |                                   |               | Corn                                               |                            |                                                                     | SHEET           | 1 OF 1  |
| `        |              | sociates, P.C.                    |               |                                                    | Corning, New               |                                                                     | JOB:            | 2150606 |
| 300 STAT | E STREET, RO | CHESTER, NY                       |               | Phas                                               | se II Environmental S      | Site Assessment                                                     | CHKD BY:        | DPN     |
| ENVIRON  | IMENTAL ENGI | NEERING CONSULTANTS               | 5             |                                                    |                            |                                                                     |                 |         |
|          |              | LaBella Env. LLC                  |               | BORING LOCAT                                       |                            | 132 Denison Parkway East                                            | DATUM           |         |
|          |              | M. Pepe<br>SENTATIVE: A. Aquilina |               | START DATE:                                        | ACE ELEVATION<br>4/28/2015 | END DATE: 4/28/2015                                                 | DATUM:          |         |
|          |              |                                   |               |                                                    | 1/20/2010                  |                                                                     |                 |         |
|          | TYPE OF DRI  |                                   | Geoprobe 54LT |                                                    |                            | DRIVE SAMPLER TYPE: Direct push                                     |                 |         |
|          | AUGER SIZE   | N SAMPING METHOD:                 | NA            |                                                    |                            | INSIDE DIAMETER: 2"<br>OTHER:                                       |                 |         |
|          |              |                                   | maaroooro     | 1                                                  |                            |                                                                     | 1               | ſ       |
| D        |              | SAMPLE                            |               |                                                    |                            |                                                                     | PID             |         |
| E<br>P   |              |                                   |               |                                                    |                            |                                                                     | FIELD<br>SCREEN |         |
| T        | SAMPLE       | SAMPLE NO.                        | STRATA        |                                                    | VISUAL C                   | CLASSIFICATION                                                      | (PPM)           | REMARKS |
| Н        | DEPTH        | AND RECOVERY                      | CHANGE        |                                                    |                            |                                                                     |                 |         |
| 0        | 0-4          | 50%                               |               | Grey/blac                                          | k ASPHALT and fine         | e to coarse GRAVEL, moist, no odors                                 | 0               |         |
|          |              |                                   | 1.5'          | Brown/gre                                          | ey SAND and mediur         | n to coarse GRAVEL, moist, no odors                                 |                 |         |
| 2        |              |                                   |               | _                                                  |                            |                                                                     | 0               |         |
| 2        |              |                                   |               |                                                    |                            |                                                                     | 0               |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 4        | 4-8          | 40%                               |               |                                                    |                            |                                                                     | 0               |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 6        |              |                                   |               |                                                    |                            |                                                                     | 0               |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 8        | 8-10.4       | 50%                               |               |                                                    |                            |                                                                     | 0               |         |
| 0        | 0 10.4       | 0070                              |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 10       |              |                                   |               |                                                    |                            |                                                                     | 0               |         |
|          |              |                                   |               |                                                    | Refu                       | usal at 10.8'                                                       |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 12       |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 14       |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 16       |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 18       |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 20       |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 22       |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 24       |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     |                 |         |
| 26       |              |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               | DEPTH (FT)                                         |                            | NOTES:                                                              |                 |         |
|          |              |                                   | BOTTOM OF     | BOTTOM OF                                          | GROUNDWATER                |                                                                     |                 |         |
| DATE     | TIME         | ELASPED TIME                      | CASING<br>NA  | BORING<br>10.8                                     | ENCOUNTERED<br>NA          |                                                                     |                 |         |
|          | I            |                                   | INA           | 10.0                                               | NA                         |                                                                     |                 |         |
| GE       | NERAL NOTES  |                                   |               |                                                    |                            |                                                                     |                 |         |
|          |              |                                   |               |                                                    |                            | PES, TRANSITIONS MAY BE GRADUAL.<br>STATED, FLUCTUATIONS OF GROUNDW | ATER            |         |
|          |              |                                   |               |                                                    |                            | SUREMENTS WERE MADE                                                 |                 |         |
|          |              |                                   |               |                                                    |                            |                                                                     | BORING:         | SB-10   |

|          |                                        |                                                                             |                                  |                                            | PROJECT               | r                                                                   | BORING:         | SB-11   |
|----------|----------------------------------------|-----------------------------------------------------------------------------|----------------------------------|--------------------------------------------|-----------------------|---------------------------------------------------------------------|-----------------|---------|
| $\nabla$ | RF                                     |                                                                             |                                  | Corr                                       | ning Hospital and Ass | sociated Parcels                                                    | SHEET           | 1 OF 1  |
|          |                                        | sociates, P.C.                                                              |                                  |                                            | Corning, New          | York                                                                | JOB:            | 2150606 |
|          | E STREET, RO                           |                                                                             |                                  | Pha                                        | se II Environmental S | tite Assessment                                                     | CHKD BY:        | DPN     |
| CO<br>DR | NTRACTOR:<br>ILLER:                    | NEERING CONSULTANT<br>LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                  | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION         | 132 Denison Parkway East<br>930.632 (USft)<br>END DATE: 4/28/2015   | DATUM:          |         |
|          | TYPE OF DRI<br>AUGER SIZE<br>OVERBURDE |                                                                             | Geoprobe 54LT<br>NA<br>macrocore |                                            |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:    |                 |         |
|          |                                        |                                                                             |                                  | <u> </u>                                   |                       |                                                                     |                 | ſ       |
| D        |                                        | SAMPLE                                                                      |                                  |                                            |                       |                                                                     | PID             |         |
| E<br>P   |                                        |                                                                             |                                  |                                            |                       |                                                                     | FIELD<br>SCREEN |         |
| т        | SAMPLE                                 | SAMPLE NO.                                                                  | STRATA                           |                                            | VISUAL C              | CLASSIFICATION                                                      | (PPM)           | REMARKS |
| Н        | DEPTH                                  | AND RECOVERY                                                                | CHANGE                           |                                            |                       |                                                                     |                 |         |
| 0        | 0-4                                    | 50%                                                                         |                                  | Brow                                       | n SAND and fine to n  | nedium GRAVEL, moist, no odors                                      | 0               |         |
| 2        |                                        |                                                                             | 2'                               | Brov                                       | wn SANDY SILT, trac   | e fine GRAVEL, moist, no odors                                      | 0               |         |
| 4        | 4-8                                    | 40%                                                                         | 4'                               | Brown                                      | SAND and medium t     | o coarse GRAVEL, moist, no odors                                    | 0               |         |
| 6        |                                        |                                                                             |                                  |                                            |                       |                                                                     | 0               |         |
| 8        | 8-10.4                                 | 50%                                                                         |                                  |                                            |                       |                                                                     | 0               |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 10       |                                        |                                                                             |                                  |                                            | Ref                   | usal at 11.1                                                        | 0               |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 12       |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 14       |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 16       |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 18       |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 20       |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 22       |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 24       |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
| 26       |                                        |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  | DEPTH (FT)                                 |                       | NOTES:                                                              |                 |         |
|          |                                        | LEVEL DATA                                                                  | BOTTOM OF                        | BOTTOM OF                                  | GROUNDWATER           |                                                                     |                 |         |
| DATE     | TIME                                   | ELASPED TIME                                                                | CASING                           | BORING                                     | ENCOUNTERED           |                                                                     |                 |         |
|          | 1                                      |                                                                             | NA                               | 11.1                                       | NA                    |                                                                     |                 |         |
| GE       | NERAL NOTES                            |                                                                             |                                  |                                            |                       |                                                                     |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       | PES, TRANSITIONS MAY BE GRADUAL.<br>TATED, FLUCTUATIONS OF GROUNDW/ | ATER            |         |
|          |                                        |                                                                             |                                  |                                            |                       | SUREMENTS WERE MADE                                                 |                 |         |
|          |                                        |                                                                             |                                  |                                            |                       |                                                                     | BORING:         | SB-11   |

|          |                          |                                                       | PROJECT             |                                            |                       | BORING:                                                           | SB-12           |         |
|----------|--------------------------|-------------------------------------------------------|---------------------|--------------------------------------------|-----------------------|-------------------------------------------------------------------|-----------------|---------|
| IN       | RF                       | ELLA                                                  |                     | Corr                                       | ning Hospital and Ass | ociated Parcels                                                   | SHEET           | 1 OF 1  |
|          |                          | sociates, P.C.                                        |                     |                                            | Corning, New          | York                                                              | JOB:            | 2150606 |
|          | E STREET, RO             | CHESTER, NY                                           | d                   | Phas                                       | se II Environmental S | ite Assessment                                                    | CHKD BY:        | DPN     |
| CO<br>DR | NTRACTOR:<br>ILLER:      | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                     | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION         | 132 Denison Parkway East<br>930.753 (USft)<br>END DATE: 4/28/2015 | DATUM:          |         |
|          | TYPE OF DR<br>AUGER SIZE | AND TYPE:                                             | Geoprobe 54LT<br>NA |                                            |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"            |                 |         |
|          | OVERBURDE                | EN SAMPING METHOD:                                    | macrocore           |                                            |                       | OTHER:                                                            |                 |         |
| D        |                          | SAMPLE                                                |                     |                                            |                       |                                                                   | PID             |         |
| E        |                          | SAMFLE                                                |                     |                                            |                       |                                                                   | FIELD           |         |
| P<br>T   | SAMPLE                   | SAMPLE NO.                                            | STRATA              |                                            | VISUAL C              | LASSIFICATION                                                     | SCREEN<br>(PPM) | REMARKS |
| н        | DEPTH                    | AND RECOVERY                                          | CHANGE              |                                            | VIGUAL                |                                                                   | (1 1 10)        | REMARKO |
| 0        | 0-4                      | 40%                                                   |                     | Grey/blac                                  | ck ASPHALT and fine   | to coarse GRAVEL, moist, no odors                                 | 0               |         |
| 2        |                          |                                                       |                     |                                            |                       |                                                                   | 0               |         |
|          |                          |                                                       | 3.5'                | Brown                                      |                       | medium GRAVEL, moist, no odrs                                     |                 |         |
| 4        | 4-8                      | 50%                                                   | 4'                  |                                            |                       | m to coarse GRAVEL, moist, no odors                               | 0               |         |
| 6        |                          |                                                       |                     |                                            |                       |                                                                   | 0               |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 8        | 8-10.4                   | 50%                                                   |                     |                                            |                       |                                                                   | 0               |         |
|          |                          |                                                       | 9'                  |                                            | arev                  | ock fragments                                                     |                 |         |
|          |                          |                                                       | 9                   |                                            | grey                  | ock fragments                                                     |                 |         |
| 10       |                          |                                                       |                     |                                            | Refu                  | isal at 10.3'                                                     | 0               |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 12       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 14       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 10       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 16       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 18       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 20       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 22       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 22       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 24       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
| 26       |                          |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       | DOTTO               | DEPTH (FT)                                 |                       | NOTES:                                                            |                 |         |
| D        |                          |                                                       | BOTTOM OF           | BOTTOM OF                                  | GROUNDWATER           |                                                                   |                 |         |
| DATE     | TIME                     | ELASPED TIME                                          | CASING<br>NA        | BORING<br>10.3                             | ENCOUNTERED<br>NA     |                                                                   |                 |         |
|          | I                        | -                                                     | INA                 | 10.3                                       | NA                    |                                                                   |                 |         |
| GE       | NERAL NOTE               |                                                       |                     |                                            |                       |                                                                   |                 |         |
|          |                          |                                                       |                     |                                            |                       | PES, TRANSITIONS MAY BE GRADUAL<br>TATED, FLUCTUATIONS OF GROUND  |                 |         |
|          |                          |                                                       |                     |                                            |                       | SUREMENTS WERE MADE                                               |                 |         |
| 1        |                          |                                                       |                     |                                            |                       |                                                                   | BORING:         | SB-12   |

|           |                          |                                                        | PROJECT             |                                            |                       | BORING:                                                                  | SB-13           |         |
|-----------|--------------------------|--------------------------------------------------------|---------------------|--------------------------------------------|-----------------------|--------------------------------------------------------------------------|-----------------|---------|
| L         | RF                       | ELIA                                                   |                     | Corr                                       | ning Hospital and Ass | sociated Parcels                                                         | SHEET           | 1 OF 1  |
|           |                          | ssociates, P.C.                                        |                     |                                            | Corning, New          |                                                                          | JOB:            | 2150606 |
|           |                          | OCHESTER, NY<br>INEERING CONSULTANT                    | d                   | Phas                                       | se II Environmental S | Site Assessment                                                          | CHKD BY:        | DPN     |
| CO<br>DRI | NTRACTOR:<br>ILLER:      | LaBella Env. LLC<br>M. Pepe<br>ESENTATIVE: A. Aquilina |                     | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION         | 132 Denison Parkway East<br>931.484 (USft)<br>END DATE: 4/28/2015        | DATUM:          |         |
|           | TYPE OF DR<br>AUGER SIZE |                                                        | Geoprobe 54LT<br>NA |                                            |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"                   |                 |         |
|           | OVERBURD                 | EN SAMPING METHOD:                                     | macrocore           |                                            |                       | OTHER:                                                                   |                 |         |
| _         |                          |                                                        |                     |                                            |                       |                                                                          | DID             |         |
| D<br>E    |                          | SAMPLE                                                 |                     |                                            |                       |                                                                          | PID<br>FIELD    |         |
| P<br>T    | SAMPLE                   | SAMPLE NO.                                             | STRATA              | -                                          |                       | CLASSIFICATION                                                           | SCREEN<br>(PPM) | REMARKS |
| н         | DEPTH                    | AND RECOVERY                                           | CHANGE              |                                            | VISUAL                | LASSIFICATION                                                            | (FFIVI)         | REWARKS |
| 0         | 0-4                      | 30%                                                    | 1'                  |                                            |                       | e to coarse GRAVEL, moist, no odors<br>nd coarse GRAVEL, moist, no odors | 0               |         |
| 2         |                          |                                                        |                     |                                            |                       |                                                                          | 0               |         |
| 2         |                          |                                                        |                     |                                            |                       |                                                                          | 0               |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 4         | 4-8                      | 30%                                                    |                     |                                            |                       |                                                                          | 0               |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 6         |                          |                                                        |                     |                                            |                       |                                                                          | 0               |         |
| 0         |                          |                                                        |                     |                                            |                       |                                                                          | 0               |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          | 0               |         |
| 8         | 8-12                     | 50%                                                    |                     |                                            | Re                    | efusal at 8'                                                             | _               |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 10        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 10        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 12        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 14        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 16        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 18        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 20        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 22        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 24        |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
|           |                          |                                                        |                     |                                            |                       |                                                                          |                 |         |
| 26        |                          |                                                        |                     |                                            |                       | NOTEO                                                                    |                 |         |
|           | \A/ A TTT                |                                                        | POTTOMOS            | DEPTH (FT)                                 |                       | NOTES:                                                                   |                 |         |
| DATE      |                          |                                                        | BOTTOM OF           | BOTTOM OF                                  |                       |                                                                          |                 |         |
| DATE      | TIME                     | ELASPED TIME                                           | CASING<br>NA        | BORING<br>8                                | ENCOUNTERED<br>NA     |                                                                          |                 |         |
|           |                          |                                                        | 1 1973              | , v                                        | 1111                  |                                                                          |                 |         |
| GEI       | 1) STRATIE               |                                                        |                     |                                            |                       | PES, TRANSITIONS MAY BE GRADUAL.                                         |                 |         |
|           |                          |                                                        |                     |                                            |                       | TATED, FLUCTUATIONS OF GROUNDW                                           | ATER            |         |
|           |                          |                                                        |                     |                                            |                       | SUREMENTS WERE MADE                                                      |                 |         |
| 1         |                          |                                                        |                     |                                            |                       |                                                                          | BORING:         | SB-13   |

|        |                 |                            |                  |               | PROJEC                | г                                                                        | BORING:      | SB-13A  |
|--------|-----------------|----------------------------|------------------|---------------|-----------------------|--------------------------------------------------------------------------|--------------|---------|
| IN     | RF              |                            |                  | Corr          | ning Hospital and Ass | sociated Parcels                                                         | SHEET        | 1 OF 1  |
|        |                 | sociates, P.C.             |                  |               | Corning, New          | York                                                                     | JOB:         | 2150606 |
|        | E OTREET DO     | OUFOTED NY                 |                  | Pha           | se II Environmental S | Site Assessment                                                          | CHKD BY:     | DPN     |
|        | TE STREET, RO   | NEERING CONSULTANT         |                  |               |                       |                                                                          |              |         |
|        |                 | LaBella Env. LLC           |                  | BORING LOCA   | FION:                 | 132 Denison Parkway East                                                 |              |         |
|        | ILLER:          | M. Pepe                    |                  |               | FACE ELEVATION        |                                                                          | DATUM:       |         |
| LA     | BELLA REPRE     | SENTATIVE: A. Aquilina     |                  | START DATE:   | 4/28/2015             | END DATE: 4/28/2015                                                      |              |         |
|        | TYPE OF DRI     | LL RIG:                    | Geoprobe 54LT    |               |                       | DRIVE SAMPLER TYPE: Direct push                                          |              |         |
|        | AUGER SIZE      | AND TYPE:                  | NA               |               |                       | INSIDE DIAMETER: 2"                                                      |              |         |
|        | OVERBURDE       | N SAMPING METHOD:          | macrocore        |               |                       | OTHER:                                                                   |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| D<br>E |                 | SAMPLE                     |                  |               |                       |                                                                          | PID<br>FIELD |         |
| P      |                 |                            |                  |               |                       |                                                                          | SCREEN       |         |
| T<br>H | SAMPLE<br>DEPTH | SAMPLE NO.<br>AND RECOVERY | STRATA<br>CHANGE |               | VISUAL (              | CLASSIFICATION                                                           | (PPM)        | REMARKS |
|        |                 |                            | CHANGE           |               |                       |                                                                          |              |         |
| 0      | 0-4             | 30%                        | 1'               |               |                       | e to coarse GRAVEL, moist, no odors<br>nd coarse GRAVEL, moist, no odors | 0            |         |
|        |                 |                            | I                | DIOMIN        | grey coarse SAND ar   | In coarse GRAVEL, moist, no odors                                        |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 2      |                 |                            |                  |               |                       |                                                                          | 0            |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 4      | 4-8             | 30%                        |                  |               |                       |                                                                          | 0            |         |
| -      | 40              | 0070                       |                  |               |                       |                                                                          | 0            |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 6      |                 |                            |                  |               |                       |                                                                          | 0            |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          | 0            |         |
| 8      | 8-12            | 50%                        |                  |               |                       |                                                                          | -            |         |
|        |                 |                            | 8.5'             | Bi            | rown medium GRAVI     | EL and SAND, moist, no odors                                             |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 10     |                 |                            |                  |               |                       | wet                                                                      | 0            |         |
|        |                 |                            | 11'              | Brown         | coarse SAND, some     | medium GRAVEL, moist, no odors                                           |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 12     | 12-13.7         | 50%                        | 13.5'            |               | arev                  | rock fragments                                                           | 0            |         |
|        |                 |                            | 1010             |               |                       | usal at 13.7'                                                            |              |         |
| 14     |                 |                            |                  |               |                       |                                                                          |              |         |
| 14     |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 16     |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 18     |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 20     |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 22     |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 24     |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  |               |                       |                                                                          |              |         |
| 26     |                 |                            |                  |               |                       |                                                                          |              |         |
|        |                 |                            |                  | DEPTH (FT)    |                       | NOTES:                                                                   |              |         |
|        | WATER           | LEVEL DATA                 | BOTTOM OF        | BOTTOM OF     | GROUNDWATER           |                                                                          |              |         |
| DATE   | TIME            | ELASPED TIME               | CASING           | BORING        | ENCOUNTERED           |                                                                          |              |         |
|        |                 |                            | NA               | 13.7          | NA                    |                                                                          |              |         |
| GE     | NERAL NOTES     | \$                         |                  |               |                       |                                                                          |              |         |
|        | 1) STRATIFIC    | ATION LINES REPRES         | ENT APPROXMA     | ATE BOUNDARY  | BETWEEN SOIL TY       | PES, TRANSITIONS MAY BE GRADUAL.                                         |              |         |
|        | 2) WATER LE     | VEL READINGS HAVE          | BEEN MADE AT     | TIMES AND UNI | DER CONDITIONS S      | STATED, FLUCTUATIONS OF GROUNDWA                                         | ATER         |         |
|        | MAY OCCL        | JRE DUE TO OTHER FA        | ACTORS THAN T    | HOSE PRESEN   | T AT THE TIME MEA     | SUREMENTS WERE MADE                                                      | BODING       | CD 424  |
| 1      |                 |                            |                  |               |                       |                                                                          | BORING:      | SB-13A  |

|              |              |                                   |               |               | PROJECT               | r                                                      | BORING:         | SB-14   |
|--------------|--------------|-----------------------------------|---------------|---------------|-----------------------|--------------------------------------------------------|-----------------|---------|
| $\mathbf{L}$ | RF           | ELIA                              |               | Corr          | ning Hospital and Ass | sociated Parcels                                       | SHEET           | 1 OF 1  |
|              |              | sociates, P.C.                    |               |               | Corning, New          | York                                                   | JOB:            | 2150606 |
|              |              | -                                 |               | Pha           | se II Environmental S | Site Assessment                                        | CHKD BY:        | DPN     |
|              | E STREET, RO | CHESTER, NY<br>NEERING CONSULTANT |               |               |                       |                                                        |                 |         |
|              |              | LaBella Env. LLC                  | 9             | BORING LOCAT  | TION:                 | 132 Denison Parkway East                               |                 |         |
| DR           | ILLER:       | M. Pepe                           |               | GROUND SURF   | ACE ELEVATION         |                                                        | DATUM:          |         |
| LAE          | BELLA REPRE  | SENTATIVE: A. Aquilina            |               | START DATE:   | 4/28/2015             | END DATE: 4/28/2015                                    |                 |         |
|              | TYPE OF DRI  |                                   | Geoprobe 54LT |               |                       |                                                        |                 |         |
|              | AUGER SIZE   |                                   | NA            |               |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2" |                 |         |
|              |              | IN SAMPING METHOD:                |               |               |                       | OTHER:                                                 |                 |         |
|              |              |                                   |               | 1             |                       |                                                        |                 |         |
| D            |              | SAMPLE                            |               |               |                       |                                                        | PID             |         |
| E<br>P       |              |                                   |               |               |                       |                                                        | FIELD<br>SCREEN |         |
| T            | SAMPLE       | SAMPLE NO.                        | STRATA        | -             | VISUAL C              | CLASSIFICATION                                         | (PPM)           | REMARKS |
| Н            | DEPTH        | AND RECOVERY                      | CHANGE        |               |                       |                                                        |                 |         |
| 0            | 0-4          | 50%                               |               | Grey/blad     | ck ASPHALT and fine   | e to coarse GRAVEL, moist, no odors                    | 0               |         |
|              |              |                                   | 1'            |               |                       | dium GRAVEL, moist, no odors                           |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 2            |              |                                   |               |               |                       |                                                        | 0               |         |
|              |              |                                   | 2.5'          | Brown SA      | NDY SILT, trace fine  | to medium GRAVEL, moist, no odors                      |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 4            | 4-8          | <5%                               |               |               |                       | brick (fill)                                           | 0               |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 6            |              |                                   |               |               |                       |                                                        | 0               |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        | 0               |         |
| 8            | 8-10         | 50%                               |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 10           |              |                                   | 10'           |               |                       | rock fragments<br>fusal at 10'                         | 0               |         |
| 10           |              |                                   |               |               | Re                    |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 12           |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 14           |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 16           |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 18           |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 20           |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 22           |              |                                   |               |               |                       |                                                        |                 |         |
| 22           |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 24           |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               |               |                       |                                                        |                 |         |
| 26           |              |                                   |               |               |                       |                                                        |                 |         |
|              |              |                                   |               | DEPTH (FT)    |                       | NOTES:                                                 |                 |         |
|              | WATER        | LEVEL DATA                        | BOTTOM OF     | BOTTOM OF     | GROUNDWATER           |                                                        |                 |         |
| DATE         | TIME         | ELASPED TIME                      | CASING        | BORING        | ENCOUNTERED           |                                                        |                 |         |
|              |              | l                                 | NA            | 10            | NA                    |                                                        |                 |         |
| GE           | NERAL NOTES  | 5                                 |               |               |                       |                                                        |                 |         |
|              |              |                                   | ENT APPROXMA  | TE BOUNDARY   | BETWEEN SOIL TY       | PES, TRANSITIONS MAY BE GRADUAL.                       |                 |         |
|              | 2) WATER LE  | EVEL READINGS HAVE                | BEEN MADE AT  | TIMES AND UNI | DER CONDITIONS S      | TATED, FLUCTUATIONS OF GROUNDW                         | ATER            |         |
|              | MAY OCCU     | JRE DUE TO OTHER FA               | ACTORS THAN T | HOSE PRESENT  | TAT THE TIME MEA      | SUREMENTS WERE MADE                                    |                 |         |
| 1            |              |                                   |               |               |                       |                                                        | BORING:         | SB-14   |

|          |                           |                                                       | PROJECT             |                                            |                       | BORING:                                                                   | SB-14A          |         |
|----------|---------------------------|-------------------------------------------------------|---------------------|--------------------------------------------|-----------------------|---------------------------------------------------------------------------|-----------------|---------|
|          | RF                        |                                                       |                     | Corr                                       | ning Hospital and Ass | ociated Parcels                                                           | SHEET           | 1 OF 1  |
|          |                           | sociates, P.C.                                        |                     |                                            | Corning, New          |                                                                           | JOB:            | 2150606 |
|          | E STREET, RO              | CHESTER, NY<br>NEERING CONSULTANT                     | d                   | Pha                                        | se II Environmental S | ite Assessment                                                            | CHKD BY:        | DPN     |
| CO<br>DR | NTRACTOR:<br>ILLER:       | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                     | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION         | 132 Denison Parkway East<br>930.454 (USft)<br>END DATE: 4/28/2015         | DATUM:          |         |
|          | TYPE OF DRI<br>AUGER SIZE |                                                       | Geoprobe 54LT<br>NA |                                            |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:          |                 |         |
|          | OVERBURDE                 | IN SAMPING METHOD:                                    | macrocore           |                                            |                       | OTHER:                                                                    |                 |         |
| D        |                           | SAMPLE                                                |                     |                                            |                       |                                                                           | PID             |         |
| E<br>P   |                           |                                                       |                     |                                            |                       |                                                                           | FIELD<br>SCREEN |         |
| Т        | SAMPLE                    | SAMPLE NO.                                            | STRATA              | -                                          | VISUAL C              | CLASSIFICATION                                                            | (PPM)           | REMARKS |
| Н        | DEPTH                     | AND RECOVERY                                          | CHANGE              |                                            |                       |                                                                           |                 |         |
| 0        | 0-4                       | 50%                                                   | 1'                  |                                            |                       | e to coarse GRAVEL, moist, no odors<br>ome medium GRAVEL, moist, no odors | 0               |         |
| 2        |                           |                                                       |                     |                                            |                       |                                                                           | 0               |         |
| 4        | 4-8                       | <5%                                                   |                     |                                            |                       |                                                                           | 0               |         |
|          | 4-0                       | <b>C</b> 070                                          |                     |                                            |                       |                                                                           | 0               |         |
| 6        |                           |                                                       |                     |                                            |                       |                                                                           | 0               |         |
| Ű        |                           |                                                       |                     |                                            |                       |                                                                           | 0               |         |
| 8        | 8-10                      | 50%                                                   | 7'                  | Brown                                      | coarse SAND some      | coarse GRAVEL, moist, no odors                                            | 0               |         |
|          |                           |                                                       | 10'                 |                                            |                       |                                                                           | 0               |         |
| 10       |                           |                                                       | 10                  |                                            | Rei                   | fusal at 10'                                                              |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 12       |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 14       |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 16       |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 18       |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 20       |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 22       |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 24       |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 26       |                           |                                                       |                     |                                            |                       |                                                                           |                 |         |
| 20       | I                         | l                                                     |                     | DEPTH (FT)                                 |                       | NOTES:                                                                    | 1               | 1       |
|          | WATER                     | LEVEL DATA                                            | BOTTOM OF           | BOTTOM OF                                  | GROUNDWATER           |                                                                           |                 |         |
| DATE     | TIME                      | ELASPED TIME                                          | CASING              | BORING                                     | ENCOUNTERED           |                                                                           |                 |         |
|          |                           |                                                       | NA                  | 10                                         | NA                    |                                                                           |                 |         |
| GE       | NERAL NOTES               |                                                       |                     |                                            |                       |                                                                           |                 |         |
|          |                           |                                                       |                     |                                            |                       | PES, TRANSITIONS MAY BE GRADUAL.<br>TATED, FLUCTUATIONS OF GROUNDW        | ATER            |         |
|          |                           |                                                       |                     |                                            |                       | SUREMENTS WERE MADE                                                       |                 |         |
| 1        |                           |                                                       |                     |                                            |                       |                                                                           | BORING:         | SB-14A  |

|          |                           |                             | PROJECT             |                         |                        | BORING:                                                               | SB-15           |         |
|----------|---------------------------|-----------------------------|---------------------|-------------------------|------------------------|-----------------------------------------------------------------------|-----------------|---------|
|          | BE                        | ELIV                        |                     | Corn                    | ing Hospital and As    |                                                                       | SHEET           | 1 OF 1  |
| `        |                           | sociates, P.C.              |                     |                         | Corning, New           |                                                                       | JOB:            | 2150606 |
| 300 STAT | E STREET, RO              | CHESTER. NY                 |                     | Phas                    | se II Environmental S  | Site Assessment                                                       | CHKD BY:        | DPN     |
|          |                           | NEERING CONSULTANTS         |                     |                         |                        |                                                                       |                 |         |
|          | NTRACTOR:<br>ILLER:       | LaBella Env. LLC<br>M. Pepe |                     | BORING LOCAT            | TON:<br>FACE ELEVATION | 210 Denison Parkway East                                              | DATUM:          |         |
|          |                           | SENTATIVE: A. Aquilina      |                     | START DATE:             |                        | END DATE: 4/29/2015                                                   | DATOW.          |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          | TYPE OF DRI<br>AUGER SIZE |                             | Geoprobe 54LT<br>NA |                         |                        | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"                |                 |         |
|          |                           | N SAMPING METHOD:           |                     |                         |                        | OTHER:                                                                |                 |         |
|          | 1                         |                             |                     |                         |                        |                                                                       |                 |         |
| D        |                           | SAMPLE                      |                     |                         |                        |                                                                       | PID             |         |
| E<br>P   |                           |                             |                     |                         |                        |                                                                       | FIELD<br>SCREEN |         |
| T<br>H   | SAMPLE<br>DEPTH           | SAMPLE NO.<br>AND RECOVERY  | STRATA<br>CHANGE    |                         | VISUAL                 | CLASSIFICATION                                                        | (PPM)           | REMARKS |
|          |                           |                             | 01# 410E            | 0                       |                        |                                                                       |                 |         |
| 0        | 0-4                       | 60%                         | 1'                  |                         |                        | e to coarse GRAVEL, moist, no odors<br>e fine GRAVEL, moist, no odors | 0               |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 2        |                           |                             | 2'                  |                         | trace GL/              | ASS and BRICK (fill)                                                  | 0               |         |
|          |                           |                             | 3.5'                | Bro                     | own fine SAND trace    | e fine GRAVEL, moist, no odors                                        |                 |         |
|          |                           |                             | 0.0                 | ы                       |                        |                                                                       |                 |         |
| 4        | 4-8                       | 90%                         |                     |                         |                        |                                                                       | 0               |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 6        |                           |                             |                     |                         |                        |                                                                       | 0               |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       | 0               |         |
| 8        | 8-12                      | 80%                         | 8'                  | Br                      | own SAND and med       | lium GRAVEL, moist, no odors                                          |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 10       |                           |                             |                     |                         |                        |                                                                       | 0               |         |
| 10       |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 12       | 12-14.7                   | 80%                         |                     |                         |                        |                                                                       | 0               |         |
|          |                           |                             | 13'                 | Light brow              | n/grey SAND and fin    | e to medium GRAVEL, moist, no odors                                   |                 |         |
| 14       |                           |                             |                     | -                       |                        |                                                                       | 0               |         |
| 14       |                           |                             |                     |                         | Ref                    | usal at 14.7'                                                         |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 16       |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 18       |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 20       |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 22       |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 24       |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
|          |                           |                             |                     |                         |                        |                                                                       |                 |         |
| 26       |                           |                             |                     |                         |                        | NOTES                                                                 |                 |         |
|          |                           |                             | BOTTOM OF           | DEPTH (FT)<br>BOTTOM OF | GROUNDWATER            | NOTES:                                                                |                 |         |
| DATE     | TIME                      | ELASPED TIME                | CASING              | BORING                  | ENCOUNTERED            |                                                                       |                 |         |
| DAIL     |                           |                             | NA                  | 14.7                    | NA                     | 1                                                                     |                 |         |
| 05       |                           |                             |                     |                         |                        |                                                                       |                 |         |
| GE       | 1) STRATIFIC              |                             |                     |                         |                        | PES, TRANSITIONS MAY BE GRADUAL.                                      |                 |         |
|          |                           |                             |                     |                         |                        | STATED, FLUCTUATIONS OF GROUNDW                                       | ATER            |         |
|          | MAY OCCU                  | JRE DUE TO OTHER FA         | ACTORS THAN T       | HOSE PRESENT            | AT THE TIME MEA        | SUREMENTS WERE MADE                                                   |                 | A       |
| 1        |                           |                             |                     |                         |                        |                                                                       | BORING:         | SB-15   |

|             | E STREET, RO                              | sociates, P.C.                                        | •                                |                                            |                     |                                                                     |                        | 5 <b>B-16</b><br>1 OF 1<br>2150606<br>DPN |
|-------------|-------------------------------------------|-------------------------------------------------------|----------------------------------|--------------------------------------------|---------------------|---------------------------------------------------------------------|------------------------|-------------------------------------------|
| DRI         | LLER:                                     | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                  | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION       | 202 Denison Parkway East<br>925.825 (USft)<br>5 END DATE: 4/29/2015 | DATUM:                 |                                           |
|             | TYPE OF DRII<br>AUGER SIZE .<br>OVERBURDE |                                                       | Geoprobe 54LT<br>NA<br>macrocore |                                            |                     | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2*<br>OTHER:    |                        |                                           |
| D<br>E<br>P |                                           | SAMPLE                                                |                                  |                                            |                     |                                                                     | PID<br>FIELD<br>SCREEN |                                           |
| Т<br>Н      | SAMPLE<br>DEPTH                           | SAMPLE NO.<br>AND RECOVERY                            | STRATA<br>CHANGE                 |                                            | VISUAL              | CLASSIFICATION                                                      | (PPM)                  | REMARKS                                   |
| 0           | 0-4                                       | 20%                                                   |                                  | Brov                                       | vn SAND and SILT,   | trace vegetation, moist, no odors                                   | 0                      |                                           |
| 2           |                                           |                                                       | 2                                | D-                                         |                     |                                                                     | 0                      |                                           |
| 4           | 4-8                                       | 60%                                                   | 3'                               | Br                                         | JWI IINE JAND TRACE | e fine GRAVEL, moist, no odors                                      | 0                      |                                           |
| 6           |                                           |                                                       |                                  |                                            |                     |                                                                     | 0                      |                                           |
| 8           | 8-12                                      | 40%                                                   |                                  |                                            |                     |                                                                     | 0                      |                                           |
| 10          |                                           |                                                       |                                  |                                            |                     |                                                                     | 0                      |                                           |
| 12          | 12-16                                     | 30%                                                   | 12'                              | Browr                                      | n coarse SAND and   | medium GRAVEL, moist, no odors                                      | 0                      |                                           |
| 14          |                                           |                                                       |                                  |                                            |                     |                                                                     | 0                      |                                           |
| 16          | 16-20                                     | 30%                                                   | 16'                              |                                            | Brown fine to medi  | ium GRAVEL, wet, no odors                                           | 0                      |                                           |
| 18          |                                           |                                                       |                                  |                                            |                     |                                                                     | 0                      |                                           |
| 20          |                                           |                                                       |                                  |                                            |                     | End at 20'                                                          | 0                      |                                           |
| 22          |                                           |                                                       |                                  |                                            |                     |                                                                     |                        |                                           |
| 24          |                                           |                                                       |                                  |                                            |                     |                                                                     |                        |                                           |
|             |                                           |                                                       |                                  |                                            |                     |                                                                     |                        |                                           |
| 26          |                                           |                                                       |                                  | DEPTH (FT)                                 |                     | NOTES:                                                              |                        |                                           |
|             | WATER                                     | LEVEL DATA                                            | BOTTOM OF                        | BOTTOM OF                                  | GROUNDWATER         | MW-08, 10' screen                                                   |                        |                                           |
| ATE         | TIME                                      | ELASPED TIME                                          | CASING                           | BORING                                     | ENCOUNTERED         | 4                                                                   |                        |                                           |
|             |                                           |                                                       | 19                               | 20                                         | 16                  |                                                                     |                        |                                           |
|             | 2) WATER LE                               | ATION LINES REPRES                                    | BEEN MADE AT                     | TIMES AND UNI                              | DER CONDITIONS      | YPES, TRANSITIONS MAY BE GRADU/<br>STATED, FLUCTUATIONS OF GROUN    |                        |                                           |
|             | MAY OCCL                                  | JRE DUE TO OTHER FA                                   | ACTORS THAN T                    | HUSE PRESENT                               | AT THE TIME MEA     | ASUREMENTS WERE MADE                                                | BORING: S              | B-16                                      |

| DIRLER:         KM Pape<br>Market         GROUND SURFACE ELEVATION         DATUME<br>4/202015 FROUNDE 4/202015         DATUME<br>Market         DATUME           LABELLA REPORTSENTATIVE:         A Againa         CARDIDATE:         4/202015 FROUNDETE:         DATUME           AUGER SUEA AND TYPE:         NA         INSDE DUMMETER: 2''         DRIVE SAMPLER TYPE: Dreap push<br>INSDE DUMMETER: 2''         PD           P         SAMPLE         SAMPLE         NA         INSDE DUMMETER: 2''         SCREEN<br>(PPM)         SCREEN<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OF 1<br>16 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| TYPE OF DRILL NIC:     Georgroup 64-T:     DRIVE SAMPLER TYPE: Used public sectors       0     Image: Sample Sa |            |
| P         SAMPLE NO.<br>SCREEN         SAMPLE NO.<br>AND RECOVERY         STRATA<br>CHANGE         VISUAL CLASSIFICATION         FIELD<br>SCREEN<br>(PPM)         FIELD<br>SCREEN<br>(PPM) <td></td>                                                                                                                                       |            |
| T         SAMPLE         SAMPLE NO.<br>AND RECOVERY         STRATA<br>CHANGE         VISUAL CLASSFICATION         (PPM)         F           0         0-4         60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| 2       2       Brown coarse SAND and SLT, trace coarse GRAVEL, moist, no odors       0         4       4-8       40%       3.5       Brown SLT and SAND, trace fine GRAVEL, moist, no odors       0         6       5       Black ASH and CINDERS, trace GLASS (till), most, no odors       0         7       Brown SLT and SAND, some medium to coarse GRAVEL, moist, no odors       0         8       8-12       60%       7.5       Brown SLT and SAND, some medium to coarse GRAVEL, moist, no odors       0         10       7.5       Brown SLT and SAND, some medium to coarse GRAVEL, moist, no odors       0         12       12-16       40%       16       Brown medium to coarse GRAVEL, wet, no odors       0         14       6       6       6       6       6       0         14       6       6       6       6       6       6         12       12-16       40%       16'       Brown medium to coarse GRAVEL, wet, no odors       0         18       6       6       6       6       6       6         20       6       6       6       6       6       6         21       6       6       6       6       6       6         22       6 <th>REMARKS</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REMARKS    |
| 4       4-8       40%       3'      Trace glass, some while ash, most, no odors<br>Brown SILT and SAND, trace fine GRAVEL, moist, no odors       0         6       5'       Black ASH and CINDERS, trace GLASS (fill), moist, no odors       0         8       8-12       60%       7.5'       Brown SILT and SAND, some medium to coarse GRAVEL, moist, no odors       0         10       7.5'       Brown SILT and SAND, some medium to coarse GRAVEL, moist, no odors       0         11       12       12.16       40%       4       0         14       4       4       4       4       0         15       16-20       40%       16'       Brown medium to coarse GRAVEL, wet, no odors       0         18       16-20       40%       16'       Brown medium to coarse GRAVEL, wet, no odors       0         12       16-20       40%       16'       Brown medium to coarse GRAVEL, wet, no odors       0         18       16-20       40%       16'       End at 20'       0         12       16       16       16'       16'       16'       16'         19       16       16'       16'       16'       16'       16'         19       16'       16'       16'       16' <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| A     A-8     A0%     3.5'     Brown SILT and SAND, trace fine GRAVEL, moist, no odors     0       6     5'     Black ASH and CINDERS, trace GLASS (#), moist, no odors     0       7     Brown SILT and SAND, some medium to coarse GRAVEL, moist, no odors     0       10     7.5'     Brown SILT and SAND, some medium to coarse GRAVEL, moist, no odors     0       11     12.16     40%     7.5'     Brown medium to coarse GRAVEL, moist, no odors     0       12     12.16     40%     16'     Brown medium to coarse GRAVEL, wet, no odors     0       14     16-20     40%     16'     Brown medium to coarse GRAVEL, wet, no odors     0       18     16-20     40%     16'     Brown medium to coarse GRAVEL, wet, no odors     0       20     16     16-20     16'     Brown medium to coarse GRAVEL, wet, no odors     0       21     12-20     16'     16'     Brown medium to coarse GRAVEL, wet, no odors     0       22     16     16-20     16'     16'     16'     16'       23     16     16'     16'     16'     16'     16'       24     16     16'     16'     16'     16'     16'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 8       8-12       60% $0$ 10       12       12-16       40% $0$ 14       12-16       40% $0$ $0$ 14       16-20       40%       16'       Brown medium to coarse GRAVEL, wet, no odors $0$ 18       16-20       40%       16'       Brown medium to coarse GRAVEL, wet, no odors $0$ 20       16       16'       Brown medium to coarse GRAVEL, wet, no odors $0$ 21       14       16'       Brown medium to coarse GRAVEL, wet, no odors $0$ 22       14       16'       Brown medium to coarse GRAVEL, wet, no odors $0$ 23       16'       16'       Brown medium to coarse GRAVEL, wet, no odors $0$ 24       16'       16'       16'       16'       16'         25       16'       16'       16'       16'       16'         26       16'       16'       16'       16'       16'         27       16'       16'       16'       16'       16'         28       16'       16'       16'       16'       16'       16'         29       16'       16'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 10       12       12.16       40%       0         14       40%       0       0         16       16-20       40%       16'       Brown medium to coarse GRAVEL, wet, no odors       0         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 14     16-20     40%     16'     Brown medium to coarse GRAVEL, wet, no odors     0       18     16'     Brown medium to coarse GRAVEL, wet, no odors     0       20     End at 20'     0       21     Image: State St                                                                                                                     |            |
| 14       16-20       40%       16'       Brown medium to coarse GRAVEL, wet, no odors       0         18       16'       Brown medium to coarse GRAVEL, wet, no odors       0         20       10       End at 20'       0         22       10       10       10       10         24       10       10       10       10         26       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 18     0       20     End at 20'       22     0       24     0       26     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 20 End at 20' 22 24 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 20 End at 20' 22 24 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 24 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER MW-09, 10' screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| DATE TIME ELASPED TIME CASING BORING ENCOUNTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| 18     20     16       GENERAL NOTES     1) STRATIFICATION LINES REPRESENT APPROXMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.       2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |

|             |                                       |                                                       |                                  |                                            | PROJEC                | г                                                                 | BORING:         | SB-18                            |
|-------------|---------------------------------------|-------------------------------------------------------|----------------------------------|--------------------------------------------|-----------------------|-------------------------------------------------------------------|-----------------|----------------------------------|
| L           | BE                                    | ELIA                                                  |                                  | Corr                                       | ning Hospital and As  |                                                                   | SHEET           | 1 OF 1                           |
|             |                                       | sociates, P.C.                                        |                                  |                                            | Corning, New          |                                                                   | JOB:            | 2150606                          |
|             |                                       | CHESTER, NY                                           |                                  | Pha                                        | se II Environmental S | Site Assessment                                                   | CHKD BY:        | DPN                              |
| CO<br>DR    | NTRACTOR:<br>ILLER:                   | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                  | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION         | 201 East First Street<br>925.122 (USft)<br>END DATE: 4/29/2015    | DATUM:          |                                  |
|             | TYPE OF DR<br>AUGER SIZE<br>OVERBURDE |                                                       | Geoprobe 54LT<br>NA<br>macrocore |                                            |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:  |                 |                                  |
| DE          |                                       | SAMPLE                                                |                                  |                                            |                       |                                                                   | PID<br>FIELD    |                                  |
| P<br>T<br>H | SAMPLE<br>DEPTH                       | SAMPLE NO.<br>AND RECOVERY                            | STRATA<br>CHANGE                 |                                            | VISUAL                | CLASSIFICATION                                                    | SCREEN<br>(PPM) | REMARKS                          |
| 0           | 0-2                                   | 50%                                                   | 1'                               |                                            |                       | trace vegetation, moist, no odors te fine GRAVEL, moist, no odors | 0               |                                  |
| 2           | 2-4                                   | 50%                                                   | 2'                               |                                            | grey                  | rock fragments                                                    | 0               | Hit refusal at 2', redrill to 8' |
| 4           | 4-8                                   | 50%                                                   | 3'<br>3.5'                       | Brown co                                   |                       | ace brick (fill)<br>e to coarse GRAVEL, moist, no odors           | o               |                                  |
| 6           |                                       |                                                       |                                  |                                            |                       |                                                                   | 0               |                                  |
| 8           |                                       |                                                       |                                  |                                            | Re                    | ofusal at 8'                                                      | 0               |                                  |
| 10          |                                       |                                                       |                                  |                                            |                       |                                                                   |                 |                                  |
| 12          |                                       |                                                       |                                  |                                            |                       |                                                                   |                 |                                  |
| 14          |                                       |                                                       |                                  |                                            |                       |                                                                   |                 |                                  |
| 16          |                                       |                                                       |                                  |                                            |                       |                                                                   |                 |                                  |
| 18          |                                       |                                                       |                                  |                                            |                       |                                                                   |                 |                                  |
| 20          |                                       |                                                       |                                  |                                            |                       |                                                                   |                 |                                  |
| 22          |                                       |                                                       |                                  |                                            |                       |                                                                   |                 |                                  |
| 24          |                                       |                                                       |                                  |                                            |                       |                                                                   |                 |                                  |
| 26          |                                       |                                                       |                                  |                                            |                       | NOTEO                                                             |                 |                                  |
|             |                                       |                                                       | BOTTOM OF                        | DEPTH (FT)<br>BOTTOM OF                    | GROUNDWATER           | NOTES:                                                            |                 |                                  |
| DATE        | TIME                                  | ELEVEL DATA                                           | CASING                           | BORING                                     | ENCOUNTERED           |                                                                   |                 |                                  |
| GE          | NERAL NOTE                            | s                                                     | NA                               | 8                                          | NA                    | L                                                                 |                 |                                  |
|             | 1) STRATIFIC                          | CATION LINES REPRES                                   |                                  |                                            |                       | PES, TRANSITIONS MAY BE GRADUA<br>STATED, FLUCTUATIONS OF GROUNE  |                 |                                  |
|             |                                       |                                                       |                                  |                                            |                       | SUREMENTS WERE MADE                                               |                 | SB-18                            |

|                      |                                    | sociates, P.C.                                                               |                     |                                           | PROJEC<br>ning Hospital and As<br>Corning, New<br>se II Environmental | sociated Parcels<br>v York                                                                    | BORING:<br>SHEET<br>JOB:<br>CHKD BY: | SB-19<br>1 OF 1<br>2150606<br>DPN |
|----------------------|------------------------------------|------------------------------------------------------------------------------|---------------------|-------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|
| NVIRON<br>COI<br>DRI | MENTAL ENGIN<br>NTRACTOR:<br>LLER: | VEERING CONSULTANTS<br>LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                     | BORING LOCA<br>GROUND SURI<br>START DATE: | FACE ELEVATION                                                        | 201 East First Street<br>924.465 (USft)<br>5 END DATE: 4/29/2015                              | DATUM:                               |                                   |
|                      | TYPE OF DRIL<br>AUGER SIZE         | LL RIG:                                                                      | Geoprobe 54LT<br>NA |                                           | 4729/2013                                                             | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:                              |                                      |                                   |
| D<br>E<br>P          |                                    | SAMPLE                                                                       |                     |                                           |                                                                       |                                                                                               | PID<br>FIELD<br>SCREEN               |                                   |
| Т<br>Н               | SAMPLE<br>DEPTH                    | SAMPLE NO.<br>AND RECOVERY                                                   | STRATA<br>CHANGE    |                                           | VISUAL                                                                | CLASSIFICATION                                                                                | (PPM)                                | REMARKS                           |
| 0                    | 0-4                                | 50%                                                                          | 1'                  |                                           |                                                                       | trace vegetation, moist, no odors<br>S (fill), moist, slight petroleum odor                   | 138                                  |                                   |
| 2                    |                                    |                                                                              |                     |                                           |                                                                       |                                                                                               | 20.8                                 |                                   |
|                      |                                    |                                                                              | 3'                  | Brown/black S                             | AND and SILT, trace                                                   | e fine GRAVEL, moist, slight petroleum odor                                                   | 18                                   |                                   |
| 4                    | 4-8                                | 60%                                                                          | 4'                  | Bro                                       | own SILTY SAND, tra                                                   | ace fine GRAVEL, moist, no odor                                                               | 10                                   |                                   |
|                      |                                    |                                                                              | 5'                  |                                           | grey                                                                  | rock fragments                                                                                | 0.5                                  |                                   |
| 6                    |                                    |                                                                              | 6'                  | Bro                                       | wn SILTY SAND, tra                                                    | ce fine GRAVEL, moist, no odors                                                               |                                      |                                   |
| 8                    | 8-12                               | 60%                                                                          |                     |                                           |                                                                       |                                                                                               | 0.5                                  |                                   |
| 10                   |                                    |                                                                              |                     |                                           |                                                                       |                                                                                               | 2                                    |                                   |
| 10                   |                                    |                                                                              |                     |                                           |                                                                       |                                                                                               | 2.5                                  |                                   |
| 12                   | 12-15.3                            | 40%                                                                          | 11'                 | Bro                                       | wn SILTY SAND trac                                                    | ce fine GRAVEL, moist, no odors                                                               | 0.3                                  |                                   |
| 14                   | 15.3-20                            | 60%                                                                          |                     |                                           |                                                                       |                                                                                               | 0.3                                  |                                   |
| 16                   | 1010 20                            |                                                                              | 17'                 | в                                         | rown SAND and mer                                                     | dium GRAVEL, moist, no odors                                                                  | 0                                    |                                   |
| 18                   |                                    |                                                                              |                     |                                           |                                                                       |                                                                                               | 0                                    |                                   |
| 20                   |                                    |                                                                              |                     |                                           | E                                                                     | End at 20'                                                                                    | 0                                    |                                   |
| 22                   |                                    |                                                                              |                     |                                           |                                                                       |                                                                                               |                                      |                                   |
| 24                   |                                    |                                                                              |                     |                                           |                                                                       |                                                                                               |                                      |                                   |
| 26                   |                                    |                                                                              |                     |                                           |                                                                       |                                                                                               |                                      |                                   |
|                      |                                    | LEVEL DATA                                                                   | BOTTOM OF           | DEPTH (FT)<br>BOTTOM OF                   |                                                                       | NOTES:<br>MW-10, 10' screen                                                                   |                                      |                                   |
| ATE                  | TIME                               | ELASPED TIME                                                                 | CASING              | BORING                                    |                                                                       |                                                                                               |                                      |                                   |
|                      |                                    |                                                                              | 19                  | 20                                        | 17                                                                    |                                                                                               |                                      |                                   |
|                      | 2) WATER LE                        | ATION LINES REPRES                                                           | BEEN MADE AT        | TIMES AND UN                              | DER CONDITIONS                                                        | YPES, TRANSITIONS MAY BE GRADUAL.<br>STATED, FLUCTUATIONS OF GROUNDW/<br>ASUREMENTS WERE MADE | ATER                                 |                                   |
|                      |                                    |                                                                              |                     |                                           |                                                                       |                                                                                               | BORING:                              | SB-19                             |

|             |                                         |                                                       |                                  |                                           | PROJEC                     | т                                                                 | BORING:         | SB-20   |
|-------------|-----------------------------------------|-------------------------------------------------------|----------------------------------|-------------------------------------------|----------------------------|-------------------------------------------------------------------|-----------------|---------|
| $\nabla$    | RF                                      | ELIA                                                  |                                  | Corr                                      | ning Hospital and As       | sociated Parcels                                                  | SHEET           | 1 OF 1  |
|             |                                         | sociates, P.C.                                        |                                  |                                           | Corning, New               | York                                                              | JOB:            | 2150606 |
|             | E STREET, RO                            | CHESTER, NY<br>NEERING CONSULTANT                     | d                                | Pha                                       | se II Environmental S      | Site Assessment                                                   | CHKD BY:        | DPN     |
| CO<br>DR    | NTRACTOR:                               | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                  | BORING LOCA<br>GROUND SURF<br>START DATE: | ACE ELEVATION              | Pearl Street (former)<br>923.486 (USft)<br>END DATE: 4/29/2015    | DATUM:          |         |
|             | TYPE OF DRII<br>AUGER SIZE<br>OVERBURDE |                                                       | Geoprobe 54LT<br>NA<br>macrocore |                                           |                            | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:  |                 |         |
| DE          |                                         | SAMPLE                                                |                                  |                                           |                            |                                                                   | PID<br>FIELD    |         |
| P<br>T<br>H | SAMPLE<br>DEPTH                         | SAMPLE NO.<br>AND RECOVERY                            | STRATA<br>CHANGE                 | -                                         | VISUAL (                   | CLASSIFICATION                                                    | SCREEN<br>(PPM) | REMARKS |
| 0           | 0-4                                     | 60%                                                   | 1'                               |                                           |                            | arse GRAVEL, moist, no odors<br>ne coarse GRAVEL, moist, no odors | (               |         |
| 2           |                                         |                                                       | 3'                               | Brown                                     | SAND and SILT trace        | e medium GRAVEL, moist, no odors                                  | (               |         |
| 4           | 4-8                                     | 10%                                                   | 3                                | BIOWIT                                    |                            | e medium GRAVEL, moist, no odois                                  | (               |         |
| 6           |                                         |                                                       |                                  |                                           |                            |                                                                   | (               |         |
| 8           | 8-12                                    | 50%                                                   |                                  |                                           |                            |                                                                   | 0               |         |
| 10          |                                         |                                                       | 10'                              | Brown                                     | SAND and medium            | to coarse GRAVEL, moist, no odors                                 | (               |         |
| 12          | 12-13.7                                 | 40%                                                   |                                  |                                           |                            |                                                                   | (               |         |
| 14          |                                         |                                                       |                                  |                                           | Ref                        | usal at 13.7'                                                     |                 |         |
| 16          |                                         |                                                       |                                  |                                           |                            |                                                                   |                 |         |
| 18          |                                         |                                                       |                                  |                                           |                            |                                                                   |                 |         |
| 20          |                                         |                                                       |                                  |                                           |                            |                                                                   |                 |         |
| 22          |                                         |                                                       |                                  |                                           |                            |                                                                   |                 |         |
| 24          |                                         |                                                       |                                  |                                           |                            |                                                                   |                 |         |
| 26          |                                         |                                                       |                                  |                                           |                            |                                                                   |                 |         |
|             | ····                                    |                                                       |                                  | DEPTH (FT)                                | 0001010-000                | NOTES:                                                            |                 |         |
| DATE        | WATER<br>TIME                           | LEVEL DATA<br>ELASPED TIME                            | BOTTOM OF<br>CASING              | BOTTOM OF<br>BORING                       | GROUNDWATER<br>ENCOUNTERED |                                                                   |                 |         |
| GE          | NERAL NOTES                             | 3                                                     | NA                               | 13.7                                      | NA                         | l                                                                 |                 |         |
|             | 1) STRATIFIC                            | ATION LINES REPRES                                    |                                  |                                           |                            | PES, TRANSITIONS MAY BE GRADU<br>STATED, FLUCTUATIONS OF GROUN    |                 |         |
|             | MAY OCCL                                | JRE DUE TO OTHER FA                                   | ACTORS THAN 1                    | HOSE PRESEN                               | T AT THE TIME MEA          | SUREMENTS WERE MADE                                               | BORING:         | SB-20   |

|             |                                        |                                                        |                           |                                           | PROJEC                     | т                                                                            | BORING:         | SB-21                                               |
|-------------|----------------------------------------|--------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------|------------------------------------------------------------------------------|-----------------|-----------------------------------------------------|
| $\Box$      | RF                                     | ELIA                                                   |                           | Corr                                      | ning Hospital and As       | sociated Parcels                                                             | SHEET           | 1 OF 1                                              |
|             |                                        | ssociates, P.C.                                        |                           |                                           | Corning, New               | York                                                                         | JOB:            | 2150606                                             |
|             |                                        | OCHESTER, NY                                           | s                         | Pha                                       | se II Environmental \$     | Site Assessment                                                              | CHKD BY:        | DPN                                                 |
| CO<br>DRI   | NTRACTOR:<br>ILLER:                    | LaBella Env. LLC<br>M. Pepe<br>ESENTATIVE: A. Aquilina |                           | BORING LOCA<br>GROUND SURF<br>START DATE: | FACE ELEVATION             | 176 Denison Parkway East (interior)<br>923.051 (USft)<br>END DATE: 4/30/2015 | DATUM:          |                                                     |
|             | TYPE OF DRI<br>AUGER SIZE<br>OVERBURDE |                                                        | Manual<br>NA<br>macrocore |                                           |                            | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2*<br>OTHER:             |                 |                                                     |
| DE          |                                        | SAMPLE                                                 |                           |                                           |                            |                                                                              | PID<br>FIELD    |                                                     |
| P<br>T<br>H | SAMPLE<br>DEPTH                        | SAMPLE NO.<br>AND RECOVERY                             | STRATA<br>CHANGE          | -                                         | VISUAL                     | CLASSIFICATION                                                               | SCREEN<br>(PPM) | REMARKS                                             |
| 0           | 0-2                                    | 60%                                                    | 0.5'                      | Brown S                                   |                            | RAVEL, moist, no odors<br>e medium GRAVEL, moist, no odors                   | C               |                                                     |
| 2           | 2-4                                    | 60%                                                    |                           |                                           |                            |                                                                              | C               |                                                     |
| 4           | 4-8                                    | 100%                                                   | 4'                        | Brow                                      | m SAND and SILT tra        | ace fine GRAVEL, moist, no odors                                             | c               |                                                     |
| 6           |                                        |                                                        |                           |                                           |                            |                                                                              | C               |                                                     |
| 8           | 8-9                                    | NA                                                     |                           |                                           | P                          | əfusal at 9'                                                                 |                 | macrocore liner stuck,<br>cannot retrieve soil core |
| 10          |                                        |                                                        |                           |                                           |                            |                                                                              |                 |                                                     |
| 12          |                                        |                                                        |                           |                                           |                            |                                                                              |                 |                                                     |
| 14          |                                        |                                                        |                           |                                           |                            |                                                                              |                 |                                                     |
| 16          |                                        |                                                        |                           |                                           |                            |                                                                              |                 |                                                     |
| 18          |                                        |                                                        |                           |                                           |                            |                                                                              |                 |                                                     |
| 20          |                                        |                                                        |                           |                                           |                            |                                                                              |                 |                                                     |
| 22          |                                        |                                                        |                           |                                           |                            |                                                                              |                 |                                                     |
| 24          |                                        |                                                        |                           |                                           |                            |                                                                              |                 |                                                     |
| 26          |                                        |                                                        |                           |                                           |                            | NOTEO                                                                        |                 |                                                     |
|             | \\/\\TE                                |                                                        | POTTOMOT                  | DEPTH (FT)                                |                            | NOTES:                                                                       |                 |                                                     |
| DATE        | TIME                                   | R LEVEL DATA                                           | BOTTOM OF<br>CASING       | BOTTOM OF<br>BORING<br>9                  | GROUNDWATER<br>ENCOUNTERED |                                                                              |                 |                                                     |
| GEI         | NERAL NOTE                             |                                                        | NA                        |                                           | NA                         | I                                                                            |                 |                                                     |
|             |                                        |                                                        |                           |                                           |                            | PES, TRANSITIONS MAY BE GRADUA<br>STATED, FLUCTUATIONS OF GROUNE             |                 |                                                     |
|             | MAY OCC                                | URE DUE TO OTHER FA                                    | ACTORS THAN               | THOSE PRESEN                              | T AT THE TIME MEA          | SUREMENTS WERE MADE                                                          | BORING:         | SB-21                                               |

|          |                           |                             |                                         |               | т                     | BORING:                                                | SB-22           |         |
|----------|---------------------------|-----------------------------|-----------------------------------------|---------------|-----------------------|--------------------------------------------------------|-----------------|---------|
|          | BE                        | ELIA                        |                                         | Corr          | ing Hospital and As   |                                                        | SHEET           | 1 OF 1  |
|          | As                        | sociates, P.C.              |                                         |               | Corning, New          |                                                        | JOB:            | 2150606 |
| 300 STAT | E STREET, RO              | CHESTER, NY                 |                                         | Phas          | se II Environmental S | Site Assessment                                        | CHKD BY:        | DPN     |
|          |                           | NEERING CONSULTANT          | 5                                       |               |                       |                                                        |                 |         |
|          | ILLER:                    | LaBella Env. LLC<br>M. Pepe |                                         | BORING LOCAT  | ION:<br>ACE ELEVATION | 176 Denison Parkway East                               | DATUM:          |         |
|          |                           | SENTATIVE: A. Aquilina      |                                         | START DATE:   |                       | END DATE: 4/30/2015                                    | Dirion.         |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
|          | TYPE OF DRI<br>AUGER SIZE |                             | Geoprobe 54LT<br>NA                     |               |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2" |                 |         |
|          |                           | N SAMPING METHOD:           |                                         |               |                       | OTHER:                                                 |                 |         |
|          | 1                         |                             |                                         | 1             |                       |                                                        | 1               |         |
| D        |                           | SAMPLE                      |                                         |               |                       |                                                        | PID             |         |
| E<br>P   |                           |                             |                                         |               |                       |                                                        | FIELD<br>SCREEN |         |
| Т        | SAMPLE                    | SAMPLE NO.                  | STRATA                                  |               | VISUAL 0              | CLASSIFICATION                                         | (PPM)           | REMARKS |
| Н        | DEPTH                     | AND RECOVERY                | CHANGE                                  |               |                       |                                                        |                 |         |
| 0        | 0-4                       | 30%                         |                                         | Brown S       | AND and SILT, som     | e medium GRAVEL, moist, no odors                       | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 2        |                           |                             |                                         |               |                       |                                                        | C               |         |
| -        |                           |                             |                                         |               |                       |                                                        |                 |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 4        | 4-8                       | 30%                         |                                         |               |                       |                                                        | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
|          |                           |                             | 5'                                      | Black ASH and | d CINDERS (fill) som  | ne SAND, trace white ASH, moist, no odors              |                 |         |
| 6        |                           |                             |                                         |               |                       |                                                        | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 8        | 8-12                      | 40%                         | 8'                                      | Brown SAND    | and SILT some me      | dium to coarse GRAVEL, moist, no odors                 | c               |         |
| Ũ        | 0.12                      | 1070                        | , i i i i i i i i i i i i i i i i i i i |               |                       |                                                        |                 |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 10       |                           |                             |                                         |               |                       |                                                        | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 12       | 12-16                     | 70%                         |                                         |               |                       |                                                        | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 14       |                           |                             |                                         |               |                       |                                                        | c               |         |
|          |                           |                             | 14'                                     |               | grey                  | rock fragments                                         |                 |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 16       | 16-20                     | 40%                         | 16'                                     | Brown         | SAND and medium       | to coarse GRAVEL, moist, no odors                      | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 18       |                           |                             |                                         |               |                       |                                                        | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 20       | 20-24                     | 50%                         |                                         |               |                       | wet                                                    | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 22       |                           |                             |                                         |               |                       |                                                        | C               |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
|          |                           |                             |                                         | ļ             | -                     |                                                        | c               |         |
| 24       |                           |                             |                                         |               | E                     | End at 24'                                             |                 |         |
|          |                           |                             |                                         |               |                       |                                                        |                 |         |
| 26       |                           |                             |                                         |               |                       |                                                        |                 |         |
|          |                           |                             |                                         | DEPTH (FT)    | I                     | NOTES:                                                 |                 |         |
| L        | WATER                     | LEVEL DATA                  | BOTTOM OF                               | BOTTOM OF     | GROUNDWATER           |                                                        |                 |         |
| DATE     | TIME                      | ELASPED TIME                | CASING                                  | BORING        | ENCOUNTERED           |                                                        |                 |         |
|          |                           |                             | NA                                      | 24            | 19                    |                                                        |                 |         |
| GE       | NERAL NOTES               | 6                           |                                         |               |                       |                                                        |                 |         |
|          |                           |                             |                                         |               |                       | PES, TRANSITIONS MAY BE GRADUAL.                       |                 |         |
|          |                           |                             |                                         |               |                       | STATED, FLUCTUATIONS OF GROUNDWA                       | TER             |         |
|          | MAY OCCL                  | JRE DUE TO OTHER FA         | ACTORS THAN T                           | HUSE PRESENT  | AT THE TIME MEA       | SUREMENTS WERE MADE                                    | BORING:         | SB-22   |
| L        |                           |                             |                                         |               |                       |                                                        | DOVINO:         | VU-77   |

| IVIRON<br>COI<br>DRI | NTRACTOR:                                 | NEERING CONSULTANT                                    |                                  | Phas                                       | BORING:         SB-23           SHEET         1         OF         1           JOB:         2150606         CHKD BY:         DPN |                                                                     |                        |         |
|----------------------|-------------------------------------------|-------------------------------------------------------|----------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------|---------|
| DRI                  |                                           |                                                       | 5                                |                                            |                                                                                                                                  |                                                                     |                        |         |
|                      | ELLA REPRE                                | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina |                                  | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION                                                                                                                    | 176 Denison Parkway East<br>924.675 (USft)<br>5 END DATE: 4/30/2015 | DATUM:                 |         |
|                      | TYPE OF DRII<br>AUGER SIZE /<br>OVERBURDE |                                                       | Geoprobe 54LT<br>NA<br>macrocore |                                            |                                                                                                                                  | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER:    |                        |         |
| D<br>E<br>P          |                                           | SAMPLE                                                |                                  |                                            |                                                                                                                                  |                                                                     | PID<br>FIELD<br>SCREEN |         |
| Т<br>Н               | SAMPLE<br>DEPTH                           | SAMPLE NO.<br>AND RECOVERY                            | STRATA<br>CHANGE                 |                                            | VISUAL                                                                                                                           | CLASSIFICATION                                                      | (PPM)                  | REMARKS |
| 0                    | 0-4                                       | 60%                                                   | 0.5'                             | Brown                                      | Black ASPHALT, moist, no odors<br>Brown SANDY SILT, trace medium GRAVEL, moist, no odors                                         |                                                                     |                        |         |
| 2                    |                                           |                                                       |                                  |                                            |                                                                                                                                  |                                                                     | 0                      |         |
| 4                    | 4-8                                       | 90%                                                   | 4'                               | Brov                                       | vn SANDY SILT, tra                                                                                                               | ce fine GRAVEL, moist, no odors                                     | 0                      |         |
| 6                    |                                           |                                                       |                                  |                                            |                                                                                                                                  |                                                                     | 0                      |         |
| 8                    | 8-12                                      | 60%                                                   |                                  |                                            |                                                                                                                                  |                                                                     | 0                      |         |
| 10                   |                                           |                                                       |                                  |                                            |                                                                                                                                  |                                                                     | 0                      |         |
| 12                   | 12-16                                     | 30%                                                   | 11.5'                            |                                            | grey                                                                                                                             | rock fragments                                                      | 0                      |         |
| 14                   |                                           |                                                       |                                  |                                            |                                                                                                                                  |                                                                     | 0                      |         |
| 16                   | 16-20                                     | 40%                                                   | 16'                              | Brov                                       | vn fine SAND some                                                                                                                | medium GRAVEL, wet, no odors                                        | 0                      |         |
| 18                   |                                           |                                                       |                                  |                                            |                                                                                                                                  |                                                                     | 0                      |         |
| 20                   |                                           |                                                       |                                  |                                            |                                                                                                                                  | End at 20'                                                          | 0                      |         |
| 22                   |                                           |                                                       |                                  |                                            |                                                                                                                                  |                                                                     |                        |         |
| 24                   |                                           |                                                       |                                  |                                            |                                                                                                                                  |                                                                     |                        |         |
| 26                   |                                           |                                                       |                                  |                                            |                                                                                                                                  |                                                                     |                        |         |
|                      |                                           |                                                       |                                  | DEPTH (FT)                                 | 1                                                                                                                                | NOTES:                                                              |                        |         |
|                      |                                           | LEVEL DATA                                            | BOTTOM OF                        | BOTTOM OF                                  |                                                                                                                                  | MW-11, 10' screen                                                   |                        |         |
| ATE                  | TIME                                      | ELASPED TIME                                          | CASING                           | BORING                                     | ENCOUNTERED                                                                                                                      | 4                                                                   |                        |         |
|                      |                                           |                                                       | 17                               | 20                                         | 16                                                                                                                               |                                                                     |                        |         |
|                      | 2) WATER LE                               | ATION LINES REPRES                                    | BEEN MADE AT                     | TIMES AND UND                              | DER CONDITIONS                                                                                                                   | YPES, TRANSITIONS MAY BE GRADUA<br>STATED, FLUCTUATIONS OF GROUNE   |                        |         |
|                      | MAY OCCL                                  | JRE DUE TO OTHER FA                                   | ACTORS THAN T                    | HOSE PRESENT                               | AT THE TIME MEA                                                                                                                  | ASUREMENTS WERE MADE                                                | BORING:                | SB-23   |

|        |              |                                         | PROJECT       |              |                       |                                                        |                 | BORING: SB-24 |  |  |
|--------|--------------|-----------------------------------------|---------------|--------------|-----------------------|--------------------------------------------------------|-----------------|---------------|--|--|
| L      | BE           | ELIA                                    |               | Corr         | ning Hospital and As  |                                                        | SHEET           | 1 OF 1        |  |  |
|        | As           | sociates, P.C.                          |               | 5            | Corning, New          |                                                        | JOB:            | 2150606       |  |  |
|        | E STREET, RO |                                         |               | Pha          | se II Environmental S | bite Assessment                                        | CHKD BY:        | DPN           |  |  |
|        |              | NEERING CONSULTANTS<br>LaBella Env. LLC | 9             | BORING LOCAT | TION <sup>.</sup>     | 176 Denison Parkway East                               |                 |               |  |  |
|        |              | M. Pepe                                 |               |              |                       | 926.467 (USft)                                         | DATUM:          |               |  |  |
| LAE    | BELLA REPRE  | SENTATIVE: A. Aquilina                  |               | START DATE:  | 4/30/2015             | END DATE: 4/30/2015                                    |                 |               |  |  |
|        | TYPE OF DRII | LL RIG:                                 | Geoprobe 54LT |              |                       | DRIVE SAMPLER TYPE: Direct push                        |                 |               |  |  |
|        | AUGER SIZE   |                                         | NA            |              |                       | INSIDE DIAMETER: 2"                                    |                 |               |  |  |
|        | OVERBURDE    | N SAMPING METHOD:                       | macrocore     |              |                       | OTHER:                                                 |                 |               |  |  |
| D      |              | SAMPLE                                  |               |              |                       |                                                        | PID             |               |  |  |
| E      |              | O/WII EE                                |               |              |                       |                                                        | FIELD           |               |  |  |
| P<br>T | SAMPLE       | SAMPLE NO.                              | STRATA        | -            | VISUAL 0              | CLASSIFICATION                                         | SCREEN<br>(PPM) | REMARKS       |  |  |
| Н      | DEPTH        | AND RECOVERY                            | CHANGE        |              |                       |                                                        | -               |               |  |  |
| 0      | 0-4          | 30%                                     | 1'            | Bro          |                       | ALT, moist, no odors<br>e fine GRAVEL, moist, no odors | O               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 2      |              |                                         |               |              |                       |                                                        | 0               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 4      | 4-8          | 70%                                     |               |              |                       |                                                        | C               |               |  |  |
| -      | 40           | 10,0                                    |               |              |                       |                                                        | Ŭ               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 6      |              |                                         |               |              |                       |                                                        | 0               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 8      | 8-12         | 40%                                     |               |              |                       |                                                        | C               |               |  |  |
|        | 0.12         |                                         |               |              |                       |                                                        |                 |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 10     |              |                                         |               |              |                       |                                                        | 0               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 12     | 12-16        | 0%                                      |               |              |                       |                                                        | C               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 14     |              |                                         |               |              |                       |                                                        | 0               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 16     | 16-20        | 40%                                     | 16'           |              | Brown SAND and        | GRAVEL, wet, no odors                                  | 0               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 18     |              |                                         |               |              |                       |                                                        | 0               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 20     |              |                                         |               |              | E                     | ind at 20'                                             | 0               |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 22     |              |                                         |               |              |                       |                                                        |                 |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 24     |              |                                         |               |              |                       |                                                        |                 |               |  |  |
|        |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 26     |              |                                         |               |              |                       |                                                        |                 |               |  |  |
| 26     |              | L                                       |               | DEPTH (FT)   |                       | NOTES:                                                 |                 | 1             |  |  |
|        | WATER        | LEVEL DATA                              | BOTTOM OF     | BOTTOM OF    | GROUNDWATER           |                                                        |                 |               |  |  |
| DATE   | TIME         | ELASPED TIME                            | CASING        | BORING       | ENCOUNTERED           |                                                        |                 |               |  |  |
|        |              |                                         | NA            | 20           | 16                    |                                                        |                 |               |  |  |
| GE     | NERAL NOTES  | 6                                       |               |              |                       |                                                        |                 |               |  |  |
|        |              |                                         |               |              |                       | PES, TRANSITIONS MAY BE GRADUAL.                       |                 |               |  |  |
|        |              |                                         |               |              |                       | TATED, FLUCTUATIONS OF GROUNDV<br>SUREMENTS WERE MADE  | VAIER           |               |  |  |
|        |              |                                         |               |              |                       |                                                        | BORING:         | SB-24         |  |  |

|                    |                 |                             | PROJECT          |              |                       |                                                        |              | BORING: SB-25 |  |  |
|--------------------|-----------------|-----------------------------|------------------|--------------|-----------------------|--------------------------------------------------------|--------------|---------------|--|--|
| $\mathbf{\Lambda}$ | BE              | ELIA                        |                  | Corr         | ing Hospital and As   |                                                        | SHEET        | 1 OF 1        |  |  |
|                    | As              | sociates, P.C.              |                  |              | Corning, New          |                                                        | JOB:         | 2150606       |  |  |
| 300 STAT           | E STREET, RO    | CHESTER, NY                 |                  | Phas         | se II Environmental S | Site Assessment                                        | CHKD BY:     | DPN           |  |  |
|                    |                 | NEERING CONSULTANT          |                  |              |                       |                                                        |              |               |  |  |
|                    | ILLER:          | LaBella Env. LLC<br>M. Pepe |                  | BORING LOCAT | ION:<br>ACE ELEVATION | 144 East First Street<br>928 925 (USft)                | DATUM:       |               |  |  |
|                    |                 | SENTATIVE: A. Aquilina      |                  | START DATE:  |                       | END DATE: 5/1/2015                                     |              |               |  |  |
|                    | TYPE OF DRI     |                             | Geoprobe 54LT    |              |                       |                                                        |              |               |  |  |
|                    | AUGER SIZE      |                             | NA               |              |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2" |              |               |  |  |
|                    | OVERBURDE       | N SAMPING METHOD:           |                  |              |                       | OTHER:                                                 |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| D<br>E             |                 | SAMPLE                      |                  |              |                       |                                                        | PID<br>FIELD |               |  |  |
| Р                  |                 |                             |                  |              |                       |                                                        | SCREEN       |               |  |  |
| T<br>H             | SAMPLE<br>DEPTH | SAMPLE NO.<br>AND RECOVERY  | STRATA<br>CHANGE |              | VISUAL                | CLASSIFICATION                                         | (PPM)        | REMARKS       |  |  |
| 0                  | 0-4             | 30%                         |                  | P            |                       | Γ, trace wood, moist, no odors                         | 0            |               |  |  |
| 0                  | 0-4             | 30%                         |                  | Б            | IOWIT SAIND and SIL   | r, trace wood, moist, no odors                         | 0            |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 2                  |                 |                             |                  |              |                       |                                                        | 0            |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 4                  | 4-8             | 70%                         | 4'               | Brown        | SAND and medium       | o coarse GRAVEL, moist, no odors                       | 0            |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 6                  |                 |                             |                  |              |                       |                                                        | 0            |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 8                  | 8-12            | 40%                         |                  |              |                       |                                                        | 0            |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 10                 |                 |                             |                  |              |                       |                                                        | 0            |               |  |  |
| 10                 |                 |                             |                  |              |                       |                                                        | 0            |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 12                 | 12-16           | 0%                          |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 14                 |                 |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 16                 | 16-20           | 0%                          |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 18                 |                 |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 20                 | 20-24           | 10%                         |                  |              | Brown                 | GRAVEL, wet                                            | 0            |               |  |  |
| 20                 | 20-24           | 1078                        |                  |              | Diowin                |                                                        | 0            |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 22                 |                 |                             |                  |              |                       |                                                        | 0            |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        | 0            |               |  |  |
| 24                 |                 |                             |                  |              | E                     | ind at 24'                                             |              |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        |              |               |  |  |
| 26                 |                 |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  | DEPTH (FT)   |                       | NOTES:                                                 |              |               |  |  |
|                    |                 | LEVEL DATA                  | BOTTOM OF        | BOTTOM OF    | GROUNDWATER           | MW-12, 10' screen                                      |              |               |  |  |
| DATE               | TIME            | ELASPED TIME                | CASING           | BORING       | ENCOUNTERED           |                                                        |              |               |  |  |
|                    | 1               | 1                           | 22               | 24           | 20                    |                                                        |              |               |  |  |
| GE                 | NERAL NOTES     |                             |                  |              |                       |                                                        |              |               |  |  |
|                    |                 |                             |                  |              |                       | PES, TRANSITIONS MAY BE GRADUAL                        |              |               |  |  |
|                    |                 |                             |                  |              |                       | TATED, FLUCTUATIONS OF GROUNDV<br>SUREMENTS WERE MADE  | VAIER        |               |  |  |
|                    |                 |                             |                  |              |                       |                                                        | BORING:      | SB-25         |  |  |

| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NY<br>ENVIRONMENTAL ENGINEERING CONSULTANTS |                                           |                                                       |                                                                                                            | Corr                      | SHEET<br><b>JOB</b> : | SB-26<br>1 OF 1<br>2150606<br>DPN                                                            |                        |         |
|----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|----------------------------------------------------------------------------------------------|------------------------|---------|
| CON<br>DRIL                                                                                  | ITRACTOR:<br>LER:                         | LaBella Env. LLC<br>M. Pepe<br>SENTATIVE: A. Aquilina | BORING LOCATION:         176 Denison Parkway East           GROUND SURFACE ELEVATION         928.36 (USft) |                           |                       |                                                                                              | DATUM:                 |         |
|                                                                                              | TYPE OF DRIL<br>AUGER SIZE /<br>OVERBURDE |                                                       | Geoprobe 54LT<br>NA<br>macrocore                                                                           |                           |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2*<br>OTHER:                             |                        |         |
| D<br>E<br>P                                                                                  | SAMPLE                                    |                                                       |                                                                                                            |                           |                       |                                                                                              | PID<br>FIELD<br>SCREEN |         |
| т<br>Н                                                                                       | SAMPLE<br>DEPTH                           | SAMPLE NO.<br>AND RECOVERY                            | STRATA<br>CHANGE                                                                                           |                           | VISUAL                | CLASSIFICATION                                                                               | (PPM)                  | REMARKS |
| 0                                                                                            | 0-4                                       | 40%                                                   |                                                                                                            | Brov                      | vn SAND and SILT,     | trace BRICK (fill), moist, no odors                                                          | 0                      |         |
| 2                                                                                            |                                           |                                                       |                                                                                                            |                           |                       |                                                                                              | 0                      |         |
| 4                                                                                            | 4-8                                       | 30%                                                   |                                                                                                            |                           |                       |                                                                                              | 0                      |         |
| 6                                                                                            |                                           |                                                       |                                                                                                            |                           |                       |                                                                                              | 0                      |         |
| 8                                                                                            | 8-12                                      | 60%                                                   |                                                                                                            |                           |                       |                                                                                              | 0                      |         |
| 10                                                                                           |                                           |                                                       | 9,                                                                                                         | Brown                     | SAND and medium       | to coarse GRAVEL, moist, no odors                                                            | 0                      |         |
| 12                                                                                           | 12-16                                     | 50%                                                   | 16'                                                                                                        | E                         | Brown medium GRA      | VEL and SAND, wet, no odors                                                                  | 0                      |         |
| 14                                                                                           |                                           |                                                       |                                                                                                            |                           |                       |                                                                                              | 0                      |         |
| 16                                                                                           | 16-20                                     | 50%                                                   |                                                                                                            |                           |                       |                                                                                              | 0                      |         |
| 18                                                                                           |                                           |                                                       |                                                                                                            |                           |                       |                                                                                              | 0                      |         |
| 20                                                                                           | 20-24                                     | 50%                                                   |                                                                                                            |                           |                       |                                                                                              | 0                      |         |
| 22                                                                                           |                                           |                                                       | 22'                                                                                                        |                           | Brown fine \$         | SAND, wet, no odors                                                                          | 0                      |         |
| 24                                                                                           |                                           |                                                       |                                                                                                            |                           | I                     | End at 24'                                                                                   | 0                      |         |
| 26                                                                                           |                                           |                                                       |                                                                                                            |                           |                       |                                                                                              |                        |         |
|                                                                                              |                                           |                                                       | DOTTO                                                                                                      | DEPTH (FT)                | 0001000               | NOTES:                                                                                       |                        |         |
| DATE                                                                                         | WATER<br>TIME                             | LEVEL DATA<br>ELASPED TIME                            | BOTTOM OF<br>CASING<br>22                                                                                  | BOTTOM OF<br>BORING<br>24 | ENCOUNTERED           | MW-13, 10' screen                                                                            |                        |         |
|                                                                                              | 2) WATER LE                               | ATION LINES REPRES                                    | ENT APPROXMA<br>BEEN MADE AT                                                                               | TE BOUNDARY               | DER CONDITIONS        | I<br>/PES, TRANSITIONS MAY BE GRADU/<br>STATED, FLUCTUATIONS OF GROUN<br>SUREMENTS WERE MADE | DWATER                 | SB-26   |

|          |               |                        |               |              | г                     | BORING:                                                              | SB-29           |         |
|----------|---------------|------------------------|---------------|--------------|-----------------------|----------------------------------------------------------------------|-----------------|---------|
| $\Box$   | RF            |                        |               | Corr         | ning Hospital and As  | sociated Parcels                                                     | SHEET           | 1 OF 1  |
|          |               | sociates, P.C.         |               |              | Corning, New          | York                                                                 | JOB:            | 2150606 |
| 300 STAT | E STREET, ROO | HESTED NY              |               | Pha          | se II Environmental S | Site Assessment                                                      | CHKD BY:        | DPN     |
|          |               | NEERING CONSULTANTS    |               |              |                       |                                                                      |                 |         |
|          |               | TREC Environmental     |               | BORING LOCAT |                       | 176 Denison Parkway East (interior)                                  |                 |         |
|          |               | C. Britton             |               |              | ACE ELEVATION         |                                                                      | DATUM:          |         |
| LAE      | BELLA REPRES  | SENTATIVE: A. Aquilina |               | START DATE:  | 5/5/2015              | END DATE: 5/5/2015                                                   |                 |         |
|          | TYPE OF DRIL  | L RIG:                 | Geoprobe 420M | l            |                       | DRIVE SAMPLER TYPE: Direct push                                      |                 |         |
|          | AUGER SIZE    |                        | NA            |              |                       | INSIDE DIAMETER: 2"                                                  |                 |         |
|          | OVERBURDE     | N SAMPING METHOD:      | macrocore     |              |                       | OTHER:                                                               |                 |         |
| _        |               |                        |               |              |                       |                                                                      | DID             |         |
| D<br>E   |               | SAMPLE                 |               |              |                       |                                                                      | PID<br>FIELD    |         |
| P<br>T   | SAMPLE        | SAMPLE NO.             | STRATA        |              |                       | CLASSIFICATION                                                       | SCREEN<br>(PPM) | REMARKS |
| н        | DEPTH         | AND RECOVERY           | CHANGE        |              | VISUAL                | LASSIFICATION                                                        | (PPIVI)         | REMARKS |
| 0        | 0-4           | 40%                    |               | Brown        |                       | rete floor slab<br>e medium GRAVEL, moist, no odors                  | 0               |         |
| 0        | <b>U</b> 1    | 10,0                   |               | Diomite      |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 2        |               |                        |               |              |                       |                                                                      | 0               |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 4        | 4-8           | 30%                    |               |              |                       |                                                                      | 0               |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 6        |               |                        |               |              |                       |                                                                      | 0               |         |
| 0        |               |                        |               |              |                       |                                                                      | 0               |         |
|          |               |                        |               |              |                       | wet                                                                  |                 |         |
| 8        | 8-12          | 60%                    | 8'            | Bro          | wn coarse SAND so     | me fine GRAVEL, wet, no odors                                        | 0               |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        | 9.5'          | Brow         | n medium GRAVEL       | trace coarse SAND, wet, no odors                                     |                 |         |
| 10       |               |                        |               |              |                       |                                                                      | 0               |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      | 0               |         |
| 12       |               |                        |               |              | E                     | ind at 12'                                                           |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 14       |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 16       |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 18       |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 20       |               |                        |               |              |                       |                                                                      |                 |         |
| 20       |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 22       |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| 24       |               |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       |                                                                      |                 |         |
| ~~       |               |                        |               |              |                       |                                                                      |                 |         |
| 26       |               |                        |               | DEPTH (FT)   |                       | NOTES:                                                               | 1               | 1       |
|          | WATER         | LEVEL DATA             | BOTTOM OF     | BOTTOM OF    | GROUNDWATER           |                                                                      |                 |         |
| DATE     | TIME          | ELASPED TIME           | CASING        | BORING       | ENCOUNTERED           |                                                                      |                 |         |
|          |               |                        | NA            | 12           | 7                     |                                                                      |                 |         |
| CE.      | NERAL NOTES   |                        |               |              |                       |                                                                      |                 |         |
|          |               |                        |               |              |                       | PES, TRANSITIONS MAY BE GRADUAL.                                     |                 |         |
|          |               |                        |               |              |                       | PES, TRANSITIONS MAY BE GRADUAL.<br>STATED, FLUCTUATIONS OF GROUNDWA | TER             |         |
|          |               |                        |               |              |                       | SUREMENTS WERE MADE                                                  |                 |         |
| 1        |               |                        |               |              |                       |                                                                      | BORING:         | SB-29   |

|          |                 |                            |                  |              | г                     | BORING:                                                              | SB-30        |         |
|----------|-----------------|----------------------------|------------------|--------------|-----------------------|----------------------------------------------------------------------|--------------|---------|
| L        | BF              | ELIA                       |                  | Corr         | ning Hospital and Ass | sociated Parcels                                                     | SHEET        | 1 OF 1  |
|          |                 | sociates, P.C.             |                  |              | Corning, New          |                                                                      | JOB:         | 2150606 |
| 300 STAT | E STREET, RO    | CHESTED NV                 |                  | Pha          | se II Environmental S | Site Assessment                                                      | CHKD BY:     | DPN     |
|          |                 | NEERING CONSULTANT         | 5                |              |                       |                                                                      |              |         |
|          |                 | TREC Environmental         |                  | BORING LOCAT |                       | 176 Denison Parkway East (interior)                                  |              |         |
|          | ILLER:          | C. Britton                 |                  |              | ACE ELEVATION         |                                                                      | DATUM:       |         |
| LAE      | BELLA REPRE     | SENTATIVE: A. Aquilina     |                  | START DATE:  | 5/5/2015              | END DATE: 5/5/2015                                                   |              |         |
|          | TYPE OF DRI     | LL RIG:                    | Geoprobe 420M    | I            |                       | DRIVE SAMPLER TYPE: Direct push                                      |              |         |
|          | AUGER SIZE      |                            | NA               |              |                       | INSIDE DIAMETER: 2"                                                  |              |         |
|          | OVERBURDE       | IN SAMPING METHOD:         | macrocore        |              |                       | OTHER:                                                               |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| D<br>E   |                 | SAMPLE                     |                  |              |                       |                                                                      | PID<br>FIELD |         |
| Р        |                 | -                          |                  |              |                       |                                                                      | SCREEN       |         |
| T<br>H   | SAMPLE<br>DEPTH | SAMPLE NO.<br>AND RECOVERY | STRATA<br>CHANGE |              | VISUAL (              | CLASSIFICATION                                                       | (PPM)        | REMARKS |
|          | DEFIN           | AND RECOVERT               | CHANGE           |              | Conc                  | rete floor slab                                                      |              |         |
| 0        | 0-4             | 0%                         |                  |              |                       |                                                                      | 0            |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 2        |                 |                            |                  |              |                       |                                                                      | 0            |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 | 5001                       |                  | _            |                       |                                                                      |              |         |
| 4        | 4-8             | 50%                        | 4'               | Brown        | SAND and medium       | to coarse GRAVEL, wet, no odors                                      | 0            |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| c        |                 |                            |                  |              |                       |                                                                      | 0            |         |
| 6        |                 |                            |                  |              |                       |                                                                      | 0            |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 8        |                 |                            |                  |              |                       | End at 8'                                                            | 0            |         |
| 0        |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 10       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 12       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 14       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 16       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 18       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| ~~       |                 |                            |                  |              |                       |                                                                      |              |         |
| 20       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 22       |                 |                            |                  |              |                       |                                                                      |              |         |
| 22       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 24       |                 |                            |                  |              |                       |                                                                      |              |         |
| -7       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  |              |                       |                                                                      |              |         |
| 26       |                 |                            |                  |              |                       |                                                                      |              |         |
|          |                 |                            |                  | DEPTH (FT)   |                       | NOTES:                                                               |              |         |
| L        | WATER           | LEVEL DATA                 | BOTTOM OF        | BOTTOM OF    | GROUNDWATER           |                                                                      |              |         |
| DATE     | TIME            | ELASPED TIME               | CASING           | BORING       | ENCOUNTERED           |                                                                      |              |         |
|          |                 |                            | NA               | 8            | 4                     |                                                                      |              |         |
| CE.      | NERAL NOTE      |                            | -                |              |                       |                                                                      |              |         |
| GEI      |                 |                            |                  |              | RETWEEN COULTY        | PES, TRANSITIONS MAY BE GRADUAL.                                     |              |         |
|          |                 |                            |                  |              |                       | PES, TRANSITIONS MAY BE GRADUAL.<br>STATED, FLUCTUATIONS OF GROUNDW/ | ATER         |         |
|          |                 |                            |                  |              |                       | SUREMENTS WERE MADE                                                  |              |         |
|          |                 |                            |                  |              |                       |                                                                      | BORING:      | SB-30   |

|        |                                        |                                                            | PROJECT                          |                                            |                        |                                                                            |              | SB-31   |
|--------|----------------------------------------|------------------------------------------------------------|----------------------------------|--------------------------------------------|------------------------|----------------------------------------------------------------------------|--------------|---------|
| ΙΛ     | BE                                     |                                                            |                                  | Corn                                       | ing Hospital and As    |                                                                            | SHEET        | 1 OF 1  |
| `      | As                                     | sociates, P.C.                                             |                                  |                                            | Corning, New           |                                                                            | JOB:         | 2150606 |
|        | E STREET, RO                           | CHESTER, NY<br>NEERING CONSULTANTS                         |                                  | Phas                                       | se II Environmental \$ | Site Assessment                                                            | CHKD BY:     | DPN     |
| DRI    | ILLER:                                 | TREC Environmental<br>C. Britton<br>SENTATIVE: A. Aquilina |                                  | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION          | 176 Denison Parkway East (interior)<br>922.94 (USft)<br>END DATE: 5/5/2015 | DATUM:       |         |
|        | TYPE OF DRI<br>AUGER SIZE<br>OVERBURDE |                                                            | Geoprobe 420M<br>NA<br>macrocore | I                                          |                        | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2*<br>OTHER:           |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| D<br>E |                                        | SAMPLE                                                     |                                  |                                            |                        |                                                                            | PID<br>FIELD |         |
| P<br>T | SAMPLE                                 |                                                            | STRATA                           |                                            | VICUAL                 |                                                                            | SCREEN       | DEMARKS |
| H      | DEPTH                                  | SAMPLE NO.<br>AND RECOVERY                                 | CHANGE                           |                                            |                        | CLASSIFICATION                                                             | (PPM)        | REMARKS |
| 0      | 0-2                                    | 10%                                                        |                                  |                                            | Conc                   | rete floor slab                                                            | 0            |         |
|        |                                        |                                                            | 1.5'                             | Brown                                      | SAND some fine to      | medium GRAVEL, moist, no odors                                             |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 2      | 2-6                                    | 70%                                                        |                                  |                                            |                        |                                                                            | 0            |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 4      |                                        |                                                            |                                  |                                            |                        |                                                                            | 0            |         |
| -      |                                        |                                                            |                                  |                                            |                        |                                                                            | 0            |         |
|        |                                        |                                                            |                                  | Brov                                       | wn SANDY SILT trac     | e fine GRAVEL, moist, no odors                                             |              |         |
| 6      | 6-10                                   | 95%                                                        | 6'                               |                                            |                        |                                                                            | 0            |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 8      |                                        |                                                            |                                  |                                            |                        |                                                                            | 0            |         |
| 0      |                                        |                                                            |                                  |                                            |                        |                                                                            | 0            |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 10     | 10-14                                  | 60%                                                        |                                  |                                            |                        |                                                                            | 0            |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 12     |                                        |                                                            | 12'                              | В                                          | rown medium GRA        | /EL and SAND, wet, no odors                                                | 0            |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 14     | 14-18                                  | 0%                                                         |                                  |                                            |                        |                                                                            | 0            |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 16     |                                        |                                                            |                                  |                                            |                        |                                                                            | 0            |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 18     |                                        |                                                            |                                  |                                            | E                      | End at 18'                                                                 | 0            |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 20     |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 22     |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 24     |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
| 26     |                                        |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  | DEPTH (FT)                                 |                        | NOTES:                                                                     | •            | •       |
|        | WATER                                  | LEVEL DATA                                                 | BOTTOM OF                        | BOTTOM OF                                  |                        | MW-07, 10' screen                                                          |              |         |
| DATE   | TIME                                   | ELASPED TIME                                               | CASING                           | BORING                                     | ENCOUNTERED            |                                                                            |              |         |
|        |                                        | L                                                          | 18                               | 18                                         | 12                     |                                                                            |              |         |
| GEI    | NERAL NOTES                            |                                                            |                                  |                                            |                        |                                                                            |              |         |
|        |                                        |                                                            |                                  |                                            |                        | 'PES, TRANSITIONS MAY BE GRADUAL.<br>STATED, FLUCTUATIONS OF GROUNDW/      | TER          |         |
|        |                                        |                                                            |                                  |                                            |                        | SUREMENTS WERE MADE                                                        |              |         |
|        |                                        |                                                            |                                  |                                            |                        |                                                                            | BORING:      | SB-31   |

|          |                            |                                      |                  |                            | г                         | BORING:                                                | SB-32        |         |
|----------|----------------------------|--------------------------------------|------------------|----------------------------|---------------------------|--------------------------------------------------------|--------------|---------|
| L        | ЪЕ                         | ELIA                                 |                  | Corr                       | ning Hospital and Ass     |                                                        | SHEET        | 1 OF 1  |
|          | As                         | sociates, P.C.                       |                  | 5                          | Corning, New              |                                                        | JOB:         | 2150606 |
| 300 STAT | E STREET, ROO              | CHESTER, NY                          |                  | Phas                       | se II Environmental S     | lite Assessment                                        | CHKD BY:     | DPN     |
|          | IMENTAL ENGIN<br>NTRACTOR: | NEERING CONSULTANTS                  | 4                | BORING LOCAT               | TON:                      | 176 Denison Parkway East                               |              |         |
|          |                            | B. Guyette<br>SENTATIVE: A. Aquilina |                  | GROUND SURF<br>START DATE: | ACE ELEVATION<br>5/5/2015 | 927.125 (USft)<br>END DATE: 5/5/2015                   | DATUM:       |         |
|          | TYPE OF DRIL               |                                      | Rotary drill rig | -                          |                           |                                                        |              |         |
|          | AUGER SIZE                 |                                      | NA               |                            |                           | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2" |              |         |
|          | OVERBURDE                  | N SAMPING METHOD:                    | split spoon      |                            |                           | OTHER:                                                 |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| D<br>E   |                            | SAMPLE                               |                  |                            |                           |                                                        | PID<br>FIELD |         |
| Р        |                            |                                      |                  | _                          |                           |                                                        | SCREEN       |         |
| T<br>H   | SAMPLE<br>DEPTH            | SAMPLE NO.<br>AND RECOVERY           | STRATA<br>CHANGE |                            | VISUAL C                  | CLASSIFICATION                                         | (PPM)        | REMARKS |
| 0        | 0-2                        | 10%                                  |                  |                            | Black ASPH                | ALT, moist, no odors                                   | 0            |         |
| 0        | 0-2                        | 1078                                 | 1.5'             |                            |                           | nd GRAVEL, moist, no odors                             | 0            |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 2        |                            |                                      |                  |                            |                           |                                                        | 0            |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        | 0            |         |
| 4        |                            |                                      |                  |                            | E                         | End at 4'                                              |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 6        |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 8        |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 10       |                            |                                      |                  |                            |                           |                                                        |              |         |
| 10       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 12       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 14       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 16       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 18       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 20       |                            |                                      |                  |                            |                           |                                                        |              |         |
| 20       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 22       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 24       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           |                                                        |              |         |
| 26       |                            |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  | DEPTH (FT)                 |                           | NOTES:                                                 |              |         |
| L        |                            | LEVEL DATA                           | BOTTOM OF        | BOTTOM OF                  | GROUNDWATER               |                                                        |              |         |
| DATE     | TIME                       | ELASPED TIME                         | CASING           | BORING                     | ENCOUNTERED               |                                                        |              |         |
|          |                            | L                                    | NA               | 4                          | NA                        |                                                        |              |         |
| GEI      | NERAL NOTES                |                                      |                  |                            |                           |                                                        |              |         |
|          |                            |                                      |                  |                            |                           | PES, TRANSITIONS MAY BE GRADUAL.                       | TED          |         |
|          |                            |                                      |                  |                            |                           | TATED, FLUCTUATIONS OF GROUNDWA<br>SUREMENTS WERE MADE | NIER.        |         |
|          |                            |                                      |                  |                            |                           |                                                        | BORING:      | SB-32   |

|          |               |                                      |                   |              | PROJEC                | г                                                       | BORING:         | SB-33   |
|----------|---------------|--------------------------------------|-------------------|--------------|-----------------------|---------------------------------------------------------|-----------------|---------|
| L        | BE            |                                      |                   | Corn         | ing Hospital and Ass  |                                                         | SHEET           | 1 OF 1  |
|          | As            | sociates, P.C.                       |                   |              | Corning, New          |                                                         | JOB:            | 2150606 |
| 300 STAT | E STREET, ROO | CHESTER, NY                          |                   | Phas         | se II Environmental S | Site Assessment                                         | CHKD BY:        | DPN     |
|          |               | NEERING CONSULTANT                   | s                 |              |                       |                                                         |                 |         |
|          | NTRACTOR:     |                                      |                   | BORING LOCAT |                       | 176 Denison Parkway East                                |                 |         |
|          |               | B. Guyette<br>SENTATIVE: A. Aquilina |                   | START DATE:  | ACE ELEVATION         | 926.585(USft)<br>END DATE: 5/5/2015                     | DATUM:          |         |
| LAL      |               |                                      |                   | START DATE.  | 5/5/2013              | END DATE: 3/3/2013                                      |                 |         |
|          | TYPE OF DRIL  |                                      | Rotary drill rig  |              |                       | DRIVE SAMPLER TYPE: Direct push                         |                 |         |
|          |               | AND TYPE:<br>N SAMPING METHOD:       | NA<br>split spoon |              |                       | INSIDE DIAMETER: 2"<br>OTHER:                           |                 |         |
|          | OVERBORDE     |                                      | spiit spoon       | T            |                       | omen.                                                   |                 | 1       |
| D        |               | SAMPLE                               |                   |              |                       |                                                         | PID             |         |
| E        |               |                                      |                   |              |                       |                                                         | FIELD           |         |
| P<br>T   | SAMPLE        | SAMPLE NO.                           | STRATA            | -            | VISUAL (              | CLASSIFICATION                                          | SCREEN<br>(PPM) | REMARKS |
| Н        | DEPTH         | AND RECOVERY                         | CHANGE            |              |                       |                                                         |                 |         |
| 0        | 0-2           | 10%                                  |                   |              | Black ASPH            | ALT, moist, no odors                                    | 0               |         |
|          |               |                                      | 1.5'              |              | Brown/grey SAND a     | nd GRAVEL, moist, no odors                              |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 2        |               |                                      |                   |              |                       |                                                         | 0               |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       | - 1 - 1 41                                              | 0               |         |
| 4        |               |                                      |                   |              |                       | End at 4'                                               |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 6        |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 8        |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 10       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 12       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 14       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 16       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 18       |               |                                      |                   |              |                       |                                                         |                 |         |
| 10       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 20       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 22       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 24       |               |                                      |                   |              |                       |                                                         |                 |         |
| 24       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       |                                                         |                 |         |
| 26       |               |                                      |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   | DEPTH (FT)   |                       | NOTES:                                                  |                 |         |
|          |               | LEVEL DATA                           | BOTTOM OF         | BOTTOM OF    | GROUNDWATER           |                                                         |                 |         |
| DATE     | TIME          | ELASPED TIME                         | CASING            | BORING       | ENCOUNTERED           |                                                         |                 |         |
|          | l             |                                      | NA                | 4            | NA                    |                                                         |                 |         |
| GE       | NERAL NOTES   | 3                                    |                   |              |                       |                                                         |                 |         |
|          |               |                                      |                   |              |                       | PES, TRANSITIONS MAY BE GRADUAL.                        |                 |         |
|          |               |                                      |                   |              |                       | STATED, FLUCTUATIONS OF GROUNDW/<br>SUREMENTS WERE MADE | ATER            |         |
|          |               | DOE TO OTHER FA                      | STONO THAN I      |              |                       |                                                         | BORING:         | SB-33   |

|            |                                        |                                                                    |                                       |                                            | PROJECT               | r                                                                | BORING:         | SB-34   |
|------------|----------------------------------------|--------------------------------------------------------------------|---------------------------------------|--------------------------------------------|-----------------------|------------------------------------------------------------------|-----------------|---------|
| L          | RF                                     | ELIA                                                               |                                       | Corr                                       | ning Hospital and Ass | sociated Parcels                                                 | SHEET           | 1 OF 1  |
|            |                                        | sociates, P.C.                                                     |                                       |                                            | Corning, New          | York                                                             | JOB:            | 2150606 |
|            | E STREET, RO                           |                                                                    |                                       | Phas                                       | se II Environmental S | Site Assessment                                                  | CHKD BY:        | DPN     |
| COI<br>DRI | NTRACTOR:<br>ILLER:                    | NEERING CONSULTANT<br>NYEG<br>B. Guyette<br>SENTATIVE: A. Aquilina |                                       | BORING LOCAT<br>GROUND SURF<br>START DATE: | ACE ELEVATION         | 176 Denison Parkway East<br>925.376(USft)<br>END DATE: 5/5/2015  | DATUM:          |         |
|            | TYPE OF DRI<br>AUGER SIZE<br>OVERBURDE |                                                                    | Rotary drill rig<br>NA<br>split spoon |                                            |                       | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"<br>OTHER: |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  | DID             |         |
| D<br>E     |                                        | SAMPLE                                                             |                                       |                                            |                       |                                                                  | PID<br>FIELD    |         |
| P<br>T     | SAMPLE                                 | SAMPLE NO.                                                         | STRATA                                | -                                          | VISUAL (              | CLASSIFICATION                                                   | SCREEN<br>(PPM) | REMARKS |
| H          | DEPTH                                  | AND RECOVERY                                                       | CHANGE                                |                                            | VIGO/LE C             |                                                                  | (1110)          |         |
| 0          | 0-2                                    | 10%                                                                | 1.5'                                  | 1                                          |                       | ALT, moist, no odors<br>nd GRAVEL, moist, no odors               | 0               |         |
| 2          |                                        |                                                                    |                                       |                                            |                       |                                                                  | 0               |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  | 0               |         |
| 4          |                                        |                                                                    |                                       |                                            | E                     | End at 4'                                                        |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 6          |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 8          |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 10         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 12         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 14         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 16         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 18         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 20         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 22         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 24         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
| 26         |                                        |                                                                    |                                       |                                            |                       |                                                                  |                 |         |
|            |                                        |                                                                    | DOTTO:                                | DEPTH (FT)                                 | 0001100000            | NOTES:                                                           |                 |         |
| DATE       |                                        |                                                                    | BOTTOM OF                             | BOTTOM OF                                  |                       |                                                                  |                 |         |
| DATE       | TIME                                   | ELASPED TIME                                                       | CASING<br>NA                          | BORING<br>4                                | ENCOUNTERED<br>NA     |                                                                  |                 |         |
|            |                                        |                                                                    |                                       | т<br>Т                                     |                       |                                                                  |                 |         |
|            | 1) STRATIEIC                           |                                                                    |                                       |                                            |                       | PES, TRANSITIONS MAY BE GRADUAL.                                 |                 |         |
|            |                                        |                                                                    |                                       |                                            |                       | TATED, FLUCTUATIONS OF GROUNDWA                                  | TER             |         |
|            | MAY OCCU                               | JRE DUE TO OTHER F                                                 | ACTORS THAN                           | THOSE PRESENT                              | TAT THE TIME MEA      | SUREMENTS WERE MADE                                              | DODING          | CD 24   |
| 1          |                                        |                                                                    |                                       |                                            |                       |                                                                  | BORING:         | SB-34   |

|          | _                   |                                      |                        |              | PROJEC <sup>®</sup>        | г                                                                   | BORING:         | SB-35   |
|----------|---------------------|--------------------------------------|------------------------|--------------|----------------------------|---------------------------------------------------------------------|-----------------|---------|
| $\Box$   | RF                  |                                      |                        | Corr         | ning Hospital and Ass      | sociated Parcels                                                    | SHEET           | 1 OF 1  |
|          |                     | sociates, P.C.                       |                        |              | Corning, New               | York                                                                | JOB:            | 2150606 |
| 300 STAT | E STREET, RO        | CHESTER NY                           |                        | Pha          | se II Environmental S      | Site Assessment                                                     | CHKD BY:        | DPN     |
| ENVIRON  | IMENTAL ENGI        | NEERING CONSULTANT                   | 9                      |              |                            |                                                                     |                 |         |
|          | NTRACTOR:<br>ILLER: |                                      |                        | BORING LOCAT |                            | 176 Denison Parkway East                                            | DATUM           |         |
|          |                     | B. Guyette<br>SENTATIVE: A. Aquilina |                        | START DATE:  | FACE ELEVATION<br>5/5/2015 | END DATE: 5/5/2015                                                  | DATUM:          |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          | TYPE OF DRI         |                                      | Rotary drill rig<br>NA |              |                            | DRIVE SAMPLER TYPE: Direct push<br>INSIDE DIAMETER: 2"              |                 |         |
|          |                     | N SAMPING METHOD:                    |                        |              |                            | OTHER:                                                              |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 | ſ       |
| D        |                     | SAMPLE                               |                        |              |                            |                                                                     | PID             |         |
| E<br>P   |                     |                                      |                        |              |                            |                                                                     | FIELD<br>SCREEN |         |
| т        | SAMPLE              | SAMPLE NO.                           | STRATA                 |              | VISUAL (                   | CLASSIFICATION                                                      | (PPM)           | REMARKS |
| Н        | DEPTH               | AND RECOVERY                         | CHANGE                 |              |                            |                                                                     |                 |         |
| 0        | 0-2                 | 10%                                  | 1.5'                   |              |                            | ALT, moist, no odors<br>nd GRAVEL, moist, no odors                  | 0               |         |
|          |                     |                                      | 1.5                    |              | Brown/grey SAND a          | Id GRAVEL, moist, no odors                                          |                 |         |
| 2        |                     |                                      | 2'                     |              | Black/grev AS              | SH and CINDERS (fill)                                               | 0               |         |
| 2        |                     |                                      | 2                      |              | Diacity re                 |                                                                     | 0               |         |
|          |                     |                                      |                        |              |                            |                                                                     | 0               |         |
| 4        |                     |                                      |                        |              | I                          | End at 4'                                                           |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 6        |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 8        |                     |                                      |                        |              |                            |                                                                     |                 |         |
| _        |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 10       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 12       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 14       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 16       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 40       |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 18       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 20       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 22       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 24       |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 27       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            |                                                                     |                 |         |
| 26       |                     |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        | DEPTH (FT)   |                            | NOTES:                                                              |                 |         |
|          |                     |                                      | BOTTOM OF              | BOTTOM OF    | GROUNDWATER                |                                                                     |                 |         |
| DATE     | TIME                | ELASPED TIME                         |                        | BORING       |                            |                                                                     |                 |         |
|          | I                   | <u> </u>                             | NA                     | 4            | NA                         |                                                                     |                 |         |
| GEI      | NERAL NOTES         |                                      |                        |              |                            |                                                                     |                 |         |
|          |                     |                                      |                        |              |                            | PES, TRANSITIONS MAY BE GRADUAL.<br>STATED, FLUCTUATIONS OF GROUNDW | ATER            |         |
|          |                     |                                      |                        |              |                            | SUREMENTS WERE MADE                                                 |                 |         |
| 1        |                     |                                      |                        |              |                            |                                                                     | BORING:         | SB-35   |

**TEST PIT LOGS** 

|                                     |                                        |                  |             | PROJEC              | г                                               | TEST PIT:              | TP-01     |
|-------------------------------------|----------------------------------------|------------------|-------------|---------------------|-------------------------------------------------|------------------------|-----------|
| ΛRF                                 | ELIA                                   |                  | Corn        | ing Hospital and As | sociated Parcels                                | SHEET                  | 1 OF 1    |
|                                     | ssociates, P.C.                        |                  |             | Corning, New        | York                                            | JOB:                   | 2150606   |
|                                     |                                        |                  |             | se II Environmental | Site Assessment                                 | CHKD BY:               | DPN       |
| ) STATE STREET, F<br>VIRONMENTAL EN | ROCHESTER, NY<br>GINEERING CONSULTANTS |                  |             |                     |                                                 |                        |           |
| CONTRACTOR                          | : LaBella Environmental                | LLC              | LOCATION    |                     | 176 Denison Parkway East                        | •                      |           |
| OPERATOR                            | J. Heerkens                            |                  | GROUND SURF | FACE ELEVATION      | NA                                              | DATUM:                 |           |
| LABELLA REPF                        | RESENTATIVE: A. Aquilina               | 1                | START DATE: | 5/8/2015            | END DATE: 5/8/2015                              |                        |           |
| D<br>E<br>P                         | SAMPLE                                 |                  |             |                     |                                                 | PID<br>FIELD<br>SCREEN |           |
| T SAMPLE<br>H DEPTH                 | SAMPLE NO.<br>AND RECOVERY             | STRATA<br>CHANGE |             | VISUAL (            | CLASSIFICATION                                  | (PPM)                  | REMARKS   |
| 0                                   | AND RECOVERT                           | 0.3'             | Bro         |                     | sphalt 0-4"<br>trace vegetation, moist, no odor |                        |           |
|                                     |                                        | 1.5              |             | 0                   | lass bottle                                     |                        | Fill 1.5' |
|                                     |                                        |                  |             |                     |                                                 |                        |           |
| 2                                   |                                        |                  |             |                     |                                                 |                        |           |
|                                     |                                        |                  |             |                     |                                                 | 0                      |           |
|                                     |                                        |                  |             |                     |                                                 |                        |           |
| 4                                   |                                        |                  |             |                     |                                                 |                        |           |
|                                     |                                        |                  |             |                     |                                                 |                        |           |
| _                                   |                                        |                  |             |                     |                                                 |                        |           |
| 6                                   |                                        |                  |             |                     |                                                 |                        |           |
|                                     |                                        |                  |             |                     | End at 7'                                       |                        |           |
|                                     |                                        |                  |             |                     |                                                 |                        |           |
| 8                                   |                                        |                  |             |                     |                                                 |                        |           |
|                                     |                                        |                  |             |                     |                                                 |                        |           |
| 10                                  |                                        |                  |             |                     |                                                 |                        |           |
|                                     |                                        |                  | DEPTH (FT)  |                     | NOTES:                                          |                        |           |
|                                     |                                        |                  | BOTTOM OF   | GROUNDWATER         |                                                 |                        |           |
|                                     |                                        |                  | TEST PIT    | ENCOUNTERED         |                                                 |                        |           |
|                                     |                                        |                  | 7           | NA                  |                                                 |                        |           |

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

|             |                              |                                    |                  |             | PROJEC                | т                                               | TEST PIT:              | TP-02       |
|-------------|------------------------------|------------------------------------|------------------|-------------|-----------------------|-------------------------------------------------|------------------------|-------------|
| Λ           | RF                           | ELLA                               |                  | Corn        | ing Hospital and As   | sociated Parcels                                | SHEET                  | 1 OF 1      |
| _           |                              | sociates, P.C.                     |                  |             | Corning, New          | York                                            | JOB:                   | 2150606     |
|             | A5                           | 5001aues, r.C.                     |                  | Phas        | se II Environmental   | Site Assessment                                 | CHKD BY:               | DPN         |
|             | E STREET, RO<br>IMENTAL ENGI | CHESTER, NY<br>NEERING CONSULTANTS |                  |             |                       |                                                 |                        |             |
| CO          | NTRACTOR:                    | LaBella Environmental              | LLC              | LOCATION    |                       | 176 Denison Parkway East                        |                        |             |
| OP          | ERATOR                       | J. Heerkens                        |                  | GROUND SURF | FACE ELEVATION        | NA                                              | DATUM:                 |             |
| LA          | BELLA REPRE                  | SENTATIVE: A. Aquilina             | a                | START DATE: | 5/8/2015              | END DATE: 5/8/2015                              |                        | I           |
| D<br>E<br>P |                              | SAMPLE                             |                  |             |                       |                                                 | PID<br>FIELD<br>SCREEN |             |
| T<br>H      | SAMPLE<br>DEPTH              | SAMPLE NO.<br>AND RECOVERY         | STRATA<br>CHANGE |             | VISUAL (              | CLASSIFICATION                                  | (PPM)                  | REMARKS     |
| 0           | DEPTH                        | AND RECOVERT                       | 0.3'             | Brov        |                       | sphalt 0-4"<br>trace vegetation, moist, no odor |                        |             |
| 2           |                              |                                    | 2.5'             | A           | SH and CINDERS tra    | ace metal (wire), ceramic cups                  | 0                      |             |
| 4           |                              |                                    |                  |             |                       |                                                 |                        | Fill 2.5-6' |
| 6           |                              |                                    | 6'               | Na          | ative soils- brown SA | AND and SILT, moist, no odors                   |                        |             |
|             |                              |                                    |                  |             |                       | End at 7'                                       |                        |             |
| 8           |                              |                                    |                  |             |                       |                                                 |                        |             |
| 10          |                              |                                    |                  |             |                       | 1                                               |                        |             |
|             |                              |                                    |                  | DEPTH (FT)  | T                     | NOTES:                                          |                        |             |
|             |                              |                                    |                  | BOTTOM OF   | GROUNDWATER           |                                                 |                        |             |
|             |                              |                                    |                  | TEST PIT    | ENCOUNTERED           |                                                 |                        |             |
|             |                              |                                    |                  | 7           | NA                    |                                                 |                        |             |

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

| _      |                               |                                    |                  |             | PROJEC                | т                                               | TEST PIT:    | TP-03       |
|--------|-------------------------------|------------------------------------|------------------|-------------|-----------------------|-------------------------------------------------|--------------|-------------|
| Λ      | RF                            | ELIV                               |                  | Corr        | ing Hospital and Ass  | sociated Parcels                                | SHEET        | 1 OF 1      |
| -      |                               | sociates, P.C.                     |                  |             | Corning, New          | York                                            | JOB:         | 2150606     |
|        | A5                            | 5001ates, r.c.                     |                  | Pha         | se II Environmental S | Site Assessment                                 | CHKD BY:     | DPN         |
|        | TE STREET, RO<br>IMENTAL ENGI | CHESTER, NY<br>NEERING CONSULTANTS |                  |             |                       |                                                 |              |             |
| CO     | NTRACTOR:                     | LaBella Environmental L            | LC               | LOCATION    |                       | 176 Denison Parkway East                        |              |             |
| OP     | ERATOR                        | J. Heerkens                        |                  | GROUND SURF | FACE ELEVATION        | NA                                              | DATUM:       |             |
| LAE    | BELLA REPRE                   | SENTATIVE: A. Aquilina             |                  | START DATE: | 5/8/2015              | END DATE: 5/8/2015                              |              |             |
| D<br>E |                               | SAMPLE                             |                  |             |                       |                                                 | PID<br>FIELD |             |
| P      |                               |                                    |                  |             |                       |                                                 | SCREEN       |             |
| T<br>H | SAMPLE<br>DEPTH               | SAMPLE NO.<br>AND RECOVERY         | STRATA<br>CHANGE |             | VISUAL C              | CLASSIFICATION                                  | (PPM)        | REMARKS     |
| 0      | DEITI                         | AND RECOVERT                       | 0.3'             | Bro         |                       | sphalt 0-4"<br>trace vegetation, moist, no odor |              |             |
|        |                               |                                    |                  |             |                       | 0                                               |              |             |
|        |                               |                                    |                  |             |                       |                                                 |              |             |
| 2      |                               |                                    | 2'               |             |                       | white ASH                                       |              | Fill 2-3.5' |
|        |                               |                                    | 3'               |             | tr                    | ace WOOD                                        | 0            | 1 11 2-3.5  |
|        |                               |                                    | 3.5'             | Na          | ative soils- brown SA | ND and SILT, moist, no odors                    |              |             |
| 4      |                               |                                    |                  |             |                       |                                                 |              |             |
|        |                               |                                    |                  |             | I                     | End at 5'                                       |              |             |
| 6      |                               |                                    |                  |             |                       |                                                 |              |             |
| •      |                               |                                    |                  |             |                       |                                                 |              |             |
|        |                               |                                    |                  |             |                       |                                                 |              |             |
| 8      |                               |                                    |                  |             |                       |                                                 |              |             |
|        |                               |                                    |                  |             |                       |                                                 |              |             |
|        |                               |                                    |                  |             |                       |                                                 |              |             |
| 10     |                               |                                    |                  |             |                       | I                                               |              |             |
|        |                               |                                    |                  | DEPTH (FT)  | 1                     | NOTES:                                          |              |             |
|        |                               |                                    |                  | BOTTOM OF   | GROUNDWATER           |                                                 |              |             |
|        |                               |                                    |                  | TEST PIT    | ENCOUNTERED           |                                                 |              |             |
|        |                               |                                    |                  | 5           | NA                    |                                                 |              |             |

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

| _      |                               |                                    |        |             | PROJEC                                | г                                              | TEST PIT:       | TP-04     |
|--------|-------------------------------|------------------------------------|--------|-------------|---------------------------------------|------------------------------------------------|-----------------|-----------|
| Λ      | RF                            | ELIA                               |        | Corn        | ing Hospital and Ass                  | ociated Parcels                                | SHEET           | 1 OF 1    |
| - '    |                               | sociates, P.C.                     |        |             | Corning, New                          | York                                           | JOB:            | 2150606   |
|        | A5                            | 5001ates, r.c.                     |        | Phas        | e II Environmental S                  | ite Assessment                                 | CHKD BY:        | DPN       |
|        | TE STREET, RO<br>IMENTAL ENGI | CHESTER, NY<br>NEERING CONSULTANTS |        |             |                                       |                                                |                 |           |
| CO     | NTRACTOR:                     | LaBella Environmental L            | LC     | LOCATION    |                                       | 176 Denison Parkway East                       |                 |           |
|        | ERATOR                        | J. Heerkens                        |        |             | ACE ELEVATION                         |                                                | DATUM:          |           |
| LA     | BELLA REPRE                   | SENTATIVE: A. Aquilina             |        | START DATE: | 5/8/2015                              | END DATE: 5/8/2015                             |                 |           |
| D      |                               | SAMPLE                             |        |             |                                       |                                                | PID             |           |
| E      |                               |                                    |        |             |                                       |                                                | FIELD           |           |
| Р<br>Т | SAMPLE                        | SAMPLE NO.                         | STRATA | -           | VISUAL                                | LASSIFICATION                                  | SCREEN<br>(PPM) | REMARKS   |
| н      | DEPTH                         | AND RECOVERY                       | CHANGE |             |                                       |                                                | (11 M)          | REMPARIO  |
| 0      |                               |                                    | 0.3'   | Deer        |                                       | phalt 0-4"<br>trace vegetation, moist, no odor |                 |           |
| 0      |                               |                                    | 0.3    | DIO         | WI SAND and SILT,                     | trace vegetation, moist, no odor               |                 |           |
|        |                               |                                    | 1'     |             | Black ASH and C                       | INDERS, moist, no odor                         |                 |           |
| •      |                               |                                    | 0      |             |                                       |                                                |                 |           |
| 2      |                               |                                    | 2'     |             | WOOd, D                               | rick pavers, metal                             |                 | Fill 1-4' |
|        |                               |                                    |        |             |                                       |                                                | 0               |           |
|        |                               |                                    |        |             | •                                     |                                                |                 |           |
| 4      |                               |                                    | 4'     |             |                                       | ent building foundation)                       |                 |           |
|        |                               |                                    |        |             | i i i i i i i i i i i i i i i i i i i |                                                |                 |           |
|        |                               |                                    |        |             |                                       |                                                |                 |           |
| 6      |                               |                                    |        |             |                                       |                                                |                 |           |
|        |                               |                                    |        |             |                                       |                                                |                 |           |
|        |                               |                                    |        |             |                                       |                                                |                 |           |
| 8      |                               |                                    |        |             |                                       |                                                |                 |           |
|        |                               |                                    |        |             |                                       |                                                |                 |           |
|        |                               |                                    |        |             |                                       |                                                |                 |           |
| 10     |                               |                                    |        |             |                                       | NOTEO                                          |                 |           |
|        |                               |                                    |        | DEPTH (FT)  |                                       | NOTES:                                         |                 |           |
|        |                               |                                    |        | BOTTOM OF   | GROUNDWATER                           |                                                |                 |           |
|        |                               |                                    |        | TEST PIT    | ENCOUNTERED                           |                                                |                 |           |
|        |                               |                                    |        | 4           | NA                                    |                                                |                 |           |

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

| _           |                               |                                    |                  |             | PROJEC                | т                                         | TEST PIT:              | TP-05     |
|-------------|-------------------------------|------------------------------------|------------------|-------------|-----------------------|-------------------------------------------|------------------------|-----------|
| Λ           | RF                            | ELIA                               |                  | Corn        | ing Hospital and Ass  | sociated Parcels                          | SHEET                  | 1 OF 1    |
| - '         |                               | sociates, P.C.                     |                  |             | Corning, New          | York                                      | JOB:                   | 2150606   |
|             | AS                            | sociates, F.C.                     |                  | Phas        | se II Environmental S | Site Assessment                           | CHKD BY:               | DPN       |
|             | TE STREET, RO<br>IMENTAL ENGI | CHESTER, NY<br>NEERING CONSULTANTS |                  |             |                       |                                           |                        |           |
| CO          | NTRACTOR:                     | LaBella Environmental L            | LC               | LOCATION    |                       | 176 Denison Parkway East                  |                        |           |
| OP          | ERATOR                        | J. Heerkens                        |                  | GROUND SURF | FACE ELEVATION        | NA                                        | DATUM:                 |           |
| LA          | BELLA REPRE                   | SENTATIVE: A. Aquilina             |                  | START DATE: | 5/8/2015              | END DATE: 5/8/2015                        |                        |           |
| D<br>E<br>P |                               | SAMPLE                             |                  |             |                       |                                           | PID<br>FIELD<br>SCREEN |           |
| T<br>H      | SAMPLE<br>DEPTH               | SAMPLE NO.<br>AND RECOVERY         | STRATA<br>CHANGE |             |                       | CLASSIFICATION                            | (PPM)                  | REMARKS   |
| 0           |                               |                                    | 0.3'             |             |                       | sphalt 0-4"<br>nd SILT, moist, no odor    |                        |           |
|             |                               |                                    | 1'               |             | Black ASH and C       | CINDERS, moist, no odor                   |                        |           |
| 2           |                               |                                    | 3'               |             | ceramic, b            | rick, concrete, wood                      | 0                      | Fill 1-5' |
| 4           |                               |                                    | 5'               | N           |                       | AND and SILT, moist, no odor<br>End at 5' |                        |           |
| 6           |                               |                                    |                  |             |                       |                                           |                        |           |
| 8           |                               |                                    |                  |             |                       |                                           |                        |           |
| 10          |                               |                                    |                  |             |                       |                                           |                        |           |
|             |                               |                                    |                  | DEPTH (FT)  | 1                     | NOTES:                                    |                        |           |
|             |                               |                                    |                  | BOTTOM OF   | GROUNDWATER           |                                           |                        |           |
|             |                               |                                    |                  | TEST PIT    | ENCOUNTERED           |                                           |                        |           |
|             |                               |                                    |                  | 5           | NA                    |                                           |                        |           |

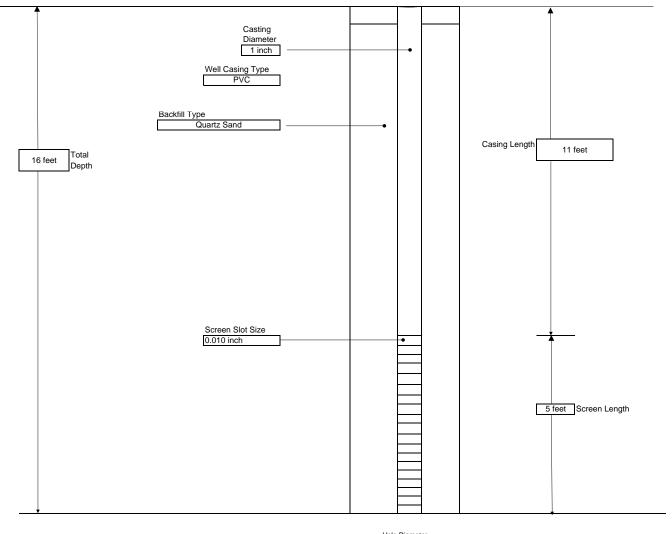
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

|          |                |                                    |                  |             | PROJEC               | r                        | TEST PIT:       | TP-06     |
|----------|----------------|------------------------------------|------------------|-------------|----------------------|--------------------------|-----------------|-----------|
| ΛF       | $\mathbf{R}$   | ΈLLΛ                               |                  | Corn        | ing Hospital and As  | ociated Parcels          | SHEET           | 1 OF 1    |
| <u> </u> |                | sociates, P.C.                     |                  |             | Corning, New         | York                     | JOB:            | 2150606   |
|          | A5             | 50Clates, r.c.                     |                  | Phas        | e II Environmental S | Site Assessment          | CHKD BY:        | DPN       |
|          |                | CHESTER, NY<br>NEERING CONSULTANTS |                  |             |                      |                          |                 |           |
| CONTR    | ACTOR:         | LaBella Environmental L            | LC               | LOCATION    |                      | 176 Denison Parkway East |                 |           |
| OPERA    |                | J. Heerkens                        |                  |             | ACE ELEVATION        |                          | DATUM:          |           |
| LABELL   | A REPRES       | SENTATIVE: A. Aquilina             |                  | START DATE: | 5/8/2015             | END DATE: 5/8/2015       |                 |           |
| D<br>E   |                | SAMPLE                             |                  |             |                      |                          | PID<br>FIELD    |           |
|          | AMPLE<br>DEPTH | SAMPLE NO.<br>AND RECOVERY         | STRATA<br>CHANGE | -           | VISUAL C             | CLASSIFICATION           | SCREEN<br>(PPM) | REMARKS   |
| 0        |                |                                    | 0.3'             |             | Brown SAND a         | nd SILT, moist, no odor  |                 |           |
|          |                |                                    | 1'               |             | some glass           | (1-3'), rope, concrete   |                 |           |
| 2        |                |                                    | 3'               |             | some                 | white ash (3-4')         | 0               | Fill 1-6' |
| 4        |                |                                    |                  |             | …tra                 | ce brick (4-6')          |                 |           |
| 6        |                |                                    |                  |             |                      |                          |                 |           |
| 8        |                |                                    |                  |             |                      | End at 7'                |                 |           |
| 10       |                |                                    |                  |             |                      |                          |                 |           |
|          |                |                                    |                  | DEPTH (FT)  | 1                    | NOTES:                   |                 |           |
|          |                |                                    |                  | BOTTOM OF   | GROUNDWATER          |                          |                 |           |
|          |                |                                    |                  | TEST PIT    | ENCOUNTERED          |                          |                 |           |
|          |                |                                    |                  | 7           | NA                   |                          |                 |           |

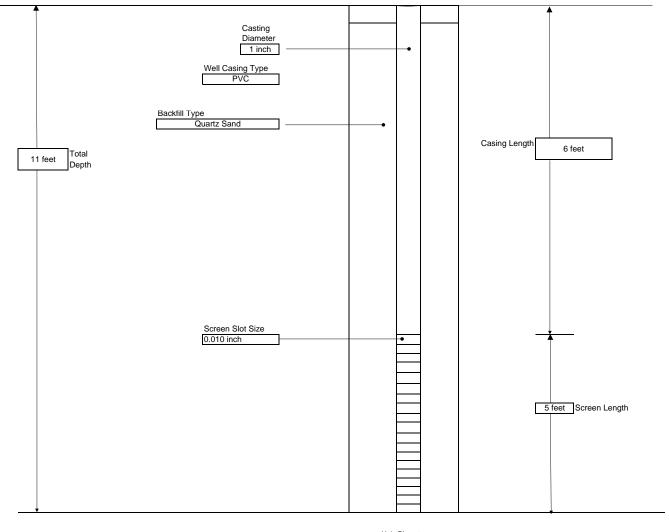
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE


|             |                 |                                    |                  |             | PROJEC              | г                                                                                      | TEST PIT:              | TP-07       |
|-------------|-----------------|------------------------------------|------------------|-------------|---------------------|----------------------------------------------------------------------------------------|------------------------|-------------|
| Λ           | RF              | ELIV                               |                  | Corn        | ing Hospital and As | sociated Parcels                                                                       | SHEET                  | 1 OF 1      |
| - '         |                 | sociates, P.C.                     |                  |             | Corning, New        | York                                                                                   | JOB:                   | 2150606     |
|             | A5              | 5001a065, F.C.                     |                  | Phas        | se II Environmental | Site Assessment                                                                        | CHKD BY:               | DPN         |
|             | TE STREET, RO   | CHESTER, NY<br>NEERING CONSULTANTS |                  |             |                     |                                                                                        |                        |             |
| CO          | NTRACTOR:       | LaBella Environmental I            | LLC              | LOCATION    |                     | 176 Denison Parkway East                                                               |                        |             |
| OP          | ERATOR          | J. Heerkens                        |                  | GROUND SURF | ACE ELEVATION       | NA                                                                                     | DATUM:                 |             |
| LA          | BELLA REPRE     | SENTATIVE: A. Aquilina             | I                | START DATE: | 5/8/2015            | END DATE: 5/8/2015                                                                     |                        |             |
| D<br>E<br>P |                 | SAMPLE                             |                  |             |                     |                                                                                        | PID<br>FIELD<br>SCREEN |             |
| T<br>H      | SAMPLE<br>DEPTH | SAMPLE NO.<br>AND RECOVERY         | STRATA<br>CHANGE | 1           | VISUAL (            | CLASSIFICATION                                                                         | (PPM)                  | REMARKS     |
| 0           |                 |                                    | 0.3'             |             | Brown SAND a        | nd SILT, moist, no odor                                                                |                        |             |
| 2           |                 |                                    | 2.5'             |             |                     | ne brick and concrete, moist, no odors<br>amic cups, fuze box, clay jug, wire (2.5-8') | 0                      |             |
| 4           |                 |                                    |                  |             |                     |                                                                                        |                        | Fill 2.5-8' |
| 6           |                 |                                    |                  |             |                     |                                                                                        |                        |             |
| 8           |                 |                                    |                  |             |                     |                                                                                        |                        |             |
| 10          |                 |                                    |                  |             |                     | End at 9'                                                                              | -                      |             |
|             |                 | 1                                  | 1                | DEPTH (FT)  |                     | NOTES:                                                                                 |                        | 1           |
|             |                 |                                    |                  | BOTTOM OF   | GROUNDWATER         |                                                                                        |                        |             |
|             |                 |                                    |                  | TEST PIT    | ENCOUNTERED         |                                                                                        |                        |             |
|             |                 |                                    |                  | 9           | NA                  |                                                                                        |                        |             |

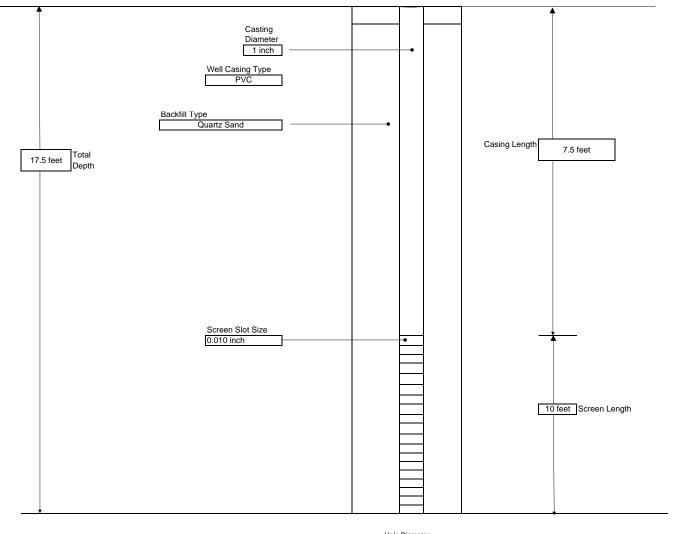
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

MAY OCCURE DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE


MONITORING WELL CONSTRUCTION DIAGRAMS

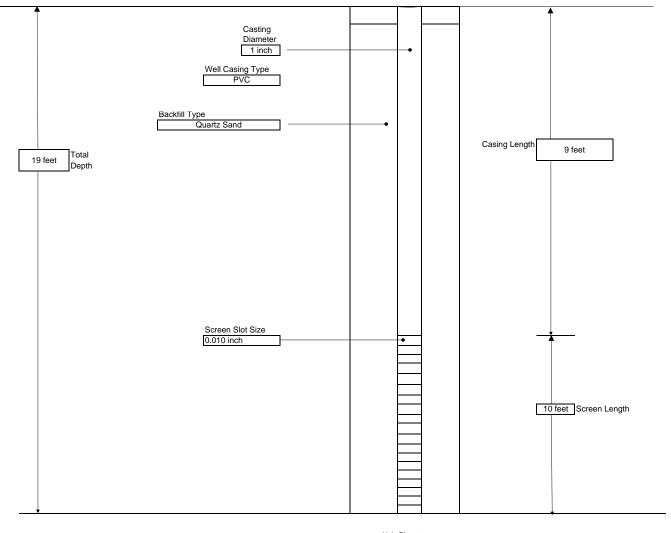
| ΙΔΒΕΙΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-01                      |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | <b>SHEET</b> 1 OF 1<br><b>JOB #</b> 2150606 |
| CONTRACTOR: LaBella Env. LLC                                                                       | BORING LOCATION: SB-01                                                                                 |                                             |
| DRILLER: M. Pepe                                                                                   | GROUND SURFACE ELEVATION: 924.685 (US                                                                  | t)                                          |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 4/27/2015 END DATE:                                                                        | 4/27/2015                                   |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                                             |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                                             |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                                             |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                                             |




ł

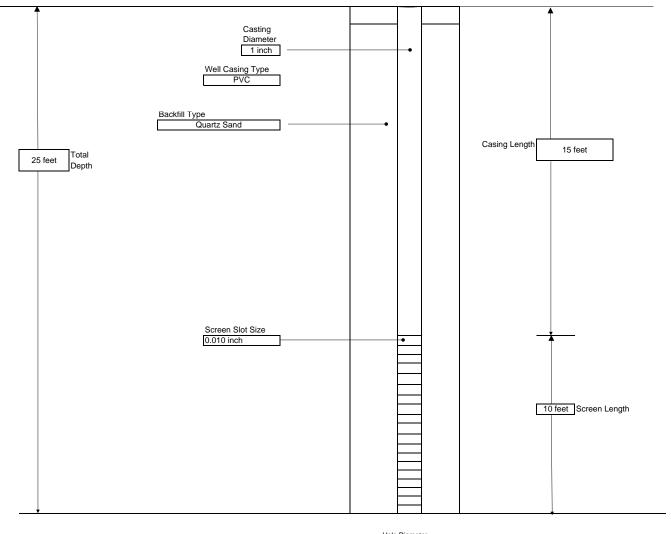
| ΙΔΒΕΓΙΔ                                                                                              | PROJECT                                                                                                | MONITORING WELL: MW-02                      |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS   | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | <b>SHEET</b> 1 OF 1<br><b>JOB #</b> 2150606 |
| CONTRACTOR: LaBella Env. LLC<br>DRILLER: M. Pepe                                                     | BORING LOCATION: SB-02<br>GROUND SURFACE ELEVATION: 924.76 (USf                                        | <u>,</u>                                    |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                  | GROUND SURFACE ELEVATION: 924.76 (USf<br>START DATE: 4/27/2015 END DATE:                               | )<br>4/27/2015                              |
| TYPE OF DRILL RIG: Geoprobe 54LT<br>AUGER SIZE AND TYPE: NA<br>OVERBURDEN SAMPLING METHOD: macrocore |                                                                                                        |                                             |
| ROCK DRILLING METHOD: NA                                                                             |                                                                                                        |                                             |




ł

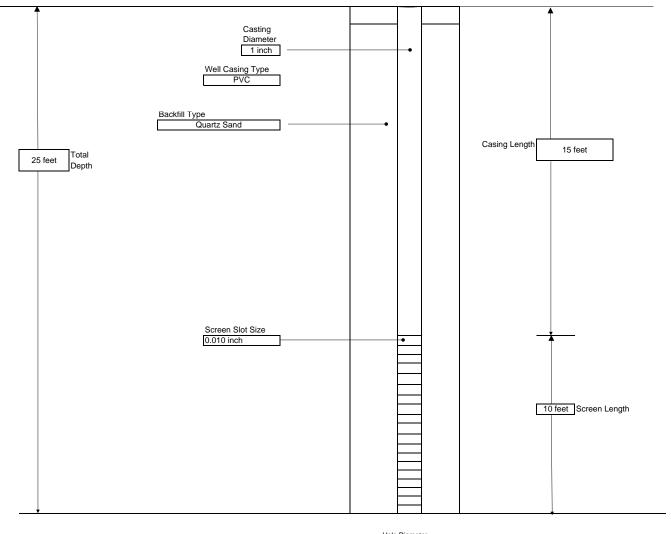
| ΙΔΒΕΓΙΔ                                                                                                                          | PROJECT                                                                                                | MONITORING WELL: MW-03        |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS                               | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |  |
| CONTRACTOR: LaBella Env. LLC<br>DRILLER: M. Pepe                                                                                 | BORING LOCATION: SB-04<br>GROUND SURFACE ELEVATION: 923.915 (US                                        | 1)                            |  |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                                              | START DATE: 4/27/2015 END DATE:                                                                        | 4/27/2015                     |  |
| TYPE OF DRILL RIG: Geoprobe 54LT<br>AUGER SIZE AND TYPE: NA<br>OVERBURDEN SAMPLING METHOD: macrocore<br>ROCK DRILLING METHOD: NA |                                                                                                        |                               |  |




ł

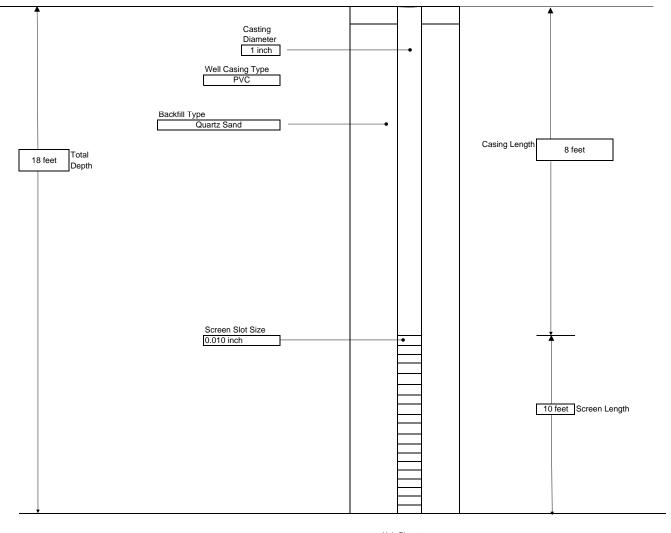
| ΙΔΒΕΓΙΔ                                                                                              | PROJECT                                                                                                | MONITORING WELL: MW-04        |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS   | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |
| CONTRACTOR: LaBella Env. LLC<br>DRILLER: M. Pepe                                                     | BORING LOCATION: SB-07<br>GROUND SURFACE ELEVATION: 925.855 (US                                        | ***                           |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                  | START DATE: 4/27/2015 END DATE:                                                                        | ,                             |
| TYPE OF DRILL RIG: Geoprobe 54LT<br>AUGER SIZE AND TYPE: NA<br>OVERBURDEN SAMPLING METHOD: macrocore |                                                                                                        |                               |
| ROCK DRILLING METHOD: NA                                                                             |                                                                                                        |                               |




ł

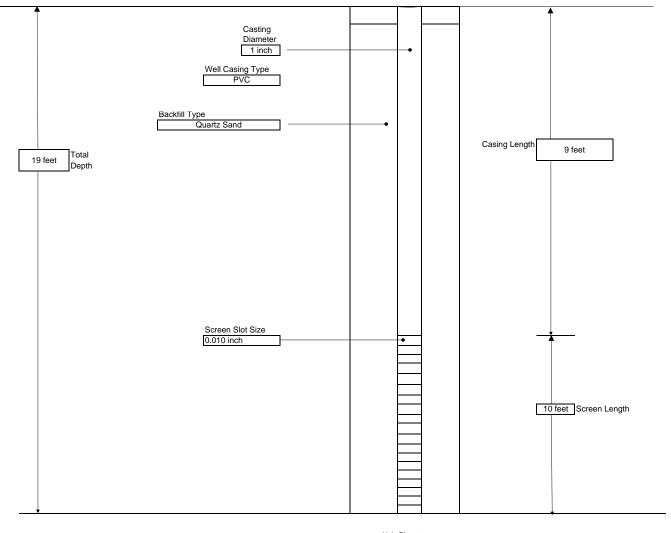
| ΙΔΒΕΓΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-05        |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |  |
| CONTRACTOR: NYEG                                                                                   | BORING LOCATION: SB-27                                                                                 |                               |  |
| DRILLER: B. Guyette                                                                                | GROUND SURFACE ELEVATION: 930.605 (USft                                                                |                               |  |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 5/5/2015 END DATE:                                                                         | 5/5/2015                      |  |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                               |  |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                               |  |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                               |  |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                               |  |




ł

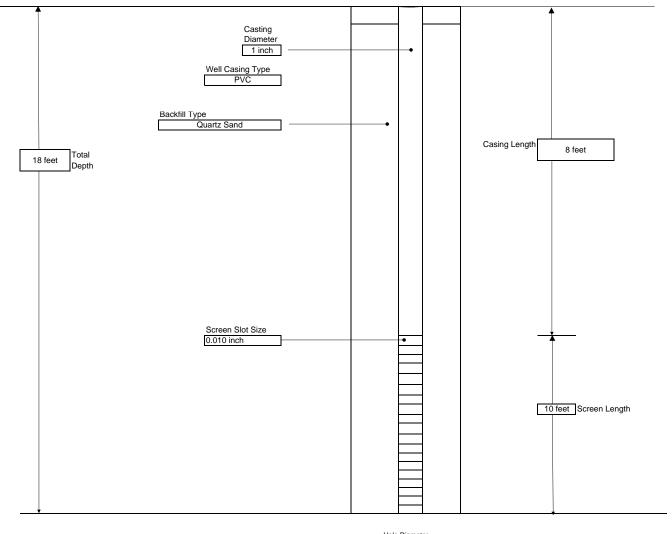
| ΙΔΒΕΓΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-06        |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |  |
| CONTRACTOR: NYEG                                                                                   | BORING LOCATION: SB-28                                                                                 |                               |  |
| DRILLER: B. Guyette                                                                                | GROUND SURFACE ELEVATION: 930.355 (USf                                                                 | )                             |  |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 5/5/2015 END DATE:                                                                         | 5/5/2015                      |  |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                               |  |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                               |  |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                               |  |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                               |  |




ł

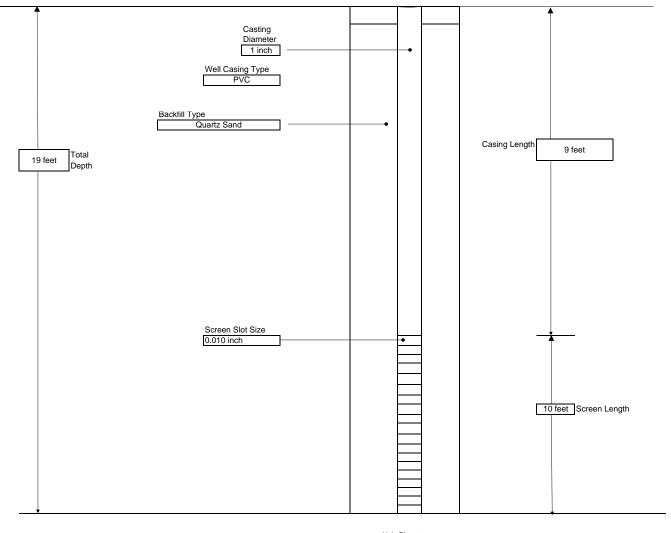
| ΙΔΒΕΓΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-07                      |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | <b>SHEET</b> 1 OF 1<br><b>JOB #</b> 2150606 |  |
| CONTRACTOR: TREC Environmental                                                                     | BORING LOCATION: SB-31                                                                                 |                                             |  |
| DRILLER: C. Britton                                                                                | GROUND SURFACE ELEVATION: 922.94 (USft)                                                                |                                             |  |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 5/5/2015 END DATE:                                                                         | 5/5/2015                                    |  |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                                             |  |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                                             |  |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                                             |  |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                                             |  |




ł

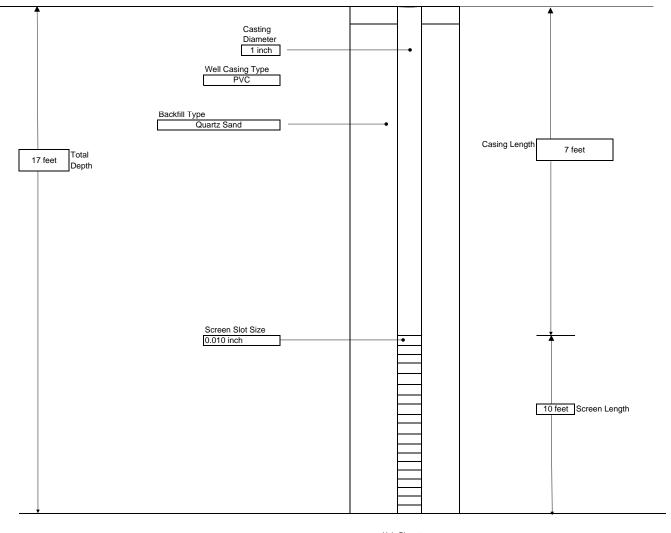
| ΙΔΒΕΓΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-08        |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |
| CONTRACTOR: LaBella Env. LLC                                                                       | BORING LOCATION: SB-16                                                                                 | <b>2</b> (4)                  |
| DRILLER: M. Pepe                                                                                   | GROUND SURFACE ELEVATION: 925.825 (U                                                                   |                               |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 4/29/2015 END DATE                                                                         | : 4/29/2015                   |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                               |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                               |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                               |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                               |




ł

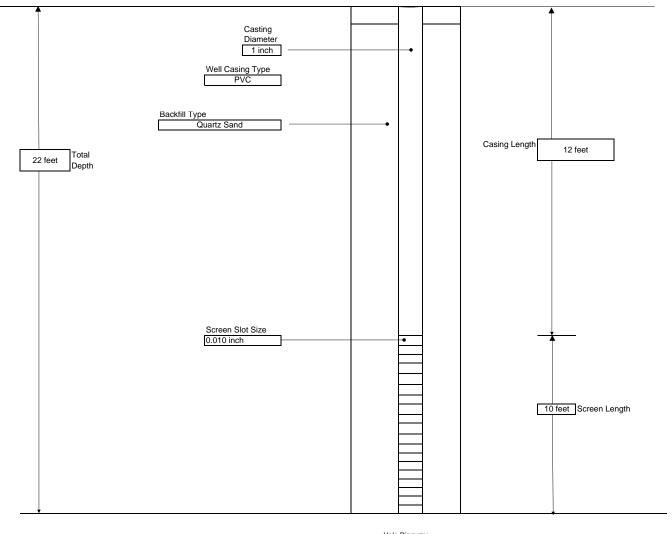
| ΙΔΒΕΓΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-09        |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |
| CONTRACTOR: LaBella Env. LLC                                                                       | BORING LOCATION: SB-17                                                                                 |                               |
| DRILLER: M. Pepe                                                                                   | GROUND SURFACE ELEVATION: 925.025 (US                                                                  | Stt)                          |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 4/29/2015 END DATE:                                                                        | 4/29/2015                     |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                               |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                               |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                               |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                               |




ł

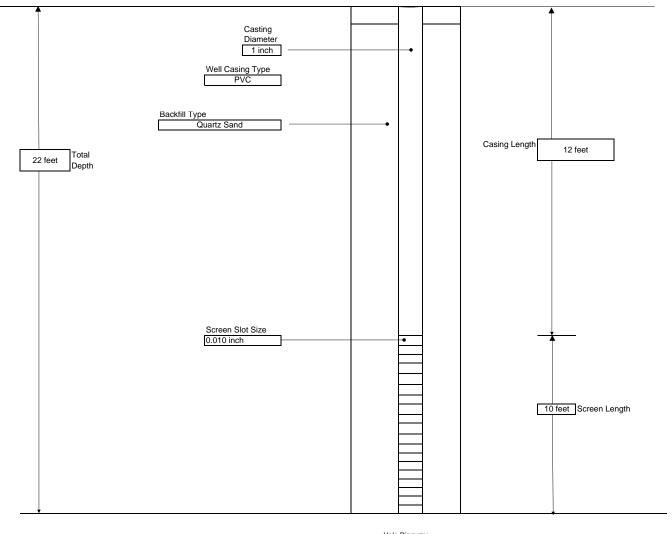
| ΙΔΒΕΓΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-10        |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |  |
| CONTRACTOR: LaBella Env. LLC                                                                       | BORING LOCATION: SB-19                                                                                 |                               |  |
| DRILLER: M. Pepe                                                                                   | GROUND SURFACE ELEVATION: 924.465 (US                                                                  | it)                           |  |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 4/29/2015 END DATE:                                                                        | 4/29/2015                     |  |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                               |  |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                               |  |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                               |  |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                               |  |




ł

| ΙΔΒΕΓΙΔ                                                                                                                          | PROJECT                                                                                                | MONITORING WELL: MW-11        |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS                               | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |  |
| CONTRACTOR: LaBella Env. LLC<br>DRILLER: M. Pepe                                                                                 | BORING LOCATION: SB-23<br>GROUND SURFACE ELEVATION: 924.675 (US                                        | 41                            |  |
| DRILLER: M. Pepe<br>LABELLA REPRESENTATIVE: A. Aquilina                                                                          | GROUND SURFACE ELEVATION: 924.675 (US<br>START DATE: 4/30/2015 END DATE:                               | 4/30/2015                     |  |
| TYPE OF DRILL RIG: Geoprobe 54LT<br>AUGER SIZE AND TYPE: NA<br>OVERBURDEN SAMPLING METHOD: macrocore<br>ROCK DRILLING METHOD: NA |                                                                                                        |                               |  |




ł

| ΙΔΒΕΓΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-12        |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Associates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | SHEET 1 OF 1<br>JOB # 2150606 |  |
| CONTRACTOR: LaBella Env. LLC                                                                       | BORING LOCATION: SB-25                                                                                 |                               |  |
| DRILLER: M. Pepe                                                                                   | GROUND SURFACE ELEVATION: 928.925 (USft                                                                | )                             |  |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 5/1/2015 END DATE:                                                                         | 5/1/2015                      |  |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                               |  |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                               |  |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                               |  |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                               |  |



ł

| ΙΔΒΕΓΙΔ                                                                                            | PROJECT                                                                                                | MONITORING WELL: MW-13                      |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| Absociates, P.C.<br>300 STATE STREET, ROCHESTER, NEW YORK<br>ENVIRONMENTAL ENGINEERING CONSULTANTS | Corning Hospital and Associated Parcels<br>Corning, New York<br>Phase II Environmental Site Assessment | <b>SHEET</b> 1 OF 1<br><b>JOB #</b> 2150606 |  |
| CONTRACTOR: LaBella Env. LLC                                                                       | BORING LOCATION: SB-25                                                                                 |                                             |  |
| DRILLER: M. Pepe                                                                                   | GROUND SURFACE ELEVATION: 928.36 (USft)                                                                |                                             |  |
| LABELLA REPRESENTATIVE: A. Aquilina                                                                | START DATE: 5/1/2015 END DATE:                                                                         | 5/1/2015                                    |  |
| TYPE OF DRILL RIG: Geoprobe 54LT                                                                   |                                                                                                        |                                             |  |
| AUGER SIZE AND TYPE: NA                                                                            |                                                                                                        |                                             |  |
| OVERBURDEN SAMPLING METHOD: macrocore                                                              |                                                                                                        |                                             |  |
| ROCK DRILLING METHOD: NA                                                                           |                                                                                                        |                                             |  |



ł

LOW FLOW GROUNDWATER SAMPLING LOGS

| Purge Ti                                                                    | A ONE                | 272<br>272<br>275<br>275<br>275                                              | Time Pump Rate<br>(ml/min)                     | Well Diameter:2"Depth of Well:i 175Measuring Point:Top of PVPump Type:1.75" BladFIELD PARAMETER MEASUREMENT | 300 State Street<br>Rochester, New You<br>Telephone: (585) 4<br>WELL I.D.:<br>WELL SAMPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total <u>O</u> , <u>S</u><br>Purge Time Start: <u>7</u> ( 5<br>OBSERVATIONS | 0.40                 | 0000                                                                         | Rate Gallons<br>nin) Purged                    | meter:<br>Well:<br>g Point:<br>pe:<br>ETER ME.                                                              | 454 (ork 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                             | 89.4<br>89.4<br>89.4 | NA NA                                                                        | ons pH<br>zed +/~ 0.1                          | 2"<br>it.75<br>Top of PVC<br>1.75" Bladd<br>ASUREMENT                                                       | Associates, PC.<br>t<br>York 14614<br>5) 454-6110<br>) 454-3066<br>) 454-306 |
| Gallons Purged                                                              | 6 13,2               |                                                                              | Temp<br>°C                                     | 2"<br>iキュスタ<br>Top of PVC<br>1.75" Bladder pump<br>REMENT                                                   | ATION CATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purge Time End:                                                             | 2 22                 | 21.14                                                                        | Conductivity<br>(mS/cm)<br>+/- 3%              | du                                                                                                          | Project Name:<br>Location:<br>Project No.:<br>Sampled By:<br>Date:<br>Weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ne End:                                                                     | 24.2                 | 2.03<br>2.14<br>2.17<br>2.17<br>2.17<br>2.17<br>2.17<br>2.17<br>2.17<br>2.17 | i Vorte                                        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 046                                                                         | 58.t                 | 1211124<br>1211124<br>1211124                                                | Dissolved<br>O <sub>2</sub><br>(mg/L)<br>+ 10% |                                                                                                             | Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | 205.4                | 217.3                                                                        | Redox<br>(mV)<br>+/- 10 mV                     | Static Water Level:<br>Length of Well Screen:<br>Depth to Top of Pump:<br>Tubing Type:                      | Jorning Hespiters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Final Stat                                                                  | 1 E'SI               | NAMON                                                                        | Depth to Water<br>(feet)                       |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Final Static Water Level:                                                   | Sumper 13 740        |                                                                              | Comments                                       | W" LDPE                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                   |                |  | 920        | 9<br>57 | 9/10  |                | 558   |           |                          | Time           | FIELD                       |                                                                 |                     | _                         |               |                                                        |                                               |                            |    |
|-----------------------------------|----------------|--|------------|---------|-------|----------------|-------|-----------|--------------------------|----------------|-----------------------------|-----------------------------------------------------------------|---------------------|---------------------------|---------------|--------------------------------------------------------|-----------------------------------------------|----------------------------|----|
| Purge Time Start:<br>OBSERVATIONS | Total          |  |            |         |       |                | 152   |           | (mi/min)                 | Pump Rate      | FIELD PARAMETER MEASUREMENT | Measuring Point:<br>Pump Type:                                  | Well Diameter:      | WELL SAMPLING INFORMATION | WELL I.D.:    | Telephone: (585) 454-6110<br>Facsimile: (585) 454-3066 | 300 State Street<br>Rochester, New York 14614 |                            |    |
| art: 355                          | 26,0           |  | 0,35       | 0       |       |                |       |           | Purged                   | Gallons        | R MEASU                     |                                                                 | ĩ                   | PLING IN                  |               | ) 454-6110<br>454-3066                                 | fork 14614                                    | Associates, PC             |    |
| X                                 | Gallons Purged |  | 6.75       | 6.75    | 6.13  | 10 20          | 1     | +/- 0.1   |                          | рH             | REMENT                      | 19, LO<br>Top of PVC<br>1.75" Bladder pump                      |                     | FORMAT                    | MIN-SB2 MUS 1 |                                                        |                                               |                            | >  |
|                                   | urged          |  | 11.4       | 11,4    | F     |                |       |           | ဂံ                       | Temp           |                             | der pum                                                         | :                   | ION                       | 5             | 1<br><del>-</del>                                      |                                               |                            |    |
| Purge Time End                    |                |  | 4.85       | 1.000   | 22,2  | ( ) )<br>( ) ) | 4.82  | +/- 3%    | (mS/cm)                  | Conductivity   |                             | σ                                                               |                     |                           |               | Sampled By:<br>Date:                                   | Project No.:                                  | Project Name:<br>Location: |    |
| e Fud.                            |                |  | 38/3       | 8       | 19.5  |                | 80108 |           | (NTN)                    | Turbi          |                             |                                                                 |                     | 10                        | 1 1           | ,<br>I                                                 | î.                                            | ne:                        | \$ |
| 920                               |                |  | 203        | 6       | pt t  | 1.00           | 1.1   | + 10%     | O <sub>2</sub><br>(mg/L) | Dissolved      |                             |                                                                 | 2                   |                           |               |                                                        |                                               |                            |    |
|                                   |                |  | 133.8      | 2339    | 135.2 | 5000           | 236.6 | +/- 10 mV | (mV)                     | Redox          |                             | Length of Well Screen:<br>Depth to Top of Pump:<br>Tubing Type: | Static Water Level: | 1000                      |               |                                                        |                                               |                            |    |
| Final Stat                        |                |  | んた         | 2       | 4     | 00             |       |           | (feet)                   | Depth to Water |                             | T P F                                                           |                     | 5.26 - 1 - 5 A            |               |                                                        |                                               |                            |    |
| Final Static Water Level: 17, 70  |                |  | Sumple 920 |         |       |                |       |           |                          | Comments       |                             | 1/2" LDPE                                                       | Sol E               |                           |               |                                                        |                                               |                            |    |

| Total<br>Purge Time Start:<br>OBSERVATIONS |  | 1155          | 11/20 | asi 0411 |           | Time Pump Rate<br>(ml/min)            | FIELD PARAMETER MEASUREMENT | Well Diameter:<br>Depth of Well:<br>Measuring Point:<br>Pump Type:                            | WELL SAMPLING INFORMATION | Associates<br>300 State Street<br>Rochester, New York 14614<br>Telephone: (585) 454-6110<br>Facsimile: (585) 454-3066<br>WELL I.D.: MW               |
|--------------------------------------------|--|---------------|-------|----------|-----------|---------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sim$                                     |  | 0, r<br>0, 25 | 2.15  | 0.05     |           | Gallons<br>Purged                     | MEASU                       | 1акт.                                                                                         | ING INF                   | Associates, PC.<br>Associates, PC.<br>Associates, PC.<br>Associates, PC.<br>Associates, PC.<br>Associates, PC.<br>Associates, PC.<br>Associates, PC. |
| 5 Gallons Purged                           |  | , 0, t        | 101t  | 1 355 1  | +/- 0.1   | РH                                    | UEMENT                      | 2"<br>23.65<br>Top of PVC<br>1.75" Bladder pump                                               | ORMATI                    | cciarces, FIC.<br>14614<br>44-6110<br>1-3066<br>MW-SB2 N/V                                                                                           |
| urged                                      |  | 3.6           | 0.5   | 3.0      |           | Temp<br>°C                            |                             | fer pump                                                                                      | ON                        | 3                                                                                                                                                    |
| Purge Time End:                            |  | 1.63          | 1.63  |          | ÷/- 3%    | Conductivity<br>(mS/cm)               |                             |                                                                                               | 199                       | Project Name:<br>Location:<br>Project No.:<br>Sampled By:<br>Date:<br>Weather:                                                                       |
| e<br>md.                                   |  | 15.1          | 23.6  | 36       | ~         | Undity<br>(NTU                        |                             |                                                                                               |                           |                                                                                                                                                      |
| 1200                                       |  | 2.280         | NN 0  | PO.C     | + 10%     | Dissolved<br>O <sub>2</sub><br>(mg/L) |                             |                                                                                               |                           |                                                                                                                                                      |
| $\overline{\bigcirc}$                      |  | 9 Q<br>4 H    | 000   | 5.66     | +/- 10 mV | Redox<br>(mV)                         |                             | Static Water Level:<br>Length of Well Screen:<br>Depth to Top of Pump:<br>Tubing Type:        |                           |                                                                                                                                                      |
| Final Static Water Level:                  |  | 21.52         | 22.10 | $\sim$   |           | Depth to Water<br>(feet)              |                             | Static Water Level:Depth of Well Screen:Depth to Top of Pump:1/2". LDPETubing Type:1/2". LDPE | A Charles In the          |                                                                                                                                                      |
| Water Level:                               |  |               |       |          |           |                                       |                             |                                                                                               |                           |                                                                                                                                                      |
| 22.12                                      |  |               |       |          |           | Comments                              |                             |                                                                                               |                           |                                                                                                                                                      |

| Purge Time Start          | Total          |  | 12.32  | 1230  | 1725   | 320 /50            |       | 205 150      |           | Time Pump Rate<br>(ml/min)            | FIELD PARAMETER MEASUREMENT | WELL SAMPLING INFORMATIONWell Diameter:2"Depth of Well:2 \(. & S)Measuring Point:Top of PVCPump Type:1.75" Bladder 1 | WELL I.D.: | 300 State Street<br>Rochester, New York 14614<br>Telephone: (585) 454-6110<br>Facsimile: (585) 454-3066 |
|---------------------------|----------------|--|--------|-------|--------|--------------------|-------|--------------|-----------|---------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------|
|                           |                |  | 0.35   |       | × •    | N 0                |       | 20,05        |           | re Gallons<br>Purged                  | ER MEASI                    | ter:<br>bil:<br>boint:                                                                                               | D::        | Associates, PC,<br>eet<br>w York 14614<br>85) 454-6110<br>\$5) 454-3066                                 |
| 205                       | Gallons Purged |  | 7.32   | 7.33  | 44     | L L<br>NV L<br>V V | 9415  | <i>tt</i> 't | +/- 0.1   | n<br>Maria<br>Maria<br>Maria          | UREMENT                     | $\frac{2^{n}}{2 < k}$ Top of PVC 1.75" Bladder pump                                                                  | -SB2       |                                                                                                         |
| c                         | urged          |  | Lt.S   | Jul - | 14.1   | 13.8               | 14.0  | 14,2         |           | ്റ്റ്റ                                |                             | Ider pumj                                                                                                            |            | MW DO                                                                                                   |
| Purge Time End:           |                |  | 2.00   | 2.00  | 5.04   | 2000               | N N N | 2.02         | ÷/- 3%    | Conductivity<br>(mS/cm)               |                             | 0                                                                                                                    | Weather:   |                                                                                                         |
| ne End:                   |                |  | 54.9   | 34.6  | 52     | 577                | 419   | 458          |           | ) (Nrturbi                            |                             |                                                                                                                      | 1          | IIIII                                                                                                   |
|                           |                |  | 7002   | 6.89  | tt'5   | 107                | 20.5  | らよう          | + 10%     | Dissolved<br>O <sub>2</sub><br>(mg/L) |                             |                                                                                                                      |            |                                                                                                         |
|                           |                |  | NS1 V  | 43.2  | 26     | +731               | -11,5 | -            | +/- 10 mV | Redox<br>(mV)                         |                             | Static Water Level:<br>Length of Well Scre<br>Depth to Top of Pur<br>Tubing Type:                                    |            |                                                                                                         |
| Final Stat                |                |  | 23,26  | 22    | 123.22 | 1000               | 4     | 23.29        |           | Depth to Water<br>(fect)              | A LA CALLES                 | Level: 2<br>Il Screen:<br>of Pump: <u>14</u>                                                                         |            |                                                                                                         |
| Final Static Water Level: |                |  | Jample | ì     |        |                    |       |              |           |                                       |                             | Z Ledg                                                                                                               |            |                                                                                                         |
|                           |                |  | 1205   | נ     |        |                    |       |              |           | Comments                              |                             |                                                                                                                      |            |                                                                                                         |

| A<br>300 State Street<br>Rochester, New Y<br>Telephone: (585)<br>Facsimile: (585) | ssociates,<br>ork 14614<br>454-6110<br>454-3066<br>:                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Nar<br>Location:<br>Project No.<br>Sampled B:<br>Date:<br>Weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | Corning N<br>2150606<br>2150606<br>2150606<br>516/15<br>516/15                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5°<br>4*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELL SAMP                                                                          | LING INB                                                                                                                                                                                                             | ORMAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Well Diameter:<br>Denth of Well-                                                  | M                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Static Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Depth of Well:<br>Measuring Poir<br>Pump Type:                                    | 1 1 1 1                                                                                                                                                                                                              | Top of PV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 'C<br>lder pumj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Length of Wo<br>Depth to Top<br>Tubing Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of Pump:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "/" LDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RAMETER                                                                           | <b>MEASU</b>                                                                                                                                                                                                         | REMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pump Rate<br>(ml/min)                                                             | Gallons<br>Purged                                                                                                                                                                                                    | Цđ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temp<br>℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conductivity<br>(mS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) (NTC                                                     | Dissolved<br>O <sub>2</sub><br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                | Redox<br>(mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth to Water<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                   |                                                                                                                                                                                                                      | +/- 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +/- 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            | + 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +/- 10 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                   | 25.0                                                                                                                                                                                                                 | 7.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21000                                                      | W - Et. Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | brown in oda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | 0.5                                                                                                                                                                                                                  | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            | L CHINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | brown no dear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                   | 0.75                                                                                                                                                                                                                 | 7.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                         | 6.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L' 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | brown re oder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                   | 1.0                                                                                                                                                                                                                  | 7,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C10,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۲q                                                         | 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ଚ୍ <u>ଚ</u> ୁ<br>ଚ୍ଚୁ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27, 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                   | 1.25                                                                                                                                                                                                                 | hh L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lex                                                        | 16.45<br>16.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                   | 1.675                                                                                                                                                                                                                | 3h'L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                          | 6.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (low a ador                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   | 528-1                                                                                                                                                                                                                | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32                                                         | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                   | 2.0                                                                                                                                                                                                                  | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                         | 6.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                   | 2.25                                                                                                                                                                                                                 | P. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                                                         | 6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - Sample                                                                          | 4                                                                                                                                                                                                                    | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ()0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                         | 5.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and of sample collection - final readings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total                                                                             | 2.25                                                                                                                                                                                                                 | Gallons I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | urged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| rge Time Sta                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Purge Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                          | 0:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Final Static Water Level: 15.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :                                                                                 |                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ie Linu.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                   | A<br>300 State Street<br>Rochester, New Y<br>Telephone: (585)<br>Facsimile: (585)<br>Facsimile: (585)<br>Well Diameter:<br>Depth of Well:<br>Measuring Poin<br>Pump Type:<br>Pump Rate<br>(ml/min)<br>Total<br>Total | Source       Associates         300 State Street       Associates         Rochester, New York 14614       Telephone: (585) 454-6110         Facsimile: (585) 454-3066       WELL I.D.:       MW:         WELL SAMPLING INF       MW:         Well Diameter:       MW:         Pump Type:       Pump Rate       Gallons         Pump Rate       0.35       0.5         (ml/min)       0.35       0.75         1.0       1.025       1.5         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025         1.025       1.025       1.025 | Associates, PC.         Associates, PC.         State Street       New York 14614         phone: (585) 454-6110         ELL I.D.: MW-SRS G         Information functions         prime Rameter: I.75" Blar         Pump Rate Gallons         gallons         PH         Pump Rate Gallons $0.55$ $1.40$ $0.55$ $1.42$ $0.55$ $1.42$ $0.55$ $1.42$ $1.42$ $1.57$ $1.42$ $1.42$ $1.42$ $1.42$ $1.42$ $1.42$ $1.42$ $1.42$ | Besocietes<br>Besocietes<br>Drk 14614<br>454-6110<br>454-6110<br>454-6110<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-616<br>154-617<br>15-675<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0 | urged 14.1 00 114.3 00 00 00 00 00 00 00 00 00 00 00 00 00 | Project Name:       Location:         Project No.:       Sampled By:         Date:       Date:         Temp       Conductivity         Temp       Conductivity         I4.3 $0.017$ I4.3 $0.017$ I4.1 $0.017$ Jacol $32$ I4.1 $0.017$ Jacol $32$ I4.1 $0.017$ Jacol $32$ I4.1 $32$ I4.1 $34$ Purge Time End:       Jacol | Location:         Project No.:         Sampled By:         Date:         Date: $Date:$ Veather: $der pump$ $Conductivity$ $Veather:$ | Project Name: Corving No.: 215 o 6 d 6         Sampled By: 253         Date: 215 o 6 d 6         Sampled By: 253         Date: 215 o 6 d 6         Date: 256 d 6         Date: 256 d 6         Date: 0.15 o 6 d 6         ON         Temp       Conductivity Turbi dity 02         ON         I 4.3       O 0.017       S 4       Conductivity (mg/L)         I 4.1       O.017       S 4       Conductivity (mg/L)         I 4.1       O.017       S 4       Conductivity (mg/L)         I 4.1       O.017       S 4       Conductivity (mg/L) | Inclusion:       Corning Ny         Project No.: $215 \circ 6 \circ 6$ Sampled By: $255$ Date: $\sqrt{4} \leftarrow 1 + \frac{1}{9} \sqrt{5} \cdot 5$ Date: $\sqrt{4} \leftarrow 1 + \frac{1}{9} \sqrt{5} \cdot 5$ ON       Static Water Level:         Location: $\sqrt{4} \leftarrow 1 + \frac{1}{9} \sqrt{5} \cdot 5$ ON       Static Water Level:         Location: $\sqrt{4} \leftarrow 1 + \frac{1}{9} \sqrt{5} \cdot 5$ ON       Static Water Level:         Length of Well Scree       Depth to Top of Pum         der pump $\sqrt{4} \leftarrow 10$ $\sqrt{9} \leftarrow 10$ 'C       (mS/cm)       (NTU       (mg/L)       Depth to Top of Pum         II-1.3 $0 \cdot 017$ $116$ $(\sqrt{16} + \frac{1}{9} \sqrt{5} \cdot 2)$ Iso         II-1.3 $0 \cdot 017$ $91$ $6 \cdot \sqrt{13} - \frac{1}{3} \sqrt{5} \sqrt{5}$ Depth to Top of Pum         II+3.3 $0 \cdot 017$ $91$ $6 \cdot \sqrt{13} - \frac{1}{3} \sqrt{5} \sqrt{5} \sqrt{5}$ Iso         II+3.3 $0 \cdot 017$ $91$ $6 \cdot \sqrt{13} - \frac{1}{3} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5}$ Iso         II+4.1 $0 \cdot 017$ $91$ $6 \cdot \sqrt{13} - \frac{1}{3} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} 5$ |

| 0 P                                            |             | 12.10 | 2007                       | 1450                                     |           | Time                                  | FIELD P/                    | Pu W                                                                                                                 | Far Ro                                                                                                                                                           |
|------------------------------------------------|-------------|-------|----------------------------|------------------------------------------|-----------|---------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total 🖉 .<br>Purge Time Start:<br>OBSERVATIONS |             |       |                            |                                          | 0         | Pump Rate<br>(ml/min)                 | FIELD PARAMETER MEASUREMENT | WELL SAMPLING INFORMATIONWell Diameter:Depth of Well:Depth of Well:Measuring Point:Top of PVCPump Type:1.75" Bladder | Associates<br>Associates<br>add State Street<br>Rochester, New York 14614<br>Telephone: (585) 454-6110<br>Facsimile: (585) 454-6110<br>Facsimile: (585) 454-6110 |
| لاب ا                                          |             |       | 202.00                     | 0.00                                     | >         | Gallons<br>Purged                     | <b>R MEASUH</b>             |                                                                                                                      |                                                                                                                                                                  |
| Gallons Purged                                 |             |       | 1<br>2<br>2<br>2<br>7<br>7 |                                          | +/- 0.1   | Ę                                     | DEMENT                      | FORMATION<br>2 <sup>ar-</sup> (<br>18.45<br>Top of PVC<br>1.75" Bladder pump                                         | SBZ D                                                                                                                                                            |
| Č.                                             |             |       | 18.7                       | 1.98                                     |           | Temp<br>°C                            |                             | N<br>N                                                                                                               |                                                                                                                                                                  |
| Purge Time End:                                |             | -     | 22.1                       | Oft                                      | +/- 3%    | Conductivity<br>(mS/cm)               |                             |                                                                                                                      | Project Name:<br>Location:<br>Project No.:<br>Sampled By:<br>Date:<br>Weather:                                                                                   |
| e End:                                         |             |       | 25.54                      | 386                                      |           | Turbi<br>dity<br>(NTU                 |                             |                                                                                                                      |                                                                                                                                                                  |
| 5                                              |             |       | 46.92                      | 82.8                                     | +10%      | Dissolved<br>O <sub>2</sub><br>(mg/L) |                             |                                                                                                                      | AA<br>Nercant                                                                                                                                                    |
| 5                                              |             |       | 2 2 2 1 -                  | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | +/- 10 mV | Redox<br>(mV)                         |                             | Static Water Level:<br>Length of Well Screen:<br>Depth to Top of Pump:<br>Tubing Type:                               | T T                                                                                                                                                              |
| Final Sta                                      |             |       | 337<br>37                  | PP                                       | ~ 0       | Depth to Water<br>(feet)              |                             | ст. ::<br>С _ ::: :: :: :: :: :: :: :: :: :: :: ::                                                                   |                                                                                                                                                                  |
| Final Static Water Level:                      | Sample 1515 |       |                            | stop pump to pecharge a 1953             |           | Comments                              |                             | r CS                                                                                                                 |                                                                                                                                                                  |

| O P                                           | 035      | 2201020        | Time                      | W<br>D<br>M<br>FIELD P.                                                                                                                                                                                           | Fa 30                                                                                                                                                 |
|-----------------------------------------------|----------|----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total 0/<br>Purge Time Start:<br>OBSERVATIONS |          | 0.5            | Pump Rate<br>(ml/min)     | WELL SAMPLING INFORMATION         Well Diameter:       2"         Depth of Well:       18,00         Measuring Point:       Top of PVC         Pump Type:       1.75" Bladder         FIELD PARAMETER MEASUREMENT | Associates<br>Associates<br>300 State Street<br>Rochester, New York 14614<br>Telephone: (585) 454-6110<br>Facsimile: (585) 454-3066<br>WELLL I.D.: MM |
| 2                                             | 0,25     | 200            | Gallons<br>Purged         | R MEASU                                                                                                                                                                                                           | Associates, PC.<br>t<br>York 14614<br>5) 454-6110<br>) 454-3066<br>) 45 <b>4-3066</b>                                                                 |
| Gallons Purged                                | 122      | 32.1-<br>32.1- |                           | FORMATION<br>2"<br>16,00<br>Top of PVC<br>1.75" Bladder pump<br>JREMENT                                                                                                                                           | L4614<br>1-6110<br>3066<br>MW-SB2-WW-09                                                                                                               |
| urged                                         | 22       | 202            | Temp<br>°C                | der pump                                                                                                                                                                                                          |                                                                                                                                                       |
| Purge Time End:                               |          | 1-37           | Conductivity<br>(mS/cm)   |                                                                                                                                                                                                                   | Project Name:<br>Location:<br>Project No.:<br>Sampled By:<br>Date:<br>Weather:                                                                        |
| ne End:                                       | 29.8     | 211662         | Turbi<br>dity<br>)        |                                                                                                                                                                                                                   | y: ne                                                                                                                                                 |
| 1040                                          | 6.09     | 56.25<br>+ 10% | Dissolved<br>Oz<br>(mg/L) |                                                                                                                                                                                                                   | 0) 2<br>44                                                                                                                                            |
| 0                                             | 154.2    | 5-20<br>7-2014 | Redox<br>(mV)             | Static Water Level:<br>Length of Well Screen:<br>Depth to Top of Pump:<br>Tubing Type:                                                                                                                            |                                                                                                                                                       |
| Final Sta                                     | 12,03-   | 2021           | Depth to Water<br>(feet)  | LIFE                                                                                                                                                                                                              |                                                                                                                                                       |
| Final Static Water Level:                     | Saint le |                |                           | ∃.0 (<br>%" LDPE                                                                                                                                                                                                  |                                                                                                                                                       |
| L. D.                                         | 0401     |                | Comments                  |                                                                                                                                                                                                                   |                                                                                                                                                       |
|                                               |          |                |                           |                                                                                                                                                                                                                   |                                                                                                                                                       |

| Total 2,35 Gallons Purged<br>Purge Time Start: 050<br>OBSERVATIONS | 2.71 524 58.0 A 21/1<br>7.71 524 58.0 ASI 001 |            | Time Pump Rate Gallons pH Temp<br>(ml/min) Purged 2,39<br>/+/- 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R MEASURI | Well Diameter:2"Depth of Well:18.8 °Measuring Point:Top of PVCPump Type:1.75" Bladder pump | WELL SAMPLING INFORMATION | Associates, FC.<br>300 State Street<br>Rochester, New York 14614<br>Telephone: (585) 454-6110<br>Facsimile: (585) 454-3066<br>WELL I.D.: -MW-SB2 |
|--------------------------------------------------------------------|-----------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Purge Time End:                                                    | 200                                           | 1.57 10045 | Conductivity Turbi<br>(mS/cm) dity<br>(NTU<br>)<br>+/- 3% 783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | đ                                                                                          |                           | Project Name:<br>Location:<br>Project No.:<br>Sampled By:<br>Date:<br>Weather:                                                                   |
|                                                                    | 4.83                                          | 1901 662 5 | $\begin{array}{c cccc} \text{si} & \text{Dissolved} & \text{Redox} \\ & O_2 & (mV) \\ & (mg/L) & \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} & \text{A} \\ \text{A} & \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} & \text{A} \\ \text{A} & \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} & \text{A} \\ \text{A} & \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} & \text{A} \\ \text{A} & \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} & \text{A} \\ \text{A} & \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} & \text{A} \\ \text{A} & \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} & \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \text{A} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \ \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \end{array} \\ \end{array} \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \end{array} \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \\ \end{array} \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \end{array} \end{array} \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \end{array} \end{array} \\ \end{array} \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \end{array} \end{array}  \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \end{array} \end{array}  \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \end{array} \end{array} \end{array}  \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \end{array} \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \end{array}  \\ \begin{array}{c} \text{A} & \text{A} \end{array} \end{array} \\ \end{array}  \\ \end{array}  \\ \end{array} \end{array}  \\ \end{array} |           | Static<br>Lengt<br>Depth<br>Tubin                                                          |                           |                                                                                                                                                  |
| Final St                                                           | 404                                           | 1 16,50    | lox Depth to Water<br>V) (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | Static Water Level:<br>Length of Well Screen:<br>Depth to Top of Pump:<br>Tubing Type:     |                           |                                                                                                                                                  |
| Final Static Water Level: $(6, 42)$                                | Sample 1110                                   |            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 10,40                                                                                      |                           |                                                                                                                                                  |

|              | kuud                            |                |  | 015        | 018   | 205   | 500   | 750   |           | Time                                  | <b>EIELD</b>                | اسی پیسٹر عورہ اس                                                                      | -                         |                                                                                                                                     |
|--------------|---------------------------------|----------------|--|------------|-------|-------|-------|-------|-----------|---------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| OBSERVATIONS | Purge Time Start:               | Total          |  |            |       |       |       | 150   |           | Pump Rate<br>(ml/min)                 | FIELD PARAMETER MEASUREMENT | Well Diameter:<br>Depth of Well:<br>Measuring Point:<br>Pump Type:                     | WELL SAMPLING INFORMATION | Associate<br>300 State Street<br>Rochester, New York 14614<br>Telephone: (585) 454-6110<br>Facsimile: (585) 454-3066<br>WELLL I.D.: |
| ONS          |                                 | 0.3            |  | 5,0        | 0.25  | 0.20  | 210   | 20.05 |           | Gallons<br>Purged                     | R MEASU                     | E                                                                                      | PLING IN                  | *** 45.4 S                                                                                                                          |
|              | 25                              | Gallons Purged |  | +,25       | 24    | 120   | 310   | 5174  | +/- 0.1   | Ħď                                    | REMENT                      | 2"<br>18.89<br>Top of PVC<br>1.75" Bladder pump                                        | FORMAT                    | Diates, PD,<br>14614<br>146110<br>3066<br>3066                                                                                      |
| 10           |                                 | Purged         |  | 620        | 13,0  | 12.9  | 6 1   | 12,9  |           | °C                                    | Ţ                           | dder pum                                                                               | ION                       | 2                                                                                                                                   |
|              | Purge Time End:                 |                |  | 673        | 567   | 1.40  | 0.9   |       | +/+ 3%    | Conductivity<br>(mS/cm)               |                             |                                                                                        |                           | Project Name:<br>Location:<br>Project No.:<br>Sampled By:<br>Date:<br>Weather:                                                      |
|              | le End:                         |                |  | 58.1       | 31.2  | 53,2  | 014   | 222   |           | Turbi<br>dity<br>(NTU)                |                             |                                                                                        |                           | × №                                                                                                                                 |
| 2            | 515                             |                |  | 4.10       |       | £1.5  | 200   | 5550  | + 10%     | Dissolved<br>O <sub>2</sub><br>(mg/L) |                             |                                                                                        |                           | 5                                                                                                                                   |
| 2446-220     |                                 |                |  | 222.4      | 222.4 | 222.4 | - 11  | 2239  | +/- 10 mV | Redox<br>(mV)                         |                             | Static Water Level:<br>Length of Well Screen:<br>Depth to Top of Pump:<br>Tubing Type: |                           |                                                                                                                                     |
|              | Final Stat                      |                |  | 16-5 3     | 1 1   | 10.5% | 16.53 | 16.53 |           | Depth to Water<br>(feet)              | ALL TRAFT IN                | Å ä                                                                                    | All a star                |                                                                                                                                     |
|              | Final Static Water Level: (6.53 |                |  | Sample 815 |       |       |       |       |           | Comments                              |                             | 1 65 1                                                                                 |                           |                                                                                                                                     |

ンバ

| OBSERVATIONS        | Total (<br>Purge Time Start: | 3550  | 251 251 251 251 251 251 251 251 251 251 | Tune Pump Rate<br>(ml/min)                     | Well Diameter:2"Depth of Well:\$\lambda \sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\ | ABSOC<br>300 State Street<br>Rochester, New York 14<br>Telephone: (585) 454-3<br>WELLL I.D.: |
|---------------------|------------------------------|-------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| VIIONS N            | Total D.4<br>me Start:       | 0.4   | 200                                     | )) Purged                                      | eter:<br>'ell:<br>Point:<br>"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                              |
| 8 B                 | Gallons Purged               | Shrt  | 14:4                                    | 1.0 -/-+<br>Fid                                | 2"<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ciates, PD.<br>14614<br>-6110<br>3066<br>MW-SB2                                              |
| Dind                | Purged                       | 13.5  | 13.4<br>13.4                            | °C                                             | 2"<br>2.<br>Top of PVC<br>1.75" Bladder pump<br>REMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW (2                                                                                        |
| Mrs mist Blind Dup. | Purge Time End:              | [.40  | 541<br>1.45<br>1.45                     | Conductivity<br>(mS/cm)<br>+/- 3%              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Name:<br>Location:<br>Project No.:<br>Sampled By:<br>Date:<br>Weather:               |
|                     | le End:                      | 37×55 | 609<br>8.55<br>609                      | Turbi<br>div<br>(NTU                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |
|                     | 1550                         | 7232  | 649                                     | Dissolved<br>O <sub>2</sub><br>(mg/L)<br>+ 10% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AA<br>51510                                                                                  |
|                     | e l                          | 65.7  |                                         | Redox<br>(mV)<br>+/- 10 mV                     | Static Water Level:<br>Length of Well Scru<br>Depth to Top of Pu<br>Tubing Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
|                     | Final Stati                  | 20.31 | 20.39                                   | Depth to Water<br>(feet)                       | mp:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |
|                     | Final Static Water Level:    | Sampe |                                         |                                                | LDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |
|                     | 20.39                        | 1570  |                                         | Comments                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |

| q. O                                                                                                           |                | 12:05                                                                                                 | Time                                           | ۷<br>P<br>P<br>P<br>P                                                                                                                                                        | 🖌 ారా నెళ్లు 📻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purge Time Start: {2:00<br>OBSERVATIONS                                                                        |                | free 1                                                                                                | Pump Rate<br>(ml/min)                          | WELL SAMPLING INFORMATION         Well Diameter:       2"         Depth of Well:       2"         Measuring Point:       Top of PVC         Pump Type:       1.75" Bladder 1 | Associates, PC.<br>300 State Street<br>Rochester, New York 14614<br>Telephone: (585) 454-6110<br>Facsimile: (585) 454-3066<br>WELL I.D.: MW-SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ut: [2,0                                                                                                       |                | 0.25                                                                                                  | Gallons<br>Purged                              | LING INI<br>at:                                                                                                                                                              | SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES,<br>SSOCIALES, |
|                                                                                                                | Gallons Purged | 7.23                                                                                                  | рН<br>+/- 0.1                                  | FORMATION<br>2"<br>2].07<br>Top of PVC<br>1.75" Bladder pump<br>IREMENT                                                                                                      | ociates, PC.<br>14614<br>4-6110<br>-3066<br>MW-SRZ   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| de la compañía de la |                | 1.8                                                                                                   | Temp<br>°C                                     | ION<br>C<br>Ider pump                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Purge Time End: 12:23                                                                                          |                | 2.04<br>2.04<br>2.04<br>2.04<br>2.04<br>2.04                                                          | Conductivity<br>(mS/cm)<br>+/- 3%              |                                                                                                                                                                              | Project Name:<br>Location:<br>Project No.:<br>Sampled By:<br>Date:<br>Weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| e End.                                                                                                         |                | 2:00                                                                                                  | Turbi<br>dity<br>(NTU<br>)                     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2:23                                                                                                           |                | 2022                                                                                                  | Dissolved<br>O <sub>2</sub><br>(mg/L)<br>+ 10% |                                                                                                                                                                              | Corning<br>Corving<br>2150606<br>PCJJ<br>PCJJ<br>OVENCAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                | 74.5<br>74.4<br>74.9<br>75.5<br>76.0                                                                  | Redox<br>(mV)<br>+/- 10 mV                     | Static Water Level:<br>Length of Well Screen:<br>Depth to Top of Pump:<br>Tubing Type:                                                                                       | Corning Hospital<br>Carring NY<br>2150606<br>1255<br>16/15<br>Overcast 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Final St                                                                                                       |                | 20.30                                                                                                 | Depth to Water<br>(feet)                       | CIII N                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Final Static Water Level: 20.30                                                                                |                | lt trury no oder<br>Clean no oder<br>Clean no oder<br>Clean no oder<br>Clean no oder<br>Clean no oder | Comments                                       | 20.25'                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



Engineering Architecture Environmental

# **APPENDIX 2**

Laboratory Reports

Report Date: 05-May-15 17:09



Final ReportRe-Issued ReportRevised Report

Labella Associates, P.C. 300 State Street Suite 201 Rochester, NY 14614 Attn: Dan Noll

Project: Corning Hospital, NY Project #: 2150606

| Laboratory ID | <u>Client Sample ID</u> | Matrix  | <b>Date Sampled</b> | Date Received   |
|---------------|-------------------------|---------|---------------------|-----------------|
| SC06702-01    | SB-01-3-4'              | Soil    | 27-Apr-15 10:10     | 28-Apr-15 14:52 |
| SC06702-02    | SB-01-18-20'            | Soil    | 27-Apr-15 11:00     | 28-Apr-15 14:52 |
| SC06702-03    | SB-03-3-4'              | Soil    | 27-Apr-15 12:00     | 28-Apr-15 14:52 |
| SC06702-04    | SB-04-14-16'            | Soil    | 27-Apr-15 14:00     | 28-Apr-15 14:52 |
| SC06702-05    | Blind Duplicate 1       | Soil    | 27-Apr-15 00:00     | 28-Apr-15 14:52 |
| SC06702-06    | SB-06-19-20'            | Soil    | 27-Apr-15 16:30     | 28-Apr-15 14:52 |
| SC06702-07    | SB-04-3-4'              | Soil    | 27-Apr-15 13:40     | 28-Apr-15 14:52 |
| SC06702-08    | SB-05-7-8'              | Soil    | 27-Apr-15 00:00     | 28-Apr-15 14:52 |
| SC06702-09    | SB-02-10.6-11.6'        | Soil    | 27-Apr-15 11:30     | 28-Apr-15 14:52 |
| SC06702-10    | SB-03-9-10'             | Soil    | 27-Apr-15 13:00     | 28-Apr-15 14:52 |
| SC06702-11    | SB-05-22-24'            | Soil    | 27-Apr-15 15:30     | 28-Apr-15 14:52 |
| SC06702-12    | SB-06-5-6'              | Soil    | 27-Apr-15 16:00     | 28-Apr-15 14:52 |
| SC06702-13    | SB-07-19-20'            | Soil    | 27-Apr-15 17:00     | 28-Apr-15 14:52 |
| SC06702-14    | Trip Blank              | Aqueous | 27-Apr-15 00:00     | 28-Apr-15 14:52 |
| SC06702-15    | SB-08-4-5'              | Soil    | 28-Apr-15 09:20     | 28-Apr-15 14:52 |
| SC06702-16    | SB-08A-9-10.4'          | Soil    | 28-Apr-15 10:00     | 28-Apr-15 14:52 |
| SC06702-17    | SB-09-2-3'              | Soil    | 28-Apr-15 10:25     | 28-Apr-15 14:52 |
| SC06702-18    | Blind Duplicate 2       | Soil    | 28-Apr-15 00:00     | 28-Apr-15 14:52 |
| SC06702-19    | SB-09-8-10.4'           | Soil    | 28-Apr-15 10:40     | 28-Apr-15 14:52 |
|               |                         |         |                     |                 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435



Authorized by:

Aliole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 54 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

# CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 0.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

# SW846 6010C

#### **Duplicates:**

1508397-DUP1 Source: SC06702-08

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Cadmium

S504194-SRD1 Source: SB-01-3-4'

The dilution analysis is not within a control limit of 10%, therefore a chemical or physical interference effect must be suspected. Cadmium (28%)

Lead (13%)

# SW846 8081B

#### Samples:

SC06702-03 SB-03-3-4'

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

Decachlorobiphenyl (Sr)

# SW846 8260C

#### **Calibration:**

1504013

Analyte quantified by quadratic equation type calibration.

Bromoform Naphthalene

This affected the following samples:

S502844-ICV1

# **Calibration:**

1504015

Analyte quantified by quadratic equation type calibration.

2-Butanone (MEK) 2-Hexanone (MBK) 4-Methyl-2-pentanone (MIBK) Bromoform Carbon tetrachloride cis-1,3-Dichloropropene Dibromochloromethane Naphthalene trans-1,3-Dichloropropene

This affected the following samples:

1508450-BLK1 1508450-BS1 1508450-BSD1 1508450-MS1 1508452-BLK1 1508452-BS1 1508452-BSD1 1508452-MS1 Blind Duplicate 1 S503006-ICV1 S504032-CCV1 S504076-CCV1 SB-02-10.6-11.6' SB-03-3-4' SB-04-14-16' SB-07-19-20' SB-09-8-10.4'

## 1504038

Analyte quantified by quadratic equation type calibration.

Bromoform Naphthalene trans-1,3-Dichloropropene

This affected the following samples:

1508341-BLK1 1508341-BS1 1508341-BSD1 S503316-ICV1 S503974-CCV1 Trip Blank

# Blanks:

## 1508452-BLK1

The method blank contains analyte at a concentration above the MRL, however no reportable concentration is present in the sample.

Trichloroethene

## Laboratory Control Samples:

1508341 BS/BSD

## Laboratory Control Samples:

#### 1508341 BS/BSD

Carbon disulfide percent recoveries (80/69) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

Trip Blank

#### 1508450 BS/BSD

Acetone percent recoveries (95/182) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Blind Duplicate 1 SB-02-10.6-11.6' SB-03-3-4' SB-04-14-16' SB-07-19-20'

Carbon tetrachloride percent recoveries (122/138) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Blind Duplicate 1 SB-02-10.6-11.6' SB-03-3-4' SB-04-14-16' SB-07-19-20'

#### 1508450 BSD

Acetone RPD 62% (30%) is outside individual acceptance criteria.

#### 1508450-BSD1

LCS/LCSD were analyzed in place of MS/MSD.

#### 1508452-BS1

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

Trichloroethene

### 1508452-BSD1

Analyte is found in the associated blank as well as in the sample (CLP B-flag). Trichloroethene

#### Spikes:

1508450-MS1 Source: SC06702-13

## Spikes:

1508450-MS1 Source: SC06702-13

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane (EDB) 1,3,5-Trichlorobenzene 2-Butanone (MEK) 4-Isopropyltoluene Acetone Acrylonitrile Bromoform Hexachlorobutadiene Naphthalene n-Butylbenzene trans-1,4-Dichloro-2-butene

1508452-MS1

Source: SC06702-19

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

Trichloroethene

#### Spikes:

1508452-MS1 Source: SC06702-19

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3,5-Trichlorobenzene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone (MBK) 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) Acetone Acrylonitrile Ethanol Hexachlorobutadiene Isopropylbenzene Methyl tert-butyl ether Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Styrene Tert-Butanol / butyl alcohol tert-Butylbenzene Tetrahydrofuran trans-1,4-Dichloro-2-butene

## 1508542-MS1 Source: SC06702-19RE1

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,2-Dibromo-3-chloropropane Bromoform Bromomethane Dibromochloromethane sec-Butylbenzene

# 1508542-MSD1 Source: SC06702-19RE1

RPD out of acceptance range.

Bromomethane

#### Spikes:

1508542-MSD1 Source: SC06702-19RE1

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,2-Dibromo-3-chloropropane Bromoform Bromomethane Carbon disulfide

1508645-MS1 Source: SC06702-13RE1

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,2-Dibromo-3-chloropropane Bromoform Bromomethane Carbon disulfide

1508645-MSD1 Source: SC06702-13RE1

RPD out of acceptance range.

Bromomethane

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,2-Dibromo-3-chloropropane Acetone Bromomethane Carbon disulfide

#### Samples:

#### S503974-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Bromochloromethane (-21.8%) n-Butylbenzene (23.6%)

This affected the following samples:

1508341-BLK1 1508341-BS1 1508341-BSD1 Trip Blank

#### S504032-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1,2-Tetrachloroethane (23.4%) Carbon disulfide (25.5%) Ethanol (-30.3%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

1,2,3-Trichlorobenzene (-21.8%) 1,2,4-Trichlorobenzene (-23.5%) Naphthalene (-24.9%)

#### Samples:

## S504032-CCV1

This affected the following samples:

1508450-BLK1 1508450-BS1 1508450-BSD1 1508450-MS1 Blind Duplicate 1 SB-02-10.6-11.6' SB-03-3-4' SB-04-14-16' SB-07-19-20'

# S504076-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1,2-Tetrachloroethane (22.8%) 1,2-Dibromoethane (EDB) (24.2%) Tert-Butanol / butyl alcohol (22.8%) Trichloroethene (26.1%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

1,2,4-Trichlorobenzene (-22.6%) Acetone (26.3%) Dibromochloromethane (23.2%)

This affected the following samples:

1508452-BLK1 1508452-BS1 1508452-BSD1 1508452-MS1 SB-09-8-10.4'

## S504077-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Acrolein (24.1%)

This affected the following samples:

1508451-BLK1 1508451-BS1 1508451-BSD1

## S504119-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,2-Dibromo-3-chloropropane (-27.2%) Bromomethane (-23.3%) Carbon disulfide (-23.4%)

This affected the following samples:

1508542-BLK1 1508542-BS1 1508542-BSD1 1508542-MS1 1508542-MSD1 SB-09-8-10.4'

#### Samples:

#### S504179-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,2-Dibromo-3-chloropropane (-29.0%) Carbon disulfide (-22.1%)

This affected the following samples:

| 1508645-BLK1 |
|--------------|
| 1508645-BS1  |
| 1508645-BSD1 |
| 1508645-MS1  |
| 1508645-MSD1 |
| SB-07-19-20' |
|              |

SC06702-04 SB-04-14-16'

This compound is a common laboratory contaminant.

Methylene chloride

SC06702-05 Blind Duplicate 1

This compound is a common laboratory contaminant.

Methylene chloride

SC06702-09 SB-02-10.6-11.6'

This compound is a common laboratory contaminant.

Methylene chloride

SC06702-13 SB-07-19-20'

This compound is a common laboratory contaminant.

Methylene chloride

SC06702-13RE1 SB-07-19-20'

Sample data reported for QC purposes only.

#### This compound is a common laboratory contaminant.

Methylene chloride

SC06702-19 SB-09-8-10.4'

This compound is a common laboratory contaminant.

Methylene chloride

SC06702-19RE1 SB-09-8-10.4'

Sample data reported for QC purposes only.

This compound is a common laboratory contaminant.

Methylene chloride

# SW846 8270D

# Calibration:

1503056

# SW846 8270D

## **Calibration:**

1503056

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol 4-Nitrophenol

This affected the following samples:

S502322-ICV1

## Spikes:

1508313-MS1 Source: SC06702-12

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol Benzidine Benzoic acid Hexachlorobutadiene Hexachlorocyclopentadiene

# 1508313-MSD1 Source: SC06702-12

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

Hexachloroethane

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol Benzidine Benzoic acid Hexachlorocyclopentadiene

# Samples:

## S504151-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2-Methylnaphthalene (23.0%) Azobenzene/Diphenyldiazene (20.6%) Benzo (b) fluoranthene (22.1%) Bis(2-chloroisopropyl)ether (28.3%) Di-n-octyl phthalate (27.0%) N-Nitrosodimethylamine (30.0%) Pyridine (26.9%)

This affected the following samples:

1508313-DUP1 1508313-MS1 1508313-MSD1 SB-01-3-4' SB-03-3-4' SB-06-5-6' SB-08A-9-10.4'

# SW846 8270D

#### Samples:

#### S504202-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2-Methylnaphthalene (23.0%) Bis(2-chloroisopropyl)ether (42.4%) N-Nitrosodi-n-propylamine (22.1%) Pentachlorophenol (-27.1%)

This affected the following samples:

Blind Duplicate 2 SB-05-7-8' SB-09-2-3'

SC06702-01 SB-01-3-4'

The Reporting Limit has been raised to account for matrix interference.

SC06702-17 SB-09-2-3'

The Reporting Limit has been raised to account for matrix interference.

SC06702-18 Blind Duplicate 2

The Reporting Limit has been raised to account for matrix interference.

# SW846 8270D TICS

## Samples:

SC06702-01 SB-01-3-4'

The Reporting Limit has been raised to account for matrix interference.

SC06702-17 SB-09-2-3'

The Reporting Limit has been raised to account for matrix interference.

SC06702-18 Blind Duplicate 2

The Reporting Limit has been raised to account for matrix interference.

# Sample Acceptance Check Form

Client:Labella Associates, P.C.Project:Corning Hospital, NY / 2150606Work Order:SC06702Sample(s) received on:4/28/2015

# The following outlines the condition of samples for the attached Chain of Custody upon receipt.

|                                                                                                                                                                                                                                                                                      | Yes          | <u>No</u>    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Were custody seals present?                                                                                                                                                                                                                                                          |              | $\checkmark$ |
| Were custody seals intact?                                                                                                                                                                                                                                                           |              |              |
| Were samples received at a temperature of $\leq 6^{\circ}$ C?                                                                                                                                                                                                                        | $\checkmark$ |              |
| Were samples cooled on ice upon transfer to laboratory representative?                                                                                                                                                                                                               | $\checkmark$ |              |
| Were sample containers received intact?                                                                                                                                                                                                                                              | $\checkmark$ |              |
| Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?                                                                                                                             |              | $\checkmark$ |
| Were samples accompanied by a Chain of Custody document?                                                                                                                                                                                                                             | $\checkmark$ |              |
| Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample? |              |              |
| Did sample container labels agree with Chain of Custody document?                                                                                                                                                                                                                    |              | $\checkmark$ |
| Were samples received within method-specific holding times?                                                                                                                                                                                                                          | $\checkmark$ |              |

<u>N/A</u>

| SB-01-3-4 | Sample Identification           SB-01-3-4'           SC06702-01           CAS No.         Analyte(s) |        |      | <u>Client P</u><br>2150 |      |      | <u>Matrix</u><br>Soil |             | ection Date<br>'-Apr-15 10 |               |         | <u>cceived</u><br>Apr-15 |       |
|-----------|------------------------------------------------------------------------------------------------------|--------|------|-------------------------|------|------|-----------------------|-------------|----------------------------|---------------|---------|--------------------------|-------|
| CAS No.   | Analyte(s)                                                                                           | Result | Flag | Units                   | *RDL | MDL  | Dilution              | Method Ref. | Prepared                   | Analyzed      | Analyst | Batch                    | Cert. |
| Semivolat | ile Organic Compounds by (                                                                           | GCMS   |      |                         |      |      |                       |             |                            |               |         |                          |       |
|           | <u>tile Organic Compounds</u><br>by method SW846 3545A                                               |        | R01  |                         |      |      |                       |             |                            |               |         |                          |       |
| 83-32-9   | Acenaphthene                                                                                         | < 184  | U, D | µg/kg dry               | 789  | 184  | 10                    | SW846 8270D | 29-Apr-15                  | 02-May-1<br>5 | MSL     | 1508313                  | х     |
| 208-96-8  | Acenaphthylene                                                                                       | 260    | J, D | µg/kg dry               | 789  | 167  | 10                    | "           | "                          |               | "       | "                        | х     |
| 120-12-7  | Anthracene                                                                                           | < 181  | U, D | µg/kg dry               | 789  | 181  | 10                    |             | "                          | "             | "       | "                        | Х     |
| 56-55-3   | Benzo (a) anthracene                                                                                 | 643    | J, D | µg/kg dry               | 789  | 163  | 10                    | "           | "                          | "             | "       | "                        | Х     |
| 50-32-8   | Benzo (a) pyrene                                                                                     | 667    | J, D | µg/kg dry               | 789  | 164  | 10                    | "           | "                          | "             | "       |                          | Х     |
| 205-99-2  | Benzo (b) fluoranthene                                                                               | 805    | D    | µg/kg dry               | 789  | 180  | 10                    | "           | "                          | "             | "       | "                        | х     |
| 191-24-2  | Benzo (g,h,i) perylene                                                                               | 296    | J, D | µg/kg dry               | 789  | 171  | 10                    |             | "                          |               | "       |                          | Х     |
| 207-08-9  | Benzo (k) fluoranthene                                                                               | 308    | J, D | µg/kg dry               | 789  | 180  | 10                    |             |                            |               | "       |                          | х     |
| 111-91-1  | Bis(2-chloroethoxy)metha<br>ne                                                                       | < 713  | U, D | µg/kg dry               | 3900 | 713  | 10                    | "           | "                          | "             | "       | "                        | х     |
| 111-44-4  | Bis(2-chloroethyl)ether                                                                              | < 710  | U, D | µg/kg dry               | 1980 | 710  | 10                    |             |                            |               | "       |                          | х     |
| 108-60-1  | Bis(2-chloroisopropyl)ethe r                                                                         | < 709  | U, D | µg/kg dry               | 1980 | 709  | 10                    | "           | "                          | "             | "       | "                        | х     |
| 117-81-7  | Bis(2-ethylhexyl)phthalate                                                                           | < 975  | U, D | µg/kg dry               | 1980 | 975  | 10                    |             |                            |               | "       |                          | х     |
| 101-55-3  | 4-Bromophenyl phenyl ether                                                                           | < 789  | U, D | µg/kg dry               | 3900 | 789  | 10                    | "           | "                          | "             | "       | "                        | х     |
| 85-68-7   | Butyl benzyl phthalate                                                                               | < 865  | U, D | µg/kg dry               | 3900 | 865  | 10                    |             |                            |               | "       |                          | х     |
| 86-74-8   | Carbazole                                                                                            | < 1000 | U, D | µg/kg dry               | 1980 | 1000 | 10                    |             |                            |               | "       |                          | х     |
| 59-50-7   | 4-Chloro-3-methylphenol                                                                              | < 810  | U, D | µg/kg dry               | 3900 | 810  | 10                    |             |                            |               | "       |                          | х     |
| 106-47-8  | 4-Chloroaniline                                                                                      | < 806  | U, D | µg/kg dry               | 1980 | 806  | 10                    |             |                            |               | "       |                          | х     |
| 91-58-7   | 2-Chloronaphthalene                                                                                  | < 687  | U, D | µg/kg dry               | 3900 | 687  | 10                    |             |                            |               | "       |                          | х     |
| 95-57-8   | 2-Chlorophenol                                                                                       | < 698  | U, D | µg/kg dry               | 1980 | 698  | 10                    |             |                            |               | "       |                          | х     |
| 7005-72-3 | 4-Chlorophenyl phenyl ether                                                                          | < 733  | U, D | µg/kg dry               | 3900 | 733  | 10                    | "           | "                          | "             | "       | "                        | х     |
| 218-01-9  | Chrysene                                                                                             | 761    | J, D | µg/kg dry               | 789  | 193  | 10                    |             | "                          |               | "       |                          | Х     |
| 53-70-3   | Dibenzo (a,h) anthracene                                                                             | < 145  | U, D | µg/kg dry               | 789  | 145  | 10                    |             | "                          |               | "       |                          | Х     |
| 132-64-9  | Dibenzofuran                                                                                         | < 145  | U, D | µg/kg dry               | 1980 | 145  | 10                    |             |                            |               | "       |                          | х     |
| 95-50-1   | 1,2-Dichlorobenzene                                                                                  | < 656  | U, D | µg/kg dry               | 3900 | 656  | 10                    |             |                            |               | "       |                          | х     |
| 541-73-1  | 1,3-Dichlorobenzene                                                                                  | < 693  | U, D | µg/kg dry               | 3900 | 693  | 10                    |             |                            |               | "       |                          | х     |
| 106-46-7  | 1,4-Dichlorobenzene                                                                                  | < 646  | U, D | µg/kg dry               | 3900 | 646  | 10                    |             |                            |               | "       |                          | х     |
| 91-94-1   | 3,3'-Dichlorobenzidine                                                                               | < 793  | U, D | µg/kg dry               | 3900 | 793  | 10                    |             | "                          |               | "       |                          | Х     |
| 120-83-2  | 2,4-Dichlorophenol                                                                                   | < 672  | U, D | µg/kg dry               | 1980 | 672  | 10                    |             |                            |               | "       |                          | х     |
| 84-66-2   | Diethyl phthalate                                                                                    | < 815  | U, D | µg/kg dry               | 3900 | 815  | 10                    |             | "                          |               | "       |                          | Х     |
| 131-11-3  | Dimethyl phthalate                                                                                   | < 769  | U, D | µg/kg dry               | 3900 | 769  | 10                    |             | "                          |               | "       |                          | х     |
| 105-67-9  | 2,4-Dimethylphenol                                                                                   | < 669  | U, D | µg/kg dry               | 3900 | 669  | 10                    |             | "                          |               | "       |                          | Х     |
| 84-74-2   | Di-n-butyl phthalate                                                                                 | < 877  | U, D | µg/kg dry               | 3900 | 877  | 10                    |             | "                          |               | "       |                          | Х     |
| 534-52-1  | 4,6-Dinitro-2-methylphenol                                                                           | < 1040 | U, D | µg/kg dry               | 3900 | 1040 | 10                    | "           | "                          |               | "       | "                        | х     |
| 51-28-5   | 2,4-Dinitrophenol                                                                                    | < 1030 | U, D | µg/kg dry               | 3900 | 1030 | 10                    | "           | "                          |               | "       | "                        | х     |
| 121-14-2  | 2,4-Dinitrotoluene                                                                                   | < 814  | U, D | µg/kg dry               | 1980 | 814  | 10                    | "           | "                          |               | "       | "                        | х     |
| 606-20-2  | 2,6-Dinitrotoluene                                                                                   | < 767  | U, D | µg/kg dry               | 1980 | 767  | 10                    | "           | "                          |               | "       | "                        | х     |
| 117-84-0  | Di-n-octyl phthalate                                                                                 | < 843  | U, D | µg/kg dry               | 3900 | 843  | 10                    | "           | "                          |               | "       | "                        | х     |
| 206-44-0  | Fluoranthene                                                                                         | 745    | J, D | µg/kg dry               | 789  | 198  | 10                    | "           | "                          |               | "       | "                        | х     |
| 86-73-7   | Fluorene                                                                                             | < 189  | U, D | µg/kg dry               | 789  | 189  | 10                    | "           | "                          |               | "       | "                        | х     |
| 118-74-1  | Hexachlorobenzene                                                                                    | < 863  | U, D | µg/kg dry               | 1980 | 863  | 10                    | "           | "                          |               | "       | "                        | х     |
| 87-68-3   | Hexachlorobutadiene                                                                                  | < 628  | U, D | µg/kg dry               | 1980 | 628  | 10                    | "           | "                          | "             | "       | "                        | х     |

| Sample Id<br>SB-01-3-4<br>SC06702- |                                                 |            |      | <u>Client P</u><br>2150 | •      |        | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 10 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|-------------------------------------------------|------------|------|-------------------------|--------|--------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                      | Result     | Flag | Units                   | *RDL   | MDL    | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolati                         | ile Organic Compounds by C                      | GCMS       |      |                         |        |        |                       |                     |                           |               |         |                         |       |
|                                    | tile Organic Compounds<br>by method SW846 3545A |            | R01  |                         |        |        |                       |                     |                           |               |         |                         |       |
| 77-47-4                            | Hexachlorocyclopentadien<br>e                   | < 720      | U, D | µg/kg dry               | 1980   | 720    | 10                    | SW846 8270D         | 29-Apr-15                 | 02-May-1<br>5 | MSL     | 1508313                 | х     |
| 67-72-1                            | Hexachloroethane                                | < 759      | U, D | µg/kg dry               | 1980   | 759    | 10                    | "                   | "                         |               | "       | "                       | х     |
| 193-39-5                           | Indeno (1,2,3-cd) pyrene                        | 300        | J, D | µg/kg dry               | 789    | 161    | 10                    |                     | "                         |               | "       |                         | х     |
| 78-59-1                            | Isophorone                                      | < 690      | U, D | µg/kg dry               | 1980   | 690    | 10                    |                     | "                         |               | "       |                         | х     |
| 91-57-6                            | 2-Methylnaphthalene                             | < 163      | U, D | µg/kg dry               | 789    | 163    | 10                    |                     | "                         | "             | "       | "                       | х     |
| 95-48-7                            | 2-Methylphenol                                  | < 701      | U, D | µg/kg dry               | 3900   | 701    | 10                    |                     | "                         |               | "       | "                       | х     |
| 108-39-4,<br>106-44-5              | 3 & 4-Methylphenol                              | < 879      | U, D | µg/kg dry               | 3900   | 879    | 10                    | "                   | "                         | "             | "       | "                       | х     |
| 91-20-3                            | Naphthalene                                     | < 161      | U, D | µg/kg dry               | 789    | 161    | 10                    |                     | "                         |               | "       |                         | Х     |
| 88-74-4                            | 2-Nitroaniline                                  | < 783      | U, D | µg/kg dry               | 3900   | 783    | 10                    |                     | "                         | "             | "       | "                       | Х     |
| 99-09-2                            | 3-Nitroaniline                                  | < 934      | U, D | µg/kg dry               | 3900   | 934    | 10                    | "                   | "                         |               | "       | "                       | х     |
| 100-01-6                           | 4-Nitroaniline                                  | < 1130     | U, D | µg/kg dry               | 1980   | 1130   | 10                    |                     | "                         |               | "       | "                       | х     |
| 98-95-3                            | Nitrobenzene                                    | < 766      | U, D | µg/kg dry               | 1980   | 766    | 10                    |                     | "                         | "             | "       | "                       | Х     |
| 88-75-5                            | 2-Nitrophenol                                   | < 654      | U, D | µg/kg dry               | 1980   | 654    | 10                    |                     | "                         |               | "       |                         | х     |
| 100-02-7                           | 4-Nitrophenol                                   | < 1050     | U, D | µg/kg dry               | 15600  | 1050   | 10                    |                     | "                         |               | "       |                         | Х     |
| 621-64-7                           | N-Nitrosodi-n-propylamine                       | < 841      | U, D | µg/kg dry               | 1980   | 841    | 10                    |                     | "                         |               | "       |                         | Х     |
| 86-30-6                            | N-Nitrosodiphenylamine                          | < 918      | U, D | µg/kg dry               | 3900   | 918    | 10                    |                     | "                         |               | "       |                         | х     |
| 87-86-5                            | Pentachlorophenol                               | < 929      | U, D | µg/kg dry               | 3900   | 929    | 10                    |                     | "                         |               | "       |                         | х     |
| 85-01-8                            | Phenanthrene                                    | 375        | J, D | µg/kg dry               | 789    | 193    | 10                    |                     | "                         |               | "       |                         | х     |
| 108-95-2                           | Phenol                                          | < 711      | U, D | µg/kg dry               | 3900   | 711    | 10                    |                     | "                         |               | "       | "                       | х     |
| 129-00-0                           | Pyrene                                          | 1,070      | D    | µg/kg dry               | 789    | 168    | 10                    |                     | "                         |               | "       |                         | х     |
| 120-82-1                           | 1,2,4-Trichlorobenzene                          | < 621      | U, D | µg/kg dry               | 3900   | 621    | 10                    |                     | "                         |               | "       |                         | х     |
| 95-95-4                            | 2,4,5-Trichlorophenol                           | < 808      | U, D | µg/kg dry               | 3900   | 808    | 10                    | "                   | "                         | "             | "       | "                       | х     |
| Surrogate i                        | recoveries:                                     |            |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 321-60-8                           | 2-Fluorobiphenyl                                | 95         |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 367-12-4                           | 2-Fluorophenol                                  | 92         |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 4165-60-0                          | Nitrobenzene-d5                                 | 100        |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 4165-62-2                          | Phenol-d5                                       | 93         |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       | "                       |       |
| 1718-51-0                          | Terphenyl-dl4                                   | 116        |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 118-79-6                           | 2,4,6-Tribromophenol                            | 72         |      |                         | 30-13  | 80 %   |                       | "                   | "                         |               | "       | "                       |       |
|                                    | y Identified Compounds<br>by method SW846 3545A |            | R01  |                         |        |        |                       |                     |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds             | None found |      | µg/kg dry               |        |        | 10                    | SW846 8270D<br>TICS | "                         | "             | MSL     | "                       |       |
| Total Meta                         | als by EPA 6000/7000 Series                     | Methods    |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 7440-22-4                          | Silver                                          | < 0.121    | U    | mg/kg dry               | 1.66   | 0.121  | 1                     | SW846 6010C         | 04-May-1<br>5             | 04-May-1<br>5 | TBC     | 1508397                 | х     |
| 7440-38-2                          | Arsenic                                         | 13.5       |      | mg/kg dry               | 1.66   | 0.268  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-39-3                          | Barium                                          | 153        |      | mg/kg dry               | 1.10   | 0.0656 | 1                     | "                   | "                         | "             | "       | "                       | х     |
| 7440-43-9                          | Cadmium                                         | 0.925      |      | mg/kg dry               | 0.552  | 0.0177 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-47-3                          | Chromium                                        | 13.2       |      | mg/kg dry               | 1.10   | 0.105  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7439-97-6                          | Mercury                                         | 0.211      |      | mg/kg dry               | 0.0343 | 0.0022 | 1                     | SW846 7471B         | "                         | 04-May-1<br>5 | YR      | 1508398                 | х     |
| 7439-92-1                          | Lead                                            | 246        |      | mg/kg dry               | 1.66   | 0.305  | 1                     | SW846 6010C         | "                         | 04-May-1<br>5 | TBC     | 1508397                 | х     |
| 7782-49-2                          | Selenium                                        | 1.20       | J    | mg/kg dry               | 1.66   | 0.415  | 1                     | u                   | "                         | "             | "       | "                       | х     |

| Sample Identification<br>SB-01-3-4'<br>SC06702-01 |                      |         | Client Project #<br>2150606 |           |       | MatrixCollection Date/TimeSoil27-Apr-15 10:10 |          |               |               | Received<br>28-Apr-15 |         |         |       |
|---------------------------------------------------|----------------------|---------|-----------------------------|-----------|-------|-----------------------------------------------|----------|---------------|---------------|-----------------------|---------|---------|-------|
| CAS No.                                           | Analyte(s)           | Result  | Flag                        | Units     | *RDL  | MDL                                           | Dilution | Method Ref.   | Prepared      | Analyzed              | Analyst | Batch   | Cert. |
| General (                                         | Chemistry Parameters |         |                             |           |       |                                               |          |               |               |                       |         |         |       |
|                                                   | % Solids             | 84.4    |                             | %         |       |                                               | 1        | SM2540 G Mod. | 30-Apr-15     | 30-Apr-15             | DT      | 1508366 |       |
| 57-12-5                                           | Cyanide (total)      | < 0.457 | U                           | mg/kg dry | 0.571 | 0.457                                         | 1        | SW846 9012B   | 05-May-1<br>5 | 05-May-1<br>5         | RLT     | 1508657 | Х     |

| SB-03-3-4   | C06702-03                                       |                    |                 | Client Project #<br>2150606 |            |            | <u>Matrix</u><br>Soil | 27-Apr-15 12:00              |          |          | Received<br>28-Apr-15 |         |       |
|-------------|-------------------------------------------------|--------------------|-----------------|-----------------------------|------------|------------|-----------------------|------------------------------|----------|----------|-----------------------|---------|-------|
| CAS No.     | Analyte(s)                                      | Result             | Flag            | Units                       | *RDL       | MDL        | Dilution              | Method Ref.                  | Prepared | Analyzed | Analyst               | Batch   | Cert. |
| Volatile Or | rganic Compounds                                |                    |                 |                             |            |            |                       |                              |          |          |                       |         |       |
|             | VOC Extraction                                  | Field<br>extracted |                 | N/A                         |            |            | 1                     | VOC Soil<br>Extraction       |          |          | DT                    | 1508307 |       |
|             | rganic Compounds by SW<br>by method SW846 5035A |                    | -1)             |                             |            | Init       | iol woight:           | E                            |          |          |                       |         |       |
| 67-64-1     | Acetone                                         | < 35.2             | <u>ei)</u><br>U | µg/kg dry                   | 52.7       | 35.2       | tial weight:<br>1     | <u>5.57 g</u><br>SW846 8260C | 01-May-1 | 01-May-1 | SJB                   | 1508450 | х     |
| 07-04-1     | Acelone                                         | < 35.2             | 0               | µg/kg ury                   | 52.7       | 33.2       | I                     | 30040 02000                  | 5 5      | 5 5      | SJD                   | 1506450 | ^     |
| 71-43-2     | Benzene                                         | < 1.0              | U               | µg/kg dry                   | 5.3        | 1.0        | 1                     | "                            | "        |          | "                     | "       | х     |
| 75-27-4     | Bromodichloromethane                            | < 3.5              | U               | µg/kg dry                   | 5.3        | 3.5        | 1                     | "                            | "        | "        | "                     |         | х     |
| 75-25-2     | Bromoform                                       | < 5.0              | U               | µg/kg dry                   | 5.3        | 5.0        | 1                     | "                            | "        |          | "                     | "       | х     |
| 74-83-9     | Bromomethane                                    | < 3.0              | U               | µg/kg dry                   | 10.5       | 3.0        | 1                     | "                            | "        |          | "                     | "       | х     |
| 78-93-3     | 2-Butanone (MEK)                                | < 6.3              | U               | µg/kg dry                   | 52.7       | 6.3        | 1                     | "                            | "        |          | "                     | "       | х     |
| 104-51-8    | n-Butylbenzene                                  | < 1.5              | U               | µg/kg dry                   | 5.3        | 1.5        | 1                     | "                            | "        | "        | "                     | "       | х     |
| 135-98-8    | sec-Butylbenzene                                | < 4.1              | U               | µg/kg dry                   | 5.3        | 4.1        | 1                     | "                            | "        | "        | "                     | "       | х     |
| 98-06-6     | tert-Butylbenzene                               | < 3.5              | U               | µg/kg dry                   | 5.3        | 3.5        | 1                     |                              | "        | "        | "                     | "       | х     |
| 75-15-0     | Carbon disulfide                                | < 3.2              | U               | µg/kg dry                   | 10.5       | 3.2        | 1                     |                              | "        |          | "                     | "       | х     |
| 56-23-5     | Carbon tetrachloride                            | < 4.3              | U               | µg/kg dry                   | 5.3        | 4.3        | 1                     |                              | "        |          | "                     | "       | х     |
| 108-90-7    | Chlorobenzene                                   | < 0.8              | U               | µg/kg dry                   | 5.3        | 0.8        | 1                     |                              | "        |          | "                     |         | х     |
| 75-00-3     | Chloroethane                                    | < 2.9              | U               | µg/kg dry                   | 10.5       | 2.9        | 1                     | "                            | "        |          | "                     |         | х     |
| 67-66-3     | Chloroform                                      | < 1.7              | U               | µg/kg dry                   | 5.3        | 1.7        | 1                     | "                            | "        |          | "                     | "       | х     |
| 74-87-3     | Chloromethane                                   | < 2.2              | U               | µg/kg dry                   | 10.5       | 2.2        | 1                     | "                            | "        |          | "                     | "       | х     |
| 124-48-1    | Dibromochloromethane                            | < 3.6              | U               | µg/kg dry                   | 5.3        | 3.6        | 1                     | "                            | "        |          | "                     | "       | х     |
| 95-50-1     | 1,2-Dichlorobenzene                             | < 0.9              | U               | µg/kg dry                   | 5.3        | 0.9        | 1                     |                              | "        |          | "                     |         | х     |
| 541-73-1    | 1,3-Dichlorobenzene                             | < 1.1              | U               | µg/kg dry                   | 5.3        | 1.1        | 1                     | "                            | "        |          | "                     |         | х     |
| 106-46-7    | 1,4-Dichlorobenzene                             | < 1.3              | U               | µg/kg dry                   | 5.3        | 1.3        | 1                     |                              |          |          | "                     |         | х     |
| 75-71-8     | Dichlorodifluoromethane<br>(Freon12)            | < 1.8              | U               | µg/kg dry                   | 10.5       | 1.8        | 1                     | "                            | "        | "        | "                     | "       | х     |
| 75-34-3     | 1,1-Dichloroethane                              | < 3.4              | U               | µg/kg dry                   | 5.3        | 3.4        | 1                     | "                            | "        |          | "                     |         | х     |
| 107-06-2    | 1,2-Dichloroethane                              | < 1.3              | U               | µg/kg dry                   | 5.3        | 1.3        | 1                     |                              |          |          | "                     |         | х     |
| 75-35-4     | 1,1-Dichloroethene                              | < 4.0              | U               | µg/kg dry                   | 5.3        | 4.0        | 1                     |                              |          |          | "                     |         | х     |
| 156-59-2    | cis-1,2-Dichloroethene                          | < 1.9              | U               | µg/kg dry                   | 5.3        | 1.9        | 1                     |                              |          |          | "                     |         | х     |
| 156-60-5    | trans-1,2-Dichloroethene                        | < 2.8              | U               | µg/kg dry                   | 5.3        | 2.8        | 1                     |                              | "        |          | "                     |         | х     |
| 78-87-5     | 1,2-Dichloropropane                             | < 2.8              | U               | µg/kg dry                   | 5.3        | 2.8        | 1                     | "                            | "        |          | "                     |         | х     |
| 10061-01-5  | cis-1,3-Dichloropropene                         | < 3.2              | U               | µg/kg dry                   | 5.3        | 3.2        | 1                     |                              | "        |          | "                     | "       | х     |
| 10061-02-6  | trans-1,3-Dichloropropene                       | < 2.8              | U               | µg/kg dry                   | 5.3        | 2.8        | 1                     |                              | "        |          | "                     | "       | х     |
| 100-41-4    | Ethylbenzene                                    | < 0.9              | U               | µg/kg dry                   | 5.3        | 0.9        | 1                     | "                            | "        |          | "                     |         | х     |
| 591-78-6    | 2-Hexanone (MBK)                                | < 5.8              | U               | µg/kg dry                   | 52.7       | 5.8        | 1                     | "                            | "        |          | "                     |         | х     |
| 98-82-8     | Isopropylbenzene                                | < 1.0              | U               | µg/kg dry                   | 5.3        | 1.0        | 1                     | "                            | "        |          | "                     |         | x     |
| 99-87-6     | 4-Isopropyltoluene                              | < 4.9              | U               | µg/kg dry                   | 5.3        | 4.9        | 1                     |                              |          |          | "                     |         | Х     |
| 1634-04-4   | Methyl tert-butyl ether                         | < 2.0              | U               | µg/kg dry                   | 5.3        | 2.0        | 1                     |                              | "        |          | "                     |         | x     |
| 108-10-1    | 4-Methyl-2-pentanone<br>(MIBK)                  | < 9.9              | U               | µg/kg dry                   | 52.7       | 9.9        | 1                     | "                            | "        | "        | "                     | "       | x     |
| 75-09-2     | Methylene chloride                              | < 1.5              | U               | µg/kg dry                   | 10.5       | 1.5        | 1                     | "                            | "        |          | "                     | "       | х     |
| 91-20-3     | Naphthalene                                     | < 4.8              | U               | µg/kg dry                   | 5.3        | 4.8        | 1                     | "                            | "        |          | "                     | "       | x     |
| 103-65-1    | n-Propylbenzene                                 | < 5.1              | U               | µg/kg dry                   | 5.3        | 5.1        | 1                     | "                            |          |          | "                     | "       | x     |
| 100-42-5    | Styrene                                         | < 0.9              | U               | µg/kg dry<br>µg/kg dry      | 5.3        | 0.9        | 1                     | "                            |          |          | "                     | "       | x     |
| 79-34-5     | 1,1,2,2-Tetrachloroethane                       | < 4.5              | U               | µg/kg dry<br>µg/kg dry      | 5.3        | 4.5        | 1                     | "                            | "        |          | "                     | "       | x     |
| 127-18-4    | Tetrachloroethene                               | < 4.5<br>< 2.0     | U               |                             | 5.3<br>5.3 | 4.5<br>2.0 | 1                     | "                            |          |          | "                     | "       | x     |
| 108-88-3    | Toluene                                         | < 2.0<br>< 1.2     | U               | µg/kg dry<br>µg/kg dry      | 5.3<br>5.3 | 2.0<br>1.2 | 1                     | "                            | "        | "        |                       |         | x     |

| Sample Identification<br>SB-03-3-4'<br>SC06702-03 |                                                 |            | <u>Client Pr</u><br>2150 | -         |             | <u>Matrix</u><br>Soil |             |                     |               | Received<br>28-Apr-15 |         |         |       |
|---------------------------------------------------|-------------------------------------------------|------------|--------------------------|-----------|-------------|-----------------------|-------------|---------------------|---------------|-----------------------|---------|---------|-------|
| CAS No.                                           | Analyte(s)                                      | Result     | Flag                     | Units     | *RDL        | MDL                   | Dilution    | Method Ref.         | Prepared      | Analyzed              | Analyst | Batch   | Cert. |
| Volatile Or                                       | rganic Compounds                                |            |                          |           |             |                       |             |                     |               |                       |         |         |       |
|                                                   | rganic Compounds by SW                          |            |                          |           |             |                       |             |                     |               |                       |         |         |       |
| Prepared<br>71-55-6                               | by method SW846 5035A                           |            |                          |           | 5.0         |                       | ial weight: | -                   | 04 144        | 04 14-14              | 0.10    | 4500450 | V     |
| 71-55-0                                           | 1,1,1-Trichloroethane                           | < 1.4      | U                        | µg/kg dry | 5.3         | 1.4                   | 1           | SW846 8260C         | 01-May-1<br>5 | 01-May-1<br>5         | SJB     | 1508450 | Х     |
| 79-00-5                                           | 1,1,2-Trichloroethane                           | < 3.8      | U                        | µg/kg dry | 5.3         | 3.8                   | 1           | "                   | "             |                       | "       | "       | х     |
| 79-01-6                                           | Trichloroethene                                 | < 0.9      | U                        | µg/kg dry | 5.3         | 0.9                   | 1           | "                   | "             | "                     | "       | "       | х     |
| 75-69-4                                           | Trichlorofluoromethane<br>(Freon 11)            | < 2.8      | U                        | µg/kg dry | 5.3         | 2.8                   | 1           | u                   |               | "                     | "       | "       | Х     |
| 95-63-6                                           | 1,2,4-Trimethylbenzene                          | < 1.3      | U                        | µg/kg dry | 5.3         | 1.3                   | 1           | "                   | "             |                       | "       | "       | х     |
| 108-67-8                                          | 1,3,5-Trimethylbenzene                          | < 1.5      | U                        | µg/kg dry | 5.3         | 1.5                   | 1           |                     | "             |                       | "       |         | Х     |
| 75-01-4                                           | Vinyl chloride                                  | < 1.9      | U                        | µg/kg dry | 5.3         | 1.9                   | 1           |                     | "             |                       | "       |         | Х     |
| 179601-23-1                                       | m,p-Xylene                                      | < 1.0      | U                        | µg/kg dry | 10.5        | 1.0                   | 1           | "                   | "             | "                     | "       | "       | Х     |
| 95-47-6                                           | o-Xylene                                        | < 1.1      | U                        | µg/kg dry | 5.3         | 1.1                   | 1           | "                   | "             | "                     | "       | "       | х     |
| Surrogate r                                       | recoveries:                                     |            |                          |           |             |                       |             |                     |               |                       |         |         |       |
| 460-00-4                                          | 4-Bromofluorobenzene                            | 88         |                          |           | 70-13       | 30 %                  |             | "                   | "             | "                     | "       | "       |       |
| 2037-26-5                                         | Toluene-d8                                      | 109        |                          |           | 70-13       | 30 %                  |             |                     | "             | "                     | "       | "       |       |
| 17060-07-0                                        | 1,2-Dichloroethane-d4                           | 111        |                          |           | 70-13       | 30 %                  |             |                     | "             |                       | "       |         |       |
| 1868-53-7                                         | Dibromofluoromethane                            | 114        |                          |           | 70-13       | 30 %                  |             | "                   | "             |                       | "       | "       |       |
|                                                   | rganic Compounds                                |            |                          |           |             |                       |             |                     |               |                       |         |         |       |
|                                                   | by method SW846 5035A                           |            |                          |           | <b>50 7</b> |                       | ial weight: | <u>5.57 g</u><br>"  |               |                       |         |         |       |
| 108-05-4                                          | Vinyl acetate                                   | < 11.1     | U                        | µg/kg dry | 52.7        | 11.1                  | 1           |                     | 01-May-1<br>5 |                       |         | 1508448 |       |
| Surrogate r                                       | recoveries:                                     |            |                          |           |             |                       |             |                     |               |                       |         |         |       |
| 460-00-4                                          | 4-Bromofluorobenzene                            | 96         |                          |           | 70-13       | 30 %                  |             |                     | "             |                       | "       |         |       |
| 2037-26-5                                         | Toluene-d8                                      | 99         |                          |           | 70-13       | 30 %                  |             | "                   |               |                       | "       | "       |       |
| 17060-07-0                                        | 1,2-Dichloroethane-d4                           | 119        |                          |           | 70-13       | 30 %                  |             |                     |               |                       | "       |         |       |
| 1868-53-7                                         | Dibromofluoromethane                            | 105        |                          |           | 70-13       | 30 %                  |             | "                   | "             | "                     | "       | "       |       |
| Tentatively                                       | y Identified Compounds by                       | / GC/MS    |                          |           |             |                       |             |                     |               |                       |         |         |       |
|                                                   | by method SW846 5035A                           |            | <u>el)</u>               |           |             | Init                  | ial weight: | <u>5.57 g</u>       |               |                       |         |         |       |
|                                                   | Tentatively Identified<br>Compounds             | None found | ł                        | µg/kg dry |             |                       | 1           | SW846 8260C<br>TICs | 01-May-1<br>5 | "                     | SJB     | 1508450 |       |
|                                                   | ile Organic Compounds by (                      | GCMS       |                          |           |             |                       |             |                     |               |                       |         |         |       |
|                                                   | tile Organic Compounds<br>by method SW846 3545A |            |                          |           |             |                       |             |                     |               |                       |         |         |       |
| 83-32-9                                           | Acenaphthene                                    | 50.8       | J                        | µg/kg dry | 71.6        | 16.7                  | 1           | SW846 8270D         | 29-Apr-15     | 02-May-1<br>5         | MSL     | 1508313 | Х     |
| 208-96-8                                          | Acenaphthylene                                  | < 15.2     | U                        | µg/kg dry | 71.6        | 15.2                  | 1           | "                   | "             |                       | "       | "       | х     |
| 120-12-7                                          | Anthracene                                      | 146        |                          | µg/kg dry | 71.6        | 16.4                  | 1           | "                   | "             |                       | "       | "       | х     |
| 56-55-3                                           | Benzo (a) anthracene                            | 398        |                          | µg/kg dry | 71.6        | 14.8                  | 1           | "                   | "             |                       | "       | "       | х     |
| 50-32-8                                           | Benzo (a) pyrene                                | 355        |                          | µg/kg dry | 71.6        | 14.9                  | 1           | "                   | "             |                       | "       | "       | х     |
| 205-99-2                                          | Benzo (b) fluoranthene                          | 461        |                          | µg/kg dry | 71.6        | 16.3                  | 1           | "                   | "             |                       | "       | "       | Х     |
| 191-24-2                                          | Benzo (g,h,i) perylene                          | 206        |                          | µg/kg dry | 71.6        | 15.5                  | 1           | "                   | "             |                       | "       | "       | х     |
| 207-08-9                                          | Benzo (k) fluoranthene                          | 198        |                          | µg/kg dry | 71.6        | 16.3                  | 1           | "                   | "             |                       | "       | "       | х     |
| 111-91-1                                          | Bis(2-chloroethoxy)metha ne                     | < 64.6     | U                        | µg/kg dry | 354         | 64.6                  | 1           | n                   | "             | "                     | "       | "       | Х     |
| 111-44-4                                          | Bis(2-chloroethyl)ether                         | < 64.4     | U                        | µg/kg dry | 179         | 64.4                  | 1           | "                   | "             | "                     | "       | "       | х     |
| 108-60-1                                          | Bis(2-chloroisopropyl)ethe r                    | < 64.3     | U                        | µg/kg dry | 179         | 64.3                  | 1           | u                   | "             | "                     | "       |         | х     |
| 117-81-7                                          | Bis(2-ethylhexyl)phthalate                      | < 88.4     | U                        | µg/kg dry | 179         | 88.4                  | 1           | "                   | "             | "                     | "       | "       | Х     |

| <u>Sample Id</u><br><b>SB-03-3-</b><br>SC06702 |                                                 |                       |      | <u>Client Pr</u><br>2150 | -           |              | <u>Matrix</u><br>Soil |             | ection Date<br>/-Apr-15 12 |               |         | <u>ceived</u><br>Apr-15 |        |
|------------------------------------------------|-------------------------------------------------|-----------------------|------|--------------------------|-------------|--------------|-----------------------|-------------|----------------------------|---------------|---------|-------------------------|--------|
| CAS No.                                        | Analyte(s)                                      | Result                | Flag | Units                    | *RDL        | MDL          | Dilution              | Method Ref. | Prepared                   | Analyzed      | Analyst | Batch                   | Cert.  |
| Semivolat                                      | ile Organic Compounds by (                      | GCMS                  |      |                          |             |              |                       |             |                            |               |         |                         |        |
| <u>Semivola</u>                                | tile Organic Compounds<br>by method SW846 3545A |                       |      |                          |             |              |                       |             |                            |               |         |                         |        |
| 101-55-3                                       | 4-Bromophenyl phenyl ether                      | < 71.5                | U    | µg/kg dry                | 354         | 71.5         | 1                     | SW846 8270D | 29-Apr-15                  | 02-May-1<br>5 | MSL     | 1508313                 | х      |
| 85-68-7                                        | Butyl benzyl phthalate                          | < 78.5                | U    | µg/kg dry                | 354         | 78.5         | 1                     | "           | "                          |               | "       | "                       | х      |
| 86-74-8                                        | Carbazole                                       | < 91.0                | U    | µg/kg dry                | 179         | 91.0         | 1                     | "           | "                          |               | "       | "                       | х      |
| 59-50-7                                        | 4-Chloro-3-methylphenol                         | < 73.4                | U    | µg/kg dry                | 354         | 73.4         | 1                     | "           | "                          | "             | "       | "                       | х      |
| 106-47-8                                       | 4-Chloroaniline                                 | < 73.1                | U    | µg/kg dry                | 179         | 73.1         | 1                     | "           |                            |               | "       | "                       | х      |
| 91-58-7                                        | 2-Chloronaphthalene                             | < 62.3                | U    | µg/kg dry                | 354         | 62.3         | 1                     | "           | "                          |               | "       | "                       | х      |
| 95-57-8                                        | 2-Chlorophenol                                  | < 63.3                | U    | µg/kg dry                | 179         | 63.3         | 1                     | "           | "                          |               | "       | "                       | Х      |
| 7005-72-3                                      | 4-Chlorophenyl phenyl ether                     | < 66.5                | U    | µg/kg dry                | 354         | 66.5         | 1                     | "           | "                          | u             | "       | "                       | х      |
| 218-01-9                                       | Chrysene                                        | 388                   |      | µg/kg dry                | 71.6        | 17.5         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 53-70-3                                        | Dibenzo (a,h) anthracene                        | 46.5                  | J    | µg/kg dry                | 71.6        | 13.1         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 132-64-9                                       | Dibenzofuran                                    | 40.0                  | J    | µg/kg dry                | 179         | 13.1         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 95-50-1                                        | 1,2-Dichlorobenzene                             | < 59.5                | U    | µg/kg dry                | 354         | 59.5         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 541-73-1                                       | 1,3-Dichlorobenzene                             | < 62.9                | U    | µg/kg dry                | 354         | 62.9         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 106-46-7                                       | 1,4-Dichlorobenzene                             | < 58.6                | U    | µg/kg dry                | 354         | 58.6         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 91-94-1                                        | 3,3'-Dichlorobenzidine                          | < 71.9                | U    | µg/kg dry                | 354         | 71.9         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 120-83-2                                       | 2,4-Dichlorophenol                              | < 60.9                | U    | µg/kg dry                | 179         | 60.9         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 84-66-2                                        | Diethyl phthalate                               | < 73.9                | U    | µg/kg dry                | 354         | 73.9         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 131-11-3                                       | Dimethyl phthalate                              | < 69.7                | U    | µg/kg dry                | 354         | 69.7         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 105-67-9                                       | 2,4-Dimethylphenol                              | < 60.7                | U    | µg/kg dry                | 354         | 60.7         | 1                     | "           | "                          |               | "       | "                       | Х      |
| 84-74-2                                        | Di-n-butyl phthalate                            | < 79.5                | U    | µg/kg dry                | 354         | 79.5         | 1                     |             |                            |               | "       |                         | Х      |
| 534-52-1                                       | 4,6-Dinitro-2-methylphenol                      | < 94.2                | U    | µg/kg dry                | 354         | 94.2         | 1                     |             |                            |               |         |                         | Х      |
| 51-28-5                                        | 2,4-Dinitrophenol                               | < 93.2                | U    | µg/kg dry                | 354         | 93.2         | 1                     |             |                            |               |         |                         | X      |
| 121-14-2                                       | 2,4-Dinitrotoluene                              | < 73.8                | U    | µg/kg dry                | 179         | 73.8         | 1                     |             |                            |               |         |                         | X      |
| 606-20-2                                       | 2,6-Dinitrotoluene                              | < 69.5                | U    | µg/kg dry                | 179         | 69.5         | 1                     |             |                            |               |         |                         | X      |
| 117-84-0<br>206-44-0                           | Di-n-octyl phthalate                            | < 76.5                | U    | µg/kg dry                | 354         | 76.5         | 1                     |             |                            |               |         |                         | X      |
| 200-44-0<br>86-73-7                            | Fluoranthene                                    | 782                   | J    | µg/kg dry                | 71.6        | 18.0         | 1                     |             |                            |               |         |                         | X<br>X |
| 118-74-1                                       | Fluorene<br>Hexachlorobenzene                   | <b>57.6</b><br>< 78.3 | U    | µg/kg dry                | 71.6<br>179 | 17.1<br>78.3 | 1<br>1                | "           |                            |               | "       |                         | x      |
| 87-68-3                                        | Hexachlorobutadiene                             | < 78.3<br>< 57.0      | U    | µg/kg dry                | 179         | 57.0         | 1                     | "           |                            |               | "       |                         | x      |
| 77-47-4                                        | Hexachlorocyclopentadien                        | < 65.3                | U    | µg/kg dry<br>µg/kg dry   | 179         | 65.3         | 1                     | "           |                            |               | "       |                         | x      |
|                                                | e                                               |                       |      |                          |             |              |                       |             |                            |               |         |                         |        |
| 67-72-1                                        | Hexachloroethane                                | < 68.8                | U    | µg/kg dry                | 179         | 68.8         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 193-39-5                                       | Indeno (1,2,3-cd) pyrene                        | 229                   |      | µg/kg dry                | 71.6        | 14.6         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 78-59-1                                        | Isophorone                                      | < 62.5                | U    | µg/kg dry                | 179         | 62.5         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 91-57-6                                        | 2-Methylnaphthalene                             | 33.6                  | J    | µg/kg dry                | 71.6        | 14.8         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 95-48-7                                        | 2-Methylphenol                                  | < 63.5                | U    | µg/kg dry                | 354         | 63.5         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 108-39-4,<br>106-44-5                          | 3 & 4-Methylphenol                              | < 79.7                | U    | µg/kg dry                | 354         | 79.7         | 1                     | u           | "                          |               | "       |                         | Х      |
| 91-20-3                                        | Naphthalene                                     | 36.5                  | J    | µg/kg dry                | 71.6        | 14.6         | 1                     | "           | "                          |               | "       | "                       | Х      |
| 88-74-4                                        | 2-Nitroaniline                                  | < 71.0                | U    | µg/kg dry                | 354         | 71.0         | 1                     |             | "                          |               | "       | "                       | Х      |
| 99-09-2                                        | 3-Nitroaniline                                  | < 84.7                | U    | µg/kg dry                | 354         | 84.7         | 1                     | "           |                            | "             | "       | "                       | Х      |
| 100-01-6                                       | 4-Nitroaniline                                  | < 102                 | U    | µg/kg dry                | 179         | 102          | 1                     |             |                            |               |         |                         | X      |
| 98-95-3                                        | Nitrobenzene                                    | < 69.5                | U    | µg/kg dry                | 179         | 69.5         | 1                     |             |                            |               |         |                         | X      |
| 88-75-5                                        | 2-Nitrophenol                                   | < 59.3                | U    | µg/kg dry                | 179         | 59.3         | 1                     |             |                            |               |         |                         | х      |

| Sample Identification<br>SB-03-3-4'<br>SC06702-03 |                                                 |            |      | <u>Client Pr</u><br>2150 | -     |       | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 12 |               |         | eceived<br>Apr-15 |       |
|---------------------------------------------------|-------------------------------------------------|------------|------|--------------------------|-------|-------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------|-------|
| CAS No.                                           | Analyte(s)                                      | Result     | Flag | Units                    | *RDL  | MDL   | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch             | Cert. |
| Semivolati                                        | ile Organic Compounds by (                      | GCMS       |      |                          |       |       |                       |                     |                           |               |         |                   |       |
| <u>Semivolat</u>                                  | tile Organic Compounds<br>by method SW846 3545A |            |      |                          |       |       |                       |                     |                           |               |         |                   |       |
| 100-02-7                                          | 4-Nitrophenol                                   | < 95.6     | U    | µg/kg dry                | 1420  | 95.6  | 1                     | SW846 8270D         | 29-Apr-15                 | 02-May-1<br>5 | MSL     | 1508313           | х     |
| 621-64-7                                          | N-Nitrosodi-n-propylamine                       | < 76.2     | U    | µg/kg dry                | 179   | 76.2  | 1                     | "                   | "                         |               | "       | "                 | х     |
| 86-30-6                                           | N-Nitrosodiphenylamine                          | < 83.3     | U    | µg/kg dry                | 354   | 83.3  | 1                     |                     | "                         |               | "       |                   | х     |
| 87-86-5                                           | Pentachlorophenol                               | < 84.3     | U    | µg/kg dry                | 354   | 84.3  | 1                     |                     | "                         |               | "       |                   | х     |
| 85-01-8                                           | Phenanthrene                                    | 615        |      | µg/kg dry                | 71.6  | 17.5  | 1                     |                     | "                         |               | "       |                   | х     |
| 108-95-2                                          | Phenol                                          | < 64.5     | U    | µg/kg dry                | 354   | 64.5  | 1                     |                     | "                         |               | "       |                   | х     |
| 129-00-0                                          | Pyrene                                          | 818        |      | µg/kg dry                | 71.6  | 15.2  | 1                     |                     | "                         |               | "       |                   | х     |
| 120-82-1                                          | 1,2,4-Trichlorobenzene                          | < 56.3     | U    | µg/kg dry                | 354   | 56.3  | 1                     |                     | "                         |               | "       |                   | х     |
| 95-95-4                                           | 2,4,5-Trichlorophenol                           | < 73.2     | U    | µg/kg dry                | 354   | 73.2  | 1                     | "                   | "                         |               | "       | "                 | х     |
| Surrogate i                                       | recoveries:                                     |            |      |                          |       |       |                       |                     |                           |               |         |                   |       |
| 321-60-8                                          | 2-Fluorobiphenyl                                | 73         |      |                          | 30-13 | 30 %  |                       |                     | "                         |               | "       | "                 |       |
| 367-12-4                                          | 2-Fluorophenol                                  | 81         |      |                          | 30-13 | 30 %  |                       |                     | "                         |               | "       |                   |       |
| 4165-60-0                                         | Nitrobenzene-d5                                 | 83         |      |                          | 30-13 | 30 %  |                       |                     | "                         |               | "       | "                 |       |
| 4165-62-2                                         | Phenol-d5                                       | 84         |      |                          | 30-13 | 30 %  |                       |                     | "                         |               | "       |                   |       |
| 1718-51-0                                         | Terphenyl-dl4                                   | 93         |      |                          | 30-13 | 30 %  |                       |                     | "                         |               | "       |                   |       |
| 118-79-6                                          | 2,4,6-Tribromophenol                            | 72         |      |                          | 30-13 | 30 %  |                       |                     | "                         |               | "       | "                 |       |
|                                                   | y Identified Compounds<br>by method SW846 3545A |            |      |                          |       |       |                       |                     |                           |               |         |                   |       |
|                                                   | Tentatively Identified<br>Compounds             | None found |      | µg/kg dry                |       |       | 1                     | SW846 8270D<br>TICS | "                         | "             | MSL     | "                 |       |
| Semivolati                                        | ile Organic Compounds by (                      | GC         |      |                          |       |       |                       |                     |                           |               |         |                   |       |
|                                                   | llorine Pesticides<br>by method SW846 3545A     |            |      |                          |       |       |                       |                     |                           |               |         |                   |       |
| 319-84-6                                          | alpha-BHC                                       | < 0.523    | U    | µg/kg dry                | 5.37  | 0.523 | 1                     | SW846 8081B         | 04-May-1<br>5             | 04-May-1<br>5 | TG      | 1508525           | х     |
| 319-85-7                                          | beta-BHC                                        | < 0.692    | U    | µg/kg dry                | 5.37  | 0.692 | 1                     | "                   | "                         |               | "       | "                 | х     |
| 319-86-8                                          | delta-BHC                                       | < 0.421    | U    | µg/kg dry                | 5.37  | 0.421 | 1                     |                     | "                         |               | "       |                   | х     |
| 58-89-9                                           | gamma-BHC (Lindane)                             | < 0.577    | U    | µg/kg dry                | 3.22  | 0.577 | 1                     |                     | "                         |               | "       |                   | х     |
| 76-44-8                                           | Heptachlor                                      | < 0.627    | U    | µg/kg dry                | 5.37  | 0.627 | 1                     |                     | "                         |               | "       |                   | х     |
| 309-00-2                                          | Aldrin                                          | < 0.597    | U    | µg/kg dry                | 5.37  | 0.597 | 1                     |                     | "                         | "             | "       | "                 | х     |
| 1024-57-3                                         | Heptachlor epoxide                              | < 0.568    | U    | µg/kg dry                | 5.37  | 0.568 | 1                     |                     | "                         |               | "       |                   | х     |
| 959-98-8                                          | Endosulfan I                                    | < 0.604    | U    | µg/kg dry                | 5.37  | 0.604 | 1                     |                     | "                         | "             | "       | "                 | х     |
| 60-57-1                                           | Dieldrin                                        | < 0.615    | U    | µg/kg dry                | 5.37  | 0.615 | 1                     |                     | "                         | "             | "       |                   | х     |
| 72-55-9                                           | 4,4'-DDE (p,p')                                 | < 0.636    | U    | µg/kg dry                | 5.37  | 0.636 | 1                     |                     | "                         |               | "       |                   | х     |
| 72-20-8                                           | Endrin                                          | < 0.783    | U    | µg/kg dry                | 8.58  | 0.783 | 1                     |                     | "                         |               | "       |                   | х     |
| 33213-65-9                                        | Endosulfan II                                   | < 0.604    | U    | µg/kg dry                | 8.58  | 0.604 | 1                     |                     | "                         |               | "       |                   | х     |
| 72-54-8                                           | 4,4'-DDD (p,p')                                 | < 0.570    | U    | µg/kg dry                | 8.58  | 0.570 | 1                     |                     | "                         |               | "       | "                 | х     |
| 1031-07-8                                         | Endosulfan sulfate                              | < 0.614    | U    | µg/kg dry                | 8.58  | 0.614 | 1                     | "                   | "                         |               | "       | "                 | х     |
| 50-29-3                                           | 4,4'-DDT (p,p')                                 | < 0.574    | U    | µg/kg dry                | 8.58  | 0.574 | 1                     | "                   | "                         |               | "       | "                 | х     |
| 72-43-5                                           | Methoxychlor                                    | < 1.30     | U    | µg/kg dry                | 8.58  | 1.30  | 1                     | "                   | "                         |               | "       | "                 | х     |
| 53494-70-5                                        | Endrin ketone                                   | < 0.577    | U    | µg/kg dry                | 8.58  | 0.577 | 1                     | "                   | "                         |               | "       | "                 | х     |
| 7421-93-4                                         | Endrin aldehyde                                 | < 0.702    | U    | µg/kg dry                | 8.58  | 0.702 | 1                     | "                   | "                         |               | "       | "                 | х     |
| 5103-71-9                                         | alpha-Chlordane                                 | < 0.584    | U    | µg/kg dry                | 5.37  | 0.584 | 1                     | "                   | "                         |               | "       | "                 | х     |
| 5566-34-7                                         | gamma-Chlordane                                 | < 0.670    | U    | µg/kg dry                | 5.37  | 0.670 | 1                     | "                   | "                         |               | "       | "                 | х     |
| 8001-35-2                                         | Toxaphene                                       | < 34.8     | U    | µg/kg dry                | 107   | 34.8  | 1                     | "                   | "                         |               | "       | "                 | х     |

| Sample Id<br>SB-03-3-4<br>SC06702- |                                          |         |      | <u>Client Project #</u><br>2150606 |        | <u>Matrix</u><br>Soil | <u>Collection Date/Time</u><br>27-Apr-15 12:00 |               |               | Received<br>28-Apr-15 |         |         |       |
|------------------------------------|------------------------------------------|---------|------|------------------------------------|--------|-----------------------|------------------------------------------------|---------------|---------------|-----------------------|---------|---------|-------|
| CAS No.                            | Analyte(s)                               | Result  | Flag | Units                              | *RDL   | MDL                   | Dilution                                       | Method Ref.   | Prepared      | Analyzed              | Analyst | Batch   | Cert. |
| Semivolati                         | ile Organic Compounds by (               | GC      |      |                                    |        |                       |                                                |               |               |                       |         |         |       |
|                                    | lorine Pesticides                        |         |      |                                    |        |                       |                                                |               |               |                       |         |         |       |
|                                    | by method SW846 3545A                    |         |      |                                    |        |                       |                                                |               |               |                       |         |         |       |
| 57-74-9                            | Chlordane                                | < 12.9  | U    | µg/kg dry                          | 21.5   | 12.9                  | 1                                              | SW846 8081B   | 04-May-1<br>5 | 04-May-1<br>5         | TG      | 1508525 | Х     |
| 15972-60-8                         | Alachlor                                 | < 0.963 | U    | µg/kg dry                          | 5.37   | 0.963                 | 1                                              | "             |               |                       | "       | "       |       |
| Surrogate i                        | recoveries:                              |         |      |                                    |        |                       |                                                |               |               |                       |         |         |       |
| 10386-84-2                         | 4,4-DB-Octafluorobiphenyl<br>(Sr)        | 80      |      |                                    | 30-15  | i0 %                  |                                                | н             |               | "                     | "       | "       |       |
| 10386-84-2                         | 4,4-DB-Octafluorobiphenyl<br>(Sr) [2C]   | 46      |      |                                    | 30-15  | 50 %                  |                                                | "             | "             | "                     | "       | "       |       |
| 2051-24-3                          | Decachlorobiphenyl (Sr)                  | 227     | S02  |                                    | 30-15  | i0 %                  |                                                | "             | "             |                       | "       | "       |       |
| 2051-24-3                          | Decachlorobiphenyl (Sr)<br>[2C]          | 134     |      |                                    | 30-15  | 50 %                  |                                                | n             | "             | "                     | "       | "       |       |
|                                    | nated Biphenyls<br>by method SW846 3545A |         |      |                                    |        |                       |                                                |               |               |                       |         |         |       |
|                                    | Aroclor-1016                             | < 19.3  | U    | µg/kg dry                          | 21.4   | 19.3                  | 1                                              | SW846 8082A   | 30-Apr-15     | 01-May-1<br>5         | IMR     | 1508337 | х     |
| 11104-28-2                         | Aroclor-1221                             | < 16.4  | U    | µg/kg dry                          | 21.4   | 16.4                  | 1                                              |               | "             |                       | "       | "       | х     |
| 11141-16-5                         | Aroclor-1232                             | < 19.2  | U    | µg/kg dry                          | 21.4   | 19.2                  | 1                                              |               |               | "                     | "       | "       | х     |
| 53469-21-9                         | Aroclor-1242                             | < 13.3  | U    | µg/kg dry                          | 21.4   | 13.3                  | 1                                              |               |               | "                     | "       | "       | х     |
| 12672-29-6                         | Aroclor-1248                             | < 13.4  | U    | µg/kg dry                          | 21.4   | 13.4                  | 1                                              |               |               | "                     | "       |         | х     |
| 11097-69-1                         | Aroclor-1254                             | < 14.7  | U    | µg/kg dry                          | 21.4   | 14.7                  | 1                                              |               | "             | "                     | "       | "       | х     |
| 11096-82-5                         | Aroclor-1260                             | < 15.0  | U    | µg/kg dry                          | 21.4   | 15.0                  | 1                                              |               |               | "                     | "       | "       | х     |
| 37324-23-5                         | Aroclor-1262                             | < 19.2  | U    | µg/kg dry                          | 21.4   | 19.2                  | 1                                              |               | "             |                       | "       | "       | Х     |
| 11100-14-4                         | Aroclor-1268                             | < 21.0  | U    | µg/kg dry                          | 21.4   | 21.0                  | 1                                              | "             | "             |                       | "       | "       | Х     |
| Surrogate i                        | recoveries:                              |         |      |                                    |        |                       |                                                |               |               |                       |         |         |       |
| 10386-84-2                         | 4,4-DB-Octafluorobiphenyl<br>(Sr)        | 95      |      |                                    | 30-15  | i0 %                  |                                                | "             | "             | "                     | "       | "       |       |
| 10386-84-2                         | 4,4-DB-Octafluorobiphenyl<br>(Sr) [2C]   | 95      |      |                                    | 30-15  | 50 %                  |                                                | n             | "             | "                     | "       | "       |       |
| 2051-24-3                          | Decachlorobiphenyl (Sr)                  | 85      |      |                                    | 30-15  | i0 %                  |                                                |               | "             | "                     | "       | "       |       |
| 2051-24-3                          | Decachlorobiphenyl (Sr)<br>[2C]          | 90      |      |                                    | 30-15  | i0 %                  |                                                | "             |               | "                     | "       | u       |       |
|                                    | als by EPA 6000/7000 Series              |         |      |                                    |        |                       |                                                |               |               |                       |         |         |       |
| 7440-22-4                          | Silver                                   | < 0.109 | U    | mg/kg dry                          | 1.50   | 0.109                 | 1                                              | SW846 6010C   | 04-May-1<br>5 | 04-May-1<br>5         | TBC     | 1508397 | Х     |
| 7440-38-2                          | Arsenic                                  | 9.85    |      | mg/kg dry                          | 1.50   | 0.242                 | 1                                              |               | "             | "                     | "       | "       | х     |
| 7440-39-3                          | Barium                                   | 136     |      | mg/kg dry                          | 0.997  | 0.0592                | 1                                              |               |               |                       | "       | "       | х     |
| 7440-43-9                          | Cadmium                                  | 2.23    |      | mg/kg dry                          | 0.499  | 0.0160                | 1                                              |               |               |                       | "       | "       | х     |
| 7440-47-3                          | Chromium                                 | 19.5    |      | mg/kg dry                          | 0.997  | 0.0952                | 1                                              |               |               |                       | "       |         | х     |
| 7439-97-6                          | Mercury                                  | 0.522   |      | mg/kg dry                          | 0.0309 | 0.0020                | 1                                              | SW846 7471B   | "             | 04-May-1<br>5         | YR      | 1508398 | х     |
| 7439-92-1                          | Lead                                     | 455     |      | mg/kg dry                          | 1.50   | 0.275                 | 1                                              | SW846 6010C   | "             | 04-May-1<br>5         | TBC     | 1508397 | х     |
| 7782-49-2                          | Selenium                                 | 1.30    | J    | mg/kg dry                          | 1.50   | 0.375                 | 1                                              | "             | "             | "                     | "       | "       | х     |
| General C                          | hemistry Parameters                      |         |      |                                    |        |                       |                                                |               |               |                       |         |         |       |
|                                    | % Solids                                 | 92.4    |      | %                                  |        |                       | 1                                              | SM2540 G Mod. | 30-Apr-15     | 30-Apr-15             | DT      | 1508366 |       |
| 57-12-5                            | Cyanide (total)                          | 0.541   |      | mg/kg dry                          | 0.522  | 0.418                 | 1                                              | SW846 9012B   | 05-May-1<br>5 | 05-May-1<br>5         | RLT     | 1508657 | Х     |

| Sample Id<br>SB-04-14<br>SC06702- |                                      |                    |        | <u>Client P</u><br>2150 | •    |      | <u>Matrix</u><br>Soil |                        | ection Date<br>'-Apr-15 14 |               |         | <u>eceived</u><br>Apr-15 |       |
|-----------------------------------|--------------------------------------|--------------------|--------|-------------------------|------|------|-----------------------|------------------------|----------------------------|---------------|---------|--------------------------|-------|
| CAS No.                           | Analyte(s)                           | Result             | Flag   | Units                   | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                   | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                        | rganic Compounds                     |                    |        |                         |      |      |                       |                        |                            |               |         |                          |       |
| volutile 0                        | VOC Extraction                       | Field<br>extracted |        | N/A                     |      |      | 1                     | VOC Soil<br>Extraction |                            |               | DT      | 1508307                  |       |
|                                   | rganic Compounds by SW               |                    |        |                         |      |      |                       |                        |                            |               |         |                          |       |
|                                   | by method SW846 5035A                |                    | -      |                         |      |      | tial weight:          |                        |                            |               |         |                          |       |
| 67-64-1                           | Acetone                              | < 38.3             | U      | µg/kg dry               | 57.3 | 38.3 | 1                     | SW846 8260C            | 01-May-1<br>5              | 01-May-1<br>5 | SJB     | 1508450                  | Х     |
| 71-43-2                           | Benzene                              | < 1.0              | U      | µg/kg dry               | 5.7  | 1.0  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 75-27-4                           | Bromodichloromethane                 | < 3.8              | U      | µg/kg dry               | 5.7  | 3.8  | 1                     | "                      |                            |               | "       | "                        | х     |
| 75-25-2                           | Bromoform                            | < 5.5              | U      | µg/kg dry               | 5.7  | 5.5  | 1                     |                        |                            |               | "       |                          | х     |
| 74-83-9                           | Bromomethane                         | < 3.3              | U      | µg/kg dry               | 11.5 | 3.3  | 1                     |                        |                            |               | "       |                          | х     |
| 78-93-3                           | 2-Butanone (MEK)                     | < 6.9              | U      | µg/kg dry               | 57.3 | 6.9  | 1                     |                        |                            |               | "       |                          | х     |
| 104-51-8                          | n-Butylbenzene                       | < 1.6              | U      | µg/kg dry               | 5.7  | 1.6  | 1                     |                        |                            |               | "       |                          | х     |
| 135-98-8                          | sec-Butylbenzene                     | < 4.5              | U      | µg/kg dry               | 5.7  | 4.5  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 98-06-6                           | tert-Butylbenzene                    | < 3.8              | U      | µg/kg dry               | 5.7  | 3.8  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 75-15-0                           | Carbon disulfide                     | < 3.5              | U      | µg/kg dry               | 11.5 | 3.5  | 1                     |                        |                            |               | "       |                          | х     |
| 56-23-5                           | Carbon tetrachloride                 | < 4.7              | U      | µg/kg dry               | 5.7  | 4.7  | 1                     |                        |                            |               | "       |                          | х     |
| 108-90-7                          | Chlorobenzene                        | < 0.9              | U      | µg/kg dry               | 5.7  | 0.9  | 1                     |                        |                            |               | "       |                          | х     |
| 75-00-3                           | Chloroethane                         | < 3.2              | U      | µg/kg dry               | 11.5 | 3.2  | 1                     |                        | "                          | "             | "       | "                        | х     |
| 67-66-3                           | Chloroform                           | < 1.9              | U      | µg/kg dry               | 5.7  | 1.9  | 1                     |                        |                            |               | "       |                          | х     |
| 74-87-3                           | Chloromethane                        | < 2.4              | U      | µg/kg dry               | 11.5 | 2.4  | 1                     |                        |                            |               | "       |                          | х     |
| 124-48-1                          | Dibromochloromethane                 | < 3.9              | U      | µg/kg dry               | 5.7  | 3.9  | 1                     |                        |                            |               | "       |                          | х     |
| 95-50-1                           | 1,2-Dichlorobenzene                  | < 1.0              | U      | µg/kg dry               | 5.7  | 1.0  | 1                     |                        |                            |               | "       |                          | х     |
| 541-73-1                          | 1,3-Dichlorobenzene                  | < 1.2              | U      | µg/kg dry               | 5.7  | 1.2  | 1                     |                        |                            |               | "       |                          | х     |
| 106-46-7                          | 1,4-Dichlorobenzene                  | < 1.4              | U      | µg/kg dry               | 5.7  | 1.4  | 1                     |                        |                            |               | "       |                          | х     |
| 75-71-8                           | Dichlorodifluoromethane<br>(Freon12) | < 2.0              | U      | µg/kg dry               | 11.5 | 2.0  | 1                     | "                      | "                          | "             | "       | "                        | Х     |
| 75-34-3                           | 1,1-Dichloroethane                   | < 3.7              | U      | µg/kg dry               | 5.7  | 3.7  | 1                     |                        |                            |               | "       |                          | х     |
| 107-06-2                          | 1,2-Dichloroethane                   | < 1.4              | U      | µg/kg dry               | 5.7  | 1.4  | 1                     |                        |                            |               | "       |                          | х     |
| 75-35-4                           | 1,1-Dichloroethene                   | < 4.3              | U      | µg/kg dry               | 5.7  | 4.3  | 1                     |                        |                            |               | "       |                          | х     |
| 156-59-2                          | cis-1,2-Dichloroethene               | < 2.1              | U      | µg/kg dry               | 5.7  | 2.1  | 1                     |                        |                            |               | "       |                          | х     |
| 156-60-5                          | trans-1,2-Dichloroethene             | < 3.0              | U      | µg/kg dry               | 5.7  | 3.0  | 1                     |                        |                            |               | "       |                          | х     |
| 78-87-5                           | 1,2-Dichloropropane                  | < 3.0              | U      | µg/kg dry               | 5.7  | 3.0  | 1                     |                        |                            |               | "       |                          | х     |
| 10061-01-5                        | cis-1,3-Dichloropropene              | < 3.5              | U      | µg/kg dry               | 5.7  | 3.5  | 1                     |                        |                            |               | "       |                          | х     |
| 10061-02-6                        | trans-1,3-Dichloropropene            | < 3.0              | U      | µg/kg dry               | 5.7  | 3.0  | 1                     |                        |                            |               | "       |                          | х     |
| 100-41-4                          | Ethylbenzene                         | < 1.0              | U      | µg/kg dry               | 5.7  | 1.0  | 1                     |                        |                            |               | "       |                          | х     |
| 591-78-6                          | 2-Hexanone (MBK)                     | < 6.3              | U      | µg/kg dry               | 57.3 | 6.3  | 1                     |                        |                            |               | "       |                          | х     |
| 98-82-8                           | Isopropylbenzene                     | < 1.1              | U      | µg/kg dry               | 5.7  | 1.1  | 1                     |                        |                            |               | "       |                          | х     |
| 99-87-6                           | 4-Isopropyltoluene                   | < 5.4              | U      | µg/kg dry               | 5.7  | 5.4  | 1                     |                        |                            |               | "       |                          | х     |
| 1634-04-4                         | Methyl tert-butyl ether              | < 2.2              | U      | µg/kg dry               | 5.7  | 2.2  | 1                     |                        | "                          | "             | "       | "                        | х     |
| 108-10-1                          | 4-Methyl-2-pentanone<br>(MIBK)       | < 10.8             | U      | µg/kg dry               | 57.3 | 10.8 | 1                     | "                      | "                          | "             | "       | "                        | Х     |
| 75-09-2                           | Methylene chloride                   | 3.5                | O01, J | µg/kg dry               | 11.5 | 1.7  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 91-20-3                           | Naphthalene                          | < 5.2              | U      | µg/kg dry               | 5.7  | 5.2  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 103-65-1                          | n-Propylbenzene                      | < 5.5              | U      | µg/kg dry               | 5.7  | 5.5  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 100-42-5                          | Styrene                              | < 1.0              | U      | µg/kg dry               | 5.7  | 1.0  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 79-34-5                           | 1,1,2,2-Tetrachloroethane            | < 4.8              | U      | µg/kg dry               | 5.7  | 4.8  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 127-18-4                          | Tetrachloroethene                    | < 2.2              | U      | µg/kg dry               | 5.7  | 2.2  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 108-88-3                          | Toluene                              | < 1.3              | U      | µg/kg dry               | 5.7  | 1.3  | 1                     | "                      | "                          | "             | "       | "                        | х     |

| Sample Id<br>SB-04-14-<br>SC06702- |                                                   |                 |      | <u>Client P</u><br>2150 |       |         | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 14 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|---------------------------------------------------|-----------------|------|-------------------------|-------|---------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                        | Result          | Flag | Units                   | *RDL  | MDL     | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                        | ganic Compounds                                   |                 |      |                         |       |         |                       |                     |                           |               |         |                         |       |
|                                    | ganic Compounds by SV                             |                 |      |                         |       |         |                       |                     |                           |               |         |                         |       |
|                                    | by method SW846 5035A                             |                 |      |                         |       |         | ial weight:           | -                   |                           |               |         |                         |       |
| 71-55-6                            | 1,1,1-Trichloroethane                             | < 1.5           | U    | µg/kg dry               | 5.7   | 1.5     | 1                     | SW846 8260C         | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508450                 | Х     |
| 79-00-5                            | 1,1,2-Trichloroethane                             | < 4.2           | U    | µg/kg dry               | 5.7   | 4.2     | 1                     | "                   | "                         | "             | "       |                         | Х     |
| 79-01-6                            | Trichloroethene                                   | < 1.0           | U    | µg/kg dry               | 5.7   | 1.0     | 1                     | "                   | "                         | "             | "       |                         | Х     |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)              | < 3.1           | U    | µg/kg dry               | 5.7   | 3.1     | 1                     | "                   | "                         | "             |         | "                       | х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                            | < 1.4           | U    | µg/kg dry               | 5.7   | 1.4     | 1                     |                     | "                         | "             | "       | "                       | х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                            | < 1.6           | U    | µg/kg dry               | 5.7   | 1.6     | 1                     |                     | "                         | "             | "       | "                       | х     |
| 75-01-4                            | Vinyl chloride                                    | < 2.1           | U    | µg/kg dry               | 5.7   | 2.1     | 1                     |                     | "                         | "             | "       |                         | х     |
| 179601-23-1                        | m,p-Xylene                                        | < 1.1           | U    | µg/kg dry               | 11.5  | 1.1     | 1                     |                     | "                         | "             | "       |                         | х     |
| 95-47-6                            | o-Xylene                                          | < 1.2           | U    | µg/kg dry               | 5.7   | 1.2     | 1                     | "                   | "                         | "             | "       | "                       | х     |
| Surrogate r                        | ecoveries:                                        |                 |      |                         |       |         |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 96              |      |                         | 70-13 | 0 %     |                       |                     | "                         | "             | "       |                         |       |
| 2037-26-5                          | Toluene-d8                                        | 111             |      |                         | 70-13 | 0 %     |                       |                     | "                         | "             | "       |                         |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 109             |      |                         | 70-13 | 0 %     |                       |                     | "                         |               | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                              | 112             |      |                         | 70-13 | 0 %     |                       | "                   | "                         | "             | "       | "                       |       |
|                                    | ganic Compounds<br>by method SW846 50354          | A Soil (low lev | رام  |                         |       | Ini     | tial weight:          | 630                 |                           |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                     | < 12.0          | U    | µg/kg dry               | 57.3  | 12.0    | 1                     | <u>0.0 g</u><br>"   | 01-May-1                  |               | "       | 1508448                 |       |
|                                    |                                                   | 12.0            |      | µ99 a. )                | 0110  | .2.0    | •                     |                     | 5                         |               |         |                         |       |
| Surrogate r                        | ecoveries:                                        |                 |      |                         |       |         |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 105             |      |                         | 70-13 | 0 %     |                       | "                   | "                         | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                        | 100             |      |                         | 70-13 | 0 %     |                       |                     | "                         | "             | "       |                         |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 117             |      |                         | 70-13 | 0 %     |                       | "                   | "                         | "             | "       |                         |       |
| 1868-53-7                          | Dibromofluoromethane                              | 104             |      |                         | 70-13 | 0 %     |                       | "                   | "                         | "             | "       | "                       |       |
|                                    | / Identified Compounds b<br>by method SW846 50354 |                 | rel) |                         |       | Ini     | tial weight:          | 63a                 |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds               | None found      |      | µg/kg dry               |       | <u></u> | 1                     | SW846 8260C<br>TICs | 01-May-1<br>5             | "             | SJB     | 1508450                 |       |
| General Cl                         | hemistry Parameters                               |                 |      |                         |       |         |                       |                     |                           |               |         |                         |       |
|                                    | % Solids                                          | 83.6            |      | %                       |       |         | 1                     | SM2540 G Mod.       | 30-Apr-15                 | 30-Apr-15     | DT      | 1508366                 |       |

| Sample Id<br>Blind Du<br>SC06702- | -                                    |                    |        | <u>Client P</u><br>2150 | •    |      | <u>Matrix</u><br>Soil |                        | ection Date<br>-Apr-15 00 |               |         | <u>eceived</u><br>Apr-15 |       |
|-----------------------------------|--------------------------------------|--------------------|--------|-------------------------|------|------|-----------------------|------------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                           | Analyte(s)                           | Result             | Flag   | Units                   | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                        | rganic Compounds                     |                    |        |                         |      |      |                       |                        |                           |               |         |                          |       |
|                                   | VOC Extraction                       | Field<br>extracted |        | N/A                     |      |      | 1                     | VOC Soil<br>Extraction |                           |               | DT      | 1508307                  |       |
|                                   | rganic Compounds by SW               |                    |        |                         |      |      |                       |                        |                           |               |         |                          |       |
|                                   | by method SW846 5035A                |                    | -      |                         |      |      | ial weight:           |                        |                           |               |         |                          |       |
| 67-64-1                           | Acetone                              | < 41.2             | U      | µg/kg dry               | 61.7 | 41.2 | 1                     | SW846 8260C            | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508450                  | Х     |
| 71-43-2                           | Benzene                              | < 1.1              | U      | µg/kg dry               | 6.2  | 1.1  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 75-27-4                           | Bromodichloromethane                 | < 4.1              | U      | µg/kg dry               | 6.2  | 4.1  | 1                     | "                      | "                         |               | "       |                          | Х     |
| 75-25-2                           | Bromoform                            | < 5.9              | U      | µg/kg dry               | 6.2  | 5.9  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 74-83-9                           | Bromomethane                         | < 3.5              | U      | µg/kg dry               | 12.3 | 3.5  | 1                     | "                      | "                         |               | "       |                          | Х     |
| 78-93-3                           | 2-Butanone (MEK)                     | < 7.4              | U      | µg/kg dry               | 61.7 | 7.4  | 1                     |                        | "                         | "             | "       |                          | х     |
| 104-51-8                          | n-Butylbenzene                       | < 1.8              | U      | µg/kg dry               | 6.2  | 1.8  | 1                     |                        | "                         |               | "       |                          | х     |
| 135-98-8                          | sec-Butylbenzene                     | < 4.8              | U      | µg/kg dry               | 6.2  | 4.8  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 98-06-6                           | tert-Butylbenzene                    | < 4.1              | U      | µg/kg dry               | 6.2  | 4.1  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 75-15-0                           | Carbon disulfide                     | < 3.8              | U      | µg/kg dry               | 12.3 | 3.8  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 56-23-5                           | Carbon tetrachloride                 | < 5.0              | U      | µg/kg dry               | 6.2  | 5.0  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 108-90-7                          | Chlorobenzene                        | < 1.0              | U      | µg/kg dry               | 6.2  | 1.0  | 1                     |                        | "                         |               | "       |                          | х     |
| 75-00-3                           | Chloroethane                         | < 3.4              | U      | µg/kg dry               | 12.3 | 3.4  | 1                     |                        | "                         |               | "       |                          | х     |
| 67-66-3                           | Chloroform                           | < 2.0              | U      | µg/kg dry               | 6.2  | 2.0  | 1                     | "                      | "                         |               | "       |                          | х     |
| 74-87-3                           | Chloromethane                        | < 2.5              | U      | µg/kg dry               | 12.3 | 2.5  | 1                     |                        |                           |               | "       |                          | х     |
| 124-48-1                          | Dibromochloromethane                 | < 4.2              | U      | µg/kg dry               | 6.2  | 4.2  | 1                     |                        |                           |               | "       |                          | х     |
| 95-50-1                           | 1,2-Dichlorobenzene                  | < 1.1              | U      | µg/kg dry               | 6.2  | 1.1  | 1                     |                        | "                         |               | "       |                          | х     |
| 541-73-1                          | 1,3-Dichlorobenzene                  | < 1.3              | U      | µg/kg dry               | 6.2  | 1.3  | 1                     | "                      | "                         |               | "       |                          | х     |
| 106-46-7                          | 1,4-Dichlorobenzene                  | < 1.5              | U      | µg/kg dry               | 6.2  | 1.5  | 1                     | "                      | "                         |               | "       |                          | х     |
| 75-71-8                           | Dichlorodifluoromethane<br>(Freon12) | < 2.1              | U      | µg/kg dry               | 12.3 | 2.1  | 1                     | u                      | "                         | "             | "       | "                        | Х     |
| 75-34-3                           | 1,1-Dichloroethane                   | < 4.0              | U      | µg/kg dry               | 6.2  | 4.0  | 1                     |                        | "                         |               | "       |                          | х     |
| 107-06-2                          | 1,2-Dichloroethane                   | < 1.5              | U      | µg/kg dry               | 6.2  | 1.5  | 1                     | "                      | "                         |               | "       |                          | х     |
| 75-35-4                           | 1,1-Dichloroethene                   | < 4.6              | U      | µg/kg dry               | 6.2  | 4.6  | 1                     |                        |                           |               | "       |                          | х     |
| 156-59-2                          | cis-1,2-Dichloroethene               | < 2.3              | U      | µg/kg dry               | 6.2  | 2.3  | 1                     |                        |                           |               | "       |                          | х     |
| 156-60-5                          | trans-1,2-Dichloroethene             | < 3.3              | U      | µg/kg dry               | 6.2  | 3.3  | 1                     |                        |                           |               | "       |                          | х     |
| 78-87-5                           | 1,2-Dichloropropane                  | < 3.2              | U      | µg/kg dry               | 6.2  | 3.2  | 1                     |                        | "                         |               |         |                          | х     |
| 10061-01-5                        | cis-1,3-Dichloropropene              | < 3.7              | U      | µg/kg dry               | 6.2  | 3.7  | 1                     |                        |                           |               | "       |                          | х     |
| 10061-02-6                        | trans-1,3-Dichloropropene            | < 3.2              | U      | µg/kg dry               | 6.2  | 3.2  | 1                     | "                      | "                         |               | "       |                          | х     |
| 100-41-4                          | Ethylbenzene                         | < 1.1              | U      | µg/kg dry               | 6.2  | 1.1  | 1                     |                        | "                         |               | "       |                          | х     |
| 591-78-6                          | 2-Hexanone (MBK)                     | < 6.8              | U      | µg/kg dry               | 61.7 | 6.8  | 1                     |                        | "                         |               | "       |                          | х     |
| 98-82-8                           | Isopropylbenzene                     | < 1.2              | U      | µg/kg dry               | 6.2  | 1.2  | 1                     |                        | "                         |               | "       |                          | х     |
| 99-87-6                           | 4-Isopropyltoluene                   | < 5.8              | U      | µg/kg dry               | 6.2  | 5.8  | 1                     | "                      | "                         |               | "       |                          | х     |
| 1634-04-4                         | Methyl tert-butyl ether              | < 2.4              | U      | µg/kg dry               | 6.2  | 2.4  | 1                     | "                      | "                         |               | "       |                          | x     |
| 108-10-1                          | 4-Methyl-2-pentanone<br>(MIBK)       | < 11.6             | U      | µg/kg dry               | 61.7 | 11.6 | 1                     | n                      | "                         | u             | "       | "                        | X     |
| 75-09-2                           | Methylene chloride                   | 2.9                | O01, J | µg/kg dry               | 12.3 | 1.8  | 1                     | "                      | "                         | "             | "       | "                        | х     |
| 91-20-3                           | Naphthalene                          | < 5.7              | U      | µg/kg dry               | 6.2  | 5.7  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 103-65-1                          | n-Propylbenzene                      | < 6.0              | U      | µg/kg dry               | 6.2  | 6.0  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 100-42-5                          | Styrene                              | < 1.1              | U      | µg/kg dry               | 6.2  | 1.1  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 79-34-5                           | 1,1,2,2-Tetrachloroethane            | < 5.2              | U      | µg/kg dry               | 6.2  | 5.2  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 127-18-4                          | Tetrachloroethene                    | < 2.4              | U      | µg/kg dry               | 6.2  | 2.4  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 108-88-3                          | Toluene                              | < 1.4              | U      | µg/kg dry               | 6.2  | 1.4  | 1                     | "                      | "                         | "             | "       | "                        | Х     |

| Sample Id<br>Blind Dup<br>SC06702- |                                                 |                  |            | <u>Client P</u><br>2150 | -     |      | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 00 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|-------------------------------------------------|------------------|------------|-------------------------|-------|------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                      | Result           | Flag       | Units                   | *RDL  | MDL  | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                        | ganic Compounds                                 |                  |            |                         |       |      |                       |                     |                           |               |         |                         |       |
|                                    | ganic Compounds by SV                           |                  |            |                         |       |      |                       |                     |                           |               |         |                         |       |
|                                    | by method SW846 5035A                           |                  |            |                         |       |      | tial weight:          | -                   |                           |               |         |                         |       |
| 71-55-6                            | 1,1,1-Trichloroethane                           | < 1.6            | U          | µg/kg dry               | 6.2   | 1.6  | 1                     | SW846 8260C         | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508450                 | Х     |
| 79-00-5                            | 1,1,2-Trichloroethane                           | < 4.5            | U          | µg/kg dry               | 6.2   | 4.5  | 1                     |                     |                           | "             | "       | "                       | Х     |
| 79-01-6                            | Trichloroethene                                 | < 1.1            | U          | µg/kg dry               | 6.2   | 1.1  | 1                     |                     | "                         | "             | "       | "                       | х     |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)            | < 3.3            | U          | µg/kg dry               | 6.2   | 3.3  | 1                     | n                   |                           | "             | "       | "                       | х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                          | < 1.5            | U          | µg/kg dry               | 6.2   | 1.5  | 1                     |                     | "                         | "             | "       | "                       | Х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                          | < 1.8            | U          | µg/kg dry               | 6.2   | 1.8  | 1                     |                     | "                         | "             | "       | "                       | Х     |
| 75-01-4                            | Vinyl chloride                                  | < 2.2            | U          | µg/kg dry               | 6.2   | 2.2  | 1                     |                     | "                         | "             | "       | "                       | х     |
| 179601-23-1                        | m,p-Xylene                                      | < 1.2            | U          | µg/kg dry               | 12.3  | 1.2  | 1                     |                     |                           | "             | "       | "                       | Х     |
| 95-47-6                            | o-Xylene                                        | < 1.3            | U          | µg/kg dry               | 6.2   | 1.3  | 1                     |                     | "                         | "             | "       | "                       | х     |
| Surrogate r                        | ecoveries:                                      |                  |            |                         |       |      |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                            | 96               |            |                         | 70-13 | 0 %  |                       |                     |                           | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                      | 110              |            |                         | 70-13 | 0 %  |                       |                     |                           |               | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                           | 106              |            |                         | 70-13 | 0 %  |                       |                     |                           | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                            | 112              |            |                         | 70-13 | 0 %  |                       |                     | "                         | "             | "       | "                       |       |
|                                    | ganic Compounds<br>by method SW846 5035/        | A Soil (low leve | <u>el)</u> |                         |       | Ini  | tial weight:          | <u>6.09 g</u>       |                           |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                   | < 13.0           | U          | µg/kg dry               | 61.7  | 13.0 | 1                     | n                   | 01-May-1<br>5             | "             | "       | 1508448                 |       |
| Surrogate r                        | ecoveries:                                      |                  |            |                         |       |      |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                            | 104              |            |                         | 70-13 | 0 %  |                       | "                   | "                         | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                      | 100              |            |                         | 70-13 | 0 %  |                       | "                   | "                         | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                           | 114              |            |                         | 70-13 | 0 %  |                       | "                   | "                         | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                            | 103              |            |                         | 70-13 | 0 %  |                       |                     | "                         | "             | "       | "                       |       |
|                                    | Identified Compounds b<br>by method SW846 5035A |                  | <u>el)</u> |                         |       | Ini  | tial weight:          | <u>6.09 g</u>       |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds             | None found       |            | µg/kg dry               |       |      | 1                     | SW846 8260C<br>TICs | 01-May-1<br>5             | "             | SJB     | 1508450                 |       |
| General Cl                         | hemistry Parameters                             |                  |            |                         |       |      |                       |                     |                           |               |         |                         |       |
|                                    | % Solids                                        | 81.5             |            | %                       |       |      | 1                     | SM2540 G Mod.       | 30-Apr-15                 | 30-Apr-15     | DT      | 1508366                 |       |

| Sample Id<br>SB-05-7-4<br>SC06702 |                                                 |        |      | <u>Client P</u><br>2150 | -    |      | <u>Matrix</u><br>Soil |             | ection Date<br>'-Apr-15 00 |               |         | eceived<br>Apr-15 |       |
|-----------------------------------|-------------------------------------------------|--------|------|-------------------------|------|------|-----------------------|-------------|----------------------------|---------------|---------|-------------------|-------|
| CAS No.                           | Analyte(s)                                      | Result | Flag | Units                   | *RDL | MDL  | Dilution              | Method Ref. | Prepared                   | Analyzed      | Analyst | Batch             | Cert. |
| Semivolat                         | ile Organic Compounds by (                      | GCMS   |      |                         |      |      |                       |             |                            |               |         |                   |       |
|                                   | tile Organic Compounds<br>by method SW846 3545A |        |      |                         |      |      |                       |             |                            |               |         |                   |       |
| 83-32-9                           | Acenaphthene                                    | < 18.2 | U    | µg/kg dry               | 78.2 | 18.2 | 1                     | SW846 8270D | 29-Apr-15                  | 05-May-1<br>5 | MSL     | 1508313           | х     |
| 208-96-8                          | Acenaphthylene                                  | < 16.6 | U    | µg/kg dry               | 78.2 | 16.6 | 1                     | "           | "                          |               | "       | "                 | х     |
| 120-12-7                          | Anthracene                                      | < 17.9 | U    | µg/kg dry               | 78.2 | 17.9 | 1                     |             |                            | "             | "       |                   | Х     |
| 56-55-3                           | Benzo (a) anthracene                            | < 16.2 | U    | µg/kg dry               | 78.2 | 16.2 | 1                     |             | "                          | "             | "       |                   | Х     |
| 50-32-8                           | Benzo (a) pyrene                                | < 16.3 | U    | µg/kg dry               | 78.2 | 16.3 | 1                     |             | "                          |               | "       |                   | х     |
| 205-99-2                          | Benzo (b) fluoranthene                          | < 17.8 | U    | µg/kg dry               | 78.2 | 17.8 | 1                     |             | "                          | "             | "       |                   | х     |
| 191-24-2                          | Benzo (g,h,i) perylene                          | < 16.9 | U    | µg/kg dry               | 78.2 | 16.9 | 1                     |             |                            | "             | "       |                   | х     |
| 207-08-9                          | Benzo (k) fluoranthene                          | < 17.8 | U    | µg/kg dry               | 78.2 | 17.8 | 1                     |             |                            | "             | "       |                   | х     |
| 111-91-1                          | Bis(2-chloroethoxy)metha<br>ne                  | < 70.6 | U    | µg/kg dry               | 387  | 70.6 | 1                     | n           | "                          | "             | "       |                   | х     |
| 111-44-4                          | Bis(2-chloroethyl)ether                         | < 70.4 | U    | µg/kg dry               | 196  | 70.4 | 1                     |             | "                          | "             | "       | "                 | Х     |
| 108-60-1                          | Bis(2-chloroisopropyl)ethe r                    | < 70.3 | U    | µg/kg dry               | 196  | 70.3 | 1                     | "           | "                          | "             | "       | "                 | Х     |
| 117-81-7                          | Bis(2-ethylhexyl)phthalate                      | < 96.6 | U    | µg/kg dry               | 196  | 96.6 | 1                     |             |                            |               | "       |                   | х     |
| 101-55-3                          | 4-Bromophenyl phenyl ether                      | < 78.2 | U    | µg/kg dry               | 387  | 78.2 | 1                     | n           | "                          | "             | "       | "                 | х     |
| 85-68-7                           | Butyl benzyl phthalate                          | < 85.7 | U    | µg/kg dry               | 387  | 85.7 | 1                     |             |                            | "             | "       |                   | х     |
| 86-74-8                           | Carbazole                                       | < 99.5 | U    | µg/kg dry               | 196  | 99.5 | 1                     |             |                            | "             | "       |                   | х     |
| 59-50-7                           | 4-Chloro-3-methylphenol                         | < 80.3 | U    | µg/kg dry               | 387  | 80.3 | 1                     |             |                            | "             | "       |                   | х     |
| 106-47-8                          | 4-Chloroaniline                                 | < 79.9 | U    | µg/kg dry               | 196  | 79.9 | 1                     |             |                            | "             | "       |                   | х     |
| 91-58-7                           | 2-Chloronaphthalene                             | < 68.0 | U    | µg/kg dry               | 387  | 68.0 | 1                     |             |                            | "             | "       |                   | х     |
| 95-57-8                           | 2-Chlorophenol                                  | < 69.2 | U    | µg/kg dry               | 196  | 69.2 | 1                     |             |                            | "             | "       |                   | х     |
| 7005-72-3                         | 4-Chlorophenyl phenyl ether                     | < 72.7 | U    | µg/kg dry               | 387  | 72.7 | 1                     | "           | "                          | "             | "       | "                 | х     |
| 218-01-9                          | Chrysene                                        | < 19.1 | U    | µg/kg dry               | 78.2 | 19.1 | 1                     |             |                            | "             | "       |                   | х     |
| 53-70-3                           | Dibenzo (a,h) anthracene                        | < 14.4 | U    | µg/kg dry               | 78.2 | 14.4 | 1                     |             |                            | "             | "       |                   | х     |
| 132-64-9                          | Dibenzofuran                                    | < 14.4 | U    | µg/kg dry               | 196  | 14.4 | 1                     |             |                            | "             | "       |                   | х     |
| 95-50-1                           | 1,2-Dichlorobenzene                             | < 65.0 | U    | µg/kg dry               | 387  | 65.0 | 1                     |             |                            | "             | "       |                   | х     |
| 541-73-1                          | 1,3-Dichlorobenzene                             | < 68.7 | U    | µg/kg dry               | 387  | 68.7 | 1                     |             |                            | "             | "       |                   | х     |
| 106-46-7                          | 1,4-Dichlorobenzene                             | < 64.0 | U    | µg/kg dry               | 387  | 64.0 | 1                     |             | "                          | "             | "       |                   | х     |
| 91-94-1                           | 3,3'-Dichlorobenzidine                          | < 78.6 | U    | µg/kg dry               | 387  | 78.6 | 1                     |             | "                          | "             | "       | "                 | Х     |
| 120-83-2                          | 2,4-Dichlorophenol                              | < 66.6 | U    | µg/kg dry               | 196  | 66.6 | 1                     |             | "                          | "             | "       |                   | х     |
| 84-66-2                           | Diethyl phthalate                               | < 80.8 | U    | µg/kg dry               | 387  | 80.8 | 1                     |             | "                          | "             | "       |                   | х     |
| 131-11-3                          | Dimethyl phthalate                              | < 76.2 | U    | µg/kg dry               | 387  | 76.2 | 1                     |             | "                          | "             | "       |                   | х     |
| 105-67-9                          | 2,4-Dimethylphenol                              | < 66.3 | U    | µg/kg dry               | 387  | 66.3 | 1                     |             | "                          | "             | "       |                   | х     |
| 84-74-2                           | Di-n-butyl phthalate                            | < 86.9 | U    | µg/kg dry               | 387  | 86.9 | 1                     |             | "                          | "             | "       |                   | х     |
| 534-52-1                          | 4,6-Dinitro-2-methylphenol                      | < 103  | U    | µg/kg dry               | 387  | 103  | 1                     | "           | "                          |               | "       | "                 | х     |
| 51-28-5                           | 2,4-Dinitrophenol                               | < 102  | U    | µg/kg dry               | 387  | 102  | 1                     | "           | "                          |               | "       | "                 | х     |
| 121-14-2                          | 2,4-Dinitrotoluene                              | < 80.6 | U    | µg/kg dry               | 196  | 80.6 | 1                     | "           | "                          |               | "       | "                 | х     |
| 606-20-2                          | 2,6-Dinitrotoluene                              | < 76.0 | U    | µg/kg dry               | 196  | 76.0 | 1                     | "           | "                          |               | "       | "                 | х     |
| 117-84-0                          | Di-n-octyl phthalate                            | < 83.6 | U    | µg/kg dry               | 387  | 83.6 | 1                     | "           | "                          |               | "       | "                 | х     |
| 206-44-0                          | Fluoranthene                                    | < 19.6 | U    | µg/kg dry               | 78.2 | 19.6 | 1                     | "           | "                          |               | "       | "                 | х     |
| 86-73-7                           | Fluorene                                        | < 18.7 | U    | µg/kg dry               | 78.2 | 18.7 | 1                     | "           | "                          | "             | "       | "                 | х     |
| 118-74-1                          | Hexachlorobenzene                               | < 85.5 | U    | µg/kg dry               | 196  | 85.5 | 1                     | "           | "                          |               | "       | "                 | х     |
| 87-68-3                           | Hexachlorobutadiene                             | < 62.3 | U    | µg/kg dry               | 196  | 62.3 | 1                     | n           | "                          |               | "       | "                 | х     |

| Sample IC<br>SB-05-7-8<br>SC06702- |                                                        |            |      | <u>Client P</u><br>2150 |        |        | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 00 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|--------------------------------------------------------|------------|------|-------------------------|--------|--------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                             | Result     | Flag | Units                   | *RDL   | MDL    | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolati                         | ile Organic Compounds by C                             | GCMS       |      |                         |        |        |                       |                     |                           |               |         |                         |       |
|                                    | tile Organic Compounds                                 |            |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| Prepared<br>77-47-4                | by method SW846 3545A<br>Hexachlorocyclopentadien<br>e | < 71.4     | U    | µg/kg dry               | 196    | 71.4   | 1                     | SW846 8270D         | 29-Apr-15                 | 05-May-1<br>5 | MSL     | 1508313                 | х     |
| 67-72-1                            | Hexachloroethane                                       | < 75.2     | U    | µg/kg dry               | 196    | 75.2   | 1                     | "                   |                           | "             | "       |                         | х     |
| 193-39-5                           | Indeno (1,2,3-cd) pyrene                               | < 16.0     | U    | µg/kg dry               | 78.2   | 16.0   | 1                     | "                   | "                         |               | "       | "                       | х     |
| 78-59-1                            | Isophorone                                             | < 68.3     | U    | µg/kg dry               | 196    | 68.3   | 1                     | "                   | "                         |               | "       | "                       | х     |
| 91-57-6                            | 2-Methylnaphthalene                                    | < 16.1     | U    | µg/kg dry               | 78.2   | 16.1   | 1                     | "                   | "                         |               | "       | "                       | х     |
| 95-48-7                            | 2-Methylphenol                                         | < 69.4     | U    | µg/kg dry               | 387    | 69.4   | 1                     | "                   | "                         |               | "       | "                       | х     |
| 108-39-4,<br>106-44-5              | 3 & 4-Methylphenol                                     | < 87.1     | U    | µg/kg dry               | 387    | 87.1   | 1                     | "                   |                           | "             | "       | "                       | х     |
| 91-20-3                            | Naphthalene                                            | < 15.9     | U    | µg/kg dry               | 78.2   | 15.9   | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 88-74-4                            | 2-Nitroaniline                                         | < 77.6     | U    | µg/kg dry               | 387    | 77.6   | 1                     | "                   | "                         |               | "       | "                       | х     |
| 99-09-2                            | 3-Nitroaniline                                         | < 92.6     | U    | µg/kg dry               | 387    | 92.6   | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 100-01-6                           | 4-Nitroaniline                                         | < 112      | U    | µg/kg dry               | 196    | 112    | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 98-95-3                            | Nitrobenzene                                           | < 75.9     | U    | µg/kg dry               | 196    | 75.9   | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 88-75-5                            | 2-Nitrophenol                                          | < 64.8     | U    | µg/kg dry               | 196    | 64.8   | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 100-02-7                           | 4-Nitrophenol                                          | < 105      | U    | µg/kg dry               | 1550   | 105    | 1                     | "                   | "                         | "             | "       | "                       | х     |
| 621-64-7                           | N-Nitrosodi-n-propylamine                              | < 83.3     | U    | µg/kg dry               | 196    | 83.3   | 1                     | "                   | "                         | "             | "       | "                       | Х     |
| 86-30-6                            | N-Nitrosodiphenylamine                                 | < 91.0     | U    | µg/kg dry               | 387    | 91.0   | 1                     | "                   | "                         | "             | "       | "                       | Х     |
| 87-86-5                            | Pentachlorophenol                                      | < 92.1     | U    | µg/kg dry               | 387    | 92.1   | 1                     | "                   | "                         | "             | "       | "                       | х     |
| 85-01-8                            | Phenanthrene                                           | < 19.1     | U    | µg/kg dry               | 78.2   | 19.1   | 1                     |                     | "                         |               | "       | "                       | х     |
| 108-95-2                           | Phenol                                                 | < 70.4     | U    | µg/kg dry               | 387    | 70.4   | 1                     |                     | "                         |               | "       | "                       | х     |
| 129-00-0                           | Pyrene                                                 | < 16.7     | U    | µg/kg dry               | 78.2   | 16.7   | 1                     |                     | "                         |               | "       | "                       | х     |
| 120-82-1                           | 1,2,4-Trichlorobenzene                                 | < 61.6     | U    | µg/kg dry               | 387    | 61.6   | 1                     |                     | "                         |               | "       | "                       | х     |
| 95-95-4                            | 2,4,5-Trichlorophenol                                  | < 80.0     | U    | µg/kg dry               | 387    | 80.0   | 1                     | "                   | "                         |               | "       | "                       | х     |
| Surrogate i                        | recoveries:                                            |            |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 321-60-8                           | 2-Fluorobiphenyl                                       | 74         |      |                         | 30-13  | 80 %   |                       | "                   | "                         |               | "       | "                       |       |
| 367-12-4                           | 2-Fluorophenol                                         | 90         |      |                         | 30-13  | 80 %   |                       | "                   | "                         |               | "       | "                       |       |
| 4165-60-0                          | Nitrobenzene-d5                                        | 91         |      |                         | 30-13  | 80 %   |                       | "                   | "                         |               | "       | "                       |       |
| 4165-62-2                          | Phenol-d5                                              | 96         |      |                         | 30-13  | 80 %   |                       | "                   | "                         |               | "       | "                       |       |
| 1718-51-0                          | Terphenyl-dl4                                          | 87         |      |                         | 30-13  | 80 %   |                       | "                   | "                         | "             | "       | "                       |       |
| 118-79-6                           | 2,4,6-Tribromophenol                                   | 74         |      |                         | 30-13  | 80 %   |                       | "                   | "                         | "             | "       | "                       |       |
|                                    | y Identified Compounds<br>by method SW846 3545A        |            |      |                         |        |        |                       |                     |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds                    | None found |      | µg/kg dry               |        |        | 1                     | SW846 8270D<br>TICS |                           |               | MSL     | "                       |       |
| Total Meta                         | als by EPA 6000/7000 Series                            | Methods    |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 7440-22-4                          | Silver                                                 | < 0.128    | U    | mg/kg dry               | 1.74   | 0.128  | 1                     | SW846 6010C         | 04-May-1<br>5             | 04-May-1<br>5 | TBC     | 1508397                 | х     |
| 7440-38-2                          | Arsenic                                                | 6.18       |      | mg/kg dry               | 1.74   | 0.282  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-39-3                          | Barium                                                 | 66.2       |      | mg/kg dry               | 1.16   | 0.0691 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-43-9                          | Cadmium                                                | 0.0361     | J    | mg/kg dry               | 0.582  | 0.0186 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-47-3                          | Chromium                                               | 12.6       |      | mg/kg dry               | 1.16   | 0.111  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7439-97-6                          | Mercury                                                | 0.0110     | J    | mg/kg dry               | 0.0331 | 0.0022 | 1                     | SW846 7471B         | "                         | 04-May-1<br>5 | YR      | 1508398                 | Х     |
| 7439-92-1                          | Lead                                                   | 12.3       |      | mg/kg dry               | 1.74   | 0.321  | 1                     | SW846 6010C         | "                         | 04-May-1<br>5 | TBC     | 1508397                 | Х     |
| 7782-49-2                          | Selenium                                               | < 0.437    | U    | mg/kg dry               | 1.74   | 0.437  | 1                     | "                   | "                         | "             | "       | "                       | х     |

| SB-05-7-  |                                       |         |   | <u>Client Pr</u><br>2150 |       |       | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 00 | ·             |         | <u>ceived</u><br>Apr-15 |       |
|-----------|---------------------------------------|---------|---|--------------------------|-------|-------|-----------------------|---------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.   | C06702-08<br>IS No. Analyte(s) Result |         |   | Units                    | *RDL  | MDL   | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| General ( | Chemistry Parameters                  |         |   |                          |       |       |                       |               |                           |               |         |                         |       |
|           | % Solids                              | 84.1    |   | %                        |       |       | 1                     | SM2540 G Mod. | 30-Apr-15                 | 30-Apr-15     | DT      | 1508366                 |       |
| 57-12-5   | Cyanide (total)                       | < 0.413 | U | mg/kg dry                | 0.516 | 0.413 | 1                     | SW846 9012B   | 05-May-1<br>5             | 05-May-1<br>5 | RLT     | 1508657                 | X     |

| <u>Sample Ic</u><br>SB-02-10<br>SC06702- |                                      |                    |        | <u>Client Pr</u><br>2150 | •    |      | <u>Matrix</u><br>Soil |                        | ection Date<br>-Apr-15 11 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------------|--------------------------------------|--------------------|--------|--------------------------|------|------|-----------------------|------------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                                  | Analyte(s)                           | Result             | Flag   | Units                    | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile O                               | rganic Compounds                     |                    |        |                          |      |      |                       |                        |                           |               |         |                         |       |
|                                          | VOC Extraction                       | Field<br>extracted |        | N/A                      |      |      | 1                     | VOC Soil<br>Extraction |                           |               | DT      | 1508307                 |       |
|                                          | rganic Compounds by SW               |                    |        |                          |      |      |                       |                        |                           |               |         |                         |       |
|                                          | by method SW846 5035A                |                    |        |                          |      |      | ial weight:           | _                      |                           |               |         |                         |       |
| 67-64-1                                  | Acetone                              | < 36.9             | U      | µg/kg dry                | 55.3 | 36.9 | 1                     | SW846 8260C            | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508450                 | Х     |
| 71-43-2                                  | Benzene                              | < 1.0              | U      | µg/kg dry                | 5.5  | 1.0  | 1                     | "                      | "                         |               | "       | "                       | х     |
| 75-27-4                                  | Bromodichloromethane                 | < 3.7              | U      | µg/kg dry                | 5.5  | 3.7  | 1                     | "                      | "                         |               | "       |                         | Х     |
| 75-25-2                                  | Bromoform                            | < 5.3              | U      | µg/kg dry                | 5.5  | 5.3  | 1                     |                        | "                         | "             | "       | "                       | Х     |
| 74-83-9                                  | Bromomethane                         | < 3.2              | U      | µg/kg dry                | 11.1 | 3.2  | 1                     | "                      | "                         |               | "       |                         | Х     |
| 78-93-3                                  | 2-Butanone (MEK)                     | < 6.6              | U      | µg/kg dry                | 55.3 | 6.6  | 1                     |                        | "                         |               | "       |                         | х     |
| 104-51-8                                 | n-Butylbenzene                       | < 1.6              | U      | µg/kg dry                | 5.5  | 1.6  | 1                     |                        |                           |               | "       |                         | х     |
| 135-98-8                                 | sec-Butylbenzene                     | < 4.3              | U      | µg/kg dry                | 5.5  | 4.3  | 1                     |                        |                           |               | "       |                         | х     |
| 98-06-6                                  | tert-Butylbenzene                    | < 3.6              | U      | µg/kg dry                | 5.5  | 3.6  | 1                     | "                      | "                         |               | "       |                         | Х     |
| 75-15-0                                  | Carbon disulfide                     | < 3.4              | U      | µg/kg dry                | 11.1 | 3.4  | 1                     | "                      | "                         |               | "       | "                       | х     |
| 56-23-5                                  | Carbon tetrachloride                 | < 4.5              | U      | µg/kg dry                | 5.5  | 4.5  | 1                     | "                      | "                         |               | "       | "                       | х     |
| 108-90-7                                 | Chlorobenzene                        | < 0.9              | U      | µg/kg dry                | 5.5  | 0.9  | 1                     |                        | "                         |               | "       |                         | х     |
| 75-00-3                                  | Chloroethane                         | < 3.1              | U      | µg/kg dry                | 11.1 | 3.1  | 1                     |                        | "                         |               | "       |                         | х     |
| 67-66-3                                  | Chloroform                           | < 1.8              | U      | µg/kg dry                | 5.5  | 1.8  | 1                     | "                      |                           |               | "       |                         | х     |
| 74-87-3                                  | Chloromethane                        | < 2.3              | U      | µg/kg dry                | 11.1 | 2.3  | 1                     |                        |                           |               | "       |                         | х     |
| 124-48-1                                 | Dibromochloromethane                 | < 3.7              | U      | µg/kg dry                | 5.5  | 3.7  | 1                     |                        |                           |               | "       |                         | х     |
| 95-50-1                                  | 1,2-Dichlorobenzene                  | < 1.0              | U      | µg/kg dry                | 5.5  | 1.0  | 1                     |                        | "                         |               | "       |                         | х     |
| 541-73-1                                 | 1,3-Dichlorobenzene                  | < 1.1              | U      | µg/kg dry                | 5.5  | 1.1  | 1                     | "                      |                           |               | "       |                         | х     |
| 106-46-7                                 | 1,4-Dichlorobenzene                  | < 1.3              | U      | µg/kg dry                | 5.5  | 1.3  | 1                     | "                      |                           |               | "       |                         | х     |
| 75-71-8                                  | Dichlorodifluoromethane<br>(Freon12) | < 1.9              | U      | µg/kg dry                | 11.1 | 1.9  | 1                     | u                      | "                         | "             | "       | "                       | Х     |
| 75-34-3                                  | 1,1-Dichloroethane                   | < 3.6              | U      | µg/kg dry                | 5.5  | 3.6  | 1                     |                        |                           |               | "       |                         | х     |
| 107-06-2                                 | 1,2-Dichloroethane                   | < 1.3              | U      | µg/kg dry                | 5.5  | 1.3  | 1                     | "                      |                           |               | "       |                         | х     |
| 75-35-4                                  | 1,1-Dichloroethene                   | < 4.2              | U      | µg/kg dry                | 5.5  | 4.2  | 1                     |                        |                           |               | "       |                         | х     |
| 156-59-2                                 | cis-1,2-Dichloroethene               | < 2.0              | U      | µg/kg dry                | 5.5  | 2.0  | 1                     | "                      |                           |               | "       |                         | х     |
| 156-60-5                                 | trans-1,2-Dichloroethene             | < 2.9              | U      | µg/kg dry                | 5.5  | 2.9  | 1                     |                        |                           |               | "       |                         | х     |
| 78-87-5                                  | 1,2-Dichloropropane                  | < 2.9              | U      | µg/kg dry                | 5.5  | 2.9  | 1                     |                        | "                         |               |         |                         | х     |
| 10061-01-5                               | cis-1,3-Dichloropropene              | < 3.3              | U      | µg/kg dry                | 5.5  | 3.3  | 1                     |                        |                           |               | "       |                         | х     |
| 10061-02-6                               | trans-1,3-Dichloropropene            | < 2.9              | U      | µg/kg dry                | 5.5  | 2.9  | 1                     | "                      |                           |               | "       |                         | х     |
| 100-41-4                                 | Ethylbenzene                         | < 1.0              | U      | µg/kg dry                | 5.5  | 1.0  | 1                     |                        | "                         |               | "       |                         | х     |
| 591-78-6                                 | 2-Hexanone (MBK)                     | < 6.1              | U      | µg/kg dry                | 55.3 | 6.1  | 1                     |                        | "                         |               | "       |                         | х     |
| 98-82-8                                  | Isopropylbenzene                     | < 1.1              | U      | µg/kg dry                | 5.5  | 1.1  | 1                     |                        |                           |               | "       |                         | х     |
| 99-87-6                                  | 4-Isopropyltoluene                   | < 5.2              | U      | µg/kg dry                | 5.5  | 5.2  | 1                     | "                      |                           |               | "       |                         | х     |
| 1634-04-4                                | Methyl tert-butyl ether              | < 2.1              | U      | µg/kg dry                | 5.5  | 2.1  | 1                     | "                      |                           |               | "       |                         | x     |
| 108-10-1                                 | 4-Methyl-2-pentanone<br>(MIBK)       | < 10.4             | U      | µg/kg dry                | 55.3 | 10.4 | 1                     | n                      | "                         | "             | "       | "                       | X     |
| 75-09-2                                  | Methylene chloride                   | 3.3                | O01, J | µg/kg dry                | 11.1 | 1.6  | 1                     | "                      | "                         | "             | "       | "                       | х     |
| 91-20-3                                  | Naphthalene                          | < 5.1              | U      | µg/kg dry                | 5.5  | 5.1  | 1                     | "                      | "                         |               |         | "                       | х     |
| 103-65-1                                 | n-Propylbenzene                      | < 5.4              | U      | µg/kg dry                | 5.5  | 5.4  | 1                     | "                      |                           |               | "       | "                       | х     |
| 100-42-5                                 | Styrene                              | < 1.0              | U      | µg/kg dry                | 5.5  | 1.0  | 1                     | "                      |                           |               | "       | "                       | х     |
| 79-34-5                                  | 1,1,2,2-Tetrachloroethane            | < 4.7              | U      | µg/kg dry                | 5.5  | 4.7  | 1                     | "                      | "                         |               | "       | "                       | х     |
| 127-18-4                                 | Tetrachloroethene                    | < 2.1              | U      | µg/kg dry                | 5.5  | 2.1  | 1                     | "                      | "                         |               | "       | "                       | x     |
| 108-88-3                                 | Toluene                              | < 1.3              | U      | µg/kg dry                | 5.5  | 1.3  | 1                     | "                      | "                         | "             | "       | "                       | X     |

| Sample Id<br>SB-02-10.<br>SC06702- |                                                   |                        |             | <u>Client P</u><br>2150 | -     |      | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 11 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|---------------------------------------------------|------------------------|-------------|-------------------------|-------|------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                        | Result                 | Flag        | Units                   | *RDL  | MDL  | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                        | rganic Compounds                                  |                        |             |                         |       |      |                       |                     |                           |               |         |                         |       |
|                                    | rganic Compounds by SV                            |                        |             |                         |       |      |                       |                     |                           |               |         |                         |       |
| Prepared I                         | by method SW846 5035A                             | <u>A Soil (Iow lev</u> | <u>(el)</u> |                         |       | Ini  | ial weight:           | <u>5.01 g</u>       |                           |               |         |                         |       |
| 71-55-6                            | 1,1,1-Trichloroethane                             | < 1.4                  | U           | µg/kg dry               | 5.5   | 1.4  | 1                     | SW846 8260C         | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508450                 | Х     |
| 79-00-5                            | 1,1,2-Trichloroethane                             | < 4.0                  | U           | µg/kg dry               | 5.5   | 4.0  | 1                     |                     | "                         | "             | "       | "                       | х     |
| 79-01-6                            | Trichloroethene                                   | < 1.0                  | U           | µg/kg dry               | 5.5   | 1.0  | 1                     |                     | "                         | "             | "       | "                       | х     |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)              | < 3.0                  | U           | µg/kg dry               | 5.5   | 3.0  | 1                     | "                   | "                         | "             | "       |                         | х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                            | < 1.4                  | U           | µg/kg dry               | 5.5   | 1.4  | 1                     |                     | "                         | "             | "       | "                       | х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                            | < 1.6                  | U           | µg/kg dry               | 5.5   | 1.6  | 1                     |                     | "                         | "             | "       | "                       | х     |
| 75-01-4                            | Vinyl chloride                                    | < 2.0                  | U           | µg/kg dry               | 5.5   | 2.0  | 1                     |                     | "                         | "             | "       | "                       | х     |
| 179601-23-1                        | m,p-Xylene                                        | < 1.1                  | U           | µg/kg dry               | 11.1  | 1.1  | 1                     |                     | "                         | "             | "       | "                       | х     |
| 95-47-6                            | o-Xylene                                          | < 1.2                  | U           | µg/kg dry               | 5.5   | 1.2  | 1                     | "                   | "                         |               | "       | "                       | х     |
| Surrogate r                        | ecoveries:                                        |                        |             |                         |       |      |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 97                     |             |                         | 70-13 | 0 %  |                       |                     | "                         | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                        | 111                    |             |                         | 70-13 | 0 %  |                       | "                   | "                         | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 106                    |             |                         | 70-13 | 0 %  |                       |                     | "                         | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                              | 111                    |             |                         | 70-13 | 0 %  |                       | "                   | "                         |               | "       | "                       |       |
|                                    | rganic Compounds<br>by method SW846 5035/         | A Soil (low lev        | vel)        |                         |       | Ini  | ial weight:           | 5 01 a              |                           |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                     | < 11.6                 | <u>U</u>    | µg/kg dry               | 55.3  | 11.6 | 1                     | <u></u> "           | 01-May-1                  | "             | "       | 1508448                 |       |
|                                    | ,                                                 |                        |             | 10 0 1                  |       |      |                       |                     | 5                         |               |         |                         |       |
| Surrogate r                        | ecoveries:                                        |                        |             |                         |       |      |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 106                    |             |                         | 70-13 | 0 %  |                       |                     | "                         | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                        | 101                    |             |                         | 70-13 | 0 %  |                       |                     | "                         | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 114                    |             |                         | 70-13 | 0 %  |                       |                     | "                         | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                              | 102                    |             |                         | 70-13 | 0 %  |                       |                     | "                         | "             | "       | "                       |       |
|                                    | y Identified Compounds b<br>by method SW846 50354 |                        | vel)        |                         |       | Ini  | ial weight:           | 5 01 a              |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds               | None found             |             | µg/kg dry               |       |      | 1                     | SW846 8260C<br>TICs | 01-May-1<br>5             | "             | SJB     | 1508450                 |       |
| General Cl                         | hemistry Parameters                               |                        |             |                         |       |      |                       |                     |                           |               |         |                         |       |
| -                                  | % Solids                                          | 94.9                   |             | %                       |       |      | 1                     | SM2540 G Mod.       | 30-Apr-15                 | 30-Apr-15     | DT      | 1508366                 |       |

| Sample Id<br>SB-06-5-0<br>SC06702- |                                                 |                    |      | <u>Client P</u><br>2150 |      |      | <u>Matrix</u><br>Soil |                        | ection Date<br>-Apr-15 16 |          |         | eceived<br>Apr-15 |       |
|------------------------------------|-------------------------------------------------|--------------------|------|-------------------------|------|------|-----------------------|------------------------|---------------------------|----------|---------|-------------------|-------|
| CAS No.                            | Analyte(s)                                      | Result             | Flag | Units                   | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                  | Analyzed | Analyst | Batch             | Cert. |
| Volatile O                         | rganic Compounds<br>VOC Extraction              | Field<br>extracted |      | N/A                     |      |      | 1                     | VOC Soil<br>Extraction |                           |          | DT      | 1508307           |       |
|                                    | ile Organic Compounds by (                      | GCMS               |      |                         |      |      |                       |                        |                           |          |         |                   |       |
|                                    | tile Organic Compounds<br>by method SW846 3545A |                    |      |                         |      |      |                       |                        |                           |          |         |                   |       |
| 83-32-9                            | Acenaphthene                                    | < 19.1             | U    | µg/kg dry               | 82.0 | 19.1 | 1                     | SW846 8270D            | 29-Apr-15                 | -        | MSL     | 1508313           | х     |
| 208-96-8                           | Acenaphthylene                                  | < 17.4             | U    | µg/kg dry               | 82.0 | 17.4 | 1                     | "                      | "                         | 5<br>"   |         |                   | х     |
| 120-12-7                           | Anthracene                                      | < 18.8             | U    | µg/kg dry               | 82.0 | 18.8 | 1                     |                        |                           |          | "       |                   | x     |
| 56-55-3                            | Benzo (a) anthracene                            | < 17.0             | U    | µg/kg dry               | 82.0 | 17.0 | 1                     |                        |                           |          | "       |                   | x     |
| 50-32-8                            | Benzo (a) pyrene                                | < 17.1             | U    | µg/kg dry               | 82.0 | 17.1 | 1                     |                        |                           |          | "       |                   | x     |
| 205-99-2                           | Benzo (b) fluoranthene                          | < 18.7             | U    | µg/kg dry               | 82.0 | 18.7 | 1                     |                        |                           |          | "       |                   | x     |
| 191-24-2                           | Benzo (g,h,i) perylene                          | < 17.8             | U    | µg/kg dry               | 82.0 | 17.8 | 1                     |                        |                           |          | "       |                   | x     |
| 207-08-9                           | Benzo (k) fluoranthene                          | < 18.7             | U    | µg/kg dry               | 82.0 | 18.7 | 1                     |                        |                           |          | "       |                   | x     |
| 111-91-1                           | Bis(2-chloroethoxy)metha                        | < 74.1             | U    | µg/kg dry               | 406  | 74.1 | 1                     | "                      | "                         | "        | "       | "                 | х     |
| 111-44-4                           | Bis(2-chloroethyl)ether                         | < 73.8             | U    | µg/kg dry               | 205  | 73.8 | 1                     |                        | "                         |          | "       |                   | х     |
| 108-60-1                           | Bis(2-chloroisopropyl)ethe                      | < 73.7             | U    | µg/kg dry               | 205  | 73.7 | 1                     | u                      | "                         | "        | "       | "                 | х     |
| 117-81-7                           | Bis(2-ethylhexyl)phthalate                      | < 101              | U    | µg/kg dry               | 205  | 101  | 1                     |                        | "                         | "        | "       |                   | х     |
| 101-55-3                           | 4-Bromophenyl phenyl ether                      | < 82.0             | U    | µg/kg dry               | 406  | 82.0 | 1                     | u                      | "                         | "        | "       | "                 | х     |
| 85-68-7                            | Butyl benzyl phthalate                          | < 89.9             | U    | µg/kg dry               | 406  | 89.9 | 1                     |                        | "                         |          | "       |                   | х     |
| 86-74-8                            | Carbazole                                       | < 104              | U    | µg/kg dry               | 205  | 104  | 1                     |                        |                           |          | "       |                   | х     |
| 59-50-7                            | 4-Chloro-3-methylphenol                         | < 84.2             | U    | µg/kg dry               | 406  | 84.2 | 1                     |                        | "                         |          | "       |                   | х     |
| 106-47-8                           | 4-Chloroaniline                                 | < 83.7             | U    | µg/kg dry               | 205  | 83.7 | 1                     | •                      | "                         |          | "       |                   | х     |
| 91-58-7                            | 2-Chloronaphthalene                             | < 71.3             | U    | µg/kg dry               | 406  | 71.3 | 1                     |                        | "                         |          | "       |                   | х     |
| 95-57-8                            | 2-Chlorophenol                                  | < 72.6             | U    | µg/kg dry               | 205  | 72.6 | 1                     | •                      | "                         |          | "       |                   | х     |
| 7005-72-3                          | 4-Chlorophenyl phenyl ether                     | < 76.2             | U    | µg/kg dry               | 406  | 76.2 | 1                     | "                      | "                         | "        | "       | "                 | х     |
| 218-01-9                           | Chrysene                                        | < 20.0             | U    | µg/kg dry               | 82.0 | 20.0 | 1                     |                        | "                         |          | "       |                   | х     |
| 53-70-3                            | Dibenzo (a,h) anthracene                        | < 15.1             | U    | µg/kg dry               | 82.0 | 15.1 | 1                     |                        | "                         |          | "       |                   | Х     |
| 132-64-9                           | Dibenzofuran                                    | < 15.1             | U    | µg/kg dry               | 205  | 15.1 | 1                     |                        | "                         |          | "       |                   | х     |
| 95-50-1                            | 1,2-Dichlorobenzene                             | < 68.2             | U    | µg/kg dry               | 406  | 68.2 | 1                     |                        | "                         |          | "       |                   | х     |
| 541-73-1                           | 1,3-Dichlorobenzene                             | < 72.0             | U    | µg/kg dry               | 406  | 72.0 | 1                     |                        | "                         |          | "       |                   | х     |
| 106-46-7                           | 1,4-Dichlorobenzene                             | < 67.2             | U    | µg/kg dry               | 406  | 67.2 | 1                     |                        | "                         |          | "       |                   | х     |
| 91-94-1                            | 3,3'-Dichlorobenzidine                          | < 82.4             | U    | µg/kg dry               | 406  | 82.4 | 1                     |                        | "                         |          | "       |                   | х     |
| 120-83-2                           | 2,4-Dichlorophenol                              | < 69.8             | U    | µg/kg dry               | 205  | 69.8 | 1                     |                        | "                         |          | "       |                   | х     |
| 84-66-2                            | Diethyl phthalate                               | < 84.7             | U    | µg/kg dry               | 406  | 84.7 | 1                     |                        | "                         | "        | "       | "                 | Х     |
| 131-11-3                           | Dimethyl phthalate                              | < 79.9             | U    | µg/kg dry               | 406  | 79.9 | 1                     | "                      | "                         |          | "       | "                 | х     |
| 105-67-9                           | 2,4-Dimethylphenol                              | < 69.5             | U    | µg/kg dry               | 406  | 69.5 | 1                     |                        | "                         | "        | "       |                   | Х     |
| 84-74-2                            | Di-n-butyl phthalate                            | < 91.1             | U    | µg/kg dry               | 406  | 91.1 | 1                     | "                      | "                         |          | "       | "                 | х     |
| 534-52-1                           | 4,6-Dinitro-2-methylphenol                      | < 108              | U    | µg/kg dry               | 406  | 108  | 1                     | "                      | "                         | "        | "       | "                 | х     |
| 51-28-5                            | 2,4-Dinitrophenol                               | < 107              | U    | µg/kg dry               | 406  | 107  | 1                     | "                      | "                         |          | "       | "                 | х     |
| 121-14-2                           | 2,4-Dinitrotoluene                              | < 84.6             | U    | µg/kg dry               | 205  | 84.6 | 1                     | "                      | "                         | "        | "       | "                 | х     |
| 606-20-2                           | 2,6-Dinitrotoluene                              | < 79.7             | U    | µg/kg dry               | 205  | 79.7 | 1                     | "                      | "                         |          | "       | "                 | х     |
| 117-84-0                           | Di-n-octyl phthalate                            | < 87.6             | U    | µg/kg dry               | 406  | 87.6 | 1                     | "                      | "                         | "        | "       | "                 | х     |
| 206-44-0                           | Fluoranthene                                    | < 20.6             | U    | µg/kg dry               | 82.0 | 20.6 | 1                     | "                      | "                         |          | "       | "                 | х     |
| 86-73-7                            | Fluorene                                        | < 19.6             | U    | µg/kg dry               | 82.0 | 19.6 | 1                     |                        | "                         |          | "       |                   | Х     |

| <u>Sample Id</u><br>SB-06-5-6 | lentification                                   |            |      | Client P  | roject # |        | <u>Matrix</u> | Colle               | ection Date   | /Time         | Re      | ceived  |      |
|-------------------------------|-------------------------------------------------|------------|------|-----------|----------|--------|---------------|---------------------|---------------|---------------|---------|---------|------|
| SC06702-                      |                                                 |            |      | 2150      | 606      |        | Soil          | 27                  | -Apr-15 16    | 00:00         | 28-     | Apr-15  |      |
| CAS No.                       | Analyte(s)                                      | Result     | Flag | Units     | *RDL     | MDL    | Dilution      | Method Ref.         | Prepared      | Analyzed      | Analyst | Batch   | Cert |
| Semivolati                    | ile Organic Compounds by (                      | GCMS       |      |           |          |        |               |                     |               |               |         |         |      |
|                               | tile Organic Compounds<br>by method SW846 3545A |            |      |           |          |        |               |                     |               |               |         |         |      |
| 118-74-1                      | Hexachlorobenzene                               | < 89.7     | U    | µg/kg dry | 205      | 89.7   | 1             | SW846 8270D         | 29-Apr-15     | 02-May-1<br>5 | MSL     | 1508313 | х    |
| 87-68-3                       | Hexachlorobutadiene                             | < 65.3     | U    | µg/kg dry | 205      | 65.3   | 1             |                     | "             |               | "       | "       | х    |
| 77-47-4                       | Hexachlorocyclopentadien<br>e                   | < 74.8     | U    | µg/kg dry | 205      | 74.8   | 1             | "                   | "             | "             | "       | "       | х    |
| 67-72-1                       | Hexachloroethane                                | < 78.8     | U    | µg/kg dry | 205      | 78.8   | 1             |                     | "             | "             | "       |         | Х    |
| 193-39-5                      | Indeno (1,2,3-cd) pyrene                        | < 16.8     | U    | µg/kg dry | 82.0     | 16.8   | 1             |                     | "             | "             | "       |         | Х    |
| 78-59-1                       | Isophorone                                      | < 71.7     | U    | µg/kg dry | 205      | 71.7   | 1             |                     | "             | "             | "       | "       | Х    |
| 91-57-6                       | 2-Methylnaphthalene                             | < 16.9     | U    | µg/kg dry | 82.0     | 16.9   | 1             |                     | "             |               | "       |         | Х    |
| 95-48-7                       | 2-Methylphenol                                  | < 72.8     | U    | µg/kg dry | 406      | 72.8   | 1             |                     | "             | "             | "       |         | Х    |
| 108-39-4,<br>106-44-5         | 3 & 4-Methylphenol                              | < 91.3     | U    | µg/kg dry | 406      | 91.3   | 1             | "                   | "             | "             | "       |         | х    |
| 91-20-3                       | Naphthalene                                     | < 16.7     | U    | µg/kg dry | 82.0     | 16.7   | 1             |                     | "             | "             | "       |         | Х    |
| 88-74-4                       | 2-Nitroaniline                                  | < 81.3     | U    | µg/kg dry | 406      | 81.3   | 1             |                     | "             | "             | "       |         | Х    |
| 99-09-2                       | 3-Nitroaniline                                  | < 97.1     | U    | µg/kg dry | 406      | 97.1   | 1             |                     | "             | "             | "       | "       | Х    |
| 100-01-6                      | 4-Nitroaniline                                  | < 117      | U    | µg/kg dry | 205      | 117    | 1             |                     | "             | "             | "       | "       | Х    |
| 98-95-3                       | Nitrobenzene                                    | < 79.6     | U    | µg/kg dry | 205      | 79.6   | 1             |                     | "             | "             | "       |         | Х    |
| 88-75-5                       | 2-Nitrophenol                                   | < 68.0     | U    | µg/kg dry | 205      | 68.0   | 1             |                     | "             | "             | "       |         | Х    |
| 100-02-7                      | 4-Nitrophenol                                   | < 110      | U    | µg/kg dry | 1620     | 110    | 1             |                     | "             | "             | "       |         | Х    |
| 621-64-7                      | N-Nitrosodi-n-propylamine                       | < 87.4     | U    | µg/kg dry | 205      | 87.4   | 1             |                     | "             | "             | "       |         | Х    |
| 86-30-6                       | N-Nitrosodiphenylamine                          | < 95.4     | U    | µg/kg dry | 406      | 95.4   | 1             |                     | "             | "             | "       |         | Х    |
| 87-86-5                       | Pentachlorophenol                               | < 96.6     | U    | µg/kg dry | 406      | 96.6   | 1             |                     | "             | "             | "       |         | Х    |
| 85-01-8                       | Phenanthrene                                    | < 20.0     | U    | µg/kg dry | 82.0     | 20.0   | 1             |                     | "             | "             | "       |         | Х    |
| 108-95-2                      | Phenol                                          | < 73.9     | U    | µg/kg dry | 406      | 73.9   | 1             |                     | "             | "             | "       |         | Х    |
| 129-00-0                      | Pyrene                                          | < 17.5     | U    | µg/kg dry | 82.0     | 17.5   | 1             |                     | "             | "             | "       |         | Х    |
| 120-82-1                      | 1,2,4-Trichlorobenzene                          | < 64.6     | U    | µg/kg dry | 406      | 64.6   | 1             |                     | "             | "             | "       |         | Х    |
| 95-95-4                       | 2,4,5-Trichlorophenol                           | < 83.9     | U    | µg/kg dry | 406      | 83.9   | 1             | n                   | "             | "             | "       | "       | Х    |
| Surrogate i                   | recoveries:                                     |            |      |           |          |        |               |                     |               |               |         |         |      |
| 321-60-8                      | 2-Fluorobiphenyl                                | 72         |      |           | 30-13    | 80 %   |               |                     | "             | "             | "       | "       |      |
| 367-12-4                      | 2-Fluorophenol                                  | 88         |      |           | 30-13    | 80 %   |               |                     | "             | "             | "       |         |      |
| 4165-60-0                     | Nitrobenzene-d5                                 | 86         |      |           | 30-13    | 80 %   |               |                     | "             | "             | "       |         |      |
| 4165-62-2                     | Phenol-d5                                       | 90         |      |           | 30-13    | 80 %   |               |                     | "             | "             | "       |         |      |
| 1718-51-0                     | Terphenyl-dl4                                   | 99         |      |           | 30-13    | 80 %   |               |                     | "             | "             | "       |         |      |
| 118-79-6                      | 2,4,6-Tribromophenol                            | 72         |      |           | 30-13    | 80 %   |               | "                   | "             |               | "       | "       |      |
|                               | y Identified Compounds<br>by method SW846 3545A |            |      |           |          |        |               |                     |               |               |         |         |      |
|                               | Tentatively Identified<br>Compounds             | None found |      | µg/kg dry |          |        | 1             | SW846 8270D<br>TICS | "             | u             | MSL     | "       |      |
| Fotal Meta                    | als by EPA 6000/7000 Series                     | Methods    |      |           |          |        |               |                     |               |               |         |         |      |
| 7440-22-4                     | Silver                                          | < 0.134    | U    | mg/kg dry | 1.83     | 0.134  | 1             | SW846 6010C         | 04-May-1<br>5 | 04-May-1<br>5 | TBC     | 1508397 | Х    |
| 7440-38-2                     | Arsenic                                         | 5.17       |      | mg/kg dry | 1.83     | 0.295  | 1             | "                   | "             | "             | "       | "       | х    |
| 7440-39-3                     | Barium                                          | 159        |      | mg/kg dry | 1.22     | 0.0723 | 1             | "                   | "             |               | "       | "       | х    |
| 7440-43-9                     | Cadmium                                         | 0.0652     | J    | mg/kg dry | 0.609    | 0.0195 | 1             | "                   | "             |               | "       | "       | х    |
| 7440-47-3                     | Chromium                                        | 9.48       |      | mg/kg dry | 1.22     | 0.116  | 1             | "                   | "             |               | "       | "       | х    |
| 7439-97-6                     | Mercury                                         | 0.0474     |      | mg/kg dry | 0.0347   | 0.0023 | 1             | SW846 7471B         | "             | 04-May-1<br>5 | YR      | 1508398 | Х    |

| Sample Ic<br>SB-06-5-0<br>SC06702- |                        |               |      | <u>Client Pr</u><br>2150 | -     |       | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 16 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|------------------------|---------------|------|--------------------------|-------|-------|-----------------------|---------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)             | Result        | Flag | Units                    | *RDL  | MDL   | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Total Meta                         | als by EPA 6000/7000 S | eries Methods |      |                          |       |       |                       |               |                           |               |         |                         |       |
| 7439-92-1                          | Lead                   | 22.1          |      | mg/kg dry                | 1.83  | 0.336 | 1                     | SW846 6010C   | 04-May-1<br>5             | 04-May-1<br>5 | TBC     | 1508397                 | Х     |
| 7782-49-2                          | Selenium               | 0.846         | J    | mg/kg dry                | 1.83  | 0.457 | 1                     |               | "                         |               | "       | "                       | Х     |
| General C                          | hemistry Parameters    |               |      |                          |       |       |                       |               |                           |               |         |                         |       |
|                                    | % Solids               | 80.9          |      | %                        |       |       | 1                     | SM2540 G Mod. | 30-Apr-15                 | 30-Apr-15     | DT      | 1508366                 |       |
| 57-12-5                            | Cyanide (total)        | < 0.437       | U    | mg/kg dry                | 0.546 | 0.437 | 1                     | SW846 9012B   | 05-May-1<br>5             | 05-May-1<br>5 | RLT     | 1508657                 | Х     |

| Sample Identification<br>SB-07-19-20'<br>SC06702-13 |                                      |                    |        | Client Project #<br>2150606 |      |      |                |                        | ection Date/Time<br>7-Apr-15 17:00 |               | Received<br>28-Apr-15 |         |       |
|-----------------------------------------------------|--------------------------------------|--------------------|--------|-----------------------------|------|------|----------------|------------------------|------------------------------------|---------------|-----------------------|---------|-------|
| CAS No.                                             | Analyte(s)                           | Result             | Flag   | Units                       | *RDL | MDL  | Dilution       | Method Ref.            | Prepared                           | Analyzed      | Analyst               | Batch   | Cert. |
| Volatile Or                                         | rganic Compounds                     |                    |        |                             |      |      |                |                        |                                    |               |                       |         |       |
|                                                     | VOC Extraction                       | Field<br>extracted |        | N/A                         |      |      | 1              | VOC Soil<br>Extraction |                                    |               | DT                    | 1508307 |       |
|                                                     | rganic Compounds by SW               |                    |        |                             |      |      |                |                        |                                    |               |                       |         |       |
|                                                     | by method SW846 5035A                |                    |        |                             |      |      | tial weight: ( | -                      |                                    |               |                       |         |       |
| 67-64-1                                             | Acetone                              | < 30.9             | U      | µg/kg dry                   | 46.2 | 30.9 | 1              | SW846 8260C            | 01-May-1<br>5                      | 01-May-1<br>5 | SJB                   | 1508450 | X     |
| 71-43-2                                             | Benzene                              | < 0.8              | U      | µg/kg dry                   | 4.6  | 0.8  | 1              | "                      |                                    |               | "                     | "       | х     |
| 75-27-4                                             | Bromodichloromethane                 | < 3.1              | U      | µg/kg dry                   | 4.6  | 3.1  | 1              | "                      | "                                  |               | "                     | "       | х     |
| 75-25-2                                             | Bromoform                            | < 4.4              | U      | µg/kg dry                   | 4.6  | 4.4  | 1              | "                      | "                                  | "             | "                     |         | х     |
| 74-83-9                                             | Bromomethane                         | < 2.6              | U      | µg/kg dry                   | 9.2  | 2.6  | 1              | "                      | "                                  | "             | "                     |         | х     |
| 78-93-3                                             | 2-Butanone (MEK)                     | < 5.5              | U      | µg/kg dry                   | 46.2 | 5.5  | 1              | "                      | "                                  |               | "                     |         | х     |
| 104-51-8                                            | n-Butylbenzene                       | < 1.3              | U      | µg/kg dry                   | 4.6  | 1.3  | 1              |                        |                                    |               | "                     |         | х     |
| 135-98-8                                            | sec-Butylbenzene                     | < 3.6              | U      | µg/kg dry                   | 4.6  | 3.6  | 1              | "                      | "                                  |               | "                     | "       | х     |
| 98-06-6                                             | tert-Butylbenzene                    | < 3.0              | U      | µg/kg dry                   | 4.6  | 3.0  | 1              |                        |                                    |               | "                     |         | х     |
| 75-15-0                                             | Carbon disulfide                     | < 2.8              | U      | µg/kg dry                   | 9.2  | 2.8  | 1              |                        | "                                  | "             | "                     |         | х     |
| 56-23-5                                             | Carbon tetrachloride                 | < 3.8              | U      | µg/kg dry                   | 4.6  | 3.8  | 1              | "                      | "                                  |               | "                     |         | х     |
| 108-90-7                                            | Chlorobenzene                        | < 0.7              | U      | µg/kg dry                   | 4.6  | 0.7  | 1              | "                      | "                                  |               | "                     |         | х     |
| 75-00-3                                             | Chloroethane                         | < 2.6              | U      | µg/kg dry                   | 9.2  | 2.6  | 1              | "                      | "                                  |               | "                     |         | х     |
| 67-66-3                                             | Chloroform                           | < 1.5              | U      | µg/kg dry                   | 4.6  | 1.5  | 1              | "                      | "                                  |               | "                     |         | х     |
| 74-87-3                                             | Chloromethane                        | < 1.9              | U      | µg/kg dry                   | 9.2  | 1.9  | 1              | "                      |                                    |               |                       |         | x     |
| 124-48-1                                            | Dibromochloromethane                 | < 3.1              | U      | µg/kg dry                   | 4.6  | 3.1  | 1              | "                      |                                    |               |                       |         | x     |
| 95-50-1                                             | 1,2-Dichlorobenzene                  | < 0.8              | U      | µg/kg dry                   | 4.6  | 0.8  | 1              |                        |                                    |               |                       |         | x     |
| 541-73-1                                            | 1,3-Dichlorobenzene                  | < 0.9              | U      | µg/kg dry                   | 4.6  | 0.9  | 1              |                        | "                                  |               | "                     |         | x     |
| 106-46-7                                            | 1,4-Dichlorobenzene                  | < 1.1              | U      | µg/kg dry                   | 4.6  | 1.1  | 1              |                        | "                                  |               | "                     |         | x     |
| 75-71-8                                             | Dichlorodifluoromethane<br>(Freon12) | < 1.6              | U      | µg/kg dry                   | 9.2  | 1.6  | 1              |                        | "                                  | "             | "                     | "       | x     |
| 75-34-3                                             | 1,1-Dichloroethane                   | < 3.0              | U      | µg/kg dry                   | 4.6  | 3.0  | 1              | "                      | "                                  |               | "                     |         | х     |
| 107-06-2                                            | 1,2-Dichloroethane                   | < 1.1              | U      | µg/kg dry                   | 4.6  | 1.1  | 1              | "                      | "                                  |               | "                     |         | x     |
| 75-35-4                                             | 1,1-Dichloroethene                   | < 3.5              | U      | µg/kg dry                   | 4.6  | 3.5  | 1              | "                      | "                                  |               | "                     |         | x     |
| 156-59-2                                            | cis-1,2-Dichloroethene               | < 1.7              | U      | µg/kg dry                   | 4.6  | 1.7  | 1              | "                      |                                    |               |                       |         | x     |
| 156-60-5                                            | trans-1,2-Dichloroethene             | < 2.4              | U      | µg/kg dry                   | 4.6  | 2.4  | 1              | "                      |                                    |               |                       |         | x     |
| 78-87-5                                             | 1,2-Dichloropropane                  | < 2.4              | U      | µg/kg dry                   | 4.6  | 2.4  | 1              |                        |                                    |               |                       |         | x     |
| 10061-01-5                                          | cis-1,3-Dichloropropene              | < 2.8              | U      | µg/kg dry                   | 4.6  | 2.8  | 1              | "                      |                                    |               |                       |         | x     |
| 10061-02-6                                          | trans-1,3-Dichloropropene            | < 2.4              | U      | µg/kg dry                   | 4.6  | 2.4  | 1              | "                      | "                                  |               | "                     |         | x     |
| 100-41-4                                            | Ethylbenzene                         | < 0.8              | U      | µg/kg dry                   | 4.6  | 0.8  | 1              |                        |                                    |               |                       |         | x     |
| 591-78-6                                            | 2-Hexanone (MBK)                     | < 5.1              | U      | µg/kg dry                   | 46.2 | 5.1  | 1              |                        |                                    |               |                       |         | x     |
| 98-82-8                                             | Isopropylbenzene                     | < 0.9              | U      | µg/kg dry                   | 4.6  | 0.9  | 1              |                        | "                                  |               | "                     |         | x     |
| 99-87-6                                             | 4-Isopropyltoluene                   | < 4.3              | U      | µg/kg dry                   | 4.6  | 4.3  | 1              |                        | "                                  |               | "                     |         | x     |
| 1634-04-4                                           | Methyl tert-butyl ether              | < 1.8              | U      | µg/kg dry<br>µg/kg dry      | 4.6  | 1.8  | 1              |                        | "                                  |               | "                     |         | x     |
| 108-10-1                                            | 4-Methyl-2-pentanone<br>(MIBK)       | < 8.7              | U      | µg/kg dry<br>µg/kg dry      | 46.2 | 8.7  | 1              | "                      | "                                  | "             | "                     | "       | x     |
| 75-09-2                                             | Methylene chloride                   | 1.9                | O01, J | µg/kg dry                   | 9.2  | 1.3  | 1              | "                      | "                                  |               | "                     | "       | х     |
| 91-20-3                                             | Naphthalene                          | < 4.2              | U      | µg/kg dry                   | 4.6  | 4.2  | 1              | "                      | "                                  |               | "                     | "       | х     |
| 103-65-1                                            | n-Propylbenzene                      | < 4.5              | U      | µg/kg dry                   | 4.6  | 4.5  | 1              | "                      | "                                  |               | "                     | "       | x     |
| 100-42-5                                            | Styrene                              | < 0.8              | U      | µg/kg dry                   | 4.6  | 0.8  | 1              | "                      | "                                  |               | "                     | "       | x     |
| 79-34-5                                             | 1,1,2,2-Tetrachloroethane            | < 3.9              | U      | µg/kg dry                   | 4.6  | 3.9  | 1              | "                      | "                                  |               | "                     | "       | x     |
| 127-18-4                                            | Tetrachloroethene                    | < 1.8              | U      | µg/kg dry                   | 4.6  | 1.8  | 1              | "                      | "                                  |               | "                     | "       | x     |
|                                                     | Toluene                              | < 1.1              | U      | µg/kg dry<br>µg/kg dry      | 4.6  | 1.1  | 1              | "                      |                                    |               |                       |         | x     |

| Sample Id<br>SB-07-19-<br>SC06702- |                                                                |                  |              | <u>Client Pr</u><br>2150 | -            |              | <u>Matrix</u><br>Soil |             | ection Date<br>-Apr-15 17 |               |         | eceived<br>Apr-15 |        |
|------------------------------------|----------------------------------------------------------------|------------------|--------------|--------------------------|--------------|--------------|-----------------------|-------------|---------------------------|---------------|---------|-------------------|--------|
| CAS No.                            | Analyte(s)                                                     | Result           | Flag         | Units                    | *RDL         | MDL          | Dilution              | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch             | Cert.  |
| Volatile Or                        | rganic Compounds                                               |                  |              |                          |              |              |                       |             |                           |               |         |                   |        |
| Volatile Or                        | rganic Compounds by SV                                         |                  |              |                          |              |              |                       |             |                           |               |         |                   |        |
|                                    | by method SW846 50354                                          |                  |              |                          |              |              | ial weight: (         |             |                           |               |         |                   |        |
| 71-55-6                            | 1,1,1-Trichloroethane                                          | < 1.2            | U            | µg/kg dry                | 4.6          | 1.2          | 1                     | SW846 8260C | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508450           | Х      |
| 79-00-5                            | 1,1,2-Trichloroethane                                          | < 3.4            | U            | µg/kg dry                | 4.6          | 3.4          | 1                     | "           | "                         |               | "       |                   | х      |
| 79-01-6                            | Trichloroethene                                                | < 0.8            | U            | µg/kg dry                | 4.6          | 0.8          | 1                     | "           | "                         |               | "       |                   | х      |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)                           | < 2.5            | U            | µg/kg dry                | 4.6          | 2.5          | 1                     | "           | "                         | "             | "       | "                 | Х      |
| 95-63-6                            | 1,2,4-Trimethylbenzene                                         | < 1.2            | U            | µg/kg dry                | 4.6          | 1.2          | 1                     | "           | "                         | "             | "       |                   | х      |
| 108-67-8                           | 1,3,5-Trimethylbenzene                                         | < 1.3            | U            | µg/kg dry                | 4.6          | 1.3          | 1                     | "           | "                         | "             | "       |                   | х      |
| 75-01-4                            | Vinyl chloride                                                 | < 1.7            | U            | µg/kg dry                | 4.6          | 1.7          | 1                     |             | "                         |               | "       |                   | х      |
| 179601-23-1                        | m,p-Xylene                                                     | < 0.9            | U            | µg/kg dry                | 9.2          | 0.9          | 1                     |             | "                         | "             | "       | "                 | х      |
| 95-47-6                            | o-Xylene                                                       | < 1.0            | U            | µg/kg dry                | 4.6          | 1.0          | 1                     | "           | "                         |               | "       | "                 | х      |
| Surrogate r                        | recoveries:                                                    |                  |              |                          |              |              |                       |             |                           |               |         |                   |        |
| 460-00-4                           | 4-Bromofluorobenzene                                           | 95               |              |                          | 70-13        | 80 %         |                       | "           | "                         | "             | "       |                   |        |
| 2037-26-5                          | Toluene-d8                                                     | 110              |              |                          | 70-13        | 80 %         |                       |             | "                         | "             | "       |                   |        |
| 17060-07-0                         | 1,2-Dichloroethane-d4                                          | 105              |              |                          | 70-13        | 80 %         |                       | u           | "                         | "             | "       | "                 |        |
| 1868-53-7                          | Dibromofluoromethane                                           | 114              |              |                          | 70-13        | 80 %         |                       | "           | "                         | "             | "       |                   |        |
| by SW846                           | sis of Volatile Organic Cor<br>5 8260<br>by method SW846 5035/ |                  | QCR          |                          |              | Init         | ial weight:           | 11 19 a     |                           |               |         |                   |        |
| 67-64-1                            | Acetone                                                        | < 203            | U, D         | µg/kg dry                | 304          | 203          | 50                    | SW846 8260C | 05-May-1                  | 05-May-1      | SJB     | 1508645           | х      |
|                                    |                                                                |                  |              | 10 0 9                   |              |              |                       |             | 5                         | 5             |         |                   |        |
| 71-43-2                            | Benzene                                                        | < 5.5            | U, D         | µg/kg dry                | 30.4         | 5.5          | 50                    | u           | "                         |               | "       |                   | Х      |
| 75-27-4                            | Bromodichloromethane                                           | < 20.3           | U, D         | µg/kg dry                | 30.4         | 20.3         | 50                    | "           | "                         | "             | "       | "                 | Х      |
| 75-25-2                            | Bromoform                                                      | < 29.0           | U, D         | µg/kg dry                | 30.4         | 29.0         | 50                    |             | "                         |               | "       | "                 | Х      |
| 74-83-9                            | Bromomethane                                                   | < 17.3           | U, D         | µg/kg dry                | 60.7         | 17.3         | 50                    | "           | "                         |               |         | "                 | Х      |
| 78-93-3                            | 2-Butanone (MEK)                                               | < 36.4           | U, D         | µg/kg dry                | 304          | 36.4         | 50                    |             |                           |               |         |                   | Х      |
| 104-51-8                           | n-Butylbenzene                                                 | < 8.7            | U, D         | µg/kg dry                | 30.4         | 8.7          | 50                    |             |                           |               |         |                   | X      |
| 135-98-8<br>98-06-6                | sec-Butylbenzene                                               | < 23.7           | U, D         | µg/kg dry                | 30.4         | 23.7         | 50                    |             | "                         |               |         | "                 | X      |
| 98-06-6<br>75-15-0                 | tert-Butylbenzene                                              | < 20.0<br>< 18.6 | U, D<br>U, D | µg/kg dry                | 30.4         | 20.0         | 50                    |             |                           |               |         |                   | X      |
| 56-23-5                            | Carbon disulfide                                               | < 10.0<br>< 24.8 | U, D         | µg/kg dry                | 60.7<br>30.4 | 18.6<br>24.8 | 50<br>50              |             |                           |               |         | "                 | x<br>x |
| 108-90-7                           | Carbon tetrachloride<br>Chlorobenzene                          | < 24.0<br>< 4.9  | U, D         | µg/kg dry                | 30.4<br>30.4 | 24.0<br>4.9  | 50<br>50              |             |                           |               |         |                   | x      |
| 75-00-3                            | Chloroethane                                                   | < 4.9<br>< 16.9  | U, D         | µg/kg dry<br>µg/kg dry   | 60.7         | 4.9<br>16.9  | 50                    |             |                           |               | "       |                   | x      |
| 67-66-3                            | Chloroform                                                     | < 10.9           | U, D         | µg/kg dry<br>µg/kg dry   | 30.4         | 10.9         | 50<br>50              |             |                           |               |         |                   | x      |
| 74-87-3                            | Chloromethane                                                  | < 12.5           | U, D         | µg/kg dry                | 60.7         | 12.5         | 50                    |             |                           |               |         |                   | x      |
| 124-48-1                           | Dibromochloromethane                                           | < 20.6           | U, D         | µg/kg dry                | 30.4         | 20.6         | 50                    |             |                           |               |         |                   | x      |
| 95-50-1                            | 1,2-Dichlorobenzene                                            | < 5.3            | U, D         | µg/kg dry                | 30.4         | 5.3          | 50                    |             |                           |               | "       |                   | x      |
| 541-73-1                           | 1,3-Dichlorobenzene                                            | < 6.2            | U, D         | µg/kg dry                | 30.4         | 6.2          | 50                    | "           | "                         |               | "       | "                 | x      |
| 106-46-7                           | 1,4-Dichlorobenzene                                            | < 7.4            | U, D         | µg/kg dry                | 30.4         | 7.4          | 50                    | "           | "                         |               |         | "                 | x      |
| 75-71-8                            | Dichlorodifluoromethane<br>(Freon12)                           | < 10.4           | U, D         | µg/kg dry                | 60.7         | 10.4         | 50                    | "           | "                         | "             | "       | "                 | x      |
| 75-34-3                            | 1,1-Dichloroethane                                             | < 19.6           | U, D         | µg/kg dry                | 30.4         | 19.6         | 50                    | "           |                           |               | "       | "                 | х      |
| 107-06-2                           | 1,2-Dichloroethane                                             | < 7.4            | U, D         | µg/kg dry                | 30.4         | 7.4          | 50                    | "           |                           |               | "       | "                 | х      |
| 75-35-4                            | 1,1-Dichloroethene                                             | < 22.8           | U, D         | µg/kg dry                | 30.4         | 22.8         | 50                    | "           |                           |               | "       | "                 | х      |
|                                    |                                                                |                  |              |                          |              |              |                       |             |                           |               |         |                   |        |
| 156-59-2                           | cis-1,2-Dichloroethene                                         | < 11.2           | U, D         | µg/kg dry                | 30.4         | 11.2         | 50                    | "           |                           | "             | "       |                   | х      |

| <u>Sample Id</u><br><b>SB-07-19-</b><br>SC06702- |                                                       |                 |           | <u>Client Pr</u><br>2150 | -     |             | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 17 |               |         | <u>ceived</u><br>Apr-15 |       |
|--------------------------------------------------|-------------------------------------------------------|-----------------|-----------|--------------------------|-------|-------------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                                          | Analyte(s)                                            | Result          | Flag      | Units                    | *RDL  | MDL         | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
|                                                  | ganic Compounds<br>is of Volatile Organic Com<br>8260 | pounds_         | QCR       |                          |       |             |                       |                     |                           |               |         |                         |       |
| Prepared I                                       | by method SW846 5035A                                 | Soil (high leve | <u>l)</u> |                          |       | Init        | tial weight:          | <u>11.19 g</u>      |                           |               |         |                         |       |
| 78-87-5                                          | 1,2-Dichloropropane                                   | < 15.9          | U, D      | µg/kg dry                | 30.4  | 15.9        | 50                    | SW846 8260C         | 05-May-1<br>5             | 05-May-1<br>5 | SJB     | 1508645                 | Х     |
| 10061-01-5                                       | cis-1,3-Dichloropropene                               | < 18.3          | U, D      | µg/kg dry                | 30.4  | 18.3        | 50                    | "                   | 5                         | 5             | "       | "                       | х     |
| 10061-02-6                                       | trans-1,3-Dichloropropene                             | < 15.9          | U, D      | µg/kg dry                | 30.4  | 15.9        | 50                    | "                   |                           |               | "       | "                       | x     |
| 100-41-4                                         | Ethylbenzene                                          | < 5.3           | U, D      | µg/kg dry                | 30.4  | 5.3         | 50                    |                     | "                         |               | "       | "                       | x     |
| 591-78-6                                         | 2-Hexanone (MBK)                                      | < 33.3          | U, D      | µg/kg dry                | 304   | 33.3        | 50                    | "                   |                           |               | "       |                         | х     |
| 98-82-8                                          | Isopropylbenzene                                      | < 5.8           | U, D      | µg/kg dry                | 30.4  | 5.8         | 50                    | "                   |                           |               | "       |                         | х     |
| 99-87-6                                          | 4-Isopropyltoluene                                    | < 28.5          | U, D      | µg/kg dry                | 30.4  | 28.5        | 50                    | "                   |                           |               | "       |                         | х     |
| 1634-04-4                                        | Methyl tert-butyl ether                               | < 11.7          | U, D      | µg/kg dry                | 30.4  | 11.7        | 50                    | "                   |                           |               | "       |                         | X     |
| 108-10-1                                         | 4-Methyl-2-pentanone<br>(MIBK)                        | < 57.2          | U, D      | µg/kg dry                | 304   | 57.2        | 50                    | "                   | "                         | "             |         | "                       | Х     |
| 75-09-2                                          | Methylene chloride                                    | 10.3            | 001, J, D | µg/kg dry                | 60.7  | 8.9         | 50                    | "                   | "                         |               | "       |                         | х     |
| 91-20-3                                          | Naphthalene                                           | < 27.8          | U, D      | µg/kg dry                | 30.4  | 27.8        | 50                    |                     | "                         |               | "       | "                       | х     |
| 103-65-1                                         | n-Propylbenzene                                       | < 29.4          | U, D      | µg/kg dry                | 30.4  | 29.4        | 50                    | "                   | "                         |               | "       | "                       | х     |
| 100-42-5                                         | Styrene                                               | < 5.3           | U, D      | µg/kg dry                | 30.4  | 5.3         | 50                    | "                   | "                         |               | "       |                         | х     |
| 79-34-5                                          | 1,1,2,2-Tetrachloroethane                             | < 25.7          | U, D      | µg/kg dry                | 30.4  | 25.7        | 50                    | "                   | "                         |               | "       |                         | х     |
| 127-18-4                                         | Tetrachloroethene                                     | < 11.6          | U, D      | µg/kg dry                | 30.4  | 11.6        | 50                    | "                   | "                         |               | "       |                         | х     |
| 108-88-3                                         | Toluene                                               | < 7.0           | U, D      | µg/kg dry                | 30.4  | 7.0         | 50                    | "                   | "                         |               | "       | "                       | х     |
| 71-55-6                                          | 1,1,1-Trichloroethane                                 | < 7.9           | U, D      | µg/kg dry                | 30.4  | 7.9         | 50                    | "                   | "                         |               | "       | "                       | х     |
| 79-00-5                                          | 1,1,2-Trichloroethane                                 | < 22.0          | U, D      | µg/kg dry                | 30.4  | 22.0        | 50                    |                     | "                         |               | "       |                         | х     |
| 79-01-6                                          | Trichloroethene                                       | < 5.2           | U, D      | µg/kg dry                | 30.4  | 5.2         | 50                    | "                   | "                         |               | "       |                         | х     |
| 75-69-4                                          | Trichlorofluoromethane<br>(Freon 11)                  | < 16.4          | U, D      | µg/kg dry                | 30.4  | 16.4        | 50                    | "                   | "                         | "             | "       | "                       | х     |
| 95-63-6                                          | 1,2,4-Trimethylbenzene                                | < 7.6           | U, D      | µg/kg dry                | 30.4  | 7.6         | 50                    | "                   | "                         |               | "       |                         | х     |
| 108-67-8                                         | 1,3,5-Trimethylbenzene                                | < 8.7           | U, D      | µg/kg dry                | 30.4  | 8.7         | 50                    | "                   | "                         |               | "       |                         | х     |
| 75-01-4                                          | Vinyl chloride                                        | < 11.1          | U, D      | µg/kg dry                | 30.4  | 11.1        | 50                    | "                   | "                         |               | "       |                         | х     |
| 179601-23-1                                      | m,p-Xylene                                            | < 6.0           | U, D      | µg/kg dry                | 60.7  | 6.0         | 50                    | "                   | "                         |               | "       |                         | х     |
| 95-47-6                                          | o-Xylene                                              | < 6.5           | U, D      | µg/kg dry                | 30.4  | 6.5         | 50                    |                     | "                         |               | "       | "                       | х     |
| Surrogate r                                      | ecoveries:                                            |                 |           |                          |       |             |                       |                     |                           |               |         |                         |       |
| 460-00-4                                         | 4-Bromofluorobenzene                                  | 105             |           |                          | 70-13 | 0 %         |                       |                     | "                         |               |         |                         |       |
| 2037-26-5                                        | Toluene-d8                                            | 99              |           |                          | 70-13 | 0%          |                       |                     | "                         |               | "       |                         |       |
| 17060-07-0                                       | 1,2-Dichloroethane-d4                                 | 91              |           |                          | 70-13 | 0%          |                       |                     | "                         |               | "       |                         |       |
| 1868-53-7                                        | Dibromofluoromethane                                  | 95              |           |                          | 70-13 | 0 %         |                       | "                   | "                         | "             |         | "                       |       |
|                                                  | ganic Compounds                                       |                 | 、<br>、    |                          |       | الما        | ialaiadatu            | C 02 ~              |                           |               |         |                         |       |
| Prepared 1<br>108-05-4                           | by method SW846 5035A                                 |                 | =         | ua/ka dar                | 46.0  |             | tial weight:          | -                   | 01 May 1                  | 01 Mov 1      | C ID    | 1500440                 |       |
| 108-05-4                                         | Vinyl acetate                                         | < 9.7           | U         | µg/kg dry                | 46.2  | 9.7         | 1                     | SW846 8260C         | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508448                 |       |
| Surrogate r                                      | ecoveries:                                            |                 |           |                          |       |             |                       |                     |                           |               |         |                         |       |
| 460-00-4                                         | 4-Bromofluorobenzene                                  | 103             |           |                          | 70-13 | 0 %         |                       | u                   | "                         |               | "       | "                       |       |
| 2037-26-5                                        | Toluene-d8                                            | 100             |           |                          | 70-13 | 0 %         |                       | u                   | "                         |               | "       | "                       |       |
| 17060-07-0                                       | 1,2-Dichloroethane-d4                                 | 113             |           |                          | 70-13 | 0 %         |                       | u                   | "                         |               | "       | "                       |       |
| 1868-53-7                                        | Dibromofluoromethane                                  | 105             |           |                          | 70-13 | 0 %         |                       | "                   | "                         |               | "       | "                       |       |
|                                                  | / Identified Compounds by<br>by method SW846 5035A    |                 | <u>)</u>  |                          |       | <u>Init</u> | tial weight:          | <u>6.83 g</u>       |                           |               |         |                         |       |
|                                                  | Tentatively Identified<br>Compounds                   | None found      |           | µg/kg dry                |       |             | 1                     | SW846 8260C<br>TICs | 01-May-1<br>5             | "             | SJB     | 1508450                 |       |

| Sample Ide<br>SB-07-19-2<br>SC06702-1 |                             |                |            | <u>Client Pr</u><br>2150 |      |      | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 17 |               |         | <u>ceived</u><br>Apr-15 |       |
|---------------------------------------|-----------------------------|----------------|------------|--------------------------|------|------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                               | Analyte(s)                  | Result         | Flag       | Units                    | *RDL | MDL  | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                           | ganic Compounds             |                |            |                          |      |      |                       |                     |                           |               |         |                         |       |
| <u>Re-analysi</u>                     | s of Tentatively Identified | -              |            |                          |      |      |                       |                     |                           |               |         |                         |       |
|                                       | ls by GC/MS                 |                |            |                          |      |      |                       |                     |                           |               |         |                         |       |
| Prepared b                            | by method SW846 5035A       | Soil (high lev | <u>el)</u> |                          |      | Init | ial weight:           | <u>11.19 g</u>      |                           |               |         |                         |       |
| 75-37-6                               | Ethane, 1,1-difluoro-       | 239            | TIC, D     | µg/kg dry                |      |      | 50                    | SW846 8260C<br>TICs | 05-May-1<br>5             | 05-May-1<br>5 | SJB     | 1508645                 |       |
| General Ch                            | emistry Parameters          |                |            |                          |      |      |                       |                     |                           |               |         |                         |       |
|                                       | % Solids                    | 90.0           |            | %                        |      |      | 1                     | SM2540 G Mod.       | 30-Apr-15                 | 30-Apr-15     | DT      | 1508366                 |       |

| Sample Ic<br>Trip Blan<br>SC06702- |                                   |        |      |       | Project <u>#</u><br>0606 |     | <u>Matrix</u><br>Aqueous |             | ection Date<br>-Apr-15 00 |               |         | eceived<br>Apr-15 |       |
|------------------------------------|-----------------------------------|--------|------|-------|--------------------------|-----|--------------------------|-------------|---------------------------|---------------|---------|-------------------|-------|
| CAS No.                            | Analyte(s)                        | Result | Flag | Units | *RDL                     | MDL | Dilution                 | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch             | Cert. |
| Volatile O                         | rganic Compounds                  |        |      |       |                          |     |                          |             |                           |               |         |                   |       |
|                                    | rganic Compounds by SW            |        |      |       |                          |     |                          |             |                           |               |         |                   |       |
| <u>Prepareo</u><br>67-64-1         | by method SW846 5030 V<br>Acetone | < 2.5  | U    | µg/l  | 10.0                     | 2.5 | 1                        | SW846 8260C | 30-Apr-15                 | 01-May-1<br>5 | GMA     | 1508341           | х     |
| 71-43-2                            | Benzene                           | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        | "           | "                         |               | "       | "                 | х     |
| 75-27-4                            | Bromodichloromethane              | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                        |             | "                         |               | "       | "                 | х     |
| 75-25-2                            | Bromoform                         | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                        | "           | "                         |               | "       | "                 | х     |
| 74-83-9                            | Bromomethane                      | < 0.5  | U    | µg/l  | 2.0                      | 0.5 | 1                        | •           | "                         | "             | "       | "                 | Х     |
| 78-93-3                            | 2-Butanone (MEK)                  | < 1.2  | U    | µg/l  | 10.0                     | 1.2 | 1                        |             | "                         | "             | "       | "                 | Х     |
| 104-51-8                           | n-Butylbenzene                    | < 0.3  | U    | μg/l  | 1.0                      | 0.3 | 1                        |             | "                         |               | "       | "                 | Х     |
| 135-98-8                           | sec-Butylbenzene                  | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 98-06-6                            | tert-Butylbenzene                 | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 75-15-0                            | Carbon disulfide                  | < 0.3  | U    | μg/l  | 2.0                      | 0.3 | 1                        |             | "                         |               | "       | "                 | Х     |
| 56-23-5                            | Carbon tetrachloride              | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 108-90-7                           | Chlorobenzene                     | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 75-00-3                            | Chloroethane                      | < 0.4  | U    | μg/l  | 2.0                      | 0.4 | 1                        |             | "                         |               | "       | "                 | Х     |
| 67-66-3                            | Chloroform                        | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                        |             | "                         |               | "       | "                 | Х     |
| 74-87-3                            | Chloromethane                     | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                        |             | "                         |               | "       |                   | Х     |
| 124-48-1                           | Dibromochloromethane              | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 95-50-1                            | 1,2-Dichlorobenzene               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 541-73-1                           | 1,3-Dichlorobenzene               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       | "                 | Х     |
| 106-46-7                           | 1,4-Dichlorobenzene               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 75-34-3                            | 1,1-Dichloroethane                | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 107-06-2                           | 1,2-Dichloroethane                | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         | "             | "       |                   | Х     |
| 75-35-4                            | 1,1-Dichloroethene                | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                        |             | "                         | "             | "       |                   | Х     |
| 156-59-2                           | cis-1,2-Dichloroethene            | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       | "                 | Х     |
| 156-60-5                           | trans-1,2-Dichloroethene          | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 78-87-5                            | 1,2-Dichloropropane               | < 0.1  | U    | µg/l  | 1.0                      | 0.1 | 1                        |             | "                         |               | "       |                   | Х     |
| 10061-01-5                         | cis-1,3-Dichloropropene           | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 10061-02-6                         | trans-1,3-Dichloropropene         | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                        |             | "                         |               | "       |                   | Х     |
| 100-41-4                           | Ethylbenzene                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       | "                 | Х     |
| 591-78-6                           | 2-Hexanone (MBK)                  | < 0.5  | U    | µg/l  | 10.0                     | 0.5 | 1                        |             | "                         | "             | "       |                   | Х     |
| 98-82-8                            | Isopropylbenzene                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         |               | "       |                   | Х     |
| 99-87-6                            | 4-Isopropyltoluene                | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                        |             | "                         |               | "       | "                 | Х     |
| 1634-04-4                          | Methyl tert-butyl ether           | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        |             | "                         | "             | "       |                   | Х     |
| 108-10-1                           | 4-Methyl-2-pentanone<br>(MIBK)    | < 0.7  | U    | µg/l  | 10.0                     | 0.7 | 1                        | "           | "                         | "             | "       | "                 | Х     |
| 75-09-2                            | Methylene chloride                | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                        |             | "                         | "             | "       |                   | Х     |
| 91-20-3                            | Naphthalene                       | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                        |             | "                         |               |         |                   | Х     |
| 103-65-1                           | n-Propylbenzene                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        | "           | "                         |               | "       | "                 | Х     |
| 100-42-5                           | Styrene                           | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        | "           | "                         | "             | "       | "                 | Х     |
| 79-34-5                            | 1,1,2,2-Tetrachloroethane         | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                        | "           | "                         |               | "       | "                 | Х     |
| 127-18-4                           | Tetrachloroethene                 | < 0.6  | U    | µg/l  | 1.0                      | 0.6 | 1                        | "           | "                         |               | "       | "                 | Х     |
| 108-88-3                           | Toluene                           | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                        | "           | "                         | "             | "       | "                 | Х     |
| 71-55-6                            | 1,1,1-Trichloroethane             | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        | "           | "                         |               | "       | "                 | Х     |
| 79-00-5                            | 1,1,2-Trichloroethane             | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                        | "           | "                         |               | "       | "                 | Х     |
| 79-01-6                            | Trichloroethene                   | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                        | п           | "                         | "             | "       | "                 | х     |

| Sample Id<br>Trip Blan<br>SC06702- |                                                  |            |      |       | <u>Project #</u><br>)606 |      | <u>Matrix</u><br>Aqueous |                     | ection Date<br>-Apr-15 00 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|--------------------------------------------------|------------|------|-------|--------------------------|------|--------------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                       | Result     | Flag | Units | *RDL                     | MDL  | Dilution                 | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                        | rganic Compounds                                 |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
|                                    | rganic Compounds by SW<br>by method SW846 5030 \ |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)             | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                        | SW846 8260C         | 30-Apr-15                 | 01-May-1<br>5 | GMA     | 1508341                 | х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                           | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                        | "                   | "                         | "             | "       | "                       | Х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                           | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 75-01-4                            | Vinyl chloride                                   | < 0.3      | U    | µg/l  | 1.0                      | 0.3  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 179601-23-1                        | m,p-Xylene                                       | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 95-47-6                            | o-Xylene                                         | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                        | "                   | "                         |               | "       | "                       | Х     |
| Surrogate r                        | recoveries:                                      |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                             | 89         |      |       | 70-13                    | 0 %  |                          |                     |                           |               | "       |                         |       |
| 2037-26-5                          | Toluene-d8                                       | 91         |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                            | 107        |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
| 1868-53-7                          | Dibromofluoromethane                             | 91         |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
|                                    | rganic Compounds<br>by method SW846 5030 \       | Nater MS   |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                    | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                        | 'n                  | 01-May-1<br>5             | 02-May-1<br>5 | "       | 1508455                 | х     |
| Surrogate r                        | recoveries:                                      |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                             | 98         |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
| 2037-26-5                          | Toluene-d8                                       | 100        |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                            | 100        |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
| 1868-53-7                          | Dibromofluoromethane                             | 104        |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       | "                       |       |
|                                    | y Identified Compounds by method SW846 5030      |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds              | None found |      | µg/l  |                          |      | 1                        | SW846 8260C<br>TICs | 30-Apr-15                 | 01-May-1<br>5 | GMA     | 1508341                 |       |

| Sample Id<br>SB-08A-9<br>SC06702 |                                       |                    |      | <u>Client P</u><br>2150 | •    |      | <u>Matrix</u><br>Soil |                        | ection Date<br>Apr-15 10 |          |         | <u>eceived</u><br>Apr-15 |       |
|----------------------------------|---------------------------------------|--------------------|------|-------------------------|------|------|-----------------------|------------------------|--------------------------|----------|---------|--------------------------|-------|
| CAS No.                          | Analyte(s)                            | Result             | Flag | Units                   | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                 | Analyzed | Analyst | Batch                    | Cert. |
| Volatile O                       | rganic Compounds<br>VOC Extraction    | Field<br>extracted |      | N/A                     |      |      | 1                     | VOC Soil<br>Extraction |                          |          | DT      | 1508307                  |       |
| Semivolat                        | ile Organic Compounds by (            | GCMS               |      |                         |      |      |                       |                        |                          |          |         |                          |       |
|                                  | tile Organic Compounds                |                    |      |                         |      |      |                       |                        |                          |          |         |                          |       |
| 83-32-9                          | by method SW846 3545A<br>Acenaphthene | < 16.1             | U    | µg/kg dry               | 69.0 | 16.1 | 1                     | SW846 8270D            | 29-Apr-15                | 02-May-1 | MSL     | 1508313                  | х     |
|                                  |                                       |                    |      |                         |      |      |                       |                        |                          | 5        | "       |                          |       |
| 208-96-8                         | Acenaphthylene                        | < 14.6             | U    | µg/kg dry               | 69.0 | 14.6 | 1                     |                        |                          |          |         |                          | X     |
| 120-12-7                         | Anthracene                            | < 15.8             | U    | µg/kg dry               | 69.0 | 15.8 | 1                     |                        |                          |          |         |                          | Х     |
| 56-55-3                          | Benzo (a) anthracene                  | < 14.3             | U    | µg/kg dry               | 69.0 | 14.3 | 1                     |                        |                          |          |         |                          | Х     |
| 50-32-8                          | Benzo (a) pyrene                      | < 14.4             | U    | µg/kg dry               | 69.0 | 14.4 | 1                     |                        |                          |          |         |                          | Х     |
| 205-99-2                         | Benzo (b) fluoranthene                | < 15.7             | U    | µg/kg dry               | 69.0 | 15.7 | 1                     |                        | "                        |          |         |                          | Х     |
| 191-24-2                         | Benzo (g,h,i) perylene                | < 14.9             | U    | µg/kg dry               | 69.0 | 14.9 | 1                     |                        | "                        |          |         |                          | Х     |
| 207-08-9                         | Benzo (k) fluoranthene                | < 15.7             | U    | µg/kg dry               | 69.0 | 15.7 | 1                     | •                      | "                        | "        | "       | "                        | Х     |
| 111-91-1                         | Bis(2-chloroethoxy)metha<br>ne        | < 62.3             | U    | µg/kg dry               | 341  | 62.3 | 1                     | "                      | "                        | "        | "       | "                        | Х     |
| 111-44-4                         | Bis(2-chloroethyl)ether               | < 62.1             | U    | µg/kg dry               | 173  | 62.1 | 1                     |                        | "                        | "        |         |                          | х     |
| 108-60-1                         | Bis(2-chloroisopropyl)ethe r          | < 62.0             | U    | µg/kg dry               | 173  | 62.0 | 1                     | "                      | "                        | "        | "       | "                        | х     |
| 117-81-7                         | Bis(2-ethylhexyl)phthalate            | < 85.2             | U    | µg/kg dry               | 173  | 85.2 | 1                     | "                      | "                        |          | "       |                          | х     |
| 101-55-3                         | 4-Bromophenyl phenyl                  | < 69.0             | U    | µg/kg dry               | 341  | 69.0 | 1                     | "                      | "                        |          | "       | "                        | х     |
| 85-68-7                          | ether<br>Butyl benzyl phthalate       | < 75.6             | U    | µg/kg dry               | 341  | 75.6 | 1                     |                        |                          |          | "       |                          | х     |
| 86-74-8                          | Carbazole                             | < 87.7             | U    |                         | 173  | 87.7 | 1                     |                        |                          |          |         |                          | x     |
| 59-50-7                          | 4-Chloro-3-methylphenol               | < 70.8             | U    | µg/kg dry               | 341  | 70.8 | 1                     |                        |                          |          |         |                          | x     |
| 106-47-8                         | 4-Chloroaniline                       | < 70.8             | U    | µg/kg dry               | 173  | 70.8 | 1                     |                        |                          |          |         |                          | x     |
| 91-58-7                          | 2-Chloronaphthalene                   | < 60.0             | U    | µg/kg dry<br>µg/kg dry  | 341  | 60.0 | 1                     |                        |                          |          |         |                          | x     |
| 95-57-8                          | 2-Chlorophenol                        | < 61.0             | U    |                         | 173  | 61.0 | 1                     |                        |                          |          |         |                          | x     |
| 7005-72-3                        | 4-Chlorophenyl phenyl                 | < 64.1             | U    | µg/kg dry<br>µg/kg dry  | 341  | 64.1 | 1                     | "                      | "                        |          | "       | "                        | x     |
| 218-01-9                         | ether<br>Chrysene                     | < 16.9             | U    | µg/kg dry               | 69.0 | 16.9 | 1                     |                        |                          |          |         |                          | х     |
| 53-70-3                          | Dibenzo (a,h) anthracene              | < 12.7             | U    |                         | 69.0 | 12.7 |                       |                        |                          |          |         |                          | x     |
| 132-64-9                         |                                       | < 12.7             | U    | µg/kg dry               | 173  | 12.7 | 1<br>1                |                        |                          |          |         |                          | x     |
| 95-50-1                          | Dibenzofuran                          | < 57.4             | U    | µg/kg dry               | 341  | 57.4 | 1                     |                        |                          |          | "       |                          | x     |
| 541-73-1                         | 1,2-Dichlorobenzene                   | < 60.6             | U    | µg/kg dry               | 341  | 60.6 | 1                     |                        |                          |          |         |                          | x     |
| 106-46-7                         | 1,3-Dichlorobenzene                   | < 56.5             | U    | µg/kg dry               |      |      |                       |                        |                          |          |         |                          | x     |
| 91-94-1                          | 1,4-Dichlorobenzene                   |                    | U    | µg/kg dry               | 341  | 56.5 | 1                     |                        |                          |          |         |                          | x     |
| 120-83-2                         | 3,3'-Dichlorobenzidine                | < 69.3             | U    | µg/kg dry               | 341  | 69.3 | 1                     |                        |                          |          |         |                          | x     |
| 84-66-2                          | 2,4-Dichlorophenol                    | < 58.7             | U    | µg/kg dry               | 173  | 58.7 | 1                     |                        |                          |          |         |                          | x     |
|                                  | Diethyl phthalate                     | < 71.2             |      | µg/kg dry               | 341  | 71.2 | 1                     |                        |                          |          |         |                          |       |
| 131-11-3                         | Dimethyl phthalate                    | < 67.2             | U    | µg/kg dry               | 341  | 67.2 | 1                     |                        |                          |          |         |                          | X     |
| 105-67-9                         | 2,4-Dimethylphenol                    | < 58.5             | U    | µg/kg dry               | 341  | 58.5 | 1                     |                        |                          |          |         |                          | X     |
| 84-74-2                          | Di-n-butyl phthalate                  | < 76.6             | U    | µg/kg dry               | 341  | 76.6 | 1                     |                        |                          |          |         |                          | X     |
| 534-52-1                         | 4,6-Dinitro-2-methylphenol            | < 90.8             | U    | µg/kg dry               | 341  | 90.8 | 1                     |                        |                          |          |         |                          | X     |
| 51-28-5                          | 2,4-Dinitrophenol                     | < 89.9             | U    | µg/kg dry               | 341  | 89.9 | 1                     |                        |                          |          |         |                          | X     |
| 121-14-2                         | 2,4-Dinitrotoluene                    | < 71.1             | U    | µg/kg dry               | 173  | 71.1 | 1                     |                        |                          |          |         |                          | X     |
| 606-20-2                         | 2,6-Dinitrotoluene                    | < 67.0             | U    | µg/kg dry               | 173  | 67.0 | 1                     |                        |                          |          |         |                          | X     |
| 117-84-0                         | Di-n-octyl phthalate                  | < 73.7             | U    | µg/kg dry               | 341  | 73.7 | 1                     |                        |                          |          |         |                          | X     |
| 206-44-0                         | Fluoranthene                          | < 17.3             | U    | µg/kg dry               | 69.0 | 17.3 | 1                     |                        |                          |          |         |                          | Х     |
| 86-73-7                          | Fluorene                              | < 16.5             | U    | µg/kg dry               | 69.0 | 16.5 | 1                     |                        |                          | "        | "       |                          | Х     |

| Sample Id<br>SB-08A-9<br>SC06702- |                                                                               |            |      | <u>Client P</u><br>2150 |       |      | <u>Matrix</u><br>Soil |                     | ection Date<br>Apr-15 10 |               |         | <u>ceived</u><br>Apr-15 |       |
|-----------------------------------|-------------------------------------------------------------------------------|------------|------|-------------------------|-------|------|-----------------------|---------------------|--------------------------|---------------|---------|-------------------------|-------|
| CAS No.                           | Analyte(s)                                                                    | Result     | Flag | Units                   | *RDL  | MDL  | Dilution              | Method Ref.         | Prepared                 | Analyzed      | Analyst | Batch                   | Cert. |
| <u>Semivola</u>                   | ile Organic Compounds by (<br>tile Organic Compounds<br>by method SW846 3545A | GCMS       |      |                         |       |      |                       |                     |                          |               |         |                         |       |
| 118-74-1                          | Hexachlorobenzene                                                             | < 75.4     | U    | µg/kg dry               | 173   | 75.4 | 1                     | SW846 8270D         | 29-Apr-15                | 02-May-1<br>5 | MSL     | 1508313                 | Х     |
| 87-68-3                           | Hexachlorobutadiene                                                           | < 54.9     | U    | µg/kg dry               | 173   | 54.9 | 1                     | "                   | "                        | "             | "       | "                       | х     |
| 77-47-4                           | Hexachlorocyclopentadien<br>e                                                 | < 62.9     | U    | µg/kg dry               | 173   | 62.9 | 1                     | u                   | "                        | "             | "       | "                       | Х     |
| 67-72-1                           | Hexachloroethane                                                              | < 66.3     | U    | µg/kg dry               | 173   | 66.3 | 1                     | "                   | "                        |               | "       | "                       | Х     |
| 193-39-5                          | Indeno (1,2,3-cd) pyrene                                                      | < 14.1     | U    | µg/kg dry               | 69.0  | 14.1 | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 78-59-1                           | Isophorone                                                                    | < 60.3     | U    | µg/kg dry               | 173   | 60.3 | 1                     |                     | "                        |               | "       | "                       | Х     |
| 91-57-6                           | 2-Methylnaphthalene                                                           | < 14.2     | U    | µg/kg dry               | 69.0  | 14.2 | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 95-48-7                           | 2-Methylphenol                                                                | < 61.2     | U    | µg/kg dry               | 341   | 61.2 | 1                     |                     | "                        |               | "       | "                       | Х     |
| 108-39-4,<br>106-44-5             | 3 & 4-Methylphenol                                                            | < 76.8     | U    | µg/kg dry               | 341   | 76.8 | 1                     | п                   | "                        | "             | "       | "                       | Х     |
| 91-20-3                           | Naphthalene                                                                   | < 14.1     | U    | µg/kg dry               | 69.0  | 14.1 | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 88-74-4                           | 2-Nitroaniline                                                                | < 68.4     | U    | µg/kg dry               | 341   | 68.4 | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 99-09-2                           | 3-Nitroaniline                                                                | < 81.6     | U    | µg/kg dry               | 341   | 81.6 | 1                     |                     | "                        | "             | "       |                         | Х     |
| 100-01-6                          | 4-Nitroaniline                                                                | < 98.7     | U    | µg/kg dry               | 173   | 98.7 | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 98-95-3                           | Nitrobenzene                                                                  | < 67.0     | U    | µg/kg dry               | 173   | 67.0 | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 88-75-5                           | 2-Nitrophenol                                                                 | < 57.2     | U    | µg/kg dry               | 173   | 57.2 | 1                     |                     | "                        | "             | "       |                         | Х     |
| 100-02-7                          | 4-Nitrophenol                                                                 | < 92.2     | U    | µg/kg dry               | 1360  | 92.2 | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 621-64-7                          | N-Nitrosodi-n-propylamine                                                     | < 73.5     | U    | µg/kg dry               | 173   | 73.5 | 1                     |                     | "                        | "             | "       |                         | Х     |
| 86-30-6                           | N-Nitrosodiphenylamine                                                        | < 80.3     | U    | µg/kg dry               | 341   | 80.3 | 1                     |                     | "                        |               |         | "                       | Х     |
| 87-86-5                           | Pentachlorophenol                                                             | < 81.2     | U    | µg/kg dry               | 341   | 81.2 | 1                     |                     | "                        |               | "       | "                       | Х     |
| 85-01-8                           | Phenanthrene                                                                  | < 16.8     | U    | µg/kg dry               | 69.0  | 16.8 | 1                     |                     | "                        | "             | "       |                         | Х     |
| 108-95-2                          | Phenol                                                                        | < 62.1     | U    | µg/kg dry               | 341   | 62.1 | 1                     |                     | "                        |               | "       | "                       | Х     |
| 129-00-0                          | Pyrene                                                                        | < 14.7     | U    | µg/kg dry               | 69.0  | 14.7 | 1                     |                     | "                        |               | "       | "                       | Х     |
| 120-82-1                          | 1,2,4-Trichlorobenzene                                                        | < 54.3     | U    | µg/kg dry               | 341   | 54.3 | 1                     |                     | "                        | "             | "       |                         | Х     |
| 95-95-4                           | 2,4,5-Trichlorophenol                                                         | < 70.6     | U    | µg/kg dry               | 341   | 70.6 | 1                     |                     | "                        | "             | "       | "                       | Х     |
| Surrogate                         | recoveries:                                                                   |            |      |                         |       |      |                       |                     |                          |               |         |                         |       |
| 321-60-8                          | 2-Fluorobiphenyl                                                              | 80         |      |                         | 30-13 | 0 %  |                       |                     | "                        |               | "       |                         |       |
| 367-12-4                          | 2-Fluorophenol                                                                | 91         |      |                         | 30-13 | 0%   |                       |                     | "                        |               | "       |                         |       |
| 4165-60-0                         | Nitrobenzene-d5                                                               | 95         |      |                         | 30-13 | 0 %  |                       |                     | "                        |               | "       |                         |       |
| 4165-62-2                         | Phenol-d5                                                                     | 90         |      |                         | 30-13 | 0 %  |                       | "                   | "                        |               | "       | "                       |       |
| 1718-51-0                         | Terphenyl-dl4                                                                 | 105        |      |                         | 30-13 | 0 %  |                       | "                   | "                        |               | "       | "                       |       |
| 118-79-6                          | 2,4,6-Tribromophenol                                                          | 73         |      |                         | 30-13 | 0%   |                       | "                   | "                        |               | "       | "                       |       |
|                                   | y Identified Compounds<br>by method SW846 3545A                               |            |      |                         |       |      |                       |                     |                          |               |         |                         |       |
|                                   | Tentatively Identified<br>Compounds                                           | None found |      | µg/kg dry               |       |      | 1                     | SW846 8270D<br>TICS | "                        | "             | MSL     | "                       |       |

| Sample Id<br>SB-09-2-3<br>SC06702- |                                                 |        |      | <u>Client P</u><br>2150 | -    |      | <u>Matrix</u><br>Soil |             | ection Date<br>Apr-15 10 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|-------------------------------------------------|--------|------|-------------------------|------|------|-----------------------|-------------|--------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                      | Result | Flag | Units                   | *RDL | MDL  | Dilution              | Method Ref. | Prepared                 | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolat                          | ile Organic Compounds by (                      | GCMS   |      |                         |      |      |                       |             |                          |               |         |                         |       |
|                                    | tile Organic Compounds<br>by method SW846 3545A |        | R01  |                         |      |      |                       |             |                          |               |         |                         |       |
| 83-32-9                            | Acenaphthene                                    | < 84.2 | U, D | µg/kg dry               | 361  | 84.2 | 5                     | SW846 8270D | 29-Apr-15                | 05-May-1<br>5 | MSL     | 1508313                 | х     |
| 208-96-8                           | Acenaphthylene                                  | < 76.6 | U, D | µg/kg dry               | 361  | 76.6 | 5                     | "           | "                        |               | "       | "                       | х     |
| 120-12-7                           | Anthracene                                      | < 82.6 | U, D | µg/kg dry               | 361  | 82.6 | 5                     |             | "                        |               | "       | "                       | Х     |
| 56-55-3                            | Benzo (a) anthracene                            | < 74.8 | U, D | µg/kg dry               | 361  | 74.8 | 5                     |             | "                        |               | "       |                         | Х     |
| 50-32-8                            | Benzo (a) pyrene                                | < 75.3 | U, D | µg/kg dry               | 361  | 75.3 | 5                     |             | "                        | "             | "       | "                       | Х     |
| 205-99-2                           | Benzo (b) fluoranthene                          | < 82.3 | U, D | µg/kg dry               | 361  | 82.3 | 5                     |             | "                        |               | "       |                         | х     |
| 191-24-2                           | Benzo (g,h,i) perylene                          | < 78.2 | U, D | µg/kg dry               | 361  | 78.2 | 5                     |             | "                        |               | "       |                         | х     |
| 207-08-9                           | Benzo (k) fluoranthene                          | < 82.3 | U, D | µg/kg dry               | 361  | 82.3 | 5                     |             | "                        |               | "       |                         | х     |
| 111-91-1                           | Bis(2-chloroethoxy)metha<br>ne                  | < 326  | U, D | µg/kg dry               | 1790 | 326  | 5                     | "           | "                        | "             | "       | "                       | х     |
| 111-44-4                           | Bis(2-chloroethyl)ether                         | < 325  | U, D | µg/kg dry               | 904  | 325  | 5                     |             | "                        |               | "       |                         | х     |
| 108-60-1                           | Bis(2-chloroisopropyl)ethe r                    | < 324  | U, D | µg/kg dry               | 904  | 324  | 5                     | "           | "                        | "             | "       | "                       | х     |
| 117-81-7                           | Bis(2-ethylhexyl)phthalate                      | < 446  | U, D | µg/kg dry               | 904  | 446  | 5                     |             | "                        | "             | "       | "                       | х     |
| 101-55-3                           | 4-Bromophenyl phenyl ether                      | < 361  | U, D | µg/kg dry               | 1790 | 361  | 5                     | "           | "                        | "             | "       | "                       | х     |
| 85-68-7                            | Butyl benzyl phthalate                          | < 396  | U, D | µg/kg dry               | 1790 | 396  | 5                     |             | "                        |               | "       |                         | Х     |
| 86-74-8                            | Carbazole                                       | < 459  | U, D | µg/kg dry               | 904  | 459  | 5                     |             | "                        |               | "       |                         | х     |
| 59-50-7                            | 4-Chloro-3-methylphenol                         | < 371  | U, D | µg/kg dry               | 1790 | 371  | 5                     |             | "                        |               | "       |                         | х     |
| 106-47-8                           | 4-Chloroaniline                                 | < 369  | U, D | µg/kg dry               | 904  | 369  | 5                     |             | "                        |               | "       |                         | х     |
| 91-58-7                            | 2-Chloronaphthalene                             | < 314  | U, D | µg/kg dry               | 1790 | 314  | 5                     |             | "                        |               | "       |                         | х     |
| 95-57-8                            | 2-Chlorophenol                                  | < 320  | U, D | µg/kg dry               | 904  | 320  | 5                     |             | "                        |               | "       |                         | х     |
| 7005-72-3                          | 4-Chlorophenyl phenyl ether                     | < 336  | U, D | µg/kg dry               | 1790 | 336  | 5                     | n           | "                        |               | "       | "                       | х     |
| 218-01-9                           | Chrysene                                        | < 88.3 | U, D | µg/kg dry               | 361  | 88.3 | 5                     |             | "                        |               | "       |                         | х     |
| 53-70-3                            | Dibenzo (a,h) anthracene                        | < 66.3 | U, D | µg/kg dry               | 361  | 66.3 | 5                     |             | "                        |               | "       |                         | х     |
| 132-64-9                           | Dibenzofuran                                    | < 66.3 | U, D | µg/kg dry               | 904  | 66.3 | 5                     |             | "                        |               | "       |                         | Х     |
| 95-50-1                            | 1,2-Dichlorobenzene                             | < 300  | U, D | µg/kg dry               | 1790 | 300  | 5                     |             | "                        |               | "       |                         | х     |
| 541-73-1                           | 1,3-Dichlorobenzene                             | < 317  | U, D | µg/kg dry               | 1790 | 317  | 5                     |             | "                        |               | "       | "                       | х     |
| 106-46-7                           | 1,4-Dichlorobenzene                             | < 296  | U, D | µg/kg dry               | 1790 | 296  | 5                     |             | "                        |               | "       |                         | Х     |
| 91-94-1                            | 3,3'-Dichlorobenzidine                          | < 363  | U, D | µg/kg dry               | 1790 | 363  | 5                     |             | "                        |               | "       |                         | Х     |
| 120-83-2                           | 2,4-Dichlorophenol                              | < 308  | U, D | µg/kg dry               | 904  | 308  | 5                     |             | "                        |               | "       | "                       | х     |
| 84-66-2                            | Diethyl phthalate                               | < 373  | U, D | µg/kg dry               | 1790 | 373  | 5                     |             | "                        |               | "       |                         | Х     |
| 131-11-3                           | Dimethyl phthalate                              | < 352  | U, D | µg/kg dry               | 1790 | 352  | 5                     |             | "                        |               | "       |                         | х     |
| 105-67-9                           | 2,4-Dimethylphenol                              | < 306  | U, D | µg/kg dry               | 1790 | 306  | 5                     |             | "                        |               | "       | "                       | х     |
| 84-74-2                            | Di-n-butyl phthalate                            | < 401  | U, D | µg/kg dry               | 1790 | 401  | 5                     |             | "                        |               | "       |                         | х     |
| 534-52-1                           | 4,6-Dinitro-2-methylphenol                      | < 475  | U, D | µg/kg dry               | 1790 | 475  | 5                     | "           | "                        |               | "       | "                       | х     |
| 51-28-5                            | 2,4-Dinitrophenol                               | < 471  | U, D | µg/kg dry               | 1790 | 471  | 5                     | "           | "                        |               | "       | "                       | х     |
| 121-14-2                           | 2,4-Dinitrotoluene                              | < 372  | U, D | µg/kg dry               | 904  | 372  | 5                     | "           | "                        |               | "       | "                       | х     |
| 606-20-2                           | 2,6-Dinitrotoluene                              | < 351  | U, D | µg/kg dry               | 904  | 351  | 5                     | "           | "                        |               | "       | "                       | х     |
| 117-84-0                           | Di-n-octyl phthalate                            | < 386  | U, D | µg/kg dry               | 1790 | 386  | 5                     |             | "                        |               | "       | "                       | х     |
| 206-44-0                           | Fluoranthene                                    | 95.7   | J, D | µg/kg dry               | 361  | 90.7 | 5                     | "           | "                        |               | "       | "                       | х     |
| 86-73-7                            | Fluorene                                        | < 86.5 | U, D | µg/kg dry               | 361  | 86.5 | 5                     | "           | "                        |               | "       | "                       | х     |
| 118-74-1                           | Hexachlorobenzene                               | < 395  | U, D | µg/kg dry               | 904  | 395  | 5                     |             | "                        |               | "       | "                       | х     |
| 87-68-3                            | Hexachlorobutadiene                             | < 288  | U, D | µg/kg dry               | 904  | 288  | 5                     | n           | "                        |               | "       | "                       | х     |

| Sample Id<br>SB-09-2-3<br>SC06702- |                                                 |            |      | <u>Client P</u><br>2150 | -      |        | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 10 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|-------------------------------------------------|------------|------|-------------------------|--------|--------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                      | Result     | Flag | Units                   | *RDL   | MDL    | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolati                         | ile Organic Compounds by C                      | GCMS       |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| <u>Semivolat</u>                   | tile Organic Compounds<br>by method SW846 3545A |            | R01  |                         |        |        |                       |                     |                           |               |         |                         |       |
| 77-47-4                            | Hexachlorocyclopentadien<br>e                   | < 330      | U, D | µg/kg dry               | 904    | 330    | 5                     | SW846 8270D         | 29-Apr-15                 | 05-May-1<br>5 | MSL     | 1508313                 | х     |
| 67-72-1                            | Hexachloroethane                                | < 347      | U, D | µg/kg dry               | 904    | 347    | 5                     | "                   | "                         |               | "       | "                       | х     |
| 193-39-5                           | Indeno (1,2,3-cd) pyrene                        | < 73.9     | U, D | µg/kg dry               | 361    | 73.9   | 5                     |                     | "                         |               | "       |                         | х     |
| 78-59-1                            | Isophorone                                      | < 316      | U, D | µg/kg dry               | 904    | 316    | 5                     |                     | "                         |               | "       |                         | х     |
| 91-57-6                            | 2-Methylnaphthalene                             | < 74.5     | U, D | µg/kg dry               | 361    | 74.5   | 5                     |                     | "                         |               | "       |                         | х     |
| 95-48-7                            | 2-Methylphenol                                  | < 321      | U, D | µg/kg dry               | 1790   | 321    | 5                     |                     | "                         |               | "       |                         | х     |
| 108-39-4,<br>106-44-5              | 3 & 4-Methylphenol                              | < 402      | U, D | µg/kg dry               | 1790   | 402    | 5                     | "                   | "                         | "             | "       | "                       | х     |
| 91-20-3                            | Naphthalene                                     | < 73.6     | U, D | µg/kg dry               | 361    | 73.6   | 5                     |                     | "                         |               | "       | "                       | Х     |
| 88-74-4                            | 2-Nitroaniline                                  | < 358      | U, D | µg/kg dry               | 1790   | 358    | 5                     |                     | "                         |               | "       |                         | Х     |
| 99-09-2                            | 3-Nitroaniline                                  | < 428      | U, D | µg/kg dry               | 1790   | 428    | 5                     |                     | "                         | "             | "       | "                       | Х     |
| 100-01-6                           | 4-Nitroaniline                                  | < 517      | U, D | µg/kg dry               | 904    | 517    | 5                     |                     | "                         | "             | "       | "                       | Х     |
| 98-95-3                            | Nitrobenzene                                    | < 351      | U, D | µg/kg dry               | 904    | 351    | 5                     |                     | "                         | "             | "       | "                       | Х     |
| 88-75-5                            | 2-Nitrophenol                                   | < 299      | U, D | µg/kg dry               | 904    | 299    | 5                     |                     | "                         |               | "       |                         | х     |
| 100-02-7                           | 4-Nitrophenol                                   | < 483      | U, D | µg/kg dry               | 7150   | 483    | 5                     |                     | "                         |               | "       |                         | х     |
| 621-64-7                           | N-Nitrosodi-n-propylamine                       | < 385      | U, D | µg/kg dry               | 904    | 385    | 5                     |                     | "                         |               | "       |                         | х     |
| 86-30-6                            | N-Nitrosodiphenylamine                          | < 420      | U, D | µg/kg dry               | 1790   | 420    | 5                     |                     | "                         |               | "       |                         | х     |
| 87-86-5                            | Pentachlorophenol                               | < 425      | U, D | µg/kg dry               | 1790   | 425    | 5                     |                     | "                         |               | "       |                         | х     |
| 85-01-8                            | Phenanthrene                                    | 143        | J, D | µg/kg dry               | 361    | 88.1   | 5                     |                     | "                         |               | "       |                         | х     |
| 108-95-2                           | Phenol                                          | < 325      | U, D | µg/kg dry               | 1790   | 325    | 5                     |                     | "                         |               | "       | "                       | х     |
| 129-00-0                           | Pyrene                                          | < 76.9     | U, D | µg/kg dry               | 361    | 76.9   | 5                     |                     | "                         |               | "       |                         | х     |
| 120-82-1                           | 1,2,4-Trichlorobenzene                          | < 284      | U, D | µg/kg dry               | 1790   | 284    | 5                     |                     | "                         |               | "       |                         | х     |
| 95-95-4                            | 2,4,5-Trichlorophenol                           | < 370      | U, D | µg/kg dry               | 1790   | 370    | 5                     | "                   |                           | "             | "       | "                       | Х     |
| Surrogate i                        | recoveries:                                     |            |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 321-60-8                           | 2-Fluorobiphenyl                                | 80         |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 367-12-4                           | 2-Fluorophenol                                  | 91         |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 4165-60-0                          | Nitrobenzene-d5                                 | 94         |      |                         | 30-13  | 80 %   |                       |                     | "                         | "             | "       | "                       |       |
| 4165-62-2                          | Phenol-d5                                       | 93         |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 1718-51-0                          | Terphenyl-dl4                                   | 81         |      |                         | 30-13  | 80 %   |                       |                     | "                         | "             | "       | "                       |       |
| 118-79-6                           | 2,4,6-Tribromophenol                            | 69         |      |                         | 30-13  | 80 %   |                       |                     | "                         |               | "       | "                       |       |
|                                    | y Identified Compounds<br>by method SW846 3545A |            | R01  |                         |        |        |                       |                     |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds             | None found |      | µg/kg dry               |        |        | 5                     | SW846 8270D<br>TICS | "                         | "             | MSL     | "                       |       |
| Total Meta                         | als by EPA 6000/7000 Series                     | Methods    |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 7440-22-4                          | Silver                                          | < 0.114    | U    | mg/kg dry               | 1.55   | 0.114  | 1                     | SW846 6010C         | 04-May-1<br>5             | 04-May-1<br>5 | TBC     | 1508397                 | Х     |
| 7440-38-2                          | Arsenic                                         | 7.23       |      | mg/kg dry               | 1.55   | 0.251  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-39-3                          | Barium                                          | 139        |      | mg/kg dry               | 1.04   | 0.0616 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-43-9                          | Cadmium                                         | 0.0617     | J    | mg/kg dry               | 0.518  | 0.0166 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-47-3                          | Chromium                                        | 11.7       |      | mg/kg dry               | 1.04   | 0.0990 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7439-97-6                          | Mercury                                         | 0.0484     |      | mg/kg dry               | 0.0307 | 0.0020 | 1                     | SW846 7471B         | "                         | 04-May-1<br>5 | YR      | 1508398                 | х     |
| 7439-92-1                          | Lead                                            | 31.1       |      | mg/kg dry               | 1.55   | 0.286  | 1                     | SW846 6010C         | "                         | 04-May-1<br>5 | TBC     | 1508397                 | Х     |
| 7782-49-2                          | Selenium                                        | < 0.389    | U    | mg/kg dry               | 1.55   | 0.389  | 1                     | "                   | "                         | "             | "       | "                       | х     |

| <u>Sample I</u><br>SB-09-2-<br>SC06702 |                      |         |      | <u>Client Pr</u><br>2150 |       |       | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 10 |               |         | <u>ceived</u><br>Apr-15 |       |
|----------------------------------------|----------------------|---------|------|--------------------------|-------|-------|-----------------------|---------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                                | Analyte(s)           | Result  | Flag | Units                    | *RDL  | MDL   | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| General (                              | Chemistry Parameters |         |      |                          |       |       |                       |               |                           |               |         |                         |       |
|                                        | % Solids             | 92.0    |      | %                        |       |       | 1                     | SM2540 G Mod. | 30-Apr-15                 | 30-Apr-15     | DT      | 1508366                 |       |
| 57-12-5                                | Cyanide (total)      | < 0.420 | U    | mg/kg dry                | 0.525 | 0.420 | 1                     | SW846 9012B   | 05-May-1<br>5             | 05-May-1<br>5 | RLT     | 1508657                 | Х     |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 28-     | :00      | -Apr-15 00: | 28          | Soil     |      | 606  | 2150      |      |        | -                           | Blind Dup<br>SC06702- |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|----------|-------------|-------------|----------|------|------|-----------|------|--------|-----------------------------|-----------------------|
| R01           Prepared by method SW846 35454           83-32-9         Acenaphthene         < 86.8         U.D         µg/kg dry         372         86.8         5         SW846 8270D         29.Apr.15         05-May.1         MSL           208-96.8         Acenaphthylene         < 79.0         U.D         µg/kg dry         372         79.0         5         ·         ·         5         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batch Cer | Analyst | Analyzed | Prepared    | Method Ref. | Dilution | MDL  | *RDL | Units     | Flag | Result | Analyte(s)                  | CAS No.               |
| Description         Display Comparison         Display Comparison <thdisplay comparison<="" th="">         Display Compari</thdisplay>                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |          |             |             |          |      |      |           |      | GCMS   | tile Organic Compounds by C | Semivolati            |
| 83-32-9         Acenaphthene         < 86.8         U. D         µg/kg dry         372         86.8         5         SW846 82700         29-Apr-15         05-May-1         MSL           208-96-8         Acenaphthylene         < 79.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |         |          |             |             |          |      |      |           | R01  |        |                             |                       |
| 2008-96-8Acce aphthylene< 79.0U, D $\mu g/kg dry$ 37279.05Image: Constraint of the second of the se |           |         |          |             |             |          |      |      |           |      |        | -                           |                       |
| 120-12-7       Anthracene       < 85.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1508313 X | MSL     | -        | 29-Apr-15   | SW846 8270D | 5        | 86.8 | 372  | µg/kg dry | U, D | < 86.8 | Acenaphthene                | 83-32-9               |
| 12.1.1.1Antimatelie $< 50.2$ $0.0$ $\mu g/k$ dry $512$ $63.2$ $5$ 56-53Benzo (a) anthracene $< 77.1$ $U, D$ $\mu g/k$ dry $372$ $77.1$ $5$ """""50-32-8Benzo (a) pyrene $< 77.6$ $U, D$ $\mu g/k$ dry $372$ $77.6$ $5$ """""205-99-2Benzo (b) fluoranthene $< 84.9$ $U, D$ $\mu g/k$ dry $372$ $84.9$ $5$ """""191-24-2Benzo (k) fluoranthene $< 84.9$ $U, D$ $\mu g/k$ dry $372$ $84.9$ $5$ """""207-08-9Benzo (k) fluoranthene $< 84.9$ $U, D$ $\mu g/k$ dry $372$ $84.9$ $5$ """""207-08-9Benzo (k) fluoranthene $< 84.9$ $U, D$ $\mu g/k$ dry $372$ $84.9$ $5$ """""207-08-9Benzo (k) fluoranthene $< 84.9$ $U, D$ $\mu g/k$ dry $372$ $84.9$ $5$ """""207-08-9Benzo (k) fluoranthene $< 335$ $U, D$ $\mu g/k$ dry $372$ $84.9$ $5$ """""207-08-9Benzo (k) fluoranthene $< 335$ $U, D$ $\mu g/k$ dry $932$ $335$ $5$ """""207-08-9Benzo (k) fluoranthene $< 335$ $U, D$ $\mu g/k$ dry $932$ </td <td>" X</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td>5</td> <td>79.0</td> <td>372</td> <td>µg/kg dry</td> <td>U, D</td> <td>&lt; 79.0</td> <td>Acenaphthylene</td> <td>208-96-8</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X       | "       | "        |             | "           | 5        | 79.0 | 372  | µg/kg dry | U, D | < 79.0 | Acenaphthylene              | 208-96-8              |
| 50:32-8       Benzo (a) pyrene       <77.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | " X       |         | "        |             | "           | 5        | 85.2 | 372  | µg/kg dry | U, D | < 85.2 | Anthracene                  | 120-12-7              |
| 205.243       Benzo (a) pyrene       < 77.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | " X       |         | "        |             | "           | 5        | 77.1 | 372  | µg/kg dry | U, D | < 77.1 | Benzo (a) anthracene        | 56-55-3               |
| 191-24-2       Benzo (g,h,i) perylene       < 80.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | " X       |         | "        |             | "           | 5        | 77.6 | 372  | µg/kg dry | U, D | < 77.6 | Benzo (a) pyrene            | 50-32-8               |
| 131242       benzo (k) fluoranthene       < 80.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X       |         | "        | "           | "           | 5        | 84.9 | 372  | µg/kg dry | U, D | < 84.9 | Benzo (b) fluoranthene      | 205-99-2              |
| 111-91-1       Bis(2-chloroethoxy)metha<br>ne       < 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | " X       | "       | "        | "           | "           | 5        | 80.7 | 372  | µg/kg dry | U, D | < 80.7 | Benzo (g,h,i) perylene      | 191-24-2              |
| International ne       Bis(2-chlorotethyl)ethal       < 336       0, D       μg/kg dry       1340       336       5         111-44-4       Bis(2-chlorotethyl)ethar       < 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " X       |         | "        | "           | "           | 5        | 84.9 | 372  | µg/kg dry | U, D | < 84.9 | Benzo (k) fluoranthene      | 207-08-9              |
| 114444       Bis(2-chloroberly)jentel       < 335       0, D       µg/kg dry       932       335       5         108-60-1       Bis(2-chloroisopropyl)ethe r       < 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " X       | "       | "        | "           | "           | 5        | 336  | 1840 | µg/kg dry | U, D | < 336  |                             | 111-91-1              |
| 117-81-7       Bis(2-ethylhexyl)phthalate       < 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | " X       |         | "        | "           | "           | 5        | 335  | 932  | µg/kg dry | U, D | < 335  | Bis(2-chloroethyl)ether     | 111-44-4              |
| 117-81-7       Bis(2-ethylhexyl)phthalate       < 460       U, D       µg/kg dry       932       460       5       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | " X       | "       | "        |             | "           | 5        | 335  | 932  | µg/kg dry | U, D | < 335  |                             | 108-60-1              |
| 101-03-03       4-Entomorphientyl prientyl       < 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | " X       | "       |          |             | "           | 5        | 460  | 932  | µg/kg dry | U, D | < 460  |                             | 117-81-7              |
| 86-74-8       Carbazole       < 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | " X       | "       | "        | "           |             | 5        | 372  | 1840 | µg/kg dry | U, D | < 372  |                             | 101-55-3              |
| 59-50-7       4-Chloro-3-methylphenol       < 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | " X       |         |          |             | "           | 5        | 408  | 1840 | µg/kg dry | U, D | < 408  | Butyl benzyl phthalate      | 85-68-7               |
| 33-30-7       4-Chloro-3-methylphenol       < 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | " X       |         |          |             | "           | 5        | 474  | 932  | µg/kg dry | U, D | < 474  | Carbazole                   | 86-74-8               |
| 91-58-7     2-Chloronaphthalene     < 324     U, D     μg/kg dry     1840     324     5     "     "     "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | " X       |         | "        |             | "           | 5        | 382  | 1840 | µg/kg dry | U, D | < 382  | 4-Chloro-3-methylphenol     | 59-50-7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " X       |         |          |             | "           | 5        | 380  | 932  | µg/kg dry | U, D | < 380  | 4-Chloroaniline             | 106-47-8              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " X       |         | "        |             | "           | 5        | 324  | 1840 | µg/kg dry | U, D | < 324  | 2-Chloronaphthalene         | 91-58-7               |
| 95-57-8 2-Chlorophenol < 330 U, D μg/kg dry 932 330 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " X       |         | "        | "           | "           | 5        | 330  | 932  | µg/kg dry | U, D | < 330  | 2-Chlorophenol              | 95-57-8               |
| 7005-72-3 4-Chlorophenyl phenyl < 346 U, D μg/kg dry 1840 346 5 " " " " "<br>ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | " X       | "       | "        | "           | "           | 5        | 346  | 1840 | µg/kg dry | U, D | < 346  |                             | 7005-72-3             |
| 218-01-9 Chrysene < 91.0 U, D μg/kg dry 372 91.0 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | " X       |         |          |             | "           | 5        | 91.0 | 372  | µg/kg dry | U, D | < 91.0 |                             | 218-01-9              |
| <sup>53-70-3</sup> Dibenzo (a,h) anthracene < 68.4 U, D μg/kg dry 372 68.4 5 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | " X       |         |          |             | "           | 5        | 68.4 | 372  | µg/kg dry | U, D | < 68.4 | Dibenzo (a,h) anthracene    | 53-70-3               |
| 132-64-9 Dibenzofuran < 68.4 U, D μg/kg dry 932 68.4 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X       |         | "        |             | "           | 5        | 68.4 | 932  |           | U, D | < 68.4 | Dibenzofuran                | 132-64-9              |
| 95-50-1 1,2-Dichlorobenzene < 310 U, D μg/kg dry 1840 310 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | " X       |         |          |             | "           | 5        | 310  | 1840 | µg/kg dry | U, D | < 310  | 1,2-Dichlorobenzene         | 95-50-1               |
| 541-73-1 1,3-Dichlorobenzene < 327 U, D μg/kg dry 1840 327 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | " X       |         | "        |             | "           | 5        | 327  | 1840 | µg/kg dry | U, D | < 327  | 1,3-Dichlorobenzene         | 541-73-1              |
| 106-46-7 1,4-Dichlorobenzene < 305 U, D μg/kg dry 1840 305 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | " X       |         |          |             | "           | 5        | 305  | 1840 | µg/kg dry | U, D | < 305  | 1,4-Dichlorobenzene         | 106-46-7              |
| 91-94-1 3,3´-Dichlorobenzidine < 374 U, D μg/kg dry 1840 374 5 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | " X       |         |          |             | "           | 5        | 374  | 1840 | µg/kg dry | U, D | < 374  | 3,3'-Dichlorobenzidine      | 91-94-1               |
| 120-83-2 2,4-Dichlorophenol < 317 U, D μg/kg dry 932 317 5 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | " X       |         |          |             | "           | 5        | 317  | 932  | µg/kg dry | U, D | < 317  | 2,4-Dichlorophenol          | 120-83-2              |
| <sup>84-66-2</sup> Diethyl phthalate < 385 U, D μg/kg dry 1840 385 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | " X       |         |          |             | "           | 5        | 385  | 1840 | µg/kg dry | U, D | < 385  | Diethyl phthalate           | 84-66-2               |
| 131-11-3 Dimethyl phthalate < 363 U, D μg/kg dry 1840 363 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | " X       |         |          | "           |             | 5        | 363  | 1840 | µg/kg dry | U, D | < 363  | Dimethyl phthalate          | 131-11-3              |
| 105-67-9 2,4-Dimethylphenol < 316 U, D μg/kg dry 1840 316 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | " X       |         | "        |             | "           | 5        | 316  | 1840 | µg/kg dry | U, D | < 316  | 2,4-Dimethylphenol          | 105-67-9              |
| 84-74-2 Di-n-butyl phthalate < 414 U, D μg/kg dry 1840 414 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | " X       |         | "        |             | "           | 5        | 414  | 1840 | µg/kg dry | U, D | < 414  | Di-n-butyl phthalate        | 84-74-2               |
| 534-52-1 4,6-Dinitro-2-methylphenol < 490 U, D μg/kg dry 1840 490 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | " X       | "       | "        | "           | "           | 5        | 490  | 1840 | µg/kg dry | U, D | < 490  | 4,6-Dinitro-2-methylphenol  | 534-52-1              |
| 51-28-5 2,4-Dinitrophenol < 485 U, D μg/kg dry 1840 485 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | " X       |         | "        | "           | "           | 5        | 485  | 1840 | µg/kg dry | U, D | < 485  | 2,4-Dinitrophenol           | 51-28-5               |
| 121-14-2 2,4-Dinitrotoluene < 384 U, D μg/kg dry 932 384 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | " X       | "       | "        |             | "           | 5        | 384  | 932  | µg/kg dry | U, D | < 384  | 2,4-Dinitrotoluene          | 121-14-2              |
| 606-20-2 2,6-Dinitrotoluene < 362 U, D μg/kg dry 932 362 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | " X       | "       | "        |             | "           | 5        | 362  | 932  | µg/kg dry | U, D | < 362  | 2,6-Dinitrotoluene          | 606-20-2              |
| 117-84-0 Di-n-octyl phthalate < 398 U, D μg/kg dry 1840 398 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " X       | "       | "        |             | "           | 5        | 398  | 1840 | µg/kg dry | U, D | < 398  | Di-n-octyl phthalate        | 117-84-0              |
| 206-44-0 Fluoranthene < 93.5 U, D μg/kg dry 372 93.5 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X       | "       | "        |             | "           | 5        | 93.5 | 372  | µg/kg dry | U, D | < 93.5 | Fluoranthene                | 206-44-0              |
| 86-73-7 Fluorene < 89.2 U, D μg/kg dry 372 89.2 5 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | " X       | "       | "        |             | "           | 5        | 89.2 | 372  | µg/kg dry | U, D | < 89.2 | Fluorene                    | 86-73-7               |
| <sup>118-74-1</sup> Hexachlorobenzene < 407 U, D μg/kg dry 932 407 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | " X       | "       | "        |             | "           | 5        | 407  | 932  | µg/kg dry | U, D | < 407  | Hexachlorobenzene           | 118-74-1              |
| 87-68-3 Hexachlorobutadiene < 297 U, D μg/kg dry 932 297 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |         |          | "           | "           | 5        | 207  | 022  | ua/ka day |      | < 207  | Hoxaeblerebutadiona         | 87 68 3               |

| Sample Id<br>Blind Du<br>SC06702- | -                                               |            |      | <u>Client P</u><br>2150 | -      |        | <u>Matrix</u><br>Soil |             | ection Date<br>-Apr-15 00 |               |         | <u>ceived</u><br>Apr-15 |       |
|-----------------------------------|-------------------------------------------------|------------|------|-------------------------|--------|--------|-----------------------|-------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                           | Analyte(s)                                      | Result     | Flag | Units                   | *RDL   | MDL    | Dilution              | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolati                        | ile Organic Compounds by C                      | GCMS       |      |                         |        |        |                       |             |                           |               |         |                         |       |
|                                   | tile Organic Compounds<br>by method SW846 3545A |            | R01  |                         |        |        |                       |             |                           |               |         |                         |       |
| 77-47-4                           | Hexachlorocyclopentadien<br>e                   | < 340      | U, D | µg/kg dry               | 932    | 340    | 5                     | SW846 8270D | 29-Apr-15                 | 05-May-1<br>5 | MSL     | 1508313                 | х     |
| 67-72-1                           | Hexachloroethane                                | < 358      | U, D | µg/kg dry               | 932    | 358    | 5                     | •           | "                         | "             | "       | "                       | Х     |
| 193-39-5                          | Indeno (1,2,3-cd) pyrene                        | < 76.2     | U, D | µg/kg dry               | 372    | 76.2   | 5                     |             | "                         | "             | "       |                         | Х     |
| 78-59-1                           | Isophorone                                      | < 325      | U, D | µg/kg dry               | 932    | 325    | 5                     |             | "                         | "             | "       |                         | Х     |
| 91-57-6                           | 2-Methylnaphthalene                             | < 76.8     | U, D | µg/kg dry               | 372    | 76.8   | 5                     |             | "                         | "             | "       | "                       | Х     |
| 95-48-7                           | 2-Methylphenol                                  | < 331      | U, D | µg/kg dry               | 1840   | 331    | 5                     |             | "                         | "             | "       | "                       | Х     |
| 108-39-4,<br>106-44-5             | 3 & 4-Methylphenol                              | < 415      | U, D | µg/kg dry               | 1840   | 415    | 5                     | u           | "                         | "             | "       |                         | х     |
| 91-20-3                           | Naphthalene                                     | < 75.9     | U, D | µg/kg dry               | 372    | 75.9   | 5                     |             | "                         |               | "       |                         | Х     |
| 88-74-4                           | 2-Nitroaniline                                  | < 369      | U, D | µg/kg dry               | 1840   | 369    | 5                     | "           | "                         |               | "       | "                       | Х     |
| 99-09-2                           | 3-Nitroaniline                                  | < 441      | U, D | µg/kg dry               | 1840   | 441    | 5                     | "           | "                         |               | "       | "                       | Х     |
| 100-01-6                          | 4-Nitroaniline                                  | < 533      | U, D | µg/kg dry               | 932    | 533    | 5                     | "           | "                         |               | "       | "                       | Х     |
| 98-95-3                           | Nitrobenzene                                    | < 362      | U, D | µg/kg dry               | 932    | 362    | 5                     |             | "                         |               | "       |                         | Х     |
| 88-75-5                           | 2-Nitrophenol                                   | < 309      | U, D | µg/kg dry               | 932    | 309    | 5                     |             | "                         |               | "       |                         | Х     |
| 100-02-7                          | 4-Nitrophenol                                   | < 498      | U, D | µg/kg dry               | 7370   | 498    | 5                     | "           | "                         |               | "       | "                       | Х     |
| 621-64-7                          | N-Nitrosodi-n-propylamine                       | < 397      | U, D | µg/kg dry               | 932    | 397    | 5                     |             | "                         |               | "       |                         | Х     |
| 86-30-6                           | N-Nitrosodiphenylamine                          | < 433      | U, D | µg/kg dry               | 1840   | 433    | 5                     |             | "                         |               | "       |                         | Х     |
| 87-86-5                           | Pentachlorophenol                               | < 439      | U, D | µg/kg dry               | 1840   | 439    | 5                     |             | "                         |               | "       |                         | Х     |
| 85-01-8                           | Phenanthrene                                    | 101        | J, D | µg/kg dry               | 372    | 90.9   | 5                     |             | "                         |               | "       |                         | Х     |
| 108-95-2                          | Phenol                                          | < 336      | U, D | µg/kg dry               | 1840   | 336    | 5                     | "           | "                         |               | "       | "                       | Х     |
| 129-00-0                          | Pyrene                                          | < 79.3     | U, D | µg/kg dry               | 372    | 79.3   | 5                     |             | "                         |               | "       |                         | Х     |
| 120-82-1                          | 1,2,4-Trichlorobenzene                          | < 293      | U, D | µg/kg dry               | 1840   | 293    | 5                     |             | "                         |               | "       |                         | Х     |
| 95-95-4                           | 2,4,5-Trichlorophenol                           | < 381      | U, D | µg/kg dry               | 1840   | 381    | 5                     | "           | "                         | "             | "       | "                       | х     |
| Surrogate i                       | recoveries:                                     |            |      |                         |        |        |                       |             |                           |               |         |                         |       |
| 321-60-8                          | 2-Fluorobiphenyl                                | 62         |      |                         | 30-13  | 0 %    |                       |             | "                         |               | "       |                         |       |
| 367-12-4                          | 2-Fluorophenol                                  | 53         |      |                         | 30-13  | 0 %    |                       |             | "                         |               | "       |                         |       |
| 4165-60-0                         | Nitrobenzene-d5                                 | 66         |      |                         | 30-13  | 0 %    |                       |             | "                         |               | "       |                         |       |
| 4165-62-2                         | Phenol-d5                                       | 63         |      |                         | 30-13  | 0 %    |                       |             | "                         |               | "       |                         |       |
| 1718-51-0                         | Terphenyl-dl4                                   | 68         |      |                         | 30-13  | 0 %    |                       |             | "                         |               | "       |                         |       |
| 118-79-6<br>Tentativel            | 2,4,6-Tribromophenol<br>y Identified Compounds  | 45         | R01  |                         | 30-13  | 0 %    |                       | n           | "                         | "             | "       | "                       |       |
|                                   | by method SW846 3545A<br>Tentatively Identified | None found |      | µg/kg dry               |        |        | 5                     | SW846 8270D | "                         |               | MSL     |                         |       |
|                                   | Compounds                                       |            |      | 10.10                   |        |        | -                     | TICS        |                           |               |         |                         |       |
| Total Meta                        | als by EPA 6000/7000 Series I                   | Methods    |      |                         |        |        |                       |             |                           |               |         |                         |       |
| 7440-22-4                         | Silver                                          | < 0.120    | U    | mg/kg dry               | 1.64   | 0.120  | 1                     | SW846 6010C | 04-May-1<br>5             | 04-May-1<br>5 | TBC     | 1508397                 | Х     |
| 7440-38-2                         | Arsenic                                         | 5.25       |      | mg/kg dry               | 1.64   | 0.265  | 1                     | "           | "                         |               | "       | "                       | х     |
| 7440-39-3                         | Barium                                          | 117        |      | mg/kg dry               | 1.09   | 0.0649 | 1                     | "           | "                         | "             | "       | "                       | х     |
| 7440-43-9                         | Cadmium                                         | 0.0328     | J    | mg/kg dry               | 0.547  | 0.0175 | 1                     | "           | "                         |               | "       | "                       | х     |
| 7440-47-3                         | Chromium                                        | 11.0       |      | mg/kg dry               | 1.09   | 0.104  | 1                     | "           | "                         | "             | "       | "                       | х     |
| 7439-97-6                         | Mercury                                         | 0.0581     |      | mg/kg dry               | 0.0316 | 0.0021 | 1                     | SW846 7471B | "                         | 04-May-1<br>5 | YR      | 1508398                 | Х     |
| 7439-92-1                         | Lead                                            | 22.7       |      | mg/kg dry               | 1.64   | 0.302  | 1                     | SW846 6010C | "                         | 04-May-1<br>5 | TBC     | 1508397                 | х     |
| 7782-49-2                         | Selenium                                        | < 0.411    | U    | mg/kg dry               | 1.64   | 0.411  | 1                     | "           | u                         | "             | "       | "                       | х     |

|           | dentification<br>plicate 2<br>-18 |         |      | <u>Client Pr</u><br>2150 |       |       | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 00 |               |         | <u>ceived</u><br>Apr-15 |       |
|-----------|-----------------------------------|---------|------|--------------------------|-------|-------|-----------------------|---------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.   | Analyte(s)                        | Result  | Flag | Units                    | *RDL  | MDL   | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| General C | Chemistry Parameters              |         |      |                          |       |       |                       |               |                           |               |         |                         |       |
|           | % Solids                          | 88.9    |      | %                        |       |       | 1                     | SM2540 G Mod. | 30-Apr-15                 | 30-Apr-15     | DT      | 1508366                 |       |
| 57-12-5   | Cyanide (total)                   | < 0.416 | U    | mg/kg dry                | 0.520 | 0.416 | 1                     | SW846 9012B   | 05-May-1<br>5             | 05-May-1<br>5 | RLT     | 1508657                 | Х     |

| Sample Id<br>SB-09-8-1<br>SC06702- |                                      |                    |           | <u>Client Pr</u><br>2150 | •    |      | <u>Matrix</u><br>Soil   |                        | ection Date<br>Apr-15 10 |          |         | <u>eceived</u><br>Apr-15 |       |
|------------------------------------|--------------------------------------|--------------------|-----------|--------------------------|------|------|-------------------------|------------------------|--------------------------|----------|---------|--------------------------|-------|
| CAS No.                            | Analyte(s)                           | Result             | Flag      | Units                    | *RDL | MDL  | Dilution                | Method Ref.            | Prepared                 | Analyzed | Analyst | Batch                    | Cert. |
| Volatile O                         | rganic Compounds                     |                    |           |                          |      |      |                         |                        |                          |          |         |                          |       |
|                                    | VOC Extraction                       | Field<br>extracted |           | N/A                      |      |      | 1                       | VOC Soil<br>Extraction |                          |          | DT      | 1508307                  |       |
|                                    | rganic Compounds by SW               |                    | -1)       |                          |      | Init | ial weight:             | 10.02 a                |                          |          |         |                          |       |
| 67-64-1                            | by method SW846 5035A<br>Acetone     | < 21.1             | <u></u> U | ua/ka day                | 31.6 | 21.1 | <u>iai weight.</u><br>1 | SW846 8260C            | 01-May-1                 | 01-May-1 | SJB     | 1508452                  | х     |
| 07-04-1                            | Acelone                              | S 21.1             | 0         | µg/kg dry                | 31.0 | 21.1 | I                       | SVV040 020UC           | 5                        | 5 5      | SJD     | 1000402                  | ^     |
| 71-43-2                            | Benzene                              | < 0.6              | U         | µg/kg dry                | 3.2  | 0.6  | 1                       | "                      |                          |          | "       | "                        | х     |
| 75-27-4                            | Bromodichloromethane                 | < 2.1              | U         | µg/kg dry                | 3.2  | 2.1  | 1                       |                        |                          |          | "       |                          | х     |
| 75-25-2                            | Bromoform                            | < 3.0              | U         | µg/kg dry                | 3.2  | 3.0  | 1                       |                        | "                        |          | "       |                          | х     |
| 74-83-9                            | Bromomethane                         | < 1.8              | U         | µg/kg dry                | 6.3  | 1.8  | 1                       |                        | "                        |          | "       |                          | х     |
| 78-93-3                            | 2-Butanone (MEK)                     | < 3.8              | U         | µg/kg dry                | 31.6 | 3.8  | 1                       |                        | "                        |          | "       |                          | х     |
| 104-51-8                           | n-Butylbenzene                       | < 0.9              | U         | µg/kg dry                | 3.2  | 0.9  | 1                       | "                      | "                        |          | "       | "                        | х     |
| 135-98-8                           | sec-Butylbenzene                     | < 2.5              | U         | µg/kg dry                | 3.2  | 2.5  | 1                       | "                      | "                        |          | "       | "                        | х     |
| 98-06-6                            | tert-Butylbenzene                    | < 2.1              | U         | µg/kg dry                | 3.2  | 2.1  | 1                       | "                      | "                        |          | "       | "                        | х     |
| 75-15-0                            | Carbon disulfide                     | < 1.9              | U         | µg/kg dry                | 6.3  | 1.9  | 1                       |                        | "                        | "        | "       | "                        | Х     |
| 56-23-5                            | Carbon tetrachloride                 | < 2.6              | U         | µg/kg dry                | 3.2  | 2.6  | 1                       |                        | "                        | "        | "       | "                        | Х     |
| 108-90-7                           | Chlorobenzene                        | < 0.5              | U         | µg/kg dry                | 3.2  | 0.5  | 1                       |                        |                          |          | "       |                          | Х     |
| 75-00-3                            | Chloroethane                         | < 1.8              | U         | µg/kg dry                | 6.3  | 1.8  | 1                       |                        | "                        | "        | "       | "                        | Х     |
| 67-66-3                            | Chloroform                           | < 1.0              | U         | µg/kg dry                | 3.2  | 1.0  | 1                       |                        | "                        | "        | "       | "                        | Х     |
| 74-87-3                            | Chloromethane                        | < 1.3              | U         | µg/kg dry                | 6.3  | 1.3  | 1                       |                        | "                        | "        | "       | "                        | Х     |
| 124-48-1                           | Dibromochloromethane                 | < 2.1              | U         | µg/kg dry                | 3.2  | 2.1  | 1                       |                        | "                        | "        | "       | "                        | х     |
| 95-50-1                            | 1,2-Dichlorobenzene                  | < 0.5              | U         | µg/kg dry                | 3.2  | 0.5  | 1                       |                        |                          |          | "       |                          | Х     |
| 541-73-1                           | 1,3-Dichlorobenzene                  | < 0.6              | U         | µg/kg dry                | 3.2  | 0.6  | 1                       |                        | "                        | "        | "       | "                        | Х     |
| 106-46-7                           | 1,4-Dichlorobenzene                  | < 0.8              | U         | µg/kg dry                | 3.2  | 0.8  | 1                       |                        |                          |          | "       |                          | Х     |
| 75-71-8                            | Dichlorodifluoromethane<br>(Freon12) | < 1.1              | U         | µg/kg dry                | 6.3  | 1.1  | 1                       | "                      | "                        | "        | "       | "                        | х     |
| 75-34-3                            | 1,1-Dichloroethane                   | < 2.0              | U         | µg/kg dry                | 3.2  | 2.0  | 1                       |                        | "                        |          | "       | "                        | Х     |
| 107-06-2                           | 1,2-Dichloroethane                   | < 0.8              | U         | µg/kg dry                | 3.2  | 0.8  | 1                       |                        | "                        |          | "       | "                        | Х     |
| 75-35-4                            | 1,1-Dichloroethene                   | < 2.4              | U         | µg/kg dry                | 3.2  | 2.4  | 1                       |                        | "                        | "        | "       | "                        | Х     |
| 156-59-2                           | cis-1,2-Dichloroethene               | < 1.2              | U         | µg/kg dry                | 3.2  | 1.2  | 1                       |                        | "                        |          | "       | "                        | Х     |
| 156-60-5                           | trans-1,2-Dichloroethene             | < 1.7              | U         | µg/kg dry                | 3.2  | 1.7  | 1                       |                        |                          |          | "       |                          | х     |
| 78-87-5                            | 1,2-Dichloropropane                  | < 1.7              | U         | µg/kg dry                | 3.2  | 1.7  | 1                       |                        |                          |          | "       |                          | х     |
| 10061-01-5                         | cis-1,3-Dichloropropene              | < 1.9              | U         | µg/kg dry                | 3.2  | 1.9  | 1                       |                        | "                        |          | "       | "                        | Х     |
| 10061-02-6                         | trans-1,3-Dichloropropene            | < 1.7              | U         | µg/kg dry                | 3.2  | 1.7  | 1                       |                        | "                        | "        | "       |                          | Х     |
| 100-41-4                           | Ethylbenzene                         | < 0.6              | U         | µg/kg dry                | 3.2  | 0.6  | 1                       |                        | "                        |          | "       | "                        | х     |
| 591-78-6                           | 2-Hexanone (MBK)                     | < 3.5              | U         | µg/kg dry                | 31.6 | 3.5  | 1                       |                        | "                        |          | "       | "                        | х     |
| 98-82-8                            | Isopropylbenzene                     | < 0.6              | U         | µg/kg dry                | 3.2  | 0.6  | 1                       |                        | "                        |          | "       | "                        | х     |
| 99-87-6                            | 4-Isopropyltoluene                   | < 3.0              | U         | µg/kg dry                | 3.2  | 3.0  | 1                       |                        |                          |          | "       |                          | х     |
| 1634-04-4                          | Methyl tert-butyl ether              | < 1.2              | U         | µg/kg dry                | 3.2  | 1.2  | 1                       |                        | "                        |          | "       | "                        | Х     |
| 108-10-1                           | 4-Methyl-2-pentanone<br>(MIBK)       | < 5.9              | U         | µg/kg dry                | 31.6 | 5.9  | 1                       | H                      | "                        | "        | "       | "                        | х     |
| 75-09-2                            | Methylene chloride                   | 1.5                | O01, J    | µg/kg dry                | 6.3  | 0.9  | 1                       | "                      | "                        |          | "       | "                        | х     |
| 91-20-3                            | Naphthalene                          | < 2.9              | U         | µg/kg dry                | 3.2  | 2.9  | 1                       | "                      | "                        |          | "       | "                        | х     |
| 103-65-1                           | n-Propylbenzene                      | < 3.1              | U         | µg/kg dry                | 3.2  | 3.1  | 1                       | "                      | "                        | "        | "       | "                        | х     |
| 100-42-5                           | Styrene                              | < 0.5              | U         | µg/kg dry                | 3.2  | 0.5  | 1                       | "                      | "                        |          | "       | "                        | х     |
| 79-34-5                            | 1,1,2,2-Tetrachloroethane            | < 2.7              | U         | µg/kg dry                | 3.2  | 2.7  | 1                       | "                      | "                        |          | "       | "                        | х     |
| 127-18-4                           | Tetrachloroethene                    | < 1.2              | U         | µg/kg dry                | 3.2  | 1.2  | 1                       | "                      | "                        | "        | "       | "                        | х     |
| 108-88-3                           | Toluene                              | < 0.7              | U         | µg/kg dry                | 3.2  | 0.7  | 1                       | "                      | "                        | "        | "       | "                        | х     |

| SB-09-8-1<br>SC06702- |                                                                               |        |                      | <u>Client Pr</u><br>2150 |       |                    | <u>Matrix</u><br>Soil |                              | ection Date<br>-Apr-15 10 |               |         | <u>eceived</u><br>Apr-15 |      |
|-----------------------|-------------------------------------------------------------------------------|--------|----------------------|--------------------------|-------|--------------------|-----------------------|------------------------------|---------------------------|---------------|---------|--------------------------|------|
| CAS No.               | Analyte(s)                                                                    | Result | Flag                 | Units                    | *RDL  | MDL                | Dilution              | Method Ref.                  | Prepared                  | Analyzed      | Analyst | Batch                    | Cert |
| Volatile Or           | ganic Compounds                                                               |        |                      |                          |       |                    |                       |                              |                           |               |         |                          |      |
|                       | rganic Compounds by SV<br>by method SW846 5035/                               |        | vel)                 |                          |       | Init               | ial weight:           | 10 23 a                      |                           |               |         |                          |      |
| 71-55-6               | 1,1,1-Trichloroethane                                                         | < 0.8  | U                    | µg/kg dry                | 3.2   | 0.8                | 1                     | SW846 8260C                  | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508452                  | х    |
| 79-00-5               | 1,1,2-Trichloroethane                                                         | < 2.3  | U                    | µg/kg dry                | 3.2   | 2.3                | 1                     | "                            | "                         |               | "       | "                        | х    |
| 79-01-6               | Trichloroethene                                                               | < 0.8  | U                    | µg/kg dry                | 3.2   | 0.8                | 1                     |                              |                           |               | "       | "                        | х    |
| 75-69-4               | Trichlorofluoromethane<br>(Freon 11)                                          | < 1.7  | U                    | µg/kg dry                | 3.2   | 1.7                | 1                     | "                            | "                         | "             | "       | "                        | х    |
| 95-63-6               | 1,2,4-Trimethylbenzene                                                        | < 0.8  | U                    | µg/kg dry                | 3.2   | 0.8                | 1                     |                              | "                         |               | "       | "                        | Х    |
| 108-67-8              | 1,3,5-Trimethylbenzene                                                        | < 0.9  | U                    | µg/kg dry                | 3.2   | 0.9                | 1                     |                              | "                         |               | "       | "                        | Х    |
| 75-01-4               | Vinyl chloride                                                                | < 1.1  | U                    | µg/kg dry                | 3.2   | 1.1                | 1                     |                              | "                         |               | "       | "                        | Х    |
| 179601-23-1           | m,p-Xylene                                                                    | < 0.6  | U                    | µg/kg dry                | 6.3   | 0.6                | 1                     |                              | "                         |               | "       |                          | Х    |
| 95-47-6               | o-Xylene                                                                      | < 0.7  | U                    | µg/kg dry                | 3.2   | 0.7                | 1                     | "                            | "                         |               | "       | "                        | х    |
| Surrogate r           | ecoveries:                                                                    |        |                      |                          |       |                    |                       |                              |                           |               |         |                          |      |
| 460-00-4              | 4-Bromofluorobenzene                                                          | 98     |                      |                          | 70-13 | 0 %                |                       | "                            | "                         |               | "       | "                        |      |
| 2037-26-5             | Toluene-d8                                                                    | 110    |                      |                          | 70-13 | 0 %                |                       | "                            | "                         |               | "       |                          |      |
| 17060-07-0            | 1,2-Dichloroethane-d4                                                         | 108    |                      |                          | 70-13 | 0 %                |                       |                              | "                         |               | "       |                          |      |
| 1868-53-7             | Dibromofluoromethane                                                          | 113    |                      |                          | 70-13 | 0 %                |                       |                              | "                         |               | "       | "                        |      |
| by SW846              | is of Volatile Organic Cor<br><u>8260</u><br>by method SW846 5035/<br>Acetone |        | QCR<br>evel)<br>U, D | µg/kg dry                | 1090  | <u>Init</u><br>725 | ial weight:<br>50     | <u>2.64 g</u><br>SW846 8260C | 04-May-1                  | 05-May-1      | SJB     | 1508542                  | x    |
|                       |                                                                               |        |                      | P33)                     |       |                    |                       |                              | 5                         | 5             |         |                          |      |
| 71-43-2               | Benzene                                                                       | < 19.8 | U, D                 | µg/kg dry                | 109   | 19.8               | 50                    |                              | "                         | "             | "       | "                        | Х    |
| 75-27-4               | Bromodichloromethane                                                          | < 72.4 | U, D                 | µg/kg dry                | 109   | 72.4               | 50                    |                              | "                         | "             | "       | "                        | Х    |
| 75-25-2               | Bromoform                                                                     | < 104  | U, D                 | µg/kg dry                | 109   | 104                | 50                    |                              | "                         | "             | "       | "                        | Х    |
| 74-83-9               | Bromomethane                                                                  | < 62.0 | U, D                 | µg/kg dry                | 217   | 62.0               | 50                    |                              | "                         | "             | "       | "                        | Х    |
| 78-93-3               | 2-Butanone (MEK)                                                              | < 130  | U, D                 | µg/kg dry                | 1090  | 130                | 50                    |                              | "                         |               | "       | "                        | Х    |
| 104-51-8              | n-Butylbenzene                                                                | < 31.1 | U, D                 | µg/kg dry                | 109   | 31.1               | 50                    |                              | "                         | "             | "       | "                        | Х    |
| 135-98-8              | sec-Butylbenzene                                                              | < 84.9 | U, D                 | µg/kg dry                | 109   | 84.9               | 50                    |                              | "                         | "             | "       | "                        | Х    |
| 98-06-6               | tert-Butylbenzene                                                             | < 71.3 | U, D                 | µg/kg dry                | 109   | 71.3               | 50                    |                              | "                         |               | "       | "                        | Х    |
| 75-15-0               | Carbon disulfide                                                              | < 66.6 | U, D                 | µg/kg dry                | 217   | 66.6               | 50                    |                              | "                         | "             | "       | "                        | Х    |
| 56-23-5               | Carbon tetrachloride                                                          | < 88.8 | U, D                 | µg/kg dry                | 109   | 88.8               | 50                    |                              | "                         |               |         | "                        | Х    |
| 108-90-7              | Chlorobenzene                                                                 | < 17.4 | U, D                 | µg/kg dry                | 109   | 17.4               | 50                    |                              | "                         |               | "       | "                        | Х    |
| 75-00-3               | Chloroethane                                                                  | < 60.3 | U, D                 | µg/kg dry                | 217   | 60.3               | 50                    |                              |                           |               |         |                          | Х    |
| 67-66-3               | Chloroform                                                                    | < 36.0 | U, D                 | µg/kg dry                | 109   | 36.0               | 50                    |                              |                           |               |         | "                        | Х    |
| 74-87-3               | Chloromethane                                                                 | < 44.8 | U, D                 | µg/kg dry                | 217   | 44.8               | 50                    |                              |                           |               |         |                          | Х    |
| 124-48-1              | Dibromochloromethane                                                          | < 73.6 | U, D                 | µg/kg dry                | 109   | 73.6               | 50                    |                              |                           |               |         |                          | Х    |
| 95-50-1               | 1,2-Dichlorobenzene                                                           | < 18.9 | U, D                 | µg/kg dry                | 109   | 18.9               | 50                    |                              |                           |               |         |                          | Х    |
| 541-73-1              | 1,3-Dichlorobenzene                                                           | < 22.0 | U, D                 | µg/kg dry                | 109   | 22.0               | 50                    |                              | "                         |               |         | "                        | X    |
| 106-46-7              | 1,4-Dichlorobenzene                                                           | < 26.5 | U, D                 | µg/kg dry                | 109   | 26.5               | 50                    |                              |                           |               |         |                          | X    |
| 75-71-8               | Dichlorodifluoromethane<br>(Freon12)                                          | < 37.2 | U, D                 | µg/kg dry                | 217   | 37.2               | 50                    | "                            | "                         | "             | "       | "                        | Х    |
| 75-34-3               | 1,1-Dichloroethane                                                            | < 70.0 | U, D                 | µg/kg dry                | 109   | 70.0               | 50                    | "                            | "                         |               | "       | "                        | Х    |
| 107-06-2              | 1,2-Dichloroethane                                                            | < 26.4 | U, D                 | µg/kg dry                | 109   | 26.4               | 50                    | "                            | "                         |               | "       | "                        | Х    |
| 75-35-4               | 1,1-Dichloroethene                                                            | < 81.5 | U, D                 | µg/kg dry                | 109   | 81.5               | 50                    | "                            | "                         | "             | "       | "                        | Х    |
| 156-59-2              | cis-1,2-Dichloroethene                                                        | < 40.0 | U, D                 | µg/kg dry                | 109   | 40.0               | 50                    | "                            | "                         |               | "       | "                        | х    |
| 156-60-5              | trans-1,2-Dichloroethene                                                      | < 57.5 | U, D                 | µg/kg dry                | 109   | 57.5               | 50                    |                              |                           |               |         |                          | х    |

| Sample Id<br>SB-09-8-1<br>SC06702- |                                                    |                 |           | <u>Client Pr</u><br>2150 | -     |      | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 10 |               |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------|----------------------------------------------------|-----------------|-----------|--------------------------|-------|------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                         | Result          | Flag      | Units                    | *RDL  | MDL  | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                        | ganic Compounds                                    |                 |           |                          |       |      |                       |                     |                           |               |         |                         |       |
| Re-analys                          | is of Volatile Organic Com                         | pounds_         | QCR       |                          |       |      |                       |                     |                           |               |         |                         |       |
| by SW846<br>Prepared               | <u>0 8260</u><br>by method SW846 5035A             | Soil (high leve | 1)        |                          |       | Init | ial weight:           | 2.64 q              |                           |               |         |                         |       |
| 78-87-5                            | 1,2-Dichloropropane                                | < 56.9          | U, D      | µg/kg dry                | 109   | 56.9 | 50                    | SW846 8260C         | 04-May-1<br>5             | 05-May-1<br>5 | SJB     | 1508542                 | x     |
| 10061-01-5                         | cis-1,3-Dichloropropene                            | < 65.5          | U, D      | µg/kg dry                | 109   | 65.5 | 50                    | n                   | 5                         | 5             | "       | "                       | х     |
| 10061-02-6                         | trans-1,3-Dichloropropene                          | < 57.0          | U, D      | µg/kg dry                | 109   | 57.0 | 50                    | "                   |                           |               | "       |                         | х     |
| 100-41-4                           | Ethylbenzene                                       | < 19.1          | U, D      | µg/kg dry                | 109   | 19.1 | 50                    | "                   | "                         |               | "       | "                       | х     |
| 591-78-6                           | 2-Hexanone (MBK)                                   | < 119           | U, D      | µg/kg dry                | 1090  | 119  | 50                    | "                   | "                         |               | "       | "                       | х     |
| 98-82-8                            | Isopropylbenzene                                   | < 20.6          | U, D      | µg/kg dry                | 109   | 20.6 | 50                    | "                   | "                         |               | "       |                         | х     |
| 99-87-6                            | 4-Isopropyltoluene                                 | < 102           | U, D      | µg/kg dry                | 109   | 102  | 50                    |                     | "                         |               | "       |                         | х     |
| 1634-04-4                          | Methyl tert-butyl ether                            | < 41.9          | U, D      | µg/kg dry                | 109   | 41.9 | 50                    |                     | "                         |               | "       |                         | х     |
| 108-10-1                           | 4-Methyl-2-pentanone<br>(MIBK)                     | < 205           | U, D      | µg/kg dry                | 1090  | 205  | 50                    | "                   | "                         | "             |         | "                       | х     |
| 75-09-2                            | Methylene chloride                                 | 52.1            | 001, J, D | µg/kg dry                | 217   | 31.7 | 50                    | "                   | "                         |               | "       |                         | х     |
| 91-20-3                            | Naphthalene                                        | < 99.5          | U, D      | µg/kg dry                | 109   | 99.5 | 50                    | "                   | "                         |               | "       |                         | х     |
| 103-65-1                           | n-Propylbenzene                                    | < 105           | U, D      | µg/kg dry                | 109   | 105  | 50                    | "                   |                           |               | "       |                         | х     |
| 100-42-5                           | Styrene                                            | < 18.8          | U, D      | µg/kg dry                | 109   | 18.8 | 50                    | "                   | "                         |               | "       |                         | х     |
| 79-34-5                            | 1,1,2,2-Tetrachloroethane                          | < 91.9          | U, D      | µg/kg dry                | 109   | 91.9 | 50                    |                     | "                         |               | "       |                         | х     |
| 127-18-4                           | Tetrachloroethene                                  | < 41.4          | U, D      | µg/kg dry                | 109   | 41.4 | 50                    |                     | "                         | "             | "       |                         | х     |
| 108-88-3                           | Toluene                                            | < 25.0          | U, D      | µg/kg dry                | 109   | 25.0 | 50                    |                     | "                         | "             | "       |                         | х     |
| 71-55-6                            | 1,1,1-Trichloroethane                              | < 28.1          | U, D      | µg/kg dry                | 109   | 28.1 | 50                    |                     | "                         | "             | "       |                         | х     |
| 79-00-5                            | 1,1,2-Trichloroethane                              | < 78.7          | U, D      | µg/kg dry                | 109   | 78.7 | 50                    | "                   | "                         |               | "       |                         | х     |
| 79-01-6                            | Trichloroethene                                    | < 18.7          | U, D      | µg/kg dry                | 109   | 18.7 | 50                    | "                   |                           |               | "       |                         | х     |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)               | < 58.5          | U, D      | µg/kg dry                | 109   | 58.5 | 50                    | "                   | "                         | "             | "       | "                       | х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                             | < 27.3          | U, D      | µg/kg dry                | 109   | 27.3 | 50                    | "                   |                           |               | "       |                         | х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                             | < 31.2          | U, D      | µg/kg dry                | 109   | 31.2 | 50                    |                     | "                         |               | "       |                         | х     |
| 75-01-4                            | Vinyl chloride                                     | < 39.5          | U, D      | µg/kg dry                | 109   | 39.5 | 50                    |                     | "                         | "             | "       |                         | х     |
| 179601-23-1                        | m,p-Xylene                                         | < 21.4          | U, D      | µg/kg dry                | 217   | 21.4 | 50                    |                     | "                         |               | "       |                         | х     |
| 95-47-6                            | o-Xylene                                           | < 23.1          | U, D      | µg/kg dry                | 109   | 23.1 | 50                    | "                   | "                         |               | "       | "                       | х     |
| Surrogate r                        | ecoveries.                                         |                 |           |                          |       |      |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                               | 106             |           |                          | 70-13 | 0%   |                       | "                   |                           |               | "       |                         |       |
| 2037-26-5                          | Toluene-d8                                         | 100             |           |                          | 70-13 |      |                       | "                   |                           |               |         |                         |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                              | 92              |           |                          | 70-13 |      |                       |                     | "                         |               | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                               | 94              |           |                          | 70-13 |      |                       | "                   | "                         |               | "       | "                       |       |
| Volatile Or                        | ganic Compounds                                    |                 |           |                          |       |      |                       |                     |                           |               |         |                         |       |
| Prepared                           | by method SW846 5035A                              | Soil (low level | )         |                          |       | Init | ial weight:           | <u>10.23 g</u>      |                           |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                      | < 6.6           | U         | µg/kg dry                | 31.6  | 6.6  | 1                     | SW846 8260C         | 01-May-1<br>5             | 01-May-1<br>5 | SJB     | 1508451                 |       |
| Surrogate r                        | ecoveries:                                         |                 |           |                          |       |      |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                               | 106             |           |                          | 70-13 |      |                       | "                   | "                         |               | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                         | 100             |           |                          | 70-13 | 0 %  |                       | "                   | "                         |               | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                              | 116             |           |                          | 70-13 | 0 %  |                       | "                   | "                         |               | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                               | 104             |           |                          | 70-13 | 0 %  |                       | "                   |                           |               | "       | "                       |       |
|                                    | / Identified Compounds by<br>by method SW846 5035A |                 | <u>)</u>  |                          |       | Init | ial weight:           | <u>10.23 g</u>      |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds                | None found      |           | µg/kg dry                |       |      | 1                     | SW846 8260C<br>TICs | 01-May-1<br>5             | "             | SJB     | 1508452                 |       |

| Sample Identification<br>SB-09-8-10.4'<br>SC06702-19 |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 10 |           |         | <u>ceived</u><br>Apr-15 |       |
|------------------------------------------------------|--------|------|-------|--------------------------|-----|-----------------------|---------------|---------------------------|-----------|---------|-------------------------|-------|
| CAS No. Analyte(s)                                   | Result | Flag | Units | *RDL                     | MDL | Dilution              | Method Ref.   | Prepared                  | Analyzed  | Analyst | Batch                   | Cert. |
| General Chemistry Parameters<br>% Solids             | 91.2   |      | %     |                          |     | 1                     | SM2540 G Mod. | 30-Apr-15                 | 30-Apr-15 | DT      | 1508366                 | i     |

# The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer at the lab:

| SC06702-03 | SB-03-3-4'        | 4/28/2015 2:52 PM |
|------------|-------------------|-------------------|
| SC06702-04 | SB-04-14-16'      | 4/28/2015 2:52 PM |
| SC06702-05 | Blind Duplicate 1 | 4/28/2015 2:52 PM |
| SC06702-09 | SB-02-10.6-11.6'  | 4/28/2015 2:52 PM |
| SC06702-12 | SB-06-5-6'        | 4/28/2015 2:52 PM |
| SC06702-13 | SB-07-19-20'      | 4/28/2015 2:52 PM |
| SC06702-16 | SB-08A-9-10.4'    | 4/28/2015 2:52 PM |
| SC06702-19 | SB-09-8-10.4'     | 4/28/2015 2:52 PM |
|            |                   |                   |

## **Notes and Definitions**

- B Analyte is found in the associated blank as well as in the sample (CLP B-flag).
- D Data reported from a dilution
- J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- O01 This compound is a common laboratory contaminant.
- QB2 The method blank contains analyte at a concentration above the MRL, however no reportable concentration is present in the sample.
- QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
- QCR Sample data reported for QC purposes only.
- QM10 LCS/LCSD were analyzed in place of MS/MSD.
- QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
- QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- QR5 RPD out of acceptance range.
- QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.
- QR9 RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.
- R01 The Reporting Limit has been raised to account for matrix interference.
- S02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
- TIC (Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.
- U Analyte included in the analysis, but not detected at or above the MDL.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly LaPlante Rebecca Merz

| Revised Feb 2013                                                                                                                                                                           |                                                               |                               | www.spectrum-analytical.com                                    | rum-ana                                                | w.spect                  | WW       |                                                        |                                                           |                                              | . 01                                                         | . /                                            |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--------------------------|----------|--------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------|---|
| ipt: Custody Seals:  Present  Intact  Broken Refrigerated  DI VOA Frozen  Soil Jar Frozen                                                                                                  | Condition upon receipt: Custody Se                            | 01                            | 1505                                                           | 51                                                     | 4/29                     |          |                                                        | QUU                                                       |                                              | CarRo                                                        | Non                                            |   |
|                                                                                                                                                                                            |                                                               | 17                            | 7:45                                                           | 1.5                                                    | 4/29                     |          | No.                                                    | any lapor                                                 | 20                                           | SXX                                                          | Stilds                                         |   |
| S E-mail to Laly VIII recourse verile ference                                                                                                                                              | E-mail to Lik                                                 | 1-1                           | 17:20                                                          | 1:5                                                    | 4/28                     |          | 10                                                     | Hidet 1                                                   | 2.                                           | Chanzy                                                       | Non                                            |   |
|                                                                                                                                                                                            | A DD I OIIIat                                                 | 1.3                           | 1452                                                           | 5/17                                                   | 4/28                     |          | );<br>)                                                | low (alix                                                 | Q                                            | Alle                                                         | 1 h                                            |   |
| ¥0015                                                                                                                                                                                      | R EDD Format                                                  | Temp <sup>o</sup> C           | Time:                                                          | ie:                                                    | Date:                    |          | d by:                                                  | Beceived by:                                              | ,                                            | Relinquished by:                                             | Re                                             |   |
| Creat                                                                                                                                                                                      |                                                               | ×                             |                                                                | -                                                      | 20 3                     | G        | 13:00                                                  | 1127/15                                                   | 10. 1                                        | 58-03-9-                                                     | V 10 5                                         |   |
|                                                                                                                                                                                            |                                                               | ×                             |                                                                | 3 -                                                    | -                        | 0        | 06.11                                                  | 412216                                                    | 10.6-11.6 1                                  | 53-02-10.                                                    | 09 5                                           |   |
|                                                                                                                                                                                            | ××                                                            | 7                             | -                                                              |                                                        | S                        | 0        |                                                        | 51/20                                                     | h , 8-t                                      | 53-05.7                                                      | 63                                             | * |
| HOLD                                                                                                                                                                                       | XX                                                            | X                             | 1                                                              | ×                                                      | 05                       | 5        | 13:40                                                  | 4/22/15                                                   | 4.                                           | SB-04-3-                                                     | 0) 5                                           |   |
| HOLD AN HOLD                                                                                                                                                                               |                                                               | ×                             |                                                                | 1                                                      | 5 03                     |          | 16:30                                                  | (127/15                                                   | -a0' 1                                       | 58-26-19                                                     | 590 1                                          |   |
|                                                                                                                                                                                            |                                                               | ×                             |                                                                | -                                                      | 5 5                      | 6        | ۱                                                      | inthan 1                                                  | ater 1 i                                     | Blind Duplicates                                             | 05                                             |   |
|                                                                                                                                                                                            | 3                                                             | ×                             |                                                                | 1 5                                                    | 50 3                     | 0        | 14:20                                                  | 2715                                                      | 16' 1                                        | 50-04-14-16                                                  | 04 0                                           |   |
|                                                                                                                                                                                            | XXXX                                                          | ××                            | -                                                              | -                                                      | 50 2                     | s.       | 12:00                                                  | 4/28/15                                                   | -4-                                          | 50.03-3-                                                     | 03                                             |   |
| rtero                                                                                                                                                                                      |                                                               | ×                             |                                                                | 5                                                      | 50 3                     | 5        | 00:11                                                  | u 27/15                                                   | -                                            | 20-31-10-05                                                  | 1 02 5                                         |   |
|                                                                                                                                                                                            | ××                                                            | ×                             |                                                                |                                                        | So                       | 6        | 10:10                                                  | 4/27 15                                                   |                                              | 58-01-3-4                                                    | 670221 2                                       | S |
| State-specific reporting standards:                                                                                                                                                        | PCR+<br>Cya<br>PC                                             |                               | # of C<br># of P                                               | # of V                                                 | Matrix<br># of V         | Туре     | Time:                                                  | Date:                                                     |                                              | Sample Id:                                                   | Lab Id:                                        |   |
| □ Other                                                                                                                                                                                    | timat                                                         |                               |                                                                |                                                        | 100                      |          |                                                        | site                                                      | C=Composite                                  | G=Grab                                                       |                                                |   |
| Level II     Level II     Level II                                                                                                                                                         | eus<br>1e                                                     | FI SVO                        | Blass                                                          |                                                        | 7:a1 a                   |          |                                                        | X3=                                                       |                                              | X2=                                                          |                                                |   |
| · QA/QC Reporting Level                                                                                                                                                                    | Analyses:                                                     |                               | Containers:                                                    | Con                                                    |                          |          | stewater<br>A=Air                                      | r WW=Wastewater<br>SL=Sludge A=Air                        | GW=Groundwater<br>Vater SO=Soil              | <                                                            | DW=Drinking Water<br>O=Oil SW= Surface         |   |
| below: QA/QC Reporting Notes:                                                                                                                                                              | List preservative code below:                                 | et II List                    | 7=CH3OH                                                        |                                                        | 6=Ascorbic Acid          | H 6=Asco | 5=NaOH                                                 | 4=HNO <sub>3</sub> 5<br>10=H <sub>3</sub> PO <sub>4</sub> | 3=H <sub>2</sub> SO <sub>4</sub><br>ed Water | ) <sub>3</sub> 2=HCl<br>9= Deioniz                           | 1=Na <sub>2</sub> S2(<br>8= NaHSO <sub>4</sub> |   |
| quiling                                                                                                                                                                                    | Sampler(s): Ann tyuiling                                      | Sam                           |                                                                | PRQN:                                                  | 21201096                 | 1        | P.O. No.:                                              |                                                           | NOLL                                         | 00                                                           | Project Mgr.                                   |   |
| ng State: NY                                                                                                                                                                               | Location: Corving                                             |                               | appicon                                                        | abell                                                  | mclaux nellabella        | claws    | M                                                      | Woster int Han                                            | 10                                           | terte H. Ko                                                  | S DD Skc                                       |   |
| Site Name: Corning thospital                                                                                                                                                               | Name: Corni                                                   | Site                          |                                                                |                                                        | П                        | AME      | 2                                                      | and - and                                                 |                                              | 26                                                           | Labell                                         |   |
| 0606                                                                                                                                                                                       | Project No.: 200                                              | - Proj                        | Claukin                                                        |                                                        | whichelle                |          | Invoice ]                                              | Occeptificant labellaper can                              | dinalla                                      | Dan No                                                       | Report To: Dan )<br>Ann Achilina               |   |
| <ul> <li>All TAIs subject to laboratory approval.</li> <li>Min. 24-hour notification needed for rushes.</li> <li>Samples disposed of after 60 days unless otherwise instructed.</li> </ul> | □ 646 Camp A venue<br>N Kingstown, RI 02852<br>(401) 732-3400 | □ 646 C<br>N Kingsto<br>(401) | 8405 Benjamin Road, Ste A<br>Tampa, FL 33634<br>(813) 888-9507 | 65 Benjamin Road,<br>Tampa, FL 33634<br>(813) 888-9507 | 8405 Ber<br>Tamp<br>(813 |          | 11 Almgren Drive<br>Agawam, MA 01001<br>(413) 789-9018 | □ 11 Alm<br>Agawam,<br>(413) 7                            | õ                                            | SPECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY | SPE                                            |   |
| Special Handling:<br>TAT- Ind icate Date Needed: 5 DAM                                                                                                                                     | <u> </u>                                                      | RECORL                        | DDYI                                                           | STC                                                    | Page_                    | OF       | NN                                                     | CH                                                        |                                              | 2                                                            |                                                |   |
| J Ry                                                                                                                                                                                       | 02                                                            | 190                           | SC                                                             |                                                        |                          | -        |                                                        |                                                           |                                              |                                                              |                                                |   |

| Revised Feb 2013                                                                                                                                                                                                                 |                                       |                                  | www.shectrum-analytical.com | um-ana                                                       | uw dinecti                                                       | WW                |                                                                   |                                    |                                              |                                                              | - 1                                                         |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-----------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-------------------|-------------------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-----|
| Condition upon receipt: Custody Seals:  Present Intact Broken Ambient Refigerated DI VOA Frozen Soil Jar Frozen                                                                                                                  | Condition upon receip<br>Ambient Iced | 01                               | 150 5                       | 5/16                                                         | Ulso                                                             |                   | 2                                                                 | NON,                               |                                              | gran 42                                                      | Chang (                                                     |     |
|                                                                                                                                                                                                                                  |                                       | i                                | 7:45                        | 9/15                                                         | 4/29                                                             |                   | 52                                                                | Enlage Lu                          | No                                           | Per c                                                        | States                                                      |     |
|                                                                                                                                                                                                                                  |                                       | i                                | 17:20                       | Jit                                                          | 4/28                                                             |                   | 5                                                                 | Vdsx"                              | R                                            | dipan                                                        | Com (                                                       |     |
| Principling Diabellance                                                                                                                                                                                                          | The same                              | 1.3                              | 1452                        | 8/15                                                         | 4/2                                                              |                   | 120                                                               | ng (chr                            | No                                           | iden                                                         | Jul -                                                       | (   |
| 9                                                                                                                                                                                                                                | R EDD Format                          | Temp <sup>o</sup> C              | Time:                       | e:                                                           | Date:                                                            |                   | perived by:                                                       | 2                                  |                                              | luished by:                                                  | Reli                                                        | 2   |
| asw/sw                                                                                                                                                                                                                           |                                       | ×                                |                             | 1                                                            | 0 05                                                             | 0                 | 10:40                                                             | 128/15                             | ). 4 Y                                       | 3-09-8-10.                                                   | 19 5B                                                       | -   |
|                                                                                                                                                                                                                                  | ×                                     | ×                                |                             | -                                                            | 00                                                               | 5                 | 1                                                                 | 128/15                             | 2                                            | lind Duplica K                                               | 18 8                                                        |     |
|                                                                                                                                                                                                                                  | ~                                     | X                                |                             | -                                                            | 05                                                               | 5                 | 10:25                                                             | 21/81/2                            | 34                                           | 8-09-2                                                       | 30                                                          |     |
|                                                                                                                                                                                                                                  | XX                                    | XX                               |                             | L                                                            | SO 3                                                             | 6                 | 00:00                                                             | 1415                               | 10.4 0                                       | 3-08A-9-                                                     | 16 51                                                       | _   |
| Hous                                                                                                                                                                                                                             | XX                                    | X                                |                             | 1                                                            | 50                                                               | 0                 | 9:20                                                              | 128/15                             |                                              | B-08-4-1                                                     | 15 5                                                        |     |
|                                                                                                                                                                                                                                  |                                       | ×                                |                             |                                                              | 50.                                                              |                   | 1                                                                 | 122/15                             | * 4                                          | the Blank                                                    | 14 17                                                       |     |
| the state                                                                                                                                                                                                                        |                                       | ×                                |                             | -                                                            | bes                                                              | 5                 | 17:00                                                             | 128/15                             | 9.10' 4                                      | 8-07-10                                                      | 13 5                                                        |     |
|                                                                                                                                                                                                                                  | ××                                    | ×                                |                             | r                                                            | 5                                                                | 6                 | 16:00                                                             | 27/15                              | 6. 4                                         | 20-06-2.                                                     | 12 S                                                        |     |
| Lipio                                                                                                                                                                                                                            | * *                                   | ××                               |                             |                                                              | 50 3                                                             | 5                 | 15.30                                                             | 12215                              | 24 4                                         | 3-05-22-                                                     | 70211 S                                                     | Sco |
| House AA                                                                                                                                                                                                                         |                                       |                                  |                             |                                                              | 2                                                                |                   | 12.40                                                             | 5126/12                            | -                                            | 1-5-40-9-                                                    | 10                                                          |     |
| State-specific reporting standards:                                                                                                                                                                                              | PCR                                   | Tec<br>Tec                       |                             | # of                                                         | Matr                                                             | Тура              | Time:                                                             | Date:                              |                                              | Sample Id:                                                   | Lab Id:                                                     |     |
| 4                                                                                                                                                                                                                                | a mi<br>anic<br>ricid                 | + 10                             | Clear (<br>Plastic          | Amber                                                        | ix<br>VOA V                                                      | :                 |                                                                   | ite                                | C=Composite                                  | G=Grab (                                                     |                                                             |     |
|                                                                                                                                                                                                                                  | etais<br>de<br>ej                     | TIC<br>TIC<br>SISVE<br>TICS      | Glass                       | Glass                                                        | /ial e                                                           |                   |                                                                   | X3=_                               |                                              | X2=                                                          |                                                             |     |
| QA/QC Reporting Level                                                                                                                                                                                                            | Analyses:                             | i -                              | Containers:                 | Cont                                                         |                                                                  |                   | A=Air                                                             | r WW=Wastewater<br>SL=Sludge A=Air | GW=Groundwater<br>Vater SO=Soil              | V                                                            | DW=Drinking Water<br>O=Oil SW= Surface                      |     |
| below:<br>QA/QC Reporting Notes:                                                                                                                                                                                                 | List preservative code below:         | Lis<br>۹, ۹                      | 7=CH <sub>3</sub> OH        | 1 I                                                          | 6=Ascorbic Acid                                                  | H 6=Asc           | 5=NaOH                                                            | 4=HNO3<br>10=H3PO4                 | 3=H <sub>2</sub> SO <sub>4</sub><br>ed Water | ) <sub>3</sub> 2=HCl<br>9= Deioniz(                          | 1=Na <sub>2</sub> S2O <sub>3</sub><br>8= NaHSO <sub>4</sub> |     |
| Aquilins                                                                                                                                                                                                                         | Sampler(s): Ann Az                    | Sa                               |                             | RQN:                                                         |                                                                  | P.O. No .: 215060 | P.O. No                                                           |                                    |                                              |                                                              | Project Mgr.                                                |     |
| State: <u>NY</u>                                                                                                                                                                                                                 | Location: (ar min                     | COM LO                           | cupt.                       | Islact                                                       | ausche                                                           | -                 | - Inc                                                             | NA Hely                            | Rochester                                    | # Stute H, K                                                 | Telenhone #                                                 |     |
| thospital                                                                                                                                                                                                                        | Site Name: COrVUVE                    | Sit                              |                             |                                                              | AME                                                              | 13                |                                                                   |                                    |                                              | 25                                                           | Lubella                                                     |     |
| 900                                                                                                                                                                                                                              | Project No.: 2150                     | – Pro                            | awyon                       |                                                              | michelle                                                         |                   | Invoice To:                                                       | drollwhite llape. com              | Anolia kubelique                             |                                                              | Report To: Dun NOI                                          |     |
| <ul> <li>TAT- Ind icate Date Needed: 5 DA7</li> <li>All TATs subject to laboratory approval.<br/>Min. 24-hour notification needed for rushes.</li> <li>Samples disposed of after 60 days unless otherwise instructed.</li> </ul> | enue<br>02852                         | N Kingstown, RI<br>(401) 732-340 |                             | USTO<br>5 Benjamin Road<br>Tampa, FL 33634<br>(813) 888-9507 | ■ 8405 Benjamin Road, Ste A<br>Tampa, FL 33634<br>(813) 888-9507 | ° C               | CHAIN<br>I 11 Almgren Drive<br>Agawam, MA 01001<br>(413) 789-9018 | CHL<br>II Aln<br>Agawann<br>(413)  |                                              | SPECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY | SPEC                                                        |     |
| Special Handling:                                                                                                                                                                                                                |                                       |                                  | 2                           | 2 N of                                                       | Page c                                                           | )<br>1            | 1                                                                 |                                    |                                              | 2                                                            |                                                             |     |
| 66702 Ky                                                                                                                                                                                                                         | 1 SC                                  |                                  |                             |                                                              |                                                                  |                   |                                                                   |                                    |                                              |                                                              |                                                             | _   |

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AIN OF CUSTODY RECORD<br>MA01001       TMT: Indicate Date Needed: $5 \text{ Dr}_1^{MT}$<br>Supports       TMT: Indicate Interview Intervi                      |
| AIN OF CUSTODY RECORD<br>Image PDive       Bados Benjamin Road, SteA<br>Image, PL 3364       G46 Camp Avenue<br>N Kingstown, RI 02852       TAT. Indicate Date Noeded: 5 DAy<br>Sumplex Biposed of after 60 days unleading app<br>(40) 732-3400         Imovice To:       MALMAILT (LaidyCh<br>(31) 888-9507       Project No:       24500       Min. 24500       Singlex Biposed of after 60 days unleading app<br>otherwise instructed.         Imovice To:       MALMAILT (LaidyCh<br>(31) 889-907       Project No:       2450       G C Cutative<br>otherwise instructed.       Samplex Biposed of after 60 days unleading<br>otherwise instructed.         Prove Austrice To:       Matrix       Project No:       2450       G C Cutative<br>and To:       Samplex Biposed of after 60 days unleading<br>otherwise instructed.         Prove Austrice To:       Project No:       2450       G C (AUV)       Samplex Biposed of after 60 days unleading<br>otherwise instructed.         Prove Austrice To:       Project No:       2450       G C (AUV)       Samplex Biposed of after 60 days unleading<br>otherwise instructed.         Prove Austrice To:       Project No:       2450       Project No:       2450       Samplex Biposed of after 60 days unleading<br>otherwise instructed.         Prove Austrice To:       Project No:       2450       Project No:       2450       Project No:       2450         Prove Austrice To:       Project No:       Austrice To:       Project No:       Project No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIN OF CUSTODY RECORD<br>MA01001       TAT- Indicate Date Needed 5 $DA_3^{regreen}$<br>MA01001       TAT- Indicate Date Needed 5 $DA_3^{regreen}$<br>NKingstown, RI 02852         Imovice To: Muchallt (IdatA)c-b<br>ward auxberned kit       B405 Beijamin Road, SeA<br>(B1) 888-9907       Dela Camp Avenue<br>NKingstown, RI 02852       Tat- Indicate Date Needed 5 $DA_3^{regreen}$ Imovice To: Muchallt (IdatA)c-b<br>ward auxberned kit       Project No: 2450 G b c<br>Site Nume: CorrAttrip       Those for a maples disposed of after 60 days unlear<br>samples disposed of after 60 days unlear<br>otherwise instructed.         Provide Auxberned       Containers:<br>A Anit       Tat- Indicate Date Needed for a<br>samples disposed of after 60 days unlear<br>otherwise instructed.       Min. 24 hour notification needed for a<br>samples disposed of after 60 days unlear<br>samples disposed of after 60 days unlear<br>otherwise instructed.       Min. 24 hour notification needed for a<br>samples disposed of after 60 days unlear<br>samples disposed of after 60 days unlear                                                               |
| AIN OF CUSTODY RECORD       Tampa, FL 3363       Bedő Camp Avenue         MA 01001       Tampa, FL 3363       N Kingstown, RI 02852         MA 01001       Tampa, FL 3363       N Kingstown, RI 02852         MA 01001       (813) 888-9507       Project No.: $2450$ Imvoice To:       Multall ( (autych)       Project No.: $2450$ Imvoice To:       Multall ( (autych)       Site Name: $0 + 100$ Pro. No.: $\frac{A}{45} COCO \oplus RON:$ Site Name: $0 + 100$ Pro. No.: $\frac{A}{5} COCO \oplus RON:$ Sampler(s):         Produtared       12=         Produtared       12=         Produtared       12=         Stampler(s): $M \land A$ Interval       12=         Produtared       12=         Prod Pastic       Stampa Produtare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AIN OF CUSTODY RECORD       Tampa, Eu 33634       Benjamin Road, Ste A       Beide Camp Avenue         MA 01001       Tampa, EL 33634       N Kingstown, RI 02852         go-0018       GAYDDE       Nuchaelle (lawycho kingstown, RI 02852         Project No: $\Delta_{LS} O(GO & RON:$ Project No: $\Delta_{LS} O(GO & RON:$ Provide To: Muchaelle (lawycho k RON:       Site Name: $Contuine:$ Containe:         Project No: $\Delta_{LS} O(GO & RON:$ Sampler(s): $Mm/n \Delta$ It is preservative code be       It is preservative code be         It is so G S S 3 1 i       Sampler(s): $Mm/n \Delta$ It is so G S S 3 2 i       Analyses:         It is so G S S 3 2 i       X X X X         It is so G S S 3 2 i       X X X X         It is so G S S 3 2 i       X X X X         It is so G S S 3 2 i       X X X X         It is so G S S 3 2 i       X X X X         It is so G S S 3 2 i       X X X X         It is so G S S 3 2 i       X X X X         It is so G S S 0 i       X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AIN OF CUSTODY RECORD<br>MA 01001       B&05 Benjamin Road, Ste A<br>Tampa, FL 33634       E 646 Camp Avenue<br>N Kingstown, RI 02852       Tampa, FL 33634         MA 01001       Tampa, FL 33634       N Kingstown, RI 02852       N Kingstown, RI 02852       N Kingstown, RI 02852         MA 01001       Tampa, FL 33634       N Kingstown, RI 02852       Project No:: $2450$ Project No:: $2450$ Invoice To:       Michaelle (Iauyen)       Project No:: $2450$ Project No:: $2450$ Provide To:       Matrix       Project No:: $2450$ Project No:: $2450$ Provide To:       Michaelle (Iauyen)       Project No:: $2450$ Provide To:       Matrix       Containers:       Anny Project No:: $2450$ Provide To:       Matrix       Containers:       Anny Project No:: $2450$ Project No:: $2450$ Matrix       Containers:       Anny Project No:: $2450$ Air       # of VOA Vials       Sampler(S):       Ann / Project No:: $2450$ It: $5.50$ G       Solution       Containers:       Analyses:         Active Color       Solution       Project Solution       Project Solution         It: $5.50$ Solution       Project Solution       Project Solution         It: $5.50$ Solution       Project Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AIN OF CUSTODY RECORD       Image of the set of |
| AIN OF CUSTODY RECORD       Image PL 33634       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AIN OF CUSTODY RECORD       Tampa, FL 33634       NKingstown, RI 02852         gren Drive       18405 Benjamin Road, Ste A       1646 Camp A venue         Tampa, FL 33634       NKingstown, RI 02852         gren Drive       (813) 888-9507       (401) 732-3400         Invoice To:       wn.clau.lecinc.       lcu.yc.h       Project No.: $2150$ Vm.clau.lecinc.       lcu.yc.h       Site Name: Containers:       location: $0 \cdot 110$ PO. No.: $\Delta ISOCO & RON:$ Site Name: Containers:       location: $0 \cdot 110$ Invoice To:       Matrix       Containers:       sampler(s): $Am/n$ Project No.: $\Delta ISOCO & RON:$ Sampler(s): $Am/n$ Invoice To:       Type       Ist preservative code be         Invoite To:       Matrix       Containers:       Analyses:         AAir       # of Of Clear Glass       Soci 3 + 1       # of Plastic         Invoite Soci 5 - 3       2       1       X X X         Invoite Soci 5 - 3       2       1       X X X         Invoite To:       Soci 5 - 3       2       1         Invoite To:       Y X X X       Pc RA       Pc RA         Invoite To:       Y X X X       Pc RA       Pc RA         Invoite S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AIN OF CUSTODY RECORD       annon Association       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AIN OF CUSTODY RECORD<br>gren Drive<br>B405 Benjamin Road, Ste AI 646 Camp Avenue<br>Impa, FL 33634<br>(813) 888-9507Invoice To:Muchalle (law)ch<br>(813) 888-9507N Kingstown, RI 02852<br>(401) 732-3400Invoice To:Muchalle (law)ch<br>(401) 732-3400Project No.: $2450$ Invoice To:Muchalle (law)ch<br>(401) 732-3400Project No.: $2450$ IntermeMuchalle (law)ch<br>(401) 732-3400Project No.: $2450$ Invoice To:Muchalle (law)ch<br>(401) 732-3400Project No.: $2450$ IntermeMuchalle (law)ch<br>(401) 732-3400Project No.: $2450$ IntermeInvoice To:Muchalle (law)ch<br>(401) 732-3400IntermeTypeIntermeIntermeIntermeTypeIntermeIntermeIntermeTypeIntermeIntermeIntermeTypeIntermeIntermeIntermeTypeIntermeIntermeIntermeTypeIntermeIntermeIntermeTypeIntermeIntermeIntermeIntermeIntermeIntermeIntermeIntermeIntermeIntermeInterme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AIN OF CUSTODY RECORD<br>gren Drive $\square$ 8405 Benjamin Road, Ste A<br>Tampa, FL 33634<br>(813) 888-9507 $\square$ 646 Camp Avenue<br>N Kingstown, RI 02852<br>(401) 732-3400Invoice To:Muchalle (law)c.h<br>(all) 888-9507N Kingstown, RI 02852<br>(401) 732-3400Invoice To:Muchalle (law)c.h<br>(all) 732-3400Project No.: $2 (\sum D)$<br>Site Name: $(D r MU)$ Invoice To:Muchalle (law)c.h<br>(all) 732-3400Project No.: $2 (\sum D)$<br>Site Name: $(D r MU)$ Invoice To:Muchalle (law)c.h<br>(all) 732-3400Project No.: $2 (\sum D)$<br>Site Name: $(D r MU)$ PO. No.: $A (\sum O C \cup C \otimes RON)$ Site Name: $(D r MU)$<br>Location:PO. No.: $A (\sum O C \cup C \otimes RON)$ Sampler(s):PO. No.: $A (\sum O C \cup C \otimes RON)$ Sampler(s):PO. No.: $A (\sum O C \cup C \otimes C \otimes C)$ Sampler(s):PO. No.: $A (\sum O C \cup C \otimes C \otimes C)$ Sampler(s):Po. $A (\sum O C \cup C \otimes C)$ $A (\sum O C \cup C \otimes C)$ It's 30 $G$ $S \in 3$ $I$ $I (\sum O C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ $I (\sum O C \otimes C \otimes C)$ $S \in 3$ $I$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AIN OF CUSTODY RECORD       Impain Road, Ste A       Impain Add Ste A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AIN OF CUSTODY RECORD       anna, FL 33634       a 646 Camp Avenue         MA 01001       Tampa, FL 33634       NKingstown, RI 02852         MA 01001       Tampa, FL 33634       NKingstown, RI 02852         Bayson Record       (813) 888-9507       Project No.: $2450$ Invoice To:       Muchalle (law)ch       Project No.: $2450$ Invoice To:       Austrix       Project No.: $2450$ Invoice To:       Austrix       Invoice To: Muchalle (law)ch         Invoice To:       Austrix       Project No.: $2450$ Invoice To:       Austrix       Invoice To: Muchalle (law)ch         Invoice To:       Austrix       Invoice To: No.: $2450$ Invoice To:       Austrix       Invoice To: $400$ Invoice To:       Austrix       Invoice To: $1250$ Invoice To:       Austrix       Invoice To: $1250$ Invoice To:       Invoice To: $1250$ Invoice To: $1250$ Invoice To:       Invoic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AIN OF CUSTODY RECORD         gren Drive       8405 Benjamin Road, Ste A <ul> <li>640 Camp Avenue</li> <li>1 ampa, FL 33634</li> <li>813) 888-9507</li> <li>(401) 732-3400</li> <li>(401) 732-3400</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AIN OF CUSTODY RECORD       Tampa, FL 33634       G46 Camp Avenue         MA 01001       Tampa, FL 33634       N Kingstown, RI 02852         89-9018       (813) 888-9507       (401) 732-3400         Invoice To:       Wulchelle       Project No.: 2450         Wulchelle       Containers:       Site Name: Contuiners:         No.:       ALS OLO 'G RQN:       Sampler(s):         Project No.:       ALS OLO 'G RQN:       Sampler(s):         No.:       ALS OLO 'G RQN:       Sampler(s):         No.:       ALS OLO 'G Containers:       'Analyses:         A-Air       Site Site Name: Containers:       'Analyses:         A-Air       'A vial 's site       Site Name: Containers:       'Analyses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AIN OF CUSTODY RECORD       T         gren Drive $B405$ Benjamin Road, Ste A $G46$ Camp Avenue         MA 01001       Tampa, FL 33634       N Kingstown, RI 02852         89-9018 $B13$ $B88-9507$ $MKingstown, RI 02852$ Invoice To:       Muchalle $Iawyehe$ Project No.: $2150$ Invoice To:       Muchalle $Iawyehe$ Project No.: $2150$ Monore       Stevente $Iawyehe$ Project No.: $2150$ Invoice To:       Muchalle $Iawyehe$ Project No.: $2150$ Site Name: $Ocitie$ $Iawyehe$ Site Name: $Ocitie$ PO. No.: $A15060$ is RON: $Iawyehe$ $Iawyehe = Iawyehe = I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AIN OF CUSTODY RECORD       T         gren Drive $B405$ Benjamin Road, Ste A $G46$ Camp Avenue $MA 01001$ $Tampa, FL 33634$ $N$ Kingstown, RI 02852 $S9-9018$ $B405$ Benjamin Road, Ste A $G46$ Camp Avenue $N$ Kingstown, RI 02852 $S9-9018$ $S13)$ 888-9507 $S101$ $S13)$ 888-9507 $S101$ $S101$ $S101$ $S102$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AIN OF CUSTODY RECORD       T         gren Drive $B405$ Benjamin Road, Ste A $G46$ Camp Avenue $N$ Kingstown, RI $02852$ MA 01001       Tampa, FL 33634 $N$ Kingstown, RI $02852$ $(401)$ 732-3400         MA origination of the state o                                                                                                                                                                                                         |
| AIN OF CUSTODY RECORD       T         gren Drive $B405$ Benjamin Road, Ste A $G46$ Camp Avenue         MA 01001       Tampa, FL 33634       N Kingstown, RI 02852         89-9018 $(813)$ 888-9507 $MKingstown, RI 02852$ Invoice To:       wnichalle (lawych       roject No.: $2(50)$ Invoice To:       wnichalle (lawych       Project No.: $2(50)$ Pro, No.: $A15060$ k RON:       Project No.: $2(50)$ Site Name: $O(10)$ Sampler(s): $Mn A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AIN OF CUSTODY RECORD<br>gren Drive $\square$ 8405 Benjamin Road, Ste A<br>MA 01001 Tampa, FL 33634 N Kingstown, RI 02852<br>89-9018 (813) 888-9507 (401) 732-3400<br>Invoice To: <u>whichelle (lawych</u><br>$\square$ whichelle (lawych) Site Name: <u>Corvan</u><br>$\square$ Site Name: <u>Corvan</u><br>$\square$ Site Name: <u>Corvan</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AIN OF CUSTODY RECORD<br>gren Drive B405 Benjamin Road, Ste A<br>MA 01001 Tampa, FL 33634 N Kingstown, RI 02852<br>89-9018 (813) 888-9507 (401) 732-3400<br>Invoice To: with With ( ( awyth a)<br>Site Name: C b ( Autor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AIN OF CUSTODY RECORD<br>gren Drive B405 Benjamin Road, Ste A G46 Camp Avenue<br>MA 01001 Tampa, FL 33634 N Kingstown, RI 02852<br>89-9018 (813) 888-9507 (401) 732-3400<br>Invoice To: Witchelle ( lawych Project No.: 2150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OF CUSTODY RECORD<br><sup>II</sup> 8405 Benjamin Road, Ste A<br>Tampa, FL 33634<br>(813) 888-9507<br>(401) 732-3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

www!spectrum-analytical.com

Revised Feb 2013

| Condition upon receipt: Custody Seals: Present Intact Broken Ambient Act Refrigerated DI VOA Frozen Soil Jar Frozen                                           | 1/ -                          |                                                              |                      |                                                                | 1 10                    |                      |                                                                                        |             |                                                              |                                                              |                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|----------------------|----------------------------------------------------------------|-------------------------|----------------------|----------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|
|                                                                                                                                                               | Ambient III lced II Refrigera | 01 00                                                        | 150 5                | 51/10                                                          | Uls                     |                      | MN                                                                                     | ,           |                                                              | 1 Coper 420                                                  | Non                                            |
|                                                                                                                                                               |                               | 3                                                            | 7:45                 | 29/15                                                          | 41                      |                      | PSS- Lady                                                                              | Yong C      | 0                                                            | and a                                                        | 12th                                           |
|                                                                                                                                                               | A E-mail to every ful         | ()                                                           | 17:20                | 71/82                                                          | 4/2                     |                      | 5                                                                                      | Trude       | h                                                            | ( Calles )                                                   | Clan                                           |
| Vin Black line a                                                                                                                                              | 2                             | 1.3 2                                                        | 1452                 | 28/15                                                          | 14                      |                      | (opn-12)                                                                               | Yong        | 0                                                            | happ                                                         | L                                              |
| 15.                                                                                                                                                           | REDD Format FOL               | Temp <sup>o</sup> C                                          | Time:                | Date:                                                          | D                       |                      | Received by:                                                                           | 1           |                                                              | ling                                                         | Re                                             |
| MS/MSD                                                                                                                                                        |                               | ×                                                            |                      | 91.                                                            | 25                      | 10 6                 | 5/15 10:4                                                                              | 4/28        | -10.4                                                        | 3-60                                                         | 119                                            |
|                                                                                                                                                               | X                             | XX                                                           |                      | /                                                              | 05                      | 5                    | 15 -                                                                                   | 36/12       | aka                                                          | Blind Duplic                                                 | 00                                             |
|                                                                                                                                                               | ×                             | XX                                                           |                      | 1                                                              | 05                      | 56                   | (15 10:)                                                                               | 86/1        | 23                                                           | 60-93                                                        | 17                                             |
| Hold , Perdict B                                                                                                                                              | X                             | XXX                                                          |                      | w<br>k                                                         | so                      | 00 6                 | 8/15 10:00                                                                             | 14/4        | 9-10.                                                        | SB-OSA-                                                      | 16                                             |
| HOLD                                                                                                                                                          | ×                             | XX                                                           | 4                    | 1                                                              | 50                      | 0 0                  | 8/15 9:20                                                                              | 4/2         | -5-                                                          | 58-08-4                                                      | 1S                                             |
| went.                                                                                                                                                         |                               | X                                                            |                      | 37.                                                            |                         |                      | 15-                                                                                    | t 1/h       |                                                              | Trip Blank                                                   | 14                                             |
| the Kun MS/MSI                                                                                                                                                |                               | X                                                            |                      | -                                                              | 200                     | 50 60                | r(15 17:00                                                                             | 4/23        | 19.20                                                        | 28-07                                                        | 13                                             |
| 2                                                                                                                                                             | ×                             | ××                                                           |                      | 3                                                              | S                       | ; 20 G               | 15 16                                                                                  | 41/27       | 5-61                                                         | 200 QS                                                       | 12                                             |
| LIPICO                                                                                                                                                        | ×                             | × × ×                                                        |                      | 3 1 1                                                          | 50                      | 30 G                 | 115 15.                                                                                | 4/22        | 2-24                                                         | 53-05-22                                                     | 570211                                         |
| Here W                                                                                                                                                        |                               |                                                              |                      |                                                                | ,                       | 40                   | 5 3                                                                                    | 4122        | 4                                                            | 54-04-3                                                      |                                                |
| State-specific reporting standards:                                                                                                                           | Pest                          | Telt<br>Telt<br>PERP                                         | # of C<br># of P     | # of V<br># of A                                               | Matri                   | я<br>Туре            | te: Time:                                                                              | Date:       | <b>H</b>                                                     | Sample Id:                                                   | Lab Id:                                        |
| SP                                                                                                                                                            | cida<br>Cida<br>135           | + 675                                                        | lastic               |                                                                | \$                      |                      |                                                                                        | C=Composite |                                                              | G=Grab                                                       |                                                |
| Level I     Level II     Level IV                                                                                                                             |                               | TISVE                                                        |                      |                                                                |                         | ;                    |                                                                                        |             |                                                              | X2=                                                          |                                                |
| - QA/QC Reporting Level                                                                                                                                       | Analyses:                     | × *                                                          | Containers:          | Com                                                            | _                       |                      | WW=Wastewater                                                                          | 2           | GW=Groundwater                                               | DW=Drinking Water GW=<br>O=Oil SW=Surface Water              | DW=Drin<br>0=0il S                             |
| QA/QC Reporting Notes:                                                                                                                                        | List preservative code below: | A, u List pres                                               | 7=CH <sub>3</sub> OH |                                                                | 6=Ascorbic Acid         | 0                    | 5=Na(                                                                                  | 4           | 2=HCl 3=H <sub>2</sub> SO <sub>4</sub><br>9= Deionized Water | 3                                                            | 1=Na <sub>2</sub> S2(<br>8= NaHSO <sub>4</sub> |
| iling                                                                                                                                                         | Ann Azu                       | _ Sampler(s):                                                |                      | RQN:                                                           | 12060                   | No.: A               | P.O.                                                                                   |             |                                                              | gr.                                                          | Project Mgr.                                   |
| State: NY                                                                                                                                                     | · Corning                     | Location:                                                    | Haper con            | habella                                                        | auscha                  | unclau               | A Helt                                                                                 | stor NY     | Pochesta                                                     | stute St.                                                    | 300                                            |
| Hospited .                                                                                                                                                    | Site Name: Corvive            | Site Nar                                                     |                      |                                                                | ANNE                    | 3                    |                                                                                        |             |                                                              | Associa                                                      | Labella                                        |
| 6                                                                                                                                                             | 2120 60                       | Project No.:                                                 | lawych               |                                                                | michelle                | Invoice To: <u>u</u> |                                                                                        | incide lla  | drollable lieper com                                         | Report To: Dun NOIL d                                        | Report To                                      |
| All TATs subject to laboratory approval.<br>Min. 24-hour notification needed for rushes.<br>Samples disposed of after 60 days unless<br>otherwise instructed. | enue<br>02852                 | □ 646 Camp Avenue<br>N Kingstown, RI 02852<br>(401) 732-3400 |                      | 8405 Benjamin Road, Ste A<br>Tampa, FL 33634<br>(813) 888-9507 | □ 8405 Be<br>Tam<br>(81 |                      | <ul> <li>11 Almgren Drive</li> <li>Agawam, MA 01001</li> <li>(413) 789-9018</li> </ul> | ⊳⊓          | , INC.                                                       | SPECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY | 52                                             |
| Special Handling:<br>TAT- Ind icate Date Needed: 5 DAY                                                                                                        |                               | RECOR                                                        | DDYH                 | STO                                                            | Page_                   | NOF                  | CHAI                                                                                   | ~           |                                                              | 2                                                            |                                                |
| 10 10                                                                                                                                                         |                               |                                                              |                      | )                                                              |                         |                      |                                                                                        | _           |                                                              |                                                              |                                                |

Report Date: 11-May-15 15:49



Final Report
Re-Issued Report
Revised Report

Labella Associates, P.C. 300 State Street Suite 201 Rochester, NY 14614 Attn: Dan Noll

Project: Corning Hospital, NY Project #: 2150606

| Laboratory ID | <u>Client Sample ID</u> | Matrix  | Date Sampled    | Date Received   |
|---------------|-------------------------|---------|-----------------|-----------------|
| SC06877-01    | SB-10-4-5               | Soil    | 28-Apr-15 11:00 | 02-May-15 11:30 |
| SC06877-08    | SB-15-2-3               | Soil    | 29-Apr-15 11:20 | 02-May-15 11:30 |
| SC06877-09    | SB-16-7-8               | Soil    | 29-Apr-15 12:00 | 02-May-15 11:30 |
| SC06877-11    | SB-17-2.5-3.5           | Soil    | 29-Apr-15 13:05 | 02-May-15 11:30 |
| SC06877-12    | SB-17-6-8               | Soil    | 29-Apr-15 13:10 | 02-May-15 11:30 |
| SC06877-15    | SB-19-1-3               | Soil    | 29-Apr-15 14:40 | 02-May-15 11:30 |
| SC06877-17    | SB-20-7-8               | Soil    | 29-Apr-15 17:00 | 02-May-15 11:30 |
| SC06877-20    | SB-23-17-18             | Soil    | 30-Apr-15 14:40 | 02-May-15 11:30 |
| SC06877-21    | SB-22-5-6               | Soil    | 30-Apr-15 11:30 | 02-May-15 11:30 |
| SC06877-22    | SB-22-19-20             | Soil    | 30-Apr-15 13:20 | 02-May-15 11:30 |
| SC06877-24    | SB-25-20-24             | Soil    | 01-May-15 11:00 | 02-May-15 11:30 |
| SC06877-27    | Trip Blank              | Aqueous | 01-May-15 00:00 | 02-May-15 11:30 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435



Authorized by:

Ricole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 35 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Headquarters: 11 Almgren Drive & 830 Silver Street • Agawam, MA 01001 • 1-800-789-9115 • 413-789-9018 • Fax 413-789-4076 www.spectrum-analytical.com

## **CASE NARRATIVE:**

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 4.6 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

# SW846 6010C

#### 5

| Spikes:                                |                                                                                                     |
|----------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1508923-MSD1                           | Source: SC06877-08                                                                                  |
| The spike recovery w recovery.<br>Lead | vas outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS |
| Duplicates:                            |                                                                                                     |
| 1508923-DUP1                           | Source: SC06877-08                                                                                  |
| The Reporting Limit                    | has been raised to account for matrix interference.                                                 |
| Selenium                               |                                                                                                     |
| Samples:                               |                                                                                                     |
| SC06877-08                             | SB-15-2-3                                                                                           |
| The Reporting Limit                    | has been raised to account for matrix interference.                                                 |
| Selenium                               |                                                                                                     |
| SC06877-11                             | SB-17-2.5-3.5                                                                                       |
| The Reporting Limit                    | has been raised to account for matrix interference.                                                 |
| Selenium                               |                                                                                                     |
| SC06877-12                             | SB-17-6-8                                                                                           |
| The Reporting Limit                    | has been raised to account for matrix interference.                                                 |
| Selenium                               |                                                                                                     |
| SW846 7471B                            |                                                                                                     |
| Duplicates:                            |                                                                                                     |
| 1508924-DUP1                           | Source: SC06877-08                                                                                  |

# SW846 7471B

#### **Duplicates:**

 1508924-DUP1
 Source: SC06877-08

 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. Mercury

 Samples:

 SC06877-08
 SB-15-2-3

 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. Mercury

 SC06877-12
 SB-17-6-8

 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. Mercury

 SC06877-12
 SB-17-6-8

 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. Mercury

 SW846 8260C Calibration:
 Calibration:

#### 1504013

Analyte quantified by quadratic equation type calibration.

Bromoform Naphthalene

This affected the following samples:

1508958-BLK1 1508958-BS1 1508958-BSD1 S502844-ICV1 S504344-CCV1 Trip Blank

#### 1504015

Analyte quantified by quadratic equation type calibration.

2-Butanone (MEK) 2-Hexanone (MBK) 4-Methyl-2-pentanone (MIBK) Bromoform Carbon tetrachloride cis-1,3-Dichloropropene Dibromochloromethane Naphthalene trans-1,3-Dichloropropene

This affected the following samples:

1508642-BLK1 1508642-BS1 1508642-BSD1 S503006-ICV1 S504173-CCV1 SB-16-7-8 SB-19-1-3 SB-22-19-20 SB-23-17-18 SB-25-20-24

## SW846 8260C

#### Samples:

S504173-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1,2-Tetrachloroethane (25.6%) Bromomethane (-20.1%) Chloromethane (-22.2%) Dichlorodifluoromethane (Freon12) (-21.5%) Tert-Butanol / butyl alcohol (30.5%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Ethyl tert-butyl ether (20.9%) trans-1,4-Dichloro-2-butene (22.2%)

This affected the following samples:

1508642-BLK1 1508642-BS1 1508642-BSD1 SB-16-7-8 SB-19-1-3 SB-22-19-20 SB-23-17-18 SB-25-20-24

## S504174-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2-Chloroethylvinyl ether (-28.5%)

This affected the following samples:

1508644-BLK1 1508644-BS1 1508644-BSD1

#### S504344-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,2-Dibromo-3-chloropropane (-30.1%) Bromodichloromethane (-20.9%) Bromomethane (-37.6%) Carbon disulfide (-25.0%) Dichlorodifluoromethane (Freon12) (-22.7%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromoform (-23.6%)

This affected the following samples:

1508958-BLK1 1508958-BS1 1508958-BSD1 Trip Blank

SC06877-09 SB-16-7-8

This compound is a common laboratory contaminant.

Methylene chloride

SC06877-15 SB-19-1-3

## SW846 8260C

| C06877-15             | SB-19-1-3                 |
|-----------------------|---------------------------|
| This compound is a co | ommon laboratory contamin |
| Methylene chloride    |                           |
| SC06877-20            | SB-23-17-18               |
| This compound is a co | ommon laboratory contamin |
| Methylene chloride    |                           |
| SC06877-22            | SB-22-19-20               |
| This compound is a co | ommon laboratory contamin |
| Methylene chloride    |                           |
| SC06877-24            | SB-25-20-24               |
| This compound is a co | ommon laboratory contamin |
| Methylene chloride    |                           |

#### **Calibration:**

#### 1503056

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol 4-Nitrophenol

This affected the following samples:

S502322-ICV1

## Spikes:

1508622-MS1 Source: SC06877-08

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

2,4-Dinitrophenol 3,3'-Dichlorobenzidine Aniline

#### 1508622-MSD1 Source: SC06877-08

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

2,4-Dinitrophenol Aniline

## Samples:

## S504249-CCV1

# SW846 8270D

## Samples:

## S504249-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Azobenzene/Diphenyldiazene (20.5%) Benzo (b) fluoranthene (21.4%) Bis(2-chloroethyl)ether (20.3%) Bis(2-chloroisopropyl)ether (27.3%) N-Nitrosodimethylamine (24.6%) Pentachlorophenol (-23.8%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Benzidine (-29.3%)

This affected the following samples:

1508622-BLK1 1508622-BS1

## S504431-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Bis(2-chloroisopropyl)ether (20.8%) N-Nitrosodimethylamine (21.2%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Benzidine (22.2%)

This affected the following samples:

1508622-MS1 1508622-MSD1 SB-15-2-3 SB-16-7-8 SB-17-2.5-3.5 SB-17-6-8

# Sample Acceptance Check Form

Client:Labella Associates, P.C.Project:Corning Hospital, NY / 2150606Work Order:SC06877Sample(s) received on:5/2/2015

## The following outlines the condition of samples for the attached Chain of Custody upon receipt.

Were samples received within method-specific holding times?

| Were custody seals present?                                                                                                                                                                                                                                                          | $\checkmark$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Were custody seals intact?                                                                                                                                                                                                                                                           | $\checkmark$ |
| Were samples received at a temperature of $\leq 6^{\circ}$ C?                                                                                                                                                                                                                        | $\checkmark$ |
| Were samples cooled on ice upon transfer to laboratory representative?                                                                                                                                                                                                               | $\checkmark$ |
| Were sample containers received intact?                                                                                                                                                                                                                                              | $\checkmark$ |
| Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?                                                                                                                             |              |
| Were samples accompanied by a Chain of Custody document?                                                                                                                                                                                                                             | $\checkmark$ |
| Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample? | $\checkmark$ |
| Did sample container labels agree with Chain of Custody document?                                                                                                                                                                                                                    |              |
|                                                                                                                                                                                                                                                                                      |              |

| Yes          | <u>No</u>    | N/A |
|--------------|--------------|-----|
| $\checkmark$ |              |     |
|              | $\checkmark$ |     |
| $\mathbf{k}$ |              |     |
|              |              |     |

| Sample Identification<br>SB-10-4-5<br>SC06877-01                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            | <u>Client Project #</u><br>2150606 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>Matrix</u><br>Soil                                                                                                                      | Colle<br>28                                                                  | <u>Re</u><br>02-1     |                                                                                             |               |                   |         |                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|---------------|-------------------|---------|---------------------------------------------------------------|
| CAS No.                                                                                                                                                                                                                                                                          | Analyte(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                     | Flag                               | Units                                                                                                                                                                                                                                                                                                     | *RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MDL                                                                                                                                        | Dilution                                                                     | Method Ref.           | Prepared                                                                                    | Analyzed      | Analyst           | Batch   | Cert.                                                         |
| Total Met                                                                                                                                                                                                                                                                        | als by EPA 6000/7000 Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s Methods                                                                                                                                                                                                  |                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                              |                       |                                                                                             |               |                   |         |                                                               |
| 7440-22-4                                                                                                                                                                                                                                                                        | Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 1.60                                                                                                                                                                                                     |                                    | mg/kg dry                                                                                                                                                                                                                                                                                                 | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.117                                                                                                                                      | 1                                                                            | SW846 6010C           | 08-May-1<br>5                                                                               | 09-May-1<br>5 | EDT               | 1508923 | Х                                                             |
| 7440-38-2                                                                                                                                                                                                                                                                        | Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.02                                                                                                                                                                                                       |                                    | mg/kg dry                                                                                                                                                                                                                                                                                                 | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.258                                                                                                                                      | 1                                                                            |                       | "                                                                                           |               | "                 | "       | х                                                             |
| 7440-39-3                                                                                                                                                                                                                                                                        | Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.3                                                                                                                                                                                                       |                                    | mg/kg dry                                                                                                                                                                                                                                                                                                 | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0632                                                                                                                                     | 1                                                                            | "                     |                                                                                             |               | "                 | "       | х                                                             |
| 7440-43-9                                                                                                                                                                                                                                                                        | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.532                                                                                                                                                                                                    |                                    | mg/kg dry                                                                                                                                                                                                                                                                                                 | 0.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0170                                                                                                                                     | 1                                                                            | "                     | "                                                                                           | "             | "                 | "       | х                                                             |
| 7440-47-3                                                                                                                                                                                                                                                                        | Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.98                                                                                                                                                                                                       |                                    | mg/kg dry                                                                                                                                                                                                                                                                                                 | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.102                                                                                                                                      | 1                                                                            | "                     | "                                                                                           | "             | "                 | "       | х                                                             |
| 7439-97-6                                                                                                                                                                                                                                                                        | Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0342                                                                                                                                                                                                     |                                    | mg/kg dry                                                                                                                                                                                                                                                                                                 | 0.0316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0021                                                                                                                                     | 1                                                                            | SW846 7471B           | "                                                                                           | 11-May-1<br>5 | YR                | 1508924 | х                                                             |
| 7439-92-1                                                                                                                                                                                                                                                                        | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.9                                                                                                                                                                                                       |                                    | mg/kg dry                                                                                                                                                                                                                                                                                                 | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.293                                                                                                                                      | 1                                                                            | SW846 6010C           | "                                                                                           | 09-May-1<br>5 | EDT               | 1508923 | х                                                             |
| 7782-49-2                                                                                                                                                                                                                                                                        | Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1.60                                                                                                                                                                                                     |                                    | mg/kg dry                                                                                                                                                                                                                                                                                                 | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.399                                                                                                                                      | 1                                                                            | "                     | "                                                                                           | "             | "                 |         | х                                                             |
| General C                                                                                                                                                                                                                                                                        | hemistry Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            |                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                              |                       |                                                                                             |               |                   |         |                                                               |
|                                                                                                                                                                                                                                                                                  | % Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93.1                                                                                                                                                                                                       |                                    | %                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            | 1                                                                            | SM2540 G Mod.         | 04-May-1<br>5                                                                               | 04-May-1<br>5 | DT                | 1508564 |                                                               |
| Sample Io                                                                                                                                                                                                                                                                        | lentification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                            |                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                              |                       |                                                                                             |               |                   |         |                                                               |
| SB-15-2-3                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                    | Client P                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            | Matrix                                                                       |                       | ection Date                                                                                 |               |                   | ceived  |                                                               |
| SC06877                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                    | 2150                                                                                                                                                                                                                                                                                                      | 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            | Soil                                                                         | 29                    | Apr-15 11:20                                                                                |               | Apr-15 11:20 02-M |         |                                                               |
| CAS No.                                                                                                                                                                                                                                                                          | Analyte(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                     | Flag                               | Units                                                                                                                                                                                                                                                                                                     | *RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MDL                                                                                                                                        | Dilution                                                                     | Method Ref.           | Prepared                                                                                    | Analyzed      | Analyst           | Batch   | Cert.                                                         |
|                                                                                                                                                                                                                                                                                  | tile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                              |                       |                                                                                             |               |                   |         |                                                               |
| Prepared<br>83-32-9                                                                                                                                                                                                                                                              | by method SW846 3545A<br>Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 81.7                                                                                                                                                                                                     |                                    | µg/kg dry                                                                                                                                                                                                                                                                                                 | 81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.0                                                                                                                                       | 1                                                                            | SW846 8270D           | 05-May-1<br>5                                                                               | 10-May-1<br>5 | MSL               | 1508622 | x                                                             |
|                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                    | µg/kg dry<br>µg/kg dry                                                                                                                                                                                                                                                                                    | 81.7<br>81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.0<br>17.3                                                                                                                               | 1<br>1                                                                       | SW846 8270D<br>"      | -                                                                                           |               | MSL<br>"          | 1508622 | x<br>x                                                        |
| 83-32-9                                                                                                                                                                                                                                                                          | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 81.7                                                                                                                                                                                                     |                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                              |                       | 5                                                                                           | 5             |                   |         |                                                               |
| 83-32-9<br>208-96-8                                                                                                                                                                                                                                                              | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 81.7<br>< 81.7                                                                                                                                                                                           |                                    | µg/kg dry                                                                                                                                                                                                                                                                                                 | 81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.3                                                                                                                                       | 1                                                                            | n                     | 5<br>"                                                                                      | 5             |                   |         | х                                                             |
| 83-32-9<br>208-96-8<br>120-12-7                                                                                                                                                                                                                                                  | Acenaphthene<br>Acenaphthylene<br>Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 81.7<br>< 81.7<br>< 81.7                                                                                                                                                                                 |                                    | μg/kg dry<br>μg/kg dry                                                                                                                                                                                                                                                                                    | 81.7<br>81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.3<br>18.7                                                                                                                               | 1<br>1                                                                       | 11                    | 5<br>"                                                                                      | 5<br>"        |                   |         | x<br>x                                                        |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3                                                                                                                                                                                                                                       | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7                                                                                                                                                                       |                                    | μg/kg dry<br>μg/kg dry<br>μg/kg dry                                                                                                                                                                                                                                                                       | 81.7<br>81.7<br>81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.3<br>18.7<br>16.9                                                                                                                       | 1<br>1<br>1                                                                  | <br><br>              | 5<br>"<br>"                                                                                 | 5             | "                 | "       | x<br>x<br>x                                                   |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8                                                                                                                                                                                                                            | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7                                                                                                                                                             |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                                                                                                          | 81.7<br>81.7<br>81.7<br>81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.3<br>18.7<br>16.9<br>17.0                                                                                                               | 1<br>1<br>1<br>1                                                             | <br><br>              | 5<br>"<br>"                                                                                 | 5             | "                 | "       | x<br>x<br>x<br>x                                              |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2                                                                                                                                                                                                                | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7                                                                                                                                                   |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                                                                                             | 81.7<br>81.7<br>81.7<br>81.7<br>81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.3<br>18.7<br>16.9<br>17.0<br>18.6                                                                                                       | 1<br>1<br>1<br>1                                                             | <br><br>              | 5<br>"<br>"                                                                                 | 5             | "                 | "       | ×<br>×<br>×<br>×                                              |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2                                                                                                                                                                                                    | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (g,h,i) perylene                                                                                                                                                                                                                                                                                                                                                                                                        | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7                                                                                                                                         |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                                                                                | 81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7                                                                                               | 1<br>1<br>1<br>1<br>1                                                        | <br><br>              | 5<br>"<br>"                                                                                 | 5             | "                 | "       | X<br>X<br>X<br>X<br>X<br>X                                    |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9                                                                                                                                                                                        | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (g,h,i) perylene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha                                                                                                                                                                                                                                                                                                                                                  | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7                                                                                                                               |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                                                                   | 81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6                                                                                       | 1<br>1<br>1<br>1<br>1<br>1                                                   | •<br>•<br>•<br>•<br>• | 5<br>"<br>"<br>"<br>"<br>"<br>"                                                             | 5             | "                 | "       | x<br>x<br>x<br>x<br>x<br>x<br>x                               |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1                                                                                                                                                                            | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (g,h,i) perylene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne                                                                                                                                                                                                                                                                                                                                            | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7                                                                                                                     |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                                                                   | 81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8                                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1                                              |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"                                                             | 5             | "                 | "       | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×                          |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1<br>111-44-4                                                                                                                                                                | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ethe                                                                                                                                                                                                                                                                                   | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204                                                                                                             |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                                                      | 81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>404<br>204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5                                                                       | 1<br>1<br>1<br>1<br>1<br>1<br>1                                              |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                   | 5             | "                 | "       | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×                     |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1<br>111-44-4<br>108-60-1                                                                                                                                                    | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (b) fluoranthene<br>Benzo (c), fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ethe<br>r                                                                                                                                                                                                                                                                             | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204                                                                                                    |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                                         | <ul> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                        | 5             | "                 | "       | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×                          |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1<br>111-44-4<br>108-60-1<br>117-81-7                                                                                                                                        | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethoxy)metha<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-ethylhexyl)phthalate<br>4-Bromophenyl phenyl                                                                                                                                                                                                                  | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204<br>< 204                                                                                 |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                                         | 81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>81.7<br>404<br>204<br>204<br>204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                        |               | "                 | "       | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×                |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1<br>111-44-4<br>108-60-1<br>117-81-7<br>101-55-3                                                                                                                            | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (c), fluoranthene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroisopropyl)ether<br>r<br>Bis(2-ethylhexyl)phthalate<br>4-Bromophenyl phenyl<br>ether                                                                                                                                                                                                                                        | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204<br>< 204<br>< 204                                                                                  |                                    | µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry<br>µg/kg dry                                                                                                                                                                            | <ul> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> <li>204</li> <li>404</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4<br>101<br>81.7                                                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                   | 5             | "                 |         | × × × × × × × × × × × × ×                                     |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1<br>111-44-4<br>108-60-1<br>117-81-7<br>101-55-3<br>85-68-7                                                                                                                 | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r                                                                                                                                  | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204<br>< 204<br>< 404                                                                                  |                                    | μg/kg dry<br>μg/kg dry                                                                                                                                                               | <ul> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> <li>204</li> <li>404</li> <li>404</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4<br>101<br>81.7<br>89.6                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                   | 5             | "                 |         | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×           |
| 83-32-9         208-96-8         120-12-7         56-55-3         50-32-8         205-99-2         191-24-2         207-08-9         111-91-1         111-81-7         108-60-1         117-81-7         101-55-3         85-68-7         86-74-8                                | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r                                                                                               | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204<br>< 204<br>< 204<br>< 404<br>< 404<br>< 204                                                       |                                    | µg/kg dryµg/kg dry                                                       | <ul> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> <li>204</li> <li>404</li> <li>404</li> <li>204</li> <li>204</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4<br>101<br>81.7<br>89.6<br>104                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                   | 5             | "                 |         | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>× |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1<br>111-44-4<br>108-60-1<br>117-81-7<br>101-55-3<br>85-68-7<br>86-74-8<br>59-50-7                                                                                           | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (c), fluoranthene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroisopropyl)ether<br>r<br>Bis(2-chloroisopropyl)ether<br>r<br>Bis(2-ethylhexyl)phthalate<br>4-Bromophenyl phenyl<br>ether<br>Butyl benzyl phthalate<br>Carbazole<br>4-Chloro-3-methylphenol                                                                                                                                  | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204<br>< 204<br>< 204<br>< 404<br>< 204<br>< 404                                                       |                                    | µg/kg dryµg/kg dry                                              | <ul> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> <li>204</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4<br>101<br>81.7<br>89.6<br>104<br>83.8                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                   | 5             | "                 |         | × × × × × × × × × × × × × × × × × × ×                         |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1<br>111-44-4<br>108-60-1<br>117-81-7<br>101-55-3<br>85-68-7<br>86-74-8<br>59-50-7<br>106-47-8                                                                               | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (b) fluoranthene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-ethylhexyl)phthalate<br>4-Bromophenyl phenyl<br>ether<br>Butyl benzyl phthalate<br>Carbazole<br>4-Chloro-3-methylphenol                                                                                                   | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204<br>< 204<br>< 204<br>< 404<br>< 404<br>< 204<br>< 404<br>< 204                                     |                                    | µg/kg dryµg/kg dry                                     | <ul> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> <li>404</li> <li>404</li> <li>204</li> <li>404</li> <li>204</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4<br>101<br>81.7<br>89.6<br>104<br>83.8<br>83.4                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                   | 5             | "                 |         | × × × × × × × × × × × × × × × × × × ×                         |
| 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>111-91-1<br>111-44-4<br>108-60-1<br>117-81-7<br>101-55-3<br>85-68-7<br>86-74-8<br>59-50-7<br>106-47-8<br>91-58-7                                                                    | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (b) fluoranthene<br>Benzo (g,h,i) perylene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-chloroisopropyl)ethe<br>r<br>Bis(2-ethylhexyl)phthalate<br>Carbazole<br>4-Chloro-3-methylphenol<br>4-Chloroaniline<br>2-Chloronaphthalene                            | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204<br>< 204<br>< 404<br>< 204<br>< 404<br>< 204<br>< 204<br>< 204<br>< 204<br>< 204                   |                                    | µg/kg dryµg/kg dry                   | <ul> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> <li>204</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> <li>404</li> </ul>                                                                                                                      | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4<br>101<br>81.7<br>89.6<br>104<br>83.8<br>83.4<br>71.1         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"                                                   | 5             | "                 |         | × × × × × × × × × × × × × × × × × × ×                         |
| 83-32-9         208-96-8         120-12-7         56-55-3         50-32-8         205-99-2         191-24-2         207-08-9         111-91-1         111-81-7         101-55-3         85-68-7         86-74-8         59-50-7         106-47-8         91-58-7         95-57-8 | Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo (a) anthracene<br>Benzo (a) pyrene<br>Benzo (b) fluoranthene<br>Benzo (c), fluoranthene<br>Benzo (c), fluoranthene<br>Benzo (k) fluoranthene<br>Benzo (k) fluoranthene<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroethoxy)metha<br>ne<br>Bis(2-chloroisopropyl)ether<br>r<br>Bis(2-chloroisopropyl)ether<br>r<br>Bis(2-ethylhexyl)phthalate<br>4-Bromophenyl phenyl<br>ether<br>Butyl benzyl phthalate<br>Carbazole<br>4-Chloro-3-methylphenol<br>4-Chloronaphthalene<br>2-Chloronphenol | < 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 81.7<br>< 404<br>< 204<br>< 204<br>< 204<br>< 404<br>< 204<br>< 404<br>< 204<br>< 404<br>< 204<br>< 404<br>< 204<br>< 404<br>< 204 |                                    | µg/kg dryµg/kg dry | <ul> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>81.7</li> <li>404</li> <li>204</li> <li>204</li> <li>204</li> <li>404</li> <li>404</li> <li>204</li> </ul> | 17.3<br>18.7<br>16.9<br>17.0<br>18.6<br>17.7<br>18.6<br>73.8<br>73.5<br>73.4<br>101<br>81.7<br>89.6<br>104<br>83.8<br>83.4<br>71.1<br>72.3 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                       | 5<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" |               | "                 |         | × × × × × × × × × × × × × × × × × × ×                         |

| <u>Semivolati</u>                                | Analyte(s)<br>e Organic Compounds by O<br>le Organic Compounds<br>by method SW846 3545A<br>Dibenzofuran<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene | Result         Flag           GCMS         < 204           < 404 | <i>Units</i><br>µg/kg dry | *RDL  | MDL  | Dilution | Method Ref. | Prepared      | Analyzed      | Analyst | Batch   | Cort |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|-------|------|----------|-------------|---------------|---------------|---------|---------|------|
| Semivolatil<br>Prepared b<br>132-64-9<br>95-50-1 | le Organic Compounds<br>oy method SW846 3545A<br>Dibenzofuran<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene                                                                  | < 204                                                            | ua/ka drv                 |       |      |          |             |               |               |         |         |      |
| Prepared b<br>132-64-9<br>95-50-1                | by method SW846 3545A<br>Dibenzofuran<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene                                                                                          |                                                                  | ua/ka drv                 |       |      |          |             |               |               |         |         |      |
| 132-64-9<br>95-50-1                              | Dibenzofuran<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene                                                                                                                   |                                                                  | ua/ka drv                 |       |      |          |             |               |               |         |         |      |
|                                                  | 1,3-Dichlorobenzene                                                                                                                                                          | < 404                                                            | 10 0 1                    | 204   | 15.0 | 1        | SW846 8270D | 05-May-1<br>5 | 10-May-1<br>5 | MSL     | 1508622 | x    |
| 541-73-1                                         |                                                                                                                                                                              |                                                                  | µg/kg dry                 | 404   | 67.9 | 1        | "           | "             | "             |         | "       | х    |
|                                                  | 1,4-Dichlorobenzene                                                                                                                                                          | < 404                                                            | µg/kg dry                 | 404   | 71.8 | 1        |             |               |               | "       | "       | х    |
| 106-46-7                                         |                                                                                                                                                                              | < 404                                                            | µg/kg dry                 | 404   | 66.9 | 1        |             |               |               | "       | "       | х    |
| 91-94-1                                          | 3,3'-Dichlorobenzidine                                                                                                                                                       | < 404                                                            | µg/kg dry                 | 404   | 82.0 | 1        |             | "             |               |         | "       | х    |
| 120-83-2                                         | 2,4-Dichlorophenol                                                                                                                                                           | < 204                                                            | µg/kg dry                 | 204   | 69.6 | 1        |             | "             |               |         | "       | х    |
| 84-66-2                                          | Diethyl phthalate                                                                                                                                                            | < 404                                                            | µg/kg dry                 | 404   | 84.3 | 1        |             | "             | "             |         | "       | х    |
| 131-11-3                                         | Dimethyl phthalate                                                                                                                                                           | < 404                                                            | µg/kg dry                 | 404   | 79.6 | 1        | "           | "             | "             | "       | "       | х    |
| 105-67-9                                         | 2,4-Dimethylphenol                                                                                                                                                           | < 404                                                            | µg/kg dry                 | 404   | 69.3 | 1        |             | "             |               |         | "       | х    |
| 84-74-2                                          | Di-n-butyl phthalate                                                                                                                                                         | < 404                                                            | µg/kg dry                 | 404   | 90.7 | 1        |             | "             |               |         | "       | х    |
| 534-52-1                                         | 4,6-Dinitro-2-methylphenol                                                                                                                                                   | < 404                                                            | µg/kg dry                 | 404   | 107  | 1        |             |               |               | "       | "       | х    |
| 51-28-5                                          | 2,4-Dinitrophenol                                                                                                                                                            | < 404                                                            | µg/kg dry                 | 404   | 106  | 1        |             | "             |               |         | "       | х    |
| 121-14-2                                         | 2,4-Dinitrotoluene                                                                                                                                                           | < 204                                                            | µg/kg dry                 | 204   | 84.2 | 1        |             | "             |               |         | "       | х    |
| 606-20-2                                         | 2,6-Dinitrotoluene                                                                                                                                                           | < 204                                                            | µg/kg dry                 | 204   | 79.3 | 1        |             | "             |               |         | "       | х    |
| 117-84-0                                         | Di-n-octyl phthalate                                                                                                                                                         | < 404                                                            | µg/kg dry                 | 404   | 87.3 | 1        |             | "             |               |         |         | х    |
| 206-44-0                                         | Fluoranthene                                                                                                                                                                 | 82.0                                                             | µg/kg dry                 | 81.7  | 20.5 | 1        |             | "             |               |         | "       | х    |
| 86-73-7                                          | Fluorene                                                                                                                                                                     | < 81.7                                                           | µg/kg dry                 | 81.7  | 19.6 | 1        |             | "             |               |         | "       | х    |
| 118-74-1                                         | Hexachlorobenzene                                                                                                                                                            | < 204                                                            | µg/kg dry                 | 204   | 89.3 | 1        |             | "             |               |         | "       | х    |
| 87-68-3                                          | Hexachlorobutadiene                                                                                                                                                          | < 204                                                            | µg/kg dry                 | 204   | 65.0 | 1        | "           | "             |               |         | "       | х    |
| 77-47-4                                          | Hexachlorocyclopentadien                                                                                                                                                     | < 204                                                            | µg/kg dry                 | 204   | 74.5 | 1        | "           | "             | "             |         | "       | х    |
| 67-72-1                                          | e<br>Hexachloroethane                                                                                                                                                        | < 204                                                            | µg/kg dry                 | 204   | 78.5 | 1        | "           | "             | "             |         | "       | х    |
| 193-39-5                                         | Indeno (1,2,3-cd) pyrene                                                                                                                                                     | < 81.7                                                           | µg/kg dry                 | 81.7  | 16.7 | 1        | "           | "             |               | "       | "       | х    |
| 78-59-1                                          | Isophorone                                                                                                                                                                   | < 204                                                            | µg/kg dry                 | 204   | 71.4 | 1        | "           | "             | "             | "       | "       | х    |
| 91-57-6                                          | 2-Methylnaphthalene                                                                                                                                                          | < 81.7                                                           | µg/kg dry                 | 81.7  | 16.8 | 1        | "           | "             | "             |         | "       | х    |
| 95-48-7                                          | 2-Methylphenol                                                                                                                                                               | < 404                                                            | µg/kg dry                 | 404   | 72.5 | 1        | "           | "             | "             | "       | "       | х    |
| 108-39-4,<br>106-44-5                            | 3 & 4-Methylphenol                                                                                                                                                           | < 404                                                            | µg/kg dry                 | 404   | 90.9 | 1        | "           | "             | "             |         | "       | х    |
| 91-20-3                                          | Naphthalene                                                                                                                                                                  | < 81.7                                                           | µg/kg dry                 | 81.7  | 16.6 | 1        | "           | "             | "             | "       | "       | х    |
| 88-74-4                                          | 2-Nitroaniline                                                                                                                                                               | < 404                                                            | µg/kg dry                 | 404   | 81.0 | 1        | "           | "             | "             | "       | "       | х    |
| 99-09-2                                          | 3-Nitroaniline                                                                                                                                                               | < 404                                                            | µg/kg dry                 | 404   | 96.7 | 1        | "           | "             | "             | "       | "       | х    |
| 100-01-6                                         | 4-Nitroaniline                                                                                                                                                               | < 204                                                            | µg/kg dry                 | 204   | 117  | 1        | "           | "             | "             | "       | "       | х    |
| 98-95-3                                          | Nitrobenzene                                                                                                                                                                 | < 204                                                            | µg/kg dry                 | 204   | 79.3 | 1        | "           | "             | "             |         | "       | х    |
| 88-75-5                                          | 2-Nitrophenol                                                                                                                                                                | < 204                                                            | µg/kg dry                 | 204   | 67.7 | 1        | "           | "             | "             |         | "       | х    |
| 100-02-7                                         | 4-Nitrophenol                                                                                                                                                                | < 1620                                                           | µg/kg dry                 | 1620  | 109  | 1        | "           | "             | "             |         | "       | х    |
| 621-64-7                                         | N-Nitrosodi-n-propylamine                                                                                                                                                    | < 204                                                            | µg/kg dry                 | 204   | 87.0 | 1        | "           | "             | "             |         | "       | х    |
| 86-30-6                                          | N-Nitrosodiphenylamine                                                                                                                                                       | < 404                                                            | µg/kg dry                 | 404   | 95.0 | 1        | u           | "             | "             | "       | "       | х    |
| 87-86-5                                          | Pentachlorophenol                                                                                                                                                            | < 404                                                            | µg/kg dry                 | 404   | 96.2 | 1        | "           | "             | "             |         | "       | х    |
| 85-01-8                                          | Phenanthrene                                                                                                                                                                 | 83.7                                                             | µg/kg dry                 | 81.7  | 19.9 | 1        | u           | "             | "             | "       | "       | х    |
| 108-95-2                                         | Phenol                                                                                                                                                                       | < 404                                                            | µg/kg dry                 | 404   | 73.6 | 1        | "           | "             | "             |         | "       | х    |
| 129-00-0                                         | Pyrene                                                                                                                                                                       | 97.1                                                             | µg/kg dry                 | 81.7  | 17.4 | 1        | "           | "             | "             |         | "       | х    |
| 120-82-1                                         | 1,2,4-Trichlorobenzene                                                                                                                                                       | < 404                                                            | µg/kg dry                 | 404   | 64.3 | 1        | "           | "             |               |         | "       | х    |
| 95-95-4                                          | 2,4,5-Trichlorophenol                                                                                                                                                        | < 404                                                            | µg/kg dry                 | 404   | 83.6 | 1        | "           | "             | "             |         | "       | х    |
| Surrogate re                                     | ecoveries:                                                                                                                                                                   |                                                                  |                           |       |      |          |             |               |               |         |         |      |
| 321-60-8                                         | 2-Fluorobiphenyl                                                                                                                                                             | 50                                                               |                           | 30-13 | 0 %  |          | "           | "             | "             |         | "       |      |

| Sample Identification<br>SB-15-2-3<br>SC06877-08 |                                                  | <u>Client P</u><br>2150 |        |           | <u>Matrix</u><br>Soil | <u>Colle</u><br>29 | <u>Re</u><br>02-1 |                     |               |               |         |         |       |
|--------------------------------------------------|--------------------------------------------------|-------------------------|--------|-----------|-----------------------|--------------------|-------------------|---------------------|---------------|---------------|---------|---------|-------|
|                                                  | -08                                              |                         |        |           |                       |                    |                   |                     |               |               |         | -       |       |
| CAS No.                                          | Analyte(s)                                       | Result                  | Flag   | Units     | *RDL                  | MDL                | Dilution          | Method Ref.         | Prepared      | Analyzed      | Analyst | Batch   | Cert. |
| Semivolat                                        | ile Organic Compounds by C                       | GCMS                    |        |           |                       |                    |                   |                     |               |               |         |         |       |
|                                                  | tile Organic Compounds                           |                         |        |           |                       |                    |                   |                     |               |               |         |         |       |
|                                                  | by method SW846 3545A                            |                         |        |           |                       |                    |                   |                     |               |               |         |         |       |
| 367-12-4                                         | 2-Fluorophenol                                   | 61                      |        |           | 30-13                 | 30 %               |                   | SW846 8270D         | 05-May-1<br>5 | 10-May-15     | MSL     | 1508622 |       |
| 4165-60-0                                        | Nitrobenzene-d5                                  | 61                      |        |           | 30-13                 | 30 %               |                   |                     | "             |               | "       | "       |       |
| 4165-62-2                                        | Phenol-d5                                        | 66                      |        |           | 30-13                 | 30 %               |                   |                     | "             |               | "       | "       |       |
| 1718-51-0                                        | Terphenyl-dl4                                    | 55                      |        |           | 30-13                 | 30 %               |                   | "                   | "             |               |         | "       |       |
| 118-79-6                                         | 2,4,6-Tribromophenol                             | 53                      |        |           | 30-13                 | 30 %               |                   |                     | "             |               | "       |         |       |
|                                                  | ly Identified Compounds<br>by method SW846 3545A |                         |        |           |                       |                    |                   |                     |               |               |         |         |       |
|                                                  | Tentatively Identified<br>Compounds              | None found              |        | µg/kg dry |                       |                    | 1                 | SW846 8270D<br>TICS | "             | "             | MSL     | "       |       |
| Total Met                                        | als by EPA 6000/7000 Series                      | Methods                 |        |           |                       |                    |                   |                     |               |               |         |         |       |
| 7440-22-4                                        | Silver                                           | < 1.81                  |        | mg/kg dry | 1.81                  | 0.133              | 1                 | SW846 6010C         | 08-May-1<br>5 | 09-May-1<br>5 | EDT     | 1508923 | Х     |
| 7440-38-2                                        | Arsenic                                          | 16.0                    |        | mg/kg dry | 1.81                  | 0.293              | 1                 | "                   |               |               | "       |         | х     |
| 7440-39-3                                        | Barium                                           | 201                     |        | mg/kg dry | 1.21                  | 0.0718             | 1                 | "                   |               |               | "       |         | х     |
| 7440-43-9                                        | Cadmium                                          | < 0.604                 |        | mg/kg dry | 0.604                 | 0.0193             | 1                 | "                   |               |               | "       |         | х     |
| 7440-47-3                                        | Chromium                                         | 14.9                    |        | mg/kg dry | 1.21                  | 0.115              | 1                 | "                   | "             |               | "       |         | х     |
| 7439-97-6                                        | Mercury                                          | 0.438                   | GS1, D | mg/kg dry | 0.174                 | 0.0114             | 5                 | SW846 7471B         | "             | 11-May-1<br>5 | YR      | 1508924 | Х     |
| 7439-92-1                                        | Lead                                             | 234                     |        | mg/kg dry | 1.81                  | 0.334              | 1                 | SW846 6010C         | "             | 09-May-1<br>5 | EDT     | 1508923 | Х     |
| 7782-49-2                                        | Selenium                                         | < 2.30                  | R01    | mg/kg dry | 2.30                  | 0.454              | 1                 | "                   | "             |               | "       | "       | х     |
| General C                                        | Chemistry Parameters                             |                         |        |           |                       |                    |                   |                     |               |               |         |         |       |
|                                                  | % Solids                                         | 81.4                    |        | %         |                       |                    | 1                 | SM2540 G Mod.       | 04-May-1<br>5 | 04-May-1<br>5 | DT      | 1508564 |       |

| Sample Identification<br>SB-16-7-8<br>SC06877-09 |                                      |                    | <u>Client Project #</u><br>2150606 |                        |            | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 12 |               | Received<br>02-May-15 |         |         |        |
|--------------------------------------------------|--------------------------------------|--------------------|------------------------------------|------------------------|------------|-----------------------|---------------|---------------------------|---------------|-----------------------|---------|---------|--------|
| CAS No.                                          | Analyte(s)                           | Result             | Flag                               | Units                  | *RDL       | MDL                   | Dilution      | Method Ref.               | Prepared      | Analyzed              | Analyst | Batch   | Cert.  |
| Volatile O                                       | rganic Compounds                     |                    |                                    |                        |            |                       |               |                           |               |                       |         |         |        |
|                                                  | VOC Extraction                       | Field<br>extracted |                                    | N/A                    |            |                       | 1             | VOC Soil<br>Extraction    |               |                       | DT      | 1508570 |        |
|                                                  | rganic Compounds by SW               |                    |                                    |                        |            |                       |               |                           |               |                       |         |         |        |
|                                                  | by method SW846 5035A                | Soil (low level)   | <u>)</u>                           |                        |            | Init                  | ial weight: 8 | <u>8.93 g</u>             |               |                       |         |         |        |
| 67-64-1                                          | Acetone                              | < 40.0             |                                    | µg/kg dry              | 40.0       | 26.7                  | 1             | SW846 8260C               | 05-May-1<br>5 | 05-May-1<br>5         | SJB     | 1508642 | Х      |
| 71-43-2                                          | Benzene                              | < 4.0              |                                    | µg/kg dry              | 4.0        | 0.7                   | 1             | "                         | "             |                       | "       | "       | х      |
| 75-27-4                                          | Bromodichloromethane                 | < 4.0              |                                    | µg/kg dry              | 4.0        | 2.7                   | 1             | "                         | "             |                       | "       | "       | Х      |
| 75-25-2                                          | Bromoform                            | < 4.0              |                                    | µg/kg dry              | 4.0        | 3.8                   | 1             | "                         | "             |                       | "       | "       | Х      |
| 74-83-9                                          | Bromomethane                         | < 8.0              |                                    | µg/kg dry              | 8.0        | 2.3                   | 1             |                           | "             |                       | "       |         | х      |
| 78-93-3                                          | 2-Butanone (MEK)                     | < 40.0             |                                    | µg/kg dry              | 40.0       | 4.8                   | 1             |                           | "             |                       | "       |         | х      |
| 104-51-8                                         | n-Butylbenzene                       | < 4.0              |                                    | µg/kg dry              | 4.0        | 1.1                   | 1             |                           |               |                       | "       |         | х      |
| 135-98-8                                         | sec-Butylbenzene                     | < 4.0              |                                    | µg/kg dry              | 4.0        | 3.1                   | 1             |                           |               |                       | "       |         | х      |
| 98-06-6                                          | tert-Butylbenzene                    | < 4.0              |                                    | µg/kg dry              | 4.0        | 2.6                   | 1             | "                         | "             |                       | "       | "       | х      |
| 75-15-0                                          | Carbon disulfide                     | < 8.0              |                                    | µg/kg dry              | 8.0        | 2.5                   | 1             | "                         | "             |                       | "       | "       | х      |
| 56-23-5                                          | Carbon tetrachloride                 | < 4.0              |                                    | µg/kg dry              | 4.0        | 3.3                   | 1             | "                         | "             |                       | "       | "       | х      |
| 108-90-7                                         | Chlorobenzene                        | < 4.0              |                                    | µg/kg dry              | 4.0        | 0.6                   | 1             | "                         | "             |                       | "       |         | х      |
| 75-00-3                                          | Chloroethane                         | < 8.0              |                                    | µg/kg dry              | 8.0        | 2.2                   | 1             | "                         |               |                       | "       |         | х      |
| 67-66-3                                          | Chloroform                           | < 4.0              |                                    | µg/kg dry              | 4.0        | 1.3                   | 1             |                           |               |                       | "       |         | х      |
| 74-87-3                                          | Chloromethane                        | < 8.0              |                                    | µg/kg dry              | 8.0        | 1.7                   | 1             |                           |               |                       | "       |         | х      |
| 124-48-1                                         | Dibromochloromethane                 | < 4.0              |                                    | µg/kg dry              | 4.0        | 2.7                   | 1             |                           | "             |                       | "       | "       | х      |
| 95-50-1                                          | 1,2-Dichlorobenzene                  | < 4.0              |                                    | µg/kg dry              | 4.0        | 0.7                   | 1             |                           | "             |                       | "       | "       | х      |
| 541-73-1                                         | 1,3-Dichlorobenzene                  | < 4.0              |                                    | µg/kg dry              | 4.0        | 0.8                   | 1             | "                         |               |                       | "       |         | х      |
| 106-46-7                                         | 1,4-Dichlorobenzene                  | < 4.0              |                                    | µg/kg dry              | 4.0        | 1.0                   | 1             | "                         |               |                       | "       |         | х      |
| 75-71-8                                          | Dichlorodifluoromethane<br>(Freon12) | < 8.0              |                                    | µg/kg dry              | 8.0        | 1.4                   | 1             | "                         | "             | u                     | "       | "       | х      |
| 75-34-3                                          | 1,1-Dichloroethane                   | < 4.0              |                                    | µg/kg dry              | 4.0        | 2.6                   | 1             |                           | "             |                       |         | "       | х      |
| 107-06-2                                         | 1,2-Dichloroethane                   | < 4.0              |                                    | µg/kg dry              | 4.0        | 1.0                   | 1             | "                         |               |                       | "       |         | х      |
| 75-35-4                                          | 1,1-Dichloroethene                   | < 4.0              |                                    | µg/kg dry              | 4.0        | 3.0                   | 1             | "                         |               |                       | "       |         | x      |
| 156-59-2                                         | cis-1,2-Dichloroethene               | < 4.0              |                                    | µg/kg dry              | 4.0        | 1.5                   | 1             | "                         |               |                       | "       |         | x      |
| 156-60-5                                         | trans-1,2-Dichloroethene             | < 4.0              |                                    | µg/kg dry              | 4.0        | 2.1                   | 1             | "                         |               |                       |         |         | x      |
| 78-87-5                                          | 1,2-Dichloropropane                  | < 4.0              |                                    | µg/kg dry              | 4.0        | 2.1                   | 1             |                           |               |                       |         |         | x      |
| 10061-01-5                                       | cis-1,3-Dichloropropene              | < 4.0              |                                    | µg/kg dry              | 4.0        | 2.4                   | 1             | "                         |               |                       |         |         | x      |
| 10061-02-6                                       | trans-1,3-Dichloropropene            | < 4.0              |                                    | µg/kg dry              | 4.0        | 2.1                   | 1             | "                         |               |                       | "       |         | x      |
| 100-41-4                                         | Ethylbenzene                         | < 4.0              |                                    | µg/kg dry              | 4.0        | 0.7                   | 1             |                           |               |                       | "       |         | x      |
| 591-78-6                                         | 2-Hexanone (MBK)                     | < 40.0             |                                    | µg/kg dry              | 40.0       | 4.4                   | 1             |                           |               |                       |         |         | x      |
| 98-82-8                                          | Isopropylbenzene                     | < 4.0              |                                    | µg/kg dry              | 4.0        | 0.8                   | 1             |                           |               |                       | "       |         | x      |
| 99-87-6                                          | 4-Isopropyltoluene                   | < 4.0              |                                    | µg/kg dry              | 4.0        | 3.8                   | 1             |                           |               |                       | "       |         | x      |
| 1634-04-4                                        | Methyl tert-butyl ether              | < 4.0              |                                    | µg/kg dry<br>µg/kg dry | 4.0        | 1.5                   | 1             |                           |               |                       | "       |         | x      |
| 108-10-1                                         | 4-Methyl-2-pentanone<br>(MIBK)       | < 40.0             |                                    | µg/kg dry<br>µg/kg dry | 40.0       | 7.5                   | 1             |                           | "             | "                     | "       | "       | x      |
| 75-09-2                                          | Methylene chloride                   | < 8.0              | O01                                | µg/kg dry              | 8.0        | 1.2                   | 1             | "                         | "             |                       | "       | "       | х      |
| 91-20-3                                          | Naphthalene                          | < 4.0              | -                                  | µg/kg dry              | 4.0        | 3.7                   | 1             | "                         |               |                       |         | "       | x      |
| 103-65-1                                         | n-Propylbenzene                      | < 4.0<br>< 4.0     |                                    |                        | 4.0        | 3.9                   | 1             | "                         | "             |                       | "       | "       | ×      |
| 100-42-5                                         | Styrene                              | < 4.0<br>< 4.0     |                                    | µg/kg dry<br>µg/kg dry | 4.0<br>4.0 | 3.9<br>0.7            | 1             | "                         |               |                       | "       | "       | x      |
| 79-34-5                                          | -                                    |                    |                                    | µg/kg dry              |            |                       |               |                           |               |                       |         | "       |        |
| 127-18-4                                         | 1,1,2,2-Tetrachloroethane            | < 4.0              |                                    | µg/kg dry              | 4.0        | 3.4<br>1.5            | 1             |                           |               |                       |         | "       | X      |
| 108-88-3                                         | Tetrachloroethene<br>Toluene         | < 4.0<br>< 4.0     |                                    | µg/kg dry<br>µg/kg dry | 4.0<br>4.0 | 1.5<br>0.9            | 1<br>1        | "                         | "             |                       |         | "       | x<br>x |

| Sample Identification<br>SB-16-7-8<br>SC06877-09 |                                                   |            | <u>Client Pr</u><br>2150 | -         |       | <u>Matrix</u><br>Soil |             | ection Date<br>-Apr-15 12 |               | <u>Re</u><br>02- |         |         |       |
|--------------------------------------------------|---------------------------------------------------|------------|--------------------------|-----------|-------|-----------------------|-------------|---------------------------|---------------|------------------|---------|---------|-------|
| CAS No.                                          | Analyte(s)                                        | Result F   | lag                      | Units     | *RDL  | MDL                   | Dilution    | Method Ref.               | Prepared      | Analyzed         | Analyst | Batch   | Cert. |
| Volatile O                                       | rganic Compounds                                  |            |                          |           |       |                       |             |                           |               |                  |         |         |       |
|                                                  | rganic Compounds by SV                            |            |                          |           |       |                       |             |                           |               |                  |         |         |       |
|                                                  | by method SW846 5035A                             | <u>.</u>   |                          |           |       |                       | ial weight: |                           |               |                  | 0.15    |         |       |
| 71-55-6                                          | 1,1,1-Trichloroethane                             | < 4.0      |                          | µg/kg dry | 4.0   | 1.0                   | 1           | SW846 8260C               | 05-May-1<br>5 | 05-May-1<br>5    | SJB     | 1508642 | х     |
| 79-00-5                                          | 1,1,2-Trichloroethane                             | < 4.0      |                          | µg/kg dry | 4.0   | 2.9                   | 1           |                           | "             |                  |         |         | х     |
| 79-01-6                                          | Trichloroethene                                   | < 4.0      |                          | µg/kg dry | 4.0   | 0.7                   | 1           |                           | "             | "                |         | "       | х     |
| 75-69-4                                          | Trichlorofluoromethane<br>(Freon 11)              | < 4.0      |                          | µg/kg dry | 4.0   | 2.2                   | 1           | "                         | "             | "                | "       | "       | х     |
| 95-63-6                                          | 1,2,4-Trimethylbenzene                            | < 4.0      |                          | µg/kg dry | 4.0   | 1.0                   | 1           |                           | "             |                  | "       |         | х     |
| 108-67-8                                         | 1,3,5-Trimethylbenzene                            | < 4.0      |                          | µg/kg dry | 4.0   | 1.1                   | 1           |                           | "             | "                | "       | "       | х     |
| 75-01-4                                          | Vinyl chloride                                    | < 4.0      |                          | µg/kg dry | 4.0   | 1.5                   | 1           |                           | "             | "                | "       | "       | х     |
| 179601-23-1                                      | m,p-Xylene                                        | < 8.0      |                          | µg/kg dry | 8.0   | 0.8                   | 1           |                           | "             | "                | "       | "       | х     |
| 95-47-6                                          | o-Xylene                                          | < 4.0      |                          | µg/kg dry | 4.0   | 0.9                   | 1           |                           | "             | "                | "       |         | х     |
| Surrogate r                                      | ecoveries:                                        |            |                          |           |       |                       |             |                           |               |                  |         |         |       |
| 460-00-4                                         | 4-Bromofluorobenzene                              | 98         |                          |           | 70-13 | 80 %                  |             |                           | "             | "                | "       |         |       |
| 2037-26-5                                        | Toluene-d8                                        | 105        |                          |           | 70-13 | 80 %                  |             |                           | "             |                  | "       |         |       |
| 17060-07-0                                       | 1,2-Dichloroethane-d4                             | 106        |                          |           | 70-13 | 80 %                  |             |                           | "             | "                | "       |         |       |
| 1868-53-7                                        | Dibromofluoromethane                              | 106        |                          |           | 70-13 | 80 %                  |             |                           | "             | "                | "       |         |       |
|                                                  | rganic Compounds                                  |            |                          |           |       |                       |             |                           |               |                  |         |         |       |
|                                                  | by method SW846 5035A                             |            |                          |           |       |                       | ial weight: | <u>8.93 g</u>             |               |                  |         |         |       |
| 108-05-4                                         | Vinyl acetate                                     | < 40.0     |                          | µg/kg dry | 40.0  | 8.4                   | 1           | "                         | 05-May-1<br>5 |                  |         | 1508644 |       |
| Surrogate r                                      | ecoveries:                                        |            |                          |           |       |                       |             |                           |               |                  |         |         |       |
| 460-00-4                                         | 4-Bromofluorobenzene                              | 107        |                          |           | 70-13 | 80 %                  |             |                           | "             |                  |         |         |       |
| 2037-26-5                                        | Toluene-d8                                        | 95         |                          |           | 70-13 | 80 %                  |             |                           |               |                  |         |         |       |
| 17060-07-0                                       | 1,2-Dichloroethane-d4                             | 115        |                          |           | 70-13 | 80 %                  |             |                           |               |                  |         |         |       |
| 1868-53-7                                        | Dibromofluoromethane                              | 98         |                          |           | 70-13 | 80 %                  |             |                           | "             |                  |         |         |       |
|                                                  | y Identified Compounds b<br>by method SW846 5035A |            |                          |           |       | Init                  | ial weight: | 8 03 a                    |               |                  |         |         |       |
| repared                                          | Tentatively Identified                            | None found |                          | µg/kg dry |       | <u></u>               | 1           | SW846 8260C               | 05-May-1      |                  | SJB     | 1508642 |       |
|                                                  | Compounds                                         |            |                          | µ9/19 0.) |       |                       | ·           | TICs                      | 5             |                  | 002     | 10000.2 |       |
| Semivolati                                       | le Organic Compounds by                           | GCMS       |                          |           |       |                       |             |                           |               |                  |         |         |       |
|                                                  | ile Organic Compounds<br>by method SW846 3545A    | <u>v</u>   |                          |           |       |                       |             |                           |               |                  |         |         |       |
| 83-32-9                                          | Acenaphthene                                      | < 76.7     |                          | µg/kg dry | 76.7  | 17.9                  | 1           | SW846 8270D               | 05-May-1<br>5 | 10-May-1<br>5    | MSL     | 1508622 | х     |
| 208-96-8                                         | Acenaphthylene                                    | < 76.7     |                          | µg/kg dry | 76.7  | 16.3                  | 1           | "                         | "             | "                | "       | "       | х     |
| 120-12-7                                         | Anthracene                                        | < 76.7     |                          | µg/kg dry | 76.7  | 17.6                  | 1           | "                         | "             | "                | "       | "       | х     |
| 56-55-3                                          | Benzo (a) anthracene                              | < 76.7     |                          | µg/kg dry | 76.7  | 15.9                  | 1           | "                         | "             | "                | "       |         | х     |
| 50-32-8                                          | Benzo (a) pyrene                                  | < 76.7     |                          | µg/kg dry | 76.7  | 16.0                  | 1           | "                         | "             |                  | "       | "       | х     |
| 205-99-2                                         | Benzo (b) fluoranthene                            | < 76.7     |                          | µg/kg dry | 76.7  | 17.5                  | 1           | "                         | "             |                  | "       | "       | х     |
| 191-24-2                                         | Benzo (g,h,i) perylene                            | < 76.7     |                          | µg/kg dry | 76.7  | 16.6                  | 1           | "                         | "             | "                | "       | "       | х     |
| 207-08-9                                         | Benzo (k) fluoranthene                            | < 76.7     |                          | µg/kg dry | 76.7  | 17.5                  | 1           | "                         | "             | "                | "       | "       | Х     |
| 111-91-1                                         | Bis(2-chloroethoxy)metha<br>ne                    | < 380      |                          | µg/kg dry | 380   | 69.3                  | 1           | "                         | "             | "                | "       | "       | х     |
| 111-44-4                                         | Bis(2-chloroethyl)ether                           | < 192      |                          | µg/kg dry | 192   | 69.1                  | 1           | "                         | "             |                  | "       | "       | х     |
| 108-60-1                                         | Bis(2-chloroisopropyl)ethe r                      | < 192      |                          | µg/kg dry | 192   | 69.0                  | 1           | u                         | "             | "                | "       | "       | х     |
| 117-81-7                                         | Bis(2-ethylhexyl)phthalate                        | < 192      |                          | µg/kg dry | 192   | 94.8                  | 1           | "                         | "             |                  | "       |         | Х     |

| <u>Sample Io</u><br>SB-16-7-8<br>SC06877 |                               |                |          | <u>nt Project #</u><br>150606 |              | <u>Matrix</u><br>Soil |             | ection Date<br>P-Apr-15 12 |               |         | <u>ceived</u><br>May-15 |        |
|------------------------------------------|-------------------------------|----------------|----------|-------------------------------|--------------|-----------------------|-------------|----------------------------|---------------|---------|-------------------------|--------|
| CAS No.                                  | Analyte(s)                    | Result Fl      | ag Units | *RDL                          | MDL          | Dilution              | Method Ref. | Prepared                   | Analyzed      | Analyst | Batch                   | Cert.  |
| Semivolat                                | ile Organic Compounds by (    | GCMS           |          |                               |              |                       |             |                            |               |         |                         |        |
|                                          | tile Organic Compounds        |                |          |                               |              |                       |             |                            |               |         |                         |        |
|                                          | by method SW846 3545A         |                |          |                               |              |                       |             |                            |               |         |                         |        |
| 101-55-3                                 | 4-Bromophenyl phenyl<br>ether | < 380          | µg/kg d  | ry 380                        | 76.7         | 1                     | SW846 8270D | 05-May-1<br>5              | 10-May-1<br>5 | MSL     | 1508622                 | X      |
| 85-68-7                                  | Butyl benzyl phthalate        | < 380          | µg/kg d  | ry 380                        | 84.1         | 1                     | "           | "                          | "             | "       | "                       | х      |
| 86-74-8                                  | Carbazole                     | < 192          | µg/kg d  | ry 192                        | 97.6         | 1                     | "           |                            | "             | "       | "                       | х      |
| 59-50-7                                  | 4-Chloro-3-methylphenol       | < 380          | µg/kg d  | ry 380                        | 78.8         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 106-47-8                                 | 4-Chloroaniline               | < 192          | µg/kg d  | ry 192                        | 78.4         | 1                     | "           |                            | "             | "       | "                       | Х      |
| 91-58-7                                  | 2-Chloronaphthalene           | < 380          | µg/kg d  | ry 380                        | 66.8         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 95-57-8                                  | 2-Chlorophenol                | < 192          | µg/kg d  | ry 192                        | 67.9         | 1                     | "           |                            | "             | "       | "                       | Х      |
| 7005-72-3                                | 4-Chlorophenyl phenyl ether   | < 380          | µg/kg d  | ry 380                        | 71.3         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 218-01-9                                 | Chrysene                      | < 76.7         | µg/kg d  | ry 76.7                       | 18.8         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 53-70-3                                  | Dibenzo (a,h) anthracene      | < 76.7         | µg/kg d  | ry 76.7                       | 14.1         | 1                     | u           | "                          | "             | "       | "                       | Х      |
| 132-64-9                                 | Dibenzofuran                  | < 192          | µg/kg d  | ry 192                        | 14.1         | 1                     | u           | "                          | "             | "       | "                       | Х      |
| 95-50-1                                  | 1,2-Dichlorobenzene           | < 380          | µg/kg d  | ry 380                        | 63.8         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 541-73-1                                 | 1,3-Dichlorobenzene           | < 380          | µg/kg d  | ry 380                        | 67.4         | 1                     |             | "                          | "             | "       | "                       | Х      |
| 106-46-7                                 | 1,4-Dichlorobenzene           | < 380          | µg/kg d  | ry 380                        | 62.8         | 1                     |             | "                          | "             | "       | "                       | Х      |
| 91-94-1                                  | 3,3'-Dichlorobenzidine        | < 380          | µg/kg d  |                               | 77.1         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 120-83-2                                 | 2,4-Dichlorophenol            | < 192          | µg/kg d  |                               | 65.4         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 84-66-2                                  | Diethyl phthalate             | < 380          | µg/kg d  |                               | 79.3         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 131-11-3                                 | Dimethyl phthalate            | < 380          | µg/kg d  |                               | 74.8         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 105-67-9                                 | 2,4-Dimethylphenol            | < 380          | µg/kg d  |                               | 65.1         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 84-74-2                                  | Di-n-butyl phthalate          | < 380          | µg/kg d  |                               | 85.3         | 1                     | "           |                            | "             | "       | "                       | Х      |
| 534-52-1                                 | 4,6-Dinitro-2-methylphenol    | < 380          | µg/kg d  |                               | 101          | 1                     | "           |                            | "             | "       | "                       | Х      |
| 51-28-5                                  | 2,4-Dinitrophenol             | < 380          | µg/kg d  |                               | 100          | 1                     |             |                            | "             | "       |                         | X      |
| 121-14-2                                 | 2,4-Dinitrotoluene            | < 192          | µg/kg d  |                               | 79.1         | 1                     |             |                            |               |         |                         | X      |
| 606-20-2                                 | 2,6-Dinitrotoluene            | < 192          | μg/kg d  |                               | 74.5         | 1                     |             |                            |               |         |                         | X      |
| 117-84-0                                 | Di-n-octyl phthalate          | < 380          | µg/kg d  |                               | 82.0         | 1                     |             |                            |               |         |                         | X      |
| 206-44-0                                 | Fluoranthene                  | < 76.7         | µg/kg d  |                               | 19.3         | 1                     |             |                            |               |         |                         | X      |
| 86-73-7<br>118-74-1                      | Fluorene                      | < 76.7         | µg/kg d  |                               | 18.4         | 1                     |             |                            |               |         |                         | X      |
| 87-68-3                                  | Hexachlorobenzene             | < 192<br>< 192 | µg/kg d  |                               | 83.9<br>61.1 | 1                     |             |                            | "             |         | "                       | X<br>X |
| 77-47-4                                  | Hexachlorobutadiene           |                | µg/kg d  |                               |              | 1                     |             |                            | "             |         |                         |        |
| //-4/-4                                  | Hexachlorocyclopentadien<br>e | < 192          | µg/kg d  | ry 192                        | 70.0         | 1                     |             |                            |               |         |                         | Х      |
| 67-72-1                                  | Hexachloroethane              | < 192          | µg/kg d  | ry 192                        | 73.8         | 1                     |             |                            | "             | "       | "                       | х      |
| 193-39-5                                 | Indeno (1,2,3-cd) pyrene      | < 76.7         | µg/kg d  | ry 76.7                       | 15.7         | 1                     |             | "                          | "             |         | "                       | Х      |
| 78-59-1                                  | Isophorone                    | < 192          | µg/kg d  | ry 192                        | 67.1         | 1                     |             |                            | "             | "       | "                       | х      |
| 91-57-6                                  | 2-Methylnaphthalene           | < 76.7         | µg/kg d  | ry 76.7                       | 15.8         | 1                     |             | "                          | "             | "       | "                       | Х      |
| 95-48-7                                  | 2-Methylphenol                | < 380          | µg/kg d  | ry 380                        | 68.1         | 1                     |             | "                          | "             | "       | "                       | Х      |
| 108-39-4,<br>106-44-5                    | 3 & 4-Methylphenol            | < 380          | µg/kg d  | ry 380                        | 85.5         | 1                     | n           | "                          | "             | "       | "                       | Х      |
| 91-20-3                                  | Naphthalene                   | < 76.7         | µg/kg d  | ry 76.7                       | 15.6         | 1                     | "           | "                          | "             | "       | "                       | х      |
| 88-74-4                                  | 2-Nitroaniline                | < 380          | µg/kg d  | ry 380                        | 76.1         | 1                     | "           | "                          | "             | "       | "                       | х      |
| 99-09-2                                  | 3-Nitroaniline                | < 380          | µg/kg d  | ry 380                        | 90.8         | 1                     | "           | "                          | "             | "       | "                       | х      |
| 100-01-6                                 | 4-Nitroaniline                | < 192          | µg/kg d  | ry 192                        | 110          | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 98-95-3                                  | Nitrobenzene                  | < 192          | µg/kg d  | ry 192                        | 74.5         | 1                     | "           | "                          | "             | "       | "                       | Х      |
| 88-75-5                                  | 2-Nitrophenol                 | < 192          | µg/kg d  | ry 192                        | 63.6         | 1                     | u           | W                          | "             | "       | "                       | х      |

| Sample Ider<br>SB-16-7-8<br>SC06877-09 |                                              |            |      | <u>Client Pr</u><br>21500 | -     |       | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 12 |               |         | <u>eceived</u><br>May-15 |       |
|----------------------------------------|----------------------------------------------|------------|------|---------------------------|-------|-------|-----------------------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                                | Analyte(s)                                   | Result H   | Flag | Units                     | *RDL  | MDL   | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Semivolatile                           | Organic Compounds by (                       | GCMS       |      |                           |       |       |                       |                     |                           |               |         |                          |       |
| Semivolatile                           | e Organic Compounds<br>y method SW846 3545A  |            |      |                           |       |       |                       |                     |                           |               |         |                          |       |
|                                        | 4-Nitrophenol                                | < 1520     |      | µg/kg dry                 | 1520  | 103   | 1                     | SW846 8270D         | 05-May-1<br>5             | 10-May-1<br>5 | MSL     | 1508622                  | x     |
| 621-64-7                               | N-Nitrosodi-n-propylamine                    | < 192      |      | µg/kg dry                 | 192   | 81.7  | 1                     | "                   | "                         |               | "       | "                        | х     |
| 86-30-6                                | N-Nitrosodiphenylamine                       | < 380      |      | µg/kg dry                 | 380   | 89.3  | 1                     |                     | "                         |               | "       |                          | х     |
| 87-86-5                                | Pentachlorophenol                            | < 380      |      | µg/kg dry                 | 380   | 90.4  | 1                     |                     | "                         |               | "       |                          | х     |
| 85-01-8                                | Phenanthrene                                 | < 76.7     |      | µg/kg dry                 | 76.7  | 18.7  | 1                     |                     | "                         | "             | "       | "                        | х     |
| 108-95-2                               | Phenol                                       | < 380      |      | µg/kg dry                 | 380   | 69.1  | 1                     |                     | "                         |               | "       |                          | х     |
| 129-00-0                               | Pyrene                                       | < 76.7     |      | µg/kg dry                 | 76.7  | 16.3  | 1                     |                     | "                         |               | "       |                          | х     |
| 120-82-1                               | 1,2,4-Trichlorobenzene                       | < 380      |      | µg/kg dry                 | 380   | 60.4  | 1                     |                     | "                         |               | "       |                          | х     |
| 95-95-4                                | 2,4,5-Trichlorophenol                        | < 380      |      | µg/kg dry                 | 380   | 78.5  | 1                     | "                   |                           |               | "       | "                        | х     |
| Surrogate rec                          | coveries:                                    |            |      |                           |       |       |                       |                     |                           |               |         |                          |       |
| 321-60-8                               | 2-Fluorobiphenyl                             | 70         |      |                           | 30-13 | 80 %  |                       | "                   | "                         |               | "       |                          |       |
| 367-12-4                               | 2-Fluorophenol                               | 78         |      |                           | 30-13 | 80 %  |                       | "                   | "                         |               | "       |                          |       |
| 4165-60-0                              | Nitrobenzene-d5                              | 80         |      |                           | 30-13 | 80 %  |                       | "                   | "                         |               | "       |                          |       |
| 4165-62-2                              | Phenol-d5                                    | 81         |      |                           | 30-13 | 80 %  |                       | "                   | "                         |               | "       |                          |       |
| 1718-51-0                              | Terphenyl-dl4                                | 73         |      |                           | 30-13 | 80 %  |                       |                     | "                         |               | "       |                          |       |
| 118-79-6                               | 2,4,6-Tribromophenol                         | 70         |      |                           | 30-13 | 80 %  |                       |                     | "                         |               | "       |                          |       |
|                                        | Identified Compounds<br>y method SW846 3545A |            |      |                           |       |       |                       |                     |                           |               |         |                          |       |
|                                        | Tentatively Identified<br>Compounds          | None found |      | µg/kg dry                 |       |       | 1                     | SW846 8270D<br>TICS | "                         | "             | MSL     | "                        |       |
| Semivolatile                           | Organic Compounds by (                       | GC         |      |                           |       |       |                       |                     |                           |               |         |                          |       |
|                                        | orine Pesticides<br>y method SW846 3545A     |            |      |                           |       |       |                       |                     |                           |               |         |                          |       |
|                                        | alpha-BHC                                    | < 5.75     |      | µg/kg dry                 | 5.75  | 0.560 | 1                     | SW846 8081B         | 04-May-1<br>5             | 05-May-1<br>5 | TG      | 1508525                  | х     |
| 319-85-7                               | beta-BHC                                     | < 5.75     |      | µg/kg dry                 | 5.75  | 0.741 | 1                     |                     |                           |               | "       |                          | х     |
|                                        | delta-BHC                                    | < 5.75     |      | µg/kg dry                 | 5.75  | 0.450 | 1                     |                     |                           |               | "       |                          | х     |
| 58-89-9 g                              | gamma-BHC (Lindane)                          | < 3.45     |      | µg/kg dry                 | 3.45  | 0.618 | 1                     |                     |                           |               | "       |                          | х     |
| 76-44-8                                | Heptachlor                                   | < 5.75     |      | µg/kg dry                 | 5.75  | 0.671 | 1                     |                     | "                         |               | "       |                          | х     |
| 309-00-2                               | Aldrin                                       | < 5.75     |      | µg/kg dry                 | 5.75  | 0.639 | 1                     |                     | "                         |               | "       |                          | х     |
| 1024-57-3                              | Heptachlor epoxide                           | < 5.75     |      | µg/kg dry                 | 5.75  | 0.608 | 1                     |                     | "                         |               | "       |                          | х     |
| 959-98-8                               | Endosulfan I                                 | < 5.75     |      | µg/kg dry                 | 5.75  | 0.647 | 1                     |                     | "                         |               | "       |                          | х     |
| 60-57-1                                | Dieldrin                                     | < 5.75     |      | µg/kg dry                 | 5.75  | 0.658 | 1                     |                     | "                         |               | "       |                          | х     |
| 72-55-9                                | 4,4'-DDE (p,p')                              | < 5.75     |      | µg/kg dry                 | 5.75  | 0.681 | 1                     |                     | "                         |               | "       |                          | х     |
| 72-20-8                                | Endrin                                       | < 9.19     |      | µg/kg dry                 | 9.19  | 0.839 | 1                     |                     | "                         |               | "       |                          | х     |
| 33213-65-9                             | Endosulfan II                                | < 9.19     |      | µg/kg dry                 | 9.19  | 0.647 | 1                     |                     | "                         |               | "       |                          | х     |
| 72-54-8                                | 4,4'-DDD (p,p')                              | < 9.19     |      | µg/kg dry                 | 9.19  | 0.610 | 1                     |                     | "                         |               | "       |                          | х     |
| 1031-07-8                              | Endosulfan sulfate                           | < 9.19     |      | µg/kg dry                 | 9.19  | 0.657 | 1                     | "                   | "                         |               | "       | "                        | х     |
| 50-29-3                                | 4,4'-DDT (p,p')                              | < 9.19     |      | µg/kg dry                 | 9.19  | 0.615 | 1                     | "                   | "                         |               | "       | "                        | х     |
| 72-43-5                                | Methoxychlor                                 | < 9.19     |      | µg/kg dry                 | 9.19  | 1.39  | 1                     | "                   | "                         |               | "       | "                        | х     |
| 53494-70-5                             | Endrin ketone                                | < 9.19     |      | µg/kg dry                 | 9.19  | 0.618 | 1                     | "                   | "                         |               | "       | "                        | х     |
| 7421-93-4                              | Endrin aldehyde                              | < 9.19     |      | µg/kg dry                 | 9.19  | 0.751 | 1                     | "                   | "                         |               | "       | "                        | х     |
|                                        | alpha-Chlordane                              | < 5.75     |      | µg/kg dry                 | 5.75  | 0.625 | 1                     | "                   | "                         |               | "       | "                        | х     |
|                                        | gamma-Chlordane                              | < 5.75     |      | µg/kg dry                 | 5.75  | 0.717 | 1                     | "                   | "                         |               | "       | "                        | х     |
|                                        | Toxaphene                                    | < 115      |      | µg/kg dry                 | 115   | 37.3  | 1                     |                     |                           |               |         |                          | х     |

| Sample Id<br>SB-16-7-8<br>SC06877- |                                                                          |          |     | <u>Client Pr</u><br>2150 | •      |        | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 12 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------|--------------------------------------------------------------------------|----------|-----|--------------------------|--------|--------|-----------------------|---------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                                               | Result F | lag | Units                    | *RDL   | MDL    | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| <u>Organoch</u>                    | ile Organic Compounds by C<br>lorine Pesticides<br>by method SW846 3545A | GC       |     |                          |        |        |                       |               |                           |               |         |                         |       |
| 57-74-9                            | Chlordane                                                                | < 23.0   |     | µg/kg dry                | 23.0   | 13.9   | 1                     | SW846 8081B   | 04-May-1<br>5             | 05-May-1<br>5 | TG      | 1508525                 | Х     |
| 15972-60-8                         | Alachlor                                                                 | < 5.75   |     | µg/kg dry                | 5.75   | 1.03   | 1                     | n             | "                         | "             | "       | "                       |       |
| Surrogate r                        | recoveries:                                                              |          |     |                          |        |        |                       |               |                           |               |         |                         |       |
| 10386-84-2                         | 4,4-DB-Octafluorobiphenyl<br>(Sr)                                        | 71       |     |                          | 30-15  | 0 %    |                       | H             |                           | "             | "       |                         |       |
| 10386-84-2                         | 4,4-DB-Octafluorobiphenyl<br>(Sr) [2C]                                   | 77       |     |                          | 30-15  | 0 %    |                       | "             | "                         | "             | "       | "                       |       |
| 2051-24-3                          | Decachlorobiphenyl (Sr)                                                  | 90       |     |                          | 30-15  | 0 %    |                       |               | "                         |               | "       |                         |       |
| 2051-24-3                          | Decachlorobiphenyl (Sr)<br>[2C]                                          | 74       |     |                          | 30-15  | 0 %    |                       | "             | "                         | "             | "       | "                       |       |
|                                    | nated Biphenyls<br>by method SW846 3545A                                 |          |     |                          |        |        |                       |               |                           |               |         |                         |       |
|                                    | Aroclor-1016                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 20.8   | 1                     | SW846 8082A   | 05-May-1<br>5             | 05-May-1<br>5 | IMR     | 1508633                 | х     |
| 11104-28-2                         | Aroclor-1221                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 17.6   | 1                     |               | "                         |               | "       |                         | х     |
| 11141-16-5                         | Aroclor-1232                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 20.7   | 1                     |               | "                         |               | "       |                         | х     |
| 53469-21-9                         | Aroclor-1242                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 14.3   | 1                     |               | "                         |               | "       |                         | х     |
| 12672-29-6                         | Aroclor-1248                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 14.4   | 1                     |               | "                         |               | "       |                         | х     |
| 11097-69-1                         | Aroclor-1254                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 15.9   | 1                     |               | "                         |               | "       |                         | х     |
| 11096-82-5                         | Aroclor-1260                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 16.1   | 1                     |               | "                         |               | "       | "                       | х     |
| 37324-23-5                         | Aroclor-1262                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 20.6   | 1                     |               | "                         |               | "       |                         | х     |
| 11100-14-4                         | Aroclor-1268                                                             | < 23.0   |     | µg/kg dry                | 23.0   | 22.6   | 1                     | "             |                           |               | "       | "                       | х     |
| Surrogate r                        | recoveries:                                                              |          |     |                          |        |        |                       |               |                           |               |         |                         |       |
| 10386-84-2                         | 4,4-DB-Octafluorobiphenyl<br>(Sr)                                        | 65       |     |                          | 30-15  | 0 %    |                       | "             | "                         | "             | "       | "                       |       |
| 10386-84-2                         | 4,4-DB-Octafluorobiphenyl<br>(Sr) [2C]                                   | 70       |     |                          | 30-15  | 0 %    |                       | "             | "                         | u             | "       | "                       |       |
| 2051-24-3                          | Decachlorobiphenyl (Sr)                                                  | 70       |     |                          | 30-15  | 0 %    |                       |               | "                         |               | "       |                         |       |
| 2051-24-3                          | Decachlorobiphenyl (Sr)<br>[2C]                                          | 85       |     |                          | 30-15  | 0 %    |                       | "             | "                         | u             | "       | "                       |       |
| Total Met:                         | als by EPA 6000/7000 Series                                              | Methods  |     |                          |        |        |                       |               |                           |               |         |                         |       |
| 7440-22-4                          | Silver                                                                   | < 1.51   |     | mg/kg dry                | 1.51   | 0.110  | 1                     | SW846 6010C   | 08-May-1<br>5             | 09-May-1<br>5 | EDT     | 1508923                 | Х     |
| 7440-38-2                          | Arsenic                                                                  | 7.40     |     | mg/kg dry                | 1.51   | 0.243  | 1                     | "             | "                         | "             | "       | "                       | Х     |
| 7440-39-3                          | Barium                                                                   | 31.0     |     | mg/kg dry                | 1.00   | 0.0597 | 1                     | "             | "                         |               | "       | "                       | Х     |
| 7440-43-9                          | Cadmium                                                                  | < 0.502  |     | mg/kg dry                | 0.502  | 0.0161 | 1                     | "             | "                         |               | "       | "                       | Х     |
| 7440-47-3                          | Chromium                                                                 | 6.94     |     | mg/kg dry                | 1.00   | 0.0959 | 1                     | "             | "                         |               | "       | "                       | Х     |
| 7439-97-6                          | Mercury                                                                  | < 0.0324 |     | mg/kg dry                | 0.0324 | 0.0021 | 1                     | SW846 7471B   | "                         | 11-May-1<br>5 | YR      | 1508924                 | Х     |
| 7439-92-1                          | Lead                                                                     | 8.16     |     | mg/kg dry                | 1.51   | 0.277  | 1                     | SW846 6010C   | "                         | 09-May-1<br>5 | EDT     | 1508923                 | х     |
| 7782-49-2                          | Selenium                                                                 | < 1.51   |     | mg/kg dry                | 1.51   | 0.377  | 1                     | "             | "                         |               | "       | "                       | х     |
| General C                          | hemistry Parameters                                                      |          |     |                          |        |        |                       |               |                           |               |         |                         |       |
| _                                  | % Solids                                                                 | 86.6     |     | %                        |        |        | 1                     | SM2540 G Mod. | 04-May-1<br>5             | 04-May-1<br>5 | DT      | 1508564                 |       |
| 57-12-5                            | Cyanide (total)                                                          | < 0.546  |     | mg/kg dry                | 0.546  | 0.437  | 1                     | SW846 9012B   | 05-May-1<br>5             | 05-May-1<br>5 | RLT     | 1508657                 | х     |

| <u>Sample Io</u><br>SB-17-2.5<br>SC06877 |                                 |           |           | <u>Project #</u><br>)606 |      | <u>Matrix</u><br>Soil |             | ection Date<br>P-Apr-15 13 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------------|---------------------------------|-----------|-----------|--------------------------|------|-----------------------|-------------|----------------------------|---------------|---------|-------------------------|-------|
| CAS No.                                  | Analyte(s)                      | Result Fl | ag Units  | *RDL                     | MDL  | Dilution              | Method Ref. | Prepared                   | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolat                                | ile Organic Compounds by (      | GCMS      |           |                          |      |                       |             |                            |               |         |                         |       |
| <u>Semivola</u>                          | tile Organic Compounds          |           |           |                          |      |                       |             |                            |               |         |                         |       |
|                                          | by method SW846 3545A           |           |           |                          |      |                       |             |                            |               |         |                         |       |
| 83-32-9                                  | Acenaphthene                    | < 89.6    | µg/kg dry | 89.6                     | 20.9 | 1                     | SW846 8270D | 05-May-1<br>5              | 10-May-1<br>5 | MSL     | 1508622                 | Х     |
| 208-96-8                                 | Acenaphthylene                  | < 89.6    | µg/kg dry | 89.6                     | 19.0 | 1                     | "           | "                          |               | "       | "                       | х     |
| 120-12-7                                 | Anthracene                      | < 89.6    | µg/kg dry | 89.6                     | 20.5 | 1                     | "           | "                          |               | "       | "                       | х     |
| 56-55-3                                  | Benzo (a) anthracene            | < 89.6    | µg/kg dry | 89.6                     | 18.5 | 1                     | "           | "                          |               | "       | "                       | х     |
| 50-32-8                                  | Benzo (a) pyrene                | < 89.6    | µg/kg dry | 89.6                     | 18.7 | 1                     | "           | "                          |               | "       | "                       | Х     |
| 205-99-2                                 | Benzo (b) fluoranthene          | < 89.6    | µg/kg dry | 89.6                     | 20.4 | 1                     |             | "                          |               | "       | "                       | Х     |
| 191-24-2                                 | Benzo (g,h,i) perylene          | < 89.6    | µg/kg dry | 89.6                     | 19.4 | 1                     |             | "                          |               | "       | "                       | Х     |
| 207-08-9                                 | Benzo (k) fluoranthene          | < 89.6    | µg/kg dry | 89.6                     | 20.4 | 1                     |             | "                          |               | "       | "                       | Х     |
| 111-91-1                                 | Bis(2-chloroethoxy)metha ne     | < 443     | µg/kg dry | 443                      | 80.9 | 1                     | п           | "                          | "             | "       | "                       | Х     |
| 111-44-4                                 | Bis(2-chloroethyl)ether         | < 224     | µg/kg dry | 224                      | 80.6 | 1                     |             | "                          |               | "       | "                       | Х     |
| 108-60-1                                 | Bis(2-chloroisopropyl)ethe      | < 224     | µg/kg dry | 224                      | 80.5 | 1                     | "           | "                          |               | "       | "                       | х     |
| 117-81-7                                 | r<br>Bis(2-ethylhexyl)phthalate | < 224     | µg/kg dry | 224                      | 111  | 1                     |             |                            |               | "       | "                       | х     |
| 101-55-3                                 | 4-Bromophenyl phenyl            | < 443     | µg/kg dry | 443                      | 89.6 | 1                     | u           | "                          | "             | "       | "                       | x     |
| 85-68-7                                  | ether<br>Butyl benzyl phthalate | < 443     | µg/kg dry | 443                      | 98.2 | 1                     | "           |                            |               | "       | "                       | х     |
| 86-74-8                                  | Carbazole                       | < 224     | µg/kg dry | 224                      | 114  | 1                     |             |                            |               | "       | "                       | x     |
| 59-50-7                                  | 4-Chloro-3-methylphenol         | < 443     | µg/kg dry | 443                      | 91.9 | 1                     |             | "                          |               | "       | "                       | x     |
| 106-47-8                                 | 4-Chloroaniline                 | < 224     | μg/kg dry | 224                      | 91.5 | 1                     |             |                            |               | "       | "                       | x     |
| 91-58-7                                  | 2-Chloronaphthalene             | < 443     | µg/kg dry | 443                      | 77.9 | 1                     |             | "                          |               | "       | "                       | x     |
| 95-57-8                                  | 2-Chlorophenol                  | < 224     | μg/kg dry | 224                      | 79.3 | 1                     |             |                            |               |         | "                       | x     |
| 7005-72-3                                | 4-Chlorophenyl phenyl           | < 443     | μg/kg dry | 443                      | 83.2 | 1                     |             |                            |               | "       | "                       | x     |
|                                          | ether                           |           | P33)      |                          |      |                       |             |                            |               |         |                         |       |
| 218-01-9                                 | Chrysene                        | < 89.6    | µg/kg dry | 89.6                     | 21.9 | 1                     |             | "                          |               | "       | "                       | Х     |
| 53-70-3                                  | Dibenzo (a,h) anthracene        | < 89.6    | µg/kg dry | 89.6                     | 16.5 | 1                     |             | "                          |               | "       | "                       | Х     |
| 132-64-9                                 | Dibenzofuran                    | < 224     | µg/kg dry | 224                      | 16.5 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 95-50-1                                  | 1,2-Dichlorobenzene             | < 443     | µg/kg dry | 443                      | 74.5 | 1                     |             | "                          |               | "       | "                       | Х     |
| 541-73-1                                 | 1,3-Dichlorobenzene             | < 443     | µg/kg dry | 443                      | 78.7 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 106-46-7                                 | 1,4-Dichlorobenzene             | < 443     | µg/kg dry | 443                      | 73.4 | 1                     |             | "                          |               | "       | "                       | Х     |
| 91-94-1                                  | 3,3'-Dichlorobenzidine          | < 443     | µg/kg dry | 443                      | 90.0 | 1                     |             | "                          |               | "       | "                       | Х     |
| 120-83-2                                 | 2,4-Dichlorophenol              | < 224     | µg/kg dry | 224                      | 76.3 | 1                     |             | "                          |               | "       | "                       | Х     |
| 84-66-2                                  | Diethyl phthalate               | < 443     | µg/kg dry | 443                      | 92.5 | 1                     |             | "                          |               | "       | "                       | Х     |
| 131-11-3                                 | Dimethyl phthalate              | < 443     | µg/kg dry | 443                      | 87.3 | 1                     |             | "                          |               | "       | "                       | Х     |
| 105-67-9                                 | 2,4-Dimethylphenol              | < 443     | µg/kg dry | 443                      | 76.0 | 1                     |             | "                          |               | "       | "                       | Х     |
| 84-74-2                                  | Di-n-butyl phthalate            | < 443     | µg/kg dry | 443                      | 99.5 | 1                     |             | "                          |               | "       | "                       | Х     |
| 534-52-1                                 | 4,6-Dinitro-2-methylphenol      | < 443     | µg/kg dry | 443                      | 118  | 1                     |             | "                          |               | "       | "                       | Х     |
| 51-28-5                                  | 2,4-Dinitrophenol               | < 443     | µg/kg dry | 443                      | 117  | 1                     |             | "                          |               | "       | "                       | Х     |
| 121-14-2                                 | 2,4-Dinitrotoluene              | < 224     | µg/kg dry | 224                      | 92.4 | 1                     |             | "                          |               | "       | "                       | Х     |
| 606-20-2                                 | 2,6-Dinitrotoluene              | < 224     | µg/kg dry | 224                      | 87.0 | 1                     | "           | "                          |               | "       | "                       | Х     |
| 117-84-0                                 | Di-n-octyl phthalate            | < 443     | µg/kg dry | 443                      | 95.7 | 1                     | "           | "                          |               | "       | "                       | Х     |
| 206-44-0                                 | Fluoranthene                    | < 89.6    | µg/kg dry | 89.6                     | 22.5 | 1                     | "           | "                          |               | "       | "                       | Х     |
| 86-73-7                                  | Fluorene                        | < 89.6    | µg/kg dry | 89.6                     | 21.5 | 1                     | "           | "                          |               | "       | "                       | Х     |
| 118-74-1                                 | Hexachlorobenzene               | < 224     | µg/kg dry | 224                      | 98.0 | 1                     | "           | "                          |               | "       | "                       | Х     |
| 87-68-3                                  | Hexachlorobutadiene             | < 224     | µg/kg dry | 224                      | 71.3 | 1                     | "           | "                          | "             | "       | "                       | Х     |

| <u>Sample Ic</u><br>SB-17-2.5<br>SC06877- |                                                        |            |      | <u>Client P</u><br>2150 |        |        | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 13 |               |         | <u>ceived</u><br>May-15 |       |
|-------------------------------------------|--------------------------------------------------------|------------|------|-------------------------|--------|--------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                                   | Analyte(s)                                             | Result     | Flag | Units                   | *RDL   | MDL    | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolati                                | ile Organic Compounds by G                             | GCMS       |      |                         |        |        |                       |                     |                           |               |         |                         |       |
|                                           | tile Organic Compounds                                 |            |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 77-47-4                                   | by method SW846 3545A<br>Hexachlorocyclopentadien<br>e | < 224      |      | µg/kg dry               | 224    | 81.8   | 1                     | SW846 8270D         | 05-May-1<br>5             | 10-May-1<br>5 | MSL     | 1508622                 | х     |
| 67-72-1                                   | Hexachloroethane                                       | < 224      |      | µg/kg dry               | 224    | 86.1   | 1                     | "                   | "                         |               | "       | "                       | х     |
| 193-39-5                                  | Indeno (1,2,3-cd) pyrene                               | < 89.6     |      | µg/kg dry               | 89.6   | 18.3   | 1                     | "                   | "                         |               | "       | "                       | х     |
| 78-59-1                                   | Isophorone                                             | < 224      |      | µg/kg dry               | 224    | 78.3   | 1                     |                     | "                         |               | "       | "                       | х     |
| 91-57-6                                   | 2-Methylnaphthalene                                    | < 89.6     |      | µg/kg dry               | 89.6   | 18.5   | 1                     |                     | "                         |               | "       | "                       | х     |
| 95-48-7                                   | 2-Methylphenol                                         | < 443      |      | µg/kg dry               | 443    | 79.5   | 1                     |                     | "                         |               | "       | "                       | х     |
| 108-39-4,<br>106-44-5                     | 3 & 4-Methylphenol                                     | < 443      |      | µg/kg dry               | 443    | 99.8   | 1                     | "                   | "                         | "             | "       |                         | х     |
| 91-20-3                                   | Naphthalene                                            | < 89.6     |      | µg/kg dry               | 89.6   | 18.3   | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 88-74-4                                   | 2-Nitroaniline                                         | < 443      |      | µg/kg dry               | 443    | 88.8   | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 99-09-2                                   | 3-Nitroaniline                                         | < 443      |      | µg/kg dry               | 443    | 106    | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 100-01-6                                  | 4-Nitroaniline                                         | < 224      |      | µg/kg dry               | 224    | 128    | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 98-95-3                                   | Nitrobenzene                                           | < 224      |      | µg/kg dry               | 224    | 87.0   | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 88-75-5                                   | 2-Nitrophenol                                          | < 224      |      | µg/kg dry               | 224    | 74.3   | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 100-02-7                                  | 4-Nitrophenol                                          | < 1770     |      | µg/kg dry               | 1770   | 120    | 1                     | "                   | "                         | "             | "       | "                       | Х     |
| 621-64-7                                  | N-Nitrosodi-n-propylamine                              | < 224      |      | µg/kg dry               | 224    | 95.4   | 1                     | "                   | "                         | "             | "       | "                       | х     |
| 86-30-6                                   | N-Nitrosodiphenylamine                                 | < 443      |      | µg/kg dry               | 443    | 104    | 1                     | "                   | "                         |               | "       | "                       | Х     |
| 87-86-5                                   | Pentachlorophenol                                      | < 443      |      | µg/kg dry               | 443    | 105    | 1                     | "                   | "                         | "             | "       | "                       | Х     |
| 85-01-8                                   | Phenanthrene                                           | < 89.6     |      | µg/kg dry               | 89.6   | 21.9   | 1                     | "                   | "                         |               | "       |                         | х     |
| 108-95-2                                  | Phenol                                                 | < 443      |      | µg/kg dry               | 443    | 80.7   | 1                     | "                   | "                         |               | "       |                         | х     |
| 129-00-0                                  | Pyrene                                                 | < 89.6     |      | µg/kg dry               | 89.6   | 19.1   | 1                     | "                   | "                         |               | "       |                         | х     |
| 120-82-1                                  | 1,2,4-Trichlorobenzene                                 | < 443      |      | µg/kg dry               | 443    | 70.5   | 1                     | "                   | "                         |               | "       |                         | х     |
| 95-95-4                                   | 2,4,5-Trichlorophenol                                  | < 443      |      | µg/kg dry               | 443    | 91.7   | 1                     | "                   | "                         |               | "       | "                       | х     |
| Surrogate                                 | recoveries:                                            |            |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 321-60-8                                  | 2-Fluorobiphenyl                                       | 64         |      |                         | 30-13  | 0 %    |                       | "                   | "                         |               | "       | "                       |       |
| 367-12-4                                  | 2-Fluorophenol                                         | 70         |      |                         | 30-13  | 0 %    |                       | "                   | "                         |               | "       | "                       |       |
| 4165-60-0                                 | Nitrobenzene-d5                                        | 75         |      |                         | 30-13  | 0 %    |                       | "                   | "                         |               | "       | "                       |       |
| 4165-62-2                                 | Phenol-d5                                              | 76         |      |                         | 30-13  | 0 %    |                       | "                   | "                         |               | "       | "                       |       |
| 1718-51-0                                 | Terphenyl-dl4                                          | 66         |      |                         | 30-13  | 0 %    |                       | "                   | "                         |               | "       | "                       |       |
| 118-79-6                                  | 2,4,6-Tribromophenol                                   | 65         |      |                         | 30-13  | 0 %    |                       | "                   | "                         |               | "       | "                       |       |
|                                           | ly Identified Compounds<br>by method SW846 3545A       |            |      |                         |        |        |                       |                     |                           |               |         |                         |       |
|                                           | Tentatively Identified<br>Compounds                    | None found |      | µg/kg dry               |        |        | 1                     | SW846 8270D<br>TICS | "                         | "             | MSL     | "                       |       |
| Total Met                                 | als by EPA 6000/7000 Series                            | Methods    |      |                         |        |        |                       |                     |                           |               |         |                         |       |
| 7440-22-4                                 | Silver                                                 | < 1.94     |      | mg/kg dry               | 1.94   | 0.142  | 1                     | SW846 6010C         | 08-May-1<br>5             | 09-May-1<br>5 | EDT     | 1508923                 | х     |
| 7440-38-2                                 | Arsenic                                                | 89.8       |      | mg/kg dry               | 1.94   | 0.313  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-39-3                                 | Barium                                                 | 41.4       |      | mg/kg dry               | 1.29   | 0.0767 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-43-9                                 | Cadmium                                                | 14.0       |      | mg/kg dry               | 0.646  | 0.0207 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-47-3                                 | Chromium                                               | 5.36       |      | mg/kg dry               | 1.29   | 0.123  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7439-97-6                                 | Mercury                                                | 0.232      |      | mg/kg dry               | 0.0378 | 0.0025 | 1                     | SW846 7471B         | "                         | 11-May-1<br>5 | YR      | 1508924                 | Х     |
| 7439-92-1                                 | Lead                                                   | 291        |      | mg/kg dry               | 1.94   | 0.357  | 1                     | SW846 6010C         | "                         | 09-May-1<br>5 | EDT     | 1508923                 | Х     |
| 7782-49-2                                 | Selenium                                               | < 3.10     | R01  | mg/kg dry               | 3.10   | 0.485  | 1                     | "                   | "                         | "             | "       | "                       | х     |

| Sample Identification<br>SB-17-2.5-3.5<br>SC06877-11 |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 13 |               |         | <u>eceived</u><br>May-15 |       |
|------------------------------------------------------|--------|------|-------|--------------------------|-----|-----------------------|---------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No. Analyte(s)                                   | Result | Flag | Units | *RDL                     | MDL | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| General Chemistry Parameters<br>% Solids             | 74.0   |      | %     |                          |     | 1                     | SM2540 G Mod. | 04-May-1<br>5             | 04-May-1<br>5 | DT      | 1508564                  |       |

| <u>Sample Io</u><br>SB-17-6-3<br>SC06877 |                                                      |             | <u>Client P</u><br>2150 |      |      | <u>Matrix</u><br>Soil |             | ection Date<br>P-Apr-15 13 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------------|------------------------------------------------------|-------------|-------------------------|------|------|-----------------------|-------------|----------------------------|---------------|---------|-------------------------|-------|
| CAS No.                                  | Analyte(s)                                           | Result Flag | Units                   | *RDL | MDL  | Dilution              | Method Ref. | Prepared                   | Analyzed      | Analyst | Batch                   | Cert. |
| <u>Semivola</u>                          | ile Organic Compounds by (<br>tile Organic Compounds | GCMS        |                         |      |      |                       |             |                            |               |         |                         |       |
| <u>Prepared</u><br>83-32-9               | by method SW846 3545A<br>Acenaphthene                | < 75.1      | µg/kg dry               | 75.1 | 17.5 | 1                     | SW846 8270D | 05-May-1<br>5              | 10-May-1<br>5 | MSL     | 1508622                 | x     |
| 208-96-8                                 | Acenaphthylene                                       | < 75.1      | µg/kg dry               | 75.1 | 15.9 | 1                     | "           | "                          |               | "       | "                       | х     |
| 120-12-7                                 | Anthracene                                           | < 75.1      | µg/kg dry               | 75.1 | 17.2 | 1                     | "           | "                          | "             | "       | "                       | х     |
| 56-55-3                                  | Benzo (a) anthracene                                 | < 75.1      | µg/kg dry               | 75.1 | 15.5 | 1                     | "           |                            | "             | "       | "                       | х     |
| 50-32-8                                  | Benzo (a) pyrene                                     | < 75.1      | µg/kg dry               | 75.1 | 15.6 | 1                     | "           |                            | "             | "       | "                       | х     |
| 205-99-2                                 | Benzo (b) fluoranthene                               | < 75.1      | µg/kg dry               | 75.1 | 17.1 | 1                     | "           |                            | "             | "       | "                       | х     |
| 191-24-2                                 | Benzo (g,h,i) perylene                               | < 75.1      | µg/kg dry               | 75.1 | 16.3 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 207-08-9                                 | Benzo (k) fluoranthene                               | < 75.1      | µg/kg dry               | 75.1 | 17.1 | 1                     |             |                            | "             | "       | "                       | Х     |
| 111-91-1                                 | Bis(2-chloroethoxy)metha ne                          | < 371       | µg/kg dry               | 371  | 67.8 | 1                     | u           | "                          | "             | "       | "                       | Х     |
| 111-44-4                                 | Bis(2-chloroethyl)ether                              | < 188       | µg/kg dry               | 188  | 67.6 | 1                     |             |                            | "             | "       | "                       | Х     |
| 108-60-1                                 | Bis(2-chloroisopropyl)ethe r                         | < 188       | µg/kg dry               | 188  | 67.5 | 1                     | n           | "                          | "             | "       | "                       | Х     |
| 117-81-7                                 | Bis(2-ethylhexyl)phthalate                           | < 188       | µg/kg dry               | 188  | 92.7 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 101-55-3                                 | 4-Bromophenyl phenyl ether                           | < 371       | µg/kg dry               | 371  | 75.1 | 1                     | "           | "                          | "             | n       | "                       | Х     |
| 85-68-7                                  | Butyl benzyl phthalate                               | < 371       | µg/kg dry               | 371  | 82.3 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 86-74-8                                  | Carbazole                                            | < 188       | µg/kg dry               | 188  | 95.5 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 59-50-7                                  | 4-Chloro-3-methylphenol                              | < 371       | µg/kg dry               | 371  | 77.0 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 106-47-8                                 | 4-Chloroaniline                                      | < 188       | µg/kg dry               | 188  | 76.7 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 91-58-7                                  | 2-Chloronaphthalene                                  | < 371       | µg/kg dry               | 371  | 65.3 | 1                     |             |                            | "             | "       | "                       | Х     |
| 95-57-8                                  | 2-Chlorophenol                                       | < 188       | µg/kg dry               | 188  | 66.4 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 7005-72-3                                | 4-Chlorophenyl phenyl ether                          | < 371       | µg/kg dry               | 371  | 69.8 | 1                     | "           | "                          | "             | "       | "                       | х     |
| 218-01-9                                 | Chrysene                                             | < 75.1      | µg/kg dry               | 75.1 | 18.3 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 53-70-3                                  | Dibenzo (a,h) anthracene                             | < 75.1      | µg/kg dry               | 75.1 | 13.8 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 132-64-9                                 | Dibenzofuran                                         | < 188       | µg/kg dry               | 188  | 13.8 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 95-50-1                                  | 1,2-Dichlorobenzene                                  | < 371       | µg/kg dry               | 371  | 62.4 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 541-73-1                                 | 1,3-Dichlorobenzene                                  | < 371       | µg/kg dry               | 371  | 66.0 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 106-46-7                                 | 1,4-Dichlorobenzene                                  | < 371       | µg/kg dry               | 371  | 61.5 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 91-94-1                                  | 3,3'-Dichlorobenzidine                               | < 371       | µg/kg dry               | 371  | 75.4 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 120-83-2                                 | 2,4-Dichlorophenol                                   | < 188       | µg/kg dry               | 188  | 63.9 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 84-66-2                                  | Diethyl phthalate                                    | < 371       | µg/kg dry               | 371  | 77.5 | 1                     |             |                            | "             | "       | "                       | Х     |
| 131-11-3                                 | Dimethyl phthalate                                   | < 371       | µg/kg dry               | 371  | 73.2 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 105-67-9                                 | 2,4-Dimethylphenol                                   | < 371       | µg/kg dry               | 371  | 63.7 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 84-74-2                                  | Di-n-butyl phthalate                                 | < 371       | µg/kg dry               | 371  | 83.4 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 534-52-1                                 | 4,6-Dinitro-2-methylphenol                           | < 371       | µg/kg dry               | 371  | 98.8 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 51-28-5                                  | 2,4-Dinitrophenol                                    | < 371       | µg/kg dry               | 371  | 97.8 | 1                     |             | "                          | "             | "       | "                       | Х     |
| 121-14-2                                 | 2,4-Dinitrotoluene                                   | < 188       | µg/kg dry               | 188  | 77.4 | 1                     | "           | "                          | "             | "       | "                       | х     |
| 606-20-2                                 | 2,6-Dinitrotoluene                                   | < 188       | µg/kg dry               | 188  | 72.9 | 1                     | "           | "                          | "             | "       | "                       | Х     |
| 117-84-0                                 | Di-n-octyl phthalate                                 | < 371       | µg/kg dry               | 371  | 80.2 | 1                     | "           | "                          | "             | "       | "                       | Х     |
| 206-44-0                                 | Fluoranthene                                         | 104         | µg/kg dry               | 75.1 | 18.9 | 1                     | "           | "                          | "             | "       | "                       | Х     |
| 86-73-7                                  | Fluorene                                             | < 75.1      | µg/kg dry               | 75.1 | 18.0 | 1                     | "           | "                          | "             | "       | "                       | Х     |
| 118-74-1                                 | Hexachlorobenzene                                    | < 188       | µg/kg dry               | 188  | 82.1 | 1                     | "           | "                          | "             | "       | "                       | Х     |
| 87-68-3                                  | Hexachlorobutadiene                                  | < 188       | µg/kg dry               | 188  | 59.8 | 1                     | "           | "                          | "             | "       | "                       | Х     |

| <u>Sample Ic</u><br>SB-17-6-8<br>SC06877- |                                                        |            |        | <u>Client Pr</u><br>2150 | -     |        | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 13 |               |         | <u>ceived</u><br>May-15 |       |
|-------------------------------------------|--------------------------------------------------------|------------|--------|--------------------------|-------|--------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                                   | Analyte(s)                                             | Result     | Flag   | Units                    | *RDL  | MDL    | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolati                                | ile Organic Compounds by (                             | GCMS       |        |                          |       |        |                       |                     |                           |               |         |                         |       |
|                                           | tile Organic Compounds                                 |            |        |                          |       |        |                       |                     |                           |               |         |                         |       |
| Prepared<br>77-47-4                       | by method SW846 3545A<br>Hexachlorocyclopentadien<br>e | < 188      |        | µg/kg dry                | 188   | 68.5   | 1                     | SW846 8270D         | 05-May-1<br>5             | 10-May-1<br>5 | MSL     | 1508622                 | х     |
| 67-72-1                                   | Hexachloroethane                                       | < 188      |        | µg/kg dry                | 188   | 72.2   | 1                     | "                   | "                         | "             | "       |                         | х     |
| 193-39-5                                  | Indeno (1,2,3-cd) pyrene                               | < 75.1     |        | µg/kg dry                | 75.1  | 15.4   | 1                     | "                   | "                         |               | "       |                         | х     |
| 78-59-1                                   | Isophorone                                             | < 188      |        | µg/kg dry                | 188   | 65.6   | 1                     | "                   | "                         |               | "       |                         | х     |
| 91-57-6                                   | 2-Methylnaphthalene                                    | < 75.1     |        | µg/kg dry                | 75.1  | 15.5   | 1                     | "                   | "                         | "             | "       |                         | х     |
| 95-48-7                                   | 2-Methylphenol                                         | < 371      |        | µg/kg dry                | 371   | 66.6   | 1                     | "                   | "                         |               | "       |                         | х     |
| 108-39-4,<br>106-44-5                     | 3 & 4-Methylphenol                                     | < 371      |        | µg/kg dry                | 371   | 83.6   | 1                     | "                   | "                         | "             | "       | "                       | Х     |
| 91-20-3                                   | Naphthalene                                            | < 75.1     |        | µg/kg dry                | 75.1  | 15.3   | 1                     | "                   | "                         |               | "       |                         | х     |
| 88-74-4                                   | 2-Nitroaniline                                         | < 371      |        | µg/kg dry                | 371   | 74.5   | 1                     | "                   | "                         |               | "       |                         | Х     |
| 99-09-2                                   | 3-Nitroaniline                                         | < 371      |        | µg/kg dry                | 371   | 88.9   | 1                     | "                   | "                         |               | "       |                         | Х     |
| 100-01-6                                  | 4-Nitroaniline                                         | < 188      |        | µg/kg dry                | 188   | 107    | 1                     | "                   | "                         |               | "       |                         | Х     |
| 98-95-3                                   | Nitrobenzene                                           | < 188      |        | µg/kg dry                | 188   | 72.9   | 1                     | "                   | "                         |               | "       |                         | Х     |
| 88-75-5                                   | 2-Nitrophenol                                          | < 188      |        | µg/kg dry                | 188   | 62.2   | 1                     | "                   | "                         |               | "       |                         | Х     |
| 100-02-7                                  | 4-Nitrophenol                                          | < 1490     |        | µg/kg dry                | 1490  | 100    | 1                     | "                   | "                         | "             | "       |                         | х     |
| 621-64-7                                  | N-Nitrosodi-n-propylamine                              | < 188      |        | µg/kg dry                | 188   | 80.0   | 1                     | "                   | "                         | "             | "       | "                       | х     |
| 86-30-6                                   | N-Nitrosodiphenylamine                                 | < 371      |        | µg/kg dry                | 371   | 87.4   | 1                     | "                   | "                         |               | "       |                         | х     |
| 87-86-5                                   | Pentachlorophenol                                      | < 371      |        | µg/kg dry                | 371   | 88.4   | 1                     | "                   | "                         | "             | "       |                         | х     |
| 85-01-8                                   | Phenanthrene                                           | 75.8       |        | µg/kg dry                | 75.1  | 18.3   | 1                     |                     | "                         |               | "       |                         | х     |
| 108-95-2                                  | Phenol                                                 | < 371      |        | µg/kg dry                | 371   | 67.6   | 1                     |                     | "                         |               | "       |                         | х     |
| 129-00-0                                  | Pyrene                                                 | 91.5       |        | µg/kg dry                | 75.1  | 16.0   | 1                     |                     | "                         |               | "       |                         | х     |
| 120-82-1                                  | 1,2,4-Trichlorobenzene                                 | < 371      |        | µg/kg dry                | 371   | 59.1   | 1                     |                     | "                         |               | "       |                         | х     |
| 95-95-4                                   | 2,4,5-Trichlorophenol                                  | < 371      |        | µg/kg dry                | 371   | 76.8   | 1                     | "                   | "                         |               | "       | "                       | х     |
| Surrogate                                 | recoveries:                                            |            |        |                          |       |        |                       |                     |                           |               |         |                         |       |
| 321-60-8                                  | 2-Fluorobiphenyl                                       | 54         |        |                          | 30-13 | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 367-12-4                                  | 2-Fluorophenol                                         | 56         |        |                          | 30-13 | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 4165-60-0                                 | Nitrobenzene-d5                                        | 61         |        |                          | 30-13 | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 4165-62-2                                 | Phenol-d5                                              | 63         |        |                          | 30-13 | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 1718-51-0                                 | Terphenyl-dl4                                          | 62         |        |                          | 30-13 | 80 %   |                       |                     | "                         |               | "       |                         |       |
| 118-79-6                                  | 2,4,6-Tribromophenol                                   | 51         |        |                          | 30-13 | 80 %   |                       |                     | "                         |               | "       |                         |       |
|                                           | y Identified Compounds<br>by method SW846 3545A        |            |        |                          |       |        |                       |                     |                           |               |         |                         |       |
|                                           | Tentatively Identified<br>Compounds                    | None found |        | µg/kg dry                |       |        | 1                     | SW846 8270D<br>TICS | "                         |               | MSL     | "                       |       |
| Total Met                                 | als by EPA 6000/7000 Series                            | Methods    |        |                          |       |        |                       |                     |                           |               |         |                         |       |
| 7440-22-4                                 | Silver                                                 | < 1.61     |        | mg/kg dry                | 1.61  | 0.118  | 1                     | SW846 6010C         | 08-May-1<br>5             | 09-May-1<br>5 | EDT     | 1508923                 | х     |
| 7440-38-2                                 | Arsenic                                                | 14.7       |        | mg/kg dry                | 1.61  | 0.261  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-39-3                                 | Barium                                                 | 101        |        | mg/kg dry                | 1.08  | 0.0639 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-43-9                                 | Cadmium                                                | < 0.538    |        | mg/kg dry                | 0.538 | 0.0172 | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7440-47-3                                 | Chromium                                               | 10.3       |        | mg/kg dry                | 1.08  | 0.103  | 1                     | "                   | "                         |               | "       | "                       | х     |
| 7439-97-6                                 | Mercury                                                | 1.01       | D, GS1 | mg/kg dry                | 0.156 | 0.0102 | 5                     | SW846 7471B         | "                         | 11-May-1<br>5 | YR      | 1508924                 | Х     |
| 7439-92-1                                 | Lead                                                   | 251        |        | mg/kg dry                | 1.61  | 0.297  | 1                     | SW846 6010C         | "                         | 09-May-1<br>5 | EDT     | 1508923                 | Х     |
| 7782-49-2                                 | Selenium                                               | < 2.10     | R01    | mg/kg dry                | 2.10  | 0.404  | 1                     | "                   | "                         | "             | "       | "                       | х     |

| Sample Identification<br>SB-17-6-8<br>SC06877-12 |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 13 | <u> </u>      |         | <u>eceived</u><br>May-15 |       |
|--------------------------------------------------|--------|------|-------|--------------------------|-----|-----------------------|---------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No. Analyte(s)                               | Result | Flag | Units | *RDL                     | MDL | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| General Chemistry Parameters<br>% Solids         | 88.2   |      | %     |                          |     | 1                     | SM2540 G Mod. | 04-May-1<br>5             | 04-May-1<br>5 | DT      | 1508564                  | ,     |

| Sample Id<br>SB-19-1-3<br>SC06877- |                                      |                    |          | <u>Client P</u><br>2150 |      |      | <u>Matrix</u><br>Soil |                        | ection Date<br>P-Apr-15 14 |               |         | <u>eceived</u><br>May-15 |       |
|------------------------------------|--------------------------------------|--------------------|----------|-------------------------|------|------|-----------------------|------------------------|----------------------------|---------------|---------|--------------------------|-------|
| CAS No.                            | Analyte(s)                           | Result             | Flag     | Units                   | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                   | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                         | organic Compounds                    |                    |          |                         |      |      |                       |                        |                            |               |         |                          |       |
|                                    | VOC Extraction                       | Field<br>extracted |          | N/A                     |      |      | 1                     | VOC Soil<br>Extraction |                            |               | DT      | 1508570                  |       |
|                                    | Organic Compounds by SW              |                    |          |                         |      |      |                       |                        |                            |               |         |                          |       |
|                                    | by method SW846 5035A                |                    | <u>)</u> |                         |      |      | tial weight:          | -                      |                            |               |         |                          |       |
| 67-64-1                            | Acetone                              | 105                |          | µg/kg dry               | 44.9 | 30.0 | 1                     | SW846 8260C            | 05-May-1<br>5              | 05-May-1<br>5 | SJB     | 1508642                  | Х     |
| 71-43-2                            | Benzene                              | < 4.5              |          | µg/kg dry               | 4.5  | 0.8  | 1                     | "                      | "                          | "             | "       | "                        | х     |
| 75-27-4                            | Bromodichloromethane                 | < 4.5              |          | µg/kg dry               | 4.5  | 3.0  | 1                     | "                      |                            |               | "       | "                        | х     |
| 75-25-2                            | Bromoform                            | < 4.5              |          | µg/kg dry               | 4.5  | 4.3  | 1                     | "                      |                            | "             | "       | "                        | х     |
| 74-83-9                            | Bromomethane                         | < 9.0              |          | µg/kg dry               | 9.0  | 2.6  | 1                     |                        | "                          |               | "       |                          | х     |
| 78-93-3                            | 2-Butanone (MEK)                     | < 44.9             |          | µg/kg dry               | 44.9 | 5.4  | 1                     |                        | "                          |               | "       |                          | х     |
| 104-51-8                           | n-Butylbenzene                       | < 4.5              |          | µg/kg dry               | 4.5  | 1.3  | 1                     |                        | "                          | "             | "       | "                        | х     |
| 135-98-8                           | sec-Butylbenzene                     | < 4.5              |          | µg/kg dry               | 4.5  | 3.5  | 1                     |                        | "                          | "             | "       | "                        | х     |
| 98-06-6                            | tert-Butylbenzene                    | < 4.5              |          | µg/kg dry               | 4.5  | 3.0  | 1                     |                        | "                          | "             | "       | "                        | х     |
| 75-15-0                            | Carbon disulfide                     | < 9.0              |          | µg/kg dry               | 9.0  | 2.8  | 1                     |                        |                            |               | "       |                          | х     |
| 56-23-5                            | Carbon tetrachloride                 | < 4.5              |          | µg/kg dry               | 4.5  | 3.7  | 1                     |                        |                            | "             | "       |                          | х     |
| 108-90-7                           | Chlorobenzene                        | < 4.5              |          | µg/kg dry               | 4.5  | 0.7  | 1                     |                        |                            | "             | "       |                          | х     |
| 75-00-3                            | Chloroethane                         | < 9.0              |          | µg/kg dry               | 9.0  | 2.5  | 1                     |                        |                            | "             | "       |                          | х     |
| 67-66-3                            | Chloroform                           | < 4.5              |          | µg/kg dry               | 4.5  | 1.5  | 1                     |                        |                            |               | "       |                          | х     |
| 74-87-3                            | Chloromethane                        | < 9.0              |          | µg/kg dry               | 9.0  | 1.9  | 1                     |                        |                            | "             | "       |                          | х     |
| 124-48-1                           | Dibromochloromethane                 | < 4.5              |          | µg/kg dry               | 4.5  | 3.0  | 1                     |                        |                            | "             | "       |                          | х     |
| 95-50-1                            | 1,2-Dichlorobenzene                  | < 4.5              |          | µg/kg dry               | 4.5  | 0.8  | 1                     |                        |                            | "             | "       |                          | х     |
| 541-73-1                           | 1,3-Dichlorobenzene                  | < 4.5              |          | µg/kg dry               | 4.5  | 0.9  | 1                     |                        |                            | "             | "       |                          | х     |
| 106-46-7                           | 1,4-Dichlorobenzene                  | < 4.5              |          | µg/kg dry               | 4.5  | 1.1  | 1                     |                        |                            | "             | "       |                          | х     |
| 75-71-8                            | Dichlorodifluoromethane<br>(Freon12) | < 9.0              |          | µg/kg dry               | 9.0  | 1.5  | 1                     | u                      | "                          | "             | "       | "                        | Х     |
| 75-34-3                            | 1,1-Dichloroethane                   | < 4.5              |          | µg/kg dry               | 4.5  | 2.9  | 1                     |                        |                            | "             | "       |                          | х     |
| 107-06-2                           | 1,2-Dichloroethane                   | < 4.5              |          | µg/kg dry               | 4.5  | 1.1  | 1                     |                        |                            | "             | "       |                          | х     |
| 75-35-4                            | 1,1-Dichloroethene                   | < 4.5              |          | µg/kg dry               | 4.5  | 3.4  | 1                     |                        |                            |               | "       |                          | х     |
| 156-59-2                           | cis-1,2-Dichloroethene               | < 4.5              |          | µg/kg dry               | 4.5  | 1.7  | 1                     |                        |                            | "             | "       |                          | х     |
| 156-60-5                           | trans-1,2-Dichloroethene             | < 4.5              |          | µg/kg dry               | 4.5  | 2.4  | 1                     |                        |                            | "             | "       |                          | х     |
| 78-87-5                            | 1,2-Dichloropropane                  | < 4.5              |          | µg/kg dry               | 4.5  | 2.4  | 1                     |                        |                            | "             | "       |                          | х     |
| 10061-01-5                         | cis-1,3-Dichloropropene              | < 4.5              |          | µg/kg dry               | 4.5  | 2.7  | 1                     |                        | "                          | "             | "       |                          | х     |
| 10061-02-6                         | trans-1,3-Dichloropropene            | < 4.5              |          | µg/kg dry               | 4.5  | 2.4  | 1                     |                        |                            | "             | "       |                          | х     |
| 100-41-4                           | Ethylbenzene                         | < 4.5              |          | µg/kg dry               | 4.5  | 0.8  | 1                     |                        |                            | "             | "       |                          | х     |
| 591-78-6                           | 2-Hexanone (MBK)                     | < 44.9             |          | µg/kg dry               | 44.9 | 4.9  | 1                     |                        | "                          | "             | "       |                          | х     |
| 98-82-8                            | Isopropylbenzene                     | < 4.5              |          | µg/kg dry               | 4.5  | 0.9  | 1                     |                        | "                          | "             | "       |                          | х     |
| 99-87-6                            | 4-Isopropyltoluene                   | < 4.5              |          | µg/kg dry               | 4.5  | 4.2  | 1                     |                        |                            | "             | "       |                          | х     |
| 1634-04-4                          | Methyl tert-butyl ether              | < 4.5              |          | µg/kg dry               | 4.5  | 1.7  | 1                     | "                      |                            | "             | "       |                          | х     |
| 108-10-1                           | 4-Methyl-2-pentanone<br>(MIBK)       | < 44.9             |          | µg/kg dry               | 44.9 | 8.5  | 1                     | "                      | "                          | "             | "       | "                        | Х     |
| 75-09-2                            | Methylene chloride                   | < 9.0              | O01      | µg/kg dry               | 9.0  | 1.3  | 1                     | "                      | "                          | "             | "       | "                        | х     |
| 91-20-3                            | Naphthalene                          | < 4.5              |          | µg/kg dry               | 4.5  | 4.1  | 1                     | "                      | "                          | "             | "       | "                        | х     |
| 103-65-1                           | n-Propylbenzene                      | < 4.5              |          | µg/kg dry               | 4.5  | 4.4  | 1                     | "                      | "                          | "             | "       | "                        | х     |
| 100-42-5                           | Styrene                              | < 4.5              |          | µg/kg dry               | 4.5  | 0.8  | 1                     | "                      | "                          | "             | "       | "                        | х     |
| 79-34-5                            | 1,1,2,2-Tetrachloroethane            | < 4.5              |          | µg/kg dry               | 4.5  | 3.8  | 1                     | "                      | "                          | "             | "       | "                        | х     |
| 127-18-4                           | Tetrachloroethene                    | < 4.5              |          | µg/kg dry               | 4.5  | 1.7  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 108-88-3                           | Toluene                              | < 4.5              |          | µg/kg dry               | 4.5  | 1.0  | 1                     | "                      | "                          | "             | "       | "                        | х     |

| Sample Id<br>SB-19-1-3<br>SC06877- |                                                   |                   |      | <u>Client P</u><br>2150 | -     |             | <u>Matrix</u><br>Soil |                     | ection Date   |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------|---------------------------------------------------|-------------------|------|-------------------------|-------|-------------|-----------------------|---------------------|---------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                        | Result            | Flag | Units                   | *RDL  | MDL         | Dilution              | Method Ref.         | Prepared      | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                        | rganic Compounds                                  |                   |      |                         |       |             |                       |                     |               |               |         |                         |       |
|                                    | rganic Compounds by SV                            | W846 8260         |      |                         |       |             |                       |                     |               |               |         |                         |       |
|                                    | by method SW846 5035                              |                   | )    |                         |       | Init        | ial weight:           | <u>6.36 g</u>       |               |               |         |                         |       |
| 71-55-6                            | 1,1,1-Trichloroethane                             | < 4.5             |      | µg/kg dry               | 4.5   | 1.2         | 1                     | SW846 8260C         | 05-May-1<br>5 | 05-May-1<br>5 | SJB     | 1508642                 | Х     |
| 79-00-5                            | 1,1,2-Trichloroethane                             | < 4.5             |      | µg/kg dry               | 4.5   | 3.3         | 1                     |                     | "             | "             |         |                         | х     |
| 79-01-6                            | Trichloroethene                                   | < 4.5             |      | µg/kg dry               | 4.5   | 0.8         | 1                     |                     | "             | "             |         |                         | х     |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)              | < 4.5             |      | µg/kg dry               | 4.5   | 2.4         | 1                     | "                   | "             | "             | "       | "                       | Х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                            | 11.1              |      | µg/kg dry               | 4.5   | 1.1         | 1                     |                     | "             | "             |         | "                       | х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                            | 64.9              |      | µg/kg dry               | 4.5   | 1.3         | 1                     | "                   | "             |               | "       | "                       | х     |
| 75-01-4                            | Vinyl chloride                                    | < 4.5             |      | µg/kg dry               | 4.5   | 1.6         | 1                     |                     | "             |               |         |                         | х     |
| 179601-23-1                        | m,p-Xylene                                        | < 9.0             |      | µg/kg dry               | 9.0   | 0.9         | 1                     |                     | "             | "             |         |                         | х     |
| 95-47-6                            | o-Xylene                                          | 10.0              |      | µg/kg dry               | 4.5   | 1.0         | 1                     |                     |               |               | "       | "                       | х     |
| Surrogate r                        | ecoveries:                                        |                   |      |                         |       |             |                       |                     |               |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 113               |      |                         | 70-13 | 0 %         |                       |                     | "             | "             |         | "                       |       |
| 2037-26-5                          | Toluene-d8                                        | 109               |      |                         | 70-13 | 0 %         |                       |                     | "             | "             | "       |                         |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 105               |      |                         | 70-13 | 0 %         |                       |                     | "             | "             | "       |                         |       |
| 1868-53-7                          | Dibromofluoromethane                              | 106               |      |                         | 70-13 | 0 %         |                       |                     |               |               | "       | "                       |       |
| Volatile Or                        | rganic Compounds                                  |                   |      |                         |       |             |                       |                     |               |               |         |                         |       |
|                                    | by method SW846 5035/                             | A Soil (low level | )    |                         |       | <u>Init</u> | ial weight:           | <u>6.36 g</u>       |               |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                     | < 44.9            |      | µg/kg dry               | 44.9  | 9.4         | 1                     | n                   | 05-May-1<br>5 | "             | "       | 1508644                 |       |
| Surrogate r                        | recoveries:                                       |                   |      |                         |       |             |                       |                     |               |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 123               |      |                         | 70-13 | 0 %         |                       |                     | "             | "             |         |                         |       |
| 2037-26-5                          | Toluene-d8                                        | 99                |      |                         | 70-13 | 0 %         |                       |                     | "             | "             |         |                         |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 113               |      |                         | 70-13 | 0 %         |                       |                     | "             | "             |         |                         |       |
| 1868-53-7                          | Dibromofluoromethane                              | 98                |      |                         | 70-13 | 0 %         |                       |                     | "             | "             |         |                         |       |
|                                    | y Identified Compounds I<br>by method SW846 5035/ |                   | )    |                         |       | Init        | ial weight:           | 6.36 a              |               |               |         |                         |       |
|                                    | Cyclohexane,<br>1,1,3-trimethyl-                  | 996               | TIC  | µg/kg dry               |       | <u></u>     | 1                     | SW846 8260C<br>TICs | 05-May-1<br>5 | "             | SJB     | 1508642                 |       |
|                                    | Cyclohexane,<br>1,1-dimethyl-                     | 219               | TIC  | µg/kg dry               |       |             | 1                     | "                   | "             | "             | "       | "                       |       |
|                                    | Cyclohexane,<br>1,2,4-trimethy                    | 396               | TIC  | µg/kg dry               |       |             | 1                     |                     | "             |               | "       | "                       |       |
| 002234-75-5                        | Cyclohexane,<br>1,2,4-trimethyl-                  | 259               | TIC  | µg/kg dry               |       |             | 1                     | "                   | "             | "             | "       | "                       |       |
| 006876-23-9                        | Cyclohexane,<br>1,2-dimethyl-,                    | 420               | TIC  | µg/kg dry               |       |             | 1                     | n                   | "             | "             | "       | "                       |       |
| General Cl                         | hemistry Parameters                               |                   |      |                         |       |             |                       |                     |               |               |         |                         |       |
|                                    | % Solids                                          | 94.1              |      | %                       |       |             | 1                     | SM2540 G Mod.       | 04-May-1<br>5 | 04-May-1<br>5 | DT      | 1508564                 |       |

| Sample Id<br>SB-20-7-8<br>SC06877- |                    |                   |      | <u>Client P</u><br>2150 | -      |        | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 17 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------|--------------------|-------------------|------|-------------------------|--------|--------|-----------------------|---------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)         | Result            | Flag | Units                   | *RDL   | MDL    | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Total Meta                         | als by EPA 6000/70 | 00 Series Methods |      |                         |        |        |                       |               |                           |               |         |                         |       |
| 7440-22-4                          | Silver             | < 1.78            |      | mg/kg dry               | 1.78   | 0.131  | 1                     | SW846 6010C   | 08-May-1<br>5             | 09-May-1<br>5 | EDT     | 1508923                 | х     |
| 7440-38-2                          | Arsenic            | 5.21              |      | mg/kg dry               | 1.78   | 0.288  | 1                     |               | "                         |               | "       |                         | х     |
| 7440-39-3                          | Barium             | 58.1              |      | mg/kg dry               | 1.19   | 0.0707 | 1                     |               | "                         |               | "       |                         | х     |
| 7440-43-9                          | Cadmium            | < 0.595           |      | mg/kg dry               | 0.595  | 0.0190 | 1                     |               | "                         |               | "       |                         | х     |
| 7440-47-3                          | Chromium           | 9.69              |      | mg/kg dry               | 1.19   | 0.114  | 1                     |               | "                         |               | "       |                         | х     |
| 7439-97-6                          | Mercury            | < 0.0354          |      | mg/kg dry               | 0.0354 | 0.0023 | 1                     | SW846 7471B   | "                         | 11-May-1<br>5 | YR      | 1508924                 | х     |
| 7439-92-1                          | Lead               | 9.13              |      | mg/kg dry               | 1.78   | 0.328  | 1                     | SW846 6010C   | "                         | 09-May-1<br>5 | EDT     | 1508923                 | х     |
| 7782-49-2                          | Selenium           | < 1.78            |      | mg/kg dry               | 1.78   | 0.447  | 1                     |               |                           |               | "       |                         | х     |
| General C                          | Chemistry Paramete | ers               |      |                         |        |        |                       |               |                           |               |         |                         |       |
|                                    | % Solids           | 82.7              |      | %                       |        |        | 1                     | SM2540 G Mod. | 04-May-1<br>5             | 04-May-1<br>5 | DT      | 1508564                 |       |

| Sample Id<br>SB-23-17<br>SC06877- |                                      |                    |      | <u>Client Pr</u><br>2150 | •    |      | <u>Matrix</u><br>Soil |                        | ection Date<br>0-Apr-15 14 |               |         | <u>eceived</u><br>May-15 |       |
|-----------------------------------|--------------------------------------|--------------------|------|--------------------------|------|------|-----------------------|------------------------|----------------------------|---------------|---------|--------------------------|-------|
| CAS No.                           | Analyte(s)                           | Result             | Flag | Units                    | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                   | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                        | organic Compounds                    |                    |      |                          |      |      |                       |                        |                            |               |         |                          |       |
|                                   | VOC Extraction                       | Field<br>extracted |      | N/A                      |      |      | 1                     | VOC Soil<br>Extraction |                            |               | DT      | 1508570                  |       |
|                                   | Organic Compounds by SW              |                    |      |                          |      |      |                       |                        |                            |               |         |                          |       |
|                                   | by method SW846 5035A                |                    |      |                          |      |      | tial weight:          | -                      |                            |               |         |                          |       |
| 67-64-1                           | Acetone                              | < 73.3             |      | µg/kg dry                | 73.3 | 49.0 | 1                     | SW846 8260C            | 05-May-1<br>5              | 05-May-1<br>5 | SJB     | 1508642                  | Х     |
| 71-43-2                           | Benzene                              | < 7.3              |      | µg/kg dry                | 7.3  | 1.3  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 75-27-4                           | Bromodichloromethane                 | < 7.3              |      | µg/kg dry                | 7.3  | 4.9  | 1                     | "                      |                            |               | "       |                          | х     |
| 75-25-2                           | Bromoform                            | < 7.3              |      | µg/kg dry                | 7.3  | 7.0  | 1                     | "                      |                            |               | "       |                          | х     |
| 74-83-9                           | Bromomethane                         | < 14.7             |      | µg/kg dry                | 14.7 | 4.2  | 1                     | "                      |                            |               | "       |                          | х     |
| 78-93-3                           | 2-Butanone (MEK)                     | < 73.3             |      | µg/kg dry                | 73.3 | 8.8  | 1                     | "                      |                            |               | "       |                          | х     |
| 104-51-8                          | n-Butylbenzene                       | < 7.3              |      | µg/kg dry                | 7.3  | 2.1  | 1                     | u                      | "                          | "             | "       | "                        | х     |
| 135-98-8                          | sec-Butylbenzene                     | < 7.3              |      | µg/kg dry                | 7.3  | 5.7  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 98-06-6                           | tert-Butylbenzene                    | < 7.3              |      | µg/kg dry                | 7.3  | 4.8  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 75-15-0                           | Carbon disulfide                     | < 14.7             |      | µg/kg dry                | 14.7 | 4.5  | 1                     | u                      | "                          | "             | "       | "                        | х     |
| 56-23-5                           | Carbon tetrachloride                 | < 7.3              |      | µg/kg dry                | 7.3  | 6.0  | 1                     | "                      |                            |               | "       |                          | х     |
| 108-90-7                          | Chlorobenzene                        | < 7.3              |      | µg/kg dry                | 7.3  | 1.2  | 1                     | "                      |                            |               | "       |                          | х     |
| 75-00-3                           | Chloroethane                         | < 14.7             |      | µg/kg dry                | 14.7 | 4.1  | 1                     | "                      |                            |               | "       |                          | х     |
| 67-66-3                           | Chloroform                           | < 7.3              |      | µg/kg dry                | 7.3  | 2.4  | 1                     | "                      |                            |               | "       |                          | х     |
| 74-87-3                           | Chloromethane                        | < 14.7             |      | µg/kg dry                | 14.7 | 3.0  | 1                     | "                      |                            |               | "       |                          | х     |
| 124-48-1                          | Dibromochloromethane                 | < 7.3              |      | µg/kg dry                | 7.3  | 5.0  | 1                     |                        |                            |               | "       |                          | х     |
| 95-50-1                           | 1,2-Dichlorobenzene                  | < 7.3              |      | µg/kg dry                | 7.3  | 1.3  | 1                     | "                      |                            |               | "       |                          | х     |
| 541-73-1                          | 1,3-Dichlorobenzene                  | < 7.3              |      | µg/kg dry                | 7.3  | 1.5  | 1                     |                        |                            |               | "       |                          | х     |
| 106-46-7                          | 1,4-Dichlorobenzene                  | < 7.3              |      | µg/kg dry                | 7.3  | 1.8  | 1                     | "                      |                            |               | "       |                          | х     |
| 75-71-8                           | Dichlorodifluoromethane<br>(Freon12) | < 14.7             |      | µg/kg dry                | 14.7 | 2.5  | 1                     | "                      | "                          | "             | "       | "                        | х     |
| 75-34-3                           | 1,1-Dichloroethane                   | < 7.3              |      | µg/kg dry                | 7.3  | 4.7  | 1                     | "                      |                            |               | "       |                          | х     |
| 107-06-2                          | 1,2-Dichloroethane                   | < 7.3              |      | µg/kg dry                | 7.3  | 1.8  | 1                     |                        |                            |               | "       |                          | х     |
| 75-35-4                           | 1,1-Dichloroethene                   | < 7.3              |      | µg/kg dry                | 7.3  | 5.5  | 1                     |                        | "                          |               | "       |                          | х     |
| 156-59-2                          | cis-1,2-Dichloroethene               | < 7.3              |      | µg/kg dry                | 7.3  | 2.7  | 1                     | "                      |                            |               | "       |                          | х     |
| 156-60-5                          | trans-1,2-Dichloroethene             | < 7.3              |      | µg/kg dry                | 7.3  | 3.9  | 1                     |                        |                            |               | "       |                          | х     |
| 78-87-5                           | 1,2-Dichloropropane                  | < 7.3              |      | µg/kg dry                | 7.3  | 3.8  | 1                     | "                      |                            |               | "       |                          | х     |
| 10061-01-5                        | cis-1,3-Dichloropropene              | < 7.3              |      | µg/kg dry                | 7.3  | 4.4  | 1                     | "                      |                            |               | "       |                          | х     |
| 10061-02-6                        | trans-1,3-Dichloropropene            | < 7.3              |      | µg/kg dry                | 7.3  | 3.8  | 1                     | "                      | "                          |               | "       |                          | Х     |
| 100-41-4                          | Ethylbenzene                         | < 7.3              |      | µg/kg dry                | 7.3  | 1.3  | 1                     | "                      |                            |               | "       |                          | х     |
| 591-78-6                          | 2-Hexanone (MBK)                     | < 73.3             |      | µg/kg dry                | 73.3 | 8.0  | 1                     |                        | "                          |               | "       |                          | х     |
| 98-82-8                           | Isopropylbenzene                     | < 7.3              |      | µg/kg dry                | 7.3  | 1.4  | 1                     |                        | "                          |               | "       |                          | х     |
| 99-87-6                           | 4-Isopropyltoluene                   | < 7.3              |      | µg/kg dry                | 7.3  | 6.9  | 1                     | "                      |                            |               | "       |                          | х     |
| 1634-04-4                         | Methyl tert-butyl ether              | < 7.3              |      | µg/kg dry                | 7.3  | 2.8  | 1                     |                        | "                          |               | "       |                          | х     |
| 108-10-1                          | 4-Methyl-2-pentanone<br>(MIBK)       | < 73.3             |      | µg/kg dry                | 73.3 | 13.8 | 1                     | u                      | "                          | "             | "       | "                        | х     |
| 75-09-2                           | Methylene chloride                   | 16.9               | O01  | µg/kg dry                | 14.7 | 2.1  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 91-20-3                           | Naphthalene                          | < 7.3              |      | µg/kg dry                | 7.3  | 6.7  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 103-65-1                          | n-Propylbenzene                      | < 7.3              |      | µg/kg dry                | 7.3  | 7.1  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 100-42-5                          | Styrene                              | < 7.3              |      | µg/kg dry                | 7.3  | 1.3  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 79-34-5                           | 1,1,2,2-Tetrachloroethane            | < 7.3              |      | µg/kg dry                | 7.3  | 6.2  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 127-18-4                          | Tetrachloroethene                    | < 7.3              |      | µg/kg dry                | 7.3  | 2.8  | 1                     | "                      | "                          |               | "       | "                        | х     |
| 108-88-3                          | Toluene                              | < 7.3              |      | µg/kg dry                | 7.3  | 1.7  | 1                     | "                      | "                          |               | "       | "                        | х     |

| Sample Id<br>SB-23-17-<br>SC06877- |                                                   |                    |      | <u>Client P</u><br>2150 |       |      | <u>Matrix</u><br>Soil |                     | ection Date<br>-Apr-15 14 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------|---------------------------------------------------|--------------------|------|-------------------------|-------|------|-----------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                        | Result             | Flag | Units                   | *RDL  | MDL  | Dilution              | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile O                         | rganic Compounds                                  |                    |      |                         |       |      |                       |                     |                           |               |         |                         |       |
|                                    | rganic Compounds by SV<br>by method SW846 50354   |                    |      |                         |       | Ini  | ial weight:           | 5.61 a              |                           |               |         |                         |       |
| 71-55-6                            | 1,1,1-Trichloroethane                             | < 7.3              |      | µg/kg dry               | 7.3   | 1.9  | 1                     | SW846 8260C         | 05-May-1<br>5             | 05-May-1<br>5 | SJB     | 1508642                 | х     |
| 79-00-5                            | 1,1,2-Trichloroethane                             | < 7.3              |      | µg/kg dry               | 7.3   | 5.3  | 1                     | "                   | "                         | "             | "       | "                       | х     |
| 79-01-6                            | Trichloroethene                                   | < 7.3              |      | µg/kg dry               | 7.3   | 1.3  | 1                     | "                   | "                         | "             | "       | "                       | х     |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)              | < 7.3              |      | µg/kg dry               | 7.3   | 4.0  | 1                     | "                   | "                         | "             | "       | "                       | х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                            | < 7.3              |      | µg/kg dry               | 7.3   | 1.8  | 1                     |                     |                           | "             | "       | "                       | Х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                            | < 7.3              |      | µg/kg dry               | 7.3   | 2.1  | 1                     |                     |                           | "             | "       | "                       | Х     |
| 75-01-4                            | Vinyl chloride                                    | < 7.3              |      | µg/kg dry               | 7.3   | 2.7  | 1                     |                     |                           | "             | "       | "                       | Х     |
| 179601-23-1                        | m,p-Xylene                                        | < 14.7             |      | µg/kg dry               | 14.7  | 1.4  | 1                     |                     |                           | "             | "       | "                       | х     |
| 95-47-6                            | o-Xylene                                          | < 7.3              |      | µg/kg dry               | 7.3   | 1.6  | 1                     | "                   | "                         | "             | "       | "                       | х     |
| Surrogate r                        | recoveries:                                       |                    |      |                         |       |      |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 99                 |      |                         | 70-13 | 80 % |                       |                     |                           | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                        | 105                |      |                         | 70-13 | 80 % |                       |                     | "                         | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 103                |      |                         | 70-13 | 80 % |                       |                     | "                         | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                              | 104                |      |                         | 70-13 | 80 % |                       | "                   | "                         | "             | "       | "                       |       |
|                                    | rganic Compounds<br>by method SW846 5035/         | A Soil (low level) |      |                         |       | Ini  | tial weight:          | 5 61 a              |                           |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                     | < 73.3             |      | µg/kg dry               | 73.3  | 15.4 | 1                     | "                   | 05-May-1<br>5             | "             | "       | 1508644                 |       |
| Surrogate r                        | recoveries:                                       |                    |      |                         |       |      |                       |                     |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 108                |      |                         | 70-13 | 80 % |                       |                     | "                         | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                        | 95                 |      |                         | 70-13 | 80 % |                       |                     | "                         | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 111                |      |                         | 70-13 | 80 % |                       |                     | "                         | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                              | 96                 |      |                         | 70-13 | 80 % |                       |                     | "                         | "             | "       | "                       |       |
|                                    | y Identified Compounds b<br>by method SW846 50354 |                    |      |                         |       | Init | ial weight:           | <u>5.61 g</u>       |                           |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds               | None found         |      | µg/kg dry               |       |      | 1                     | SW846 8260C<br>TICs | 05-May-1<br>5             | "             | SJB     | 1508642                 |       |
| General C                          | hemistry Parameters                               |                    |      |                         |       |      |                       |                     |                           |               |         |                         |       |
|                                    | % Solids                                          | 76.7               |      | %                       |       |      | 1                     | SM2540 G Mod.       | 04-May-1<br>5             | 04-May-1<br>5 | DT      | 1508564                 |       |

| Sample Id<br>SB-22-5-0<br>SC06877- |                    |                   |      | <u>Client P</u><br>2150 | -      |        | <u>Matrix</u><br>Soil |               | ection Date<br>-Apr-15 11 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------|--------------------|-------------------|------|-------------------------|--------|--------|-----------------------|---------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)         | Result            | Flag | Units                   | *RDL   | MDL    | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Total Meta                         | als by EPA 6000/70 | 00 Series Methods |      |                         |        |        |                       |               |                           |               |         |                         |       |
| 7440-22-4                          | Silver             | < 1.66            |      | mg/kg dry               | 1.66   | 0.122  | 1                     | SW846 6010C   | 08-May-1<br>5             | 09-May-1<br>5 | EDT     | 1508923                 | Х     |
| 7440-38-2                          | Arsenic            | 8.64              |      | mg/kg dry               | 1.66   | 0.269  | 1                     |               | "                         |               | "       | "                       | х     |
| 7440-39-3                          | Barium             | 92.1              |      | mg/kg dry               | 1.11   | 0.0658 | 1                     |               | "                         |               | "       | "                       | х     |
| 7440-43-9                          | Cadmium            | < 0.554           |      | mg/kg dry               | 0.554  | 0.0177 | 1                     |               | "                         |               | "       | "                       | х     |
| 7440-47-3                          | Chromium           | 12.1              |      | mg/kg dry               | 1.11   | 0.106  | 1                     |               | "                         |               | "       | "                       | х     |
| 7439-97-6                          | Mercury            | 0.411             |      | mg/kg dry               | 0.0350 | 0.0023 | 1                     | SW846 7471B   | "                         | 11-May-1<br>5 | YR      | 1508924                 | х     |
| 7439-92-1                          | Lead               | 85.5              |      | mg/kg dry               | 1.66   | 0.306  | 1                     | SW846 6010C   | "                         | 09-May-1<br>5 | EDT     | 1508923                 | х     |
| 7782-49-2                          | Selenium           | < 1.66            |      | mg/kg dry               | 1.66   | 0.416  | 1                     |               | "                         |               | "       | "                       | х     |
| General C                          | hemistry Paramete  | rs                |      |                         |        |        |                       |               |                           |               |         |                         |       |
|                                    | % Solids           | 80.1              |      | %                       |        |        | 1                     | SM2540 G Mod. | 04-May-1<br>5             | 04-May-1<br>5 | DT      | 1508564                 |       |

| Sample Id<br>SB-22-19<br>SC06877- |                                      |                    |          | <u>Client Pr</u><br>2150 | •    |      | <u>Matrix</u><br>Soil |                        | ection Date<br>-Apr-15 13 |               | -       | <u>eceived</u><br>May-15 |       |
|-----------------------------------|--------------------------------------|--------------------|----------|--------------------------|------|------|-----------------------|------------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                           | Analyte(s)                           | Result             | Flag     | Units                    | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                        | Organic Compounds                    |                    |          |                          |      |      |                       |                        |                           |               |         |                          |       |
| volatile O                        | VOC Extraction                       | Field<br>extracted |          | N/A                      |      |      | 1                     | VOC Soil<br>Extraction |                           |               | DT      | 1508570                  |       |
| Volatile O                        | Organic Compounds by SW              | 846 8260           |          |                          |      |      |                       |                        |                           |               |         |                          |       |
|                                   | by method SW846 5035A                | Soil (low level)   | <u>)</u> |                          |      |      | ial weight:           | 4.55 g                 |                           |               |         |                          |       |
| 67-64-1                           | Acetone                              | < 64.8             |          | µg/kg dry                | 64.8 | 43.3 | 1                     | SW846 8260C            | 05-May-1<br>5             | 05-May-1<br>5 | SJB     | 1508642                  | Х     |
| 71-43-2                           | Benzene                              | < 6.5              |          | µg/kg dry                | 6.5  | 1.2  | 1                     | "                      |                           |               | "       | "                        | х     |
| 75-27-4                           | Bromodichloromethane                 | < 6.5              |          | µg/kg dry                | 6.5  | 4.3  | 1                     |                        | "                         |               | "       |                          | х     |
| 75-25-2                           | Bromoform                            | < 6.5              |          | µg/kg dry                | 6.5  | 6.2  | 1                     |                        | "                         |               | "       |                          | х     |
| 74-83-9                           | Bromomethane                         | < 13.0             |          | µg/kg dry                | 13.0 | 3.7  | 1                     |                        | "                         |               | "       |                          | х     |
| 78-93-3                           | 2-Butanone (MEK)                     | < 64.8             |          | µg/kg dry                | 64.8 | 7.8  | 1                     |                        | "                         |               | "       |                          | х     |
| 104-51-8                          | n-Butylbenzene                       | < 6.5              |          | µg/kg dry                | 6.5  | 1.9  | 1                     |                        | "                         |               | "       |                          | х     |
| 135-98-8                          | sec-Butylbenzene                     | < 6.5              |          | µg/kg dry                | 6.5  | 5.1  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 98-06-6                           | tert-Butylbenzene                    | < 6.5              |          | µg/kg dry                | 6.5  | 4.3  | 1                     |                        | "                         |               | "       |                          | х     |
| 75-15-0                           | Carbon disulfide                     | < 13.0             |          | µg/kg dry                | 13.0 | 4.0  | 1                     |                        | "                         |               | "       |                          | х     |
| 56-23-5                           | Carbon tetrachloride                 | < 6.5              |          | µg/kg dry                | 6.5  | 5.3  | 1                     |                        | "                         |               | "       |                          | х     |
| 108-90-7                          | Chlorobenzene                        | < 6.5              |          | µg/kg dry                | 6.5  | 1.0  | 1                     |                        | "                         |               | "       |                          | х     |
| 75-00-3                           | Chloroethane                         | < 13.0             |          | µg/kg dry                | 13.0 | 3.6  | 1                     |                        | "                         |               | "       | "                        | Х     |
| 67-66-3                           | Chloroform                           | < 6.5              |          | µg/kg dry                | 6.5  | 2.1  | 1                     |                        | "                         |               | "       |                          | х     |
| 74-87-3                           | Chloromethane                        | < 13.0             |          | µg/kg dry                | 13.0 | 2.7  | 1                     |                        | "                         |               | "       |                          | х     |
| 124-48-1                          | Dibromochloromethane                 | < 6.5              |          | µg/kg dry                | 6.5  | 4.4  | 1                     |                        | "                         |               | "       |                          | х     |
| 95-50-1                           | 1,2-Dichlorobenzene                  | < 6.5              |          | µg/kg dry                | 6.5  | 1.1  | 1                     |                        | "                         |               | "       | "                        | Х     |
| 541-73-1                          | 1,3-Dichlorobenzene                  | < 6.5              |          | µg/kg dry                | 6.5  | 1.3  | 1                     |                        | "                         |               | "       |                          | х     |
| 106-46-7                          | 1,4-Dichlorobenzene                  | < 6.5              |          | µg/kg dry                | 6.5  | 1.6  | 1                     |                        | "                         |               | "       | "                        | Х     |
| 75-71-8                           | Dichlorodifluoromethane<br>(Freon12) | < 13.0             |          | µg/kg dry                | 13.0 | 2.2  | 1                     | u                      |                           | "             | "       | "                        | х     |
| 75-34-3                           | 1,1-Dichloroethane                   | < 6.5              |          | µg/kg dry                | 6.5  | 4.2  | 1                     |                        | "                         |               | "       |                          | х     |
| 107-06-2                          | 1,2-Dichloroethane                   | < 6.5              |          | µg/kg dry                | 6.5  | 1.6  | 1                     |                        | "                         |               | "       |                          | х     |
| 75-35-4                           | 1,1-Dichloroethene                   | < 6.5              |          | µg/kg dry                | 6.5  | 4.9  | 1                     |                        | "                         |               | "       | "                        | Х     |
| 156-59-2                          | cis-1,2-Dichloroethene               | < 6.5              |          | µg/kg dry                | 6.5  | 2.4  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 156-60-5                          | trans-1,2-Dichloroethene             | < 6.5              |          | µg/kg dry                | 6.5  | 3.4  | 1                     |                        | "                         |               | "       |                          | х     |
| 78-87-5                           | 1,2-Dichloropropane                  | < 6.5              |          | µg/kg dry                | 6.5  | 3.4  | 1                     |                        | "                         |               | "       | "                        | Х     |
| 10061-01-5                        | cis-1,3-Dichloropropene              | < 6.5              |          | µg/kg dry                | 6.5  | 3.9  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 10061-02-6                        | trans-1,3-Dichloropropene            | < 6.5              |          | µg/kg dry                | 6.5  | 3.4  | 1                     |                        | "                         | "             | "       | "                        | х     |
| 100-41-4                          | Ethylbenzene                         | < 6.5              |          | µg/kg dry                | 6.5  | 1.1  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 591-78-6                          | 2-Hexanone (MBK)                     | < 64.8             |          | µg/kg dry                | 64.8 | 7.1  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 98-82-8                           | Isopropylbenzene                     | < 6.5              |          | µg/kg dry                | 6.5  | 1.2  | 1                     |                        | "                         | "             | "       | "                        | х     |
| 99-87-6                           | 4-Isopropyltoluene                   | < 6.5              |          | µg/kg dry                | 6.5  | 6.1  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 1634-04-4                         | Methyl tert-butyl ether              | < 6.5              |          | µg/kg dry                | 6.5  | 2.5  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 108-10-1                          | 4-Methyl-2-pentanone<br>(MIBK)       | < 64.8             |          | µg/kg dry                | 64.8 | 12.2 | 1                     | u                      |                           | "             | "       | "                        | х     |
| 75-09-2                           | Methylene chloride                   | < 13.0             | O01      | µg/kg dry                | 13.0 | 1.9  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 91-20-3                           | Naphthalene                          | < 6.5              |          | µg/kg dry                | 6.5  | 5.9  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 103-65-1                          | n-Propylbenzene                      | < 6.5              |          | µg/kg dry                | 6.5  | 6.3  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 100-42-5                          | Styrene                              | < 6.5              |          | µg/kg dry                | 6.5  | 1.1  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 79-34-5                           | 1,1,2,2-Tetrachloroethane            | < 6.5              |          | µg/kg dry                | 6.5  | 5.5  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 127-18-4                          | Tetrachloroethene                    | < 6.5              |          | µg/kg dry                | 6.5  | 2.5  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 108-88-3                          | Toluene                              | < 6.5              |          | µg/kg dry                | 6.5  | 1.5  | 1                     | "                      | "                         | "             | "       | "                        | х     |

| Sample Id<br>SB-22-19-<br>SC06877- |                                                              |                  |      | <u>Client P</u><br>2150 | -     |              | <u>Matrix</u><br>Soil    |                               | ection Date<br>-Apr-15 13 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------|--------------------------------------------------------------|------------------|------|-------------------------|-------|--------------|--------------------------|-------------------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                                   | Result           | Flag | Units                   | *RDL  | MDL          | Dilution                 | Method Ref.                   | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                        | rganic Compounds                                             |                  |      |                         |       |              |                          |                               |                           |               |         |                         |       |
|                                    | ganic Compounds by SV                                        |                  |      |                         |       |              |                          |                               |                           |               |         |                         |       |
|                                    | by method SW846 5035A                                        |                  |      |                         |       |              | tial weight:             | -                             |                           |               |         |                         |       |
| 71-55-6                            | 1,1,1-Trichloroethane                                        | < 6.5            |      | µg/kg dry               | 6.5   | 1.7          | 1                        | SW846 8260C                   | 05-May-1<br>5             | 05-May-1<br>5 | SJB     | 1508642                 | Х     |
| 79-00-5                            | 1,1,2-Trichloroethane                                        | < 6.5            |      | µg/kg dry               | 6.5   | 4.7          | 1                        |                               | "                         | "             | "       | "                       | Х     |
| 79-01-6                            | Trichloroethene                                              | < 6.5            |      | µg/kg dry               | 6.5   | 1.1          | 1                        |                               | "                         | "             | "       | "                       | х     |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)                         | < 6.5            |      | µg/kg dry               | 6.5   | 3.5          | 1                        | "                             | "                         |               |         |                         | х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                                       | < 6.5            |      | µg/kg dry               | 6.5   | 1.6          | 1                        |                               |                           | "             | "       | "                       | х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                                       | < 6.5            |      | µg/kg dry               | 6.5   | 1.9          | 1                        |                               |                           | "             | "       | "                       | х     |
| 75-01-4                            | Vinyl chloride                                               | < 6.5            |      | µg/kg dry               | 6.5   | 2.4          | 1                        | "                             | "                         | "             | "       | "                       | х     |
| 179601-23-1                        | m,p-Xylene                                                   | < 13.0           |      | µg/kg dry               | 13.0  | 1.3          | 1                        | "                             | "                         | "             | "       | "                       | х     |
| 95-47-6                            | o-Xylene                                                     | < 6.5            |      | µg/kg dry               | 6.5   | 1.4          | 1                        |                               | "                         |               | "       | "                       | х     |
| Surrogate r                        | ecoveries:                                                   |                  |      |                         |       |              |                          |                               |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                                         | 99               |      |                         | 70-13 | 80 %         |                          |                               |                           | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                                   | 105              |      |                         | 70-13 | 80 %         |                          |                               |                           | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                                        | 104              |      |                         | 70-13 | 80 %         |                          |                               | "                         | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                                         | 104              |      |                         | 70-13 | 80 %         |                          | "                             | "                         |               | "       | "                       |       |
|                                    | ganic Compounds<br>by method SW846 5035A                     | Soil (low lovel) |      |                         |       | Ini          | ial weight:              | 6 0                           |                           |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                                | < 50.2           |      | ua/ka day               | 50.2  | 10.5         | <u>iai weigini.</u><br>1 | <u>"</u>                      | 05-May-1                  |               |         | 1508644                 |       |
| 100-03-4                           |                                                              | < 30.2           |      | µg/kg dry               | 50.2  | 10.5         | I                        |                               | 5                         |               |         | 1508044                 |       |
| Surrogate r                        | ecoveries:                                                   |                  |      |                         |       |              |                          |                               |                           |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                                         | 108              |      |                         | 70-13 | 80 %         |                          |                               | "                         | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                                   | 95               |      |                         | 70-13 | 80 %         |                          |                               | "                         | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                                        | 112              |      |                         | 70-13 | 80 %         |                          | "                             | "                         | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                                         | 96               |      |                         | 70-13 | 80 %         |                          |                               | "                         | "             | "       | "                       |       |
|                                    | y Identified Compounds b                                     |                  |      |                         |       | Ini          | iol woight:              | 4 55 a                        |                           |               |         |                         |       |
| riepareu                           | by method SW846 5035A<br>Tentatively Identified<br>Compounds | None found       |      | µg/kg dry               |       | <u>11 11</u> | tial weight:<br>1        | 4.55 g<br>SW846 8260C<br>TICs | 05-May-1<br>5             | "             | SJB     | 1508642                 |       |
| General Cl                         | hemistry Parameters                                          |                  |      |                         |       |              |                          |                               |                           |               |         |                         |       |
|                                    | % Solids                                                     | 91.5             |      | %                       |       |              | 1                        | SM2540 G Mod.                 | 04-May-1<br>5             | 04-May-1<br>5 | DT      | 1508564                 |       |

| Sample Id<br>SB-25-20<br>SC06877 |                                      |                    |      | <u>Client P</u><br>2150 | •    |      | <u>Matrix</u><br>Soil |                        | ection Date<br>-May-15 11 |               |         | <u>eceived</u><br>May-15 |       |
|----------------------------------|--------------------------------------|--------------------|------|-------------------------|------|------|-----------------------|------------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                          | Analyte(s)                           | Result             | Flag | Units                   | *RDL | MDL  | Dilution              | Method Ref.            | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                       | organic Compounds                    |                    |      |                         |      |      |                       |                        |                           |               |         |                          |       |
|                                  | VOC Extraction                       | Field<br>extracted |      | N/A                     |      |      | 1                     | VOC Soil<br>Extraction |                           |               | DT      | 1508570                  |       |
|                                  | Organic Compounds by SW              |                    |      |                         |      |      |                       | -                      |                           |               |         |                          |       |
|                                  | by method SW846 5035A                |                    |      |                         | 50.0 |      | tial weight:          | -                      |                           |               | 0.15    | 1500010                  |       |
| 67-64-1                          | Acetone                              | < 52.8             |      | µg/kg dry               | 52.8 | 35.3 | 1                     | SW846 8260C            | 05-May-1<br>5             | 05-May-1<br>5 | SJB     | 1508642                  | Х     |
| 71-43-2                          | Benzene                              | < 5.3              |      | µg/kg dry               | 5.3  | 1.0  | 1                     | "                      |                           | "             | "       | "                        | х     |
| 75-27-4                          | Bromodichloromethane                 | < 5.3              |      | µg/kg dry               | 5.3  | 3.5  | 1                     |                        |                           |               | "       |                          | х     |
| 75-25-2                          | Bromoform                            | < 5.3              |      | µg/kg dry               | 5.3  | 5.0  | 1                     |                        | "                         | "             | "       |                          | х     |
| 74-83-9                          | Bromomethane                         | < 10.6             |      | µg/kg dry               | 10.6 | 3.0  | 1                     |                        |                           | "             | "       |                          | х     |
| 78-93-3                          | 2-Butanone (MEK)                     | < 52.8             |      | µg/kg dry               | 52.8 | 6.3  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 104-51-8                         | n-Butylbenzene                       | < 5.3              |      | µg/kg dry               | 5.3  | 1.5  | 1                     |                        | "                         | "             | "       |                          | х     |
| 135-98-8                         | sec-Butylbenzene                     | < 5.3              |      | µg/kg dry               | 5.3  | 4.1  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 98-06-6                          | tert-Butylbenzene                    | < 5.3              |      | µg/kg dry               | 5.3  | 3.5  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 75-15-0                          | Carbon disulfide                     | < 10.6             |      | µg/kg dry               | 10.6 | 3.2  | 1                     |                        |                           | "             | "       |                          | х     |
| 56-23-5                          | Carbon tetrachloride                 | < 5.3              |      | µg/kg dry               | 5.3  | 4.3  | 1                     |                        |                           | "             | "       |                          | х     |
| 108-90-7                         | Chlorobenzene                        | < 5.3              |      | µg/kg dry               | 5.3  | 0.8  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 75-00-3                          | Chloroethane                         | < 10.6             |      | µg/kg dry               | 10.6 | 2.9  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 67-66-3                          | Chloroform                           | < 5.3              |      | µg/kg dry               | 5.3  | 1.8  | 1                     |                        |                           | "             | "       |                          | х     |
| 74-87-3                          | Chloromethane                        | < 10.6             |      | µg/kg dry               | 10.6 | 2.2  | 1                     |                        |                           | "             | "       |                          | х     |
| 124-48-1                         | Dibromochloromethane                 | < 5.3              |      | µg/kg dry               | 5.3  | 3.6  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 95-50-1                          | 1,2-Dichlorobenzene                  | < 5.3              |      | µg/kg dry               | 5.3  | 0.9  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 541-73-1                         | 1,3-Dichlorobenzene                  | < 5.3              |      | µg/kg dry               | 5.3  | 1.1  | 1                     |                        |                           | "             | "       |                          | х     |
| 106-46-7                         | 1,4-Dichlorobenzene                  | < 5.3              |      | µg/kg dry               | 5.3  | 1.3  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 75-71-8                          | Dichlorodifluoromethane<br>(Freon12) | < 10.6             |      | µg/kg dry               | 10.6 | 1.8  | 1                     | u                      | "                         | "             | "       | "                        | Х     |
| 75-34-3                          | 1,1-Dichloroethane                   | < 5.3              |      | µg/kg dry               | 5.3  | 3.4  | 1                     |                        | "                         | "             | "       |                          | х     |
| 107-06-2                         | 1,2-Dichloroethane                   | < 5.3              |      | µg/kg dry               | 5.3  | 1.3  | 1                     |                        | "                         | "             | "       |                          | х     |
| 75-35-4                          | 1,1-Dichloroethene                   | < 5.3              |      | µg/kg dry               | 5.3  | 4.0  | 1                     |                        | "                         | "             | "       |                          | х     |
| 156-59-2                         | cis-1,2-Dichloroethene               | < 5.3              |      | µg/kg dry               | 5.3  | 1.9  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 156-60-5                         | trans-1,2-Dichloroethene             | < 5.3              |      | µg/kg dry               | 5.3  | 2.8  | 1                     |                        | "                         | "             | "       |                          | х     |
| 78-87-5                          | 1,2-Dichloropropane                  | < 5.3              |      | µg/kg dry               | 5.3  | 2.8  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 10061-01-5                       | cis-1,3-Dichloropropene              | < 5.3              |      | µg/kg dry               | 5.3  | 3.2  | 1                     |                        | "                         |               | "       |                          | Х     |
| 10061-02-6                       | trans-1,3-Dichloropropene            | < 5.3              |      | µg/kg dry               | 5.3  | 2.8  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 100-41-4                         | Ethylbenzene                         | < 5.3              |      | µg/kg dry               | 5.3  | 0.9  | 1                     |                        | "                         |               | "       |                          | Х     |
| 591-78-6                         | 2-Hexanone (MBK)                     | < 52.8             |      | µg/kg dry               | 52.8 | 5.8  | 1                     |                        | "                         |               | "       |                          | Х     |
| 98-82-8                          | Isopropylbenzene                     | < 5.3              |      | µg/kg dry               | 5.3  | 1.0  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 99-87-6                          | 4-Isopropyltoluene                   | < 5.3              |      | µg/kg dry               | 5.3  | 5.0  | 1                     |                        | "                         |               | "       |                          | Х     |
| 1634-04-4                        | Methyl tert-butyl ether              | < 5.3              |      | µg/kg dry               | 5.3  | 2.0  | 1                     |                        | "                         | "             | "       | "                        | Х     |
| 108-10-1                         | 4-Methyl-2-pentanone<br>(MIBK)       | < 52.8             |      | µg/kg dry               | 52.8 | 9.9  | 1                     | u                      | "                         | "             | "       | "                        | Х     |
| 75-09-2                          | Methylene chloride                   | < 10.6             | O01  | µg/kg dry               | 10.6 | 1.5  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 91-20-3                          | Naphthalene                          | < 5.3              |      | µg/kg dry               | 5.3  | 4.8  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 103-65-1                         | n-Propylbenzene                      | < 5.3              |      | µg/kg dry               | 5.3  | 5.1  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 100-42-5                         | Styrene                              | < 5.3              |      | µg/kg dry               | 5.3  | 0.9  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 79-34-5                          | 1,1,2,2-Tetrachloroethane            | < 5.3              |      | µg/kg dry               | 5.3  | 4.5  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 127-18-4                         | Tetrachloroethene                    | < 5.3              |      | µg/kg dry               | 5.3  | 2.0  | 1                     | "                      | "                         |               | "       | "                        | х     |
| 108-88-3                         | Toluene                              | < 5.3              |      | µg/kg dry               | 5.3  | 1.2  | 1                     | "                      | "                         | "             | "       | "                        | Х     |

| Sample Id<br>SB-25-20-<br>SC06877- |                                                   |                    |      | <u>Client P</u><br>2150 | -     |      | <u>Matrix</u><br>Soil |                     | ection Date<br>May-15 11 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------|---------------------------------------------------|--------------------|------|-------------------------|-------|------|-----------------------|---------------------|--------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)                                        | Result             | Flag | Units                   | *RDL  | MDL  | Dilution              | Method Ref.         | Prepared                 | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile O                         | rganic Compounds                                  |                    |      |                         |       |      |                       |                     |                          |               |         |                         |       |
|                                    | rganic Compounds by SV<br>by method SW846 50354   |                    |      |                         |       | Ini  | ial weight:           | 6 q                 |                          |               |         |                         |       |
| 71-55-6                            | 1,1,1-Trichloroethane                             | < 5.3              |      | µg/kg dry               | 5.3   | 1.4  | 1                     | SW846 8260C         | 05-May-1<br>5            | 05-May-1<br>5 | SJB     | 1508642                 | х     |
| 79-00-5                            | 1,1,2-Trichloroethane                             | < 5.3              |      | µg/kg dry               | 5.3   | 3.8  | 1                     | "                   | "                        | "             | "       | "                       | х     |
| 79-01-6                            | Trichloroethene                                   | < 5.3              |      | µg/kg dry               | 5.3   | 0.9  | 1                     |                     | "                        | "             | "       | "                       | х     |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)              | < 5.3              |      | µg/kg dry               | 5.3   | 2.8  | 1                     | "                   | "                        | "             | "       | "                       | х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                            | < 5.3              |      | µg/kg dry               | 5.3   | 1.3  | 1                     |                     | "                        |               | "       | "                       | х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                            | < 5.3              |      | µg/kg dry               | 5.3   | 1.5  | 1                     |                     | "                        | "             | "       | "                       | х     |
| 75-01-4                            | Vinyl chloride                                    | < 5.3              |      | µg/kg dry               | 5.3   | 1.9  | 1                     |                     | "                        | "             | "       | "                       | х     |
| 179601-23-1                        | m,p-Xylene                                        | < 10.6             |      | µg/kg dry               | 10.6  | 1.0  | 1                     |                     | "                        | "             | "       | "                       | х     |
| 95-47-6                            | o-Xylene                                          | < 5.3              |      | µg/kg dry               | 5.3   | 1.1  | 1                     | "                   | "                        | "             | "       | "                       | х     |
| Surrogate r                        | recoveries:                                       |                    |      |                         |       |      |                       |                     |                          |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 98                 |      |                         | 70-13 | 80 % |                       |                     | "                        | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                        | 105                |      |                         | 70-13 | 80 % |                       |                     |                          | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 103                |      |                         | 70-13 | 80 % |                       |                     | "                        | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                              | 106                |      |                         | 70-13 | 80 % |                       |                     | "                        | "             | "       | "                       |       |
|                                    | rganic Compounds<br>by method SW846 50354         | A Soil (low level) |      |                         |       | Ini  | ial weight:           | 6.28 a              |                          |               |         |                         |       |
| 108-05-4                           | Vinyl acetate                                     | < 50.7             |      | µg/kg dry               | 50.7  | 10.6 | 1                     | "                   | 05-May-1<br>5            |               | "       | 1508644                 |       |
| Surrogate r                        | recoveries:                                       |                    |      |                         |       |      |                       |                     |                          |               |         |                         |       |
| 460-00-4                           | 4-Bromofluorobenzene                              | 106                |      |                         | 70-13 | 80 % |                       |                     | "                        | "             | "       | "                       |       |
| 2037-26-5                          | Toluene-d8                                        | 95                 |      |                         | 70-13 | 80 % |                       |                     | "                        | "             | "       | "                       |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                             | 111                |      |                         | 70-13 | 80 % |                       |                     | "                        | "             | "       | "                       |       |
| 1868-53-7                          | Dibromofluoromethane                              | 98                 |      |                         | 70-13 | 80 % |                       |                     | "                        |               | "       | "                       |       |
|                                    | y Identified Compounds b<br>by method SW846 5035/ |                    |      |                         |       | Ini  | ial weight:           | <u>6 g</u>          |                          |               |         |                         |       |
|                                    | Tentatively Identified<br>Compounds               | None found         |      | µg/kg dry               |       |      | 1                     | SW846 8260C<br>TICs | 05-May-1<br>5            | "             | SJB     | 1508642                 |       |
| General C                          | hemistry Parameters                               |                    |      |                         |       |      |                       |                     |                          |               |         |                         |       |
|                                    | % Solids                                          | 89.2               |      | %                       |       |      | 1                     | SM2540 G Mod.       | 04-May-1<br>5            | 04-May-1<br>5 | DT      | 1508564                 |       |

| Sample Id<br>Trip Blan<br>SC06877- |                                                   |        |      |       | Project <u>#</u><br>0606 |              | <u>Matrix</u><br>Aqueous |             | ection Date<br>-May-15 00 |               |         | <u>eceived</u><br>May-15 |       |
|------------------------------------|---------------------------------------------------|--------|------|-------|--------------------------|--------------|--------------------------|-------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                            | Analyte(s)                                        | Result | Flag | Units | *RDL                     | MDL          | Dilution                 | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                         | organic Compounds                                 |        |      |       |                          |              |                          |             |                           |               |         |                          |       |
|                                    | organic Compounds by SW<br>by method SW846 5030 V |        |      |       |                          |              |                          |             |                           |               |         |                          |       |
| 67-64-1                            | Acetone                                           | < 10.0 |      | µg/l  | 10.0                     | 2.5          | 1                        | SW846 8260C | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 71-43-2                            | Benzene                                           | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        | "           | "                         |               | "       | "                        | х     |
| 75-27-4                            | Bromodichloromethane                              | < 0.5  |      | µg/l  | 0.5                      | 0.2          | 1                        |             | "                         | "             | "       | "                        | х     |
| 75-25-2                            | Bromoform                                         | < 1.0  |      | µg/l  | 1.0                      | 0.3          | 1                        |             |                           |               | "       | "                        | х     |
| 74-83-9                            | Bromomethane                                      | < 2.0  |      | µg/l  | 2.0                      | 0.5          | 1                        |             | "                         | "             | "       | "                        | х     |
| 78-93-3                            | 2-Butanone (MEK)                                  | < 10.0 |      | µg/l  | 10.0                     | 1.2          | 1                        |             | "                         | "             | "       | "                        | х     |
| 104-51-8                           | n-Butylbenzene                                    | < 1.0  |      | µg/l  | 1.0                      | 0.3          | 1                        |             | "                         |               | "       |                          | х     |
| 135-98-8                           | sec-Butylbenzene                                  | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             | "                         |               | "       |                          | х     |
| 98-06-6                            | tert-Butylbenzene                                 | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             | "                         |               | "       |                          | х     |
| 75-15-0                            | Carbon disulfide                                  | < 2.0  |      | µg/l  | 2.0                      | 0.3          | 1                        |             | "                         |               | "       |                          | х     |
| 56-23-5                            | Carbon tetrachloride                              | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             | "                         |               | "       |                          | х     |
| 108-90-7                           | Chlorobenzene                                     | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             | "                         |               | "       |                          | х     |
| 75-00-3                            | Chloroethane                                      | < 2.0  |      | µg/l  | 2.0                      | 0.4          | 1                        |             | "                         |               | "       |                          | х     |
| 67-66-3                            | Chloroform                                        | < 1.0  |      | µg/l  | 1.0                      | 0.4          | 1                        |             | "                         |               | "       |                          | х     |
| 74-87-3                            | Chloromethane                                     | < 2.0  |      | µg/l  | 2.0                      | 0.3          | 1                        |             | "                         |               | "       |                          | х     |
| 124-48-1                           | Dibromochloromethane                              | < 0.5  |      | µg/l  | 0.5                      | 0.2          | 1                        |             | "                         |               | "       |                          | х     |
| 95-50-1                            | 1,2-Dichlorobenzene                               | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             | "                         |               | "       |                          | х     |
| 541-73-1                           | 1,3-Dichlorobenzene                               | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             | "                         |               | "       |                          | х     |
| 106-46-7                           | 1,4-Dichlorobenzene                               | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             |                           |               | "       |                          | х     |
| 75-34-3                            | 1,1-Dichloroethane                                | < 1.0  |      | μg/l  | 1.0                      | 0.2          | 1                        |             |                           |               | "       |                          | х     |
| 107-06-2                           | 1,2-Dichloroethane                                | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             |                           |               | "       |                          | х     |
| 75-35-4                            | 1,1-Dichloroethene                                | < 1.0  |      | µg/l  | 1.0                      | 0.3          | 1                        |             |                           |               | "       |                          | х     |
| 156-59-2                           | cis-1,2-Dichloroethene                            | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             |                           |               | "       |                          | х     |
| 156-60-5                           | trans-1,2-Dichloroethene                          | < 1.0  |      | μg/l  | 1.0                      | 0.2          | 1                        |             |                           |               | "       |                          | х     |
| 78-87-5                            | 1,2-Dichloropropane                               | < 1.0  |      | µg/l  | 1.0                      | 0.1          | 1                        |             |                           |               | "       |                          | х     |
| 10061-01-5                         | cis-1,3-Dichloropropene                           | < 0.5  |      | µg/l  | 0.5                      | 0.2          | 1                        |             |                           |               | "       |                          | х     |
| 10061-02-6                         | trans-1,3-Dichloropropene                         | < 0.5  |      | μg/l  | 0.5                      | 0.3          | 1                        |             |                           |               | "       |                          | х     |
| 100-41-4                           | Ethylbenzene                                      | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             |                           |               | "       |                          | х     |
| 591-78-6                           | 2-Hexanone (MBK)                                  | < 10.0 |      | µg/l  | 10.0                     | 0.5          | 1                        |             |                           |               | "       |                          | х     |
| 98-82-8                            | Isopropylbenzene                                  | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             |                           |               | "       |                          | х     |
| 99-87-6                            | 4-Isopropyltoluene                                | < 1.0  |      | µg/l  | 1.0                      | 0.4          | 1                        |             |                           |               | "       |                          | х     |
| 1634-04-4                          | Methyl tert-butyl ether                           | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        | •           |                           |               | "       | "                        | х     |
| 108-10-1                           | 4-Methyl-2-pentanone<br>(MIBK)                    | < 10.0 |      | µg/l  | 10.0                     | 0.7          | 1                        | 'n          |                           |               | "       | "                        | х     |
| 75-09-2                            | Methylene chloride                                | < 2.0  |      | µg/l  | 2.0                      | 0.3          | 1                        | "           | "                         |               | "       | "                        | х     |
| 91-20-3                            | Naphthalene                                       | < 1.0  |      | µg/l  | 1.0                      | 0.4          | 1                        |             | "                         |               | "       |                          | х     |
| 103-65-1                           | n-Propylbenzene                                   | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        |             | "                         |               | "       |                          | х     |
| 100-42-5                           | Styrene                                           | < 1.0  |      | μg/l  | 1.0                      | 0.2          | 1                        | "           |                           |               | "       | "                        | х     |
| 79-34-5                            | 1,1,2,2-Tetrachloroethane                         | < 0.5  |      | μg/l  | 0.5                      | 0.3          | 1                        | "           |                           |               | "       | "                        | х     |
| 127-18-4                           | Tetrachloroethene                                 | < 1.0  |      | μg/l  | 1.0                      | 0.6          | 1                        | "           |                           |               | "       | "                        | х     |
| 108-88-3                           | Toluene                                           | < 1.0  |      | μg/l  | 1.0                      | 0.3          | 1                        | "           |                           |               | "       | "                        | х     |
| 71-55-6                            | 1,1,1-Trichloroethane                             | < 1.0  |      | μg/l  | 1.0                      | 0.2          | 1                        | "           | "                         |               | "       | "                        | х     |
| 79-00-5                            | 1,1,2-Trichloroethane                             | < 1.0  |      | µg/l  | 1.0                      | 0.2          | 1                        | "           | "                         |               |         | "                        | x     |
| 79-01-6                            | Trichloroethene                                   | < 1.0  |      | µg/l  | 1.0                      | 0.4          | 1                        | "           | "                         |               |         | "                        | x     |
|                                    |                                                   |        |      | r3''  |                          | <b>v</b> . 1 |                          |             |                           |               |         |                          |       |

| <u>Sample Id</u><br>Trip Blan<br>SC06877- |                                                    |            |      |       | <u>Project #</u><br>)606 |      | <u>Matrix</u><br>Aqueous |                     | ection Date<br>-May-15 00 |               |         | <u>ceived</u><br>May-15 |       |
|-------------------------------------------|----------------------------------------------------|------------|------|-------|--------------------------|------|--------------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                                   | Analyte(s)                                         | Result     | Flag | Units | *RDL                     | MDL  | Dilution                 | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile O                                | rganic Compounds                                   |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
|                                           | rganic Compounds by SW<br>by method SW846 5030 \   |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 75-69-4                                   | Trichlorofluoromethane<br>(Freon 11)               | < 1.0      |      | µg/l  | 1.0                      | 0.5  | 1                        | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                 | Х     |
| 95-63-6                                   | 1,2,4-Trimethylbenzene                             | < 1.0      |      | µg/l  | 1.0                      | 0.4  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 108-67-8                                  | 1,3,5-Trimethylbenzene                             | < 1.0      |      | µg/l  | 1.0                      | 0.9  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 75-01-4                                   | Vinyl chloride                                     | < 1.0      |      | µg/l  | 1.0                      | 0.3  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 179601-23-1                               | m,p-Xylene                                         | < 2.0      |      | µg/l  | 2.0                      | 0.4  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 95-47-6                                   | o-Xylene                                           | < 1.0      |      | µg/l  | 1.0                      | 0.5  | 1                        | "                   |                           | "             | "       | "                       | х     |
| Surrogate r                               | recoveries:                                        |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 460-00-4                                  | 4-Bromofluorobenzene                               | 99         |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
| 2037-26-5                                 | Toluene-d8                                         | 98         |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
| 17060-07-0                                | 1,2-Dichloroethane-d4                              | 94         |      |       | 70-13                    | 0 %  |                          |                     | "                         | "             | "       | "                       |       |
| 1868-53-7                                 | Dibromofluoromethane                               | 97         |      |       | 70-13                    | 0 %  |                          | "                   | "                         | "             | "       | "                       |       |
|                                           | rganic Compounds<br>by method SW846 5030 \         | Nater MS   |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 108-05-4                                  | Vinyl acetate                                      | < 10.0     |      | µg/l  | 10.0                     | 9.56 | 1                        |                     | 08-May-1<br>5             | "             | "       | 1508955                 | х     |
| Surrogate r                               | recoveries:                                        |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 460-00-4                                  | 4-Bromofluorobenzene                               | 99         |      |       | 70-13                    | 0 %  |                          |                     |                           | "             | "       |                         |       |
| 2037-26-5                                 | Toluene-d8                                         | 100        |      |       | 70-13                    | 0 %  |                          |                     | "                         | "             | "       | "                       |       |
| 17060-07-0                                | 1,2-Dichloroethane-d4                              | 100        |      |       | 70-13                    | 0 %  |                          |                     | "                         | "             | "       |                         |       |
| 1868-53-7                                 | Dibromofluoromethane                               | 103        |      |       | 70-13                    | 0 %  |                          |                     | "                         | "             | "       | "                       |       |
|                                           | y Identified Compounds b<br>by method SW846 5030 \ |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
|                                           | Tentatively Identified<br>Compounds                | None found |      | µg/l  |                          |      | 1                        | SW846 8260C<br>TICs | 08-May-1<br>5             |               | SJB     | 1508958                 |       |

# The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer at the lab:

| SC06877-09 | SB-16-7-8          | 5/2/2015 11:30 AM | * |
|------------|--------------------|-------------------|---|
| SC06877-15 | SB-19-1-3          | 5/2/2015 11:30 AM | * |
| SC06877-20 | <i>SB-23-17-18</i> | 5/2/2015 11:30 AM |   |
| SC06877-22 | SB-22-19-20        | 5/2/2015 11:30 AM |   |
| SC06877-24 | SB-25-20-24        | 5/2/2015 11:30 AM |   |

\* Freezing of low-level vial prior to laboratory submittal cannot be confirmed

# Notes and Definitions

| D   | Data reported from a dilution                                                                                                                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GS1 | Sample dilution required for high concentration of target analytes to be within the instrument calibration range.                                                                                 |
| O01 | This compound is a common laboratory contaminant.                                                                                                                                                 |
| QC2 | Analyte out of acceptance range in QC spike but no reportable concentration present in sample.                                                                                                    |
| QM7 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.                                                                  |
| QM9 | The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits. |
| R01 | The Reporting Limit has been raised to account for matrix interference.                                                                                                                           |
| TIC | (Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.                           |
| dry | Sample results reported on a dry weight basis                                                                                                                                                     |
| NR  | Not Reported                                                                                                                                                                                      |
| RDU | Relative Percent Difference                                                                                                                                                                       |

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor

| Specific Handling:     Specific Handling:     Specific Handling:     Specific Handling:       Normalization     Hinkings DNs     Bills Carp Area     Bills Carp Area     Bills Carp Area       Normalization     Agent To:     Normalization     Bills Carp Area     Bills Carp Area       And Bills     Bills Carp Area     Bills Carp Area     Bills Carp Area     Bills Carp Area       And Bills     Bills Carp Area     Bills Carp Area     Bills Carp Area     Bills Carp Area       Second Table Distribution     Bills Carp Area     Bills Carp Area     Bills Carp Area       Second Table Distribution     Bills Carp Area     Bills Carp Area     Bills Carp Area       Second Table Distribution     Bills Carp Area     Bills Carp Area     Bills Carp Area       Second Table Distribution     Bills Carp Area     Bills Carp Area     Bills Carp Area       Second Table Distribution     Bills Carp Area     Bills Carp Area     Bills Carp Area       Bills Carp Area     Bills Carp Area     Bills Carp Area     Bills Carp Area     Bills Carp Area       Bills Carp Area     Bills Carp Area     Bills Carp Area     Bills Carp Area     Bills Carp Area       Bills Carp Area     Bills Carp Area     Bills Carp Area     Bills Carp Area     Bills Carp Area       Bills Carp Area     Bills Carp Area     Bills Carp Area     B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Revised Feb 2013                                                                                                              | -                               |                             | tical.com | -analy                       | www.spectrum-analytical.com         | WWV     |                                       |                             |                                                             |                                    | i<br>T |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-----------|------------------------------|-------------------------------------|---------|---------------------------------------|-----------------------------|-------------------------------------------------------------|------------------------------------|--------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ivy Seals-Apresent Antact Droken                                                                                              | Condition upon receipt: Custody | 0                           |           |                              |                                     | -       |                                       |                             |                                                             |                                    |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |                                 | 4.6                         | 7         |                              | 1 1                                 |         |                                       |                             |                                                             | -                                  | 1      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               | L E-mail to                     | 1                           | 1130      |                              | 5/2/10                              |         | B                                     | and                         |                                                             | Fed the                            |        |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               | A EDD FOILIAL                   | 5.6                         | 1800      | ~                            | 5/11                                |         | R                                     | Fed E                       | 1                                                           | an On                              |        |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               | Thenneamat T                    | Temp <sup>o</sup> C         | Time:     | -                            | Date:                               |         | ed by:                                | Receiv                      | d by:                                                       | Relinquishe                        | -(     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Torra                                                                                                                         |                                 |                             |           | -                            |                                     | a       | 1230                                  | 4/2/115                     | 19-                                                         | -95                                | 2      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               | XXX                             | -                           |           | - 1                          | دن                                  |         | 1200                                  | culaglis                    | 0-7-8                                                       | -85                                |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MS/MSD                                                                                                                        | X                               | ×                           |           | 6                            |                                     | -       | OCII                                  | 4129115                     | - 2 -                                                       | - SB-                              | -      |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14010                                                                                                                         | ×                               |                             |           | יע                           |                                     |         | 1700                                  | 11 2 11                     | à                                                           | m1-05 60                           | -      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOLD                                                                                                                          | ***                             |                             | X         | -                            | 3                                   |         | 1550                                  | 11/28/11                    | 1.1                                                         | 1                                  | 1      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOUD .                                                                                                                        |                                 |                             |           | 8                            |                                     |         | 1520                                  | 4/14/IT                     | -4.                                                         | 3 -                                | 1      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hora                                                                                                                          | X                               |                             |           | -                            |                                     |         | 1425                                  | 11/26/11                    | 1                                                           | 04 58-17                           | 1      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOLD                                                                                                                          | -                               | -                           |           | 2                            | -                                   | *       | 1340                                  | 4/28/17                     | 1-10-11                                                     |                                    | -      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | まい                                                                                                                            | ×                               | X                           |           | ىو                           |                                     | -       | 1320                                  | -                           | 0.t.                                                        | 02 SB-                             | -      |
| $M_{and Maxter       CHAIN OF CUSTODY RECORDAgavam, MA 01001       rational state and state and$ | Sample Id:       Date:       Time:       Type       Time:       Type       Time:       Type       Matrix       Page 1 of 2<br>In Amagen Drive       Sample Id:       CHAIN OF CUSTODY RECORD<br>(413) 789-9018       Time:       Type       Matrix       Hangen Drive       Bage 1 of 3<br>Interview       Time:       Type       Matrix       Hangen Drive       Bage 1 of 3<br>Interview       Time:       Time:       Type       Matrix       Handware       Interview       Interview       Interview       Interview       Matrix       Interview       Interview <thinterview< th="">       Interview       <thinterview< th=""></thinterview<></thinterview<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               | *                               |                             |           | 2                            | 0                                   | _       | 1100                                  | -                           | 5-4-5                                                       | 17-1 50-                           | 661    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | State-specific reporting standards                                                                                            | RCR<br>CY<br>PCI                |                             |           |                              |                                     | Туре    | Time:                                 | Date:                       | ample Id:                                                   | 2019<br>2019                       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | □ Other                                                                                                                       | A m<br>an<br>3                  |                             |           | -                            | -                                   |         |                                       | osite                       |                                                             | 0                                  | _      |
| Page       of       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image: Standing of Stan |                                                                                                                               |                                 | SI VAC                      | 51455     |                              | /ial s                              |         |                                       |                             |                                                             | -                                  | 1      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . QA/QC Reporting Level                                                                                                       | Analyses:                       |                             | ners:     | Contai                       |                                     |         | Astewater                             | 3                           | -                                                           | DW=Drinking Water                  |        |
| Sector       CHAIN OF CUSTODY RECORD       TAT- Ind ic         11 Almgren Drive       11 Almgren Drive       8405 Benjamin Road, Ste A       646 Camp Avenue       All TATs         Ann MolA       Chautakortica, INC.       (413) 789-9018       8405 Benjamin Road, Ste A       646 Camp Avenue       All TATs         Ann MolA       Chautakortica, INC.       (413) 789-9018       18 8405 Benjamin Road, Ste A       646 Camp Avenue       All TATs         Ann MolA       Chautakortica, Inc.       (413) 789-9018       18 8405 Benjamin Road, Ste A       646 Camp Avenue       All TATs         Min. 24-he       Agawan, MA 01001       (813) 888-9507       0401) 732-3400       Samples di         Min. 24-he       Invoice To:       MICULIP Claud Sell       N Kingstown, RI 02852       otherwise         Min. 24-he       Invoice To:       MICULIP Claud Sell       Project No. X 15 D & D & S       Ste N = Cor WWG         Kico Ciccle Site No. Y He       H       Endet       Project No. X 15 D & D & S       Ste N = Cor WWG         Kico Ciccle Site No. Y He       HO. No.: A 15 D & D & S       Ste N = Cor WWG       Sampler(s):       An UN         Kico Ciccle Site No. Y He       HO. No.: A 15 D & D & S       Sampler(s):       An UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QA/QC Reporting Notes:                                                                                                        | t preservative code below:      | List                        | ,OH       | 7=CH                         | bic Acid<br>12=                     | 6=Ascor | 5=NaOH<br>11=                         |                             | 2=HCl 3=H <sub>2</sub> SO <sub>4</sub><br>= Deionized Water | S203                               |        |
| AMALYTICAL, INC.       CHAIN OF CUSTODY RECORD       TAT- Ind ic         ANALYTICAL, INC.       11 A Imgren Drive       18405 Benjamin Road, Ste A       1646 Camp Avenue       TAT- Ind ic         ANALYTICAL, INC.       Agawam, MA 01001       18405 Benjamin Road, Ste A       1646 Camp Avenue       All TATs         ANALYTICAL, INC.       (413) 789-9018       18405 Benjamin Road, Ste A       1646 Camp Avenue       All TATs         All TATs       (413) 789-9018       (813) 888-9507       N Kingstown, RI 02852       Min. 24-he         All TATs       (413) 789-9018       (813) 888-9507       N Kingstown, RI 02852       Samples di         Na(L Anau Akbelapc.com       Invoice To:       Mc (L) (P (LauSel))       Project No. 2 (S D & D & S)       Samples di         Stie Name:       Cor (Wing       Site Name:       Cor (Wing         Stie Name:       Cor (Wing       Location:       Site Name:       Cor (Wing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Image: Stephen Service       CHAIN OF CUSTODY RECORD       Tampa, FL 33634       All TATs         MALATTICAL, INC.       11 Almgren Drive       18405 Benjamin Road, Ste A       1646 Camp A venue       All TATs         MALATTICAL, INC.       (413) 789-9018       18405 Benjamin Road, Ste A       1646 Camp A venue       All TATs         Min. 24-he       Agawam, MA 01001       18405 Benjamin Road, Ste A       1646 Camp A venue       All TATs         Min. 24-he       All TATs       (413) 789-9018       (813) 888-9507       NKingstown, RI 02852       All TATs         No(1       Chost Abbellapc.com       Invoice To:       MICUIN ClauSch       NKingstown, RI 02852       otherwise         No(2)       Chost Abbellapc.com       Invoice To:       MICUIN ClauSch       Project No.2 15 D G 2         Stie Name:       Corr MUNG       Site Name:       Corr MUNG         Stie Name:       Corr MUNG       Site Name:       Corr MUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | quilina                                                                                                                       | X                               | Sar                         |           | RQN:                         | 9096                                | 5       | P.O. No                               | 101.0                       | N Nall                                                      | DA                                 |        |
| AMALYTICAL, INC.       CHAIN OF CUSTODY RECORD       TAT- Ind ic         AMALYTICAL, INC.       I 11 Almgren Drive       8405 Benjamin Road, Ste A       646 Camp Avenue       TAT- Ind ic         AMALYTICAL, INC.       I 11 Almgren Drive       8405 Benjamin Road, Ste A       646 Camp Avenue       All TATs         Agawam, MA 01001       Tampa, FL 33634       N Kingstown, RI 02852       All TATs         All TATs       (413) 789-9018       (813) 888-9507       M Kingstown, RI 02852       Samples di otherwise         NO(I       Anal Lakelape, company       Invoice To:       MICULIP CIAUSE/I       Project No. 2 15 D & D & S         No(I       Chaulalakelape, company       Company       Stie Name:       Company       Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image: Analytic AL, INC.       CHAIN OF CUSTODY RECORD       TAT- Ind ic         I 11 Almgren Drive       B405 Benjamin Road, Ste A       G46 Camp Avenue       TAT- Ind ic         Agawam, MA 01001       B405 Benjamin Road, Ste A       G46 Camp Avenue       All TATs         Agawam, MA 01001       B405 Benjamin Road, Ste A       G46 Camp Avenue       All TATs         Main: 24-hc       (413) 789-9018       (813) 888-9507       N Kingstown, RI 02852       Samples di         No(1       Anau Babelape Comments       Invoice To:       Mic Icl R ClauSeli       Project No X 15 D & D & S         No(1       Anau Babelape Comments       Invoice To:       Mic Icl R ClauSeli       Project No X 15 D & D & S         No(1       Anau Babelape Comments       Invoice To:       Mic Icl R ClauSeli       Stie Name: Cor Mic ClauSeli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tate:                                                                                                                         | 6                               | Loc                         |           |                              |                                     |         | - T                                   | - / - II - I III            | Manan IC                                                    | 101 1000                           |        |
| Image: Invoice To:       Auguinina 2 la icliapo, commis       To:       Mc/L/I/C/I/C/I/C/I/C/I/C/I/C/I/C/I/C/I/C/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANALYTICAL, INC.       CHAIN OF CUSTODY RECORD       TAT- Ind ic         ANALYTICAL, INC.       I 11 Almgren Drive       8405 Benjamin Road, Ste A       646 Camp Avenue         AMALYTICAL, INC.       All almgren Drive       8405 Benjamin Road, Ste A       646 Camp Avenue       All TATs         AMALYTICAL, INC.       (413) 789-9018       18 8405 Benjamin Road, Ste A       646 Camp Avenue       All TATs         All TATs       (413) 789-9018       (813) 888-9507       N Kingstown, RI 02852       Samples di otherwise         No(1       Anal Acclepce composition of the class of                                                                                                                                                                                                                                                                                                     | Parach                                                                                                                        | 1                               | Site                        |           |                              |                                     | T       | 14                                    | NIN MI                      | index 1                                                     | lase ha Thispe                     |        |
| Page of       S         CHAIN OF CUSTODY RECORD       TAT- Ind ic         □ 11 Almgren Drive       □ 8405 Benjamin Road, Ste A       □ 646 Camp Avenue       All TATs         Agawann, MA 01001       Tampa, FL 33634       N Kingstown, RI 02852       Min. 24-he         (413) 789-9018       (813) 888-9507       (401) 732-3400       Samples di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHAIN OF CUSTODY RECORD       All TATs         I 11 Almgren Drive       8405 Benjamin Road, Ste A       646 Camp Avenue         Agawam, MA 01001       Tampa, FL 33634       N Kingstown, RI 02852       Min. 24-he         (413) 789-9018       (813) 888-9507       (401) 732-3400       Samples di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                            |                                 | Pro                         | auser     | 0                            | he                                  | -       | Invoice                               | abellaper u                 | -0-                                                         |                                    |        |
| CUSTODY RECORD TAT- Ind ic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page 1 of 3 SCOORD TAT- Ind ic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Is subject to laboratory approva<br>hour notification needed for rushes<br>disposed of after 60 days unless<br>se instructed. |                                 | □ 646 (<br>N Kingst<br>(401 | A         | in Road<br>L 3363-<br>8-9507 | 405 Benjarr<br>Tampa, F<br>(813) 88 | - 100   | ngren Drive<br>, MA 01001<br>789-9018 | □ 11 Alr<br>Agawam<br>(413) | LATTICAL, INC.                                              | SPECTRUM ANA<br>Fean<br>HANIBAL TE |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SC06011 AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Special Handling:<br>icate Date Needed: 5 Day                                                                                 |                                 | EC                          | DYT       |                              |                                     |         | AN                                    | CH                          |                                                             | 2                                  |        |

sco  $X_{l=}$ O=Oil SW= Surface Water DW=Drinking Water GW=Groundwater Project Mgr. Telephone #: Report To: Dan Noll Lab Id: ANTEL MILLING 8 8= NaHSO<sub>4</sub> 5 6 2 ~ 1=Na2S2O3 30 Relinquished by: Rocha SPECTRUM ANALYTICAL, INC SB 20-21-20-23-ALT 20-7-8 56-17-19-20 D1-95 50-17-25-3 513-20-12-137 Featuring HANIBAL TECHNOLOGY -1- W- US 51-41-61-05 200 9= Deionized Water 17-6-8 Sample Id: G=Grab 2 = HC17-5-4 aciquitine 2 and laper on AN X2= 5  $3=H_2SO_4$ Anolia abellanci dam 2. SO=Soil C=Composite a 0 4614 2 2 610 4129 10=H3PO4 4=HNO<sub>3</sub> SL=Sludge 00 130 Date: WW=Wastewater Agawam, MA 01001 □ 11 Almgren Drive X3= (413) 789-9018 5 115 610:0 eceived by: う 5=NaOH 1440 1720 11= 1350 A=Air 041 0/ 12 1305 1440 Time: 570 018 P.O. No.: 6=Ascorbic Acid OF 5 5 0 0 Type 8405 Benjamin Road, Ste A SURO miche lle S 33 02 Page 2 S 3 50 C CUSTODY 0 2 Matrix 5 Tampa, FL 33634 (813) 888-9507 12= Date: -SN 2 N J N N N # of VOA Vials YRQN: 2) 7=CH<sub>3</sub>OH # of Amber Glass N Containers: of # of Clear Glass Jawes Time: # of Plastic A REC CPSI + TEL VOE + 10 TICS CPSI + TEL SUCCHOTIS RERA METALS N Kingstown, RI 02852 × × X XX 7 □ 646 Camp Avenue 56 Temp°C 6 0 (401) 732-3400 Site Name: ( 4 List preservative code below: Project No .: Sampler(s): Location: + × 0687 E-mail to ~ EDD Format × Condition upon receipt: Custody Seals: APresent A Intact Broken × × RD Cyanido Analyses: thin R 21110 PCB arn add hili nad Mesticide TAT- Ind icate Date Needed: 2 00000 All TATs subject to laboratory approval Samples disposed of after 60 days unless Min. 24-hour notification needed for rushes otherwise instructed. 1 W 2 T 000 あるう Special Handling: AJat 170CD けっこう F15 State-specific reporting standards. ling TOPO □ Other □ Level III Level I QA/QC Reporting Notes: QA/QC Reporting Level a vellage con 5 State: 0 Level IV Level II 6 bar  $\hat{\beta}_{ij}$ 

www.spectrum-analytical.com

Revised Feb 2013

| ted II DI VOA Frozen II Soil Jar Froz                                                                                                                                                             | Ambient Alced LI Refrigeration                                                                                                       | C            |                            |                            |               |                                                                   |                                                                                                                       |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|----------------------------|---------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|
| Condition upon receipt: Custody Seals R Present X Intact Broken                                                                                                                                   | -                                                                                                                                    |              |                            |                            |               |                                                                   |                                                                                                                       |                |
| March Contractor                                                                                                                                                                                  | () I E-man to check                                                                                                                  | 130 -        | 15                         | e/9                        | 10            | AME                                                               | AFX                                                                                                                   | the            |
| mat EQUIS                                                                                                                                                                                         | EDD For                                                                                                                              | Time: Temp"C | 13 18                      | カ Date:                    | 74 13         | Received by:                                                      | Relinquished by:                                                                                                      |                |
|                                                                                                                                                                                                   |                                                                                                                                      |              |                            |                            |               | -                                                                 |                                                                                                                       |                |
|                                                                                                                                                                                                   |                                                                                                                                      | X            | ~                          |                            |               | C1115                                                             | Those divi                                                                                                            | 11.1           |
| thous                                                                                                                                                                                             |                                                                                                                                      | ×            | -                          | 503                        | 620 6         | 1-1151                                                            | 28-24-27-245                                                                                                          | 26             |
| tory .                                                                                                                                                                                            | ×                                                                                                                                    |              | -                          | 20                         | 10 6          |                                                                   | 36-36-1-3                                                                                                             | 25             |
| tors &                                                                                                                                                                                            |                                                                                                                                      | ×            | 1                          | 803                        | 100 6         | 1115 11                                                           | SB-25-20-24 5                                                                                                         | 24             |
| 10-10-1                                                                                                                                                                                           | *                                                                                                                                    |              | 1                          | So                         | 200 6         | 1301151                                                           | 50-24-6-7.4                                                                                                           | 23             |
|                                                                                                                                                                                                   |                                                                                                                                      | X            | 3                          | 503                        | 20 9          | 1 34 15 13                                                        | 58-22-19-20 u                                                                                                         | . 81           |
|                                                                                                                                                                                                   | ×                                                                                                                                    |              | دو                         | SO                         | 30 6          | 4130/15 11                                                        | 20-32- Re-95                                                                                                          | 200827-21      |
| State-specific reporting standards:<br>ASP (cct . B                                                                                                                                               | PCB.<br>Cycun<br>PCS                                                                                                                 | # of P       | # of V<br># of A<br># of C | Matrix                     | Time:<br>Type | Date: 1                                                           | Sample Id:                                                                                                            | Lab Id:        |
|                                                                                                                                                                                                   |                                                                                                                                      | CPSI<br>CPSI | mber (                     |                            |               | site                                                              | G=Grab C=Composite                                                                                                    |                |
| Level II     Level II     Level III     Level IV                                                                                                                                                  |                                                                                                                                      | id they      | Glass                      | •                          | A=Aır         | $X_{\text{SL}=\text{Sludge}}$ A                                   | SW= Surface Water SO=Soil<br>X2=                                                                                      | U=01           |
| . QA/QC Reporting Level                                                                                                                                                                           | Analyses:                                                                                                                            |              | Containers:                |                            | water         | WW=Wast                                                           | ő                                                                                                                     | DW=Dri         |
| QA/QC Reporting Notes:                                                                                                                                                                            | List preservative code below:                                                                                                        |              | d 7=CH3OH                  | 6=Ascorbic Acid<br>12=     | HO            | 4=HNO <sub>3</sub> 5=Na<br>10=H <sub>3</sub> PO <sub>4</sub> 11=  | 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub><br>8= NaHSO <sub>4</sub> 9= Deionized Water | 1=<br>8= N     |
| lucins                                                                                                                                                                                            | Sampler(s): AWN AT                                                                                                                   |              | O RQN:                     | 2150606                    | P.O. No.: 2   |                                                                   | 101 NEW NOLL                                                                                                          | Project Mgr.   |
| State: NY                                                                                                                                                                                         | 0                                                                                                                                    |              |                            |                            | <u>۸</u>      | 1/14/4 -                                                          | ESt. Roche                                                                                                            | 3005           |
| bogited .                                                                                                                                                                                         | Site Name: Corming Th                                                                                                                |              | MIC NO THE LIANDER         | MICN                       | Invoice To:   |                                                                   |                                                                                                                       | Annta          |
|                                                                                                                                                                                                   | 2                                                                                                                                    | _            | Ul. ti                     | MA I.                      |               |                                                                   | Dra Wallets david labor row                                                                                           | Report To: Una |
| TAT- Ind icate Date Needed: 5 AA<br>All TATs subject to laboratory approval.<br>Min. 24-hour notification needed for rushes.<br>Samples disposed of after 60 days unless<br>otherwise instructed. | RECORD<br>G 646 Camp Avenue<br>N Kingstown, RI 02852<br>(401) 732-3400<br>TAT- Ind i<br>All TAT-<br>Min. 24-1<br>Samples<br>otherwis | F            |                            | 1 8405 Ber<br>Tamp<br>(813 | Q             | CHAIN<br>I 11 Almgren Drive<br>Agawam, MA 01001<br>(413) 789-9018 | SPECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY                                                          | -              |
| Special Handling:                                                                                                                                                                                 | Q                                                                                                                                    | N            | V of                       | Page                       |               |                                                                   |                                                                                                                       |                |
|                                                                                                                                                                                                   | COOD 11 84                                                                                                                           | V            | F                          |                            |               |                                                                   |                                                                                                                       |                |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                             |                                                                                                                                      | )            |                            |                            |               |                                                                   |                                                                                                                       |                |

fedex.com 1.800.GoFedEx 1.800.463.3339 ω N 1 From Date 5 To Recipient's Your Internal Billing Reference Address 300 City Agawawa Name City Sender's Name Use this line for the HOLD location address or for conti Company Company C We cannot deliver to P.O. hoxes or P.O. ZIP codes Address **BOLX** Address Express -14 acheater NEW Package lima Start AIRDIN NSSO CIALES VCD 8066 7882 8903 uation of your shipping address. 11/19 Pancely-high Drive 2 FedEx Tracking Number State VV いいいというないのできたというである 9066 Phone 413 Phone 355 P Dept/Roon/Suite/Rec 2885 ZIP ZIP 245-62 14614 HOLD Weekday FedSx location address REGUINED NOT available for FedSx First Overnight. 8 7 89 - 90 18 X SATURDAY Delivery HOLD Saturday Feelts location address SECURED. Available ONLY for Feelts Priority Overnight and Feelts 2Day in select locations. EOPB Dopt/Root/Suite 6 Special Handling and Delivery Signature Options FedEx Envelope\* FodEx Priority Overnight Next basiness maning "Friday shipners will be dolycont in Manday unless SATURDAY Delivery FodEx First Overnight Latiest next samess mining Incention, fields the same same Monday outers SATURDAY Doe 2 No Ves Shipper's Declaration. No Signature Required Package may be left without obtaining a signature for delivery. cπ 7 Payment Bill to: Dangerous goods (including dry ice) cannot be shipped in FedEx packaging or placed in a FedEx Express Drop Box. Rev. Date 1/12 \* Part #187002 \* ©2012 FedEx \* PRINTED IN U.S.A. SRF Bur tublity is and fotal Packages Does this shipment contain dangerous goods? Packaging . oed Express Package Service \*16 most location. FedEx Standard Overnight Next baliness afternuon\* Saturday Delivery NOT available. Next Business Day Forms 10 No. 0200 One box must be checked. 2 Total Weight Recipient FedEx Pak\* value limit \$500. Enter FedEx Acct. No. or Credit Card No. below. Direct Signature Sometrie st recipient's address may sign for delivery. Fee applies FedEx 2Day A.M., or FedEx Express Sav Third Party FedEx 2Day Second balance alternorn \* Thursday shprann wat be delivered on Minicular unlines SATUIDAY Delivery a second FedEx 2Day A.M. Second business morning." Saturday DalViny NOT invalidation FedEx Express Saver Third business day.\* Saturday Delivery NOT invaliable 2 or 3 Business Days Box Box PedDo Sea Dry Ice Dry Ice, 9, UN 1945 vice Guide for i Credit Card Auth. Cargo Aircraft Only Credit Card Tube Indirect Signature If no one is available at recipient's address sameone at a highboring address may sign for delivery. For notidemail disfuertes only. **Ree applies**. Packages up to 150 lbs. For packages over 150 lbs., use the new Feelly Express Freight US Airbit. Acct. No. 449 Cash/Check Other fedex.com 1.800.6oFedEx 1.800.463.3339 \$1.2 1 11 t



Report Date: 15-May-15 16:18



Project: Corning Hospital, NY

Project #: 2150606

Final ReportRe-Issued ReportRevised Report

Labella Associates, P.C. 300 State Street Suite 201 Rochester, NY 14614 Attn: Dan Noll

| Laboratory ID | <u>Client Sample ID</u> | <u>Matrix</u> | Date Sampled    | Date Received   |
|---------------|-------------------------|---------------|-----------------|-----------------|
| SC07069-04    | Sump 1                  | Sump Water    | 05-May-15 10:30 | 07-May-15 09:05 |
| SC07069-07    | SB-35-0-4               | Soil          | 05-May-15 11:45 | 07-May-15 09:05 |
| SC07069-09    | MW-08                   | Ground Water  | 05-May-15 15:15 | 07-May-15 09:05 |
| SC07069-10    | MW-12                   | Ground Water  | 05-May-15 15:50 | 07-May-15 09:05 |
| SC07069-11    | Blind Duplicate         | Ground Water  | 05-May-15 00:00 | 07-May-15 09:05 |
| SC07069-12    | MW-03                   | Ground Water  | 06-May-15 07:40 | 07-May-15 09:05 |
| SC07069-13    | MW-04                   | Ground Water  | 06-May-15 09:20 | 07-May-15 09:05 |
| SC07069-14    | MW-09                   | Ground Water  | 06-May-15 10:40 | 07-May-15 09:05 |
| SC07069-15    | MW-10                   | Ground Water  | 06-May-15 11:10 | 07-May-15 09:05 |
| SC07069-16    | MW-05                   | Ground Water  | 06-May-15 12:00 | 07-May-15 09:05 |
| SC07069-17    | MW-06                   | Ground Water  | 06-May-15 12:35 | 07-May-15 09:05 |
| SC07069-18    | MW-07                   | Ground Water  | 06-May-15 11:00 | 07-May-15 09:05 |
| SC07069-19    | MW-13                   | Ground Water  | 06-May-15 12:25 | 07-May-15 09:05 |
| SC07069-20    | MW-11                   | Ground Water  | 06-May-15 08:15 | 07-May-15 09:05 |
| SC07069-21    | Trip Blank              | Aqueous       | 06-May-15 00:00 | 07-May-15 09:05 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435



Authorized by:

Aliole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 43 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

## CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 1.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

# EPA 335.4 / SW846 9012B

## Spikes:

1509372-MS1 Source: SC07069-18

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Cyanide (total)

1509372-MSD1 Source: SC07069-18

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Cyanide (total)

## SW846 6010C

## Spikes:

1509214-MSD1 Source: SC07069-07

Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.

Lead

Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.

Lead

## **Duplicates:**

1509214-DUP1 Source: SC07069-07

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Silver

Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.

Lead

1509546-DUP1 Source: SC07069-07

The Reporting Limit has been raised to account for matrix interference.

Selenium

## Samples:

# SW846 6010C

#### Samples:

SC07069-07 SB-35-0-4

The Reporting Limit has been raised to account for matrix interference.

Selenium

## SW846 7471B

#### Spikes:

1509215-MS1 Source: SC07069-07

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Mercury

1509215-MSD1 Source: SC07069-07

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Mercury

1509215-PS1 Source: SC07069-07

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Mercury

#### **Duplicates:**

| 1509215-DUP1 | Source: SC07069-07 |
|--------------|--------------------|
|              |                    |

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Mercury

#### Samples:

SC07069-07 SB-35-0-4

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Mercury

## SW846 8260C

#### **Calibration:**

#### 1504013

Analyte quantified by quadratic equation type calibration.

Bromoform Naphthalene

# SW846 8260C

#### **Calibration:**

## 1504013

This affected the following samples:

1508958-BLK1 1508958-BS1 1508958-BSD1 1508958-MS1 1508958-MSD1 1509127-BLK1 1509127-BS1 1509127-BSD1 1509127-MS1 1509127-MSD1 Blind Duplicate MW-03 MW-04 MW-05 MW-06 MW-07 **MW-08** MW-09 MW-10 MW-11 MW-12 MW-13 S502844-ICV1 S504344-CCV1 S504445-CCV1 Sump 1 Trip Blank

## Spikes:

1508958-MS1 Source: SC07069-10

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Acetone Bromomethane Carbon disulfide Chloromethane Dichlorodifluoromethane (Freon12) Tert-Butanol / butyl alcohol Vinyl chloride

## 1508958-MSD1 Source: SC07069-10

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

Styrene

## SW846 8260C

#### Spikes:

1508958-MSD1 Source: SC07069-10

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Bromomethane Carbon disulfide Chloromethane Dichlorodifluoromethane (Freon12) Tert-Butanol / butyl alcohol Vinyl chloride

#### 1509127-MS1 Source: SC07069-17

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,2-Dibromo-3-chloropropane Tert-Butanol / butyl alcohol

1509127-MSD1 Source: SC07069-17

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

1,2,4-Trimethylbenzene

#### Samples:

#### S504344-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,2-Dibromo-3-chloropropane (-30.1%) Bromodichloromethane (-20.9%) Bromomethane (-37.6%) Carbon disulfide (-25.0%) Dichlorodifluoromethane (Freon12) (-22.7%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromoform (-23.6%)

This affected the following samples:

1508958-BLK1 1508958-BSD1 1508958-BSD1 1508958-MSD1 1508958-MSD1 Blind Duplicate MW-03 MW-04 MW-05 MW-08 MW-09 MW-10 MW-12 Sump 1

#### S504445-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Bromomethane (-26.3%)

# SW846 8260C

Samples:

S504445-CCV1

This affected the following samples:

1509127-BLK1 1509127-BSD1 1509127-BSD1 1509127-MSD1 1509127-MSD1 MW-06 MW-07 MW-07 MW-11 MW-13 Trip Blank

# SW846 8270D

## **Calibration:**

## 1503056

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol 4-Nitrophenol

This affected the following samples:

1508810-BLK1 1508810-BS1 1508810-BSD1 MW-07 S502322-ICV1 S504372-CCV1 S504415-CCV1

## Laboratory Control Samples:

#### 1508810 BS/BSD

Phenol percent recoveries (29/32) are outside individual acceptance criteria (30-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

MW-07

## 1508810 BSD

Bis(2-ethylhexyl)phthalate RPD 39% (20%) is outside individual acceptance criteria.

## Samples:

## S504372-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Azobenzene/Diphenyldiazene (22.8%) Benzo (b) fluoranthene (25.0%) Bis(2-chloroisopropyl)ether (34.6%) N-Nitrosodimethylamine (26.0%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Benzidine (-58.8%)

# SW846 8270D

#### Samples:

S504372-CCV1

This affected the following samples:

1508810-BLK1 1508810-BS1 1508810-BSD1

# S504415-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Benzo (b) fluoranthene (20.6%) Bis(2-chloroisopropyl)ether (30.4%) Pentachlorophenol (-22.7%)

This affected the following samples:

MW-07

## Sample Acceptance Check Form

Client: Labella Associates, P.C. Project: Corning Hospital, NY / 2150606 Work Order: SC07069 Sample(s) received on: 5/7/2015

## The following outlines the condition of samples for the attached Chain of Custody upon receipt.

| Were custody seals present?                                                                                                                                                                                                                                                          | $\checkmark$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Were custody seals intact?                                                                                                                                                                                                                                                           | $\checkmark$ |
| Were samples received at a temperature of $\leq 6^{\circ}$ C?                                                                                                                                                                                                                        | $\checkmark$ |
| Were samples cooled on ice upon transfer to laboratory representative?                                                                                                                                                                                                               | $\checkmark$ |
| Were sample containers received intact?                                                                                                                                                                                                                                              | $\checkmark$ |
| Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?                                                                                                                             | $\checkmark$ |
| Were samples accompanied by a Chain of Custody document?                                                                                                                                                                                                                             | $\checkmark$ |
| Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample? |              |
| Did sample container labels agree with Chain of Custody document?                                                                                                                                                                                                                    |              |
| Were samples received within method-specific holding times?                                                                                                                                                                                                                          | $\checkmark$ |

| Yes          | <u>No</u>    | <u>N/A</u> |
|--------------|--------------|------------|
| $\checkmark$ |              |            |
|              |              |            |
|              | $\checkmark$ |            |
| $\checkmark$ |              |            |

| Sample Id<br>Sump 1 | 07069-04                                                              |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Sump Wat |             | ection Date<br>-May-15 10 |               |         | <u>ceived</u><br>May-15 |       |
|---------------------|-----------------------------------------------------------------------|--------|------|-------|--------------------------|-----|---------------------------|-------------|---------------------------|---------------|---------|-------------------------|-------|
| SC07069-            | -04                                                                   |        |      | 215   | 5000                     |     | Sump Wu                   |             | Whay 15 IC                | 5.50          | 07 1    | indy 15                 |       |
| CAS No.             | Analyte(s)                                                            | Result | Flag | Units | *RDL                     | MDL | Dilution                  | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile O          | rganic Compounds<br>Irganic Compounds by SW<br>by method SW846 5030 V |        |      |       |                          |     |                           |             |                           |               |         |                         |       |
| 67-64-1             | Acetone                                                               | < 2.5  | U    | µg/l  | 10.0                     | 2.5 | 1                         | SW846 8260C | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                 | 8 X   |
| 71-43-2             | Benzene                                                               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         | "           | "                         |               | "       | "                       | х     |
| 75-27-4             | Bromodichloromethane                                                  | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                         | "           | "                         | "             | "       | "                       | х     |
| 75-25-2             | Bromoform                                                             | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                         |             | "                         |               | "       | "                       | х     |
| 74-83-9             | Bromomethane                                                          | < 0.5  | U    | µg/l  | 2.0                      | 0.5 | 1                         |             | "                         | "             | "       |                         | Х     |
| 78-93-3             | 2-Butanone (MEK)                                                      | < 1.2  | U    | µg/l  | 10.0                     | 1.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 104-51-8            | n-Butylbenzene                                                        | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                         |             | "                         | "             | "       | "                       | Х     |
| 135-98-8            | sec-Butylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | х     |
| 98-06-6             | tert-Butylbenzene                                                     | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | х     |
| 75-15-0             | Carbon disulfide                                                      | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                         |             | "                         | "             | "       |                         | Х     |
| 56-23-5             | Carbon tetrachloride                                                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | х     |
| 108-90-7            | Chlorobenzene                                                         | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       | "                       | х     |
| 75-00-3             | Chloroethane                                                          | < 0.4  | U    | µg/l  | 2.0                      | 0.4 | 1                         |             | "                         | "             | "       |                         | х     |
| 67-66-3             | Chloroform                                                            | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                         |             | "                         | "             | "       |                         | Х     |
| 74-87-3             | Chloromethane                                                         | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                         |             | "                         | "             | "       |                         | Х     |
| 124-48-1            | Dibromochloromethane                                                  | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 95-50-1             | 1,2-Dichlorobenzene                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 541-73-1            | 1,3-Dichlorobenzene                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 106-46-7            | 1,4-Dichlorobenzene                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         |               | "       | "                       | х     |
| 75-34-3             | 1,1-Dichloroethane                                                    | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 107-06-2            | 1,2-Dichloroethane                                                    | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | х     |
| 75-35-4             | 1,1-Dichloroethene                                                    | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                         |             | "                         | "             | "       |                         | Х     |
| 156-59-2            | cis-1,2-Dichloroethene                                                | 0.2    | J    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 156-60-5            | trans-1,2-Dichloroethene                                              | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       | "                       | Х     |
| 78-87-5             | 1,2-Dichloropropane                                                   | < 0.1  | U    | µg/l  | 1.0                      | 0.1 | 1                         |             | "                         | "             | "       |                         | Х     |
| 10061-01-5          | cis-1,3-Dichloropropene                                               | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 10061-02-6          | trans-1,3-Dichloropropene                                             | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                         |             | "                         | "             | "       |                         | Х     |
| 100-41-4            | Ethylbenzene                                                          | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 591-78-6            | 2-Hexanone (MBK)                                                      | < 0.5  | U    | µg/l  | 10.0                     | 0.5 | 1                         |             | "                         | "             | "       | "                       | Х     |
| 98-82-8             | Isopropylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       |                         | Х     |
| 99-87-6             | 4-Isopropyltoluene                                                    | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                         |             | "                         | "             | "       | "                       | Х     |
| 1634-04-4           | Methyl tert-butyl ether                                               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         |             | "                         | "             | "       | "                       | Х     |
| 108-10-1            | 4-Methyl-2-pentanone<br>(MIBK)                                        | < 0.7  | U    | µg/l  | 10.0                     | 0.7 | 1                         | "           | "                         | n             | "       | "                       | х     |
| 75-09-2             | Methylene chloride                                                    | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                         |             | "                         | "             | "       |                         | Х     |
| 91-20-3             | Naphthalene                                                           | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                         |             | "                         | "             | "       |                         | Х     |
| 103-65-1            | n-Propylbenzene                                                       | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         | "           | "                         |               | "       | "                       | х     |
| 100-42-5            | Styrene                                                               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         | "           | "                         |               | "       | "                       | х     |
| 79-34-5             | 1,1,2,2-Tetrachloroethane                                             | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                         | "           | "                         |               | "       | "                       | х     |
| 127-18-4            | Tetrachloroethene                                                     | < 0.6  | U    | µg/l  | 1.0                      | 0.6 | 1                         | "           | "                         |               | "       | "                       | х     |
| 108-88-3            | Toluene                                                               | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                         | "           | "                         | "             | "       | "                       | х     |
| 71-55-6             | 1,1,1-Trichloroethane                                                 | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         | "           | "                         | "             | "       | "                       | х     |
| 79-00-5             | 1,1,2-Trichloroethane                                                 | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                         | "           | "                         | "             | "       | "                       | х     |
| 79-01-6             | Trichloroethene                                                       | 24.4   |      | µg/l  | 1.0                      | 0.4 | 1                         | "           | "                         |               | "       | "                       | х     |

| Sample Id<br>Sump 1<br>SC07069- | lentification<br>04                                |            |      |       | Project <u>#</u><br>0606 |      | <u>Matrix</u><br>Sump Wa |                     | ection Date<br>-May-15 1( |               |         | <u>ceived</u><br>May-15 |       |
|---------------------------------|----------------------------------------------------|------------|------|-------|--------------------------|------|--------------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                         | Analyte(s)                                         | Result     | Flag | Units | *RDL                     | MDL  | Dilution                 | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile Or                     | rganic Compounds                                   |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
|                                 | rganic Compounds by SW<br>by method SW846 5030 \   |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 75-69-4                         | Trichlorofluoromethane<br>(Freon 11)               | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                        | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                 | х     |
| 95-63-6                         | 1,2,4-Trimethylbenzene                             | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                        | "                   | "                         | "             | "       | "                       | х     |
| 108-67-8                        | 1,3,5-Trimethylbenzene                             | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 75-01-4                         | Vinyl chloride                                     | < 0.3      | U    | µg/l  | 1.0                      | 0.3  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 179601-23-1                     | m,p-Xylene                                         | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                        |                     | "                         | "             | "       | "                       | Х     |
| 95-47-6                         | o-Xylene                                           | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                        | "                   |                           |               | "       | "                       | х     |
| Surrogate r                     | recoveries:                                        |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 460-00-4                        | 4-Bromofluorobenzene                               | 102        |      |       | 70-13                    | 0%   |                          |                     |                           | "             | "       |                         |       |
| 2037-26-5                       | Toluene-d8                                         | 99         |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
| 17060-07-0                      | 1,2-Dichloroethane-d4                              | 94         |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       | "                       |       |
| 1868-53-7                       | Dibromofluoromethane                               | 96         |      |       | 70-13                    | 0 %  |                          |                     | "                         |               | "       |                         |       |
|                                 | rganic Compounds<br>by method SW846 5030 \         | Water MS   |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 108-05-4                        | Vinyl acetate                                      | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                        |                     | 08-May-1<br>5             | "             | "       | 1508955                 | х     |
| Surrogate r                     | recoveries:                                        |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
| 460-00-4                        | 4-Bromofluorobenzene                               | 102        |      |       | 70-13                    | 0 %  |                          |                     | "                         | "             | "       | "                       |       |
| 2037-26-5                       | Toluene-d8                                         | 100        |      |       | 70-13                    | 0 %  |                          |                     | "                         | "             | "       | "                       |       |
| 17060-07-0                      | 1,2-Dichloroethane-d4                              | 100        |      |       | 70-13                    | 0 %  |                          |                     |                           | "             | "       |                         |       |
| 1868-53-7                       | Dibromofluoromethane                               | 102        |      |       | 70-13                    | 0 %  |                          |                     | "                         | "             | "       | "                       |       |
|                                 | y Identified Compounds b<br>by method SW846 5030 \ |            |      |       |                          |      |                          |                     |                           |               |         |                         |       |
|                                 | Tentatively Identified<br>Compounds                | None found |      | µg/l  |                          |      | 1                        | SW846 8260C<br>TICs | 08-May-1<br>5             | "             | SJB     | 1508958                 |       |

| SB-35-0-4  | SC07069-07          |                  |           | <u>Client Project #</u><br>2150606 |       |        | <u>Matrix</u><br>Soil | Collection Date/Time<br>05-May-15 11:45 |               |               |         | <u>ceived</u><br>May-15 |       |
|------------|---------------------|------------------|-----------|------------------------------------|-------|--------|-----------------------|-----------------------------------------|---------------|---------------|---------|-------------------------|-------|
| CAS No.    | Analyte(s)          | Result           | Flag      | Units                              | *RDL  | MDL    | Dilution              | Method Ref.                             | Prepared      | Analyzed      | Analyst | Batch                   | Cert. |
| Total Meta | als by EPA 6000/700 | 0 Series Methods |           |                                    |       |        |                       |                                         |               |               |         |                         |       |
| 7440-22-4  | Silver              | 0.299            | J         | mg/kg dry                          | 1.87  | 0.137  | 1                     | SW846 6010C                             | 13-May-1<br>5 | 14-May-1<br>5 | TBC     | 1509214                 | Х     |
| 7440-38-2  | Arsenic             | 12.5             |           | mg/kg dry                          | 1.87  | 0.302  | 1                     | "                                       | "             | "             | "       | "                       | х     |
| 7440-39-3  | Barium              | 274              |           | mg/kg dry                          | 1.25  | 0.0740 | 1                     | "                                       | "             | "             | "       |                         | х     |
| 7440-43-9  | Cadmium             | 0.513            | J         | mg/kg dry                          | 0.623 | 0.0199 | 1                     |                                         | "             | "             | "       | "                       | х     |
| 7440-47-3  | Chromium            | 22.8             |           | mg/kg dry                          | 1.25  | 0.119  | 1                     | "                                       | "             | "             | "       | "                       | х     |
| 7439-97-6  | Mercury             | 3.62             | GS1, D    | mg/kg dry                          | 0.771 | 0.0504 | 20                    | SW846 7471B                             | 14-May-1<br>5 | 15-May-1<br>5 | YR      | 1509215                 | Х     |
| 7439-92-1  | Lead                | 435              |           | mg/kg dry                          | 1.87  | 0.344  | 1                     | SW846 6010C                             | 13-May-1<br>5 | 14-May-1<br>5 | TBC     | 1509214                 | Х     |
| 7782-49-2  | Selenium            | < 0.936          | R01, U, D | mg/kg dry                          | 3.74  | 0.936  | 2                     | n                                       | "             | 15-May-1<br>5 | "       | 1509546                 | Х     |
| General C  | hemistry Parameter  | rs               |           |                                    |       |        |                       |                                         |               |               |         |                         |       |
|            | % Solids            | 70.5             |           | %                                  |       |        | 1                     | SM2540 G Mod.                           | 07-May-1<br>5 | 07-May-1<br>5 | DT      | 1508853                 |       |

| Sample Id<br>MW-08<br>SC07069- | <u>lentification</u><br>-09                                          |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 15 |               |         | <u>eceived</u><br>May-15 |       |
|--------------------------------|----------------------------------------------------------------------|--------|------|-------|--------------------------|-----|----------------------------|-------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                        | Analyte(s)                                                           | Result | Flag | Units | *RDL                     | MDL | Dilution                   | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                     | rganic Compounds<br>rganic Compounds by SW<br>by method SW846 5030 V |        |      |       |                          |     |                            |             |                           |               |         |                          |       |
| 67-64-1                        | Acetone                                                              | < 2.5  | U    | µg/l  | 10.0                     | 2.5 | 1                          | SW846 8260C | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 71-43-2                        | Benzene                                                              | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                        | х     |
| 75-27-4                        | Bromodichloromethane                                                 | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          | "           |                           |               | "       | "                        | х     |
| 75-25-2                        | Bromoform                                                            | < 0.3  | U    | μg/l  | 1.0                      | 0.3 | 1                          |             |                           | "             | "       |                          | х     |
| 74-83-9                        | Bromomethane                                                         | < 0.5  | U    | µg/l  | 2.0                      | 0.5 | 1                          |             | "                         |               | "       |                          | Х     |
| 78-93-3                        | 2-Butanone (MEK)                                                     | < 1.2  | U    | µg/l  | 10.0                     | 1.2 | 1                          |             | "                         |               | "       |                          | Х     |
| 104-51-8                       | n-Butylbenzene                                                       | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             | "                         | "             | "       | "                        | Х     |
| 135-98-8                       | sec-Butylbenzene                                                     | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                          | х     |
| 98-06-6                        | tert-Butylbenzene                                                    | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 75-15-0                        | Carbon disulfide                                                     | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          |             | "                         | "             | "       |                          | х     |
| 56-23-5                        | Carbon tetrachloride                                                 | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 108-90-7                       | Chlorobenzene                                                        | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 75-00-3                        | Chloroethane                                                         | < 0.4  | U    | µg/l  | 2.0                      | 0.4 | 1                          |             | "                         | "             | "       |                          | х     |
| 67-66-3                        | Chloroform                                                           | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             |                           | "             |         |                          | х     |
| 74-87-3                        | Chloromethane                                                        | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          |             |                           | "             | "       |                          | х     |
| 124-48-1                       | Dibromochloromethane                                                 | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 95-50-1                        | 1,2-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 541-73-1                       | 1,3-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 106-46-7                       | 1,4-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 75-34-3                        | 1,1-Dichloroethane                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 107-06-2                       | 1,2-Dichloroethane                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 75-35-4                        | 1,1-Dichloroethene                                                   | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             |                           | "             | "       |                          | х     |
| 156-59-2                       | cis-1,2-Dichloroethene                                               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                          | х     |
| 156-60-5                       | trans-1,2-Dichloroethene                                             | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 78-87-5                        | 1,2-Dichloropropane                                                  | < 0.1  | U    | µg/l  | 1.0                      | 0.1 | 1                          |             |                           |               |         |                          | х     |
| 10061-01-5                     | cis-1,3-Dichloropropene                                              | < 0.2  | U    | μg/l  | 0.5                      | 0.2 | 1                          |             |                           |               | "       |                          | х     |
| 10061-02-6                     | trans-1,3-Dichloropropene                                            | < 0.3  | U    | μg/l  | 0.5                      | 0.3 | 1                          |             |                           |               | "       |                          | х     |
| 100-41-4                       | Ethylbenzene                                                         | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 591-78-6                       | 2-Hexanone (MBK)                                                     | < 0.5  | U    | µg/l  | 10.0                     | 0.5 | 1                          |             |                           | "             | "       |                          | х     |
| 98-82-8                        | Isopropylbenzene                                                     | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                          | х     |
| 99-87-6                        | 4-Isopropyltoluene                                                   | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             |                           | "             | "       |                          | х     |
| 1634-04-4                      | Methyl tert-butyl ether                                              | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                          | х     |
| 108-10-1                       | 4-Methyl-2-pentanone<br>(MIBK)                                       | < 0.7  | U    | µg/l  | 10.0                     | 0.7 | 1                          | "           | "                         |               | "       | "                        | х     |
| 75-09-2                        | Methylene chloride                                                   | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          |             | "                         | "             |         |                          | Х     |
| 91-20-3                        | Naphthalene                                                          | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             |                           | "             | "       |                          | х     |
| 103-65-1                       | n-Propylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 100-42-5                       | Styrene                                                              | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                        | х     |
| 79-34-5                        | 1,1,2,2-Tetrachloroethane                                            | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                          | "           | "                         | "             | "       | "                        | х     |
| 127-18-4                       | Tetrachloroethene                                                    | < 0.6  | U    | µg/l  | 1.0                      | 0.6 | 1                          | "           | "                         | "             | "       | "                        | х     |
| 108-88-3                       | Toluene                                                              | 0.6    | J    | µg/l  | 1.0                      | 0.3 | 1                          | "           | "                         |               | "       | "                        | х     |
| 71-55-6                        | 1,1,1-Trichloroethane                                                | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         | "             | "       | "                        | х     |
| 79-00-5                        | 1,1,2-Trichloroethane                                                | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                        | х     |
| 79-01-6                        | Trichloroethene                                                      | 0.4    | J    | µg/l  | 1.0                      | 0.4 | 1                          | "           | "                         |               | "       | "                        | х     |

| <u>Sample Id</u><br><b>MW-08</b><br>SC07069- | 07069-09                                         |            |      |       | <u>Project #</u><br>)606 | <u>Matrix</u><br>Ground Water |          |                     | ection Date<br>-May-15 15 |               |         | <u>eceived</u><br>May-15 |       |
|----------------------------------------------|--------------------------------------------------|------------|------|-------|--------------------------|-------------------------------|----------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                                      | Analyte(s)                                       | Result     | Flag | Units | *RDL                     | MDL                           | Dilution | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile Or                                  | rganic Compounds                                 |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
|                                              | rganic Compounds by SW<br>by method SW846 5030 \ |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)             | < 0.5      | U    | µg/l  | 1.0                      | 0.5                           | 1        | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | Х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                           | < 0.4      | U    | µg/l  | 1.0                      | 0.4                           | 1        |                     | "                         | "             | "       | "                        | Х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                           | < 0.9      | U    | µg/l  | 1.0                      | 0.9                           | 1        |                     | "                         | "             | "       | "                        | Х     |
| 75-01-4                                      | Vinyl chloride                                   | < 0.3      | U    | µg/l  | 1.0                      | 0.3                           | 1        |                     | "                         | "             | "       | "                        | Х     |
| 179601-23-1                                  | m,p-Xylene                                       | 0.7        | J    | µg/l  | 2.0                      | 0.4                           | 1        |                     | "                         | "             | "       | "                        | Х     |
| 95-47-6                                      | o-Xylene                                         | < 0.5      | U    | µg/l  | 1.0                      | 0.5                           | 1        | "                   | "                         | "             | "       | "                        | х     |
| Surrogate r                                  | ecoveries:                                       |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                             | 99         |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                       | 100        |      |       | 70-13                    | 0 %                           |          |                     |                           |               | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                            | 92         |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                             | 96         |      |       | 70-13                    | 0 %                           |          |                     |                           |               | "       |                          |       |
|                                              | rganic Compounds<br>by method SW846 5030 \       | Nater MS   |      |       |                          |                               |          |                     |                           |               |         |                          |       |
| 108-05-4                                     | Vinyl acetate                                    | < 9.56     | U    | µg/l  | 10.0                     | 9.56                          | 1        |                     | 08-May-1<br>5             | "             | "       | 1508955                  | х     |
| Surrogate r                                  | ecoveries:                                       |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                             | 99         |      |       | 70-13                    | 0 %                           |          |                     | "                         | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                       | 101        |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                            | 98         |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                             | 102        |      |       | 70-13                    | 0 %                           |          | "                   |                           | "             | "       |                          |       |
|                                              | V Identified Compounds by method SW846 5030      |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
|                                              | Tentatively Identified<br>Compounds              | None found |      | µg/l  |                          |                               | 1        | SW846 8260C<br>TICs | 08-May-1<br>5             | "             | SJB     | 1508958                  |       |

| Sample Id<br>MW-12 | dentification                                                        |        |      |       | Project # |     | <u>Matrix</u> |             | ection Date   |               |         | <u>eceived</u> |       |
|--------------------|----------------------------------------------------------------------|--------|------|-------|-----------|-----|---------------|-------------|---------------|---------------|---------|----------------|-------|
| SC07069-           | -10                                                                  |        |      | 2150  | 0606      |     | Ground Wa     | ater 05     | -May-15 15    | 5:50          | 0/-     | May-15         |       |
| CAS No.            | Analyte(s)                                                           | Result | Flag | Units | *RDL      | MDL | Dilution      | Method Ref. | Prepared      | Analyzed      | Analyst | Batch          | Cert. |
| Volatile O         | rganic Compounds<br>rganic Compounds by SW<br>by method SW846 5030 V |        |      |       |           |     |               |             |               |               |         |                |       |
| 67-64-1            | Acetone                                                              | 5.2    | J    | µg/l  | 10.0      | 2.5 | 1             | SW846 8260C | 08-May-1<br>5 | 08-May-1<br>5 | SJB     | 1508958        | х     |
| 71-43-2            | Benzene                                                              | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             | "           | "             |               | "       | "              | х     |
| 75-27-4            | Bromodichloromethane                                                 | < 0.2  | U    | µg/l  | 0.5       | 0.2 | 1             | "           |               |               | "       | "              | х     |
| 75-25-2            | Bromoform                                                            | < 0.3  | U    | µg/l  | 1.0       | 0.3 | 1             |             |               | "             | "       |                | х     |
| 74-83-9            | Bromomethane                                                         | < 0.5  | U    | µg/l  | 2.0       | 0.5 | 1             |             | "             |               | "       |                | х     |
| 78-93-3            | 2-Butanone (MEK)                                                     | < 1.2  | U    | µg/l  | 10.0      | 1.2 | 1             | "           |               | "             | "       | "              | х     |
| 104-51-8           | n-Butylbenzene                                                       | < 0.3  | U    | µg/l  | 1.0       | 0.3 | 1             |             |               | "             | "       |                | х     |
| 135-98-8           | sec-Butylbenzene                                                     | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             |               | "             | "       |                | х     |
| 98-06-6            | tert-Butylbenzene                                                    | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             |               | "             | "       |                | Х     |
| 75-15-0            | Carbon disulfide                                                     | < 0.3  | U    | µg/l  | 2.0       | 0.3 | 1             |             |               | "             | "       |                | х     |
| 56-23-5            | Carbon tetrachloride                                                 | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | Х     |
| 108-90-7           | Chlorobenzene                                                        | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | Х     |
| 75-00-3            | Chloroethane                                                         | < 0.4  | U    | µg/l  | 2.0       | 0.4 | 1             |             | "             | "             | "       |                | х     |
| 67-66-3            | Chloroform                                                           | < 0.4  | U    | µg/l  | 1.0       | 0.4 | 1             |             | "             | "             | "       |                | х     |
| 74-87-3            | Chloromethane                                                        | < 0.3  | U    | µg/l  | 2.0       | 0.3 | 1             |             | "             | "             | "       |                | х     |
| 124-48-1           | Dibromochloromethane                                                 | < 0.2  | U    | µg/l  | 0.5       | 0.2 | 1             |             | "             | "             | "       |                | Х     |
| 95-50-1            | 1,2-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | х     |
| 541-73-1           | 1,3-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | х     |
| 106-46-7           | 1,4-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             |               | "             | "       |                | х     |
| 75-34-3            | 1,1-Dichloroethane                                                   | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | х     |
| 107-06-2           | 1,2-Dichloroethane                                                   | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | х     |
| 75-35-4            | 1,1-Dichloroethene                                                   | < 0.3  | U    | µg/l  | 1.0       | 0.3 | 1             |             | "             | "             | "       |                | х     |
| 156-59-2           | cis-1,2-Dichloroethene                                               | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | х     |
| 156-60-5           | trans-1,2-Dichloroethene                                             | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | х     |
| 78-87-5            | 1,2-Dichloropropane                                                  | < 0.1  | U    | µg/l  | 1.0       | 0.1 | 1             |             | "             | "             | "       |                | Х     |
| 10061-01-5         | cis-1,3-Dichloropropene                                              | < 0.2  | U    | µg/l  | 0.5       | 0.2 | 1             |             | "             | "             | "       |                | х     |
| 10061-02-6         | trans-1,3-Dichloropropene                                            | < 0.3  | U    | µg/l  | 0.5       | 0.3 | 1             |             | "             | "             | "       |                | х     |
| 100-41-4           | Ethylbenzene                                                         | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | Х     |
| 591-78-6           | 2-Hexanone (MBK)                                                     | < 0.5  | U    | µg/l  | 10.0      | 0.5 | 1             |             | "             | "             | "       |                | Х     |
| 98-82-8            | Isopropylbenzene                                                     | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | Х     |
| 99-87-6            | 4-Isopropyltoluene                                                   | < 0.4  | U    | µg/l  | 1.0       | 0.4 | 1             |             | "             | "             | "       |                | Х     |
| 1634-04-4          | Methyl tert-butyl ether                                              | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | Х     |
| 108-10-1           | 4-Methyl-2-pentanone<br>(MIBK)                                       | < 0.7  | U    | µg/l  | 10.0      | 0.7 | 1             | "           | "             | "             | "       |                | х     |
| 75-09-2            | Methylene chloride                                                   | < 0.3  | U    | µg/l  | 2.0       | 0.3 | 1             | "           | "             |               | "       | "              | х     |
| 91-20-3            | Naphthalene                                                          | < 0.4  | U    | µg/l  | 1.0       | 0.4 | 1             |             | "             | "             | "       |                | х     |
| 103-65-1           | n-Propylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             |             | "             | "             | "       |                | х     |
| 100-42-5           | Styrene                                                              | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             | "           | "             | "             | "       | "              | х     |
| 79-34-5            | 1,1,2,2-Tetrachloroethane                                            | < 0.3  | U    | µg/l  | 0.5       | 0.3 | 1             | "           | "             |               | "       | "              | х     |
| 127-18-4           | Tetrachloroethene                                                    | 1.1    |      | µg/l  | 1.0       | 0.6 | 1             | "           | "             | "             | "       | "              | х     |
| 108-88-3           | Toluene                                                              | < 0.3  | U    | µg/l  | 1.0       | 0.3 | 1             | "           | "             | "             | "       | "              | х     |
| 71-55-6            | 1,1,1-Trichloroethane                                                | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             | "           | "             | "             | "       | "              | х     |
| 79-00-5            | 1,1,2-Trichloroethane                                                | < 0.2  | U    | µg/l  | 1.0       | 0.2 | 1             | "           | "             | "             | "       | "              | х     |
| 79-01-6            | Trichloroethene                                                      | 5.1    |      | µg/l  | 1.0       | 0.4 | 1             | "           |               | "             | "       | "              | х     |

| MW-12       | 207069-10                                          |            |      |       | Project <u>#</u><br>0606 | <u>Matrix</u><br>Ground Water |          |                     | ection Date<br>-May-15 15 |               |         | <u>eceived</u><br>May-15 |       |
|-------------|----------------------------------------------------|------------|------|-------|--------------------------|-------------------------------|----------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.     | Analyte(s)                                         | Result     | Flag | Units | *RDL                     | MDL                           | Dilution | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile Or | rganic Compounds                                   |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
|             | rganic Compounds by SW<br>by method SW846 5030 \   |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
| 75-69-4     | Trichlorofluoromethane<br>(Freon 11)               | < 0.5      | U    | µg/l  | 1.0                      | 0.5                           | 1        | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 95-63-6     | 1,2,4-Trimethylbenzene                             | < 0.4      | U    | µg/l  | 1.0                      | 0.4                           | 1        | "                   | "                         | "             | "       | "                        | х     |
| 108-67-8    | 1,3,5-Trimethylbenzene                             | < 0.9      | U    | µg/l  | 1.0                      | 0.9                           | 1        |                     | "                         | "             | "       | "                        | Х     |
| 75-01-4     | Vinyl chloride                                     | < 0.3      | U    | µg/l  | 1.0                      | 0.3                           | 1        |                     | "                         | "             | "       | "                        | Х     |
| 179601-23-1 | m,p-Xylene                                         | < 0.4      | U    | µg/l  | 2.0                      | 0.4                           | 1        |                     | "                         | "             | "       | "                        | Х     |
| 95-47-6     | o-Xylene                                           | < 0.5      | U    | µg/l  | 1.0                      | 0.5                           | 1        | "                   | "                         | "             | "       | "                        | х     |
| Surrogate r | recoveries:                                        |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
| 460-00-4    | 4-Bromofluorobenzene                               | 103        |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
| 2037-26-5   | Toluene-d8                                         | 101        |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
| 17060-07-0  | 1,2-Dichloroethane-d4                              | 93         |      |       | 70-13                    | 0%                            |          |                     |                           | "             | "       |                          |       |
| 1868-53-7   | Dibromofluoromethane                               | 94         |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
|             | rganic Compounds<br>by method SW846 5030 \         | Water MS   |      |       |                          |                               |          |                     |                           |               |         |                          |       |
| 108-05-4    | Vinyl acetate                                      | < 9.56     | U    | µg/l  | 10.0                     | 9.56                          | 1        | "                   | 08-May-1<br>5             | "             | "       | 1508955                  | х     |
| Surrogate r | recoveries:                                        |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
| 460-00-4    | 4-Bromofluorobenzene                               | 104        |      |       | 70-13                    | 0%                            |          |                     | "                         | "             | "       |                          |       |
| 2037-26-5   | Toluene-d8                                         | 102        |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
| 17060-07-0  | 1,2-Dichloroethane-d4                              | 98         |      |       | 70-13                    | 0 %                           |          |                     |                           | "             | "       |                          |       |
| 1868-53-7   | Dibromofluoromethane                               | 100        |      |       | 70-13                    | 0 %                           |          | "                   |                           | "             | "       |                          |       |
|             | y Identified Compounds b<br>by method SW846 5030 \ |            |      |       |                          |                               |          |                     |                           |               |         |                          |       |
|             | Tentatively Identified<br>Compounds                | None found |      | µg/l  |                          |                               | 1        | SW846 8260C<br>TICs | 08-May-1<br>5             |               | SJB     | 1508958                  |       |

| Sample Ic<br>Blind Du<br>SC07069- |                                |                |        |              | <u>Project #</u><br>0606 |            | <u>Matrix</u><br>Ground Wa |                | ection Date<br>-May-15 00 |               |         | <u>eceived</u><br>May-15 |        |
|-----------------------------------|--------------------------------|----------------|--------|--------------|--------------------------|------------|----------------------------|----------------|---------------------------|---------------|---------|--------------------------|--------|
| CAS No.                           | Analyte(s)                     | Result         | Flag   | Units        | *RDL                     | MDL        | Dilution                   | Method Ref.    | Prepared                  | Analyzed      | Analyst | Batch                    | Cert.  |
| Volatile O                        | rganic Compounds               |                |        |              |                          |            |                            |                |                           |               |         |                          |        |
|                                   | rganic Compounds by SW         |                |        |              |                          |            |                            |                |                           |               |         |                          |        |
| Prepared<br>67-64-1               | by method SW846 5030 V         |                |        |              | 10.0                     | 0.5        | 4                          | 014/04/0 00000 | 00 March                  | 00 14         | 0.10    | 4500050                  | Ň      |
| 07-04-1                           | Acetone                        | < 2.5          | U      | µg/l         | 10.0                     | 2.5        | 1                          | SW846 8260C    | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | Х      |
| 71-43-2                           | Benzene                        | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          | "              |                           |               | "       | "                        | х      |
| 75-27-4                           | Bromodichloromethane           | < 0.2          | U      | μg/l         | 0.5                      | 0.2        | 1                          | "              | "                         | "             | "       | "                        | х      |
| 75-25-2                           | Bromoform                      | < 0.3          | U      | μg/l         | 1.0                      | 0.3        | 1                          | "              | "                         | "             | "       | "                        | х      |
| 74-83-9                           | Bromomethane                   | < 0.5          | U      | μg/l         | 2.0                      | 0.5        | 1                          | "              | "                         | "             | "       | "                        | Х      |
| 78-93-3                           | 2-Butanone (MEK)               | < 1.2          | U      | µg/l         | 10.0                     | 1.2        | 1                          |                | "                         | "             | "       | "                        | Х      |
| 104-51-8                          | n-Butylbenzene                 | < 0.3          | U      | µg/l         | 1.0                      | 0.3        | 1                          | "              | "                         | "             | "       | "                        | Х      |
| 135-98-8                          | sec-Butylbenzene               | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |                | "                         | "             | "       | "                        | Х      |
| 98-06-6                           | tert-Butylbenzene              | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |                | "                         | "             | "       | "                        | Х      |
| 75-15-0                           | Carbon disulfide               | < 0.3          | U      | µg/l         | 2.0                      | 0.3        | 1                          | "              | "                         | "             | "       | "                        | х      |
| 56-23-5                           | Carbon tetrachloride           | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |                | "                         | "             | "       | "                        | Х      |
| 108-90-7                          | Chlorobenzene                  | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          | "              | "                         |               | "       | "                        | х      |
| 75-00-3                           | Chloroethane                   | < 0.4          | U      | µg/l         | 2.0                      | 0.4        | 1                          | "              | "                         |               | "       | "                        | Х      |
| 67-66-3                           | Chloroform                     | < 0.4          | U      | µg/l         | 1.0                      | 0.4        | 1                          | "              |                           | "             | "       | "                        | Х      |
| 74-87-3                           | Chloromethane                  | < 0.3          | U      | µg/l         | 2.0                      | 0.3        | 1                          |                |                           |               |         |                          | Х      |
| 124-48-1                          | Dibromochloromethane           | < 0.2          | U      | µg/l         | 0.5                      | 0.2        | 1                          |                |                           |               |         |                          | X      |
| 95-50-1                           | 1,2-Dichlorobenzene            | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |                |                           |               |         |                          | X      |
| 541-73-1                          | 1,3-Dichlorobenzene            | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |                |                           |               |         |                          | X      |
| 106-46-7<br>75-34-3               | 1,4-Dichlorobenzene            | < 0.2          | U<br>U | µg/l         | 1.0                      | 0.2        | 1                          |                |                           |               |         |                          | X      |
| 107-06-2                          | 1,1-Dichloroethane             | < 0.2          | U      | µg/l         | 1.0<br>1.0               | 0.2<br>0.2 | 1<br>1                     |                |                           |               |         |                          | x<br>x |
| 75-35-4                           | 1,1-Dichloroethene             | < 0.2<br>< 0.3 | U      | µg/l<br>µg/l | 1.0                      | 0.2        | 1                          |                |                           |               |         | "                        | x      |
| 156-59-2                          | cis-1,2-Dichloroethene         | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |                |                           |               |         |                          | x      |
| 156-60-5                          | trans-1,2-Dichloroethene       | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |                |                           |               |         |                          | x      |
| 78-87-5                           | 1,2-Dichloropropane            | < 0.2<br>< 0.1 | U      | μg/l         | 1.0                      | 0.2        | 1                          | "              |                           |               | "       |                          | x      |
| 10061-01-5                        | cis-1,3-Dichloropropene        | < 0.2          | U      | μg/l         | 0.5                      | 0.2        | 1                          |                |                           |               |         |                          | x      |
| 10061-02-6                        | trans-1,3-Dichloropropene      | < 0.3          | U      | μg/l         | 0.5                      | 0.3        | 1                          |                |                           |               |         |                          | x      |
| 100-41-4                          | Ethylbenzene                   | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |                |                           |               | "       | "                        | x      |
| 591-78-6                          | 2-Hexanone (MBK)               | < 0.5          | U      | μg/l         | 10.0                     | 0.5        | 1                          | "              | "                         |               | "       | "                        | х      |
| 98-82-8                           | Isopropylbenzene               | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |                |                           |               |         |                          | х      |
| 99-87-6                           | 4-Isopropyltoluene             | < 0.4          | U      | μg/l         | 1.0                      | 0.4        | 1                          |                |                           |               | "       | "                        | х      |
| 1634-04-4                         | Methyl tert-butyl ether        | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          | "              | "                         |               | "       | "                        | х      |
| 108-10-1                          | 4-Methyl-2-pentanone<br>(MIBK) | < 0.7          | U      | µg/l         | 10.0                     | 0.7        | 1                          |                | "                         | "             | "       | "                        | Х      |
| 75-09-2                           | Methylene chloride             | < 0.3          | U      | µg/l         | 2.0                      | 0.3        | 1                          | "              | "                         |               | "       | "                        | х      |
| 91-20-3                           | Naphthalene                    | < 0.4          | U      | µg/l         | 1.0                      | 0.4        | 1                          | "              | "                         |               | "       | "                        | х      |
| 103-65-1                          | n-Propylbenzene                | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          | "              | "                         |               | "       | "                        | х      |
| 100-42-5                          | Styrene                        | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          | "              | "                         |               | "       | "                        | х      |
| 79-34-5                           | 1,1,2,2-Tetrachloroethane      | < 0.3          | U      | µg/l         | 0.5                      | 0.3        | 1                          | "              | "                         |               | "       | "                        | х      |
| 127-18-4                          | Tetrachloroethene              | 1.1            |        | µg/l         | 1.0                      | 0.6        | 1                          | "              | "                         | "             | "       | "                        | х      |
| 108-88-3                          | Toluene                        | < 0.3          | U      | µg/l         | 1.0                      | 0.3        | 1                          | "              | "                         | "             | "       | "                        | х      |
| 71-55-6                           | 1,1,1-Trichloroethane          | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          | "              | "                         | "             | "       | "                        | Х      |
| 79-00-5                           | 1,1,2-Trichloroethane          | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          | "              | "                         | "             | "       | "                        | Х      |
| 79-01-6                           | Trichloroethene                | 5.0            |        | µg/l         | 1.0                      | 0.4        | 1                          | "              | "                         | "             | "       | "                        | х      |
|                                   |                                |                |        |              |                          |            |                            |                |                           |               |         |                          |        |

| Sample Id<br>Blind Duj<br>SC07069- | •                                           |                 |      |       | Project <u>#</u><br>0606 |      | <u>Matrix</u><br>Ground Wa |                     | ection Date<br>-May-15 00 |               |         | <u>eceived</u><br>May-15 |       |
|------------------------------------|---------------------------------------------|-----------------|------|-------|--------------------------|------|----------------------------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                            | Analyte(s)                                  | Result          | Flag | Units | *RDL                     | MDL  | Dilution                   | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile Or                        | rganic Compounds                            |                 |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                    | rganic Compounds by SW                      |                 |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                    | by method SW846 5030 \                      | <u>Nater MS</u> |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 75-69-4                            | Trichlorofluoromethane<br>(Freon 11)        | < 0.5           | U    | µg/l  | 1.0                      | 0.5  | 1                          | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | Х     |
| 95-63-6                            | 1,2,4-Trimethylbenzene                      | < 0.4           | U    | µg/l  | 1.0                      | 0.4  | 1                          | "                   | "                         | "             | "       | "                        | Х     |
| 108-67-8                           | 1,3,5-Trimethylbenzene                      | < 0.9           | U    | μg/l  | 1.0                      | 0.9  | 1                          |                     |                           | "             | "       |                          | Х     |
| 75-01-4                            | Vinyl chloride                              | < 0.3           | U    | µg/l  | 1.0                      | 0.3  | 1                          | "                   | "                         | "             | "       | "                        | Х     |
| 179601-23-1                        | m,p-Xylene                                  | < 0.4           | U    | µg/l  | 2.0                      | 0.4  | 1                          |                     | "                         | "             | "       |                          | х     |
| 95-47-6                            | o-Xylene                                    | < 0.5           | U    | µg/l  | 1.0                      | 0.5  | 1                          | "                   | "                         | "             | "       | "                        | х     |
| Surrogate r                        | recoveries:                                 |                 |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                           | 4-Bromofluorobenzene                        | 101             |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 2037-26-5                          | Toluene-d8                                  | 99              |      |       | 70-13                    | 0 %  |                            |                     |                           | "             |         | "                        |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                       | 92              |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 1868-53-7                          | Dibromofluoromethane                        | 95              |      |       | 70-13                    | 0 %  |                            |                     | "                         | "             | "       | "                        |       |
|                                    | rganic Compounds                            |                 |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                    | by method SW846 5030 \                      | Nater MS        |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 108-05-4                           | Vinyl acetate                               | < 9.56          | U    | µg/l  | 10.0                     | 9.56 | 1                          | "                   | 08-May-1<br>5             | u             | "       | 1508955                  | Х     |
| Surrogate r                        | recoveries:                                 |                 |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                           | 4-Bromofluorobenzene                        | 101             |      |       | 70-13                    | 0 %  |                            | "                   |                           | "             |         | "                        |       |
| 2037-26-5                          | Toluene-d8                                  | 100             |      |       | 70-13                    | 0 %  |                            | "                   |                           | "             |         | "                        |       |
| 17060-07-0                         | 1,2-Dichloroethane-d4                       | 98              |      |       | 70-13                    | 0 %  |                            | "                   | "                         | "             | "       | "                        |       |
| 1868-53-7                          | Dibromofluoromethane                        | 101             |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
|                                    | y Identified Compounds by method SW846 5030 |                 |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                    | Tentatively Identified<br>Compounds         | None found      |      | µg/l  |                          |      | 1                          | SW846 8260C<br>TICs | 08-May-1<br>5             | "             | SJB     | 1508958                  |       |

| Sample Ic<br>MW-03<br>SC07069- | dentification                                                        |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 07 |               |         | <u>ceived</u><br>May-15 |       |
|--------------------------------|----------------------------------------------------------------------|--------|------|-------|--------------------------|-----|----------------------------|-------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                        | Analyte(s)                                                           | Result | Flag | Units | *RDL                     | MDL | Dilution                   | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile O                     | rganic Compounds<br>rganic Compounds by SW<br>by method SW846 5030 V |        |      |       |                          |     |                            |             |                           |               |         |                         |       |
| 67-64-1                        | Acetone                                                              | < 2.5  | U    | µg/l  | 10.0                     | 2.5 | 1                          | SW846 8260C | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                 | Х     |
| 71-43-2                        | Benzene                                                              | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         | "             | "       | "                       | х     |
| 75-27-4                        | Bromodichloromethane                                                 | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          |             |                           | "             | "       | "                       | х     |
| 75-25-2                        | Bromoform                                                            | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             |                           | "             | "       | "                       | х     |
| 74-83-9                        | Bromomethane                                                         | < 0.5  | U    | µg/l  | 2.0                      | 0.5 | 1                          |             |                           | "             | "       | "                       | х     |
| 78-93-3                        | 2-Butanone (MEK)                                                     | < 1.2  | U    | µg/l  | 10.0                     | 1.2 | 1                          |             | "                         | "             | "       |                         | х     |
| 104-51-8                       | n-Butylbenzene                                                       | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             | "                         | "             | "       |                         | х     |
| 135-98-8                       | sec-Butylbenzene                                                     | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 98-06-6                        | tert-Butylbenzene                                                    | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 75-15-0                        | Carbon disulfide                                                     | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          |             |                           | "             | "       |                         | х     |
| 56-23-5                        | Carbon tetrachloride                                                 | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 108-90-7                       | Chlorobenzene                                                        | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 75-00-3                        | Chloroethane                                                         | < 0.4  | U    | µg/l  | 2.0                      | 0.4 | 1                          |             |                           | "             | "       |                         | х     |
| 67-66-3                        | Chloroform                                                           | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             |                           | "             | "       |                         | х     |
| 74-87-3                        | Chloromethane                                                        | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          |             |                           | "             | "       |                         | х     |
| 124-48-1                       | Dibromochloromethane                                                 | < 0.2  | U    | μg/l  | 0.5                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 95-50-1                        | 1,2-Dichlorobenzene                                                  | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 541-73-1                       | 1,3-Dichlorobenzene                                                  | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 106-46-7                       | 1,4-Dichlorobenzene                                                  | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                         | х     |
| 75-34-3                        | 1,1-Dichloroethane                                                   | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             |         |                         | х     |
| 107-06-2                       | 1,2-Dichloroethane                                                   | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                         | х     |
| 75-35-4                        | 1,1-Dichloroethene                                                   | < 0.3  | U    | μg/l  | 1.0                      | 0.3 | 1                          |             |                           | "             |         |                         | х     |
| 156-59-2                       | cis-1,2-Dichloroethene                                               | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 156-60-5                       | trans-1,2-Dichloroethene                                             | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                         | X     |
| 78-87-5                        | 1,2-Dichloropropane                                                  | < 0.1  | U    | μg/l  | 1.0                      | 0.1 | 1                          |             |                           | "             | "       |                         | х     |
| 10061-01-5                     | cis-1,3-Dichloropropene                                              | < 0.2  | U    | μg/l  | 0.5                      | 0.2 | 1                          |             |                           | "             |         |                         | x     |
| 10061-02-6                     | trans-1,3-Dichloropropene                                            | < 0.3  | U    | μg/l  | 0.5                      | 0.3 | 1                          |             |                           | "             |         |                         | X     |
| 100-41-4                       | Ethylbenzene                                                         | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                         | X     |
| 591-78-6                       | 2-Hexanone (MBK)                                                     | < 0.5  | U    | μg/l  | 10.0                     | 0.5 | 1                          |             |                           |               | "       |                         | X     |
| 98-82-8                        | Isopropylbenzene                                                     | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             |         |                         | X     |
| 99-87-6                        | 4-Isopropyltoluene                                                   | < 0.4  | U    | μg/l  | 1.0                      | 0.4 | 1                          |             |                           | "             |         |                         | x     |
| 1634-04-4                      | Methyl tert-butyl ether                                              | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                         | X     |
| 108-10-1                       | 4-Methyl-2-pentanone<br>(MIBK)                                       | < 0.7  | U    | µg/l  | 10.0                     | 0.7 | 1                          | u           |                           |               | "       | "                       | х     |
| 75-09-2                        | Methylene chloride                                                   | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          |             |                           | "             |         |                         | х     |
| 91-20-3                        | Naphthalene                                                          | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             |                           | "             | "       |                         | х     |
| 103-65-1                       | n-Propylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             |         |                         | х     |
| 100-42-5                       | Styrene                                                              | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                       | х     |
| 79-34-5                        | 1,1,2,2-Tetrachloroethane                                            | < 0.3  | U    | μg/l  | 0.5                      | 0.3 | 1                          | "           |                           | "             | "       | "                       | х     |
| 127-18-4                       | Tetrachloroethene                                                    | < 0.6  | U    | μg/l  | 1.0                      | 0.6 | 1                          | "           |                           | "             | "       | "                       | х     |
| 108-88-3                       | Toluene                                                              | < 0.3  | U    | μg/l  | 1.0                      | 0.3 | 1                          | "           | "                         | "             | "       | "                       | х     |
| 71-55-6                        | 1,1,1-Trichloroethane                                                | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         |               |         | "                       | x     |
| 79-00-5                        | 1,1,2-Trichloroethane                                                | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          | "           | "                         | "             | "       | "                       | x     |
| 79-01-6                        | Trichloroethene                                                      | < 0.4  | U    | μg/l  | 1.0                      | 0.4 | 1                          | "           | "                         |               | "       | "                       | x     |
|                                |                                                                      |        |      |       |                          |     |                            |             |                           |               |         |                         |       |

| <u>Sample Id</u><br><b>MW-03</b><br>SC07069- | lentification<br>12                                |            |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground Wa |                     | ection Date<br>-May-15 07 |               |         | <u>eceived</u><br>May-15 |       |
|----------------------------------------------|----------------------------------------------------|------------|------|-------|--------------------------|------|----------------------------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                                      | Analyte(s)                                         | Result     | Flag | Units | *RDL                     | MDL  | Dilution                   | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile Or                                  | rganic Compounds                                   |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | rganic Compounds by SW<br>by method SW846 5030 \   |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)               | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                             | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                          | "                   | "                         | "             | "       |                          | х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                             | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                          |                     | "                         | "             | "       | "                        | Х     |
| 75-01-4                                      | Vinyl chloride                                     | < 0.3      | U    | µg/l  | 1.0                      | 0.3  | 1                          | "                   | "                         | "             | "       | "                        | Х     |
| 179601-23-1                                  | m,p-Xylene                                         | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                          | "                   | "                         | "             | "       | "                        | Х     |
| 95-47-6                                      | o-Xylene                                           | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | "                   | "                         | "             | "       | "                        | Х     |
| Surrogate r                                  | recoveries:                                        |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                               | 99         |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                         | 100        |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                              | 93         |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                               | 99         |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
|                                              | rganic Compounds<br>by method SW846 5030 \         | Water MS   |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 108-05-4                                     | Vinyl acetate                                      | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                          | n                   | 08-May-1<br>5             | "             | "       | 1508955                  | х     |
| Surrogate r                                  | recoveries:                                        |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                               | 99         |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                         | 101        |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                              | 99         |      |       | 70-13                    | 0 %  |                            | "                   | "                         | "             | "       | "                        |       |
| 1868-53-7                                    | Dibromofluoromethane                               | 104        |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
|                                              | y Identified Compounds b<br>by method SW846 5030 \ |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | Tentatively Identified<br>Compounds                | None found |      | µg/l  |                          |      | 1                          | SW846 8260C<br>TICs | 08-May-1<br>5             |               | SJB     | 1508958                  |       |

| Sample Ic<br>MW-04<br>SC07069- | dentification                                                         |                |        |              | <u>Project #</u><br>0606 |            | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 09 |               |         | <u>eceived</u><br>May-15 |        |
|--------------------------------|-----------------------------------------------------------------------|----------------|--------|--------------|--------------------------|------------|----------------------------|-------------|---------------------------|---------------|---------|--------------------------|--------|
| CAS No.                        | Analyte(s)                                                            | Result         | Flag   | Units        | *RDL                     | MDL        | Dilution                   | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                    | Cert.  |
| Volatile O                     | rganic Compounds<br>Irganic Compounds by SW<br>by method SW846 5030 V |                |        |              |                          |            |                            |             |                           |               |         |                          |        |
| 67-64-1                        | Acetone                                                               | < 2.5          | U      | µg/l         | 10.0                     | 2.5        | 1                          | SW846 8260C | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х      |
| 71-43-2                        | Benzene                                                               | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               | "       | "                        | х      |
| 75-27-4                        | Bromodichloromethane                                                  | < 0.2          | U      | µg/l         | 0.5                      | 0.2        | 1                          |             |                           | "             | "       |                          | х      |
| 75-25-2                        | Bromoform                                                             | < 0.3          | U      | µg/l         | 1.0                      | 0.3        | 1                          |             |                           | "             | "       |                          | х      |
| 74-83-9                        | Bromomethane                                                          | < 0.5          | U      | µg/l         | 2.0                      | 0.5        | 1                          |             |                           | "             | "       |                          | х      |
| 78-93-3                        | 2-Butanone (MEK)                                                      | < 1.2          | U      | µg/l         | 10.0                     | 1.2        | 1                          |             |                           | "             | "       |                          | х      |
| 104-51-8                       | n-Butylbenzene                                                        | < 0.3          | U      | µg/l         | 1.0                      | 0.3        | 1                          |             | "                         | "             | "       |                          | х      |
| 135-98-8                       | sec-Butylbenzene                                                      | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |             |                           | "             | "       |                          | х      |
| 98-06-6                        | tert-Butylbenzene                                                     | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               | "       |                          | х      |
| 75-15-0                        | Carbon disulfide                                                      | < 0.3          | U      | μg/l         | 2.0                      | 0.3        | 1                          |             |                           | "             | "       |                          | х      |
| 56-23-5                        | Carbon tetrachloride                                                  | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           | "             | "       |                          | х      |
| 108-90-7                       | Chlorobenzene                                                         | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           | "             | "       |                          | х      |
| 75-00-3                        | Chloroethane                                                          | < 0.4          | U      | μg/l         | 2.0                      | 0.4        | 1                          |             |                           | "             | "       |                          | х      |
| 67-66-3                        | Chloroform                                                            | < 0.4          | U      | µg/l         | 1.0                      | 0.4        | 1                          |             |                           |               | "       |                          | X      |
| 74-87-3                        | Chloromethane                                                         | < 0.3          | U      | µg/l         | 2.0                      | 0.3        | 1                          |             |                           |               |         |                          | X      |
| 124-48-1                       | Dibromochloromethane                                                  | < 0.2          | U      | μg/l         | 0.5                      | 0.2        | 1                          |             |                           |               |         |                          | x      |
| 95-50-1                        | 1,2-Dichlorobenzene                                                   | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               | "       |                          | x      |
| 541-73-1                       | 1,3-Dichlorobenzene                                                   | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               | "       |                          | x      |
| 106-46-7                       | 1,4-Dichlorobenzene                                                   | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | x      |
| 75-34-3                        | 1,1-Dichloroethane                                                    | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | x      |
| 107-06-2                       | 1,2-Dichloroethane                                                    | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | x      |
| 75-35-4                        | 1,1-Dichloroethene                                                    | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | x      |
| 156-59-2                       | cis-1,2-Dichloroethene                                                | < 0.2          | U      |              | 1.0                      | 0.3        | 1                          |             |                           |               |         |                          |        |
| 156-60-5                       | trans-1,2-Dichloroethene                                              | < 0.2<br>< 0.2 | U      | µg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | X<br>X |
| 78-87-5                        | 1,2-Dichloropropane                                                   | < 0.2<br>< 0.1 | U      | µg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          |        |
| 10061-01-5                     |                                                                       | < 0.1          | U      | µg/l         | 0.5                      |            | 1                          |             |                           |               |         |                          | x<br>x |
| 10061-01-5                     | cis-1,3-Dichloropropene                                               | < 0.2<br>< 0.3 | U      | µg/l         | 0.5                      | 0.2        | 1                          |             |                           |               |         |                          |        |
| 100-41-4                       | trans-1,3-Dichloropropene                                             |                |        | µg/l         |                          | 0.3        | 1                          |             |                           |               |         |                          | X      |
|                                | Ethylbenzene                                                          | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | X      |
| 591-78-6                       | 2-Hexanone (MBK)                                                      | < 0.5          | U      | µg/l         | 10.0                     | 0.5        | 1                          |             |                           |               |         |                          | X      |
| 98-82-8                        | Isopropylbenzene                                                      | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | X      |
| 99-87-6                        | 4-Isopropyltoluene                                                    | < 0.4          | U      | µg/l         | 1.0                      | 0.4        | 1                          |             |                           |               |         |                          | X      |
| 1634-04-4<br>108-10-1          | Methyl tert-butyl ether<br>4-Methyl-2-pentanone<br>(MIBK)             | < 0.2<br>< 0.7 | U<br>U | µg/l<br>µg/l | 1.0<br>10.0              | 0.2<br>0.7 | 1<br>1                     | n           | "                         |               | "       | "                        | x<br>x |
| 75-09-2                        | Methylene chloride                                                    | < 0.3          | U      | µg/l         | 2.0                      | 0.3        | 1                          |             |                           | "             |         |                          | х      |
| 91-20-3                        | Naphthalene                                                           | < 0.4          | U      | μg/l         | 1.0                      | 0.4        | 1                          |             |                           |               |         |                          | x      |
| 103-65-1                       | n-Propylbenzene                                                       | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             |                           |               | "       |                          | x      |
| 100-42-5                       | Styrene                                                               | < 0.2          | U      | μg/l         | 1.0                      | 0.2        | 1                          |             | "                         |               |         |                          | x      |
| 79-34-5                        | 1,1,2,2-Tetrachloroethane                                             | < 0.2<br>< 0.3 | U      |              | 0.5                      | 0.2        | 1                          |             |                           |               |         |                          | ×      |
| 127-18-4                       | Tetrachloroethene                                                     | < 0.3<br>< 0.6 | U      | µg/l<br>µg/l | 1.0                      | 0.5        | 1                          |             |                           |               |         |                          | x      |
| 127-16-4                       |                                                                       | < 0.6<br>< 0.3 | U      |              | 1.0                      | 0.6        |                            |             |                           |               |         |                          | x      |
| 71-55-6                        | Toluene                                                               |                | U      | µg/l         |                          |            | 1                          |             |                           |               |         |                          |        |
|                                | 1,1,1-Trichloroethane                                                 | < 0.2          |        | µg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | X      |
| 79-00-5                        | 1,1,2-Trichloroethane                                                 | < 0.2          | U      | µg/l         | 1.0                      | 0.2        | 1                          |             |                           |               |         |                          | X      |
| 79-01-6                        | Trichloroethene                                                       | 0.6            | J      | µg/l         | 1.0                      | 0.4        | 1                          |             |                           |               |         |                          | Х      |

| <u>Sample Id</u><br><b>MW-04</b><br>SC07069- | entification<br>13                                 |            |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground W |                     | ection Date<br>-May-15 09 |               |         | <u>eceived</u><br>May-15 |       |
|----------------------------------------------|----------------------------------------------------|------------|------|-------|--------------------------|------|---------------------------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                                      | Analyte(s)                                         | Result     | Flag | Units | *RDL                     | MDL  | Dilution                  | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile Or                                  | rganic Compounds                                   |            |      |       |                          |      |                           |                     |                           |               |         |                          |       |
|                                              | rganic Compounds by SW<br>by method SW846 5030     |            |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)               | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                         | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                             | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                         | "                   | "                         | "             | "       |                          | х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                             | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                         | "                   | "                         | "             | "       |                          | х     |
| 75-01-4                                      | Vinyl chloride                                     | < 0.3      | U    | µg/l  | 1.0                      | 0.3  | 1                         |                     | "                         | "             | "       | "                        | х     |
| 179601-23-1                                  | m,p-Xylene                                         | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                         |                     | "                         | "             | "       | "                        | х     |
| 95-47-6                                      | o-Xylene                                           | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                         | "                   | "                         | "             | "       | "                        | х     |
| Surrogate r                                  | ecoveries:                                         |            |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                               | 98         |      |       | 70-13                    | 0%   |                           |                     |                           | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                         | 101        |      |       | 70-13                    | 0 %  |                           |                     |                           | "             | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                              | 92         |      |       | 70-13                    | 0%   |                           |                     |                           | "             | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                               | 97         |      |       | 70-13                    | 0 %  |                           |                     |                           | "             | "       |                          |       |
|                                              | r <u>ganic Compounds</u><br>by method SW846 5030 V | Water MS   |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 108-05-4                                     | Vinyl acetate                                      | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                         | n                   | 08-May-1<br>5             | "             | "       | 1508955                  | х     |
| Surrogate r                                  | recoveries:                                        |            |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                               | 99         |      |       | 70-13                    | 0%   |                           | "                   | "                         | "             | "       | "                        |       |
| 2037-26-5                                    | Toluene-d8                                         | 102        |      |       | 70-13                    | 0 %  |                           |                     |                           | "             | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                              | 98         |      |       | 70-13                    | 0%   |                           | "                   | "                         | "             | "       | "                        |       |
| 1868-53-7                                    | Dibromofluoromethane                               | 102        |      |       | 70-13                    | 0 %  |                           |                     |                           | "             | "       |                          |       |
|                                              | v Identified Compounds b<br>by method SW846 5030   |            |      |       |                          |      |                           |                     |                           |               |         |                          |       |
|                                              | Tentatively Identified<br>Compounds                | None found |      | µg/l  |                          |      | 1                         | SW846 8260C<br>TICs | 08-May-1<br>5             | "             | SJB     | 1508958                  |       |

| Sample Io<br>MW-09<br>SC070694 | lentification                                                         |                |      |              | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 1( |               |         | <u>ceived</u><br>May-15 |       |
|--------------------------------|-----------------------------------------------------------------------|----------------|------|--------------|--------------------------|-----|----------------------------|-------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                        | Analyte(s)                                                            | Result         | Flag | Units        | *RDL                     | MDL | Dilution                   | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Volatile O                     | rganic Compounds<br>Irganic Compounds by SW<br>by method SW846 5030 V |                |      |              |                          |     |                            |             |                           |               |         |                         |       |
| 67-64-1                        | Acetone                                                               | < 2.5          | U    | µg/l         | 10.0                     | 2.5 | 1                          | SW846 8260C | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                 | х     |
| 71-43-2                        | Benzene                                                               | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             | "                         |               | "       | "                       | х     |
| 75-27-4                        | Bromodichloromethane                                                  | < 0.2          | U    | µg/l         | 0.5                      | 0.2 | 1                          |             |                           | "             | "       | "                       | х     |
| 75-25-2                        | Bromoform                                                             | < 0.3          | U    | µg/l         | 1.0                      | 0.3 | 1                          | "           |                           |               | "       | "                       | х     |
| 74-83-9                        | Bromomethane                                                          | < 0.5          | U    | µg/l         | 2.0                      | 0.5 | 1                          |             |                           | "             | "       |                         | х     |
| 78-93-3                        | 2-Butanone (MEK)                                                      | < 1.2          | U    | µg/l         | 10.0                     | 1.2 | 1                          |             |                           | "             | "       |                         | х     |
| 104-51-8                       | n-Butylbenzene                                                        | < 0.3          | U    | µg/l         | 1.0                      | 0.3 | 1                          |             |                           | "             | "       |                         | х     |
| 135-98-8                       | sec-Butylbenzene                                                      | < 0.2          | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 98-06-6                        | tert-Butylbenzene                                                     | < 0.2          | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 75-15-0                        | Carbon disulfide                                                      | < 0.3          | U    | µg/l         | 2.0                      | 0.3 | 1                          |             |                           | "             | "       |                         | х     |
| 56-23-5                        | Carbon tetrachloride                                                  | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                         | х     |
| 108-90-7                       | Chlorobenzene                                                         | < 0.2          | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           | "             |         |                         | х     |
| 75-00-3                        | Chloroethane                                                          | < 0.4          | U    | μg/l         | 2.0                      | 0.4 | 1                          |             |                           | "             | "       |                         | х     |
| 67-66-3                        | Chloroform                                                            | < 0.4          | U    | μg/l         | 1.0                      | 0.4 | 1                          |             |                           | "             |         |                         | х     |
| 74-87-3                        | Chloromethane                                                         | < 0.3          | U    | μg/l         | 2.0                      | 0.3 | 1                          |             |                           | "             | "       |                         | х     |
| 124-48-1                       | Dibromochloromethane                                                  | < 0.2          | U    | μg/l         | 0.5                      | 0.2 | 1                          |             | "                         | "             | "       |                         | х     |
| 95-50-1                        | 1,2-Dichlorobenzene                                                   | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 541-73-1                       | 1,3-Dichlorobenzene                                                   | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                         | х     |
| 106-46-7                       | 1,4-Dichlorobenzene                                                   | < 0.2          | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                         | x     |
| 75-34-3                        | 1,1-Dichloroethane                                                    | < 0.2          | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                         | X     |
| 107-06-2                       | 1,2-Dichloroethane                                                    | < 0.2          | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                         | X     |
| 75-35-4                        | 1,1-Dichloroethene                                                    | < 0.3          | U    | µg/l         | 1.0                      | 0.3 | 1                          |             |                           | "             |         |                         | X     |
| 156-59-2                       | cis-1,2-Dichloroethene                                                | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                         | x     |
| 156-60-5                       | trans-1,2-Dichloroethene                                              | < 0.2          | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                         | x     |
| 78-87-5                        | 1,2-Dichloropropane                                                   | < 0.1          | U    | µg/l         | 1.0                      | 0.1 | 1                          |             |                           |               | "       |                         | x     |
| 10061-01-5                     | cis-1,3-Dichloropropene                                               | < 0.2          | U    | μg/l         | 0.5                      | 0.2 | 1                          |             |                           |               |         |                         | x     |
| 10061-02-6                     | trans-1,3-Dichloropropene                                             | < 0.3          | U    | μg/l         | 0.5                      | 0.2 | 1                          |             |                           |               | "       |                         | x     |
| 100-41-4                       | Ethylbenzene                                                          | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                         | x     |
| 591-78-6                       | 2-Hexanone (MBK)                                                      | < 0.2          | U    | μg/l         | 10.0                     | 0.2 | 1                          |             |                           |               |         |                         | x     |
| 98-82-8                        | Isopropylbenzene                                                      | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                         | x     |
| 99-87-6                        | 4-Isopropyltoluene                                                    | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                         | x     |
| 1634-04-4                      | Methyl tert-butyl ether                                               | < 0.4<br>< 0.2 | U    |              | 1.0                      | 0.4 | 1                          |             |                           |               |         |                         | x     |
| 108-10-1                       | 4-Methyl-2-pentanone<br>(MIBK)                                        | < 0.2          | U    | µg/l<br>µg/l | 10.0                     | 0.2 | 1                          | "           | "                         | "             | "       | "                       | x     |
| 75-09-2                        | Methylene chloride                                                    | < 0.3          | U    | µg/l         | 2.0                      | 0.3 | 1                          |             |                           | "             |         |                         | х     |
| 91-20-3                        | Naphthalene                                                           | < 0.4          | U    | μg/l         | 1.0                      | 0.4 | 1                          | "           |                           |               | "       | "                       | х     |
| 103-65-1                       | n-Propylbenzene                                                       | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           | "             |         |                         | х     |
| 100-42-5                       | Styrene                                                               | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                       | х     |
| 79-34-5                        | 1,1,2,2-Tetrachloroethane                                             | < 0.3          | U    | µg/l         | 0.5                      | 0.3 | 1                          | "           | "                         |               | "       | "                       | X     |
| 127-18-4                       | Tetrachloroethene                                                     | 0.7            | J    | μg/l         | 1.0                      | 0.6 | 1                          |             | "                         |               |         | "                       | x     |
| 108-88-3                       | Toluene                                                               | < 0.3          | U    | μg/l         | 1.0                      | 0.3 | 1                          |             | "                         |               | "       | "                       | x     |
| 71-55-6                        | 1,1,1-Trichloroethane                                                 | < 0.2          | U    | μg/l         | 1.0                      | 0.2 | 1                          | "           |                           |               | "       | "                       | x     |
| 79-00-5                        | 1,1,2-Trichloroethane                                                 | < 0.2          | U    | µg/l         | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                       | x     |
| 79-01-6                        | Trichloroethene                                                       | < 0.2<br>3.8   | -    | µg/l         | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       |                         | x     |
|                                |                                                                       | 0.0            |      | P9/1         | 1.0                      | 0.7 | '                          |             |                           |               |         |                         | ~     |

| Sample Id<br>MW-09<br>SC07069- | entification<br>14                               |          |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground W |                     | ection Date<br>-May-15 10 |               |         | <u>eceived</u><br>May-15 |       |
|--------------------------------|--------------------------------------------------|----------|------|-------|--------------------------|------|---------------------------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                        | Analyte(s)                                       | Result   | Flag | Units | *RDL                     | MDL  | Dilution                  | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile Or                    | rganic Compounds                                 |          |      |       |                          |      |                           |                     |                           |               |         |                          |       |
|                                | rganic Compounds by SV<br>by method SW846 5030   |          |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 75-69-4                        | Trichlorofluoromethane<br>(Freon 11)             | < 0.5    | U    | µg/l  | 1.0                      | 0.5  | 1                         | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 95-63-6                        | 1,2,4-Trimethylbenzene                           | < 0.4    | U    | µg/l  | 1.0                      | 0.4  | 1                         | "                   |                           | "             | "       |                          | х     |
| 108-67-8                       | 1,3,5-Trimethylbenzene                           | < 0.9    | U    | µg/l  | 1.0                      | 0.9  | 1                         |                     |                           | "             | "       |                          | х     |
| 75-01-4                        | Vinyl chloride                                   | < 0.3    | U    | µg/l  | 1.0                      | 0.3  | 1                         |                     |                           | "             | "       |                          | х     |
| 179601-23-1                    | m,p-Xylene                                       | < 0.4    | U    | µg/l  | 2.0                      | 0.4  | 1                         |                     |                           | "             | "       |                          | х     |
| 95-47-6                        | o-Xylene                                         | < 0.5    | U    | µg/l  | 1.0                      | 0.5  | 1                         | "                   | "                         | "             | "       | "                        | х     |
| Surrogate r                    | ecoveries:                                       |          |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 460-00-4                       | 4-Bromofluorobenzene                             | 100      |      |       | 70-13                    | 0 %  |                           | "                   |                           | "             | "       |                          |       |
| 2037-26-5                      | Toluene-d8                                       | 99       |      |       | 70-13                    | 0 %  |                           | "                   |                           | "             | "       |                          |       |
| 17060-07-0                     | 1,2-Dichloroethane-d4                            | 91       |      |       | 70-13                    | 0 %  |                           | "                   |                           | "             | "       |                          |       |
| 1868-53-7                      | Dibromofluoromethane                             | 94       |      |       | 70-13                    | 0 %  |                           | "                   |                           | "             | "       |                          |       |
|                                | rganic Compounds<br>by method SW846 5030         | Water MS |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 108-05-4                       | Vinyl acetate                                    | < 9.56   | U    | µg/l  | 10.0                     | 9.56 | 1                         | n                   | 08-May-1<br>5             |               | "       | 1508955                  | Х     |
| Surrogate r                    | recoveries:                                      |          |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 460-00-4                       | 4-Bromofluorobenzene                             | 100      |      |       | 70-13                    | 0 %  |                           | "                   | "                         | "             | "       | "                        |       |
| 2037-26-5                      | Toluene-d8                                       | 100      |      |       | 70-13                    | 0 %  |                           | "                   |                           | "             | "       | "                        |       |
| 17060-07-0                     | 1,2-Dichloroethane-d4                            | 97       |      |       | 70-13                    | 0 %  |                           | "                   |                           | "             | "       |                          |       |
| 1868-53-7                      | Dibromofluoromethane                             | 99       |      |       | 70-13                    | 0 %  |                           | "                   |                           | "             | "       | "                        |       |
|                                | v Identified Compounds b<br>by method SW846 5030 |          |      |       |                          |      |                           |                     |                           |               |         |                          |       |
| 75-37-6                        | Ethane, 1,1-difluoro-                            | 3.1      | TIC  | µg/l  |                          |      | 1                         | SW846 8260C<br>TICs | 08-May-1<br>5             |               | SJB     | 1508958                  |       |

| Sample Id<br>MW-10<br>SC07069- | dentification                     |        |      |              | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 11 |               |         | <u>eceived</u><br>May-15 |       |
|--------------------------------|-----------------------------------|--------|------|--------------|--------------------------|-----|----------------------------|-------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                        | Analyte(s)                        | Result | Flag | Units        | *RDL                     | MDL | Dilution                   | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                     | rganic Compounds                  |        |      |              |                          |     |                            |             |                           |               |         |                          |       |
| 67-64-1                        | by method SW846 5030 V<br>Acetone | 3.4    | J    | µg/l         | 10.0                     | 2.5 | 1                          | SW846 8260C | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 71-43-2                        | Benzene                           | < 0.2  | U    | µg/l         | 1.0                      | 0.2 | 1                          | "           | "                         | "             | "       | "                        | х     |
| 75-27-4                        | Bromodichloromethane              | < 0.2  | U    | μg/l         | 0.5                      | 0.2 | 1                          | "           |                           |               | "       |                          | х     |
| 75-25-2                        | Bromoform                         | < 0.3  | U    | μg/l         | 1.0                      | 0.3 | 1                          |             |                           |               | "       |                          | х     |
| 74-83-9                        | Bromomethane                      | < 0.5  | U    | μg/l         | 2.0                      | 0.5 | 1                          |             |                           |               | "       |                          | х     |
| 78-93-3                        | 2-Butanone (MEK)                  | < 1.2  | U    | μg/l         | 10.0                     | 1.2 | 1                          |             |                           |               | "       |                          | х     |
| 104-51-8                       | n-Butylbenzene                    | < 0.3  | U    | μg/l         | 1.0                      | 0.3 | 1                          |             |                           |               | "       |                          | х     |
| 135-98-8                       | sec-Butylbenzene                  | < 0.2  | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | х     |
| 98-06-6                        | tert-Butylbenzene                 | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                          | х     |
| 75-15-0                        | Carbon disulfide                  | < 0.3  | U    | μg/l         | 2.0                      | 0.3 | 1                          |             |                           | "             | "       |                          | х     |
| 56-23-5                        | Carbon tetrachloride              | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                          | х     |
| 108-90-7                       | Chlorobenzene                     | < 0.2  | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                          | X     |
| 75-00-3                        | Chloroethane                      | < 0.4  | U    | μg/l         | 2.0                      | 0.4 | 1                          |             |                           |               |         |                          | x     |
| 67-66-3                        | Chloroform                        | < 0.4  | U    | μg/l         | 1.0                      | 0.4 | 1                          |             |                           |               |         |                          | x     |
| 74-87-3                        | Chloromethane                     | < 0.3  | U    | μg/l         | 2.0                      | 0.3 | 1                          |             |                           |               | "       |                          | x     |
| 124-48-1                       | Dibromochloromethane              | < 0.2  | U    | μg/l         | 0.5                      | 0.2 | 1                          |             |                           |               | "       |                          | x     |
| 95-50-1                        | 1,2-Dichlorobenzene               | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 541-73-1                       | 1,3-Dichlorobenzene               | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                          | x     |
| 106-46-7                       | 1,4-Dichlorobenzene               | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 75-34-3                        | 1,1-Dichloroethane                | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                          | x     |
| 107-06-2                       | 1,2-Dichloroethane                | 0.2    | J    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 75-35-4                        | 1,1-Dichloroethene                | < 0.3  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               | "       |                          | x     |
| 156-59-2                       | cis-1,2-Dichloroethene            | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 156-60-5                       | trans-1,2-Dichloroethene          | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 78-87-5                        | 1,2-Dichloropropane               | < 0.2  | U    |              | 1.0                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 10061-01-5                     | cis-1,3-Dichloropropene           | < 0.2  | U    | µg/l<br>µg/l | 0.5                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 10061-02-6                     | trans-1,3-Dichloropropene         | < 0.2  | U    | μg/l         | 0.5                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 100-41-4                       | Ethylbenzene                      | < 0.2  | U    | µg/l         | 1.0                      | 0.3 | 1                          |             |                           |               |         |                          | x     |
| 591-78-6                       | 2-Hexanone (MBK)                  | < 0.2  | U    | μg/l         | 10.0                     | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 98-82-8                        | Isopropylbenzene                  | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 99-87-6                        | 4-Isopropyltoluene                | < 0.2  | U    | µg/l         | 1.0                      | 0.2 | 1                          |             |                           |               |         |                          | x     |
| 1634-04-4                      | Methyl tert-butyl ether           | < 0.4  | U    |              | 1.0                      | 0.4 | 1                          |             |                           |               |         |                          | x     |
| 108-10-1                       | 4-Methyl-2-pentanone<br>(MIBK)    | < 0.2  | U    | µg/l<br>µg/l | 10.0                     | 0.2 | 1                          | "           | "                         |               | "       | "                        | x     |
| 75-09-2                        | Methylene chloride                | < 0.3  | U    | µg/l         | 2.0                      | 0.3 | 1                          |             |                           | "             |         |                          | х     |
| 91-20-3                        | Naphthalene                       | < 0.4  | U    | μg/l         | 1.0                      | 0.4 | 1                          | "           |                           |               | "       | "                        | х     |
| 103-65-1                       | n-Propylbenzene                   | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          | "           |                           |               | "       | "                        | х     |
| 100-42-5                       | Styrene                           | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          | "           |                           |               | "       | "                        | х     |
| 79-34-5                        | 1,1,2,2-Tetrachloroethane         | < 0.3  | U    | μg/l         | 0.5                      | 0.3 | 1                          | "           |                           |               | "       | "                        | х     |
| 127-18-4                       | Tetrachloroethene                 | < 0.6  | U    | μg/l         | 1.0                      | 0.6 | 1                          | "           | "                         |               | "       | "                        | х     |
| 108-88-3                       | Toluene                           | < 0.3  | U    | μg/l         | 1.0                      | 0.3 | 1                          | "           | "                         |               | "       | "                        | х     |
| 71-55-6                        | 1,1,1-Trichloroethane             | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       |                          | X     |
| 79-00-5                        | 1,1,2-Trichloroethane             | < 0.2  | U    | μg/l         | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       |                          | x     |
| 79-01-6                        | Trichloroethene                   | 2.2    |      | µg/l         | 1.0                      | 0.4 | 1                          | "           |                           | "             | "       |                          | x     |

| <u>Sample Id</u><br><b>MW-10</b><br>SC07069- | lentification<br>15                                |            |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground Wa |                     | ection Date<br>-May-15 11 |               |         | <u>eceived</u><br>May-15 |       |
|----------------------------------------------|----------------------------------------------------|------------|------|-------|--------------------------|------|----------------------------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                                      | Analyte(s)                                         | Result     | Flag | Units | *RDL                     | MDL  | Dilution                   | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile Or                                  | rganic Compounds                                   |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | rganic Compounds by SW<br>by method SW846 5030 \   |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)               | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                             | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                          | "                   | "                         | "             | "       | "                        | х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                             | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                          |                     | "                         | "             | "       | "                        | Х     |
| 75-01-4                                      | Vinyl chloride                                     | < 0.3      | U    | µg/l  | 1.0                      | 0.3  | 1                          |                     | "                         | "             | "       | "                        | Х     |
| 179601-23-1                                  | m,p-Xylene                                         | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                          |                     | "                         | "             | "       | "                        | Х     |
| 95-47-6                                      | o-Xylene                                           | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | "                   | "                         |               | "       | "                        | х     |
| Surrogate r                                  | recoveries:                                        |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                               | 99         |      |       | 70-13                    | 0%   |                            |                     |                           | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                         | 102        |      |       | 70-13                    | 0 %  |                            |                     |                           |               | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                              | 95         |      |       | 70-13                    | 0%   |                            |                     |                           |               | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                               | 97         |      |       | 70-13                    | 0 %  |                            |                     |                           |               | "       |                          |       |
|                                              | rganic Compounds<br>by method SW846 5030 \         | Nater MS   |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 108-05-4                                     | Vinyl acetate                                      | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                          |                     | 08-May-1<br>5             | "             | "       | 1508955                  | х     |
| Surrogate r                                  | recoveries:                                        |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                               | 99         |      |       | 70-13                    | 0 %  |                            | "                   |                           | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                         | 103        |      |       | 70-13                    | 0 %  |                            | "                   |                           | "             | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                              | 100        |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                               | 103        |      |       | 70-13                    | 0 %  |                            | "                   |                           | "             | "       |                          |       |
|                                              | y Identified Compounds b<br>by method SW846 5030 \ |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | Tentatively Identified<br>Compounds                | None found |      | µg/l  |                          |      | 1                          | SW846 8260C<br>TICs | 08-May-1<br>5             | "             | SJB     | 1508958                  |       |

| Sample Ic<br>MW-05<br>SC07069- | <u>dentification</u><br>-16                                           |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 12 |               |         | <u>eceived</u><br>May-15 |       |
|--------------------------------|-----------------------------------------------------------------------|--------|------|-------|--------------------------|-----|----------------------------|-------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                        | Analyte(s)                                                            | Result | Flag | Units | *RDL                     | MDL | Dilution                   | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                     | rganic Compounds<br>Irganic Compounds by SW<br>by method SW846 5030 V |        |      |       |                          |     |                            |             |                           |               |         |                          |       |
| 67-64-1                        | Acetone                                                               | 3.9    | J    | µg/l  | 10.0                     | 2.5 | 1                          | SW846 8260C | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | х     |
| 71-43-2                        | Benzene                                                               | 0.4    | J    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                        | х     |
| 75-27-4                        | Bromodichloromethane                                                  | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          | "           |                           |               | "       | "                        | х     |
| 75-25-2                        | Bromoform                                                             | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             |                           | "             | "       | "                        | х     |
| 74-83-9                        | Bromomethane                                                          | < 0.5  | U    | µg/l  | 2.0                      | 0.5 | 1                          |             | "                         |               | "       | "                        | Х     |
| 78-93-3                        | 2-Butanone (MEK)                                                      | < 1.2  | U    | µg/l  | 10.0                     | 1.2 | 1                          |             | "                         | "             | "       | "                        | Х     |
| 104-51-8                       | n-Butylbenzene                                                        | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             |                           | "             | "       | "                        | Х     |
| 135-98-8                       | sec-Butylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       | "                        | Х     |
| 98-06-6                        | tert-Butylbenzene                                                     | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       | "                        | Х     |
| 75-15-0                        | Carbon disulfide                                                      | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          |             | "                         | "             | "       |                          | Х     |
| 56-23-5                        | Carbon tetrachloride                                                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       |                          | Х     |
| 108-90-7                       | Chlorobenzene                                                         | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       | "                        | Х     |
| 75-00-3                        | Chloroethane                                                          | < 0.4  | U    | µg/l  | 2.0                      | 0.4 | 1                          |             | "                         | "             | "       |                          | Х     |
| 67-66-3                        | Chloroform                                                            | 0.4    | J    | µg/l  | 1.0                      | 0.4 | 1                          |             |                           | "             | "       | "                        | Х     |
| 74-87-3                        | Chloromethane                                                         | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          |             | "                         | "             | "       |                          | Х     |
| 124-48-1                       | Dibromochloromethane                                                  | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          |             | "                         | "             | "       |                          | Х     |
| 95-50-1                        | 1,2-Dichlorobenzene                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       | "                        | Х     |
| 541-73-1                       | 1,3-Dichlorobenzene                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                          | Х     |
| 106-46-7                       | 1,4-Dichlorobenzene                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                          | Х     |
| 75-34-3                        | 1,1-Dichloroethane                                                    | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       | "                        | Х     |
| 107-06-2                       | 1,2-Dichloroethane                                                    | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                          | Х     |
| 75-35-4                        | 1,1-Dichloroethene                                                    | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             | "                         | "             | "       | "                        | Х     |
| 156-59-2                       | cis-1,2-Dichloroethene                                                | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                          | Х     |
| 156-60-5                       | trans-1,2-Dichloroethene                                              | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       | "                        | Х     |
| 78-87-5                        | 1,2-Dichloropropane                                                   | < 0.1  | U    | µg/l  | 1.0                      | 0.1 | 1                          |             | "                         | "             | "       |                          | Х     |
| 10061-01-5                     | cis-1,3-Dichloropropene                                               | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          |             | "                         | "             | "       |                          | Х     |
| 10061-02-6                     | trans-1,3-Dichloropropene                                             | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                          |             | "                         | "             | "       | "                        | Х     |
| 100-41-4                       | Ethylbenzene                                                          | 0.2    | J    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       |                          | Х     |
| 591-78-6                       | 2-Hexanone (MBK)                                                      | < 0.5  | U    | µg/l  | 10.0                     | 0.5 | 1                          |             | "                         | "             | "       | "                        | Х     |
| 98-82-8                        | Isopropylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "             | "       | "                        | Х     |
| 99-87-6                        | 4-Isopropyltoluene                                                    | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             | "                         | "             | "       |                          | Х     |
| 1634-04-4                      | Methyl tert-butyl ether                                               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "             | "       | "                        | Х     |
| 108-10-1                       | 4-Methyl-2-pentanone<br>(MIBK)                                        | < 0.7  | U    | µg/l  | 10.0                     | 0.7 | 1                          | "           | "                         | "             | "       | "                        | х     |
| 75-09-2                        | Methylene chloride                                                    | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          | "           | "                         |               | "       | "                        | Х     |
| 91-20-3                        | Naphthalene                                                           | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             | "                         | "             | "       |                          | Х     |
| 103-65-1                       | n-Propylbenzene                                                       | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         | "             | "       | "                        | Х     |
| 100-42-5                       | Styrene                                                               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                        | Х     |
| 79-34-5                        | 1,1,2,2-Tetrachloroethane                                             | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                          | "           | "                         |               | "       | "                        | х     |
| 127-18-4                       | Tetrachloroethene                                                     | 0.9    | J    | µg/l  | 1.0                      | 0.6 | 1                          | "           | "                         |               | "       | "                        | х     |
| 108-88-3                       | Toluene                                                               | 0.4    | J    | µg/l  | 1.0                      | 0.3 | 1                          | "           | "                         | "             | "       | "                        | Х     |
| 71-55-6                        | 1,1,1-Trichloroethane                                                 | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         |               | "       | "                        | х     |
| 79-00-5                        | 1,1,2-Trichloroethane                                                 | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         | "             | "       | "                        | х     |
| 79-01-6                        | Trichloroethene                                                       | 0.8    | J    | µg/l  | 1.0                      | 0.4 | 1                          | "           | "                         | "             | "       | "                        | х     |

| <u>Sample Id</u><br><b>MW-05</b><br>SC07069- | entification<br>16                               |            |      |       | <u>Project #</u><br>)606 |      | <u>Matrix</u><br>Ground Wa |                     | ection Date<br>-May-15 12 |               |         | <u>eceived</u><br>May-15 |       |
|----------------------------------------------|--------------------------------------------------|------------|------|-------|--------------------------|------|----------------------------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                                      | Analyte(s)                                       | Result     | Flag | Units | *RDL                     | MDL  | Dilution                   | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile Or                                  | rganic Compounds                                 |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | rganic Compounds by SW<br>by method SW846 5030 \ |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)             | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | SW846 8260C         | 08-May-1<br>5             | 08-May-1<br>5 | SJB     | 1508958                  | Х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                           | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                          |                     | "                         | "             | "       | "                        | Х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                           | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                          |                     | "                         | "             | "       | "                        | Х     |
| 75-01-4                                      | Vinyl chloride                                   | < 0.3      | U    | µg/l  | 1.0                      | 0.3  | 1                          |                     | "                         | "             | "       | "                        | Х     |
| 179601-23-1                                  | m,p-Xylene                                       | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                          |                     | "                         | "             | "       | "                        | Х     |
| 95-47-6                                      | o-Xylene                                         | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | "                   | "                         | "             | "       | "                        | х     |
| Surrogate r                                  | ecoveries:                                       |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                             | 99         |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                       | 99         |      |       | 70-13                    | 0 %  |                            |                     |                           |               | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                            | 93         |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                             | 97         |      |       | 70-13                    | 0 %  |                            |                     |                           |               | "       |                          |       |
|                                              | rganic Compounds<br>by method SW846 5030 \       | Nater MS   |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 108-05-4                                     | Vinyl acetate                                    | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                          |                     | 08-May-1<br>5             | "             | "       | 1508955                  | х     |
| Surrogate r                                  | ecoveries:                                       |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                             | 100        |      |       | 70-13                    | 0 %  |                            |                     | "                         | "             | "       |                          |       |
| 2037-26-5                                    | Toluene-d8                                       | 100        |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                            | 98         |      |       | 70-13                    | 0 %  |                            |                     |                           | "             | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                             | 102        |      |       | 70-13                    | 0 %  |                            | "                   |                           | "             | "       |                          |       |
|                                              | V Identified Compounds by method SW846 5030      |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | Tentatively Identified<br>Compounds              | None found |      | µg/l  |                          |      | 1                          | SW846 8260C<br>TICs | 08-May-1<br>5             | "             | SJB     | 1508958                  |       |

| Sample Id<br>MW-06<br>SC07069- | lentification<br>17                                                  |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 12 |           |         | <u>ceived</u><br>May-15 |       |
|--------------------------------|----------------------------------------------------------------------|--------|------|-------|--------------------------|-----|----------------------------|-------------|---------------------------|-----------|---------|-------------------------|-------|
| CAS No.                        | Analyte(s)                                                           | Result | Flag | Units | *RDL                     | MDL | Dilution                   | Method Ref. | Prepared                  | Analyzed  | Analyst | Batch                   | Cert. |
| Volatile O                     | rganic Compounds<br>rganic Compounds by SW<br>by method SW846 5030 V |        |      |       |                          |     |                            |             |                           |           |         |                         |       |
| 67-64-1                        | Acetone                                                              | 13.8   |      | µg/l  | 10.0                     | 2.5 | 1                          | SW846 8260C | 11-May-15                 | 11-May-15 | SJB     | 1509127                 | x     |
| 71-43-2                        | Benzene                                                              | 2.8    |      | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | х     |
| 75-27-4                        | Bromodichloromethane                                                 | < 0.2  | U    | μg/l  | 0.5                      | 0.2 | 1                          |             | "                         | "         | "       | "                       | х     |
| 75-25-2                        | Bromoform                                                            | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             | "                         | "         | "       |                         | х     |
| 74-83-9                        | Bromomethane                                                         | < 0.5  | U    | μg/l  | 2.0                      | 0.5 | 1                          |             | "                         | "         | "       |                         | х     |
| 78-93-3                        | 2-Butanone (MEK)                                                     | 1.5    | J    | μg/l  | 10.0                     | 1.2 | 1                          |             |                           |           | "       |                         | х     |
| 104-51-8                       | n-Butylbenzene                                                       | 0.8    | J    | μg/l  | 1.0                      | 0.3 | 1                          |             | "                         |           |         |                         | х     |
| 135-98-8                       | sec-Butylbenzene                                                     | 0.5    | J    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         |           | "       |                         | х     |
| 98-06-6                        | tert-Butylbenzene                                                    | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |           | "       |                         | X     |
| 75-15-0                        | Carbon disulfide                                                     | < 0.3  | U    | μg/l  | 2.0                      | 0.3 | 1                          |             |                           |           |         |                         | x     |
| 56-23-5                        | Carbon tetrachloride                                                 | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |           |         |                         | x     |
| 108-90-7                       | Chlorobenzene                                                        | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |           | "       |                         | x     |
| 75-00-3                        | Chloroethane                                                         | < 0.2  | U    | µg/l  | 2.0                      | 0.2 | 1                          |             |                           |           |         |                         | x     |
| 67-66-3                        | Chloroform                                                           | < 0.4  | U    |       | 1.0                      | 0.4 | 1                          |             |                           |           |         |                         | x     |
| 74-87-3                        |                                                                      |        |      | µg/l  | 2.0                      |     |                            |             |                           |           |         |                         |       |
|                                | Chloromethane                                                        | 0.3    | J    | µg/l  |                          | 0.3 | 1                          |             |                           |           |         |                         | X     |
| 124-48-1                       | Dibromochloromethane                                                 | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          |             |                           |           |         |                         | X     |
| 95-50-1                        | 1,2-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           |           |         |                         | Х     |
| 541-73-1                       | 1,3-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           |           |         |                         | Х     |
| 106-46-7                       | 1,4-Dichlorobenzene                                                  | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       | "                       | Х     |
| 75-34-3                        | 1,1-Dichloroethane                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         | "         | "       | "                       | Х     |
| 107-06-2                       | 1,2-Dichloroethane                                                   | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       | "                       | Х     |
| 75-35-4                        | 1,1-Dichloroethene                                                   | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          | "           | "                         | "         | "       | "                       | Х     |
| 156-59-2                       | cis-1,2-Dichloroethene                                               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | Х     |
| 156-60-5                       | trans-1,2-Dichloroethene                                             | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | Х     |
| 78-87-5                        | 1,2-Dichloropropane                                                  | < 0.1  | U    | µg/l  | 1.0                      | 0.1 | 1                          |             | "                         |           | "       |                         | Х     |
| 10061-01-5                     | cis-1,3-Dichloropropene                                              | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          | "           | "                         | "         | "       | "                       | Х     |
| 10061-02-6                     | trans-1,3-Dichloropropene                                            | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                          |             | "                         | "         | "       |                         | Х     |
| 100-41-4                       | Ethylbenzene                                                         | 2.0    |      | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         |           | "       |                         | Х     |
| 591-78-6                       | 2-Hexanone (MBK)                                                     | < 0.5  | U    | µg/l  | 10.0                     | 0.5 | 1                          |             | "                         |           | "       |                         | Х     |
| 98-82-8                        | Isopropylbenzene                                                     | 2.0    |      | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | Х     |
| 99-87-6                        | 4-Isopropyltoluene                                                   | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             | "                         | "         | "       |                         | х     |
| 1634-04-4                      | Methyl tert-butyl ether                                              | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | х     |
| 108-10-1                       | 4-Methyl-2-pentanone<br>(MIBK)                                       | < 0.7  | U    | µg/l  | 10.0                     | 0.7 | 1                          | n           | "                         | "         | "       | "                       | х     |
| 75-09-2                        | Methylene chloride                                                   | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          | "           | "                         |           | "       | "                       | Х     |
| 91-20-3                        | Naphthalene                                                          | 0.7    | J    | µg/l  | 1.0                      | 0.4 | 1                          | "           | "                         | "         | "       | "                       | х     |
| 103-65-1                       | n-Propylbenzene                                                      | 2.6    |      | µg/l  | 1.0                      | 0.2 | 1                          | "           |                           |           | "       | "                       | х     |
| 100-42-5                       | Styrene                                                              | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           |                           |           | "       | "                       | х     |
| 79-34-5                        | 1,1,2,2-Tetrachloroethane                                            | < 0.3  | U    | µg/l  | 0.5                      | 0.3 | 1                          |             | "                         |           | "       | "                       | х     |
| 127-18-4                       | Tetrachloroethene                                                    | < 0.6  | U    | μg/l  | 1.0                      | 0.6 | 1                          | "           | "                         |           | "       | "                       | х     |
| 108-88-3                       | Toluene                                                              | 6.4    |      | μg/l  | 1.0                      | 0.3 | 1                          | "           | "                         |           | "       | "                       | х     |
| 71-55-6                        | 1,1,1-Trichloroethane                                                | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          | "           | "                         |           | "       | "                       | х     |
| 79-00-5                        | 1,1,2-Trichloroethane                                                | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          | "           | "                         | "         | "       | "                       | X     |
| 79-01-6                        | Trichloroethene                                                      | < 0.4  | U    | μg/l  | 1.0                      | 0.4 | 1                          |             |                           |           | "       | "                       | X     |
|                                |                                                                      | 5.1    | -    | M3,1  | 1.5                      | 0.7 |                            |             |                           |           |         |                         | ~     |

| <u>Sample Id</u><br><b>MW-06</b><br>SC07069- | lentification<br>17                                                |          |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground W |                     | ection Date<br>-May-15 12 |           |         | <u>ceived</u><br>May-15 |       |
|----------------------------------------------|--------------------------------------------------------------------|----------|------|-------|--------------------------|------|---------------------------|---------------------|---------------------------|-----------|---------|-------------------------|-------|
| CAS No.                                      | Analyte(s)                                                         | Result   | Flag | Units | *RDL                     | MDL  | Dilution                  | Method Ref.         | Prepared                  | Analyzed  | Analyst | Batch                   | Cert. |
| Volatile O                                   | rganic Compounds<br>rganic Compounds by SV<br>by method SW846 5030 |          |      |       |                          |      |                           |                     |                           |           |         |                         |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)                               | < 0.5    | U    | µg/l  | 1.0                      | 0.5  | 1                         | SW846 8260C         | 11-May-15                 | 11-May-15 | SJB     | 1509127                 | х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                                             | 13.3     |      | µg/l  | 1.0                      | 0.4  | 1                         | "                   | "                         | "         | "       |                         | х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                                             | 3.3      |      | µg/l  | 1.0                      | 0.9  | 1                         | "                   | "                         | "         | "       |                         | х     |
| 75-01-4                                      | Vinyl chloride                                                     | < 0.3    | U    | µg/l  | 1.0                      | 0.3  | 1                         | "                   | "                         | "         | "       |                         | х     |
| 179601-23-1                                  | m,p-Xylene                                                         | 7.8      |      | µg/l  | 2.0                      | 0.4  | 1                         | "                   | "                         | "         | "       |                         | х     |
| 95-47-6                                      | o-Xylene                                                           | 2.9      |      | µg/l  | 1.0                      | 0.5  | 1                         | "                   | "                         | "         | "       | "                       | х     |
| Surrogate i                                  | recoveries:                                                        |          |      |       |                          |      |                           |                     |                           |           |         |                         |       |
| 460-00-4                                     | 4-Bromofluorobenzene                                               | 102      |      |       | 70-13                    | 0%   |                           | "                   | "                         | "         | "       | "                       |       |
| 2037-26-5                                    | Toluene-d8                                                         | 100      |      |       | 70-13                    | 0%   |                           | "                   | "                         | "         | "       | "                       |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                                              | 91       |      |       | 70-13                    | 0%   |                           | "                   | "                         | "         | "       |                         |       |
| 1868-53-7                                    | Dibromofluoromethane                                               | 95       |      |       | 70-13                    | 0%   |                           | "                   | "                         | "         | "       |                         |       |
|                                              | rganic Compounds<br>by method SW846 5030                           | Water MS |      |       |                          |      |                           |                     |                           |           |         |                         |       |
| 108-05-4                                     | Vinyl acetate                                                      | < 9.56   | U    | µg/l  | 10.0                     | 9.56 | 1                         | n                   | 11-May-15                 | "         | "       | 1509128                 | х     |
| Surrogate i                                  | recoveries:                                                        |          |      |       |                          |      |                           |                     |                           |           |         |                         |       |
| 460-00-4                                     | 4-Bromofluorobenzene                                               | 103      |      |       | 70-13                    | 0 %  |                           | "                   | "                         |           | "       | "                       |       |
| 2037-26-5                                    | Toluene-d8                                                         | 101      |      |       | 70-13                    | 0%   |                           | "                   | "                         |           | "       |                         |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                                              | 96       |      |       | 70-13                    | 0%   |                           |                     | "                         | "         | "       |                         |       |
| 1868-53-7                                    | Dibromofluoromethane                                               | 100      |      |       | 70-13                    | 0%   |                           |                     | "                         | "         | "       | "                       |       |
|                                              | y Identified Compounds b<br>by method SW846 5030                   |          |      |       |                          |      |                           |                     |                           |           |         |                         |       |
| 95-93-2                                      | Benzene,<br>1,2,4,5-tetramethyl-                                   | 4.4      | TIC  | µg/l  |                          |      | 1                         | SW846 8260C<br>TICs | 11-May-15                 | "         | SJB     | 1509127                 |       |
| 933-98-2                                     | Benzene,<br>1-ethyl-2,3-dimethyl-                                  | 3.4      | TIC  | µg/l  |                          |      | 1                         | n                   | "                         | "         | "       | "                       |       |
| 611-14-3                                     | Benzene,<br>1-ethyl-2-methyl-                                      | 4.4      | TIC  | µg/l  |                          |      | 1                         | "                   | "                         | u         | "       | "                       |       |
| 000620-14-4                                  | Benzene,<br>1-ethyl-3-methyl-                                      | 5.1      | TIC  | µg/l  |                          |      | 1                         | "                   | "                         | u         | "       | "                       |       |
| 622-96-8                                     | Benzene,<br>1-ethyl-4-methyl-                                      | 3.9      | TIC  | µg/l  |                          |      | 1                         | u                   | "                         | "         | "       | "                       |       |
| 000527-84-4                                  | Benzene, 1-methyl-2-<br>(1-meth                                    | 6.2      | TIC  | µg/l  |                          |      | 1                         | "                   | "                         | "         | "       | "                       |       |
| 001074-43-7                                  | Benzene,<br>1-methyl-3-propyl-                                     | 3.0      | TIC  | µg/l  |                          |      | 1                         | "                   | "                         | "         | "       | n                       |       |
| 000767-58-8                                  | Indan, 1-methyl-                                                   | 3.2      | TIC  | µg/l  |                          |      | 1                         | "                   | "                         |           | "       | "                       |       |

| Sample Ic<br>MW-07 | lentification                                                        |                           |      |       | Project # |     | <u>Matrix</u> |             | ection Date |           |         | <u>ceived</u> |       |
|--------------------|----------------------------------------------------------------------|---------------------------|------|-------|-----------|-----|---------------|-------------|-------------|-----------|---------|---------------|-------|
| SC07069-           | -18                                                                  |                           |      | 2150  | 0606      |     | Ground Wa     | ater 06     | -May-15 11  | :00       | 0/-1    | May-15        |       |
| CAS No.            | Analyte(s)                                                           | Result                    | Flag | Units | *RDL      | MDL | Dilution      | Method Ref. | Prepared    | Analyzed  | Analyst | Batch         | Cert. |
| <u>Volatile O</u>  | rganic Compounds<br>rganic Compounds by SW<br>by method SW846 5030 V |                           |      |       |           |     |               |             |             |           |         |               |       |
| 67-64-1            | Acetone                                                              | 3.5                       | J    | μg/l  | 10.0      | 2.5 | 1             | SW846 8260C | 11-Mav-15   | 11-May-15 | SJB     | 1509127       | х     |
| 71-43-2            | Benzene                                                              | < 0.2                     | U    | μg/l  | 1.0       | 0.2 | 1             | "           | "           | "         | "       | "             | X     |
| 75-27-4            | Bromodichloromethane                                                 | < 0.2                     | U    | μg/l  | 0.5       | 0.2 | 1             | "           |             |           | "       | "             | х     |
| 75-25-2            | Bromoform                                                            | < 0.3                     | U    | μg/l  | 1.0       | 0.3 | 1             | "           |             |           |         |               | х     |
| 74-83-9            | Bromomethane                                                         | < 0.5                     | U    | μg/l  | 2.0       | 0.5 | 1             | "           |             |           |         |               | х     |
| 78-93-3            | 2-Butanone (MEK)                                                     | < 1.2                     | U    | μg/l  | 10.0      | 1.2 | 1             | "           |             |           |         |               | х     |
| 104-51-8           | n-Butylbenzene                                                       | < 0.3                     | U    | μg/l  | 1.0       | 0.3 | 1             | "           |             | "         | "       | "             | х     |
| 135-98-8           | sec-Butylbenzene                                                     | < 0.2                     | U    | μg/l  | 1.0       | 0.2 | 1             | "           |             |           | "       |               | х     |
| 98-06-6            | tert-Butylbenzene                                                    | < 0.2                     | U    | μg/l  | 1.0       | 0.2 | 1             |             |             |           |         |               | X     |
| 75-15-0            | Carbon disulfide                                                     | < 0.3                     | U    | μg/l  | 2.0       | 0.3 | 1             |             |             |           | "       |               | x     |
| 56-23-5            | Carbon tetrachloride                                                 | < 0.2                     | U    | μg/l  | 1.0       | 0.2 | 1             |             |             |           |         |               | x     |
| 108-90-7           | Chlorobenzene                                                        | < 0.2                     | U    |       | 1.0       | 0.2 | 1             |             |             |           |         |               | x     |
| 75-00-3            | Chloroethane                                                         | < 0.2<br>< 0.4            | U    | µg/l  | 2.0       | 0.2 | 1             | "           |             |           | "       |               | x     |
| 67-66-3            | Chloroform                                                           |                           | J    | µg/l  | 1.0       | 0.4 | 1             | "           |             |           |         |               | x     |
| 74-87-3            | Chloromethane                                                        | <mark>0.4</mark><br>< 0.3 | U    | µg/l  | 2.0       | 0.4 | 1             | "           |             |           | "       |               | x     |
| 124-48-1           |                                                                      |                           | U    | µg/l  |           |     |               |             |             |           | "       |               |       |
| 95-50-1            | Dibromochloromethane                                                 | < 0.2                     |      | µg/l  | 0.5       | 0.2 | 1             |             |             |           |         |               | X     |
|                    | 1,2-Dichlorobenzene                                                  | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             |             |             |           |         |               | X     |
| 541-73-1           | 1,3-Dichlorobenzene                                                  | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             |             |             |           |         |               | Х     |
| 106-46-7           | 1,4-Dichlorobenzene                                                  | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             |             |             |           |         |               | Х     |
| 75-34-3            | 1,1-Dichloroethane                                                   | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             |             |             |           |         |               | Х     |
| 107-06-2           | 1,2-Dichloroethane                                                   | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             |             |             |           |         |               | Х     |
| 75-35-4            | 1,1-Dichloroethene                                                   | < 0.3                     | U    | µg/l  | 1.0       | 0.3 | 1             | "           |             | "         | "       | "             | Х     |
| 156-59-2           | cis-1,2-Dichloroethene                                               | 6.8                       |      | µg/l  | 1.0       | 0.2 | 1             |             | "           | "         | "       | "             | Х     |
| 156-60-5           | trans-1,2-Dichloroethene                                             | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             | "           | "           | "         | "       | "             | Х     |
| 78-87-5            | 1,2-Dichloropropane                                                  | < 0.1                     | U    | µg/l  | 1.0       | 0.1 | 1             | "           |             | "         | "       | "             | Х     |
| 10061-01-5         | cis-1,3-Dichloropropene                                              | < 0.2                     | U    | µg/l  | 0.5       | 0.2 | 1             | "           |             | "         | "       | "             | Х     |
| 10061-02-6         | trans-1,3-Dichloropropene                                            | < 0.3                     | U    | µg/l  | 0.5       | 0.3 | 1             | "           | "           | "         | "       |               | Х     |
| 100-41-4           | Ethylbenzene                                                         | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             | "           | "           | "         | "       |               | Х     |
| 591-78-6           | 2-Hexanone (MBK)                                                     | < 0.5                     | U    | µg/l  | 10.0      | 0.5 | 1             | "           | "           | "         | "       |               | Х     |
| 98-82-8            | Isopropylbenzene                                                     | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             | "           | "           | "         | "       |               | Х     |
| 99-87-6            | 4-Isopropyltoluene                                                   | < 0.4                     | U    | µg/l  | 1.0       | 0.4 | 1             |             | "           | "         | "       | "             | Х     |
| 1634-04-4          | Methyl tert-butyl ether                                              | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             | "           | "           | "         | "       |               | Х     |
| 108-10-1           | 4-Methyl-2-pentanone<br>(MIBK)                                       | < 0.7                     | U    | µg/l  | 10.0      | 0.7 | 1             | "           | "           | "         | "       | "             | Х     |
| 75-09-2            | Methylene chloride                                                   | < 0.3                     | U    | µg/l  | 2.0       | 0.3 | 1             | "           | "           | "         |         |               | Х     |
| 91-20-3            | Naphthalene                                                          | < 0.4                     | U    | µg/l  | 1.0       | 0.4 | 1             | "           |             | "         | "       | "             | Х     |
| 103-65-1           | n-Propylbenzene                                                      | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             | "           |             | "         | "       | "             | Х     |
| 100-42-5           | Styrene                                                              | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             | "           |             |           | "       | "             | х     |
| 79-34-5            | 1,1,2,2-Tetrachloroethane                                            | < 0.3                     | U    | µg/l  | 0.5       | 0.3 | 1             | "           |             |           | "       | "             | х     |
| 127-18-4           | Tetrachloroethene                                                    | 1.2                       |      | µg/l  | 1.0       | 0.6 | 1             | "           |             |           | "       | "             | х     |
| 108-88-3           | Toluene                                                              | 0.3                       | J    | µg/l  | 1.0       | 0.3 | 1             | "           |             |           | "       | "             | х     |
| 71-55-6            | 1,1,1-Trichloroethane                                                | < 0.2                     | U    | µg/l  | 1.0       | 0.2 | 1             | "           |             |           | "       | "             | х     |
| 79-00-5            | 1,1,2-Trichloroethane                                                | < 0.2                     | U    | μg/l  | 1.0       | 0.2 | 1             | "           |             |           | "       | "             | х     |
| 79-01-6            | Trichloroethene                                                      | 14.3                      |      | µg/l  | 1.0       | 0.4 | 1             | "           | "           |           | "       | "             | х     |
|                    |                                                                      |                           |      | -     |           |     |               |             |             |           |         |               |       |

| <u>Sample Id</u><br><b>MW-07</b><br>SC07069- | lentification<br>18                                 |            |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground Wa |                     | ection Date<br>-May-15 11 |               | -       | <u>eceived</u><br>May-15 |       |
|----------------------------------------------|-----------------------------------------------------|------------|------|-------|--------------------------|------|----------------------------|---------------------|---------------------------|---------------|---------|--------------------------|-------|
| CAS No.                                      | Analyte(s)                                          | Result     | Flag | Units | *RDL                     | MDL  | Dilution                   | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                    | Cert. |
| Volatile O                                   | rganic Compounds                                    |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | rganic Compounds by SW<br>by method SW846 5030 V    |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)                | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | SW846 8260C         | 11-May-15                 | 11-May-15     | SJB     | 1509127                  | х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                              | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                          | "                   | "                         |               | "       | "                        | х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                              | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                          | "                   |                           |               | "       | "                        | х     |
| 75-01-4                                      | Vinyl chloride                                      | 0.3        | J    | µg/l  | 1.0                      | 0.3  | 1                          | "                   |                           | "             | "       | "                        | х     |
| 179601-23-1                                  | m,p-Xylene                                          | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                          | "                   |                           | "             | "       | "                        | х     |
| 95-47-6                                      | o-Xylene                                            | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | "                   | "                         |               | "       | "                        | х     |
| Surrogate i                                  | recoveries:                                         |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                                | 98         |      |       | 70-13                    | 80 % |                            | "                   |                           |               | "       | "                        |       |
| 2037-26-5                                    | Toluene-d8                                          | 99         |      |       | 70-13                    | 80 % |                            | "                   |                           | "             | "       | "                        |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                               | 91         |      |       | 70-13                    | 80 % |                            |                     | "                         | "             | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                                | 97         |      |       | 70-13                    | 80 % |                            | "                   | "                         |               | "       | "                        |       |
| -                                            | rganic Compounds                                    |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | by method SW846 5030 V                              |            |      |       | 10.0                     |      |                            |                     |                           |               |         |                          |       |
| 108-05-4                                     | Vinyl acetate                                       | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                          |                     | 11-May-15                 |               |         | 1509128                  | X     |
| Surrogate i                                  | recoveries:                                         |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 460-00-4                                     | 4-Bromofluorobenzene                                | 98         |      |       | 70-13                    |      |                            | "                   | "                         | "             | "       | "                        |       |
| 2037-26-5                                    | Toluene-d8                                          | 100        |      |       | 70-13                    |      |                            | "                   | "                         |               | "       | "                        |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                               | 96         |      |       | 70-13                    |      |                            | "                   |                           |               | "       |                          |       |
| 1868-53-7                                    | Dibromofluoromethane                                | 103        |      |       | 70-13                    | 80 % |                            |                     |                           |               | "       | "                        |       |
|                                              | y Identified Compounds by<br>by method SW846 5030 V |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| repured                                      | Tentatively Identified<br>Compounds                 | None found |      | µg/l  |                          |      | 1                          | SW846 8260C<br>TICs | 11-May-15                 | "             | SJB     | 1509127                  |       |
| Semivolati                                   | le Organic Compounds by                             | GCMS       |      |       |                          |      |                            |                     |                           |               |         |                          |       |
|                                              | ile Organic Compounds<br>by method SW846 3510C      |            |      |       |                          |      |                            |                     |                           |               |         |                          |       |
| 83-32-9                                      | Acenaphthene                                        | < 1.38     | U    | µg/l  | 5.21                     | 1.38 | 1                          | SW846 8270D         | 07-May-1<br>5             | 10-May-1<br>5 | MSL     | 1508810                  | х     |
| 208-96-8                                     | Acenaphthylene                                      | < 1.40     | U    | µg/l  | 5.21                     | 1.40 | 1                          |                     | "                         |               | "       | "                        | х     |
| 120-12-7                                     | Anthracene                                          | < 1.46     | U    | µg/l  | 5.21                     | 1.46 | 1                          | "                   | "                         | "             | "       | "                        | х     |
| 56-55-3                                      | Benzo (a) anthracene                                | < 1.31     | U    | µg/l  | 5.21                     | 1.31 | 1                          | "                   |                           | "             | "       | "                        | х     |
| 50-32-8                                      | Benzo (a) pyrene                                    | < 1.38     | U    | µg/l  | 5.21                     | 1.38 | 1                          | "                   |                           |               | "       | "                        | Х     |
| 205-99-2                                     | Benzo (b) fluoranthene                              | < 1.72     | U    | µg/l  | 5.21                     | 1.72 | 1                          | "                   |                           | "             | "       |                          | х     |
| 191-24-2                                     | Benzo (g,h,i) perylene                              | < 1.55     | U    | µg/l  | 5.21                     | 1.55 | 1                          | "                   | "                         | "             | "       | "                        | Х     |
| 207-08-9                                     | Benzo (k) fluoranthene                              | < 1.39     | U    | µg/l  | 5.21                     | 1.39 | 1                          | "                   | "                         | "             | "       | "                        | Х     |
| 111-91-1                                     | Bis(2-chloroethoxy)metha<br>ne                      | < 1.27     | U    | µg/l  | 5.21                     | 1.27 | 1                          | "                   | "                         | "             | "       | "                        | х     |
| 111-44-4                                     | Bis(2-chloroethyl)ether                             | < 1.23     | U    | µg/l  | 5.21                     | 1.23 | 1                          | "                   | "                         | "             | "       | "                        | х     |
| 108-60-1                                     | Bis(2-chloroisopropyl)ethe r                        | < 1.19     | U    | µg/l  | 5.21                     | 1.19 | 1                          | "                   | "                         | "             | "       | "                        | Х     |
| 117-81-7                                     | Bis(2-ethylhexyl)phthalate                          | < 1.40     | U    | µg/l  | 5.21                     | 1.40 | 1                          | "                   | "                         |               |         | "                        | х     |
| 101-55-3                                     | 4-Bromophenyl phenyl                                | < 1.40     | U    | µg/l  | 5.21                     | 1.40 | 1                          | "                   | "                         | "             | "       | "                        | х     |
| 95 00 7                                      | ether<br>Batalkansalaktisalata                      | . 4 00     |      |       | <b>5</b> 6 1             |      |                            |                     |                           |               |         |                          |       |
| 85-68-7                                      | Butyl benzyl phthalate                              | < 1.36     | U    | µg/l  | 5.21                     | 1.36 | 1                          |                     |                           |               |         |                          | X     |
| 86-74-8                                      | Carbazole                                           | < 1.99     | U    | µg/l  | 5.21                     | 1.99 | 1                          |                     |                           |               |         |                          | X     |
| 59-50-7                                      | 4-Chloro-3-methylphenol                             | < 1.73     | U    | µg/l  | 5.21                     | 1.73 | 1                          |                     |                           |               |         |                          | х     |

| Sample Id<br>MW-07<br>SC07069 | <u>dentification</u><br>-18                     |        |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground W |             | ection Date<br>-May-15 11 |               |         | eceived<br>May-15 |       |
|-------------------------------|-------------------------------------------------|--------|------|-------|--------------------------|------|---------------------------|-------------|---------------------------|---------------|---------|-------------------|-------|
| CAS No.                       | Analyte(s)                                      | Result | Flag | Units | *RDL                     | MDL  | Dilution                  | Method Ref. | Prepared                  | Analyzed      | Analyst | Batch             | Cert. |
| Semivolat                     | ile Organic Compounds by (                      | GCMS   |      |       |                          |      |                           |             |                           |               |         |                   |       |
|                               | tile Organic Compounds<br>by method SW846 3510C |        |      |       |                          |      |                           |             |                           |               |         |                   |       |
| 106-47-8                      | 4-Chloroaniline                                 | < 2.15 | U    | µg/l  | 5.21                     | 2.15 | 1                         | SW846 8270D | 07-May-1<br>5             | 10-May-1<br>5 | MSL     | 1508810           | х     |
| 91-58-7                       | 2-Chloronaphthalene                             | < 1.70 | U    | µg/l  | 5.21                     | 1.70 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 95-57-8                       | 2-Chlorophenol                                  | < 1.22 | U    | µg/l  | 5.21                     | 1.22 | 1                         |             |                           | "             | "       |                   | х     |
| 7005-72-3                     | 4-Chlorophenyl phenyl ether                     | < 1.38 | U    | µg/l  | 5.21                     | 1.38 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 218-01-9                      | Chrysene                                        | < 1.56 | U    | µg/l  | 5.21                     | 1.56 | 1                         | "           |                           | "             | "       |                   | х     |
| 53-70-3                       | Dibenzo (a,h) anthracene                        | < 1.60 | U    | µg/l  | 5.21                     | 1.60 | 1                         | "           |                           | "             | "       |                   | Х     |
| 132-64-9                      | Dibenzofuran                                    | < 1.36 | U    | µg/l  | 5.21                     | 1.36 | 1                         | "           |                           | "             | "       |                   | Х     |
| 95-50-1                       | 1,2-Dichlorobenzene                             | < 1.23 | U    | µg/l  | 5.21                     | 1.23 | 1                         | "           |                           | "             | "       |                   | Х     |
| 541-73-1                      | 1,3-Dichlorobenzene                             | < 1.19 | U    | µg/l  | 5.21                     | 1.19 | 1                         | "           |                           | "             | "       |                   | Х     |
| 106-46-7                      | 1,4-Dichlorobenzene                             | < 1.19 | U    | µg/l  | 5.21                     | 1.19 | 1                         | "           |                           | "             | "       |                   | Х     |
| 91-94-1                       | 3,3'-Dichlorobenzidine                          | < 1.09 | U    | µg/l  | 5.21                     | 1.09 | 1                         | "           |                           | "             | "       |                   | Х     |
| 120-83-2                      | 2,4-Dichlorophenol                              | < 1.35 | U    | µg/l  | 5.21                     | 1.35 | 1                         | "           |                           | "             | "       |                   | Х     |
| 84-66-2                       | Diethyl phthalate                               | < 1.33 | U    | µg/l  | 5.21                     | 1.33 | 1                         | "           |                           | "             | "       |                   | Х     |
| 131-11-3                      | Dimethyl phthalate                              | < 1.43 | U    | µg/l  | 5.21                     | 1.43 | 1                         | "           |                           | "             | "       |                   | Х     |
| 105-67-9                      | 2,4-Dimethylphenol                              | < 1.39 | U    | µg/l  | 5.21                     | 1.39 | 1                         | "           |                           | "             | "       |                   | Х     |
| 84-74-2                       | Di-n-butyl phthalate                            | < 1.61 | U    | µg/l  | 5.21                     | 1.61 | 1                         | "           | "                         | "             | "       | "                 | Х     |
| 534-52-1                      | 4,6-Dinitro-2-methylphenol                      | < 2.10 | U    | µg/l  | 5.21                     | 2.10 | 1                         | "           |                           | "             | "       |                   | Х     |
| 51-28-5                       | 2,4-Dinitrophenol                               | < 2.01 | U    | µg/l  | 5.21                     | 2.01 | 1                         | "           | "                         | "             | "       | "                 | Х     |
| 121-14-2                      | 2,4-Dinitrotoluene                              | < 1.93 | U    | µg/l  | 5.21                     | 1.93 | 1                         | "           |                           | "             | "       |                   | Х     |
| 606-20-2                      | 2,6-Dinitrotoluene                              | < 1.51 | U    | µg/l  | 5.21                     | 1.51 | 1                         | "           |                           | "             | "       |                   | Х     |
| 117-84-0                      | Di-n-octyl phthalate                            | < 1.39 | U    | µg/l  | 5.21                     | 1.39 | 1                         | "           |                           | "             | "       |                   | Х     |
| 206-44-0                      | Fluoranthene                                    | < 1.62 | U    | µg/l  | 5.21                     | 1.62 | 1                         | "           |                           | "             | "       |                   | Х     |
| 86-73-7                       | Fluorene                                        | < 1.41 | U    | µg/l  | 5.21                     | 1.41 | 1                         | "           |                           | "             | "       |                   | Х     |
| 118-74-1                      | Hexachlorobenzene                               | < 1.42 | U    | µg/l  | 5.21                     | 1.42 | 1                         | "           |                           | "             | "       |                   | Х     |
| 87-68-3                       | Hexachlorobutadiene                             | < 1.29 | U    | µg/l  | 5.21                     | 1.29 | 1                         | "           |                           | "             | "       |                   | Х     |
| 77-47-4                       | Hexachlorocyclopentadien<br>e                   | < 1.67 | U    | µg/I  | 5.21                     | 1.67 | 1                         | u           | "                         | "             | "       | "                 | х     |
| 67-72-1                       | Hexachloroethane                                | < 1.15 | U    | µg/l  | 5.21                     | 1.15 | 1                         | "           |                           | "             | "       |                   | Х     |
| 193-39-5                      | Indeno (1,2,3-cd) pyrene                        | < 1.81 | U    | µg/l  | 5.21                     | 1.81 | 1                         | "           | "                         | "             | "       | "                 | Х     |
| 78-59-1                       | Isophorone                                      | < 1.21 | U    | µg/l  | 5.21                     | 1.21 | 1                         | "           | "                         | "             | "       |                   | х     |
| 91-57-6                       | 2-Methylnaphthalene                             | < 1.49 | U    | µg/l  | 5.21                     | 1.49 | 1                         | "           | "                         | "             | "       | "                 | Х     |
| 95-48-7                       | 2-Methylphenol                                  | < 1.53 | U    | µg/l  | 5.21                     | 1.53 | 1                         | "           |                           | "             | "       |                   | Х     |
| 108-39-4,<br>106-44-5         | 3 & 4-Methylphenol                              | < 1.93 | U    | µg/l  | 10.4                     | 1.93 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 91-20-3                       | Naphthalene                                     | < 1.22 | U    | µg/l  | 5.21                     | 1.22 | 1                         | "           | "                         | "             |         |                   | Х     |
| 88-74-4                       | 2-Nitroaniline                                  | < 1.76 | U    | µg/l  | 5.21                     | 1.76 | 1                         | "           |                           | "             | "       |                   | Х     |
| 99-09-2                       | 3-Nitroaniline                                  | < 2.33 | U    | µg/l  | 5.21                     | 2.33 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 100-01-6                      | 4-Nitroaniline                                  | < 2.30 | U    | µg/l  | 20.8                     | 2.30 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 98-95-3                       | Nitrobenzene                                    | < 1.22 | U    | µg/l  | 5.21                     | 1.22 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 88-75-5                       | 2-Nitrophenol                                   | < 1.39 | U    | µg/l  | 5.21                     | 1.39 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 100-02-7                      | 4-Nitrophenol                                   | < 2.00 | U    | µg/l  | 20.8                     | 2.00 | 1                         | "           | "                         | "             | "       | "                 | Х     |
| 621-64-7                      | N-Nitrosodi-n-propylamine                       | < 1.48 | U    | µg/l  | 5.21                     | 1.48 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 86-30-6                       | N-Nitrosodiphenylamine                          | < 1.47 | U    | µg/l  | 5.21                     | 1.47 | 1                         | "           | "                         | "             | "       | "                 | х     |
| 87-86-5                       | Pentachlorophenol                               | < 2.47 | U    | µg/l  | 20.8                     | 2.47 | 1                         | u           |                           | "             | "       | "                 | Х     |

| Sample Id<br>MW-07<br>SC07069- | lentification<br>-18                            |            |      |              | <u>Project #</u><br>0606 |        | <u>Matrix</u><br>Ground Wa |                     | ection Date<br>-May-15 11 |               |         | <u>ceived</u><br>May-15 |       |
|--------------------------------|-------------------------------------------------|------------|------|--------------|--------------------------|--------|----------------------------|---------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                        | Analyte(s)                                      | Result     | Flag | Units        | *RDL                     | MDL    | Dilution                   | Method Ref.         | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolati                     | ile Organic Compounds by (                      | GCMS       |      |              |                          |        |                            |                     |                           |               |         |                         |       |
| <u>Semivolat</u>               | ile Organic Compounds<br>by method SW846 3510C  |            |      |              |                          |        |                            |                     |                           |               |         |                         |       |
| 85-01-8                        | Phenanthrene                                    | < 1.43     | U    | µg/l         | 5.21                     | 1.43   | 1                          | SW846 8270D         | 07-May-1<br>5             | 10-May-1<br>5 | MSL     | 1508810                 | х     |
| 108-95-2                       | Phenol                                          | < 2.15     | U    | µg/l         | 5.21                     | 2.15   | 1                          | "                   | "                         | "             | "       | "                       | х     |
| 129-00-0                       | Pyrene                                          | < 1.33     | U    | µg/l         | 5.21                     | 1.33   | 1                          |                     | "                         |               | "       |                         | х     |
| 120-82-1                       | 1,2,4-Trichlorobenzene                          | < 1.14     | U    | µg/l         | 5.21                     | 1.14   | 1                          |                     | "                         | "             | "       |                         | х     |
| 95-95-4                        | 2,4,5-Trichlorophenol                           | < 1.92     | U    | µg/l         | 5.21                     | 1.92   | 1                          | "                   | "                         |               | "       | "                       | х     |
| Surrogate i                    | recoveries:                                     |            |      |              |                          |        |                            |                     |                           |               |         |                         |       |
| 321-60-8                       | 2-Fluorobiphenyl                                | 39         |      |              | 30-13                    | 30 %   |                            |                     | "                         | "             | "       | "                       |       |
| 367-12-4                       | 2-Fluorophenol                                  | 27         |      |              | 15-11                    | 10 %   |                            |                     | "                         | "             | "       | "                       |       |
| 4165-60-0                      | Nitrobenzene-d5                                 | 42         |      |              | 30-13                    | 30 %   |                            | "                   | "                         | "             | "       |                         |       |
| 4165-62-2                      | Phenol-d5                                       | 20         |      |              | 15-11                    | 10 %   |                            | "                   | "                         | "             | "       |                         |       |
| 1718-51-0                      | Terphenyl-dl4                                   | 53         |      |              | 30-13                    | 30 %   |                            |                     | "                         | "             | "       |                         |       |
| 118-79-6                       | 2,4,6-Tribromophenol                            | 44         |      |              | 15-11                    | 10 %   |                            |                     | "                         | "             | "       | "                       |       |
|                                | y Identified Compounds<br>by method SW846 3510C |            |      |              |                          |        |                            |                     |                           |               |         |                         |       |
|                                | Tentatively Identified<br>Compounds             | None found |      | µg/l         |                          |        | 1                          | SW846 8270D<br>TICS | "                         | "             | MSL     | "                       |       |
| Semivolati                     | ile Organic Compounds by (                      | GC         |      |              |                          |        |                            |                     |                           |               |         |                         |       |
|                                | nated Biphenyls<br>by method SW846 3510C        |            |      |              |                          |        |                            |                     |                           |               |         |                         |       |
| 12674-11-2                     | Aroclor-1016                                    | < 0.118    | U    | µg/l         | 0.206                    | 0.118  | 1                          | SW846 8082A         | 08-May-1<br>5             | 12-May-1<br>5 | IMR     | 1508932                 | Х     |
| 11104-28-2                     | Aroclor-1221                                    | < 0.111    | U    | µg/l         | 0.206                    | 0.111  | 1                          |                     | "                         | "             | "       |                         | х     |
| 11141-16-5                     | Aroclor-1232                                    | < 0.129    | U    | µg/l         | 0.206                    | 0.129  | 1                          | "                   | "                         | "             | "       |                         | Х     |
| 53469-21-9                     | Aroclor-1242                                    | < 0.0804   | U    | µg/l         | 0.206                    | 0.0804 | 1                          |                     | "                         | "             | "       | "                       | Х     |
| 12672-29-6                     | Aroclor-1248                                    | < 0.116    | U    | µg/l         | 0.206                    | 0.116  | 1                          |                     | "                         | "             | "       | "                       | Х     |
| 11097-69-1                     | Aroclor-1254                                    | < 0.0773   | U    | µg/l         | 0.206                    | 0.0773 | 1                          |                     | "                         | "             | "       | "                       | Х     |
| 11096-82-5                     | Aroclor-1260                                    | < 0.0639   | U    | µg/l         | 0.206                    | 0.0639 | 1                          |                     | "                         | "             | "       | "                       | Х     |
| 37324-23-5                     | Aroclor-1262                                    | < 0.101    | U    | µg/l         | 0.206                    | 0.101  | 1                          |                     | "                         | "             | "       | "                       | Х     |
| 11100-14-4                     | Aroclor-1268                                    | < 0.140    | U    | µg/l         | 0.206                    | 0.140  | 1                          | n                   | "                         | "             | "       | "                       | Х     |
| Surrogate i                    | recoveries:                                     |            |      |              |                          |        |                            |                     |                           |               |         |                         |       |
| 10386-84-2                     | 4,4-DB-Octafluorobiphenyl<br>(Sr)               | 55         |      |              | 30-15                    | 50 %   |                            | n                   | "                         |               | "       | "                       |       |
| 10386-84-2                     | 4,4-DB-Octafluorobiphenyl<br>(Sr) [2C]          | 65         |      |              | 30-15                    | 50 %   |                            | n                   | "                         |               | "       | "                       |       |
| 2051-24-3                      | Decachlorobiphenyl (Sr)                         | 55         |      |              | 30-15                    | 50 %   |                            | "                   | "                         | "             | "       | "                       |       |
| 2051-24-3                      | Decachlorobiphenyl (Sr)<br>[2C]                 | 50         |      |              | 30-15                    | 50 %   |                            | "                   | "                         | "             | "       | u                       |       |
| Total Meta                     | als by EPA 6000/7000 Series                     | Methods    |      |              |                          |        |                            |                     |                           |               |         |                         |       |
| 7440-22-4                      | Silver                                          | < 0.0023   | U    | mg/l         | 0.0100                   | 0.0023 | 1                          | SW846 6010C         | 14-May-1<br>5             | 14-May-1<br>5 | EDT     | 1509280                 |       |
| 7440-38-2                      | Arsenic                                         | < 0.0054   | U    | mg/l<br>mg/l | 0.0080                   | 0.0054 | 1                          | n                   | n                         | 15-May-1<br>5 | "       | 1509547                 |       |
| 7440-39-3                      | Barium                                          |            |      |              |                          | 0.0006 | 1                          | n                   | n                         | 14-May-1<br>5 | "       | 1509280                 |       |
| 7440-43-9                      | Cadmium                                         | < 0.0003   | U    | mg/l         | 0.0050                   | 0.0003 | 1                          | "                   | "                         | "             | "       | "                       | Х     |
| 7440-47-3                      | Chromium                                        | 0.0049     | J    | mg/l         | 0.0100                   | 0.0021 | 1                          | "                   | "                         | "             | "       | "                       | Х     |
| 7439-92-1                      | Lead                                            | < 0.0039   | U    | mg/l         | 0.0150                   | 0.0039 | 1                          | "                   | "                         | "             | "       | "                       | Х     |

| Sample Id<br>MW-07<br>SC07069 | <u>dentification</u><br>-18 |                |      |       | <u>Project #</u><br>0606 |         | <u>Matrix</u><br>Ground Wa |                            | ection Date<br>-May-15 11 |               |         | <u>ceived</u><br>May-15 |       |
|-------------------------------|-----------------------------|----------------|------|-------|--------------------------|---------|----------------------------|----------------------------|---------------------------|---------------|---------|-------------------------|-------|
| CAS No.                       | Analyte(s)                  | Result         | Flag | Units | *RDL                     | MDL     | Dilution                   | Method Ref.                | Prepared                  | Analyzed      | Analyst | Batch                   | Cert. |
| Total Met                     | als by EPA 6000/7000        | Series Methods |      |       |                          |         |                            |                            |                           |               |         |                         |       |
| 7782-49-2                     | Selenium                    | < 0.0071       | U    | mg/l  | 0.0300                   | 0.0071  | 1                          | SW846 6010C                | 14-May-1<br>5             | 14-May-1<br>5 | EDT     | 1509280                 | Х     |
| Total Met                     | als by EPA 200 Series       | Methods        |      |       |                          |         |                            |                            |                           |               |         |                         |       |
| 7439-97-6                     | Mercury                     | < 0.00009      | U    | mg/l  | 0.00020                  | 0.00009 | 1                          | EPA<br>245.1/7470A         | 14-May-1<br>5             | 15-May-1<br>5 | YR      | 1509281                 | Х     |
| General C                     | Chemistry Parameters        |                |      |       |                          |         |                            |                            |                           |               |         |                         |       |
| 57-12-5                       | Cyanide (total)             | 0.0161         |      | mg/l  | 0.00500                  | 0.00442 | 1                          | EPA 335.4 /<br>SW846 9012B | 13-May-1<br>5             | 13-May-1<br>5 | RLT     | 1509372                 | Х     |

| Sample Id<br>MW-13<br>SC07069- | lentification<br>19                                                  |                |        |                  | <u>Project #</u><br>0606 |            | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 12 |           |         | <u>eceived</u><br>May-15 |        |
|--------------------------------|----------------------------------------------------------------------|----------------|--------|------------------|--------------------------|------------|----------------------------|-------------|---------------------------|-----------|---------|--------------------------|--------|
| CAS No.                        | Analyte(s)                                                           | Result         | Flag   | Units            | *RDL                     | MDL        | Dilution                   | Method Ref. | Prepared                  | Analyzed  | Analyst | Batch                    | Cert.  |
| Volatile O                     | rganic Compounds<br>rganic Compounds by SW<br>by method SW846 5030 V |                |        |                  |                          |            |                            |             |                           |           |         |                          |        |
| 67-64-1                        | Acetone                                                              | 7.3            | J      | µg/l             | 10.0                     | 2.5        | 1                          | SW846 8260C | 11-May-15                 | 11-May-15 | SJB     | 1509127                  | x      |
| 71-43-2                        | Benzene                                                              | < 0.2          | U      | µg/l             | 1.0                      | 0.2        | 1                          |             | "                         | "         | "       |                          | х      |
| 75-27-4                        | Bromodichloromethane                                                 | < 0.2          | U      | µg/l             | 0.5                      | 0.2        | 1                          |             | "                         | "         | "       | "                        | х      |
| 75-25-2                        | Bromoform                                                            | < 0.3          | U      | μg/l             | 1.0                      | 0.3        | 1                          |             | "                         |           | "       | "                        | х      |
| 74-83-9                        | Bromomethane                                                         | < 0.5          | U      | μg/l             | 2.0                      | 0.5        | 1                          |             | "                         |           | "       | "                        | х      |
| 78-93-3                        | 2-Butanone (MEK)                                                     | < 1.2          | U      | µg/l             | 10.0                     | 1.2        | 1                          |             | "                         | "         | "       |                          | х      |
| 104-51-8                       | n-Butylbenzene                                                       | < 0.3          | U      | μg/l             | 1.0                      | 0.3        | 1                          |             | "                         | "         | "       |                          | х      |
| 135-98-8                       | sec-Butylbenzene                                                     | < 0.2          | U      | µg/l             | 1.0                      | 0.2        | 1                          |             | "                         |           |         |                          | х      |
| 98-06-6                        | tert-Butylbenzene                                                    | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          |             | "                         | "         | "       |                          | х      |
| 75-15-0                        | Carbon disulfide                                                     | < 0.3          | U      | μg/l             | 2.0                      | 0.3        | 1                          |             | "                         | "         | "       |                          | х      |
| 56-23-5                        | Carbon tetrachloride                                                 | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          |             | "                         |           | "       |                          | х      |
| 108-90-7                       | Chlorobenzene                                                        | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          |             |                           |           | "       |                          | х      |
| 75-00-3                        | Chloroethane                                                         | < 0.4          | U      | µg/l             | 2.0                      | 0.4        | 1                          |             | "                         |           | "       |                          | X      |
| 67-66-3                        | Chloroform                                                           | < 0.4          | U      | µg/l             | 1.0                      | 0.4        | 1                          |             | "                         |           | "       |                          | X      |
| 74-87-3                        | Chloromethane                                                        | 0.3            | J      | µg/l             | 2.0                      | 0.3        | 1                          |             | "                         |           | "       |                          | X      |
| 124-48-1                       | Dibromochloromethane                                                 | < 0.2          | U      | µg/l             | 0.5                      | 0.2        | 1                          |             |                           |           | "       |                          | X      |
| 95-50-1                        | 1,2-Dichlorobenzene                                                  | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          |             |                           |           |         |                          | x      |
| 541-73-1                       | 1,3-Dichlorobenzene                                                  | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          |             | "                         |           | "       |                          | x      |
| 106-46-7                       | 1,4-Dichlorobenzene                                                  | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          |             |                           |           | "       |                          | x      |
| 75-34-3                        | 1,1-Dichloroethane                                                   | < 0.2          | U      |                  | 1.0                      | 0.2        | 1                          |             |                           |           | "       |                          | x      |
| 107-06-2                       | 1,2-Dichloroethane                                                   | < 0.2          | U      | µg/l<br>µg/l     | 1.0                      | 0.2        | 1                          |             |                           |           |         |                          | x      |
| 75-35-4                        | 1,1-Dichloroethene                                                   | < 0.2          | U      |                  | 1.0                      | 0.2        | 1                          |             |                           |           |         |                          | x      |
| 156-59-2                       |                                                                      |                | 0      | µg/l             | 1.0                      | 0.3        | 1                          |             |                           |           |         |                          | x      |
| 156-60-5                       | cis-1,2-Dichloroethene                                               | <b>4.3</b>     | U      | µg/l             |                          | 0.2        |                            |             |                           |           |         |                          |        |
| 78-87-5                        | trans-1,2-Dichloroethene                                             | < 0.2<br>< 0.1 | U      | µg/l             | 1.0<br>1.0               |            | 1                          |             |                           |           |         |                          | X<br>X |
| 10061-01-5                     | 1,2-Dichloropropane                                                  |                | U      | µg/l             |                          | 0.1        | 1                          |             |                           |           | "       |                          | ×      |
| 10061-01-5                     | cis-1,3-Dichloropropene                                              | < 0.2          | U      | µg/l             | 0.5                      | 0.2        | 1                          |             |                           |           |         |                          |        |
| 100-41-4                       | trans-1,3-Dichloropropene                                            | < 0.3          |        | µg/l             | 0.5                      | 0.3        | 1                          |             |                           |           | "       |                          | X      |
| 591-78-6                       | Ethylbenzene                                                         | < 0.2<br>< 0.5 | U      | µg/l             | 1.0                      | 0.2        | 1                          |             |                           |           |         |                          | X      |
| 98-82-8                        | 2-Hexanone (MBK)                                                     |                | U      | µg/l             | 10.0                     | 0.5        | 1                          |             |                           |           |         |                          | X      |
| 99-87-6                        | Isopropylbenzene                                                     | < 0.2          | U      | µg/l             | 1.0                      | 0.2        | 1                          |             |                           |           |         |                          | X      |
|                                | 4-Isopropyltoluene                                                   | < 0.4          | U      | µg/l             | 1.0                      | 0.4        | 1                          |             |                           |           |         |                          | X      |
| 1634-04-4<br>108-10-1          | Methyl tert-butyl ether<br>4-Methyl-2-pentanone<br>(MIBK)            | < 0.2<br>< 0.7 | U<br>U | µg/l<br>µg/l     | 1.0<br>10.0              | 0.2<br>0.7 | 1<br>1                     |             |                           |           |         |                          | x<br>x |
| 75-09-2                        | Methylene chloride                                                   | < 0.3          | U      | µg/l             | 2.0                      | 0.3        | 1                          | "           | "                         | "         | "       | "                        | х      |
| 91-20-3                        | Naphthalene                                                          | < 0.4          | U      | µg/l             | 1.0                      | 0.4        | 1                          | "           | "                         | "         | "       | "                        | X      |
| 103-65-1                       | n-Propylbenzene                                                      | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          |             | "                         |           | "       | "                        | x      |
| 100-42-5                       | Styrene                                                              | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          |             | "                         |           | "       | "                        | x      |
| 79-34-5                        | 1,1,2,2-Tetrachloroethane                                            | < 0.3          | U      | μg/l             | 0.5                      | 0.3        | 1                          | "           |                           |           | "       | "                        | x      |
| 127-18-4                       | Tetrachloroethene                                                    | <b>2.0</b>     |        | μg/l             | 1.0                      | 0.6        | 1                          |             |                           |           |         | "                        | x      |
| 108-88-3                       | Toluene                                                              | < 0.3          | U      | μg/l             | 1.0                      | 0.3        | 1                          |             |                           |           |         | "                        | x      |
| 71-55-6                        | 1,1,1-Trichloroethane                                                | < 0.2          | U      | μg/l             | 1.0                      | 0.2        | 1                          | "           |                           |           |         | "                        | x      |
| 79-00-5                        | 1,1,2-Trichloroethane                                                | < 0.2          | U      | µg/l             | 1.0                      | 0.2        | 1                          | "           |                           |           |         | "                        | x      |
| 79-01-6                        | Trichloroethene                                                      | 10.0           | -      | µg/l             | 1.0                      | 0.4        | 1                          |             | "                         |           | "       | "                        | x      |
|                                |                                                                      | 10.0           |        | 49 <sup>(1</sup> | 1.0                      | 0.7        |                            |             |                           |           |         |                          | ~      |

| <u>Sample Id</u><br><b>MW-13</b><br>SC07069- | entification<br>19                                    |            |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground Wa |                     | ection Date<br>-May-15 12 |           |         | <u>ceived</u><br>May-15 |       |
|----------------------------------------------|-------------------------------------------------------|------------|------|-------|--------------------------|------|----------------------------|---------------------|---------------------------|-----------|---------|-------------------------|-------|
| CAS No.                                      | Analyte(s)                                            | Result     | Flag | Units | *RDL                     | MDL  | Dilution                   | Method Ref.         | Prepared                  | Analyzed  | Analyst | Batch                   | Cert. |
| Volatile Or                                  | ganic Compounds                                       |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
|                                              | rganic Compounds by SV<br>by method SW846 5030        |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)                  | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | SW846 8260C         | 11-May-15                 | 11-May-15 | SJB     | 1509127                 | х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                                | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                          | "                   | "                         | "         | "       | "                       | Х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                                | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                          | "                   | "                         | "         | "       | "                       | Х     |
| 75-01-4                                      | Vinyl chloride                                        | < 0.3      | U    | µg/l  | 1.0                      | 0.3  | 1                          |                     | "                         | "         | "       |                         | х     |
| 179601-23-1                                  | m,p-Xylene                                            | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                          |                     | "                         | "         | "       |                         | х     |
| 95-47-6                                      | o-Xylene                                              | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | "                   | "                         | "         | "       | "                       | х     |
| Surrogate r                                  | ecoveries:                                            |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| 460-00-4                                     | 4-Bromofluorobenzene                                  | 97         |      |       | 70-13                    | 0 %  |                            | "                   | "                         |           | "       |                         |       |
| 2037-26-5                                    | Toluene-d8                                            | 100        |      |       | 70-13                    | 0 %  |                            | "                   | "                         |           | "       |                         |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                                 | 92         |      |       | 70-13                    | 0 %  |                            | "                   | "                         |           | "       |                         |       |
| 1868-53-7                                    | Dibromofluoromethane                                  | 99         |      |       | 70-13                    | 0 %  |                            |                     |                           |           | "       | "                       |       |
|                                              | rganic Compounds<br>by method SW846 5030 <sup>v</sup> | Water MS   |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| 108-05-4                                     | Vinyl acetate                                         | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                          | "                   | 11-May-15                 |           | "       | 1509128                 | х     |
| Surrogate r                                  | ecoveries:                                            |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| 460-00-4                                     | 4-Bromofluorobenzene                                  | 98         |      |       | 70-13                    | 0 %  |                            | "                   | "                         |           | "       |                         |       |
| 2037-26-5                                    | Toluene-d8                                            | 101        |      |       | 70-13                    | 0 %  |                            | "                   | "                         |           | "       |                         |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                                 | 97         |      |       | 70-13                    | 0 %  |                            | "                   | "                         | "         | "       |                         |       |
| 1868-53-7                                    | Dibromofluoromethane                                  | 104        |      |       | 70-13                    | 0 %  |                            | "                   | "                         |           | "       |                         |       |
|                                              | y Identified Compounds b<br>by method SW846 5030      |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| <u> </u>                                     | Tentatively Identified<br>Compounds                   | None found |      | µg/l  |                          |      | 1                          | SW846 8260C<br>TICs | 11-May-15                 | "         | SJB     | 1509127                 |       |

| <u>Sample Id</u><br><b>MW-11</b><br>SC07069- | dentification                                                         |        |      |       | <u>Project #</u><br>0606 |     | <u>Matrix</u><br>Ground Wa |             | ection Date<br>-May-15 08 |           |         | <u>ceived</u><br>May-15 |       |
|----------------------------------------------|-----------------------------------------------------------------------|--------|------|-------|--------------------------|-----|----------------------------|-------------|---------------------------|-----------|---------|-------------------------|-------|
| CAS No.                                      | Analyte(s)                                                            | Result | Flag | Units | *RDL                     | MDL | Dilution                   | Method Ref. | Prepared                  | Analyzed  | Analyst | Batch                   | Cert. |
| Volatile O                                   | rganic Compounds<br>Irganic Compounds by SW<br>by method SW846 5030 V |        |      |       |                          |     |                            |             |                           |           |         |                         |       |
| 67-64-1                                      | Acetone                                                               | 3.0    | J    | µg/l  | 10.0                     | 2.5 | 1                          | SW846 8260C | 11-May-15                 | 11-May-15 | SJB     | 1509127                 | х     |
| 71-43-2                                      | Benzene                                                               | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | Х     |
| 75-27-4                                      | Bromodichloromethane                                                  | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          |             | "                         | "         | "       |                         | Х     |
| 75-25-2                                      | Bromoform                                                             | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             | "                         | "         | "       | "                       | х     |
| 74-83-9                                      | Bromomethane                                                          | < 0.5  | U    | µg/l  | 2.0                      | 0.5 | 1                          |             | "                         | "         | "       |                         | Х     |
| 78-93-3                                      | 2-Butanone (MEK)                                                      | < 1.2  | U    | µg/l  | 10.0                     | 1.2 | 1                          |             | "                         | "         | "       |                         | х     |
| 104-51-8                                     | n-Butylbenzene                                                        | < 0.3  | U    | µg/l  | 1.0                      | 0.3 | 1                          |             | "                         | "         | "       | "                       | х     |
| 135-98-8                                     | sec-Butylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          | "           | "                         | "         | "       |                         | х     |
| 98-06-6                                      | tert-Butylbenzene                                                     | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | х     |
| 75-15-0                                      | Carbon disulfide                                                      | < 0.3  | U    | μg/l  | 2.0                      | 0.3 | 1                          |             | "                         |           | "       |                         | х     |
| 56-23-5                                      | Carbon tetrachloride                                                  | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |           | "       |                         | х     |
| 108-90-7                                     | Chlorobenzene                                                         | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | х     |
| 75-00-3                                      | Chloroethane                                                          | < 0.4  | U    | μg/l  | 2.0                      | 0.4 | 1                          |             | "                         | "         | "       |                         | х     |
| 67-66-3                                      | Chloroform                                                            | 0.4    | J    | μg/l  | 1.0                      | 0.4 | 1                          |             | "                         | "         | "       |                         | х     |
| 74-87-3                                      | Chloromethane                                                         | < 0.3  | U    | μg/l  | 2.0                      | 0.3 | 1                          |             | "                         |           | "       |                         | х     |
| 124-48-1                                     | Dibromochloromethane                                                  | < 0.2  | U    | μg/l  | 0.5                      | 0.2 | 1                          |             |                           |           | "       |                         | X     |
| 95-50-1                                      | 1,2-Dichlorobenzene                                                   | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |           | "       |                         | x     |
| 541-73-1                                     | 1,3-Dichlorobenzene                                                   | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "         | "       |                         | x     |
| 106-46-7                                     | 1,4-Dichlorobenzene                                                   | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | x     |
| 75-34-3                                      | 1,1-Dichloroethane                                                    | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | X     |
| 107-06-2                                     | 1,2-Dichloroethane                                                    | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | X     |
| 75-35-4                                      | 1,1-Dichloroethene                                                    | < 0.3  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             | "                         | "         | "       |                         | X     |
| 156-59-2                                     | cis-1,2-Dichloroethene                                                | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "         | "       |                         | x     |
| 156-60-5                                     | trans-1,2-Dichloroethene                                              | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "         | "       |                         | x     |
| 78-87-5                                      | 1,2-Dichloropropane                                                   | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           | "         | "       |                         | x     |
| 10061-01-5                                   | cis-1,3-Dichloropropene                                               | < 0.2  | U    | µg/l  | 0.5                      | 0.2 | 1                          |             | "                         |           | "       |                         | X     |
| 10061-02-6                                   | trans-1,3-Dichloropropene                                             | < 0.3  | U    | μg/l  | 0.5                      | 0.2 | 1                          |             |                           |           | "       |                         | x     |
| 100-41-4                                     | Ethylbenzene                                                          | < 0.2  | U    | µg/l  | 1.0                      | 0.0 | 1                          |             |                           |           | "       |                         | x     |
| 591-78-6                                     | 2-Hexanone (MBK)                                                      | < 0.2  | U    | μg/l  | 10.0                     | 0.2 | 1                          |             |                           |           | "       |                         | x     |
| 98-82-8                                      | Isopropylbenzene                                                      | < 0.2  | U    | µg/l  | 1.0                      | 0.2 | 1                          |             |                           | "         | "       |                         | x     |
| 99-87-6                                      | 4-Isopropyltoluene                                                    | < 0.4  | U    | μg/l  | 1.0                      | 0.4 | 1                          |             |                           |           | "       |                         | x     |
| 1634-04-4                                    | Methyl tert-butyl ether                                               | < 0.4  | U    | µg/l  | 1.0                      | 0.4 | 1                          |             |                           |           | "       |                         | x     |
| 108-10-1                                     | 4-Methyl-2-pentanone<br>(MIBK)                                        | < 0.2  | U    | μg/l  | 10.0                     | 0.2 | 1                          | "           | "                         | "         |         | "                       | x     |
| 75-09-2                                      | Methylene chloride                                                    | < 0.3  | U    | µg/l  | 2.0                      | 0.3 | 1                          | "           | "                         | "         | "       | "                       | х     |
| 91-20-3                                      | Naphthalene                                                           | < 0.4  | U    | μg/l  | 1.0                      | 0.4 | 1                          |             |                           |           | "       |                         | х     |
| 103-65-1                                     | n-Propylbenzene                                                       | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |           | "       |                         | х     |
| 100-42-5                                     | Styrene                                                               | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          | "           |                           |           | "       | "                       | х     |
| 79-34-5                                      | 1,1,2,2-Tetrachloroethane                                             | < 0.3  | U    | μg/l  | 0.5                      | 0.3 | 1                          | "           | "                         | "         | "       | "                       | х     |
| 127-18-4                                     | Tetrachloroethene                                                     | 0.6    | J    | μg/l  | 1.0                      | 0.6 | 1                          |             | "                         | "         | "       | "                       | x     |
| 108-88-3                                     | Toluene                                                               | < 0.3  | U    | μg/l  | 1.0                      | 0.3 | 1                          |             | "                         |           | "       | "                       | x     |
| 71-55-6                                      | 1,1,1-Trichloroethane                                                 | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |           | "       | "                       | x     |
| 79-00-5                                      | 1,1,2-Trichloroethane                                                 | < 0.2  | U    | μg/l  | 1.0                      | 0.2 | 1                          |             |                           |           | "       | "                       | x     |
| 79-01-6                                      | Trichloroethene                                                       | 1.6    |      | μg/l  | 1.0                      | 0.4 | 1                          |             |                           |           |         | "                       | X     |
|                                              |                                                                       |        |      | P.9,1 | 1.0                      | 0.7 |                            |             |                           |           |         |                         | ~     |

| <u>Sample Id</u><br><b>MW-11</b><br>SC07069- | entification<br>20                                    |            |      |       | <u>Project #</u><br>0606 |      | <u>Matrix</u><br>Ground Wa |                     | ection Date<br>-May-15 08 |           |         | <u>ceived</u><br>May-15 |       |
|----------------------------------------------|-------------------------------------------------------|------------|------|-------|--------------------------|------|----------------------------|---------------------|---------------------------|-----------|---------|-------------------------|-------|
| CAS No.                                      | Analyte(s)                                            | Result     | Flag | Units | *RDL                     | MDL  | Dilution                   | Method Ref.         | Prepared                  | Analyzed  | Analyst | Batch                   | Cert. |
| Volatile Or                                  | ganic Compounds                                       |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
|                                              | rganic Compounds by SV<br>by method SW846 5030        |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| 75-69-4                                      | Trichlorofluoromethane<br>(Freon 11)                  | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | SW846 8260C         | 11-May-15                 | 11-May-15 | SJB     | 1509127                 | х     |
| 95-63-6                                      | 1,2,4-Trimethylbenzene                                | < 0.4      | U    | µg/l  | 1.0                      | 0.4  | 1                          | "                   | "                         |           | "       |                         | х     |
| 108-67-8                                     | 1,3,5-Trimethylbenzene                                | < 0.9      | U    | µg/l  | 1.0                      | 0.9  | 1                          | "                   | "                         |           | "       |                         | х     |
| 75-01-4                                      | Vinyl chloride                                        | < 0.3      | U    | µg/l  | 1.0                      | 0.3  | 1                          |                     | "                         |           | "       |                         | х     |
| 179601-23-1                                  | m,p-Xylene                                            | < 0.4      | U    | µg/l  | 2.0                      | 0.4  | 1                          |                     | "                         |           | "       |                         | х     |
| 95-47-6                                      | o-Xylene                                              | < 0.5      | U    | µg/l  | 1.0                      | 0.5  | 1                          | "                   | "                         | "         | "       | "                       | Х     |
| Surrogate r                                  | ecoveries:                                            |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| 460-00-4                                     | 4-Bromofluorobenzene                                  | 97         |      |       | 70-13                    | 80 % |                            | "                   | "                         |           | "       |                         |       |
| 2037-26-5                                    | Toluene-d8                                            | 99         |      |       | 70-13                    | 80 % |                            | "                   |                           |           | "       |                         |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                                 | 91         |      |       | 70-13                    | 80 % |                            | "                   |                           |           | "       |                         |       |
| 1868-53-7                                    | Dibromofluoromethane                                  | 95         |      |       | 70-13                    | 80 % |                            | "                   |                           |           | "       |                         |       |
|                                              | rganic Compounds<br>by method SW846 5030 <sup>v</sup> | Water MS   |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| 108-05-4                                     | Vinyl acetate                                         | < 9.56     | U    | µg/l  | 10.0                     | 9.56 | 1                          | "                   | 11-May-15                 |           |         | 1509128                 | х     |
| Surrogate r                                  | ecoveries:                                            |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
| 460-00-4                                     | 4-Bromofluorobenzene                                  | 97         |      |       | 70-13                    | 80 % |                            |                     |                           |           | "       |                         |       |
| 2037-26-5                                    | Toluene-d8                                            | 100        |      |       | 70-13                    | 80 % |                            |                     |                           |           | "       |                         |       |
| 17060-07-0                                   | 1,2-Dichloroethane-d4                                 | 96         |      |       | 70-13                    | 80 % |                            |                     |                           |           | "       |                         |       |
| 1868-53-7                                    | Dibromofluoromethane                                  | 100        |      |       | 70-13                    | 80 % |                            |                     |                           |           | "       |                         |       |
|                                              | y Identified Compounds b<br>by method SW846 5030      |            |      |       |                          |      |                            |                     |                           |           |         |                         |       |
|                                              | Tentatively Identified<br>Compounds                   | None found |      | µg/l  |                          |      | 1                          | SW846 8260C<br>TICs | 11-May-15                 | u         | SJB     | 1509127                 |       |

| 71-43-2       Benzene       < 0.2       U       µg/l       1.0       0.2       1       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       " </th <th>/lay-15</th> <th></th>                                                                                                                                            | /lay-15 |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| Volatile Ora-inic Compounds by SW846 8260           Prepared by method SW846 5030 Water MS           67-64-1         Acetone         < 2.5         U         µg/l         10.0         2.5         1         SW846 8260C         11-May-15         11-May-15         SJB           71-43-2         Benzene         < 0.2         U         µg/l         1.0         0.2         1         "         "         "         "           75-27-4         Bromodichloromethane         < 0.2         U         µg/l         0.5         0.2         1         "         "         "         "           75-27-2         Bromoform         < 0.3         U         µg/l         1.0         0.3         1         "         "         "         "           75-25-2         Bromoform         < 0.3         U         µg/l         1.0         0.3         1         "         "         "         "           74-83-9         Bromomethane         < 0.5         U         µg/l         1.0         0.3         1         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         < | Batch C | Cert.  |
| Prepared by method SW846 5030 Water MS           67-64-1         Acetone         < 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |
| 67-64-1       Acetone       < 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |
| 71-43-2Benzene< 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1509127 | х      |
| 75-27-4       Bromodichloromethane       < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "       | x      |
| 75-25-2Bromoform< 0.3Uµg/l1.00.31"""""""74-83-9Bromomethane< 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | x      |
| 74-83-9Bromomethane< 0.5Uµg/l2.00.51""""""78-93-32-Butanone (MEK)< 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | x      |
| 78-93-3       2-Butanone (MEK)       < 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | x      |
| 104-51-8n-Butylbenzene< 0.3Uµg/l1.00.31""""""135-98-8sec-Butylbenzene< 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | x      |
| 135-98-8       sec-Butylbenzene       < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | x      |
| 98-06-6       tert-Butylbenzene       < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | x      |
| 75-15-0       Carbon disulfide       < 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | x      |
| 56-23-5Carbon tetrachloride< 0.2Uμg/l1.00.21""""""108-90-7Chlorobenzene< 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | x      |
| 108-90-7       Chlorobenzene       < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | x      |
| 75-00-3     Chloroethane     < 0.4     U     μg/l     2.0     0.4     1     "     "     "       67-66-3     Chloroform     < 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | x      |
| 67-66-3 Chloroform < 0.4 U μg/l 1.0 0.4 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | x      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | x      |
| 74-87-3 Chloromethane < 0.3 U ug/l 2.0 0.3 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | x      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X<br>X |
| 1,1-Dicilioideanene < 0.5 0 μg/1 1.0 0.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
| The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
| зет-70-0 2-пеханоне (мък) < 0.5 0 µg/i 10.0 0.5 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | X      |
| 108-10-1 4-Methyl-2-pentanone < 0.7 U μg/l 10.0 0.7 1 " " " " "<br>(MIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | Х      |
| 75-09-2 Methylene chloride < 0.3 U µg/I 2.0 0.3 1 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "       | Х      |
| 91-20-3 Naphthalene < 0.4 U µg/l 1.0 0.4 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "       | Х      |
| 103-65-1 n-Propylbenzene < 0.2 U µg/l 1.0 0.2 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "       | Х      |
| 100-42-5 Styrene < 0.2 U µg/l 1.0 0.2 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "       | Х      |
| 79-34-5 1,1,2,2-Tetrachloroethane < 0.3 U μg/l 0.5 0.3 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Х      |
| 127-18-4 Tetrachloroethene < 0.6 U μg/l 1.0 0.6 1 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | Х      |
| 108-88-3 Toluene < 0.3 U µg/l 1.0 0.3 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | Х      |
| 71-55-6 1,1,1-Trichloroethane < 0.2 U μg/l 1.0 0.2 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Х      |
| 79-00-5 1,1,2-Trichloroethane < 0.2 U µg/l 1.0 0.2 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Х      |
| 79-01-6 Trichloroethene < 0.4 U µg/I 1.0 0.4 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "       | Х      |

| <u>Sample Id</u><br>Trip Blan<br>SC07069- |                                                    |            |      | <u>Client F</u><br>2150 | <u>Project #</u><br>)606 |      | <u>Matrix</u><br>Aqueous |                     | ection Date<br>-May-15 00 |           |         | <u>ceived</u><br>May-15 |       |
|-------------------------------------------|----------------------------------------------------|------------|------|-------------------------|--------------------------|------|--------------------------|---------------------|---------------------------|-----------|---------|-------------------------|-------|
| CAS No.                                   | Analyte(s)                                         | Result     | Flag | Units                   | *RDL                     | MDL  | Dilution                 | Method Ref.         | Prepared                  | Analyzed  | Analyst | Batch                   | Cert. |
| Volatile Or                               | rganic Compounds                                   |            |      |                         |                          |      |                          |                     |                           |           |         |                         |       |
|                                           | rganic Compounds by SW<br>by method SW846 5030 V   |            |      |                         |                          |      |                          |                     |                           |           |         |                         |       |
| 75-69-4                                   | Trichlorofluoromethane<br>(Freon 11)               | < 0.5      | U    | µg/l                    | 1.0                      | 0.5  | 1                        | SW846 8260C         | 11-May-15                 | 11-May-15 | SJB     | 1509127                 | х     |
| 95-63-6                                   | 1,2,4-Trimethylbenzene                             | < 0.4      | U    | µg/l                    | 1.0                      | 0.4  | 1                        |                     | "                         | "         | "       | "                       | Х     |
| 108-67-8                                  | 1,3,5-Trimethylbenzene                             | < 0.9      | U    | µg/l                    | 1.0                      | 0.9  | 1                        |                     | "                         | "         | "       | "                       | Х     |
| 75-01-4                                   | Vinyl chloride                                     | < 0.3      | U    | µg/l                    | 1.0                      | 0.3  | 1                        |                     | "                         | "         | "       |                         | Х     |
| 179601-23-1                               | m,p-Xylene                                         | < 0.4      | U    | µg/l                    | 2.0                      | 0.4  | 1                        |                     | "                         | "         | "       |                         | Х     |
| 95-47-6                                   | o-Xylene                                           | < 0.5      | U    | µg/l                    | 1.0                      | 0.5  | 1                        | "                   | "                         | "         | "       | "                       | х     |
| Surrogate r                               | recoveries:                                        |            |      |                         |                          |      |                          |                     |                           |           |         |                         |       |
| 460-00-4                                  | 4-Bromofluorobenzene                               | 98         |      |                         | 70-13                    | 0%   |                          |                     | "                         |           | "       |                         |       |
| 2037-26-5                                 | Toluene-d8                                         | 99         |      |                         | 70-13                    | 0%   |                          |                     | "                         |           | "       |                         |       |
| 17060-07-0                                | 1,2-Dichloroethane-d4                              | 91         |      |                         | 70-13                    | 0%   |                          |                     | "                         |           | "       |                         |       |
| 1868-53-7                                 | Dibromofluoromethane                               | 96         |      |                         | 70-13                    | 0%   |                          | "                   | "                         |           | "       | "                       |       |
|                                           | rganic Compounds<br>by method SW846 5030 \         | Water MS   |      |                         |                          |      |                          |                     |                           |           |         |                         |       |
| 108-05-4                                  | Vinyl acetate                                      | < 9.56     | U    | µg/l                    | 10.0                     | 9.56 | 1                        | "                   | 11-May-15                 |           | "       | 1509128                 | х     |
| Surrogate r                               | recoveries:                                        |            |      |                         |                          |      |                          |                     |                           |           |         |                         |       |
| 460-00-4                                  | 4-Bromofluorobenzene                               | 99         |      |                         | 70-13                    | 0%   |                          |                     | "                         |           | "       |                         |       |
| 2037-26-5                                 | Toluene-d8                                         | 100        |      |                         | 70-13                    | 0%   |                          |                     | "                         |           | "       | "                       |       |
| 17060-07-0                                | 1,2-Dichloroethane-d4                              | 96         |      |                         | 70-13                    | 0%   |                          |                     | "                         | "         | "       | "                       |       |
| 1868-53-7                                 | Dibromofluoromethane                               | 102        |      |                         | 70-13                    | 0%   |                          |                     | "                         |           | "       | "                       |       |
|                                           | y Identified Compounds b<br>by method SW846 5030 \ |            |      |                         |                          |      |                          |                     |                           |           |         |                         |       |
| <u> </u>                                  | Tentatively Identified<br>Compounds                | None found |      | µg/l                    |                          |      | 1                        | SW846 8260C<br>TICs | 11-May-15                 | "         | SJB     | 1509127                 |       |

## **Notes and Definitions**

| D   | Data reported from a dilution                                                                                                                                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GS1 | Sample dilution required for high concentration of target analytes to be within the instrument calibration range.                                                                                                                                   |
| J   | Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).                                                                                                              |
| QC1 | Analyte out of acceptance range.                                                                                                                                                                                                                    |
| QC2 | Analyte out of acceptance range in QC spike but no reportable concentration present in sample.                                                                                                                                                      |
| QM2 | The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.                                                                                           |
| QM4 | Visual evaluation of the sample indicates the RPD is above the control limit due to a non-homogeneous sample matrix.                                                                                                                                |
| QM6 | Due to noted non-homogeneity of the QC sample matrix, the MS/MSD did not provide reliable results for accuracy and precision. Sample results for the QC batch were accepted based on LCS/LCSD percent recoveries and RPD values.                    |
| QM7 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.                                                                                                                    |
| QM8 | The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.                                                                                                      |
| QM9 | The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.                                                   |
| QR2 | The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.                                             |
| QR5 | RPD out of acceptance range.                                                                                                                                                                                                                        |
| QR8 | Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit. |
| R01 | The Reporting Limit has been raised to account for matrix interference.                                                                                                                                                                             |
| TIC | (Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.                                                                             |
| U   | Analyte included in the analysis, but not detected at or above the MDL.                                                                                                                                                                             |
| dry | Sample results reported on a dry weight basis                                                                                                                                                                                                       |
| NR  | Not Reported                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                     |

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly LaPlante Nicole Leja Rebecca Merz

|                                                                                                     |                                            |                                         | Wed!            | che ge                    | Relinquished by:      | 1/10 MW-12      | 80. M.M. 60     | 08 33-31-12-14   | 1 a) cz 35-0-4 | 6 5p-34-0-4 | 8-4-05-02        | or Sump I      | 1-01-80-85 50   | 1 1 58-28-3-8 | Sco706901 513-27-24-25 | Lab ID: Sample ID:         | G= Grab           | XI=SUMP WORK X2= | O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air | _DW=Dinking Water GW=Groundwater SW= | F=Field Filtered 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub><br>7=CH3OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> | DanNo             | Telephone #: 585-295-10(10 | 306 State St Unductives | din              | SPECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY                                                                                     |                                 | 21                |         |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------|---------------------------|-----------------------|-----------------|-----------------|------------------|----------------|-------------|------------------|----------------|-----------------|---------------|------------------------|----------------------------|-------------------|------------------|----------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|---------|
| 11 Almgren Drive * Agawam, MA 01001 * 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com |                                            | 10                                      | YC NR           | redEX 5/6                 | Received by: D        | 2 2112120 1 GWI | 5 15115 1515 GW | 1 5/5/15 1200 50 | 2/2/12/148 20  | 5/15/140 50 | 1 2 5 11 20 1 30 | 51515 1030 X 2 | 5 5 13 10 10 50 | 05. 0001 21,5 | 2 2/2/12 200 6 2º      | Ma                         | C=Compsite<br>vpe | X3=              | mbient Air SG=Soil Gas                       | SW=Surface Water WW=Waste Water      | <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub> 5=NaOH 6=Ascorbic Acid<br><sub>3</sub> PO <sub>4</sub> 11= 12=<br>12=                                                          | P.O. No.: 2150606 | 614                        | a a la yelphin          | larc.com         | Page                                                                                                                                             | CHAIN OF C                      |                   |         |
| 3-789-9018 • FAX 413-789-4076 • www                                                                 | / Para                                     | Compared                                | 15 905 Consider | 15 IY DO 2,               | Date: . Time: Temp °C | 0               |                 | 3 i X            |                | 1           |                  | ア<br>版         | 31 ×            | -             | 3 - 7                  | # of .<br># of !<br># of ! | Clear<br>Plastic  | r Glass<br>Glass | is.                                          | Containers                           | 6't                                                                                                                                                                            | O Quote/RQN:      |                            |                         | lle Clausen      |                                                                                                                                                  | CUSTODY RECORD                  |                   |         |
| w.spectrum-analytical.com                                                                           | Ambiend Pleed I Re                         | 3 Condition upon receipt: Custo         | Partor C        | 3 6 E-mail to: Claq       | P°C TEDD format: EO   | X               | *               |                  | ×              | ×           | X '              | 8              |                 | *             |                        | RO                         | CRF               | me<br>TC<br>TT   | tal                                          |                                      | List Preservative Code below:                                                                                                                                                  | L                 | Location: CDr d            | Site Name: COUNING      | Project No: 2150 | All T<br>Min.<br>Samp                                                                                                                            | 1                               | Stan              | 5C07069 |
| Rev. Jan 2014                                                                                       | Refrigerated DI VOA Frozen Soil Jar Frozen | Custody Seals:  Present  Intact  Broken |                 | Jaqui lina labellaper com | US I                  | CLSWISM 0       |                 | - toci           |                | - HOLD      | - HOLD           |                | , DIVIO         | HOLD          | 0 1000                 | State-specific repoi       | Tier II           |                  | CT DPH RCP Report? Yes                       | MA DEP MCP CAM Report? Yes No        | QA/QC Reporting Notes:<br>* additional charges may appply                                                                                                                      | AnnAquitina       | ring State: NY             | ing thospital           | 0696             | All TATs subject to laboratory approval Min. 24-hr notification needed for rushes<br>Samples disposed after 60 days unless otherwise instructed. | A Rush TAT - Date Needed: 5 Day | Special Handling: | Ru .    |

| ORD     Project No: $\mathcal{C}$ $\mathcal{C}$ Site Name: $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ambient Allced Refrigerated DI VOA Frozen rum-analytical.com     Rev | 76 • www.spectr   | • FAX 413-789-40 | 1001 • 413-789-9018 | 11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com | 11 Almgre   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                 | G                 |                  | 141                 |                                                                                                     |             | the second secon |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Consistion Factor | 206              | 5/115               | V                                                                                                   | M2.         | Sall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CHAIN OF CUSTODY RECORD         INPURSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E-mail to:                                                           | Conserved L       | 1400             | 5/6/15              | ×                                                                                                   | Fed F       | an CMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EDD format:                                                          | Temp °C           | . Time:          | Date:               | ved by:                                                                                             | Rece        | Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | X                 |                  |                     | 21812 0                                                                                             | -           | 1/ 20 MW -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | X                 |                  | 62 2                | . 1225 G                                                                                            | 5/6/15      | 51-MW 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                    | ×                 | -                | Y                   |                                                                                                     | 5/6/15      | to - MW 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | ×                 |                  |                     | 1235                                                                                                | 6*          | MW CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | X                 |                  | 660 2               | 5 1200 6                                                                                            | 5/6/1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | ×                 |                  |                     | 2 1110 6                                                                                            | 5 61        | 15 MW-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | ×                 |                  | GW 2                | 2 1040 G                                                                                            | 5 61        | MWW-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | +                 |                  | 500                 |                                                                                                     | 5/6/1       | MW-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CHAIN OF CUSTODY RECORD<br>Page 2 of 2 3       NUME Forming<br>INVESTIGATION OF THE PARTY O                                                                                                                                                                                                                                                                                                                                                        | Sector Andrew Control Andrew Comparison     CHAIN OF CUSTODY RECORD       Beams     Demons       Demons     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | ×-                |                  |                     |                                                                                                     | -           | 50-MW 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Silve Transmer     Free manue     Free manue     Free manue       BARMING FEEDWOLLARCE     Free manue     Free manue     Free manue       BARMING FEEDWOLLARCE     Free manue     Free manue     Free manue       Track Martin Mentil Annel Keilalabe Harper, com     Invoice To:     Mich all C. (augen)     Free manue       Track Martin Mentil     Annel Keilalabe Harper, com     Invoice To:     Mich all C. (augen)     Free manue       Track Martin Mentil     Annel Keilalabe Harper, com     Invoice To:     Mich all C. (augen)     Free manue       Martin     Table Social     Social Call     Free Manue     Excerning     Free Manue       OH     8-NHSQ, 9-Decimized Water 10-H, PO,     11-     12-     Free Manue     Invoice RON:       Martin     Soc Soil Gas     Soc Soil Gas     Soc Soil Gas     Free manue     Invoice College       Soc Soil SL-Sludge     A-Indoor/Ambient Air     Sc Social Gas     Free manue     Analysis       Soc Soil SL-Sludge     A-Indoor/Ambient Air     Sc Compsite     Analysis       Soc Soil SL-Sludge     A-Indoor/Ambient Air     Sc Compsite     Analysis       Martin     Kart Keilala     Kart Keilala     Kart Keilala     Kart Keilala       Soc Soil Gas     Kart Keilala     Kart Keilala     Kart Keilala     Kart Keilala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AND       Anno Provide Note Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | 1                 |                  | Swa                 | 5 - 6                                                                                               | 0 551.      | Jo 9-11 Plind Du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Streams       Formation       CHAIN OF CUSTODY RECORD         Formation       Formation         Formation       Formation </td <td>Sterror Maximus Instruction Integration     CHAIN OF CUSTODY RECORD       Formation Instruction Integration     Frage     Instruction       Formation Integration     Innoise To:     Mitch ell Chausen       Marcin Integration     Innoise To:     Mitch ell Chausen       Annual Technology     Innoise To:     Mitch ell Chausen       Annue:     TES - 2935     Security     Innoise To:       Annue:     TES - 2935     Security     Innoise To:       Annue:     TES - 2935     Security     Innoise To:       Annue:     Tes - 2935     Security     Innoise       Arrificed     I-1-8520, 2-112     Polyan     Innoise       Arrificed     I-1-8520, 2-112     Polyan     Innoise       Arrificed     I-1-802, 2-112     Innoise     Innoise       Solid Base     Second Base     Second Base     Innoise       Solid Base     Second Base     Second Base     Second Base       Solid Base     Secon</td> <td>p</td> <td>CP</td> <td></td> <td># of</td> <td></td> <td>Date:</td> <td></td>                                           | Sterror Maximus Instruction Integration     CHAIN OF CUSTODY RECORD       Formation Instruction Integration     Frage     Instruction       Formation Integration     Innoise To:     Mitch ell Chausen       Marcin Integration     Innoise To:     Mitch ell Chausen       Annual Technology     Innoise To:     Mitch ell Chausen       Annue:     TES - 2935     Security     Innoise To:       Annue:     TES - 2935     Security     Innoise To:       Annue:     TES - 2935     Security     Innoise To:       Annue:     Tes - 2935     Security     Innoise       Arrificed     I-1-8520, 2-112     Polyan     Innoise       Arrificed     I-1-8520, 2-112     Polyan     Innoise       Arrificed     I-1-802, 2-112     Innoise     Innoise       Solid Base     Second Base     Second Base     Innoise       Solid Base     Second Base     Second Base     Second Base       Solid Base     Secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p                                                                    | CP                |                  | # of                |                                                                                                     | Date:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SPECTRUM ANALTICUL, INC.     CHAIN OF CUSTODY RECORD       Families     Families                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ster CHAIN OF CUSTODY RECORD<br>Farmer     CHAIN OF CUSTODY RECORD       Page 2 of 23       Page 2 of 23       HABA TECHNOLOGY       HABA TECHNOLOGY <t< td=""><td>B</td><td>51</td><td></td><td>VOA</td><td></td><td>C=Com</td><td>G= Grab</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B                                                                    | 51                |                  | VOA                 |                                                                                                     | C=Com       | G= Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SPECTRUMANALYTICAL, INC.     CHAIN OF CUSTODY RECORD       FROMEWORK     Page 2 of 23       HAUNAL TECHNOLOGY     Page 2 of 23       To: Partin Mail I And Isolabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An actini I and Yabe IIacc . con<br>AnnActini I. An Actini I and Yabe IIacc . con<br>AnnActini I. An Actini I and Yabe IIacc . con<br>AnnActini I. An Actini I and Yabe IIacc . con<br>AnnActini I. An Actini I and Yabe IIacc . con<br>AnnActini I. An Actini I and Yabe IIacc . con<br>Annalysis     Invoise To: Mich e II & Clausen<br>Actini Chausen<br>Actini I and Yabe IIacc . con<br>Sile Name<br>Actini I and Yabe IIacc . con<br>Sile Name<br>Actini I and Yabe IIacc . con<br>Actini I and Yabe III and Yabe III.<br>Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | StretCREMEANTECH, NC.     Function     CHAIN OF CUSTODY RECORD       Farming     Farming     Invoice To:     Invoice To:       HANNALTECHNOLOCY     Invoice To:     Invoice To:     Invoice To:       HANNALTECHNOLOCY     Invoice To:     Invoice To:     Invoice To:       Invoice To:     Invoice To:     Invoice To:     Invoice To:       Annuell     Checked Service     Invoice To:     Invoice To:       Annuell     Checked Service     Invoice To:     Invoice To:       Annuell     Checked Service     Service     Service       Annuell     Service     Service     Service       Annuelll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      | ive               |                  |                     | (3=                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KITRUM ANALYTICSLE     CHAIN OF CUSTODY RECORD       BETRUM ANALYTICSLE     Page       BETRUM ANALYTICSLE     Invoice To:       Page     All AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAIN OF CUSTODY RECORD       ECRIMANALYTICAL, INC.       Forming       Forming <td>Anal</td> <td></td> <td>intainers</td> <td></td> <td>WW=Waste Water<br/>Soil Gas</td> <td>ater<br/>SG-</td> <td>SO=Soil SL=Sludge A=Indo</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Anal                                                                 |                   | intainers        |                     | WW=Waste Water<br>Soil Gas                                                                          | ater<br>SG- | SO=Soil SL=Sludge A=Indo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CHAIN OF CUSTODY RECORD       Remains       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | General Formula       CHAIN OF CUSTODY RECORD       Prove CORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | 5                 |                  | 2                   |                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHAIN OF CUSTODY RECORD<br>Ferning<br>HANBAL TECHNOLOGY<br>HANBAL TECHNOLOGY                                                                         | CHAIN OF CUSTODY RECORD<br>ECTRON ANALYTICAL, INC.<br>Ferming<br>FANILA, INC.<br>Ferming<br>FANILA, FECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY<br>HANDELTECHNOLOGY                                                                                                                                                                                   | t Preservative Code below:                                           |                   |                  | bic Acid            | 5=NaOH                                                                                              | 4=HNO3      | ered 1=Na<br>8=NaHSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CHAIN OF CUSTODY RECORD<br>Fernine<br>HAIN OF CUSTODY RECORD<br>Page 2 of 23<br>Page 2 of 23 | CHAIN OF CUSTODY RECORD<br>Family<br>Family<br>HANDAL FECHNOLOGY<br>HANDAL FEC                                                                                                                                                                                           | 16                                                                   |                   | /RQN:            | LISO WO Quote       | P.O No.:                                                                                            |             | Project Mgr. DOWN NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RECTRON ANALYTICAL, INC.<br>FEEDERING<br>ANDRAL TECHNOLOGY<br>ANDRAL TECHNOL                                                                         | ECTRUM ANLYTICAL, INC.<br>Feature<br>Feature<br>HANING TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HANING AND BALABELIAR COM<br>HANING AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                    |                   | NE               | IT SAT              | 0                                                                                                   | 419614      | Rechester N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RECTRUM ANALYTICAL, INC.<br>FECTRUM ANALYTICAL                                                                                                                                   | ECTRUM ANLYTICAL, INC.<br>Feature<br>Feature<br>HANIBAL TECHNOLOGY<br>Page A J J<br>Page A J J<br>Page A J J<br>Page A J | 5                                                                    |                   |                  |                     |                                                                                                     | 1 17        | Starte Starte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CHAIN OF CUSTODY RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAIN OF CUSTODY RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project No: 2                                                        | rusen             | INX CI           | Miche               |                                                                                                     | TX          | Den Noll Anollal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AI<br>Sa                                                             |                   | S                | Page D of           |                                                                                                     |             | SPECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      | CORD              | R                | OF CUST             | CHAIN (                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Bey, 120 1014                                                                                                                                       |                                 | mmm on           | FAV 412 700 40          | 12 700 0010 - | MA 01001 • 4    | wa . Argwan    | 11 Almaran De         |                                                                                                                                                  |                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|-------------------------|---------------|-----------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Refrigerated DI VOA Frozen Soil Jar Frozen                                                                                                          | Ambient Cleed Refr              | IKID*            |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
| Custody Seals: Present Intact Broken                                                                                                                | Condition upon receipt: Custody | Connected J      |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 | Corection Enclor | 606                     | 61/4          | 6               |                | LON .                 | Mod y                                                                                                                                            |                                           |
| Aquiline                                                                                                                                            | E-mail to: ANN                  | Cheerres J       | 1400                    | 51) \$        | 5               | 2              | Fedtr                 | " Uli                                                                                                                                            | and                                       |
| N.                                                                                                                                                  | KEDD format: LQU                | Temp °C          | Time:                   | Date: .       |                 | by:            | Received by:          | Relinquished by:                                                                                                                                 | Relinq                                    |
|                                                                                                                                                     |                                 |                  |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 | 1.1              |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 |                  |                         |               |                 |                |                       | •                                                                                                                                                |                                           |
|                                                                                                                                                     |                                 |                  |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 |                  |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 |                  |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 |                  |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 |                  |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 |                  |                         |               |                 |                |                       |                                                                                                                                                  |                                           |
|                                                                                                                                                     |                                 | ing.             | X                       | N             |                 | )              | 2/0/12                | Trip Blunk                                                                                                                                       | Scono69-24                                |
| State-specific reporting standards:                                                                                                                 |                                 |                  | # of ]                  | # of .        | -               | Time:          | Date:                 | Sample ID:                                                                                                                                       | Lab ID:                                   |
| Tier II*                                                                                                                                            |                                 | ~~~~             | Plastic                 | -             | /pe<br>trix     |                | C=Compsite            | = Grab                                                                                                                                           | G=                                        |
|                                                                                                                                                     |                                 |                  |                         | r Glass       |                 |                | X3=                   | X2=                                                                                                                                              | =IX                                       |
| Standard No QC                                                                                                                                      |                                 |                  | 10/10/                  | s             |                 | Gas            | bient Air SG=Soil Gas | SL=Sludge A=Indoor/Ambient Air                                                                                                                   | 0=0il S0=Soil                             |
| MA DEP MCP CAM Report? Yes No                                                                                                                       | Analysis                        | -                | Containers              | Com           |                 | WW=Waste Water | SW=Surface Water WW   | GW=Groundwater SW=S                                                                                                                              | DW=Dinking Water                          |
| QA/QC Reporting Notes:<br>* additional charges may appply                                                                                           | List Preservative Code below:   |                  |                         |               | 6=Ascorbic Acid | 5=NaOH 6=/     | 4=HNO3                | 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub><br>SO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> | F=Field Filtered 1=Ni<br>7=CH3OH 8=NaHSO4 |
|                                                                                                                                                     |                                 |                  | QN:                     | Quote/RQN     | Charle.         | P.O Not        |                       | Dan Noll                                                                                                                                         | Project Mgr:                              |
| Kun Azuilica                                                                                                                                        | ÷                               |                  |                         |               | 5150646         |                |                       | 10                                                                                                                                               | Telephone #:                              |
| my state WM                                                                                                                                         | Location: Corn                  |                  |                         | 1.            | A               | 1              | 4                     | Rochester NY MIL                                                                                                                                 |                                           |
| 1th spitzl                                                                                                                                          | Site Name: Briting              |                  |                         |               |                 |                |                       | o Stoke St                                                                                                                                       | 202                                       |
| 606                                                                                                                                                 | Project No: 2150                |                  | losen                   | 5             | Michelle        | Invoice To:_   |                       | Dan Ney                                                                                                                                          | Report To:                                |
| All TATs subject to laboratory approval<br>Min. 24-hr notification needed for rushes<br>Samples disposed after 60 days unless otherwise instructed. | All TA<br>Min. 2<br>Sample      |                  | M                       | M             | Page            |                |                       | SPECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY                                                                                     | SPECTRUM<br>HANIBAI                       |
| Rush TAT - Date Needed: 5 Days                                                                                                                      | ~                               | COR              | CHAIN OF CUSTODY RECORD | CUSTC         | N OF            | CHAIN          |                       |                                                                                                                                                  | 1                                         |
| Standard TAT - 7 to 10 business days                                                                                                                |                                 | 2                |                         |               |                 |                |                       | r                                                                                                                                                | ) -                                       |
|                                                                                                                                                     | 10.69 1001                      | VG               |                         |               |                 |                |                       |                                                                                                                                                  |                                           |



| gerated | 11 Almoren Drive · Agawam. MA (11011 • 413-780-0018 • FAX 413-780-4076 • www.enoctrum-enolationl.com | Condition upon receipt:                | Madel ND THIS 905 Concentration | ly m red EX 5/6/15 1400 3,3 to E-mail to: Magin | Relinquished by: Received by: Date: Time: Temp °C EDD format: EQU | 1/10 MW-12 5 5115150 6 GWB X 1 | 09 N/W OX 5/5/15 1515 GWZ X | i X | 0) 53 35-0-4 5/5/15/148 150 1 X | V | X 1 05 0011 511515 3-4-05. C)( 30 | 56151030 | 5 3 1 | N 1 05. 1001 21 21 21 2 2- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- | -27-24-25 2/2/12 00 6 50 | T:<br>Ma<br># of<br># of<br># of | Clear<br>Plasti | er Glass<br>Glass | ics | ( |   | F=Field Filtered       1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl       3=H <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub> 5=NaOH       6=Ascorbic Acid       List Preservative Code below:         7=CH3OH       8=NaHSO <sub>4</sub> 9=Deionized Water       10=H <sub>3</sub> PO <sub>4</sub> 11=       12= $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ | DAN NOU PONO: 215060 @ Onote/RON: | Telephone #: 585 245 W (10 Location: CO/N<br>Samoler(s): | 306 State St University of State St COV MU | Noll divilled are lar which invoice to: Miche Ile Clarifen project No: | SPECTRUM ANALYTICAL, INC.<br>Feeduring<br>HANIBAL TECHNOLOGY All TAT Samples All TAT Samples                                                         | CHAIN OF CUSTODY RECORD |                                        |
|---------|------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|-------------------------------------------------|-------------------------------------------------------------------|--------------------------------|-----------------------------|-----|---------------------------------|---|-----------------------------------|----------|-------|-------------------------------------------------------------------|--------------------------|----------------------------------|-----------------|-------------------|-----|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|
|         | Ambied Piced Refrigerated                                                                            | Condition upon receipt: Custody Seals: | =<br>                           | E-mail to: LLQ                                  | 17                                                                | X                              | *                           |     |                                 |   |                                   | X        | ,     |                                                                   |                          |                                  |                 |                   |     | 2 | > | List Preservative Code below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Annt                              | Location: Corning                                        | Site Name: COV NING                        | Project No: 2(5060                                                     | All TAT's subject to laboratory approval<br>Min. 24-hr notification needed for rushes<br>Samples disposed after 60 days unless otherwise instructed. | 1                       | □ Standard TAT - 7 to 10 business days |

Rev. Jan 2014

| Seals: Present Intact Broken                                                                                                                        | Ambient All Teed Refrigerated          | RID#               |                  |                        |                                         |                      |                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|------------------|------------------------|-----------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                     | Condition upon receipt: Custody Seals: | Conserved of       |                  | 141                    |                                         |                      | 10.00                                                                                                                                                                          |
|                                                                                                                                                     |                                        | 5 Corection Factor | 00               | 5/4/2                  | . Ja                                    | 2                    | KJalk                                                                                                                                                                          |
| witing alabellaperior                                                                                                                               | E-mail to: Maqui                       | Derved             | 241              | 5/6/15                 | 52                                      | Fea                  | an and                                                                                                                                                                         |
| 1                                                                                                                                                   | A EDD formate TOQUIS                   | e: Temp °C         | . Time:          | Date:                  | Received by:                            |                      | Relinquished by:                                                                                                                                                               |
| dier Vreg                                                                                                                                           |                                        | X                  |                  | Gura                   | 10/18 815 10                            | 5                    | 1 20 MW -11                                                                                                                                                                    |
| R                                                                                                                                                   | 7                                      | X                  |                  | 64 2                   | 16/15 1225 G                            | 5                    | 51-MM 81                                                                                                                                                                       |
| added examile and                                                                                                                                   | XXXX                                   |                    | 5                | 5 CM 2 3               | 6/15 1100 9                             | 5                    | EO - MW 81                                                                                                                                                                     |
|                                                                                                                                                     |                                        | ×                  |                  | 6602                   | 6 15 1235 6                             | ~ ~                  | DO MM (1                                                                                                                                                                       |
|                                                                                                                                                     |                                        | X                  |                  | 642                    | 6/15/1200 6                             | 4                    | 16 MW - 05                                                                                                                                                                     |
|                                                                                                                                                     |                                        | ×                  |                  | (ra)                   | 6/15 1110 6                             | л                    | 01-MW SI                                                                                                                                                                       |
|                                                                                                                                                     |                                        | ×                  |                  | I GW 2                 | 9 ahor \$1,91,91,                       | 5                    | 14 MW-09                                                                                                                                                                       |
|                                                                                                                                                     |                                        | +                  |                  | 5 62 2                 | 6/12 020 6                              | <i>s</i> .           | 13 MW - 04                                                                                                                                                                     |
|                                                                                                                                                     |                                        | ×                  |                  | 6 30                   | 9 OLE SI 9                              | 4                    | 12 MW -031                                                                                                                                                                     |
|                                                                                                                                                     |                                        | 1                  |                  | Law 2                  | 212 1 3                                 | 10 51                | 109-11 Mind Duplica                                                                                                                                                            |
| State-specific reporting standards:                                                                                                                 | n                                      | CP<br>VI<br>CP     | # of             | Ma<br># of             | Date: Time: T                           |                      | Lab ID: Sample ID:                                                                                                                                                             |
| if c INJ Reduced* INJ Full*                                                                                                                         | stie<br>B<br>Not<br>Yan                | 50                 | Clear<br>Plastic | atrix<br>VOA           | C=Compsite                              |                      | G= Grab                                                                                                                                                                        |
|                                                                                                                                                     | als<br>rid                             | + 7<br>+ 7         | Glass            | Vials<br>r Glass       | X3=                                     |                      | X1= X2=                                                                                                                                                                        |
|                                                                                                                                                     |                                        |                    |                  |                        | SG=Soil Gas                             | A=Indoor/Ambient Air | O=Oil SO=Soil SL=Sludge A=Inde                                                                                                                                                 |
| (aport? Yes                                                                                                                                         | Analysis                               |                    | Containers       |                        | ater WW=Waste Water                     | SW=Surface Water     | DW=Dinking Water GW=Groundwater                                                                                                                                                |
| QA/QC Reporting Notes:<br>* additional charges may appply                                                                                           | List Preservative Code below:          | ₹<br>_             |                  | 6=Ascorbic Acid<br>12= | 4=HNO <sub>3</sub> 5=NaOH 6=Asco<br>H=E |                      | F=Field Filtered 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub><br>7=CH3OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> |
| tramina                                                                                                                                             | sampier(s):                            |                    | iote/RQN:        | 2 150 CON Quote/RON:   | P.O No.:                                | 11                   | Project Mgr: DCMN NO                                                                                                                                                           |
| ng State: N                                                                                                                                         | 4                                      |                    | ME               | SA SA                  | 4                                       | 419612               | Rechester N                                                                                                                                                                    |
| 5 Hopiter                                                                                                                                           | Site Name: Drining                     |                    |                  |                        | Jase light com                          | agequiti none to     | 3001 State St                                                                                                                                                                  |
| 0000                                                                                                                                                | Project No: 2150                       | Clausen            | 2115             | Micha                  | Invoice To:                             | ibellape.            | 30                                                                                                                                                                             |
| All TATs subject to laboratory approval<br>Min. 24-hr notification needed for rushes<br>Samples disposed after 60 days unless otherwise instructed. | All TAT<br>Min. 24-<br>Samples         | 00                 | 1900             | Page D of              |                                         |                      | SPECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY                                                                                                                   |
| Standard TAT - 7 to 10 business days                                                                                                                | ~                                      | RECORD             | FODY             | HAIN OF CUSTODY        | CHAIN                                   |                      |                                                                                                                                                                                |
| Special Handling:                                                                                                                                   |                                        |                    |                  |                        |                                         |                      |                                                                                                                                                                                |

----o numperium muij Report Date: 14-May-15 16:28



Final ReportRe-Issued ReportRevised Report

Labella Associates, P.C. 300 State Street Suite 201 Rochester, NY 14614 Attn: Dan Noll

Project: Corning Hospital, NY Project #: 2150606

| Laboratory ID | <u>Client Sample ID</u> | <u>Matrix</u> | Date Sampled    | Date Received   |
|---------------|-------------------------|---------------|-----------------|-----------------|
| SC07216-01    | TP-04-2.5'              | Soil          | 08-May-15 12:00 | 11-May-15 08:30 |
| SC07216-02    | TP-05-3'                | Soil          | 08-May-15 12:45 | 11-May-15 08:30 |
| SC07216-03    | TP-07-3'                | Soil          | 08-May-15 14:10 | 11-May-15 08:30 |
| SC07216-04    | TP-06-1.5'              | Soil          | 08-May-15 13:15 | 11-May-15 08:30 |
| SC07216-05    | MW-07                   | Ground Water  | 08-May-15 09:00 | 11-May-15 08:30 |
| SC07216-08    | TP-02-5.5'              | Soil          | 08-May-15 10:30 | 11-May-15 08:30 |
| SC07216-09    | TP-03-2'                | Soil          | 08-May-15 11:20 | 11-May-15 08:30 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435



Authorized by:

Aliole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 26 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

### CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 17.3 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

## SW846 6010C

#### Spikes:

1509210-MS1 Source: SC07216-04

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Barium

1509210-MSD1 Source: SC07216-04

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

Silver

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Barium Selenium Silver

## SW846 7471B

#### Spikes:

1509211-MS1 Source: SC07216-04

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Mercury

#### **Duplicates:**

1509211-DUP1 Source: SC07216-04

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Mercury

The RPD exceeded the QC control limits; however precision is demonstrated with acceptable RPD values for MS/MSD.

Mercury

#### Samples:

SC07216-01 TP-04-2.5'

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Mercury

This laboratory report is not valid without an authorized signature on the cover page. \* Reportable Detection Limit

# SW846 7471B

## Samples:

| Calibration:   1503056   Analyte quantified by quadratic equation type calibration.   2,4-Dinitrophenol   4,6-Dinitro-2-methylphenol   4,6-Dinitro-2-methylphenol   4-Nitrophenol   *Nitrophenol   *S02322-ICV1   Samples:  SC07216-01 TP-04-2.5' The Reporting Limit has been raised to account for matrix interference. W846 8270D TICS Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Samples:           |                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------|
| Mercury         SC07216-04       TP-06-1.5'         Sample dilution required for high concentration of target analytes to be within the instrument calibration range.<br>Mercury         SC07216-08       TP-02-5.5'         Sample dilution required for high concentration of target analytes to be within the instrument calibration range.<br>Mercury         W846 8270D         Calibration:         1503056         Analyte quantified by quadratic equation type calibration.         2,4-Dinitrophenol         4.6-Dinitro-2-methylphenol         4-Nitrophenol         4-Nitrophenol         4-Nitrophenol         S007216-01       TP-04-2.5'         Samples:         S007216-01       TP-04-2.5'         The Reporting Limit has been raised to account for matrix interference.         W846 8270D TICS         Samples:                                                | SC07216-03         | TP-07-3'                                                                                       |
| Sample dilution required for high concentration of target analytes to be within the instrument calibration range.         Mercury         SC07216-08       TP-02-5.5'         Sample dilution required for high concentration of target analytes to be within the instrument calibration range.         Mercury         W846 8270D         Calibration:         1503056         Analyte quantified by quadratic equation type calibration.         2.4-Dinitrophenol         4.6-Dinitro-2-methylphenol         4.Nitrophenol         This affected the following samples:         S00322-ICV1         Samples:         SC07216-01       TP-04-2.5'         The Reporting Limit has been raised to account for matrix interference.         W846 8270D TICS         Samples:                                                                                                         |                    | uired for high concentration of target analytes to be within the instrument calibration range. |
| Mercury       SC07216-08       TP-02-5.5'         Sample dilution required for high concentration of target analytes to be within the instrument calibration range.       Mercury         W846 8270D       Calibration:         1503056       Instrument calibration range.         Analyte quantified by quadratic equation type calibration.       2.4-Dinitrophenol         4.6-Dinitro-2-methylphenol       4-Nitrophenol         4.5-Dinitro-2-methylphenol       4-Nitrophenol         4.Nitrophenol       Stor222-ICV1         Samples:       SC07216-01       TP-04-2.5'         Mercury       The Reporting Limit has been raised to account for matrix interference.         W846 8270D TICS       Samples:                                                                                                                                                                | SC07216-04         | TP-06-1.5'                                                                                     |
| Sample dilution required for high concentration of target analytes to be within the instrument calibration range.         Mercury         W846 8270D         Calibration:         1503056         Analyte quantified by quadratic equation type calibration.         2,4-Dinitrophenol         4,6-Dinitro-2-methylphenol         4/A-Dinitro-2-methylphenol         4/Sittophenol         This affected the following samples:         s502322-ICV1         Samples:         SC07216-01       TP-04-2.5'         The Reporting Limit has been raised to account for matrix interference.         W846 8270D TICS         Samples: |                    | uired for high concentration of target analytes to be within the instrument calibration range. |
| Mercury         W846 8270D         Calibration:         1503056         Analyte quantified by quadratic equation type calibration.         2,4-Dinitrophenol         4,6-Dinitro-2-methylphenol         4-Nitrophenol         4-Nitrophenol         Source         Stor212c-ICV1         Samples:         SC07216-01       TP-04-2.5'         The Reporting Limit has been raised to account for matrix interference.         W846 8270D TICS         Samples:                                                                                                                                                                                                                                                                                                                                                                                                                       | SC07216-08         | TP-02-5.5'                                                                                     |
| Calibration:   1503056   Analyte quantified by quadratic equation type calibration.   2,4-Dinitrophenol   4,6-Dinitro-2-methylphenol   4,6-Dinitro-2-methylphenol   4-Nitrophenol   *Nitrophenol   *S02322-ICV1   Samples:  SC07216-01 TP-04-2.5' The Reporting Limit has been raised to account for matrix interference. W846 8270D TICS Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | uired for high concentration of target analytes to be within the instrument calibration range. |
| Calibration:   1503056   Analyte quantified by quadratic equation type calibration.   2,4-Dinitrophenol   4,6-Dinitro-2-methylphenol   4,6-Dinitro-2-methylphenol   4-Nitrophenol   *Nitrophenol   *S02322-ICV1   Samples:  SC07216-01 TP-04-2.5' The Reporting Limit has been raised to account for matrix interference. W846 8270D TICS Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW846 8270D        |                                                                                                |
| Analyte quantified by quadratic equation type calibration.<br>2,4-Dinitrophenol<br>4,6-Dinitro-2-methylphenol<br>4-Nitrophenol<br>This affected the following samples:<br>S502322-ICV1<br>Samples:<br>SC07216-01 TP-04-2.5'<br>The Reporting Limit has been raised to account for matrix interference.<br>W846 8270D TICS<br>Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calibration:       |                                                                                                |
| 2,4-Dinitrophenol<br>4,6-Dinitro-2-methylphenol<br>4-Nitrophenol<br>This affected the following samples:<br>S502322-ICV1<br>Samples:<br><u>SC07216-01</u> TP-04-2.5'<br>The Reporting Limit has been raised to account for matrix interference.<br>W846 8270D TICS<br>Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1503056            |                                                                                                |
| 4,6-Dinitro-2-methylphenol<br>4-Nitrophenol<br>This affected the following samples:<br>S502322-ICV1<br>Samples:<br><u>SC07216-01</u> TP-04-2.5'<br>The Reporting Limit has been raised to account for matrix interference.<br>W846 8270D TICS<br>Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyte quantified | by quadratic equation type calibration.                                                        |
| S502322-ICV1         Samples:         SC07216-01       TP-04-2.5'         The Reporting Limit has been raised to account for matrix interference.         W846 8270D TICS         Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,6-Dinitro-2-meth | nylphenol                                                                                      |
| SC07216-01       TP-04-2.5'         The Reporting Limit has been raised to account for matrix interference.         W846 8270D TICS         Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | llowing samples:                                                                               |
| The Reporting Limit has been raised to account for matrix interference. W846 8270D TICS Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Samples:           |                                                                                                |
| W846 8270D TICS<br>Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SC07216-01         | TP-04-2.5'                                                                                     |
| Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The Reporting Lim  | it has been raised to account for matrix interference.                                         |
| Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SW846 8270D TICS   | <u>s</u>                                                                                       |
| SC07216-01 TP-04-2.5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SC07216-01         | TP-04-2.5'                                                                                     |

The Reporting Limit has been raised to account for matrix interference.

## Sample Acceptance Check Form

Client: Labella Associates, P.C. Project: Corning Hospital, NY / 2150606 Work Order: SC07216 Sample(s) received on: 5/11/2015

### The following outlines the condition of samples for the attached Chain of Custody upon receipt.

|                                                                                                                                                                                                                                                                                      | Yes          | <u>No</u>    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Were custody seals present?                                                                                                                                                                                                                                                          |              | $\checkmark$ |
| Were custody seals intact?                                                                                                                                                                                                                                                           |              |              |
| Were samples received at a temperature of $\leq 6^{\circ}$ C?                                                                                                                                                                                                                        |              | $\checkmark$ |
| Were samples cooled on ice upon transfer to laboratory representative?                                                                                                                                                                                                               | $\checkmark$ |              |
| Were sample containers received intact?                                                                                                                                                                                                                                              | $\checkmark$ |              |
| Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?                                                                                                                             | $\checkmark$ |              |
| Were samples accompanied by a Chain of Custody document?                                                                                                                                                                                                                             | $\checkmark$ |              |
| Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample? |              |              |
| Did sample container labels agree with Chain of Custody document?                                                                                                                                                                                                                    |              | $\checkmark$ |
| Were samples received within method-specific holding times?                                                                                                                                                                                                                          | $\checkmark$ |              |

|                         | $\checkmark$ |  |
|-------------------------|--------------|--|
| $\overline{\mathbf{N}}$ |              |  |
| $\checkmark$            |              |  |
| $\checkmark$            |              |  |
|                         |              |  |

N/A

| 280-86-4         Accenabilitylene         < < 81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | <u>eceived</u><br>May-15 |         |          | ection Date/<br>May-15 12 |             | <u>Matrix</u><br>Soil |      |      | <u>Client Pr</u><br>2150 |      |        |                            | <u>Sample Id</u><br><b>TP-04-2.5</b><br>SC07216- |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|---------|----------|---------------------------|-------------|-----------------------|------|------|--------------------------|------|--------|----------------------------|--------------------------------------------------|
| Semicle International SectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSectorSector<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tch Cei | Batch                    | Analyst | Analyzed | Prepared                  | Method Ref. | Dilution              | MDL  | *RDL | Units                    | Flag | Result | Analyte(s)                 | CAS No.                                          |
| Preparated University with the SW2443 3554AP         Seale 3         Accemptation SW2443 3554AP         No. 1         Sole 3         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                          |         |          |                           |             |                       |      |      |                          |      | GCMS   | ile Organic Compounds by C | Semivolati                                       |
| Base     Assemptifyene                                                                                                                                                 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                          |         |          |                           |             |                       |      |      |                          | R01  |        |                            |                                                  |
| Actor         Actor         Actor         Actor         Actor         Actor           56-553         Benzo (a) anthracene         135         J.D<         µgkg dy         356         88.1         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9247 X  | 150924                   | MSL     | ,        |                           | SW846 8270D | 5                     | 89.8 | 385  | µg/kg dry                | U, D | < 89.8 |                            |                                                  |
| Number         No.         Jup Number         Sol.         Jup Number         Sol.         Jup Number         Sol.         So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " X     | "                        | "       | "        |                           | "           | 5                     | 81.7 | 385  | µg/kg dry                | U, D | < 81.7 | Acenaphthylene             | 208-96-8                                         |
| Barbor (a) municative         1.30         1.30         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90         1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " X     | "                        |         |          |                           | "           | 5                     | 88.1 | 385  | µg/kg dry                | U, D | < 88.1 | Anthracene                 | 120-12-7                                         |
| Barbox (a) pynete         131         1,0         140,0         140,0,0         150         140,0,0         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | " X     | "                        |         |          |                           | "           | 5                     | 79.7 | 385  | µg/kg dry                | J, D | 135    | Benzo (a) anthracene       | 56-55-3                                          |
| Backard (in Monitorian interim         for         for         grad with a side         for         for <thor< th="">         for         for</thor<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X     | "                        |         |          |                           | "           | 5                     | 80.2 | 385  | µg/kg dry                | J, D | 131    | Benzo (a) pyrene           | 50-32-8                                          |
| Index a         Bark (g, ()) payment         S - 3.4         C - 1         Bark (g, ()) payment         S - 4         C - 1           111-91-1         Bis(2-chioreethoxy)metha ne         S - 4         U D         µg/kg dry         960         348         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | " X     | "                        |         |          |                           | "           | 5                     | 87.7 | 385  | µg/kg dry                | J, D | 162    | Benzo (b) fluoranthene     | 205-99-2                                         |
| Barbardon         Santa         Santa         Barbardon         Barbardon         Santa         Santa         Barbardon         Barbardon         Santa         Santa         Barbardon         Barbardon         Santa         Santa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X     | "                        |         |          |                           | "           | 5                     | 83.4 | 385  | µg/kg dry                | U, D | < 83.4 | Benzo (g,h,i) perylene     | 191-24-2                                         |
| 111-144Bis(2-choroethoxy)meth< 348U.D.ug/kg dy9643665IIIII111-444Bis(2-choroethy)tethe< 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | " X     | "                        |         |          |                           | "           | 5                     | 87.7 | 385  | µg/kg dry                | U, D | < 87.7 | Benzo (k) fluoranthene     | 207-08-9                                         |
| International internatinterational international international international | " X     | "                        | "       | "        | "                         |             | 5                     | 348  | 1900 |                          | U, D | < 348  |                            | 111-91-1                                         |
| 10000001       pikg dry       9.00       9.00       9.00       9.00         117.81-7       Bis(2-ethylhexyl)phthalate       < 476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | " X     | "                        |         |          |                           | "           | 5                     | 346  | 964  | µg/kg dry                | U, D | < 346  | Bis(2-chloroethyl)ether    | 111-44-4                                         |
| 1111-1573       4-Bromophenyl phenyl        385       U. D       µg/kg dry       1900       385       5       "       "       "       "         85-68-7       Butyl benzyl phthalate       <422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | " X     | "                        | "       | "        | "                         | "           | 5                     | 346  | 964  | µg/kg dry                | U, D | < 346  |                            | 108-60-1                                         |
| N1-Social arbitroline by prine by p        | " X     | "                        |         |          |                           |             | 5                     | 476  | 964  | µg/kg dry                | U, D | < 476  | Bis(2-ethylhexyl)phthalate | 117-81-7                                         |
| Budy bergy pintalate       442       0.0       pg/kg dry       964       490       5       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " X     | "                        | "       | "        | u                         | u           | 5                     | 385  | 1900 | µg/kg dry                | U, D | < 385  |                            | 101-55-3                                         |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | " X     | "                        |         | "        | "                         | "           | 5                     | 422  | 1900 | µg/kg dry                | U, D | < 422  | Butyl benzyl phthalate     | 85-68-7                                          |
| 14-Chiloros-interitylpticular       < 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | " X     | "                        |         |          |                           |             | 5                     | 490  | 964  | µg/kg dry                | U, D | < 490  | Carbazole                  | 86-74-8                                          |
| 14-Childeaninine       < 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " X     | "                        |         |          |                           | "           | 5                     | 395  | 1900 | µg/kg dry                | U, D | < 395  | 4-Chloro-3-methylphenol    | 59-50-7                                          |
| 95-53-10       2-Chilorobrani (1) antihatene (1) 333       0.0       µg/kg dry (1) 904       353       3         95-57-8       2-Chlorophenol       < 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | " X     | "                        |         |          |                           | "           | 5                     | 393  | 964  | µg/kg dry                | U, D | < 393  | 4-Chloroaniline            | 106-47-8                                         |
| 33-51/3       2-Chilotopheniol       < 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | " X     | "                        |         |          |                           | "           | 5                     | 335  | 1900 | µg/kg dry                | U, D | < 335  | 2-Chloronaphthalene        | 91-58-7                                          |
| 1700-72-34-Childropine informe inform  | " X     | "                        |         |          |                           | "           | 5                     | 341  | 964  | µg/kg dry                | U, D | < 341  | 2-Chlorophenol             | 95-57-8                                          |
| 210019       Ciliygene       133       9, D       µg/kg dry       383       94, 1       5         53-70-3       Dibenzo (a,h) anthracene       < 70.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " X     | "                        | "       | "        | u                         | u           | 5                     | 358  | 1900 | µg/kg dry                | U, D | < 358  |                            | 7005-72-3                                        |
| 132-64-9       Dibenzofuran       < 70.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | " X     | "                        |         |          |                           |             | 5                     | 94.1 | 385  | µg/kg dry                | J, D | 133    | Chrysene                   | 218-01-9                                         |
| 95-50-11,2-Dichlorobenzene< 320U, Dµg/kg dry19003205""""""541-73-11,3-Dichlorobenzene< 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | " X     | "                        |         |          |                           |             | 5                     | 70.7 | 385  | µg/kg dry                | U, D | < 70.7 | Dibenzo (a,h) anthracene   | 53-70-3                                          |
| 541-73-1       1,3-Dichlorobenzene       < 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | " X     | "                        |         |          |                           |             | 5                     | 70.7 | 964  | µg/kg dry                | U, D | < 70.7 | Dibenzofuran               | 132-64-9                                         |
| 106-46-7       1,4-Dichlorobenzene       < 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | " X     | "                        |         |          |                           | "           | 5                     | 320  | 1900 | µg/kg dry                | U, D | < 320  | 1,2-Dichlorobenzene        | 95-50-1                                          |
| 14-Diction oberizence       < 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | " X     | "                        |         |          |                           | "           | 5                     | 338  | 1900 | µg/kg dry                | U, D | < 338  | 1,3-Dichlorobenzene        | 541-73-1                                         |
| 120-83-2       2,4-Dichlorophenol       < 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X     | "                        |         |          |                           |             | 5                     | 315  | 1900 | µg/kg dry                | U, D | < 315  | 1,4-Dichlorobenzene        | 106-46-7                                         |
| 84-66-2       Diethyl phthalate       < 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | " X     | "                        |         |          |                           |             | 5                     | 387  | 1900 | µg/kg dry                | U, D | < 387  | 3,3'-Dichlorobenzidine     | 91-94-1                                          |
| 131-11-3       Dimethyl phthalate       < 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X     | "                        |         |          |                           | "           | 5                     | 328  | 964  | µg/kg dry                | U, D | < 328  | 2,4-Dichlorophenol         | 120-83-2                                         |
| 105-67-9       2,4-Dimethylphenol       < 327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X     | "                        |         |          |                           |             | 5                     | 398  | 1900 | µg/kg dry                | U, D | < 398  | Diethyl phthalate          | 84-66-2                                          |
| 84-74-2       Di-n-butyl phthalate       < 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | " X     | "                        |         |          |                           | "           | 5                     | 375  | 1900 | µg/kg dry                | U, D | < 375  | Dimethyl phthalate         | 131-11-3                                         |
| 534-52-1 4,6-Dinitro-2-methylphenol < 507 U, D μg/kg dry 1900 507 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | " X     | "                        |         |          |                           | "           | 5                     | 327  | 1900 | µg/kg dry                | U, D | < 327  | 2,4-Dimethylphenol         | 105-67-9                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | " X     | "                        |         |          |                           | "           | 5                     | 428  | 1900 | µg/kg dry                | U, D | < 428  | Di-n-butyl phthalate       | 84-74-2                                          |
| 51-28-5 2,4-Dinitrophenol < 502 U, D μg/kg dry 1900 502 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | " X     | "                        | "       | "        |                           | "           | 5                     | 507  | 1900 | µg/kg dry                | U, D | < 507  | 4,6-Dinitro-2-methylphenol | 534-52-1                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | " X     |                          |         | "        | "                         | "           | 5                     | 502  | 1900 | µg/kg dry                | U, D | < 502  | 2,4-Dinitrophenol          | 51-28-5                                          |
| 121-14-2 2,4-Dinitrotoluene < 397 U, D µg/kg dry 964 397 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " X     | "                        | "       | "        |                           | "           | 5                     | 397  | 964  |                          | U, D | < 397  | 2,4-Dinitrotoluene         | 121-14-2                                         |
| 606-20-2 2,6-Dinitrotoluene < 374 U, D µg/kg dry 964 374 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " X     |                          |         |          |                           | "           | 5                     | 374  | 964  | µg/kg dry                | U, D | < 374  | 2,6-Dinitrotoluene         | 606-20-2                                         |
| 117-84-0 Di-n-octyl phthalate < 411 U, D µg/kg dry 1900 411 5 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " X     |                          |         |          |                           | "           |                       | 411  | 1900 |                          | U, D | < 411  | Di-n-octyl phthalate       | 117-84-0                                         |
| 206-44-0 Fluoranthene <b>219</b> J, D µg/kg dry 385 96.7 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " X     |                          |         |          |                           | "           |                       | 96.7 | 385  |                          | J, D | 219    |                            | 206-44-0                                         |
| 86-73-7 Fluorene < 92.2 U, D µg/kg dry 385 92.2 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | " X     | "                        |         |          |                           | "           |                       | 92.2 | 385  |                          | U, D |        | Fluorene                   | 86-73-7                                          |
| 118-74-1 Hexachlorobenzene < 421 U, D µg/kg dry 964 421 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | "                        |         |          |                           | "           |                       |      |      |                          | U, D |        |                            | 118-74-1                                         |
| 87-68-3 Hexachlorobutadiene < 307 U, D μg/kg dry 964 307 5 " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | " X     | "                        |         | "        | "                         | n           | 5                     | 307  | 964  |                          | U, D | < 307  | Hexachlorobutadiene        | 87-68-3                                          |

| Sample Id<br>TP-04-2.5<br>SC07216- |                                                 |            |        | <u>Client P</u><br>2150 | -      |        | <u>Matrix</u><br>Soil |                     | ection Date<br>May-15 12 |               |         | <u>eceived</u><br>May-15 |       |
|------------------------------------|-------------------------------------------------|------------|--------|-------------------------|--------|--------|-----------------------|---------------------|--------------------------|---------------|---------|--------------------------|-------|
| CAS No.                            | Analyte(s)                                      | Result     | Flag   | Units                   | *RDL   | MDL    | Dilution              | Method Ref.         | Prepared                 | Analyzed      | Analyst | Batch                    | Cert. |
| Semivolati                         | ile Organic Compounds by C                      | GCMS       |        |                         |        |        |                       |                     |                          |               |         |                          |       |
| <u>Semivolat</u>                   | tile Organic Compounds<br>by method SW846 3545A |            | R01    |                         |        |        |                       |                     |                          |               |         |                          |       |
| 77-47-4                            | Hexachlorocyclopentadien<br>e                   | < 351      | U, D   | µg/kg dry               | 964    | 351    | 5                     | SW846 8270D         | 12-May-1<br>5            | 12-May-1<br>5 | MSL     | 1509247                  | x     |
| 67-72-1                            | Hexachloroethane                                | < 370      | U, D   | µg/kg dry               | 964    | 370    | 5                     | "                   | "                        |               | "       | "                        | х     |
| 193-39-5                           | Indeno (1,2,3-cd) pyrene                        | < 78.7     | U, D   | µg/kg dry               | 385    | 78.7   | 5                     | "                   | "                        |               | "       |                          | х     |
| 78-59-1                            | Isophorone                                      | < 336      | U, D   | µg/kg dry               | 964    | 336    | 5                     | "                   | "                        | "             |         | "                        | х     |
| 91-57-6                            | 2-Methylnaphthalene                             | < 79.4     | U, D   | µg/kg dry               | 385    | 79.4   | 5                     | "                   | "                        | "             |         | "                        | х     |
| 95-48-7                            | 2-Methylphenol                                  | < 342      | U, D   | µg/kg dry               | 1900   | 342    | 5                     | "                   | "                        | "             |         |                          | х     |
| 108-39-4,<br>106-44-5              | 3 & 4-Methylphenol                              | < 429      | U, D   | µg/kg dry               | 1900   | 429    | 5                     | "                   | "                        | "             | "       | "                        | х     |
| 91-20-3                            | Naphthalene                                     | < 78.4     | U, D   | µg/kg dry               | 385    | 78.4   | 5                     | "                   | "                        | "             | "       | "                        | Х     |
| 88-74-4                            | 2-Nitroaniline                                  | < 382      | U, D   | µg/kg dry               | 1900   | 382    | 5                     | "                   | "                        |               | "       |                          | Х     |
| 99-09-2                            | 3-Nitroaniline                                  | < 456      | U, D   | µg/kg dry               | 1900   | 456    | 5                     | "                   | "                        |               | "       | "                        | х     |
| 100-01-6                           | 4-Nitroaniline                                  | < 551      | U, D   | µg/kg dry               | 964    | 551    | 5                     |                     | "                        |               | "       |                          | х     |
| 98-95-3                            | Nitrobenzene                                    | < 374      | U, D   | µg/kg dry               | 964    | 374    | 5                     |                     | "                        |               | "       |                          | х     |
| 88-75-5                            | 2-Nitrophenol                                   | < 319      | U, D   | µg/kg dry               | 964    | 319    | 5                     |                     | "                        |               | "       |                          | х     |
| 100-02-7                           | 4-Nitrophenol                                   | < 515      | U, D   | µg/kg dry               | 7620   | 515    | 5                     | "                   | "                        |               | "       |                          | х     |
| 621-64-7                           | N-Nitrosodi-n-propylamine                       | < 410      | U, D   | µg/kg dry               | 964    | 410    | 5                     | "                   | "                        |               | "       |                          | х     |
| 86-30-6                            | N-Nitrosodiphenylamine                          | < 448      | U, D   | µg/kg dry               | 1900   | 448    | 5                     |                     | "                        |               | "       |                          | х     |
| 87-86-5                            | Pentachlorophenol                               | < 453      | U, D   | µg/kg dry               | 1900   | 453    | 5                     |                     | "                        |               | "       |                          | х     |
| 85-01-8                            | Phenanthrene                                    | 108        | J, D   | µg/kg dry               | 385    | 94.0   | 5                     | "                   | "                        |               | "       |                          | х     |
| 108-95-2                           | Phenol                                          | < 347      | U, D   | µg/kg dry               | 1900   | 347    | 5                     | "                   | "                        |               | "       |                          | х     |
| 129-00-0                           | Pyrene                                          | 223        | J, D   | µg/kg dry               | 385    | 82.0   | 5                     |                     | "                        |               | "       |                          | х     |
| 120-82-1                           | 1,2,4-Trichlorobenzene                          | < 303      | U, D   | µg/kg dry               | 1900   | 303    | 5                     |                     | "                        |               | "       |                          | х     |
| 95-95-4                            | 2,4,5-Trichlorophenol                           | < 394      | U, D   | µg/kg dry               | 1900   | 394    | 5                     | "                   | "                        | "             | "       | "                        | х     |
| Surrogate i                        | recoveries:                                     |            |        |                         |        |        |                       |                     |                          |               |         |                          |       |
| 321-60-8                           | 2-Fluorobiphenyl                                | 79         |        |                         | 30-13  | 0 %    |                       | "                   | "                        | "             | "       |                          |       |
| 367-12-4                           | 2-Fluorophenol                                  | 89         |        |                         | 30-13  | 0 %    |                       | "                   | "                        | "             | "       |                          |       |
| 4165-60-0                          | Nitrobenzene-d5                                 | 80         |        |                         | 30-13  | 0 %    |                       | "                   | "                        | "             | "       |                          |       |
| 4165-62-2                          | Phenol-d5                                       | 88         |        |                         | 30-13  | 0 %    |                       | "                   | "                        | "             | "       |                          |       |
| 1718-51-0                          | Terphenyl-dl4                                   | 79         |        |                         | 30-13  | 0 %    |                       | "                   | "                        |               | "       |                          |       |
| 118-79-6                           | 2,4,6-Tribromophenol                            | 85         | 504    |                         | 30-13  | 0 %    |                       | "                   |                          |               | "       | "                        |       |
|                                    | y Identified Compounds<br>by method SW846 3545A |            | R01    |                         |        |        |                       |                     |                          |               |         |                          |       |
| ropurou                            | Tentatively Identified<br>Compounds             | None found |        | µg/kg dry               |        |        | 5                     | SW846 8270D<br>TICS | "                        | "             | MSL     | "                        |       |
| Total Meta                         | als by EPA 6000/7000 Series                     | Methods    |        |                         |        |        |                       |                     |                          |               |         |                          |       |
| 7440-22-4                          | Silver                                          | 0.222      | J      | mg/kg dry               | 1.71   | 0.125  | 1                     | SW846 6010C         | 12-May-1<br>5            | 14-May-1<br>5 | BJW     | 1509210                  | х     |
| 7440-38-2                          | Arsenic                                         | 7.93       |        | mg/kg dry               | 1.71   | 0.276  | 1                     | "                   |                          | -             |         | "                        | х     |
| 7440-39-3                          | Barium                                          | 153        |        | mg/kg dry               | 1.14   | 0.0678 | 1                     | "                   | "                        |               |         | "                        | х     |
| 7440-43-9                          | Cadmium                                         | 2.52       |        | mg/kg dry               | 0.570  | 0.0183 | 1                     | "                   | "                        |               |         | "                        | х     |
| 7440-47-3                          | Chromium                                        | 13.5       |        | mg/kg dry               | 1.14   | 0.109  | 1                     | "                   | "                        |               |         | "                        | х     |
| 7439-97-6                          | Mercury                                         | 0.547      | GS1, D | mg/kg dry               | 0.0614 | 0.0040 | 2                     | SW846 7471B         | "                        | 13-May-1<br>5 | YR      | 1509211                  | х     |
| 7439-92-1                          | Lead                                            | 273        |        | mg/kg dry               | 1.71   | 0.315  | 1                     | SW846 6010C         | "                        | 14-May-1      | BJW     | 1509210                  | х     |
| 7782-49-2                          | Selenium                                        | 0.622      | J      | mg/kg dry               | 1.71   | 0.428  | 1                     | "                   | "                        | 5<br>"        | "       |                          | х     |

| Sample Identification<br>TP-04-2.5'<br>SC07216-01 |        |      |       | Project <u>#</u><br>0606 |     | <u>Matrix</u><br>Soil |               | ection Date<br>-May-15 12 |           |         | <u>ceived</u><br>May-15 |       |
|---------------------------------------------------|--------|------|-------|--------------------------|-----|-----------------------|---------------|---------------------------|-----------|---------|-------------------------|-------|
| CAS No. Analyte(s)                                | Result | Flag | Units | *RDL                     | MDL | Dilution              | Method Ref.   | Prepared                  | Analyzed  | Analyst | Batch                   | Cert. |
| General Chemistry Parameters<br>% Solids          | 86.3   |      | %     |                          |     | 1                     | SM2540 G Mod. | 11-May-15                 | 11-May-15 | DT      | 1509146                 |       |

| Sample Id<br>TP-05-3'<br>SC07216- | lentification<br>-02 |                   |      | <u>Client P</u><br>2150 | •      |        | <u>Matrix</u><br>Soil |               | ection Date<br>May-15 12 |               |         | <u>ceived</u><br>May-15 |       |
|-----------------------------------|----------------------|-------------------|------|-------------------------|--------|--------|-----------------------|---------------|--------------------------|---------------|---------|-------------------------|-------|
| CAS No.                           | Analyte(s)           | Result            | Flag | Units                   | *RDL   | MDL    | Dilution              | Method Ref.   | Prepared                 | Analyzed      | Analyst | Batch                   | Cert. |
| Total Meta                        | als by EPA 6000/70   | 00 Series Methods |      |                         |        |        |                       |               |                          |               |         |                         |       |
| 7440-22-4                         | Silver               | 0.204             | J    | mg/kg dry               | 1.70   | 0.124  | 1                     | SW846 6010C   | 12-May-1<br>5            | 14-May-1<br>5 | BJW     | 1509210                 | Х     |
| 7440-38-2                         | Arsenic              | 7.21              |      | mg/kg dry               | 1.70   | 0.275  | 1                     | "             | "                        | "             | "       |                         | х     |
| 7440-39-3                         | Barium               | 99.9              |      | mg/kg dry               | 1.13   | 0.0673 | 1                     | "             | "                        | "             | "       |                         | х     |
| 7440-43-9                         | Cadmium              | 0.448             | J    | mg/kg dry               | 0.567  | 0.0181 | 1                     |               | "                        | "             | "       |                         | х     |
| 7440-47-3                         | Chromium             | 10.4              |      | mg/kg dry               | 1.13   | 0.108  | 1                     |               | "                        | "             | "       | "                       | х     |
| 7439-97-6                         | Mercury              | 0.425             |      | mg/kg dry               | 0.0362 | 0.0024 | 1                     | SW846 7471B   | "                        | 13-May-1<br>5 | YR      | 1509211                 | х     |
| 7439-92-1                         | Lead                 | 160               |      | mg/kg dry               | 1.70   | 0.313  | 1                     | SW846 6010C   | "                        | 14-May-1<br>5 | BJW     | 1509210                 | х     |
| 7782-49-2                         | Selenium             | 1.11              | J    | mg/kg dry               | 1.70   | 0.426  | 1                     |               | "                        | "             | "       |                         | х     |
| General C                         | hemistry Paramete    | ers               |      |                         |        |        |                       |               |                          |               |         |                         |       |
|                                   | % Solids             | 79.4              |      | %                       |        |        | 1                     | SM2540 G Mod. | 11-May-15                | 11-May-15     | DT      | 1509146                 |       |

| Sample Id<br><b>TP-07-3'</b> | lentification                                   |        |      | Client Pr | roject # |      | Matrix   |             | ection Date   |               | Re      | ceived  |       |
|------------------------------|-------------------------------------------------|--------|------|-----------|----------|------|----------|-------------|---------------|---------------|---------|---------|-------|
| SC07216-                     | -03                                             |        |      | 2150      | 606      |      | Soil     | 08-         | -May-15 14    | 1:10          | 11-1    | May-15  |       |
| CAS No.                      | Analyte(s)                                      | Result | Flag | Units     | *RDL     | MDL  | Dilution | Method Ref. | Prepared      | Analyzed      | Analyst | Batch   | Cert. |
| Semivolati                   | ile Organic Compounds by (                      | GCMS   |      |           |          |      |          |             |               |               |         |         |       |
| <u>Semivolat</u>             | tile Organic Compounds<br>by method SW846 3545A |        |      |           |          |      |          |             |               |               |         |         |       |
| 83-32-9                      | Acenaphthene                                    | < 22.7 | U    | µg/kg dry | 97.3     | 22.7 | 1        | SW846 8270D | 12-May-1<br>5 | 12-May-1<br>5 | MSL     | 1509247 | x     |
| 208-96-8                     | Acenaphthylene                                  | < 20.6 | U    | µg/kg dry | 97.3     | 20.6 | 1        | "           | "             |               | "       | "       | х     |
| 120-12-7                     | Anthracene                                      | < 22.3 | U    | µg/kg dry | 97.3     | 22.3 | 1        |             | "             | "             | "       |         | Х     |
| 56-55-3                      | Benzo (a) anthracene                            | < 20.1 | U    | µg/kg dry | 97.3     | 20.1 | 1        |             | "             | "             | "       | "       | х     |
| 50-32-8                      | Benzo (a) pyrene                                | < 20.3 | U    | µg/kg dry | 97.3     | 20.3 | 1        |             | "             |               | "       |         | х     |
| 205-99-2                     | Benzo (b) fluoranthene                          | < 22.2 | U    | µg/kg dry | 97.3     | 22.2 | 1        |             | "             |               | "       |         | х     |
| 191-24-2                     | Benzo (g,h,i) perylene                          | < 21.1 | U    | µg/kg dry | 97.3     | 21.1 | 1        |             | "             |               | "       |         | х     |
| 207-08-9                     | Benzo (k) fluoranthene                          | < 22.2 | U    | µg/kg dry | 97.3     | 22.2 | 1        |             | "             |               | "       |         | х     |
| 111-91-1                     | Bis(2-chloroethoxy)metha ne                     | < 87.9 | U    | µg/kg dry | 481      | 87.9 | 1        | "           | "             | "             | "       | "       | х     |
| 111-44-4                     | Bis(2-chloroethyl)ether                         | < 87.5 | U    | µg/kg dry | 244      | 87.5 | 1        |             |               |               | "       |         | х     |
| 108-60-1                     | Bis(2-chloroisopropyl)ethe r                    | < 87.4 | U    | µg/kg dry | 244      | 87.4 | 1        | u           | "             | "             | "       |         | х     |
| 117-81-7                     | Bis(2-ethylhexyl)phthalate                      | < 120  | U    | µg/kg dry | 244      | 120  | 1        | "           |               |               | "       | "       | х     |
| 101-55-3                     | 4-Bromophenyl phenyl ether                      | < 97.3 | U    | µg/kg dry | 481      | 97.3 | 1        | u           | "             | "             | "       | "       | х     |
| 85-68-7                      | Butyl benzyl phthalate                          | < 107  | U    | µg/kg dry | 481      | 107  | 1        |             | "             |               | "       |         | х     |
| 86-74-8                      | Carbazole                                       | < 124  | U    | µg/kg dry | 244      | 124  | 1        |             |               |               | "       |         | х     |
| 59-50-7                      | 4-Chloro-3-methylphenol                         | < 99.8 | U    | µg/kg dry | 481      | 99.8 | 1        |             | "             |               | "       |         | х     |
| 106-47-8                     | 4-Chloroaniline                                 | < 99.3 | U    | µg/kg dry | 244      | 99.3 | 1        |             | "             |               | "       |         | х     |
| 91-58-7                      | 2-Chloronaphthalene                             | < 84.6 | U    | µg/kg dry | 481      | 84.6 | 1        |             | "             |               | "       |         | х     |
| 95-57-8                      | 2-Chlorophenol                                  | < 86.1 | U    | µg/kg dry | 244      | 86.1 | 1        |             | "             |               | "       |         | х     |
| 7005-72-3                    | 4-Chlorophenyl phenyl ether                     | < 90.4 | U    | µg/kg dry | 481      | 90.4 | 1        | "           | "             | u             | "       | "       | х     |
| 218-01-9                     | Chrysene                                        | < 23.8 | U    | µg/kg dry | 97.3     | 23.8 | 1        |             |               |               | "       | "       | х     |
| 53-70-3                      | Dibenzo (a,h) anthracene                        | < 17.9 | U    | µg/kg dry | 97.3     | 17.9 | 1        |             | "             |               | "       |         | х     |
| 132-64-9                     | Dibenzofuran                                    | < 17.9 | U    | µg/kg dry | 244      | 17.9 | 1        |             | "             |               | "       |         | х     |
| 95-50-1                      | 1,2-Dichlorobenzene                             | < 80.9 | U    | µg/kg dry | 481      | 80.9 | 1        |             | "             |               | "       |         | х     |
| 541-73-1                     | 1,3-Dichlorobenzene                             | < 85.5 | U    | µg/kg dry | 481      | 85.5 | 1        |             | "             |               | "       |         | х     |
| 106-46-7                     | 1,4-Dichlorobenzene                             | < 79.7 | U    | µg/kg dry | 481      | 79.7 | 1        |             | "             |               | "       |         | х     |
| 91-94-1                      | 3,3'-Dichlorobenzidine                          | < 97.7 | U    | µg/kg dry | 481      | 97.7 | 1        |             | "             |               | "       | "       | х     |
| 120-83-2                     | 2,4-Dichlorophenol                              | < 82.9 | U    | µg/kg dry | 244      | 82.9 | 1        |             | "             |               | "       | "       | х     |
| 84-66-2                      | Diethyl phthalate                               | < 100  | U    | µg/kg dry | 481      | 100  | 1        |             | "             |               | "       |         | х     |
| 131-11-3                     | Dimethyl phthalate                              | < 94.8 | U    | µg/kg dry | 481      | 94.8 | 1        |             | "             |               | "       |         | х     |
| 105-67-9                     | 2,4-Dimethylphenol                              | < 82.5 | U    | µg/kg dry | 481      | 82.5 | 1        |             | "             | "             | "       |         | Х     |
| 84-74-2                      | Di-n-butyl phthalate                            | < 108  | U    | µg/kg dry | 481      | 108  | 1        |             | "             | "             | "       |         | Х     |
| 534-52-1                     | 4,6-Dinitro-2-methylphenol                      | < 128  | U    | µg/kg dry | 481      | 128  | 1        | "           | "             |               | "       | "       | х     |
| 51-28-5                      | 2,4-Dinitrophenol                               | < 127  | U    | µg/kg dry | 481      | 127  | 1        | "           | "             |               | "       | "       | х     |
| 121-14-2                     | 2,4-Dinitrotoluene                              | < 100  | U    | µg/kg dry | 244      | 100  | 1        | "           | "             |               | "       | "       | х     |
| 606-20-2                     | 2,6-Dinitrotoluene                              | < 94.5 | U    | µg/kg dry | 244      | 94.5 | 1        | "           | "             |               | "       | "       | х     |
| 117-84-0                     | Di-n-octyl phthalate                            | < 104  | U    | µg/kg dry | 481      | 104  | 1        | "           | "             |               | "       | "       | х     |
| 206-44-0                     | Fluoranthene                                    | < 24.4 | U    | µg/kg dry | 97.3     | 24.4 | 1        | "           | "             |               | "       | "       | х     |
| 86-73-7                      | Fluorene                                        | < 23.3 | U    | µg/kg dry | 97.3     | 23.3 | 1        | "           | "             |               | "       | "       | х     |
| 118-74-1                     | Hexachlorobenzene                               | < 106  | U    | µg/kg dry | 244      | 106  | 1        | "           | "             |               | "       | "       | х     |
| 87-68-3                      | Hexachlorobutadiene                             | < 77.5 | U    | µg/kg dry | 244      | 77.5 | 1        | "           | "             | "             | "       | "       | х     |

| Sample Ic<br>TP-07-3'<br>SC07216 | lentification<br>-03                                   |            |        | <u>Client Pr</u><br>2150 |       |        | <u>Matrix</u><br>Soil |                     | ection Date<br>May-15 14 |               |         | <u>ceived</u><br>May-15 |       |
|----------------------------------|--------------------------------------------------------|------------|--------|--------------------------|-------|--------|-----------------------|---------------------|--------------------------|---------------|---------|-------------------------|-------|
| CAS No.                          | Analyte(s)                                             | Result     | Flag   | Units                    | *RDL  | MDL    | Dilution              | Method Ref.         | Prepared                 | Analyzed      | Analyst | Batch                   | Cert. |
| Semivolati                       | ile Organic Compounds by C                             | GCMS       |        |                          |       |        |                       |                     |                          |               |         |                         |       |
|                                  | tile Organic Compounds                                 |            |        |                          |       |        |                       |                     |                          |               |         |                         |       |
| Prepared<br>77-47-4              | by method SW846 3545A<br>Hexachlorocyclopentadien<br>e | < 88.8     | U      | µg/kg dry                | 244   | 88.8   | 1                     | SW846 8270D         | 12-May-1<br>5            | 12-May-1<br>5 | MSL     | 1509247                 | х     |
| 67-72-1                          | Hexachloroethane                                       | < 93.5     | U      | µg/kg dry                | 244   | 93.5   | 1                     | "                   |                          | "             | "       | "                       | х     |
| 193-39-5                         | Indeno (1,2,3-cd) pyrene                               | < 19.9     | U      | µg/kg dry                | 97.3  | 19.9   | 1                     | "                   | "                        |               | "       | "                       | х     |
| 78-59-1                          | Isophorone                                             | < 85.0     | U      | µg/kg dry                | 244   | 85.0   | 1                     | "                   | "                        | "             | "       | "                       | х     |
| 91-57-6                          | 2-Methylnaphthalene                                    | < 20.1     | U      | µg/kg dry                | 97.3  | 20.1   | 1                     | "                   | "                        | "             | "       | "                       | х     |
| 95-48-7                          | 2-Methylphenol                                         | < 86.4     | U      | µg/kg dry                | 481   | 86.4   | 1                     | "                   | "                        | "             | "       | "                       | х     |
| 108-39-4,<br>106-44-5            | 3 & 4-Methylphenol                                     | < 108      | U      | µg/kg dry                | 481   | 108    | 1                     | "                   | "                        | "             | "       | "                       | Х     |
| 91-20-3                          | Naphthalene                                            | < 19.8     | U      | µg/kg dry                | 97.3  | 19.8   | 1                     | "                   | "                        |               | "       | "                       | Х     |
| 88-74-4                          | 2-Nitroaniline                                         | < 96.5     | U      | µg/kg dry                | 481   | 96.5   | 1                     | "                   | "                        |               | "       | "                       | Х     |
| 99-09-2                          | 3-Nitroaniline                                         | < 115      | U      | µg/kg dry                | 481   | 115    | 1                     | "                   | "                        | "             | "       | "                       | Х     |
| 100-01-6                         | 4-Nitroaniline                                         | < 139      | U      | µg/kg dry                | 244   | 139    | 1                     | "                   | "                        | "             | "       | "                       | Х     |
| 98-95-3                          | Nitrobenzene                                           | < 94.5     | U      | µg/kg dry                | 244   | 94.5   | 1                     | "                   | "                        | "             | "       | "                       | х     |
| 88-75-5                          | 2-Nitrophenol                                          | < 80.6     | U      | µg/kg dry                | 244   | 80.6   | 1                     | "                   | "                        | "             | "       | "                       | х     |
| 100-02-7                         | 4-Nitrophenol                                          | < 130      | U      | µg/kg dry                | 1930  | 130    | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 621-64-7                         | N-Nitrosodi-n-propylamine                              | < 104      | U      | µg/kg dry                | 244   | 104    | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 86-30-6                          | N-Nitrosodiphenylamine                                 | < 113      | U      | µg/kg dry                | 481   | 113    | 1                     |                     | "                        | "             | "       | "                       | Х     |
| 87-86-5                          | Pentachlorophenol                                      | < 115      | U      | µg/kg dry                | 481   | 115    | 1                     |                     | "                        |               | "       | "                       | х     |
| 85-01-8                          | Phenanthrene                                           | < 23.7     | U      | µg/kg dry                | 97.3  | 23.7   | 1                     |                     | "                        |               | "       | "                       | х     |
| 108-95-2                         | Phenol                                                 | < 87.6     | U      | µg/kg dry                | 481   | 87.6   | 1                     |                     | "                        |               | "       | "                       | х     |
| 129-00-0                         | Pyrene                                                 | < 20.7     | U      | µg/kg dry                | 97.3  | 20.7   | 1                     |                     | "                        |               | "       | "                       | х     |
| 120-82-1                         | 1,2,4-Trichlorobenzene                                 | < 76.6     | U      | µg/kg dry                | 481   | 76.6   | 1                     |                     | "                        |               | "       | "                       | х     |
| 95-95-4                          | 2,4,5-Trichlorophenol                                  | < 99.6     | U      | µg/kg dry                | 481   | 99.6   | 1                     | "                   | "                        |               | "       | "                       | х     |
| Surrogate                        | recoveries:                                            |            |        |                          |       |        |                       |                     |                          |               |         |                         |       |
| 321-60-8                         | 2-Fluorobiphenyl                                       | 58         |        |                          | 30-13 | 30 %   |                       | "                   | "                        |               | "       | "                       |       |
| 367-12-4                         | 2-Fluorophenol                                         | 76         |        |                          | 30-13 | 30 %   |                       | "                   | "                        |               | "       | "                       |       |
| 4165-60-0                        | Nitrobenzene-d5                                        | 61         |        |                          | 30-13 | 30 %   |                       | "                   | "                        |               | "       | "                       |       |
| 4165-62-2                        | Phenol-d5                                              | 76         |        |                          | 30-13 | 30 %   |                       | "                   | "                        |               | "       | "                       |       |
| 1718-51-0                        | Terphenyl-dl4                                          | 70         |        |                          | 30-13 | 80 %   |                       | "                   | "                        |               | "       | "                       |       |
| 118-79-6                         | 2,4,6-Tribromophenol                                   | 76         |        |                          | 30-13 | 80 %   |                       | "                   | "                        | "             | "       | "                       |       |
|                                  | y Identified Compounds<br>by method SW846 3545A        |            |        |                          |       |        |                       |                     |                          |               |         |                         |       |
|                                  | Tentatively Identified<br>Compounds                    | None found |        | µg/kg dry                |       |        | 1                     | SW846 8270D<br>TICS | "                        | "             | MSL     | "                       |       |
| Total Meta                       | als by EPA 6000/7000 Series                            | Methods    |        |                          |       |        |                       |                     |                          |               |         |                         |       |
| 7440-22-4                        | Silver                                                 | 0.617      | J      | mg/kg dry                | 1.97  | 0.144  | 1                     | SW846 6010C         | 12-May-1<br>5            | 14-May-1<br>5 | BJW     | 1509210                 | х     |
| 7440-38-2                        | Arsenic                                                | 17.0       |        | mg/kg dry                | 1.97  | 0.318  | 1                     | "                   | "                        |               | "       | "                       | х     |
| 7440-39-3                        | Barium                                                 | 995        |        | mg/kg dry                | 1.31  | 0.0780 | 1                     | "                   | "                        |               | "       | "                       | х     |
| 7440-43-9                        | Cadmium                                                | 0.779      |        | mg/kg dry                | 0.657 | 0.0210 | 1                     | "                   | "                        |               | "       | "                       | х     |
| 7440-47-3                        | Chromium                                               | 26.1       |        | mg/kg dry                | 1.31  | 0.125  | 1                     | "                   | "                        |               | "       | "                       | х     |
| 7439-97-6                        | Mercury                                                | 1.20       | GS1, D | mg/kg dry                | 0.205 | 0.0134 | 5                     | SW846 7471B         | •                        | 13-May-1<br>5 | YR      | 1509211                 | Х     |
| 7439-92-1                        | Lead                                                   | 1,560      |        | mg/kg dry                | 1.97  | 0.363  | 1                     | SW846 6010C         | •                        | 14-May-1<br>5 | BJW     | 1509210                 | Х     |
| 7782-49-2                        | Selenium                                               | 1.27       | J      | mg/kg dry                | 1.97  | 0.493  | 1                     | "                   | "                        | "             | "       | "                       | х     |

| Sample Identification<br>TP-07-3'<br>SC07216-03 |        |      |       |      |     | <u>Matrix</u><br>Soil | x Collection Date/Time<br>08-May-15 14:10 |           |           | <u>Re</u><br>11-1 |         |       |
|-------------------------------------------------|--------|------|-------|------|-----|-----------------------|-------------------------------------------|-----------|-----------|-------------------|---------|-------|
| CAS No. Analyte(s)                              | Result | Flag | Units | *RDL | MDL | Dilution              | Method Ref.                               | Prepared  | Analyzed  | Analyst           | Batch   | Cert. |
| General Chemistry Parameters<br>% Solids        | 66.8   |      | %     |      |     | 1                     | SM2540 G Mod.                             | 11-May-15 | 11-May-15 | DT                | 1509146 |       |

| Sample Ic<br>TP-06-1.5<br>SC07216- |                     |                  |        | <u>Client Pr</u><br>2150 |       |        | <u>Matrix</u><br>Soil |               | ection Date<br>May-15 13 |               |         | <u>ceived</u><br>May-15 |       |
|------------------------------------|---------------------|------------------|--------|--------------------------|-------|--------|-----------------------|---------------|--------------------------|---------------|---------|-------------------------|-------|
| CAS No.                            | Analyte(s)          | Result           | Flag   | Units                    | *RDL  | MDL    | Dilution              | Method Ref.   | Prepared                 | Analyzed      | Analyst | Batch                   | Cert. |
| Total Meta                         | als by EPA 6000/700 | 0 Series Methods |        |                          |       |        |                       |               |                          |               |         |                         |       |
| 7440-22-4                          | Silver              | < 0.113          | U      | mg/kg dry                | 1.55  | 0.113  | 1                     | SW846 6010C   | 12-May-1<br>5            | 14-May-1<br>5 | BJW     | 1509210                 | х     |
| 7440-38-2                          | Arsenic             | 7.93             |        | mg/kg dry                | 1.55  | 0.250  | 1                     |               | "                        | "             | "       |                         | Х     |
| 7440-39-3                          | Barium              | 102              |        | mg/kg dry                | 1.03  | 0.0614 | 1                     |               | "                        | "             | "       |                         | Х     |
| 7440-43-9                          | Cadmium             | 0.406            | J      | mg/kg dry                | 0.517 | 0.0165 | 1                     |               | "                        | "             | "       |                         | Х     |
| 7440-47-3                          | Chromium            | 12.7             |        | mg/kg dry                | 1.03  | 0.0987 | 1                     |               | "                        | "             | "       | "                       | Х     |
| 7439-97-6                          | Mercury             | 0.766            | GS1, D | mg/kg dry                | 0.163 | 0.0107 | 5                     | SW846 7471B   | "                        | 13-May-1<br>5 | YR      | 1509211                 | х     |
| 7439-92-1                          | Lead                | 176              |        | mg/kg dry                | 1.55  | 0.285  | 1                     | SW846 6010C   | "                        | 14-May-1<br>5 | BJW     | 1509210                 | х     |
| 7782-49-2                          | Selenium            | 0.434            | J      | mg/kg dry                | 1.55  | 0.388  | 1                     |               | "                        | "             | "       |                         | Х     |
| General C                          | Chemistry Paramete  | rs               |        |                          |       |        |                       |               |                          |               |         |                         |       |
|                                    | % Solids            | 87.6             |        | %                        |       |        | 1                     | SM2540 G Mod. | 11-May-15                | 11-May-15     | DT      | 1509146                 |       |

| MW-07                       | SC07216-05                             |         |      |       | <u>Project #</u><br>0606 | 6 Ground Water |          |              |          |               | <u>Received</u><br>11-May-15 |         |       |
|-----------------------------|----------------------------------------|---------|------|-------|--------------------------|----------------|----------|--------------|----------|---------------|------------------------------|---------|-------|
| CAS No.                     | Analyte(s)                             | Result  | Flag | Units | *RDL                     | MDL            | Dilution | Method Ref.  | Prepared | Analyzed      | Analyst                      | Batch   | Cert. |
| Semivolati                  | ile Organic Compounds by (             | GC      |      |       |                          |                |          |              |          |               |                              |         |       |
|                             | Ilorine Pesticides                     |         |      |       |                          |                |          |              |          |               |                              |         |       |
| <u>Prepareo</u><br>319-84-6 | by method SW846 3510C<br>alpha-BHC     | < 0.006 | U    | ug/l  | 0.021                    | 0.006          | 1        | SW846 8081B  | 12-May-1 | 13-May-1      | TG                           | 1509203 | x     |
| 010-04-0                    | арпа-вно                               | < 0.000 | 0    | µg/l  | 0.021                    | 0.000          | I        | 30040 000 IB | 5        | 13-May-1<br>5 | 10                           | 1509205 | ^     |
| 319-85-7                    | beta-BHC                               | < 0.009 | U    | µg/l  | 0.021                    | 0.009          | 1        | "            | "        | "             | "                            | "       | Х     |
| 319-86-8                    | delta-BHC                              | < 0.007 | U    | µg/l  | 0.021                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 58-89-9                     | gamma-BHC (Lindane)                    | < 0.007 | U    | µg/l  | 0.021                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 76-44-8                     | Heptachlor                             | < 0.007 | U    | µg/l  | 0.021                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 309-00-2                    | Aldrin                                 | < 0.006 | U    | μg/l  | 0.021                    | 0.006          | 1        |              |          | "             |                              |         | Х     |
| 1024-57-3                   | Heptachlor epoxide                     | < 0.008 | U    | μg/l  | 0.021                    | 0.008          | 1        |              |          | "             |                              |         | Х     |
| 959-98-8                    | Endosulfan I                           | < 0.007 | U    | µg/l  | 0.021                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 60-57-1                     | Dieldrin                               | < 0.007 | U    | µg/l  | 0.021                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 72-55-9                     | 4,4'-DDE (p,p')                        | < 0.007 | U    | µg/l  | 0.021                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 72-20-8                     | Endrin                                 | < 0.006 | U    | µg/l  | 0.043                    | 0.006          | 1        |              | "        | "             | "                            | "       | Х     |
| 33213-65-9                  | Endosulfan II                          | < 0.007 | U    | µg/l  | 0.043                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 72-54-8                     | 4,4'-DDD (p,p')                        | < 0.007 | U    | µg/l  | 0.043                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 1031-07-8                   | Endosulfan sulfate                     | < 0.007 | U    | µg/l  | 0.043                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 50-29-3                     | 4,4'-DDT (p,p')                        | < 0.013 | U    | µg/l  | 0.043                    | 0.013          | 1        |              | "        | "             | "                            | "       | Х     |
| 72-43-5                     | Methoxychlor                           | < 0.024 | U    | µg/l  | 0.043                    | 0.024          | 1        |              | "        | "             | "                            | "       | Х     |
| 53494-70-5                  | Endrin ketone                          | < 0.007 | U    | µg/l  | 0.043                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 7421-93-4                   | Endrin aldehyde                        | < 0.005 | U    | µg/l  | 0.043                    | 0.005          | 1        |              | "        | "             | "                            | "       | Х     |
| 5103-71-9                   | alpha-Chlordane                        | < 0.007 | U    | µg/l  | 0.021                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 5566-34-7                   | gamma-Chlordane                        | < 0.007 | U    | µg/l  | 0.021                    | 0.007          | 1        |              | "        | "             | "                            | "       | Х     |
| 8001-35-2                   | Toxaphene                              | < 0.261 | U    | µg/l  | 0.532                    | 0.261          | 1        |              | "        | "             | "                            | "       | Х     |
| 57-74-9                     | Chlordane                              | < 0.056 | U    | µg/l  | 0.069                    | 0.056          | 1        |              | "        | "             | "                            | "       | Х     |
| 15972-60-8                  | Alachlor                               | < 0.012 | U    | µg/l  | 0.021                    | 0.012          | 1        | "            | "        |               | "                            | "       |       |
| Surrogate                   | recoveries:                            |         |      |       |                          |                |          |              |          |               |                              |         |       |
| 10386-84-2                  | 4,4-DB-Octafluorobiphenyl<br>(Sr)      | 92      |      |       | 30-15                    | 0 %            |          | "            | "        | "             | "                            | "       |       |
| 10386-84-2                  | 4,4-DB-Octafluorobiphenyl<br>(Sr) [2C] | 98      |      |       | 30-15                    | 0 %            |          | "            | "        |               | "                            | "       |       |
| 2051-24-3                   | Decachlorobiphenyl (Sr)                | 53      |      |       | 30-15                    | 0 %            |          | "            |          | "             | "                            | "       |       |
| 2051-24-3                   | Decachlorobiphenyl (Sr)<br>[2C]        | 54      |      |       | 30-15                    | 0 %            |          | "            | "        | n             | "                            | "       |       |

| TP-02-5.5  | Sample Identification<br>TP-02-5.5'<br>SC07216-08 |               |        | Client Project #Matrix2150606Soil |       |        | · · · · · · · · · · · · · · · · · · · | Collection Date/Time<br>08-May-15 10:30 |               |               |         |         |       |
|------------|---------------------------------------------------|---------------|--------|-----------------------------------|-------|--------|---------------------------------------|-----------------------------------------|---------------|---------------|---------|---------|-------|
| CAS No.    | Analyte(s)                                        | Result        | Flag   | Units                             | *RDL  | MDL    | Dilution                              | Method Ref.                             | Prepared      | Analyzed      | Analyst | Batch   | Cert. |
| Total Meta | als by EPA 6000/7000 Se                           | eries Methods |        |                                   |       |        |                                       |                                         |               |               |         |         |       |
| 7439-97-6  | Mercury                                           | 1.80          | GS1, D | mg/kg dry                         | 0.218 | 0.0142 | 5                                     | SW846 7471B                             | 12-May-1<br>5 | 13-May-1<br>5 | YR      | 1509211 | х     |
| 7439-92-1  | Lead                                              | 283           |        | mg/kg dry                         | 2.18  | 0.400  | 1                                     | SW846 6010C                             | "             | 14-May-1<br>5 | BJW     | 1509210 | Х     |
| General C  | hemistry Parameters                               |               |        |                                   |       |        |                                       |                                         |               |               |         |         |       |
|            | % Solids                                          | 68.3          |        | %                                 |       |        | 1                                     | SM2540 G Mod.                           | 11-May-15     | 11-May-15     | DT      | 1509155 |       |

| TP-03-2'                       | SC07216-09                          |                      |      | <u>Client P</u><br>2150 |       |        | <u>Matrix</u><br>Soil |               | ection Date<br>-May-15 11 |               |         | <u>Received</u><br>11-May-15 |       |  |
|--------------------------------|-------------------------------------|----------------------|------|-------------------------|-------|--------|-----------------------|---------------|---------------------------|---------------|---------|------------------------------|-------|--|
| CAS No.                        | Analyte(s)                          | Result               | Flag | Units                   | *RDL  | MDL    | Dilution              | Method Ref.   | Prepared                  | Analyzed      | Analyst | Batch                        | Cert. |  |
| <b>Total Meta</b><br>7440-43-9 | als by EPA 6000/7000 Ser<br>Cadmium | ies Methods<br>0.233 | J    | mg/kg dry               | 0.585 | 0.0187 | 1                     | SW846 6010C   | 12-May-1<br>5             | 14-May-1<br>5 | BJW     | 1509210                      | х     |  |
| General C                      | hemistry Parameters<br>% Solids     | 83.5                 |      | %                       |       |        | 1                     | SM2540 G Mod. | -                         | -             | DT      | 1509155                      |       |  |

| Semivolatile | <b>Organic</b> | Compounds | by GCMS | 5 - Quality | Control |
|--------------|----------------|-----------|---------|-------------|---------|
|              |                |           |         |             |         |

| Analyte(s)                            | Result           | Flag   | Units                  | *RDL         | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limi |
|---------------------------------------|------------------|--------|------------------------|--------------|----------------|------------------|--------------|----------------|-----|-------------|
| Batch 1509247 - SW846 3545A           |                  |        |                        |              |                |                  |              |                |     |             |
| Blank (1509247-BLK1)                  |                  |        |                        |              | Pre            | epared & Ar      | nalyzed: 12- | -May-15        |     |             |
| Acenaphthene                          | < 15.5           | U      | µg/kg wet              | 15.5         |                |                  |              |                |     |             |
| Tentatively Identified Compounds      | None found       |        | µg/kg wet              |              |                |                  |              |                |     |             |
| Acenaphthylene                        | < 14.1           | U      | µg/kg wet              | 14.1         |                |                  |              |                |     |             |
| Aniline                               | < 67.8           | U      | µg/kg wet              | 67.8         |                |                  |              |                |     |             |
| Anthracene                            | < 15.2           | U      | µg/kg wet              | 15.2         |                |                  |              |                |     |             |
| Azobenzene/Diphenyldiazene            | < 79.2           | U      | µg/kg wet              | 79.2         |                |                  |              |                |     |             |
| Benzidine                             | < 80.4           | U      | µg/kg wet              | 80.4         |                |                  |              |                |     |             |
| Benzo (a) anthracene                  | < 13.7           | U      | µg/kg wet              | 13.7         |                |                  |              |                |     |             |
| Benzo (a) pyrene                      | < 13.8           | U      | µg/kg wet              | 13.8         |                |                  |              |                |     |             |
| Benzo (b) fluoranthene                | < 15.1           | U      | µg/kg wet              | 15.1         |                |                  |              |                |     |             |
| Benzo (g,h,i) perylene                | < 14.4           | U      | µg/kg wet              | 14.4         |                |                  |              |                |     |             |
| Benzo (k) fluoranthene                | < 15.1           | U      | µg/kg wet              | 15.1         |                |                  |              |                |     |             |
| Benzoic acid                          | < 76.7           | U      | µg/kg wet              | 76.7         |                |                  |              |                |     |             |
| Benzyl alcohol                        | < 60.3           | U      | µg/kg wet              | 60.3         |                |                  |              |                |     |             |
| Bis(2-chloroethoxy)methane            | < 60.0           | U      | µg/kg wet              | 60.0         |                |                  |              |                |     |             |
| Bis(2-chloroethyl)ether               | < 59.7           | U      | µg/kg wet              | 59.7         |                |                  |              |                |     |             |
| Bis(2-chloroisopropyl)ether           | < 59.6           | U      | µg/kg wet              | 59.6         |                |                  |              |                |     |             |
| Bis(2-ethylhexyl)phthalate            | < 82.0           | U      | µg/kg wet              | 82.0         |                |                  |              |                |     |             |
| 4-Bromophenyl phenyl ether            | < 66.4           | U      | µg/kg wet              | 66.4         |                |                  |              |                |     |             |
| Butyl benzyl phthalate                | < 72.8           | U      | µg/kg wet              | 72.8         |                |                  |              |                |     |             |
| Carbazole                             | < 84.4           | U      | µg/kg wet              | 84.4         |                |                  |              |                |     |             |
| 4-Chloro-3-methylphenol               | < 68.1           | U<br>U | µg/kg wet              | 68.1         |                |                  |              |                |     |             |
| 4-Chloroaniline                       | < 67.8<br>< 57.8 | U      | µg/kg wet              | 67.8<br>57.8 |                |                  |              |                |     |             |
| 2-Chloronaphthalene<br>2-Chlorophenol | < 57.8           | U      | µg/kg wet<br>µg/kg wet | 58.7         |                |                  |              |                |     |             |
| 4-Chlorophenyl phenyl ether           | < 61.7           | U      | µg/kg wet<br>µg/kg wet | 61.7         |                |                  |              |                |     |             |
| Chrysene                              | < 16.2           | U      | µg/kg wet<br>µg/kg wet | 16.2         |                |                  |              |                |     |             |
| Dibenzo (a,h) anthracene              | < 12.2           | U      | µg/kg wet<br>µg/kg wet | 12.2         |                |                  |              |                |     |             |
| Dibenzofuran                          | < 12.2           | U      | µg/kg wet              | 12.2         |                |                  |              |                |     |             |
| 1,2-Dichlorobenzene                   | < 55.2           | U      | µg/kg wet              | 55.2         |                |                  |              |                |     |             |
| 1,3-Dichlorobenzene                   | < 58.3           | U      | µg/kg wet              | 58.3         |                |                  |              |                |     |             |
| 1,4-Dichlorobenzene                   | < 54.4           | U      | µg/kg wet              | 54.4         |                |                  |              |                |     |             |
| 3,3'-Dichlorobenzidine                | < 66.7           | U      | µg/kg wet              | 66.7         |                |                  |              |                |     |             |
| 2,4-Dichlorophenol                    | < 56.5           | U      | µg/kg wet              | 56.5         |                |                  |              |                |     |             |
| Diethyl phthalate                     | < 68.6           | U      | µg/kg wet              | 68.6         |                |                  |              |                |     |             |
| Dimethyl phthalate                    | < 64.7           | U      | µg/kg wet              | 64.7         |                |                  |              |                |     |             |
| 2,4-Dimethylphenol                    | < 56.3           | U      | µg/kg wet              | 56.3         |                |                  |              |                |     |             |
| Di-n-butyl phthalate                  | < 73.8           | U      | µg/kg wet              | 73.8         |                |                  |              |                |     |             |
| 4,6-Dinitro-2-methylphenol            | < 87.4           | U      | µg/kg wet              | 87.4         |                |                  |              |                |     |             |
| 2,4-Dinitrophenol                     | < 86.5           | U      | µg/kg wet              | 86.5         |                |                  |              |                |     |             |
| 2,4-Dinitrotoluene                    | < 68.5           | U      | µg/kg wet              | 68.5         |                |                  |              |                |     |             |
| 2,6-Dinitrotoluene                    | < 64.5           | U      | µg/kg wet              | 64.5         |                |                  |              |                |     |             |
| Di-n-octyl phthalate                  | < 70.9           | U      | µg/kg wet              | 70.9         |                |                  |              |                |     |             |
| Fluoranthene                          | < 16.7           | U      | µg/kg wet              | 16.7         |                |                  |              |                |     |             |
| Fluorene                              | < 15.9           | U      | µg/kg wet              | 15.9         |                |                  |              |                |     |             |
| Hexachlorobenzene                     | < 72.6           | U      | µg/kg wet              | 72.6         |                |                  |              |                |     |             |
| Hexachlorobutadiene                   | < 52.9           | U      | µg/kg wet              | 52.9         |                |                  |              |                |     |             |
| Hexachlorocyclopentadiene             | < 60.6           | U      | µg/kg wet              | 60.6         |                |                  |              |                |     |             |
| Hexachloroethane                      | < 63.8           | U      | µg/kg wet              | 63.8         |                |                  |              |                |     |             |
| Indeno (1,2,3-cd) pyrene              | < 13.6           | U      | µg/kg wet              | 13.6         |                |                  |              |                |     |             |
| Isophorone                            | < 58.0           | U      | µg/kg wet              | 58.0         |                |                  |              |                |     |             |
| 2-Methylnaphthalene                   | < 13.7           | U      | µg/kg wet              | 13.7         |                |                  |              |                |     |             |

| Semivolatile | <b>Organic</b> | Compounds | by GCMS | 5 - Quality | Control |
|--------------|----------------|-----------|---------|-------------|---------|
|              |                |           |         |             |         |

| nalyte(s)                       | Result | Flag | Units     | *RDL | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limi |
|---------------------------------|--------|------|-----------|------|----------------|------------------|--------------|----------------|-----|-------------|
| atch 1509247 - SW846 3545A      |        |      |           |      |                |                  |              |                |     |             |
| Blank (1509247-BLK1)            |        |      |           |      | Pre            | epared & Ar      | nalyzed: 12- | May-15         |     |             |
| 2-Methylphenol                  | < 58.9 | U    | µg/kg wet | 58.9 |                |                  |              |                |     |             |
| 3 & 4-Methylphenol              | < 73.9 | U    | µg/kg wet | 73.9 |                |                  |              |                |     |             |
| Naphthalene                     | < 13.5 | U    | µg/kg wet | 13.5 |                |                  |              |                |     |             |
| 2-Nitroaniline                  | < 65.8 | U    | µg/kg wet | 65.8 |                |                  |              |                |     |             |
| 3-Nitroaniline                  | < 78.6 | U    | µg/kg wet | 78.6 |                |                  |              |                |     |             |
| 4-Nitroaniline                  | < 95.0 | U    | µg/kg wet | 95.0 |                |                  |              |                |     |             |
| Nitrobenzene                    | < 64.5 | U    | µg/kg wet | 64.5 |                |                  |              |                |     |             |
| 2-Nitrophenol                   | < 55.0 | U    | µg/kg wet | 55.0 |                |                  |              |                |     |             |
| 4-Nitrophenol                   | < 88.7 | U    | µg/kg wet | 88.7 |                |                  |              |                |     |             |
| N-Nitrosodimethylamine          | < 65.2 | U    | µg/kg wet | 65.2 |                |                  |              |                |     |             |
| N-Nitrosodi-n-propylamine       | < 70.7 | U    | µg/kg wet | 70.7 |                |                  |              |                |     |             |
| N-Nitrosodiphenylamine          | < 77.3 | U    | µg/kg wet | 77.3 |                |                  |              |                |     |             |
| Pentachlorophenol               | < 78.2 | U    | µg/kg wet | 78.2 |                |                  |              |                |     |             |
| Phenanthrene                    | < 16.2 | U    | µg/kg wet | 16.2 |                |                  |              |                |     |             |
| Phenol                          | < 59.8 | U    | µg/kg wet | 59.8 |                |                  |              |                |     |             |
| Pyrene                          | < 14.1 | U    | µg/kg wet | 14.1 |                |                  |              |                |     |             |
| Pyridine                        | < 71.1 | U    | µg/kg wet | 71.1 |                |                  |              |                |     |             |
| 1,2,4-Trichlorobenzene          | < 52.3 | U    | µg/kg wet | 52.3 |                |                  |              |                |     |             |
| 1-Methylnaphthalene             | < 16.8 | U    | µg/kg wet | 16.8 |                |                  |              |                |     |             |
| 2,4,5-Trichlorophenol           | < 67.9 | U    | µg/kg wet | 67.9 |                |                  |              |                |     |             |
| 2,4,6-Trichlorophenol           | < 62.9 | U    | µg/kg wet | 62.9 |                |                  |              |                |     |             |
| Pentachloronitrobenzene         | < 70.4 | U    | µg/kg wet | 70.4 |                |                  |              |                |     |             |
| 1,2,4,5-Tetrachlorobenzene      | < 59.6 | U    | µg/kg wet | 59.6 |                |                  |              |                |     |             |
| Surrogate: 2-Fluorobiphenyl     | 1390   |      | µg/kg wet |      | 1660           |                  | 84           | 30-130         |     |             |
| Surrogate: 2-Fluorophenol       | 1490   |      | µg/kg wet |      | 1660           |                  | 90           | 30-130         |     |             |
| Surrogate: Nitrobenzene-d5      | 1490   |      | µg/kg wet |      | 1660           |                  | 90           | 30-130         |     |             |
| Surrogate: Phenol-d5            | 1480   |      | µg/kg wet |      | 1660           |                  | 89           | 30-130         |     |             |
| Surrogate: Terphenyl-dl4        | 1540   |      | µg/kg wet |      | 1660           |                  | 93           | 30-130         |     |             |
| Surrogate: 2,4,6-Tribromophenol | 1520   |      | µg/kg wet |      | 1660           |                  | 92           | 30-130         |     |             |
| LCS (1509247-BS1)               |        |      |           |      | Pre            | epared & Ar      | nalyzed: 12- | May-15         |     |             |
| Acenaphthene                    | 1400   |      | µg/kg wet | 15.5 | 1660           |                  | 84           | 40-140         |     |             |
| Acenaphthylene                  | 1470   |      | µg/kg wet | 14.1 | 1660           |                  | 89           | 40-140         |     |             |
| Aniline                         | 1230   |      | µg/kg wet | 67.7 | 1660           |                  | 74           | 40-140         |     |             |
| Anthracene                      | 1520   |      | µg/kg wet | 15.2 | 1660           |                  | 92           | 40-140         |     |             |
| Azobenzene/Diphenyldiazene      | 1640   |      | µg/kg wet | 79.2 | 1660           |                  | 99           | 40-140         |     |             |
| Benzidine                       | 2810   | QC2  | µg/kg wet | 80.4 | 1660           |                  | 169          | 40-140         |     |             |
| Benzo (a) anthracene            | 1440   |      | µg/kg wet | 13.7 | 1660           |                  | 87           | 40-140         |     |             |
| Benzo (a) pyrene                | 1520   |      | µg/kg wet | 13.8 | 1660           |                  | 91           | 40-140         |     |             |
| Benzo (b) fluoranthene          | 1480   |      | µg/kg wet | 15.1 | 1660           |                  | 89           | 40-140         |     |             |
| Benzo (g,h,i) perylene          | 1620   |      | µg/kg wet | 14.4 | 1660           |                  | 98           | 40-140         |     |             |
| Benzo (k) fluoranthene          | 1400   |      | µg/kg wet | 15.1 | 1660           |                  | 84           | 40-140         |     |             |
| Benzoic acid                    | 1440   |      | µg/kg wet | 76.7 | 1660           |                  | 87           | 30-130         |     |             |
| Benzyl alcohol                  | 1260   |      | µg/kg wet | 60.3 | 1660           |                  | 76           | 40-140         |     |             |
| Bis(2-chloroethoxy)methane      | 1310   |      | µg/kg wet | 59.9 | 1660           |                  | 79           | 40-140         |     |             |
| Bis(2-chloroethyl)ether         | 1180   |      | µg/kg wet | 59.7 | 1660           |                  | 71           | 40-140         |     |             |
| Bis(2-chloroisopropyl)ether     | 1550   |      | µg/kg wet | 59.6 | 1660           |                  | 93           | 40-140         |     |             |
| Bis(2-ethylhexyl)phthalate      | 1560   |      | µg/kg wet | 82.0 | 1660           |                  | 94           | 40-140         |     |             |
| 4-Bromophenyl phenyl ether      | 1410   |      | µg/kg wet | 66.4 | 1660           |                  | 85           | 40-140         |     |             |
| Butyl benzyl phthalate          | 1520   |      | µg/kg wet | 72.8 | 1660           |                  | 92           | 40-140         |     |             |
| Carbazole                       | 1650   |      | µg/kg wet | 84.4 | 1660           |                  | 100          | 40-140         |     |             |
| 4-Chloro-3-methylphenol         | 1490   |      | µg/kg wet | 68.1 | 1660           |                  | 90           | 30-130         |     |             |

Semivolatile Organic Compounds by GCMS - Quality Control

| Analyte(s)                    | Result       | Flag | Units                  | *RDL         | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD | RPD<br>Limit |
|-------------------------------|--------------|------|------------------------|--------------|----------------|------------------|--------------|------------------|-----|--------------|
| Batch 1509247 - SW846 3545A   |              |      |                        |              |                |                  |              |                  |     |              |
| LCS (1509247-BS1)             |              |      |                        |              | Pre            | epared & Ar      | nalyzed: 12- | May-15           |     |              |
| 4-Chloroaniline               | 1170         |      | µg/kg wet              | 67.8         | 1660           |                  | 70           | 40-140           |     |              |
| 2-Chloronaphthalene           | 1410         |      | µg/kg wet              | 57.7         | 1660           |                  | 85           | 40-140           |     |              |
| 2-Chlorophenol                | 1350         |      | µg/kg wet              | 58.7         | 1660           |                  | 81           | 30-130           |     |              |
| 4-Chlorophenyl phenyl ether   | 1320         |      | µg/kg wet              | 61.7         | 1660           |                  | 80           | 40-140           |     |              |
| Chrysene                      | 1390         |      | µg/kg wet              | 16.2         | 1660           |                  | 84           | 40-140           |     |              |
| Dibenzo (a,h) anthracene      | 1600         |      | µg/kg wet              | 12.2         | 1660           |                  | 96           | 40-140           |     |              |
| Dibenzofuran                  | 1400         |      | µg/kg wet              | 12.2         | 1660           |                  | 84           | 40-140           |     |              |
| 1,2-Dichlorobenzene           | 1310         |      | µg/kg wet              | 55.2         | 1660           |                  | 79           | 40-140           |     |              |
| 1,3-Dichlorobenzene           | 1320         |      | µg/kg wet              | 58.3         | 1660           |                  | 79           | 40-140           |     |              |
| 1,4-Dichlorobenzene           | 1300         |      | µg/kg wet              | 54.3         | 1660           |                  | 78           | 40-140           |     |              |
| 3,3'-Dichlorobenzidine        | 1610         |      | µg/kg wet              | 66.7         | 1660           |                  | 97           | 40-140           |     |              |
| 2,4-Dichlorophenol            | 1380         |      | µg/kg wet              | 56.5         | 1660           |                  | 83           | 30-130           |     |              |
| Diethyl phthalate             | 1430         |      | µg/kg wet              | 68.5         | 1660           |                  | 86           | 40-140           |     |              |
| Dimethyl phthalate            | 1410         |      | µg/kg wet              | 64.7         | 1660           |                  | 85           | 40-140           |     |              |
| 2,4-Dimethylphenol            | 1350         |      | µg/kg wet              | 56.3         | 1660           |                  | 81           | 30-130           |     |              |
| Di-n-butyl phthalate          | 1500         |      | µg/kg wet              | 73.7         | 1660           |                  | 91           | 40-140           |     |              |
| 4,6-Dinitro-2-methylphenol    | 1540         |      | µg/kg wet              | 87.3         | 1660           |                  | 93           | 30-130           |     |              |
| 2,4-Dinitrophenol             | 1450         |      | µg/kg wet              | 86.5         | 1660           |                  | 88           | 30-130           |     |              |
| 2,4-Dinitrotoluene            | 1550         |      | µg/kg wet              | 68.4         | 1660           |                  | 93           | 40-140           |     |              |
| 2,6-Dinitrotoluene            | 1570         |      | µg/kg wet              | 64.5         | 1660           |                  | 95           | 40-140           |     |              |
| Di-n-octyl phthalate          | 1460         |      | µg/kg wet              | 70.9         | 1660           |                  | 88           | 40-140           |     |              |
| Fluoranthene                  | 1430         |      | µg/kg wet              | 16.7         | 1660           |                  | 86           | 40-140           |     |              |
| Fluorene                      | 1400         |      | µg/kg wet              | 15.9         | 1660           |                  | 85           | 40-140           |     |              |
| Hexachlorobenzene             | 1460         |      | µg/kg wet              | 72.6         | 1660           |                  | 88           | 40-140           |     |              |
| Hexachlorobutadiene           | 1160         |      | µg/kg wet              | 52.8         | 1660           |                  | 70           | 40-140           |     |              |
| Hexachlorocyclopentadiene     | 1610         |      | µg/kg wet              | 60.6         | 1660           |                  | 97           | 40-140           |     |              |
| Hexachloroethane              | 1350         |      | µg/kg wet              | 63.8         | 1660           |                  | 82           | 40-140           |     |              |
| Indeno (1,2,3-cd) pyrene      | 1720         |      | µg/kg wet              | 13.6         | 1660           |                  | 104          | 40-140           |     |              |
| Isophorone                    | 1420         |      | µg/kg wet              | 58.0         | 1660           |                  | 86           | 40-140           |     |              |
| 2-Methylnaphthalene           | 1500         |      | µg/kg wet              | 13.7         | 1660           |                  | 90           | 40-140           |     |              |
| 2-Methylphenol                | 1400         |      | µg/kg wet              | 58.9         | 1660           |                  | 84           | 30-130           |     |              |
| 3 & 4-Methylphenol            | 1490         |      | µg/kg wet              | 73.9         | 1660           |                  | 90           | 30-130           |     |              |
| Naphthalene<br>2-Nitroaniline | 1350         |      | µg/kg wet              | 13.5<br>65 9 | 1660<br>1660   |                  | 81<br>98     | 40-140<br>40-140 |     |              |
| 3-Nitroaniline                | 1630<br>1370 |      | µg/kg wet<br>µg/kg wet | 65.8<br>78.6 | 1660<br>1660   |                  | 90<br>83     | 40-140<br>40-140 |     |              |
| 4-Nitroaniline                | 1800         |      | µg/kg wet<br>µg/kg wet | 95.0         | 1660           |                  | 108          | 40-140<br>40-140 |     |              |
| Nitrobenzene                  | 1440         |      | µg/kg wet<br>µg/kg wet | 64.4         | 1660           |                  | 87           | 40-140           |     |              |
| 2-Nitrophenol                 | 1430         |      | µg/kg wet              | 55.0         | 1660           |                  | 86           | 30-130           |     |              |
| 4-Nitrophenol                 | 1430         | J    | µg/kg wet              | 88.7         | 1660           |                  | 71           | 30-130           |     |              |
| N-Nitrosodimethylamine        | 1240         | 5    | µg/kg wet<br>µg/kg wet | 65.2         | 1660           |                  | 75           | 40-140           |     |              |
| N-Nitrosodi-n-propylamine     | 1510         |      | µg/kg wet              | 70.7         | 1660           |                  | 91           | 40-140           |     |              |
| N-Nitrosodiphenylamine        | 1660         |      | µg/kg wet              | 77.2         | 1660           |                  | 100          | 40-140           |     |              |
| Pentachlorophenol             | 992          |      | µg/kg wet              | 78.1         | 1660           |                  | 60           | 30-130           |     |              |
| Phenanthrene                  | 1430         |      | µg/kg wet              | 16.2         | 1660           |                  | 86           | 40-140           |     |              |
| Phenol                        | 1330         |      | µg/kg wet              | 59.8         | 1660           |                  | 80           | 30-130           |     |              |
| Pyrene                        | 1540         |      | µg/kg wet              | 14.1         | 1660           |                  | 93           | 40-140           |     |              |
| Pyridine                      | 1170         |      | µg/kg wet              | 71.1         | 1660           |                  | 71           | 40-140           |     |              |
| 1,2,4-Trichlorobenzene        | 1290         |      | µg/kg wet              | 52.2         | 1660           |                  | 78           | 40-140           |     |              |
| 1-Methylnaphthalene           | 1460         |      | µg/kg wet              | 16.8         | 1660           |                  | 88           | 40-140           |     |              |
| 2,4,5-Trichlorophenol         | 1430         |      | µg/kg wet              | 67.9         | 1660           |                  | 86           | 30-130           |     |              |
| 2,4,6-Trichlorophenol         | 1360         |      | µg/kg wet              | 62.9         | 1660           |                  | 82           | 30-130           |     |              |
| _, .,                         | 1510         |      | µg/kg wet              | 70.3         | 1660           |                  | 91           | 40-140           |     |              |

| Analyte(s)                      | Result | Flag | Units     | *RDL | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit |
|---------------------------------|--------|------|-----------|------|----------------|------------------|--------------|----------------|-----|--------------|
| Batch 1509247 - SW846 3545A     |        |      |           |      |                |                  |              |                |     |              |
| LCS (1509247-BS1)               |        |      |           |      | Pre            | epared & Ar      | nalyzed: 12- | May-15         |     |              |
| 1,2,4,5-Tetrachlorobenzene      | 1440   |      | µg/kg wet | 59.6 | 1660           |                  | 87           | 40-140         |     |              |
| Surrogate: 2-Fluorobiphenyl     | 1470   |      | µg/kg wet |      | 1660           |                  | 88           | 30-130         |     |              |
| Surrogate: 2-Fluorophenol       | 1410   |      | µg/kg wet |      | 1660           |                  | 85           | 30-130         |     |              |
| Surrogate: Nitrobenzene-d5      | 1590   |      | µg/kg wet |      | 1660           |                  | 96           | 30-130         |     |              |
| Surrogate: Phenol-d5            | 1450   |      | µg/kg wet |      | 1660           |                  | 87           | 30-130         |     |              |
| Surrogate: Terphenyl-dl4        | 1510   |      | µg/kg wet |      | 1660           |                  | 91           | 30-130         |     |              |
| Surrogate: 2,4,6-Tribromophenol | 1530   |      | µg/kg wet |      | 1660           |                  | 92           | 30-130         |     |              |

| nalyte(s)                                         | Result  | Flag | Units        | *RDL  | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD    | RPD<br>Limit |
|---------------------------------------------------|---------|------|--------------|-------|----------------|------------------|-----------|----------------|--------|--------------|
| atch 1509203 - SW846 3510C                        |         | 0    |              |       |                |                  | -         |                |        |              |
| Blank (1509203-BLK1)                              |         |      |              |       | Prz            | nared 12₋        | Mav-15 An | alyzed: 13-N   | lav-15 |              |
| alpha-BHC                                         | < 0.005 | U    | µg/l         | 0.005 | <u>1 10</u>    |                  |           |                | hay-15 |              |
| alpha-BHC [2C]                                    | < 0.005 | U    | μg/i<br>μg/l | 0.005 |                |                  |           |                |        |              |
| beta-BHC                                          | < 0.008 | U    |              | 0.008 |                |                  |           |                |        |              |
| beta-BHC [2C]                                     | < 0.008 | U    | µg/l         | 0.008 |                |                  |           |                |        |              |
|                                                   |         | U    | µg/l         |       |                |                  |           |                |        |              |
| delta-BHC                                         | < 0.006 |      | µg/l         | 0.006 |                |                  |           |                |        |              |
| delta-BHC [2C]                                    | < 0.005 | U    | µg/l         | 0.005 |                |                  |           |                |        |              |
| gamma-BHC (Lindane)                               | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| gamma-BHC (Lindane) [2C]                          | < 0.006 | U    | µg/l         | 0.006 |                |                  |           |                |        |              |
| Heptachlor                                        | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Heptachlor [2C]                                   | < 0.006 | U    | µg/l         | 0.006 |                |                  |           |                |        |              |
| Aldrin                                            | < 0.006 | U    | µg/l         | 0.006 |                |                  |           |                |        |              |
| Aldrin [2C]                                       | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Heptachlor epoxide                                | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Heptachlor epoxide [2C]                           | < 0.006 | U    | µg/l         | 0.006 |                |                  |           |                |        |              |
| Endosulfan I                                      | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Endosulfan I [2C]                                 | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Dieldrin                                          | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Dieldrin [2C]                                     | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| 4,4'-DDE (p,p')                                   | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| 4,4'-DDE (p,p') [2C]                              | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Endrin                                            | < 0.006 | U    | µg/l         | 0.006 |                |                  |           |                |        |              |
| Endrin [2C]                                       | < 0.009 | U    | µg/l         | 0.009 |                |                  |           |                |        |              |
| Endosulfan II                                     | < 0.006 | U    | µg/l         | 0.006 |                |                  |           |                |        |              |
| Endosulfan II [2C]                                | < 0.008 | U    | µg/l         | 0.008 |                |                  |           |                |        |              |
| 4,4'-DDD (p,p')                                   | < 0.006 | U    | µg/l         | 0.006 |                |                  |           |                |        |              |
| 4,4'-DDD (p,p') [2C]                              | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Endosulfan sulfate                                | < 0.006 | U    | µg/l         | 0.006 |                |                  |           |                |        |              |
| Endosulfan sulfate [2C]                           | < 0.008 | U    | µg/l         | 0.008 |                |                  |           |                |        |              |
| 4,4'-DDT (p,p')                                   | < 0.012 | U    | µg/l         | 0.012 |                |                  |           |                |        |              |
| 4,4'-DDT (p,p') [2C]                              | < 0.008 | U    | µg/l         | 0.008 |                |                  |           |                |        |              |
| Methoxychlor                                      | < 0.023 | U    | µg/l         | 0.023 |                |                  |           |                |        |              |
| Methoxychlor [2C]                                 | < 0.022 | U    | µg/l         | 0.022 |                |                  |           |                |        |              |
| Endrin ketone                                     | < 0.007 | U    | µg/l         | 0.007 |                |                  |           |                |        |              |
| Endrin ketone [2C]                                | < 0.008 | U    | µg/l         | 0.008 |                |                  |           |                |        |              |
| Endrin aldehyde                                   | < 0.005 | U    | µg/l         | 0.005 |                |                  |           |                |        |              |
| Endrin aldehyde [2C]                              | < 0.007 | U    | μg/l         | 0.007 |                |                  |           |                |        |              |
| alpha-Chlordane                                   | < 0.007 | U    | μg/l         | 0.007 |                |                  |           |                |        |              |
| alpha-Chlordane [2C]                              | < 0.006 | U    | μg/l         | 0.006 |                |                  |           |                |        |              |
| gamma-Chlordane                                   | < 0.006 | U    | μg/l         | 0.006 |                |                  |           |                |        |              |
| gamma-Chlordane [2C]                              | < 0.006 | U    | μg/l         | 0.006 |                |                  |           |                |        |              |
| Toxaphene                                         | < 0.245 | U    | μg/l         | 0.245 |                |                  |           |                |        |              |
| Toxaphene [2C]                                    | < 0.267 | U    | μg/l         | 0.267 |                |                  |           |                |        |              |
| Chlordane                                         | < 0.053 | U    | µg/l         | 0.053 |                |                  |           |                |        |              |
| Chlordane [2C]                                    | < 0.059 | U    | μg/l         | 0.059 |                |                  |           |                |        |              |
| Alachlor                                          | < 0.012 | U    | µg/l         | 0.012 |                |                  |           |                |        |              |
| Alachlor [2C]                                     | < 0.008 | U    | μg/l         | 0.008 |                |                  |           |                |        |              |
| Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)         | 0.189   |      | μg/l         |       | 0.200          |                  | 94        | 30-150         |        |              |
| Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)<br>[2C] | 0.197   |      | µg/l         |       | 0.200          |                  | 99        | 30-150         |        |              |
| Surrogate: Decachlorobiphenyl (Sr)                | 0.197   |      | µg/l         |       | 0.200          |                  | 99        | 30-150         |        |              |
| Surrogate: Decachlorobiphenyl (Sr) [2C]           | 0.220   |      | μg/l         |       | 0.200          |                  | 110       | 30-150         |        |              |

| Analyte(s)                                        | Result         | Flag  | Units        | *RDL           | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits   | RPD            | RPD<br>Limit |
|---------------------------------------------------|----------------|-------|--------------|----------------|----------------|------------------|-----------|------------------|----------------|--------------|
| • */                                              | Result         | 1 lug | Onito        | KDL            | Level          | ixeouit          | , utile   | Linits           |                | Liiiit       |
| Batch 1509203 - SW846 3510C                       |                |       |              |                | Dr             | parad: 12        |           | nalyzed: 13-N    | 101 15         |              |
| LCS (1509203-BS1)                                 | 0.444          |       |              | 0.005          |                | epareu. 12-      |           |                  | <u>//ay-15</u> |              |
| alpha-BHC                                         | 0.411          |       | µg/l         | 0.005          | 0.500          |                  | 82        | 40-140           |                |              |
| alpha-BHC [2C]                                    | 0.421          |       | µg/l         | 0.006          | 0.500          |                  | 84        | 40-140           |                |              |
| beta-BHC                                          | 0.458          |       | µg/l         | 0.008          | 0.500          |                  | 92        | 40-140           |                |              |
| beta-BHC [2C]                                     | 0.448          |       | µg/l         | 0.007          | 0.500          |                  | 90        | 40-140           |                |              |
| delta-BHC<br>delta-BHC [2C]                       | 0.274          |       | µg/l         | 0.006<br>0.005 | 0.500<br>0.500 |                  | 55<br>56  | 40-140<br>40-140 |                |              |
| gamma-BHC (Lindane)                               | 0.278<br>0.433 |       | µg/l         | 0.005          | 0.500          |                  | 56<br>87  | 40-140<br>40-140 |                |              |
| <b>o</b> ( )                                      |                |       | µg/l         | 0.007          | 0.500          |                  | 84        | 40-140<br>40-140 |                |              |
| gamma-BHC (Lindane) [2C]<br>Heptachlor            | 0.420<br>0.443 |       | µg/l         | 0.000          | 0.500          |                  | 89        | 40-140<br>40-140 |                |              |
| Heptachlor [2C]                                   |                |       | µg/l         | 0.007          | 0.500          |                  | 89<br>94  | 40-140<br>40-140 |                |              |
| Aldrin                                            | 0.468<br>0.456 |       | µg/l         | 0.006          | 0.500          |                  | 94<br>91  | 40-140<br>40-140 |                |              |
| Aldrin [2C]                                       | 0.456          |       | µg/l<br>µg/l | 0.000          | 0.500          |                  | 95        | 40-140<br>40-140 |                |              |
| Heptachlor epoxide                                | 0.469          |       |              | 0.007          | 0.500          |                  | 93<br>94  | 40-140           |                |              |
| Heptachlor epoxide [2C]                           | 0.469          |       | µg/l<br>µg/l | 0.007          | 0.500          |                  | 94<br>94  | 40-140<br>40-140 |                |              |
| Endosulfan I                                      | 0.471          |       | μg/i<br>μg/l | 0.000          | 0.500          |                  | 94<br>93  | 40-140<br>40-140 |                |              |
| Endosulfan I [2C]                                 | 0.469          |       | μg/i<br>μg/l | 0.007          | 0.500          |                  | 93<br>94  | 40-140           |                |              |
| Dieldrin                                          | 0.409          |       | μg/i<br>μg/l | 0.007          | 0.500          |                  | 94<br>95  | 40-140           |                |              |
| Dieldrin [2C]                                     | 0.473          |       | μg/l         | 0.007          | 0.500          |                  | 96        | 40-140           |                |              |
| 4,4'-DDE (p,p')                                   | 0.480          |       | μg/l         | 0.007          | 0.500          |                  | 96        | 40-140           |                |              |
| 4,4'-DDE (p,p') [2C]                              | 0.477          |       | μg/l         | 0.007          | 0.500          |                  | 95        | 40-140           |                |              |
| Endrin                                            | 0.591          |       | μg/l         | 0.007          | 0.500          |                  | 118       | 40-140           |                |              |
| Endrin [2C]                                       | 0.588          |       | μg/l         | 0.009          | 0.500          |                  | 118       | 40-140           |                |              |
| Endosulfan II                                     | 0.467          |       | μg/l         | 0.006          | 0.500          |                  | 93        | 40-140           |                |              |
| Endosulfan II [2C]                                | 0.494          |       | µg/l         | 0.008          | 0.500          |                  | 99        | 40-140           |                |              |
| 4,4'-DDD (p,p')                                   | 0.467          |       | µg/l         | 0.006          | 0.500          |                  | 93        | 40-140           |                |              |
| 4,4'-DDD (p,p') [2C]                              | 0.465          |       | μg/l         | 0.007          | 0.500          |                  | 93        | 40-140           |                |              |
| Endosulfan sulfate                                | 0.397          |       | μg/l         | 0.006          | 0.500          |                  | 79        | 40-140           |                |              |
| Endosulfan sulfate [2C]                           | 0.404          |       | μg/l         | 0.008          | 0.500          |                  | 81        | 40-140           |                |              |
| 4,4'-DDT (p,p')                                   | 0.459          |       | μg/l         | 0.012          | 0.500          |                  | 92        | 40-140           |                |              |
| 4,4'-DDT (p,p') [2C]                              | 0.467          |       | μg/l         | 0.008          | 0.500          |                  | 93        | 40-140           |                |              |
| Methoxychlor                                      | 0.493          |       | μg/l         | 0.023          | 0.500          |                  | 99        | 40-140           |                |              |
| Methoxychlor [2C]                                 | 0.479          |       | μg/l         | 0.022          | 0.500          |                  | 96        | 40-140           |                |              |
| Endrin ketone                                     | 0.457          |       | µg/l         | 0.007          | 0.500          |                  | 91        | 40-140           |                |              |
| Endrin ketone [2C]                                | 0.441          |       | µg/l         | 0.008          | 0.500          |                  | 88        | 40-140           |                |              |
| Endrin aldehyde                                   | 0.419          |       | µg/l         | 0.005          | 0.500          |                  | 84        | 40-140           |                |              |
| Endrin aldehyde [2C]                              | 0.449          |       | µg/l         | 0.007          | 0.500          |                  | 90        | 40-140           |                |              |
| alpha-Chlordane                                   | 0.410          |       | µg/l         | 0.007          | 0.500          |                  | 82        | 40-140           |                |              |
| alpha-Chlordane [2C]                              | 0.408          |       | µg/l         | 0.006          | 0.500          |                  | 82        | 40-140           |                |              |
| gamma-Chlordane                                   | 0.422          |       | µg/l         | 0.006          | 0.500          |                  | 84        | 40-140           |                |              |
| gamma-Chlordane [2C]                              | 0.406          |       | µg/l         | 0.006          | 0.500          |                  | 81        | 40-140           |                |              |
| Alachlor                                          | 0.412          |       | µg/l         | 0.012          | 0.500          |                  | 82        | 40-140           |                |              |
| Alachlor [2C]                                     | 0.396          |       | µg/l         | 0.008          | 0.500          |                  | 79        | 40-140           |                |              |
| Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)         | 0.189          |       | µg/l         |                | 0.200          |                  | 95        | 30-150           |                |              |
| Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)<br>[2C] | 0.190          |       | µg/l         |                | 0.200          |                  | 95        | 30-150           |                |              |
| Surrogate: Decachlorobiphenyl (Sr)                | 0.197          |       | µg/l         |                | 0.200          |                  | 98        | 30-150           |                |              |
| Surrogate: Decachlorobiphenyl (Sr) [2C]           | 0.201          |       | µg/l         |                | 0.200          |                  | 100       | 30-150           |                |              |
| LCS Dup (1509203-BSD1)                            |                |       |              |                | Pre            | epared: 12-      | May-15 Ar | alyzed: 13-N     | <u>/lay-15</u> |              |
| alpha-BHC                                         | 0.423          |       | µg/l         | 0.005          | 0.500          |                  | 85        | 40-140           | 3              | 20           |
| alpha-BHC [2C]                                    | 0.366          |       | μg/l         | 0.006          | 0.500          |                  | 73        | 40-140           | 14             | 20           |
| beta-BHC                                          | 0.481          |       | µg/l         | 0.008          | 0.500          |                  | 96        | 40-140           | 5              | 20           |

| .nalyte(s)                                        | Result | Flag | Units | *RDL  | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits   | RPD            | RPI<br>Lim |
|---------------------------------------------------|--------|------|-------|-------|----------------|------------------|-----------|------------------|----------------|------------|
|                                                   | Kesuit | Flag | Onits | KDL   | Level          | Result           | 70KEC     | Linnts           | KFD            | LIIII      |
| atch 1509203 - SW846 3510C                        |        |      |       |       |                |                  |           |                  |                |            |
| LCS Dup (1509203-BSD1)                            |        |      |       |       | Pre            | epared: 12-      | May-15 Ar | nalyzed: 13-N    | <u>/lay-15</u> |            |
| beta-BHC [2C]                                     | 0.394  |      | µg/l  | 0.007 | 0.500          |                  | 79        | 40-140           | 13             | 20         |
| delta-BHC                                         | 0.294  |      | µg/l  | 0.006 | 0.500          |                  | 59        | 40-140           | 7              | 20         |
| delta-BHC [2C]                                    | 0.245  |      | µg/l  | 0.005 | 0.500          |                  | 49        | 40-140           | 12             | 20         |
| gamma-BHC (Lindane)                               | 0.444  |      | µg/l  | 0.007 | 0.500          |                  | 89        | 40-140           | 3              | 20         |
| gamma-BHC (Lindane) [2C]                          | 0.366  |      | µg/l  | 0.006 | 0.500          |                  | 73        | 40-140           | 14             | 20         |
| Heptachlor                                        | 0.448  |      | µg/l  | 0.007 | 0.500          |                  | 90        | 40-140           | 1              | 20         |
| Heptachlor [2C]                                   | 0.404  |      | µg/l  | 0.006 | 0.500          |                  | 81        | 40-140           | 15             | 20         |
| Aldrin                                            | 0.459  |      | µg/l  | 0.006 | 0.500          |                  | 92        | 40-140           | 0.8            | 20         |
| Aldrin [2C]                                       | 0.415  |      | µg/l  | 0.007 | 0.500          |                  | 83        | 40-140           | 14             | 20         |
| Heptachlor epoxide                                | 0.457  |      | µg/l  | 0.007 | 0.500          |                  | 91        | 40-140           | 3              | 20         |
| Heptachlor epoxide [2C]                           | 0.410  |      | µg/l  | 0.006 | 0.500          |                  | 82        | 40-140           | 14             | 20         |
| Endosulfan I                                      | 0.451  |      | µg/l  | 0.007 | 0.500          |                  | 90        | 40-140           | 3              | 20         |
| Endosulfan I [2C]                                 | 0.409  |      | µg/l  | 0.007 | 0.500          |                  | 82        | 40-140           | 14             | 20         |
| Dieldrin                                          | 0.465  |      | µg/l  | 0.007 | 0.500          |                  | 93        | 40-140           | 2              | 20         |
| Dieldrin [2C]                                     | 0.417  |      | µg/l  | 0.007 | 0.500          |                  | 83        | 40-140           | 14             | 20         |
| 4,4'-DDE (p,p')                                   | 0.470  |      | µg/l  | 0.007 | 0.500          |                  | 94        | 40-140           | 2              | 20         |
| 4,4'-DDE (p,p') [2C]                              | 0.413  |      | µg/l  | 0.007 | 0.500          |                  | 83        | 40-140           | 14             | 20         |
| Endrin                                            | 0.546  |      | µg/l  | 0.006 | 0.500          |                  | 109       | 40-140           | 8              | 20         |
| Endrin [2C]                                       | 0.503  |      | μg/l  | 0.009 | 0.500          |                  | 101       | 40-140           | 16             | 20         |
| Endosulfan II                                     | 0.466  |      | μg/l  | 0.006 | 0.500          |                  | 93        | 40-140           | 0.2            | 20         |
| Endosulfan II [2C]                                | 0.429  |      | μg/l  | 0.008 | 0.500          |                  | 86        | 40-140           | 14             | 20         |
| 4,4'-DDD (p,p')                                   | 0.465  |      | μg/l  | 0.006 | 0.500          |                  | 93        | 40-140           | 0.4            | 20         |
| 4,4'-DDD (p,p') [2C]                              | 0.408  |      | μg/l  | 0.007 | 0.500          |                  | 82        | 40-140           | 13             | 20         |
| Endosulfan sulfate                                | 0.412  |      | μg/l  | 0.006 | 0.500          |                  | 82        | 40-140           | 4              | 20         |
| Endosulfan sulfate [2C]                           | 0.354  |      | µg/l  | 0.008 | 0.500          |                  | 71        | 40-140           | 13             | 20         |
| 4,4'-DDT (p,p')                                   | 0.426  |      | μg/l  | 0.012 | 0.500          |                  | 85        | 40-140           | 7              | 20         |
| 4,4'-DDT (p,p') [2C]                              | 0.392  |      | μg/l  | 0.008 | 0.500          |                  | 78        | 40-140           | 18             | 20         |
| Methoxychlor                                      | 0.455  |      | μg/l  | 0.023 | 0.500          |                  | 91        | 40-140           | 8              | 20         |
| Methoxychlor [2C]                                 | 0.404  |      | μg/l  | 0.020 | 0.500          |                  | 81        | 40-140           | 17             | 20         |
| Endrin ketone                                     | 0.457  |      | μg/l  | 0.002 | 0.500          |                  | 91        | 40-140           | 0.05           | 20         |
| Endrin ketone [2C]                                | 0.385  |      | μg/l  | 0.007 | 0.500          |                  | 77        | 40-140           | 14             | 20         |
| Endrin aldehyde                                   | 0.385  |      |       | 0.005 | 0.500          |                  | 86        | 40-140           | 2              | 20         |
| Endrin aldehyde [2C]                              | 0.429  |      | µg/l  | 0.005 | 0.500          |                  | 79        | 40-140           | 13             | 20         |
| alpha-Chlordane                                   | 0.395  |      | µg/l  | 0.007 | 0.500          |                  | 79<br>80  | 40-140<br>40-140 | 2              | 20         |
| alpha-Chlordane [2C]                              |        |      | µg/l  |       |                |                  |           |                  |                | 20         |
|                                                   | 0.357  |      | µg/l  | 0.006 | 0.500          |                  | 71        | 40-140           | 13             |            |
| gamma-Chlordane                                   | 0.415  |      | µg/l  | 0.006 | 0.500          |                  | 83        | 40-140           | 2              | 20         |
| gamma-Chlordane [2C]                              | 0.356  |      | µg/l  | 0.006 | 0.500          |                  | 71        | 40-140           | 13             | 20         |
| Alachlor                                          | 0.424  |      | µg/l  | 0.012 | 0.500          |                  | 85        | 40-140           | 3              | 20         |
| Alachlor [2C]                                     | 0.351  |      | µg/l  | 0.008 | 0.500          |                  | 70        | 40-140           | 12             | 20         |
| Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)         | 0.190  |      | µg/l  |       | 0.200          |                  | 95        | 30-150           |                |            |
| Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)<br>[2C] | 0.165  |      | μg/l  |       | 0.200          |                  | 82        | 30-150           |                |            |
| Surrogate: Decachlorobiphenyl (Sr)                | 0.189  |      | µg/l  |       | 0.200          |                  | 94        | 30-150           |                |            |
| Surrogate: Decachlorobiphenyl (Sr) [2C]           | 0.172  |      | µg/l  |       | 0.200          |                  | 86        | 30-150           |                |            |

| analyte(s)                         | Result   | Flag        | Units      | *RDL     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits   | RPD           | RPD<br>Limit |
|------------------------------------|----------|-------------|------------|----------|----------------|------------------|--------|------------------|---------------|--------------|
| Batch 1509210 - SW846 3050B        |          |             |            |          |                |                  |        |                  |               |              |
| <u>Blank (1509210-BLK1)</u>        |          |             |            |          | Pre            | epared: 12-      | May-15 | Analyzed: 14-N   | <u>1ay-15</u> |              |
| Selenium                           | 0.424    | J           | mg/kg wet  | 0.371    |                |                  |        |                  |               |              |
| Lead                               | < 0.272  | U           | mg/kg wet  | 0.272    |                |                  |        |                  |               |              |
| Cadmium                            | < 0.0158 | U           | mg/kg wet  | 0.0158   |                |                  |        |                  |               |              |
| Arsenic                            | < 0.239  | U           | mg/kg wet  | 0.239    |                |                  |        |                  |               |              |
| Silver                             | < 0.108  | U           | mg/kg wet  | 0.108    |                |                  |        |                  |               |              |
| Chromium                           | < 0.0942 | U           | mg/kg wet  | 0.0942   |                |                  |        |                  |               |              |
| Barium                             | < 0.0586 | U           | mg/kg wet  | 0.0586   |                |                  |        |                  |               |              |
| Duplicate (1509210-DUP1)           |          |             | Source: SC | 07216-04 | Pre            | epared: 12-      | May-15 | Analyzed: 14-N   | <u>lay-15</u> |              |
| Cadmium                            | 0.433    | J           | mg/kg dry  | 0.0179   |                | 0.406            |        |                  | 7             | 20           |
| Selenium                           | < 0.420  | U           | mg/kg dry  | 0.420    |                | 0.434            |        |                  |               | 20           |
| Lead                               | 175      |             | mg/kg dry  | 0.309    |                | 176              |        |                  | 0.7           | 20           |
| Silver                             | < 0.123  | U           | mg/kg dry  | 0.123    |                | BRL              |        |                  |               | 20           |
| Chromium                           | 12.9     |             | mg/kg dry  | 0.107    |                | 12.7             |        |                  | 2             | 20           |
| Arsenic                            | 7.50     |             | mg/kg dry  | 0.271    |                | 7.93             |        |                  | 6             | 20           |
| Barium                             | 102      |             | mg/kg dry  | 0.0665   |                | 102              |        |                  | 0.3           | 20           |
| <u> Matrix Spike (1509210-MS1)</u> |          |             | Source: SC | 07216-04 | Pre            | epared: 12-      | May-15 | Analyzed: 14-M   | lay-15        |              |
| Lead                               | 311      |             | mg/kg dry  | 0.309    | 140            | 176              | 96     | 75-125           |               |              |
| Chromium                           | 135      |             | mg/kg dry  | 0.107    | 140            | 12.7             | 87     | 75-125           |               |              |
| Selenium                           | 106      |             | mg/kg dry  | 0.421    | 140            | 0.434            | 75     | 75-125           |               |              |
| Arsenic                            | 119      |             | mg/kg dry  | 0.272    | 140            | 7.93             | 79     | 75-125           |               |              |
| Cadmium                            | 109      |             | mg/kg dry  | 0.0179   | 140            | 0.406            | 77     | 75-125           |               |              |
| Silver                             | 116      |             | mg/kg dry  | 0.123    | 140            | BRL              | 83     | 75-125           |               |              |
| Barium                             | 316      | QM7         | mg/kg dry  | 0.0666   | 140            | 102              | 153    | 75-125           |               |              |
| Matrix Spike Dup (1509210-MSD1)    |          |             | Source: SC | 07216-04 | Pre            | epared: 12-      | May-15 | Analyzed: 14-M   | lay-15        |              |
| Selenium                           | 98.9     | QM7         | mg/kg dry  | 0.398    | 132            | 0.434            | 74     | 75-125           | 7             | 20           |
| Arsenic                            | 108      |             | mg/kg dry  | 0.257    | 132            | 7.93             | 76     | 75-125           | 9             | 20           |
| Silver                             | 92.9     | QM7,<br>QR9 | mg/kg dry  | 0.116    | 132            | BRL              | 70     | 75-125           | 22            | 20           |
| Chromium                           | 125      | QIN         | mg/kg dry  | 0.101    | 132            | 12.7             | 85     | 75-125           | 8             | 20           |
| Lead                               | 279      |             | mg/kg dry  | 0.292    | 132            | 176              | 78     | 75-125           | 11            | 20           |
| Cadmium                            | 102      |             | mg/kg dry  | 0.0169   | 132            | 0.406            | 77     | 75-125           | 7             | 20           |
| Barium                             | 282      | QM7         | mg/kg dry  | 0.0629   | 132            | 102              | 136    | 75-125           | 11            | 20           |
| Post Spike (1509210-PS1)           |          |             | Source: SC | 07216-04 | Pre            | epared: 12-      | May-15 | Analyzed: 14-M   | <u>lay-15</u> |              |
| Arsenic                            | 107      | QM9         | mg/kg dry  | 0.250    | 129            | 7.93             | 77     | 80-120           |               |              |
| Cadmium                            | 99.2     | QM9         | mg/kg dry  | 0.0165   | 129            | 0.406            | 77     | 80-120           |               |              |
| Chromium                           | 118      |             | mg/kg dry  | 0.0987   | 129            | 12.7             | 81     | 80-120           |               |              |
| Lead                               | 259      | QM9         | mg/kg dry  | 0.285    | 129            | 176              | 64     | 80-120           |               |              |
| Selenium                           | 97.8     | QM9         | mg/kg dry  | 0.388    | 129            | 0.434            | 75     | 80-120           |               |              |
| Silver                             | 98.1     | QM9         | mg/kg dry  | 0.113    | 129            | BRL              | 76     | 80-120           |               |              |
| Barium                             | 201      | QM9         | mg/kg dry  | 0.0614   | 129            | 102              | 76     | 80-120           |               |              |
| Reference (1509210-SRM1)           |          |             |            |          | Pre            | epared: 12-      | May-15 | Analyzed: 14-M   | lay-15        |              |
| Chromium                           | 47.5     |             | mg/kg wet  | 0.0955   | 51.7           |                  | 92     | 78.72-120<br>.58 |               |              |
| Silver                             | 14.9     |             | mg/kg wet  | 0.110    | 17.3           |                  | 86     | 74.26-125<br>.43 |               |              |
| Lead                               | 43.8     |             | mg/kg wet  | 0.276    | 47.9           |                  | 91     | 81.16-118<br>.51 |               |              |
| Cadmium                            | 40.7     |             | mg/kg wet  | 0.0160   | 44.6           |                  | 91     | 81.93-118<br>.18 |               |              |
| Arsenic                            | 54.1     |             | mg/kg wet  | 0.242    | 61.8           |                  | 87     | 77.78-122<br>.13 |               |              |
|                                    |          |             |            |          |                |                  |        |                  |               |              |

|                                     |          |                |            |                 | Spike | Source      |        | %REC                    |        | RPE  |
|-------------------------------------|----------|----------------|------------|-----------------|-------|-------------|--------|-------------------------|--------|------|
| nalyte(s)                           | Result   | Flag           | Units      | *RDL            | Level | Result      | %REC   | Limits                  | RPD    | Limi |
| atch 1509210 - SW846 3050B          |          |                |            |                 |       |             |        |                         |        |      |
| Reference (1509210-SRM1)            |          |                |            |                 | Pre   | epared: 12- | May-15 | Analyzed: 14-N          | lay-15 |      |
| Barium                              | 80.2     |                | mg/kg wet  | 0.0594          | 84.7  |             | 95     | 82.03-117<br>.36        |        |      |
| Reference (1509210-SRM2)            |          |                |            |                 | Pre   | epared: 12- | May-15 | Analyzed: 14-N          | lay-15 |      |
| Selenium                            | 66.9     |                | mg/kg wet  | 0.376           | 79.6  |             | 84     | 77.07-122<br>.29        |        |      |
| Silver                              | 14.6     |                | mg/kg wet  | 0.110           | 17.3  |             | 84     | 74.26-125               |        |      |
| Arsenic                             | 52.8     |                | mg/kg wet  | 0.242           | 61.8  |             | 85     | .43<br>77.78-122<br>.13 |        |      |
| Cadmium                             | 39.1     |                | mg/kg wet  | 0.0160          | 44.6  |             | 88     | 81.93-118<br>.18        |        |      |
| Chromium                            | 46.8     |                | mg/kg wet  | 0.0955          | 51.7  |             | 91     | 78.72-120<br>.58        |        |      |
| Lead                                | 42.7     |                | mg/kg wet  | 0.276           | 47.9  |             | 89     | 81.16-118<br>.51        |        |      |
| Barium                              | 81.0     |                | mg/kg wet  | 0.0594          | 84.7  |             | 96     | 82.03-117<br>.36        |        |      |
| atch 1509211 - EPA200/SW7000 Series |          |                |            |                 |       |             |        |                         |        |      |
| Blank (1509211-BLK1)                |          |                |            |                 | Pre   | epared: 12- | May-15 | Analyzed: 13-M          | lay-15 |      |
| Mercury                             | < 0.0019 | U              | mg/kg wet  | 0.0019          |       |             |        |                         |        |      |
| Duplicate (1509211-DUP1)            |          |                | Source: SC | 07216-04        | Pre   | epared: 12- | May-15 | Analyzed: 13-N          | lay-15 |      |
| Mercury                             | 0.522    | GS1,<br>QR6, D | mg/kg dry  | 0.0107          |       | 0.766       |        |                         | 38     | 20   |
| Matrix Spike (1509211-MS1)          |          |                | Source: SC | <u>07216-04</u> | Pre   | epared: 12- | May-15 | Analyzed: 13-N          | lay-15 |      |
| Mercury                             | 0.933    | QM8, D         | mg/kg dry  | 0.0107          | 0.228 | 0.766       | 73     | 75-125                  |        |      |
| Matrix Spike Dup (1509211-MSD1)     |          |                | Source: SC | 07216-04        | Pre   | epared: 12- | May-15 | Analyzed: 13-M          | lay-15 |      |
| Mercury                             | 1.01     | D              | mg/kg dry  | 0.0099          | 0.211 | 0.766       | 115    | 75-125                  | 8      | 20   |
| Post Spike (1509211-PS1)            |          |                | Source: SC | 07216-04        | Pre   | epared: 12- | May-15 | Analyzed: 13-M          | lay-15 |      |
| Mercury                             | 1.02     | D              | mg/kg dry  | 0.0107          | 0.227 | 0.766       | 110    | 80-120                  |        |      |
| Reference (1509211-SRM1)            |          |                |            |                 | Pre   | epared: 12- | May-15 | Analyzed: 13-N          | lay-15 |      |
| Mercury                             | 1.54     | D              | mg/kg wet  | 0.0392          | 1.33  |             | 116    | 74.62-125<br>.62        |        |      |

| Semivolatile Organic Cor | npounds by GC $\cdot$ | - Pesticide Breakdown Report |
|--------------------------|-----------------------|------------------------------|
|--------------------------|-----------------------|------------------------------|

| Analyte(s)                     | Column | % Breakdown | Limit |
|--------------------------------|--------|-------------|-------|
| Batch S504535                  |        |             |       |
| Performance Mix (S504535-PEM1) |        |             |       |
| 4,4'-DDT (p,p')                | 1      | 5.8         | 15.0  |
| Endrin                         | 1      | 7.6         | 15.0  |
| 4,4'-DDT (p,p')                | 2      | 2.6         | 15.0  |
| Endrin                         | 2      | 3.5         | 15.0  |

## Notes and Definitions

- D Data reported from a dilution GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample. QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery. QM8 The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery. QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits. The RPD exceeded the QC control limits; however precision is demonstrated with acceptable RPD values for MS/MSD. QR6 QR9 RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery. R01 The Reporting Limit has been raised to account for matrix interference. U Analyte included in the analysis, but not detected at or above the MDL.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly LaPlante Rebecca Merz

| Rev. Jan 2014                                                                                                                                                                                                                          | 11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical dom JUUN | 4076 • www.spec   | • FAX 413-789- | 13-789-9018         | A 01001 • 4     | ·e • Agawam, M | 11 Almgren Driv        |                                                                                                |                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|----------------|---------------------|-----------------|----------------|------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|
| Refrigerated 🗌 DI VOA Frozen 📄 Soil Jar Frozen                                                                                                                                                                                         | Ambient A Iced Ref                                                                                       | and 2             |                |                     |                 |                |                        |                                                                                                |                                           |
| Custody Scalis: Present intact Broken                                                                                                                                                                                                  | Condition upon receipt: Custod                                                                           | Connected 3       |                |                     |                 |                |                        |                                                                                                |                                           |
|                                                                                                                                                                                                                                        |                                                                                                          | Correction Factor | PES.           | 11/15               | 5               |                | 13/2                   | 1-CLON                                                                                         |                                           |
| ilined labellege.com                                                                                                                                                                                                                   | E-mail to: Cloud 4                                                                                       | S & L             | 20%            | SI N                | 15              |                | 1920                   | am                                                                                             | (Mar)                                     |
| · · · · ·                                                                                                                                                                                                                              | EDD format: TQU                                                                                          | Temp °C           | Time:          | Date:               |                 | y:             | Received by:           | Relinquished by:                                                                               | Relinc                                    |
| - TOTA                                                                                                                                                                                                                                 |                                                                                                          |                   |                | -                   | eS à            | 1150 6         | 5/8/15                 | 10-04-115                                                                                      | 1 10                                      |
| 0 1355                                                                                                                                                                                                                                 |                                                                                                          |                   |                |                     | 50              | 1120 6         | 518.12                 | 70-03-2                                                                                        | 1001                                      |
| - tou                                                                                                                                                                                                                                  |                                                                                                          |                   |                | 1                   | 50              | 1030 6         | 5 18 15                | 12-02-2121                                                                                     | 20                                        |
| - toco                                                                                                                                                                                                                                 |                                                                                                          |                   |                | -                   | 50              | 10.20 6        | 21812                  | TP-02 - 3'                                                                                     | Co                                        |
| - toch -                                                                                                                                                                                                                               |                                                                                                          |                   |                | 1                   | So              | 0 15 HB        | 5/8/15                 | 4P-01-6'                                                                                       | 30                                        |
|                                                                                                                                                                                                                                        |                                                                                                          | X                 |                | 1                   | · 6W            | 9 006          | 51815                  | to. MW                                                                                         | 5                                         |
|                                                                                                                                                                                                                                        |                                                                                                          | 1                 |                |                     | 05              | 13156          | 5 8 15                 | 12-06-1.5                                                                                      | 10                                        |
|                                                                                                                                                                                                                                        |                                                                                                          | +                 |                | 1                   | 50              | 14/0 6         | 51/8/5                 | 15 - 40 -                                                                                      | 50                                        |
|                                                                                                                                                                                                                                        |                                                                                                          | 7                 |                | 1                   | 95              | 1245 6         | S1/8/5                 | TP-05-31                                                                                       | 1 02                                      |
|                                                                                                                                                                                                                                        |                                                                                                          | XX                |                | 1                   | 50              | 5 asil         | 5/8/15                 | TP-04-2,5'                                                                                     | Sconth 6-1                                |
| State-specific 1                                                                                                                                                                                                                       |                                                                                                          | C                 | -              | -                   |                 | Time:          | Date:                  | Sample ID:                                                                                     | Lab ID:                                   |
|                                                                                                                                                                                                                                        |                                                                                                          | CRI<br>PS S       | Clear          | _                   | ype<br>atrix    |                | C=Compsite             | = Grab                                                                                         | G=                                        |
| chlorin QASP A* QASP B*                                                                                                                                                                                                                |                                                                                                          | 1 march           | Glass          | . Vials<br>er Glass |                 |                | X3=                    | X2=                                                                                            | X1=                                       |
| Standard No QC                                                                                                                                                                                                                         |                                                                                                          | ta)<br>+Tu<br>+Tu |                | 5                   |                 | Jas            | abient Air SG=Soil Gas | SL=Sludge A=Indoor/Ambient Air                                                                 | 0=0il S0=Soil                             |
| MA DEP MCP CAM Report? Yes No                                                                                                                                                                                                          | Analysis                                                                                                 | ••                | Containers     | - Co                |                 | WW=Waste Water | SW=Surface Water WW    | GW=Groundwater SW=                                                                             | DW=Dinking Water                          |
| QA/QC Reporting Notes:<br>* additional charges may appply                                                                                                                                                                              | List Preservative Code below:                                                                            |                   |                |                     | 6=Ascorbic Acid | 5=NaOH 6=As    | 4=HNO;<br>11=          | $1=Na_2S2O_3 \qquad 2=HC1 \qquad 3=H_2SO_4$ $1SO_4 \qquad 9=Deionized Water \qquad 10=H_3PO_4$ | F=Field Filtered 1=Ni<br>7=CH3OH 8=NaHSO4 |
| Tidentica                                                                                                                                                                                                                              | sampier(s):                                                                                              |                   | Quote/RQN:     | 6                   | 120100          | P.O No.        |                        | Dan Noll                                                                                       | Project Mgr:                              |
| State: NY                                                                                                                                                                                                                              | Location: COCNU                                                                                          |                   |                | 1110                | 100             |                | 614                    | chester NY 19                                                                                  | - Pc                                      |
| 1 thespited                                                                                                                                                                                                                            | Site Name: COMPAND                                                                                       |                   |                | ME                  | 11              | Lar            | to 201 aladiept        | amilia anguilie                                                                                | 200                                       |
| lede                                                                                                                                                                                                                                   | Project No: 2150                                                                                         |                   | lausen         | 1~ Cla              | N 16601         | Invoice To: W  | r lage and             | NOW ANDHOLDA                                                                                   | Report To: DOV                            |
| L Standard TAT - 7 to 10 business days<br>Rush TAT - Date Needed: <u>3 DCCU</u><br>All TATs subject to laboratory approval<br>Min. 24-hr notification needed for rushes<br>Samples disposed after 60 days unless otherwise instructed. | 20                                                                                                       | RECORD            | hereard        | CUST(               | OF (            |                |                        | ECTRUM ANALYTICAL, INC.<br>Featuring<br>HANIBAL TECHNOLOGY                                     | SPECTRUM                                  |
| Special Handling:                                                                                                                                                                                                                      |                                                                                                          |                   |                |                     |                 |                |                        |                                                                                                | ,                                         |
| n.                                                                                                                                                                                                                                     | SC 07216 F                                                                                               |                   |                |                     |                 |                |                        |                                                                                                |                                           |

|                                                                                                     |                                            |                                      | 10DA              | Cr W                         | Relinquished by:          |  |  | es. |  | 13 TP-07-7.   | 1 12 TP-OK-3. | Sco7216-11 TP-25-1.5 | Lab ID: Sample ID:                    | G= Grab        | X1= X2=          |    | DW=Dinking Water GW=Groundwater SW=Surf | F=Field Filtered 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub><br>7=CH3OH 8=NaHSO <sub>4</sub> 9=Deionized Water 10=H <sub>3</sub> PO <sub>4</sub> | Project Mgr: Dan Noll | Rochuster NY 1 | 300 State St Suite | Report To: Chinall a labella participation | ) IECH     | SPECTRUM ANALYTICAL, INC.                                                                                                                           |                                                                 |                   |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|-------------------|------------------------------|---------------------------|--|--|-----|--|---------------|---------------|----------------------|---------------------------------------|----------------|------------------|----|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|--------------------|--------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|
| 11 Almgren Drive • Agawam, MA                                                                       |                                            |                                      | 22                | UPSI                         | Received by:              |  |  |     |  | 418/15 1430 G | 5/8/15 1320 6 | 9 aher 2/8/5         | Date: Time: T                         | C=Compsite     | N3=              | SG | SW=Surface Water WW=Waste Water         | 4=HNO3 5=NaOH<br>11=                                                                                                                                                           | P.O No.: 2            | -              | 201                | Invoice To: V                              | N          |                                                                                                                                                     | CHAIN                                                           |                   |
| 11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com |                                            |                                      | 5/115 830         | 2/8/15 1800                  | Date: . Time:             |  |  |     |  | 1 05          | 1 05.         | 50 1                 | Ma<br># of<br># of                    | atrix<br>VOA ' | r Glass<br>Glass |    | Containers                              | 6=Ascorbic Acid<br>12=                                                                                                                                                         | 150606 Quote/RON:     |                | SAME               | Tichera Chasen                             | Note Da Al | Page 2 of 2                                                                                                                                         | CHAIN OF CUSTODY RE                                             |                   |
| 176 · www.spectrum-analyticafor                                                                     | Ambient Piced                              | Condition upon receipt:              | Correction Factor | Original 3 CE-mail to: 0.0.4 | Temp °C 12 EDD format: EG |  |  |     |  |               |               |                      |                                       |                |                  |    | Analysis                                | List Preservative Code below:                                                                                                                                                  | sunbretts:            | t              | Site Name: COYAI   | Project No: X 1                            | 0          | A<br>Se                                                                                                                                             | RECORD                                                          | 0 - 100 0         |
| tid Rev. Jan 2014                                                                                   | Refrigerated DI VOA Frozen Soil Jar Frozen | Custody Seals: Present Intact Broken |                   | quitino a) latellage . con   | 2010                      |  |  |     |  | - tord .      | 0 +0-0        | a tord               | C State-specific reporting standards: | ]              |                  |    | MA DEP MCP CAM Report? Yes No           | QA/QC Reporting Notes:<br>* additional charges may appply                                                                                                                      | 1                     | MA I.          | in propiera        | 0 60                                       | n ka le    | All TATs subject to laboratory approval<br>Min. 24-hr notification needed for rushes<br>Samples disposed after 60 days unless otherwise instructed. | Standard TAT - 7 to 10 business days<br>Rush TAT - Date Needed: | Special Handling: |

-



01113701 1/12 RRD

| Rev Jan 2014                                                                                                                                        | ALA MAN - 413 700 MAIO - DAY 413 700 4076 - www.snothing.anglyting and 100 | 76 - www.snoc | V 413 700 40 | DATO - EA  | 113 700          |                 |                |                     |                                                                                                                                                                                          |                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------|--------------|------------|------------------|-----------------|----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| rated 🛛 DI VOA Frozen 📄 Soil Jar Frozen                                                                                                             | Ambient Diced ARefrigerated                                                | RD,02         |              | -          | 「田山              |                 |                |                     |                                                                                                                                                                                          |                                                      |
| als; 🗌 Present 🔲 Intact 🔲 Broken                                                                                                                    | Condition upon receipt: Custody Seals:                                     | E'LL          |              | 10 100     | -                |                 |                |                     |                                                                                                                                                                                          |                                                      |
|                                                                                                                                                     |                                                                            | 0             | PEK          | 15         | 5/11             |                 |                | 212                 | CLADI                                                                                                                                                                                    | 1.                                                   |
| india labellage.com                                                                                                                                 | Bernail to: Dog 41/1                                                       | C.L.          | 200          | 5          | SKI              |                 |                | 1691                | N                                                                                                                                                                                        | OMO                                                  |
| S light S/II                                                                                                                                        | R EDD formati TQUIS                                                        | Temp °C       | Time:        |            | Date:            |                 | by:            | Received by:        | hed by:                                                                                                                                                                                  | Relinquished by:                                     |
| min agant 1                                                                                                                                         | XX                                                                         | i i           |              | -          | 6.5              | 9               | 1150           | 218/12              | 5-1-40-2                                                                                                                                                                                 | 1 walt                                               |
| - TOUS Kun per                                                                                                                                      | ×                                                                          |               |              | -          | 50               | 5               | 1120           | 51/8/2              | P-03-2'                                                                                                                                                                                  | 1                                                    |
| - AJOHA                                                                                                                                             |                                                                            |               |              | -          | 20               | 6               | 1030           | 5 18/15             | 7-02-515                                                                                                                                                                                 | 1. 40                                                |
| 0 1000                                                                                                                                              |                                                                            |               |              | -          | ¢                | 6 5             | 1020           | 5/8/15              | P-ca - 3'                                                                                                                                                                                | T. Co                                                |
| 1040                                                                                                                                                |                                                                            |               | ALL N        | -          | 0                | 60              | 546            | 5/8/15              | P-01-6'                                                                                                                                                                                  | 7 30                                                 |
|                                                                                                                                                     |                                                                            | X             |              | -          | 2 F              | 6 6             | 900            | 51815               | to MI                                                                                                                                                                                    | 5 1                                                  |
|                                                                                                                                                     |                                                                            |               | *            |            | 20               | GS              | 1315           | 5/8/15              | 12-06-1.5                                                                                                                                                                                | 2                                                    |
| · Bus/1                                                                                                                                             |                                                                            | +             | X            | -          | 0                | 5 5             | 1410           | 51815               | P-07 - 31                                                                                                                                                                                | -                                                    |
| - alieron fice-                                                                                                                                     |                                                                            |               | 7            | -          | 20               | 5               | 1242           | SI/8/5              | P-05-3'                                                                                                                                                                                  | 1 02 T                                               |
| - (ellection Time charged                                                                                                                           |                                                                            | ×             | 4            |            | So               | 6               | tro            | 21/8/12             | . b-04-2'2.                                                                                                                                                                              | CO7216-11 T                                          |
|                                                                                                                                                     | (                                                                          | 1             | #            | -          | -                | +               | 12:00          | Date:               | Sample ID:                                                                                                                                                                               | Lab ID:                                              |
| heck Ther IT Ther IV*                                                                                                                               | Cad<br>Zi                                                                  | Pes           | of Plas      | of Am      | Matrix<br>of VO. | Туре            |                | C=Compsite          | Grab                                                                                                                                                                                     | _<br>                                                |
| NJ Reduced*                                                                                                                                         | m                                                                          | 1             | stic         | -          |                  |                 |                |                     |                                                                                                                                                                                          |                                                      |
| lorin                                                                                                                                               | c                                                                          | +7            | mo           | _          | ials             |                 |                | X3=                 | X2=                                                                                                                                                                                      | X1=                                                  |
|                                                                                                                                                     | m                                                                          | -10<br>-10    | ta)          | -          |                  |                 | Gas            | ent Air SG=Soil Gas | SL=Sludge A=Indoor/Ambient Air                                                                                                                                                           | O=Oil SO=Soil                                        |
| MA DEP MCP CAM Report? Yes No<br>CT DPH RCP Report? Yes No                                                                                          | Analysis                                                                   | 3             | ners         | Containers |                  |                 | WW=Waste Water | SW=Surface Water WW | GW=Groundwater SW=Sur                                                                                                                                                                    | DW=Dinking Water                                     |
| QA/QC Reporting Notes:<br>* additional charges may appply                                                                                           | List Preservative Code below:                                              | Lis           |              |            | Acid             | 6=Ascorbic Acid | 5=NaOH 6=      | 4=HNO <sub>3</sub>  | <b>1</b> =Na <sub>2</sub> S2O <sub>3</sub> <b>2</b> =HCl <b>3</b> =H <sub>2</sub> SO <sub>4</sub><br>SO <sub>4</sub> <b>9</b> =Deionized Water <b>10</b> =H <sub>3</sub> PO <sub>4</sub> | F=Field Filtered 1=N<br>7=CH3OH 8=NaHSO <sub>4</sub> |
|                                                                                                                                                     | Sambaci(s),                                                                |               | E .          | Quote/RQN: | 0006             | SIS             | P.O No.:2      |                     | Dan Noll                                                                                                                                                                                 | Telephone #: 50                                      |
| State NY                                                                                                                                            | to                                                                         |               |              |            |                  |                 |                | 14                  | hester NY 146                                                                                                                                                                            | 1000                                                 |
| that is the second second                                                                                                                           | Sile Name: Corning Th                                                      |               |              |            | SAME             | $\uparrow$      |                | 10C                 | tatest Suite                                                                                                                                                                             | 200 E                                                |
| 0 7.5                                                                                                                                               | Project No: X 1) V V                                                       | -             | 0            | CIERNACO   | 6001100          | VV IC           | Invoice To:    | aprice with         | APAN WOUND IN OR                                                                                                                                                                         | CMA                                                  |
| 5                                                                                                                                                   | i                                                                          | Now I         | 10 M         | 1 land     |                  |                 |                | 1                   | -                                                                                                                                                                                        | HANIBAL TECHNOLOGY                                   |
| All TATs subject to laboratory approval<br>Min. 24-hr notification needed for rushes<br>Samples disposed after 60 days unless otherwise instructed. | All TATs sub<br>Min. 24-hr n<br>Samples disp                               |               |              | e D        | F                | Page            | 1              | AD BC               | LATICAL, INC.                                                                                                                                                                            | SPECTRUM ANALYTICAL, INC.                            |
| Special Handling: 5/13 Pc,<br>Standard TAT - 7 to 10 business days 5/13 Pc,<br>Rush TAT - Date Needed: <u>3 DC 4</u> Univer                         |                                                                            | RECORD        |              | STOI       | HAIN OF CUSTODY  | 0               | CHAI           |                     |                                                                                                                                                                                          | 12                                                   |
|                                                                                                                                                     | C07216 m                                                                   |               |              | -          |                  |                 |                |                     |                                                                                                                                                                                          | •                                                    |
|                                                                                                                                                     | 1                                                                          |               |              |            |                  |                 |                |                     |                                                                                                                                                                                          |                                                      |

2

| Special landing:<br>severe landi                                          | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d 🗌 DI VOA Frozen 🗌 Soil Jar Frozen                       | Refrigerated                                                                       |                      | 20   |         |          |                     |               |                           |                                                              |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|------|---------|----------|---------------------|---------------|---------------------------|--------------------------------------------------------------|-----------------------------|
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Present Intact                                            |                                                                                    | ondition upon receip |      |         |          |                     |               |                           | -                                                            |                             |
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | -                                                                                  |                      |      | 830     | 11/15    | (A                  |               | 2/1                       | LAN                                                          | 1                           |
| $ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{ c c c c c c } \hline \below \\ \hline $ | @ labellage.                                              | 20quilir                                                                           |                      | E &  | 90%     | SI S     | 5                   |               | 1631                      | N                                                            | Ong                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · An SI                                                   | 2                                                                                  | /                    |      | Time:   | Date:    |                     | by:           | Received                  | red by:                                                      | Relinquish                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 400000                                                  | E C                                                                                | XXX S                | 1    |         |          | 5                   | 1 1           | -                         | 5-1-40-2                                                     | V WOLT                      |
| $ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | toto Run                                                  |                                                                                    | ×                    |      |         | -        | S                   | Judo          | 18                        |                                                              | 1 oc Ti                     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | toto Run                                                  | ×                                                                                  | ×                    |      |         | 1        | 5                   | N             | 18                        | 1-02-51                                                      | 48                          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sector Instance     CHAIN OF CUSTODY RECORD     Social Instance       array wave     Anal Underling     Name To The Custod Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000                                                      |                                                                                    |                      |      |         | 1        | 5                   | 1020          | 1.81                      | - ca - 3'                                                    | T C                         |
| Security and the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4000                                                      |                                                                                    |                      |      |         | 1        | 650                 | 546           | -                         | 2-01-6                                                       | 32. 30                      |
| Second Handling:     Special Handling:       New Tree Down House     Mail Ulder life, LW       New Tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source     Source <td></td> <td></td> <td></td> <td>X</td> <td></td> <td>1</td> <td></td> <td>900</td> <td>-</td> <td>to.M</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |                                                                                    |                      | X    |         | 1        |                     | 900           | -                         | to.M                                                         | -                           |
| Special Handling:     Special Handling:       available:     Noise Te       available:     Applied of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Service     CHAIN OF CUSTODY RECORD     Special funding:<br>Special funding:<br>Numeric function     Special funding:<br>Special funding:<br>Special funding:<br>Numeric function       Structure     Data NBU Uldic function     Implement of the special function     Special funding:<br>Special fundif<br>Special funding:<br>Special funding:<br>Special funding:<br>Specia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                                                                    |                      |      | ×       | 1 1 1    | S                   | 13:15         | 5/8/15                    | .01                                                          | 2                           |
| Special Handling:<br>Survey for the provided in                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sector Participation     CHAIN OF CUSTODY RECORD<br>Instant Participation     Special Fanding: Sn<br>Special Fanding: Special Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 Busi                                                    |                                                                                    |                      | 7    | X       | 1        |                     | 0141          | 18/                       | · 07 - 3                                                     | e3 7                        |
| Section and the section of the sectin of the sectin of the section of the section of the secti                                                                                                                                                                                                                                                                                                                                                                                                                                    | Special Handling:     Special Handling:       server from the brand from the b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d                                                         |                                                                                    |                      |      | 7       | 1        |                     |               |                           | 1001                                                         | 1 02 T                      |
| ANALTICAL NO.     CHAIN OF CUSTODY RECORD     Special Handling:     S/3       ANALTICAL NO.     Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Andrew Transme       CHAIN OF CUSTODY RECORD       Special Handling:<br>Special Handling:<br>Transme       Special Handling:<br>Special Handling:<br>Special Handling:<br>Special Handling:<br>Transme       Special Handling:<br>Special Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collection Time                                           |                                                                                    |                      | X    | X       | 1 K      | 6 So                | to            | 51815                     | -04-21                                                       | 7216-11 T                   |
| Special Handling:<br>Submit of Life     Special Handling:<br>Special Handling:<br>Special Handling:     Special Handling:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | And Trobal Net     CHAIN OF CUSTODY RECORD     Special Handlag:<br>Special Handlag:<br>Terming     Special Handlag:<br>Special Handlage<br>Special Handlage<br>Speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State-specific reporting standard                         | 1                                                                                  | 2                    | -    | -       | # of     | -                   | Time:         | Date:                     | Sample ID:                                                   | Lab ID:                     |
| CHAIN OF CUSTODY RECORD     Special Handling:       Name     Number Te:     Number Te:       Note:     The INFORMATION INFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | And Work     CHAIN OF CUSTODY RECORD     Special Handling:<br>Special Handling:     Special Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ther II* Ther IV*                                         | la                                                                                 | ir                   |      |         | Ambe     |                     |               | C=Compsite                | rab                                                          | G= Gr                       |
| Special Handling:       Special Handling:       S/13 f         WANNER       Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHAIN OF CUSTODY RECORD       Social Handling:         NANTOLINE.       Name       Name       Name       Social Handling:       Social Handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASP A*                                                    | d.                                                                                 | nc                   |      | c       | er Glass |                     |               |                           | -                                                            |                             |
| CHAIN OF CUSTODY RECORD       Special Handling:       Slandard TAT - To 10 business days         Yamer       Inge L of L       Inge L of L       Index TAT - Do 10 business days       Index TAT - Do 10 business days         Yamer       Inge L of L         Yamer       Inge L of L       Inge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AMAY TOUL NV:       CHAIN OF CUSTODY RECORD       Special Handling:       Standard TAT - 7 to 10 business days         AMAY TOUL NV:       Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CT DPH RCP Report? Yes                                    |                                                                                    |                      |      | a)      | 1        |                     | l Gas         | SG                        | A=Inde                                                       |                             |
| Strum AMATTICALING:     CHAIN OF CUSTODY RECORD       BETRUM AMATTICALING:     Page L of Log       BETRUM AMATTICALING:     Invoice To: M [t.lsc.]] // Clauser       Page L of Log     Page L of Log       Page L of Log     Project No: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHAIN OF CUSTODY RECORD       Page L of Dan NoLl droll of below       Provide To: Mittactive Code below       Provide To: Mittactive Code below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           | Non in                                                                             | Analysis             | 5    | tainers | Con      |                     | v=Waste Water |                           |                                                              | -                           |
| CHAIN OF CUSTODY RECORD<br>COROMANALYTICAL, INC.<br>Fouring<br>INNIBAL TECHNOLOGY<br>INNIBAL T                                                                                                                                                                                                       | CHAIN OF CUSTODY RECORD<br>ECTRUM AMALTICAL, NC.<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner<br>Fourner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QA/QC Reporting Notes:<br>* additional charges may appply | below:                                                                             | Preservative Code    | List |         |          | Ascorbic Aci<br>12= |               | 4=HNO <sub>3</sub><br>II= | a <sub>2</sub> S2O <sub>3</sub> 2=HCl<br>9=Deionized Water 1 | tered<br>8=NaH              |
| CHAIN OF CUSTODY RECORD<br>PECTRUM ANALYTICAL, INC.<br>Perturning<br>HANIBAL TECHNOLOGY<br>HANIBAL TECHNOLOGY<br>HAN                                                                                                                                                                                                       | CHAIN OF CUSTODY RECORD<br>FORTHUM ANALYTICAL, INC.<br>FECTIVIN ANALYTICAL, INC.<br>FECTIVICAL, INC.<br>FECTIVIN ANALYTICAL, INC.<br>FECTIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/1000                                                   | Apro Att                                                                           | Sampler(s):          |      | IQN:    | 6        | ISO                 | P.O No.:      |                           | Dan Noll                                                     | roject Mgr:                 |
| CHAIN OF CUSTODY RECORD<br>PECTRUM ANALYTICAL, INC.<br>PECTRUM ANALYTICAL, INC.<br>Page L of D<br>Page L of D<br>Page L of D<br>Project No: 21<br>Project No: 21<br>Project No: 21<br>Project No: 21<br>Site Name: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHAIN OF CUSTODY RECORD<br>FEATURE<br>Feature<br>HANBALTECHNOLOGY<br>DOWN NOT A DOT OTABLE LONG<br>Page L of D<br>Page L of D<br>Project No: 21<br>Stie Name: Cut 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                         |                                                                                    | Location:            |      |         |          | 1                   |               | -                         | rester NY 140                                                | Rod                         |
| CHAIN OF CUSTODY RECORD<br>EXERTIME ANALYTICAL, INC.<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORTHING<br>FORT | CHAIN OF CUSTODY RECORD<br>FECTRUM ANALYTICAL, INC.<br>FECTRUM ANALYTICAL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spited                                                    |                                                                                    | Site Name:           |      |         | TME      | 5                   | icore         | C201 alad tep             |                                                              | A OO S                      |
| Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHAIN OF CUSTODY RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                         | 2 Wolar                                                                            | Project No:          | 1    | isen    | 0        | W IChe              | Invoice To:   | lage .cc                  | W droite                                                     | Dan                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Special Handling:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T - 7 to 10 business days                                 | Standard TAT<br>Rush TAT - D<br>All TATs subje<br>Min. 24-hr not<br>Samples dispos |                      | CORD |         |          |                     | CHAI          |                           | ATALICATION TO A CONTRACT OF A CHARACTERIA                   | SPECTRUM ANA<br>HANIBAL TEC |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | Sp                                                                                 |                      | 0    | -       |          |                     |               |                           |                                                              |                             |

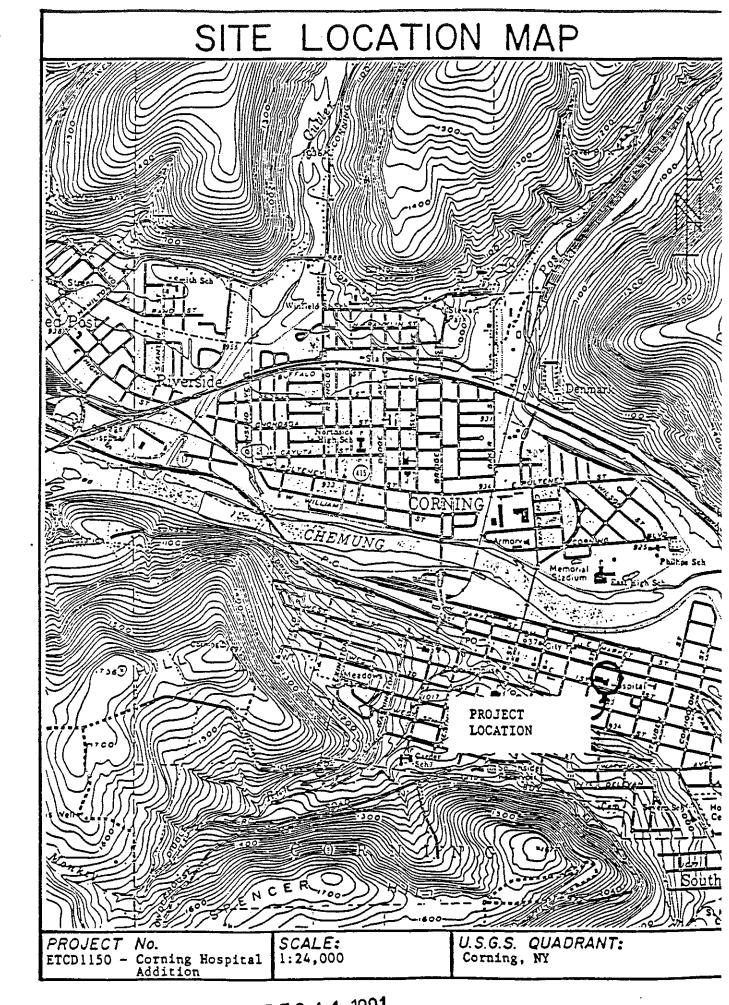
2



Engineering Architecture Environmental

## **APPENDIX 3**

**1991 Soil Boring Report Appendices** 


### APPENDIX I

 $\langle \mathbf{C}$ 

### SITE LOCATION MAP

DEC 1 1 1991

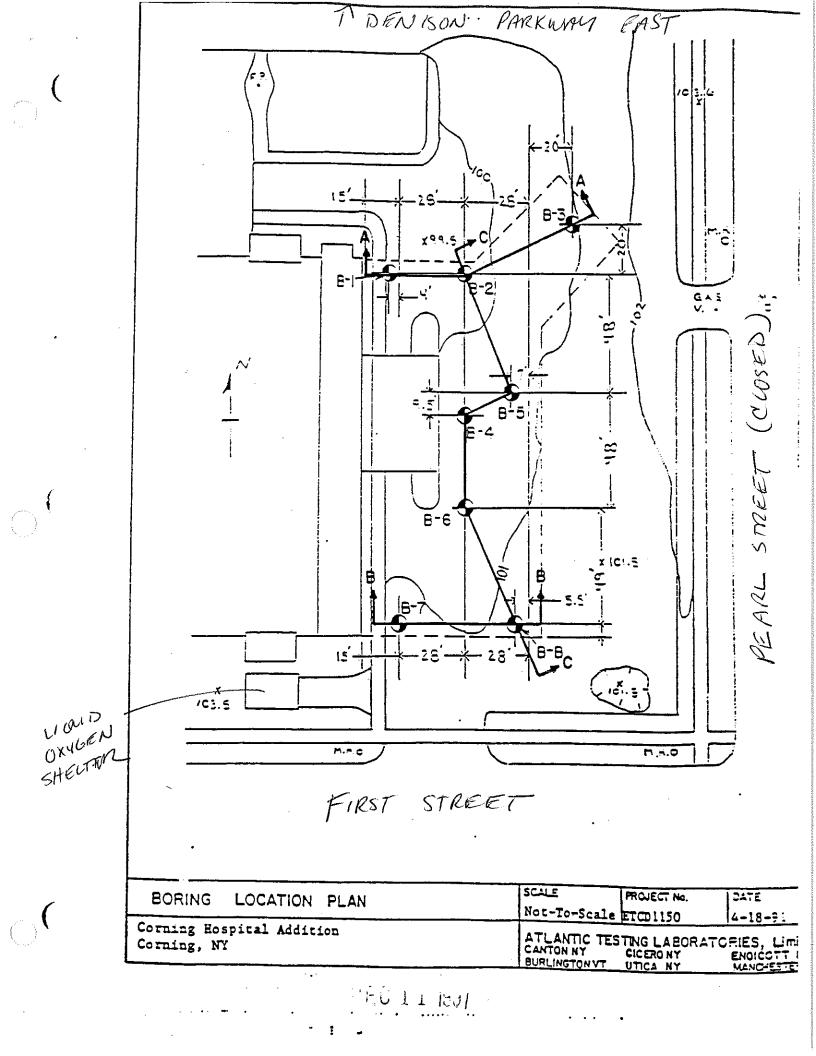
DE<sup>1</sup> 1 1 1991



CC

 $\mathcal{C}$ 

()


## APPENDIX II

 $\frown$  (

୍ର (

() ( •

### BORING LOCATION PLAN



## APPENDIX III

(

 $\odot$ 

**(** 

## SOIL BORING LOGS

al ATLANTIC TESTING LABORATORIES, Limited

SUBSURFACE INVESTIGATION

Report No. ETCD1150-1-5-91

| Image: State of the second state of | W<br>F | - c<br>بر ال                                  | Na.<br>:0011 | <u>B-1</u><br>ng Ho: |             | Sheet <u>1</u><br>Wt<br>Fail<br>Cos | of,<br>Sompl |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,<br>   | ote, etort <u>4/18/</u><br>Ground Wa<br>Oote <u>Time</u><br><u>18/91 PM</u><br>(18/91 PM | 91 Finish                         | 4/18/9<br>Caeing a<br>32.0<br>Caved |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------|--------------|----------------------|-------------|-------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|
| 1       0.0       0.4       AUGER       0.4'       ASPHALT         1       0.4       1.0       AUGER       1.0'       Brown cmf GRAVEL; and cmf SAND         1       1       1.0       3.0       ss       5       Dark Brown cmf GRAVEL; and cmf SAND;         1       1       2       3.0'       Ss       5       Dark Brown cmf GRAVEL; and cmf SAND;         1       1       2       3.0'       Ss       2       Brown cmf GRAVEL; and cmf SAND;         1       1       2       3.0'       Ss       2       Brown cmf GRAVEL; and cmf SAND;         1       1       13       13       Slightly plastic)       Slightly plastic)         1       1       17       5.0'       Sightly plastic)       Sightly plastic)         1       1       10       7.0'       Slightly plastic)       Sightly plastic)         1       10       10       7.0'       Similar Soils (saturated, non-plastic)         1       10       11       11       Similar Soils (saturated, non-plastic)         1       11       11       11       Similar Soils (saturated, non-plastic)         1       1       12       25       25       27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEPTH  | CASING                                        | 1.0W3/FT.    | SAMPLE<br>No.        | OF<br>SAMPL | TH<br>. E                           |              | BLOWS ON<br>SAMPLER<br>PER <u>S<sup>4</sup></u><br>Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | f-fine<br>m-medium                                                                       | and - 3<br>some - 2<br>jittle - 1 | 5 - 50 %<br>0 - 35 %<br>0 - 20 %    |
| 0.4       1.0       AUGER       1.0'       Brown cmf GRAVEL; and cmf SAND         1       1.0       3.0       ss 5       Dark Brown cmf GRAVEL; and cmf         1       1.0       2       Dark Brown cmf GRAVEL; and cmf         1       2       3.0'       Ss 5         1       2       2.0'       Dark Brown cmf GRAVEL; and cmf         1       2       2.0'       Brown cmf GRAVEL; and cmf SAND;         1       2       3.0'       Ss 2         1       1       13       Ittle SILT; trace CLAY (moist, slightly plastic)         1       3A       5.0       7.0       ss 4         1       3A       5.0       7.0 ss 4       6.0'       Singhtly plastic)         1       3A       5.0       7.0 ss 4       6.0'       Singhtly plastic)         1       3A       5.0       7.0 ss 4       6.0'       Singhtly plastic)         1       3A       5.0       7.0 ss 4       6.0'       Singhtly plastic)         10       10       7.0'       Ittle SILT (wet, non-plastic)       Similar Soils (saturated, non-plastic)         1       11       11       11       11       11       11         1       25 <th></th> <th></th> <th>7</th> <th>!<br/> </th> <th></th> <th></th> <th>AUC</th> <th></th> <th>10 4'</th> <th>ASPHALT</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                               | 7            | !<br>                |             |                                     | AUC          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 4'    | ASPHALT                                                                                  |                                   |                                     |
| Image: Solution of the system of the syst |        |                                               |              |                      |             |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Brown cmf GRA                                                                            |                                   |                                     |
| Image: Construct of the system of the sys |        |                                               |              | 1                    | 1.0         | 3.0                                 | SS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                          |                                   |                                     |
| 1       2       3.0'         1       2       3.0'         1       2       3.0'         1       2       3.0'         1       1       13         1       13       13         1       13       13         1       13       13         1       13       15.0'         1       3A' 5.0       7.0 ss '4         1       6       6.0'         13       10       10         1       10       10         1       10       10         1       10       11         1       10       11         1       11       11         1       11       11         1       11       11         1       11       11         1       11       11         1       12       12         1       11       11         1       12       10         1       11       11         1       11       11         1       12       10         1       125       10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>aon-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                               |              |                      |             |                                     | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |                                                                                          |                                   | aon-                                |
| Image: constraint of the second systemImage: constraint of the second system<                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                               |              |                      |             |                                     | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0'     |                                                                                          |                                   |                                     |
| Image: Solution of the systemImage: Solution of the systemI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                               |              | 2                    | 3.0         | 5.0                                 | SS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                          | •                                 |                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                               |              |                      |             |                                     | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |                                                                                          |                                   | noist,                              |
| 3A       5.0       7.0       ss       4         3B       6.0'       317       317         3B       10       10       30         3C       4       7.0       8.5       8         3C       10       7.0'       1111         3C       10       10       10         3C       10       10       10         3C       10       10       111         3C       10       10       11         3C       11.0       11       11         3C       11       11       11         3C       11.0       11       11         3C       11.0       11       11         3C       11.0       11       11         3C       17.0       11       11         3C       17.0       17.0       11         3C       17.0       17.0       17.0         3C       17.0       17.0       17.0         3C       17.0       17.0       10         3C       17.0       17.0       10         3C       17.0       10       10         3C       10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>,<br/></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                               |              |                      |             |                                     | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,<br>    |                                                                                          |                                   |                                     |
| $\propto$ 3B8 $\omega$ 10 $\omega$ 30 $\omega$ 30 $\omega$ 30 $\omega$ 11 $\omega$ 125 $\omega$ 25 $\omega$ 28 $\omega$ 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                               |              | 3A                   | 5.0         | 7.0                                 | ss           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>_</b> | Tan cmf SAND:                                                                            | some SILT;                        | little                              |
| 0       4       7.0       8.5       ss       8         0       4       7.0       8.5       ss       8         0       4       7.0       8.5       ss       8         1       10       10       10       trace SILT (wet, non-plastic)         1       11       11       11       11         1       11       11       11       11         1       11       11       11       11         1       11       11       11       11         1       11       11       11       11         1       12       11       11       11         1       12       11       11       11         1       12       11       11       11         1       12       12       13       11         1       25       13       13       14       14         1       25       18       13       14       14         1       28       25       18       11       14       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                               | t            |                      |             |                                     | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.0'     | slightly plas                                                                            | tic)                              | SAND.                               |
| C       4       7.0       8.5       ss       8         D       10       10       10       10       10       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       12       12       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1                                             |              | <u>3B</u>            |             |                                     | ┼──          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.0'     | little SILT (                                                                            | wet, non-pla                      | stic)                               |
| 30          5       9.0       11.0       ss       8         Image: Straight of the strai                                                                                                                        |        | <u> </u>                                      |              | 4                    | 7.0         | 8.5                                 | SS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                          |                                   |                                     |
| 5     9.0     11.0     ss     8       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       11     11       12     12       13     13       14     12       15     18       15 <td></td> <td></td> <td>∍</td> <td></td> <td></td> <td></td> <td></td> <td>A second s</td> <td></td> <td>trace SILT (w</td> <td>et, non-plas</td> <td>tic)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                               | ∍            |                      |             |                                     |              | A second s |          | trace SILT (w                                                                            | et, non-plas                      | tic)                                |
| j     j     j       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i       i     i <t< td=""><td>_</td><td><u>                                      </u></td><td>&lt;</td><td></td><td></td><td><u> </u></td><td><u> </u></td><td></td><td>-{</td><td>Similar Soile</td><td>(caturated.</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _      | <u>                                      </u> | <            |                      |             | <u> </u>                            | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -{       | Similar Soile                                                                            | (caturated.                       |                                     |
| 6     15.0     17.0     ss     17       6     15.0     17.0     ss     17       25     25       27     25       27     27       7     20.0     22.0       28     25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _      |                                               | +            | 5                    | 9.0         |                                     | <u>s</u> s   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        | plastic)                                                                                 | (Baturated)                       | <b>NO</b>                           |
| 6       15.0       17.0       ss       17         6       15.0       17.0       ss       17         25       25       25       25         7       20.0       22.0       ss       18         7       20.0       22.0       ss       18         28       25       25       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _      | 1                                             |              |                      |             |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                          |                                   | ,                                   |
| 0         13.0         17.0         0         25           25         25         27           7         20.0         22.0         ss         18           28         25         25         27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                               | Ľ            |                      |             |                                     | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |                                                                                          |                                   |                                     |
| 0         1310         25           25         25           27           7         20.0         22.0         ss         18           28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | +                                             | ┢            | 6                    | 15.0        | 1 17.0                              | 55           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | Similar Soils                                                                            | (saturated)                       |                                     |
| 7         20.0         22.0         ss         18         Similar Soils           7         20.0         22.0         ss         18         Similar Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | +                                             | ╞            |                      | 12.0        |                                     |              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |                                                                                          | -                                 |                                     |
| 7         20.0         22.0         ss         18         Similar Soils           7         20.0         22.0         ss         18         Similar Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                               |              |                      |             |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |                                                                                          |                                   |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 1                                             | +            |                      | . <u> </u>  |                                     | +            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>′</u> |                                                                                          |                                   |                                     |
| 28 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -      | +                                             | ╂            | 7                    | 20.0        | 22.0                                | 55           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1       | Similar Soils                                                                            | 5                                 |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                               |              |                      |             |                                     |              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                                          |                                   |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | -                                             |              |                      |             |                                     |              | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -        |                                                                                          |                                   |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | <u> </u>                                      | ╀            | <u> </u>             |             | <u> </u>                            | +            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2        |                                                                                          |                                   |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | +-                                            | ┝            |                      |             |                                     | +            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                          |                                   |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                               |              |                      |             |                                     |              | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                          |                                   |                                     |

0-1

| · · · ·     |           |                               |               |          | ITIC T            |                |                     |                       | DRATORIES, Limited                                                                                                                                                                                                                        | ·<br>·<br>· |
|-------------|-----------|-------------------------------|---------------|----------|-------------------|----------------|---------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $\odot^{C}$ | DEFTH     | CABING<br>CABING<br>BLOWB/FT. | BAMPLE<br>No. | [ (      |                   | TYPE<br>DANFLE | BLOWS ON<br>Sampler | DEPTH<br>OF<br>Change | CLASSIFICATION         OF         MATERIAL           f = fime         and = 35-50%         and = 35-50%           m = medium         some = 20-35%         and = 10-20%           c = coerse         little = 10-20%         and = 10-20% | PFWFTWATION |
|             |           |                               | 8             | 25.0     | <b>то</b><br>27.0 | ss             | 25                  |                       | Similar Soils                                                                                                                                                                                                                             |             |
|             |           | е<br>ш                        | -             |          |                   |                | 27                  |                       |                                                                                                                                                                                                                                           | <u> </u>    |
|             |           | 0                             |               |          |                   |                | <u>28</u><br>35     |                       | }                                                                                                                                                                                                                                         | -           |
|             |           |                               | 9             | 30.0     | 32.0              |                |                     |                       |                                                                                                                                                                                                                                           | _           |
|             |           | Ď                             |               | 20.0     | 52.0              | 55             | 24                  |                       | Similar Soils                                                                                                                                                                                                                             | -           |
|             |           |                               |               | <u> </u> | 1                 |                | <u>29</u><br>33     |                       | F                                                                                                                                                                                                                                         | _           |
|             |           |                               |               |          | l                 |                |                     |                       | Boring Terminated at 32.0'                                                                                                                                                                                                                | -           |
|             |           |                               |               |          |                   |                |                     |                       | -                                                                                                                                                                                                                                         | <b></b>     |
| *           |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           | _           |
|             |           |                               |               |          |                   |                |                     |                       | -                                                                                                                                                                                                                                         | -           |
| · .         |           |                               |               |          |                   |                |                     |                       | -                                                                                                                                                                                                                                         |             |
|             |           |                               |               |          |                   |                |                     |                       | · · F                                                                                                                                                                                                                                     | <b></b>     |
|             |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           | -           |
| ~1          |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           | _           |
| ·           |           |                               |               |          |                   |                |                     |                       | · ·                                                                                                                                                                                                                                       |             |
|             |           |                               |               |          |                   | •              |                     |                       | -                                                                                                                                                                                                                                         |             |
|             |           |                               |               |          |                   |                |                     | -                     | F                                                                                                                                                                                                                                         | -           |
|             |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             | <b>  </b> |                               |               |          |                   |                |                     |                       | F                                                                                                                                                                                                                                         | -           |
|             |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             | ┝──┤      |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             | ╞──┤      |                               |               |          |                   |                |                     |                       | · · ·                                                                                                                                                                                                                                     |             |
|             |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             | ┟───┤     |                               |               |          | ]<br>[            |                |                     |                       |                                                                                                                                                                                                                                           | -           |
|             |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
| ~           | ┝╼╍┼      |                               | <u> </u>      |          |                   | -+             |                     |                       |                                                                                                                                                                                                                                           |             |
|             |           |                               |               | •        |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             | ┝──┼      |                               |               |          | ·                 |                | •                   | •                     | - <b>-</b>                                                                                                                                                                                                                                | <b></b>     |
|             |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             | ┝──┤      |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           |             |
|             | ┝╼╍╂      |                               | <u> </u>      |          |                   |                |                     |                       |                                                                                                                                                                                                                                           | -           |
|             |           |                               |               |          |                   |                |                     |                       | DEC 1 1 1991                                                                                                                                                                                                                              |             |
| -           |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           | -           |
| -           |           |                               |               |          |                   |                |                     |                       |                                                                                                                                                                                                                                           | -           |

ATLANTIC TESTING LABORATORIES, Limite

SUBSURFACE INVESTIGATION

Report No. ETCD1150-1-5-91

| Ċ        | LIE         | NT.           | <u>Co</u><br>Co | rning Ho                         | <u>ospital</u><br>NY |                        |                                                     |                       | Location of Baring See Plan                                                                                                                                                                              | _          |
|----------|-------------|---------------|-----------------|----------------------------------|----------------------|------------------------|-----------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| P        | R0.         | JEC           | T Sul           | osurfac                          | e Invest             | igat                   | ion-Proposed                                        | Build                 |                                                                                                                                                                                                          | _          |
|          |             |               | Ad              | 11010,                           | Corning              | Hos                    | pital, Corni                                        | ng, NY                | Dote, start <u>4/18/91</u> Finish <u>4/18/91</u>                                                                                                                                                         |            |
| \<br>- F | N L<br>Foll | Co.           | ing H           | 2<br>ammer<br>lb<br>i<br>101.0'± | s. Wi<br>n. Fa<br>Ca | Som;<br><br>il<br>sing | f2<br>pler hammer<br><u>140</u> ibs<br><u>30</u> in | . 4/                  | Ground Woter Observations           Dote         Time         Depth         Coeing at           /18/91         PM         20.0'         32.0'           /18/91         PM         13.0'         Caved at | _          |
|          | i           |               | <u>.</u>        |                                  | H.                   | S. Augi                | <u>4-1/4"</u> 1.                                    | D.                    |                                                                                                                                                                                                          | _          |
| DEPTH    | A SING      | BLOWS/FT      | 3AMPLE<br>No    |                                  | РТН<br>F<br>Ч. I     | T YPE<br>Bample        | BLOWS ON<br>Sampler<br>Per <u>s"</u><br>Sampler     | OEPTH<br>Of<br>Change | CLASSIFICATION       OF       MATERIAL         f-fine       and       35-50%         m-medium       little       10-20%         c-caorse       frace       0-10%                                         | IE TRATIUN |
|          |             | .ē            |                 | FROM                             | <u>! то</u>          | }                      | <u>aa</u> _2*                                       | <u> </u>              | c -caorse trace - 0 - 10%                                                                                                                                                                                |            |
| ļ        | -           | $\frown$      |                 | 0.0                              | 0.4                  | AUG                    |                                                     | 0.4'                  | ASPHALT                                                                                                                                                                                                  |            |
|          | {<br>       | +             | 1               | 0.4                              | 1.0                  | AUG                    |                                                     | 1.0'                  | Brown cmf GRAVEL; and cmf SAND                                                                                                                                                                           | _          |
|          |             |               |                 |                                  |                      |                        | 18                                                  | 3.0'                  | Dark Brown cmf GRAVEL; and cmf<br>SAND; trace SILT (very small<br>amount of Glass and Coal) FILL                                                                                                         | -          |
|          |             |               | 2               | 3.0                              | 5.0                  | ss                     |                                                     | 3.0                   | Brown cmf GRAVEL; and cmf SAND;<br>trace SILT (moist, non-plastic)                                                                                                                                       | _          |
|          |             | 1             |                 |                                  |                      |                        |                                                     | 5.0'                  | Possible Fill                                                                                                                                                                                            |            |
|          | 6           | ।<br>ਤ        | 3               | 5.0                              | 7.0                  | ss<br>                 | 12<br>12<br>8                                       | 7.0'                  | Tan cmf GRAVEL; and cmf SAND;<br>little SILT; trace CLAY (moist,<br>slightly plastic) Possible Fill                                                                                                      |            |
|          |             | - A           | 4               | 7.0                              | 9.0                  | SS.                    |                                                     | 7.0                   | Brown cmf GRAVEL; and cmf SAND;<br>little SILT; trace CLAY (very<br>small amount Coal) (moist,                                                                                                           | _          |
|          |             |               | 5               | 9.0                              | 11.0                 | SS                     | 8<br>6<br>6                                         | 9.0'                  | slightly plastic) Possible Fill<br>Similar Soils (wet, non-plastic)<br>smaller proportions of SULT and                                                                                                   |            |
|          |             |               |                 |                                  |                      |                        | 8                                                   | 13.0'                 | CLAY; no evidence of FILL (wet,<br>non-plastic)                                                                                                                                                          | -          |
|          |             |               | 6               | 15.0                             | 17.0                 | SS                     | 19<br>18                                            |                       | Brown cmf GRAVEL; and cmf SAND;                                                                                                                                                                          | -          |
|          |             |               |                 | -                                |                      |                        | 20<br>54                                            |                       | trace SILT (saturated, non-plastic)                                                                                                                                                                      | _          |
|          |             |               | 7               | 20.0                             | 22.0                 | SS                     | 17<br>27<br>40                                      |                       | Similar Soils                                                                                                                                                                                            | -          |
|          |             |               |                 |                                  |                      |                        | <u>40</u><br><u>35</u>                              |                       | DEC 1 1 1991                                                                                                                                                                                             | -          |
|          | UND         | ): <b>S</b> , | \$HELD          | SAMPLE<br>TUBE<br>SAMPLE         |                      | DRIL                   | LERS                                                | Mike                  | Hawkins, Paul McAloon                                                                                                                                                                                    | -          |

0-1

## ATLANTIC TESTING LABORATORIES, Limited

- (

\_\_\_(

( )(

BCRING No. B-2 REPORT No. ETCD1150-1-5-91 SHEET 2 OF 2

| Ŧ             |                     | -             |      | РТИ<br>JF |                                               | BLOWS ON<br>SAMPLER                    |                       | CLASSIFICATION OF                     | end = 35- 50%                                                    |
|---------------|---------------------|---------------|------|-----------|-----------------------------------------------|----------------------------------------|-----------------------|---------------------------------------|------------------------------------------------------------------|
| DEFTH         | CABING<br>BLOWE/FT. | NALPLE<br>No. |      | F.I       | TVPE                                          | PER<br>3A MPLER<br>0.0                 | DEPTH<br>05<br>Change | m - medium<br>c - cograd              | end = 35-50%<br>some = 20=35%<br>Ettis = 10-20%<br>tracs = 0-10% |
|               | -                   |               | FROM | 70        |                                               | ·····                                  | . •                   |                                       | troca - 0-10%                                                    |
|               | 1                   | 8             | 25.0 | 27.0      | SS                                            | 16                                     |                       | Similar Soils                         |                                                                  |
|               | ¥.                  |               |      |           |                                               | 21                                     |                       |                                       |                                                                  |
|               | Ŀ                   |               |      |           |                                               | 26                                     |                       |                                       |                                                                  |
|               | <u> </u>            |               |      |           |                                               | 29                                     |                       | • •                                   |                                                                  |
|               | <u> </u>            | <u> </u>      |      |           |                                               |                                        |                       |                                       |                                                                  |
|               | 4                   | 9             | 30.0 | 32.0      | ss                                            | 21                                     |                       | Similar Soils                         |                                                                  |
|               |                     |               |      |           |                                               | 28                                     |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               | 29                                     |                       | -                                     |                                                                  |
| $\rightarrow$ |                     |               |      |           |                                               |                                        |                       | Boring Terminated a                   | F 52 7 F                                                         |
| -             |                     |               |      |           | <u>                                      </u> |                                        |                       | Botting ferminated a                  |                                                                  |
| t             |                     |               |      |           | ├ <b>──</b> ┤                                 |                                        |                       |                                       |                                                                  |
|               |                     | İ             |      |           |                                               | · · · · · · · · · · · · · · · · · · ·  |                       |                                       |                                                                  |
| T             |                     |               |      |           |                                               | · · · · · · · · · · · · · · · · · · ·  |                       |                                       |                                                                  |
| _1            |                     |               |      |           | 1                                             |                                        |                       |                                       |                                                                  |
| T             |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| 1             |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| Ī             |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| Ī             |                     | 1             |      |           |                                               |                                        |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| Ī             | [                   |               |      |           |                                               |                                        |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
|               |                     |               |      | -         |                                               | ···· ····                              |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       | · · · · · · · · · · · · · · · · · · · |                                                                  |
| _             |                     |               |      |           | <u> </u>                                      |                                        |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| _             |                     |               |      |           | <b></b>                                       |                                        |                       |                                       |                                                                  |
| _             |                     |               |      |           | <b> </b>                                      |                                        |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| -+-           |                     |               |      |           | $ \rightarrow $                               |                                        |                       |                                       |                                                                  |
| -+            |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| $\rightarrow$ |                     |               |      |           |                                               |                                        |                       |                                       | ,                                                                |
| -+            |                     |               |      |           |                                               |                                        |                       |                                       | •                                                                |
| -+            |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| +             |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| +             |                     |               |      |           |                                               |                                        |                       |                                       | •                                                                |
| -+            |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| +             |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| -+            |                     | †             |      |           |                                               | ······································ |                       |                                       |                                                                  |
| -1            |                     |               |      |           | 1                                             |                                        |                       |                                       |                                                                  |
|               |                     |               |      | •         |                                               | •                                      |                       |                                       |                                                                  |
| -†            |                     |               |      |           |                                               | · · · · · · · · · · · · · · · · · · ·  | •                     | •                                     |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       | •                                                                |
| Ī             |                     | •             |      |           |                                               |                                        |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| Τ             |                     |               |      |           |                                               |                                        |                       | DEC 11                                | 1991                                                             |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
|               |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| Ι             |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |
| T             |                     |               |      |           | 1 ]                                           |                                        |                       |                                       | •                                                                |
| <u> </u>      |                     |               |      |           |                                               |                                        |                       |                                       |                                                                  |

ATLANTIC TESTING LABORATORIES, Limiter

SUBSURFACE INVESTIGATION

Report No. \_\_\_\_\_\_ETCD1150-1-5-91

| C        | LE       | NT.      | <u> </u>      | rning Ho   | <u>ospital</u><br>NY |                  |                                                                                                                | <u> </u>             | Location of Boring               | See Plan                                                                           |          |
|----------|----------|----------|---------------|------------|----------------------|------------------|----------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|------------------------------------------------------------------------------------|----------|
| Pf       | 20,      | JEC      | T Sul         | osurface   | nvest                | igat             | ion-Proposed                                                                                                   | Build                | ing                              |                                                                                    |          |
|          |          |          |               |            | COLUTING             | nos              | pital, Corni                                                                                                   | ng, NI               | Date, start $4/1$                | 8/91 Finish 4/18/9                                                                 | 1        |
| Bo       |          |          |               | 3<br>ammer |                      |                  | f <u>2</u><br>Dier Hammer                                                                                      | _4                   | Ground<br>Dote Time<br>/18/91 AM | Woter Observatione<br>Depth Cosing 19.0 32                                         | . 0 '    |
| v        |          |          | 4             | lb:        |                      |                  | <u>140</u> ibs.                                                                                                |                      | /18/91 AM                        |                                                                                    |          |
| F        | all      |          |               | i <i>i</i> | n. Fal               | H                | 30 in                                                                                                          |                      |                                  |                                                                                    |          |
| ۰.       |          | a s      |               | 101.0±     | Ca                   | sing             |                                                                                                                |                      |                                  |                                                                                    |          |
| Ξ.       |          |          |               |            |                      | S. Augi          | <u>4-1/4"</u> I.                                                                                               | D. —                 |                                  |                                                                                    | <u> </u> |
|          | ĺ        |          |               | DEF        |                      | 1                | BLOWE ON                                                                                                       |                      | CLASSIFICAT                      | TION OF MATERIAL                                                                   | Z        |
| Ŧ        |          | /FT      | L<br>L        | 0          |                      |                  |                                                                                                                | ± w                  | f-fine                           | and - 35 - 50 %                                                                    | DIT.     |
| DEPTH    | CASING   | LOWS/FT  | SAMPLE<br>ND. | SAMP       |                      | T Y PE<br>DAMPLE | PER                                                                                                            | DEPTH<br>DP<br>HAHGE | m-medium                         | FION OF MATERIAL<br>and -35-50%<br>some -20-35%<br>jittle -10-20%<br>trace - 0-10% | NDA      |
| ē        | 3        | Ĭ        | n             | FROM       | та                   | ╡╴╸              | SAMPLER                                                                                                        | a H                  | C-cooree                         | $\frac{100}{1000} = 0 - 10\%$                                                      |          |
|          |          | ~        | Ī             | 0.0        | 0.3                  | AUG              | · · · · · · · · · · · · · · · · · · ·                                                                          | 0.3'                 | ASPHALT                          |                                                                                    |          |
| -        |          |          | 1             | 0.3        | 1.0                  | AUG              | the second s | 1.0'                 |                                  | AVEL; and cmf SAND                                                                 | 1        |
|          | <u> </u> | <u> </u> | <u>  1</u>    | 11.0       | 3.0                  | Iss              | 5                                                                                                              |                      | Brown cmf GR                     | AVEL; and cmf SAND;                                                                |          |
|          |          | $\vdash$ | <u> </u>      | <u> </u>   |                      | <u> </u>         | <u>  5</u><br>  4                                                                                              |                      |                                  | (moist, non-plastic)                                                               | <br>     |
|          |          | 1        | 1             | 1          |                      | 1                | 4                                                                                                              | 3.0'                 | FILL                             |                                                                                    | <b> </b> |
|          |          | L        | 2             | 3.0        | 5.0                  | ss               |                                                                                                                |                      |                                  | AVEL; and cmf SAND;                                                                | <b>*</b> |
|          |          |          | <u> </u><br>  |            | ļ                    | 1                | 4                                                                                                              |                      |                                  | (Glass, Ashes, Coal)                                                               |          |
|          |          |          | <u> </u>      | <u> </u>   |                      |                  | 4 5                                                                                                            | 5.0'                 | (moist, non-                     | plastic) FILL                                                                      | <u> </u> |
|          |          | 1        | 3             | 5.0        | 7.0                  | ss               | 8                                                                                                              |                      | Tan cmf SAND                     | ; and cmf GRAVEL; some                                                             | <u> </u> |
|          |          | <u>.</u> |               |            |                      | <u> </u>         | 9                                                                                                              |                      | SILT (moist)                     | ,                                                                                  |          |
|          |          | 5        |               |            | <u> </u>             | 1                | 7                                                                                                              | 7.0'                 |                                  |                                                                                    | <b></b>  |
|          |          | ∍        | 4             | 7.0        | 9.0                  | ss               | 4                                                                                                              |                      | Brown cmf GR                     | AVEL; and cmf SAND;                                                                |          |
|          | •        | <        | ļ             |            |                      | <u> </u>         | 4                                                                                                              |                      | little SILT                      | (wet, non-plastic)                                                                 |          |
|          | _        |          | 1             | [          |                      | <u> </u>         | 5                                                                                                              |                      |                                  |                                                                                    |          |
|          |          | ┠        | 5             | 9.0        | 11.0                 | 55               | 8                                                                                                              |                      | Similar Soil                     | s (saturated, non-                                                                 |          |
|          |          |          |               |            |                      |                  | 8                                                                                                              |                      | plastic)                         | s (sacuraceu, non-                                                                 |          |
|          |          | ┣        | <u> </u>      |            |                      | <u> </u>         | 13                                                                                                             |                      | -                                |                                                                                    |          |
|          |          | -        |               |            |                      |                  | 13                                                                                                             |                      |                                  |                                                                                    | <u> </u> |
|          |          |          | 6             | 15.0       | 17.0                 | SS               | 15                                                                                                             |                      | Similar Soil                     | s                                                                                  | <b> </b> |
|          |          |          |               |            |                      |                  | 21                                                                                                             |                      |                                  |                                                                                    |          |
|          |          | -        |               |            |                      |                  | <u> </u>                                                                                                       |                      |                                  |                                                                                    |          |
|          |          |          |               |            |                      |                  |                                                                                                                |                      |                                  |                                                                                    | <u> </u> |
|          |          |          | 7             | 20.0       | 22.0                 | SS               | 16                                                                                                             |                      | Brown cmf GR                     | AVEL; some cmf SAND;                                                               |          |
|          | _        |          |               |            |                      |                  | 35                                                                                                             |                      | little SILT                      | (saturated, non-                                                                   |          |
|          |          |          |               |            | <u> </u>             | <u> </u>         | 35                                                                                                             |                      | plastic)                         |                                                                                    | <b></b>  |
|          |          |          |               |            |                      |                  |                                                                                                                |                      |                                  | EC 11 (J9)                                                                         | <u> </u> |
| $\dashv$ | _        |          |               |            |                      | ļ                |                                                                                                                |                      | -                                |                                                                                    |          |
|          |          |          |               |            |                      | l                | 1                                                                                                              |                      |                                  |                                                                                    |          |
|          |          |          |               | E SAMPLE   |                      |                  |                                                                                                                | Mike                 | Hawkins, Paul                    | Velleen                                                                            |          |
|          |          |          |               | TUBE "     |                      | URI              | LLERS                                                                                                          |                      |                                  | ncaloon                                                                            |          |
| -        | -15      | TON      | TYPE          | SAMPLE     |                      |                  |                                                                                                                |                      |                                  |                                                                                    |          |

0-1

## ATLANTIC TESTING LABORATORIES, Limited

\_\_\_\_(

୍ର (

()

BCRING No B-3 REPORT No ETCD1150-1-5-91 SHEET 2 OF 2

| DEFTH    | CABIND<br>BLDW6/FT. | BAMPLE<br>No. | 0      | РТН<br>17<br>49-11 | T Y PE<br>GAMPLE | BLOWS ON<br>SAMPLER<br>PER<br>SAMPLER  | . D£FTH<br>. Df<br>Сманед | CLASSIFICATION OF<br>f = fine:<br>m - medium<br>c - course | MATERIAL<br>end = 35-50%<br>some=20=35%<br>Ettle=10=20%<br>frocs=0=10% |
|----------|---------------------|---------------|--------|--------------------|------------------|----------------------------------------|---------------------------|------------------------------------------------------------|------------------------------------------------------------------------|
| 9        | 24                  | •             | FROM ' | 70                 |                  | 0.0.                                   | °. 5                      | C - CO <b>W</b> 24                                         | froca - 0-10%                                                          |
|          |                     | 18            | 25.0   | 27.0               | ss               | 22                                     | <u> </u>                  | Similar Soils                                              |                                                                        |
|          |                     |               |        |                    | Ì                | 11                                     | 1                         | Jimilar Duris                                              |                                                                        |
| -        | <u>۳</u>            |               |        |                    | ļ                | 8                                      | ]                         |                                                            |                                                                        |
|          | E<br>C<br>E         | <u> </u>      |        |                    |                  |                                        | ł                         |                                                            |                                                                        |
|          | n                   | 9             | 30.0   | 32.0               |                  | 19                                     | ł                         | Similar Soils                                              |                                                                        |
| ÷        | V                   |               |        |                    |                  | 19                                     | 1                         | JIMILEL DULLS                                              |                                                                        |
|          |                     |               |        |                    |                  | 11                                     | 1                         |                                                            |                                                                        |
|          |                     |               |        |                    |                  | 18                                     |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           | Boring Terminated at                                       | 32.01                                                                  |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
| 1        |                     |               |        |                    |                  |                                        | 1                         |                                                            |                                                                        |
|          |                     |               |        |                    | i                |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        | ļ                         |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
| <u>'</u> |                     |               |        |                    |                  |                                        | Í                         |                                                            |                                                                        |
|          |                     | İ             |        |                    |                  | ······                                 |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  | - " <del>- ,</del> • • • •••           |                           |                                                            |                                                                        |
|          |                     | - i           | _      |                    |                  |                                        | ļ                         |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           | •<br>•                                                     |                                                                        |
| -+       |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     | †             |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     | ł             |        |                    | ┝╌╌┥             | <u>·</u>                               |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            | •                                                                      |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               | -      |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  | ······································ |                           |                                                            |                                                                        |
|          |                     |               | .      |                    |                  |                                        |                           |                                                            |                                                                        |
| Ť        |                     |               |        | •                  |                  | •                                      |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        | •                         | •                                                          |                                                                        |
|          |                     |               |        |                    | <b> </b>         |                                        |                           |                                                            |                                                                        |
|          |                     | <u> </u>      |        |                    | ┝──┨             |                                        |                           |                                                            | •                                                                      |
| +        |                     | +             |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
|          |                     |               |        |                    |                  |                                        |                           | DEC 1                                                      | 1 1001                                                                 |
| -        |                     |               |        |                    |                  | · · · · · · · · · · · · · · · · · · ·  |                           |                                                            | 1001                                                                   |
| <u> </u> |                     |               |        |                    |                  |                                        |                           |                                                            |                                                                        |
| <u> </u> | {                   | +             |        |                    | ┝──╂             | ······                                 |                           |                                                            |                                                                        |
| +        | <del></del> ł       | +             |        |                    |                  |                                        |                           | 1                                                          |                                                                        |

al ATLANTIC TESTING LABORATORIES, Limiter

SUBSURFACE INVESTIGATION Rep

(

0-1

Report No. ETCD1150-1-5-91

| PR  | 0J          | EC.      | Add:         | surface<br>ition, | Invest:<br>Corning | Host<br>Host     | on-Proposed<br>oital, Corni | Buildi<br>ng, NY(    | ing<br>Date, stort <u>4/17/91</u> Finish <u>4/17/9</u>                                                                                                                                                                                    | 1                |
|-----|-------------|----------|--------------|-------------------|--------------------|------------------|-----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Bor | ng          | No.      | <u>B-4</u>   |                   | Sheet              |                  |                             |                      | Ground Water Observations<br>Date Time Depth Casing<br>/17/91 PM 22.0' 32                                                                                                                                                                 | ۹ţ               |
|     |             |          | •            | mmsr .            |                    |                  | ier Hammer                  |                      | <u>/17/91 PM 22.0' 32</u><br>/17/91 PM 13.0' Caved                                                                                                                                                                                        |                  |
|     |             |          |              | Ibs.<br>in        |                    |                  | 140 lbs<br>30 in            |                      |                                                                                                                                                                                                                                           | _                |
|     |             |          |              |                   | -                  |                  |                             |                      |                                                                                                                                                                                                                                           |                  |
| 31  | 047         | d El     | ev           | 101.0'            |                    |                  | <u>, 4-1/4"</u> I.          | D. —                 |                                                                                                                                                                                                                                           |                  |
|     |             | <u>.</u> |              | QEP               |                    |                  | CLOWS ON                    |                      | CLASSIFICATION OF MATERIAL                                                                                                                                                                                                                |                  |
|     | CASING      | WS/F1    | 3AMPLE<br>Mộ | OF<br>Sanpi       |                    | T Y PE<br>BAMPLE | SAMPLER<br>PER <u>8</u> "   | DEPTH<br>Of<br>Hamge | and         -35         -50         %           f-fine         some         20         -35         %           m-medium         liftle         10         -20%         c           c         -coorse         frace         0         -10% | HDANC            |
|     | Ş           |          | <b>Š</b>     | FROM              | 70                 | ]⊢≦<br>∣         | SAMPLER                     | α Ξ                  | c -coorse $\operatorname{trace} = 0 - 10\%$                                                                                                                                                                                               | 1 I              |
|     |             | 7        |              | 0.0               | 0.3                | AUG              |                             | 1 0.3'               | ASPHALT                                                                                                                                                                                                                                   | i                |
|     | 4           |          |              | 0.3               |                    | I AUG            |                             | 1.0'                 | Brown cmf GRAVEL; and cmf SAND                                                                                                                                                                                                            | T                |
|     |             | l        | 1            | 1.0               | 3.0                | Iss              |                             |                      | Blackish-Brown cmf SAND; and cmf                                                                                                                                                                                                          | L                |
| _   |             |          |              |                   |                    | 1                | 8                           | 1                    | GRAVEL; some SILT (moist, non-<br>plastic) Possible Fill                                                                                                                                                                                  | ┝                |
|     |             |          |              |                   |                    |                  | 4                           | 3.0'                 |                                                                                                                                                                                                                                           | F                |
| _   |             |          | 2            | 3.0               | 5,0 '              | lss              | 2                           | 1                    | Tan cmf SAND; some SILT; some cmf<br>GRAVEL (moist, non-plastic)                                                                                                                                                                          | 1-1-             |
|     |             |          |              |                   |                    | <u>†</u>         | 4                           |                      | GRAVEE (morst, non-prestic)                                                                                                                                                                                                               |                  |
| -   |             |          | 3            | 5.0               | 7.0                | 155              | 7                           | 5.0'                 | Brown cmf SAND; and cmf GRAVEL;                                                                                                                                                                                                           | -                |
|     | 2           | 2        |              |                   |                    |                  | 12                          |                      | some SILT; trace CLAY (moist,                                                                                                                                                                                                             | E                |
|     | 1<br>1<br>1 | _        |              |                   |                    | 1                | 12                          | 7.0'                 | very slightly plastic)<br>Probable Fill                                                                                                                                                                                                   | $\left  \right $ |
|     |             |          | 4            | 7.0               | 9.0                | SS               |                             |                      | Brown cmf GRAVEL; and cmf SAND;                                                                                                                                                                                                           | +                |
|     | •           | ٢        |              |                   |                    |                  | 7                           | ]                    | little SILT (moist, non-plastic)                                                                                                                                                                                                          |                  |
| -   |             |          |              |                   |                    | <u> </u>         | 11 7                        | 4                    |                                                                                                                                                                                                                                           | +                |
| _   | _           |          | 5            | 9.0               | 11.0               | ss.              | 13 /                        | 4                    | Similar Soils (wet, non-plastic)                                                                                                                                                                                                          | ┢                |
|     |             |          |              |                   |                    |                  | 15                          | 1                    |                                                                                                                                                                                                                                           |                  |
|     |             |          |              |                   |                    |                  | 13                          | 4                    |                                                                                                                                                                                                                                           |                  |
| _   |             |          |              |                   |                    | <u>  .</u>       | 1                           | 1                    |                                                                                                                                                                                                                                           | ŀ                |
|     |             |          | 6            | 15.0              | 17.0               | SS               | 16                          | 1                    | Brown cmf GRAVEL; some cmf SAND;                                                                                                                                                                                                          | ŀ                |
|     |             |          |              |                   |                    | <u> </u>         | 15                          | 4                    | little SILT (saturated, non-                                                                                                                                                                                                              | ļ                |
| _   | $\square$   |          |              |                   | · .                | +                | 20                          | 4                    | plastic)                                                                                                                                                                                                                                  | +                |
| _   |             |          |              | ·                 |                    |                  |                             | 1                    |                                                                                                                                                                                                                                           | ł                |
|     |             |          | 7            | 20.0              | 22.0               | SS               | 15                          | 4                    | Similar Soils                                                                                                                                                                                                                             |                  |
| _   |             |          |              |                   |                    | 1                | 17                          | 4                    |                                                                                                                                                                                                                                           | $\left  \right $ |
|     | $\square$   |          |              |                   |                    | 1                | 9                           | 1                    |                                                                                                                                                                                                                                           | -                |
|     |             |          |              |                   |                    |                  | <u> </u>                    | ]                    |                                                                                                                                                                                                                                           |                  |
|     |             |          |              |                   | ļ                  |                  |                             | -                    | DEC 1 1 1991                                                                                                                                                                                                                              |                  |
|     |             |          |              |                   | L                  | 1                | L                           | <u> </u>             |                                                                                                                                                                                                                                           |                  |

|               |                     | 80            | RENG No | B-4      | -       | STING L                                       |                         | 50-1-5-91 SEET 2 OF 2                                                                                                                                                                 |                           |
|---------------|---------------------|---------------|---------|----------|---------|-----------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| DEPTH         | CANING<br>BLOWE/FT. | BAMPLE<br>X9. |         |          | 3 JANKA | BLOWB ON<br>SAMPLER<br>PER<br>SAMPLER<br>G.D. | 86 PTH<br>0 F<br>Change | CLASSIFICATION       OF       MATERIAL         f = fine       and = 35-         m = medium       eome = 20-         c = coerse       Sitile = 10-         frocs = 0-       frocs = 0- | -<br>50 %<br>35 %<br>20 % |
|               | •                   |               | FROM    | TO       |         | 4 J                                           |                         | troce - 0-                                                                                                                                                                            | 10%                       |
|               |                     | 18            | 25.0    | 27.0     | SS      | 18                                            |                         | Similar Soils                                                                                                                                                                         |                           |
|               | ×                   | <u> </u>      |         |          |         | 19                                            |                         |                                                                                                                                                                                       |                           |
| -+            | е<br>С              |               |         | !        |         | <u>19</u> 23                                  |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         | :                                                                                                                                                                                     |                           |
|               | V                   | 9             | 30.0    | 32.0     | SS      |                                               |                         | Similar Soils                                                                                                                                                                         |                           |
|               |                     |               |         |          | <b></b> | 29                                            |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         | 3339                                          |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         | Boring Terminated at 32.0'                                                                                                                                                            |                           |
|               |                     | i i           |         |          |         |                                               |                         | • • • • • • • • • • • •                                                                                                                                                               |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
| <u>+</u>      |                     | <u> </u>      | -       |          |         |                                               |                         |                                                                                                                                                                                       |                           |
| -+            |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
| 1             |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               | •                       |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         | ,                                                                                                                                                                                     |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
| <u> </u>      |                     |               |         | ]        |         |                                               | 1                       |                                                                                                                                                                                       |                           |
|               |                     |               |         |          | +       |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               | -       |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     | Ì             |         |          |         |                                               | Ì                       |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
| <u> </u>      |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
| <del>-+</del> |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         | · .                                                                                                                                                                                   |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          | T       |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               | í                       |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
| <del></del>   |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         | •                                                                                                                                                                                     |                           |
|               |                     |               | •       |          | i       | · · · ·                                       |                         | and and a second second second second second second second second second second second second second second se                                                                        |                           |
|               |                     |               |         | •        |         | •                                             | _                       |                                                                                                                                                                                       |                           |
|               |                     |               |         | <u> </u> |         |                                               | •                       | -                                                                                                                                                                                     |                           |
| <del>+</del>  |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       | •                         |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         | 1        |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
| <u> </u>      |                     |               |         |          |         |                                               |                         |                                                                                                                                                                                       |                           |
|               |                     |               |         |          |         |                                               |                         | . DFC 1 1 199)                                                                                                                                                                        |                           |
| -+-           |                     | 1             | 1       | ÷        | - 1     |                                               |                         |                                                                                                                                                                                       |                           |

()(

 $\bigcirc$  (

 $\bigcirc$ (

ATLANTIC TESTING LABORATORIES, Limiter

SUBSURFACE INVESTIGATION Report

 $\sim$ 

D-1

Report No. \_ETCD1150-1-5-91

|        |            | Cas      | B-           | 5<br>      | Sheet                                 | lof<br>Sampi          | 2<br>Ier Kammer            | 4/                   | Ground Water Observations<br>Ground Water Observations<br>Date Time Depth Casin<br>18/91 AM Drv 2<br>18/91 AM 13.3' Cave                                | g et<br>28.0 |
|--------|------------|----------|--------------|------------|---------------------------------------|-----------------------|----------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|        |            |          |              |            | s. Wt                                 | . —                   | 140 ibs<br>in              |                      | 18/91 AM 13.3' Cave                                                                                                                                     | ed a         |
| -      |            |          |              | ii         | _                                     |                       | in                         |                      |                                                                                                                                                         |              |
| Gr     | oun        | id E     | lev          | 101.0±     | -                                     |                       | <u>, 4-1/4"</u> I.         | <u> </u>             |                                                                                                                                                         |              |
|        |            |          | <u> </u>     |            |                                       | 5. Auge               |                            | ע.<br>ד ד            | CLASSIFICATION OF MATERIAL                                                                                                                              |              |
|        |            | ۲<br>۲   | ω            |            | РТН                                   | ш                     | BLOWS ON                   |                      |                                                                                                                                                         |              |
|        | CA SING    | NS /     | SAMPLE<br>NQ | O SANP     |                                       | T Y PE<br>D A M P L E | 8AMPLER<br>PER <u>\$</u> " | DEPTH<br>OF<br>NANGE | f-fine some - 20 - 35                                                                                                                                   | %            |
|        | 3          | PLOWS/FT | Ϋ́́          | FROM       |                                       |                       | SAMPLER                    | D Z                  | f-fine         and         35-50           some-20-35         some-20-35           m-medium         little - 10-20           c-coarse         trace0-10 | 0            |
| _      | _          | -        |              | 0.0        | <u>το</u><br>0.3                      | AUC                   | <u>\$*</u>                 |                      |                                                                                                                                                         |              |
| _      | 4          | <b>—</b> |              | 0.0        | 1.0                                   |                       | ER                         | 0.3'                 | ASPHALT<br>Brown cmf GRAVEL; and cmf SAND                                                                                                               |              |
|        |            |          | 1            | 1.0        | 3.0                                   | l ss                  | 10                         |                      | Brown cmf GRAVEL; and cmf SAND;<br>Brown cmf GRAVEL; anc cmf SAND;                                                                                      |              |
|        |            |          |              |            |                                       | 1                     | 9                          |                      | little SILT (little Glass, Coal                                                                                                                         | L, [         |
|        | _          |          |              |            | <u> </u>                              |                       | 5                          |                      | Brick) (moist, non-plastic) FII                                                                                                                         | L            |
| $\neg$ |            |          | 2            | 3.0        | 5.0                                   | SS                    | <u> </u>                   | 3.0'                 | Tan f SAND; some SILT; trace CL                                                                                                                         |              |
|        | $\neg$     |          |              |            | 1 2.0                                 | 33                    | 4                          |                      | (moist, slightly plastic)                                                                                                                               | ~            |
|        |            |          |              |            |                                       |                       | 4                          | 1                    | (,,,,,                                                                                                                                                  | ⊢            |
|        |            |          |              |            |                                       |                       | 4                          | 5.0'                 | ۰<br>۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰                                      |              |
| _      | 1          |          | 3            | 5.0        | 7.0                                   | SS                    | 5 7                        |                      | Tannish-Brown cmf GRAVEL; and                                                                                                                           | . –          |
|        | 2          |          | [            |            |                                       |                       | /                          |                      | <pre>cmf SAND; some SILT; trace CLAY (moist, slightly plastic)</pre>                                                                                    | · -          |
|        | <u>;</u> , |          |              |            |                                       |                       | 13                         |                      | (actor, brightly prestat)                                                                                                                               | ┢            |
|        | - 2        |          | 4            | 7.0        | 9.0                                   | \$\$                  |                            |                      | Similar Soils                                                                                                                                           |              |
| -      | м<br>1     |          |              | · <u> </u> |                                       |                       | <u> </u>                   | 4                    | •                                                                                                                                                       | -            |
| -      |            |          |              |            |                                       |                       | 8                          |                      |                                                                                                                                                         | H            |
|        |            |          | 5            | 9.0        | 11.0                                  | SS                    | 7                          |                      | Similar Soils                                                                                                                                           | F            |
| _      | _          |          |              |            | ļ                                     |                       | 8                          |                      |                                                                                                                                                         |              |
|        |            |          |              |            |                                       |                       | <u> </u>                   | 4                    |                                                                                                                                                         | Ļ            |
|        |            |          |              |            |                                       |                       | 10                         | 13.0'                |                                                                                                                                                         | F            |
|        |            |          | 6            | 15.0       | 17.0                                  | <b>S</b> S            | 10                         |                      | Brown cmf GRAVEL; some cmf SANI                                                                                                                         | ┆╤┝          |
|        |            |          |              |            | ļ                                     |                       | 15                         | 4                    | trace SILT (saturated, non-                                                                                                                             |              |
| ┥      | $\neg$     |          |              |            |                                       |                       | 20                         | { }                  | plastic)                                                                                                                                                | F            |
|        | $\neg$     |          |              |            | <u> </u>                              |                       | <b>▲</b> 1                 | 1                    |                                                                                                                                                         | ┢            |
|        |            |          | 7            | 20.0       | 22.0                                  | <b>8</b> 5            | 19                         | ]                    | Similar Soils                                                                                                                                           | F            |
| 4      | _          |          |              |            | · · · · · · · · · · · · · · · · · · · |                       | 33                         |                      |                                                                                                                                                         |              |
| +      | $\dashv$   |          |              |            | <u> </u>                              |                       | <u> </u>                   | 4                    |                                                                                                                                                         |              |
| ┥      | $\dashv$   |          |              | •          |                                       | ╞───┨                 |                            |                      | DEO 4 4 1001                                                                                                                                            | ╞            |
|        |            |          |              |            |                                       |                       |                            | ]                    | DEC 11 1997                                                                                                                                             | ł            |
| _      |            |          |              |            | 1                                     |                       |                            | 1                    |                                                                                                                                                         | H            |

| ATLANTIC | TESTING | LABORATORIES, | Limited |
|----------|---------|---------------|---------|
| A        |         | •             |         |

BCRING No. \_\_\_ <u>B-5</u>

(

୍ର(

्र

•

REPORT No. ETCD1150-1-5-91 SHEET 2 OF 2

|   | DEPTH    | CANNE<br>CANNE<br>BLOWB/FT. | KANPLE<br>No. | . DE<br>34 | РТН<br>07<br>MPLI | T Y PE<br>BANFLE | 8LDWS ON<br>SAMPLER<br>PER<br>SAMPLER<br>Q.Q | DEPTH<br>. OF<br>Chanee | CLASSIFICATION         OF         MATERIAL           f = fine         end = 35-50%           m-medium         some=20=35%           c-coerse         Ettle=10=20%           trace = 0=10% | TAMDAD       |
|---|----------|-----------------------------|---------------|------------|-------------------|------------------|----------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|   |          |                             | <u> </u>      | 7808       | 70                |                  |                                              | • •                     | 17008 - U-1U %                                                                                                                                                                            |              |
|   |          |                             | 18            | 25.0       | 27.0              | ss               | 18                                           |                         | Similar Soils                                                                                                                                                                             | Ē            |
|   |          | AUG R                       |               |            |                   | 1                | 23                                           |                         |                                                                                                                                                                                           |              |
|   | <b></b>  |                             | <u> </u>      | <u> </u>   | ļ                 | 1                | 24                                           |                         |                                                                                                                                                                                           |              |
|   |          |                             | <u> </u>      | 1          |                   |                  | 29                                           |                         |                                                                                                                                                                                           | ╞            |
|   |          | +                           | +             |            |                   |                  | •                                            |                         | Boring Terminated at 28.0'                                                                                                                                                                | $\vdash$     |
|   |          |                             | <u> </u>      |            | <u>,</u>          | <u> </u>         |                                              |                         | COBBLES and BOULDERS encountered                                                                                                                                                          | $\vdash$     |
|   |          | i –                         | 1             | (          | Ť                 | 1                |                                              |                         | from 23.0' to 28.0'.                                                                                                                                                                      |              |
|   |          | Ĩ                           |               |            |                   |                  |                                              |                         | Auger refusal encountered at 28.0'                                                                                                                                                        |              |
|   |          | <u> </u>                    | <u> </u>      |            | <u> </u>          |                  |                                              |                         |                                                                                                                                                                                           |              |
|   | <b> </b> | <u> </u>                    | <u> </u>      |            | 1                 |                  |                                              |                         |                                                                                                                                                                                           | -            |
|   | <u> </u> |                             |               | 1          | 1                 |                  |                                              |                         |                                                                                                                                                                                           |              |
|   | <u> </u> | 1                           |               | <u>t</u>   |                   |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          |                             | <u>.</u>      |            | 1                 |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          |                             |               |            | l I               |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          |                             |               | 1          |                   |                  |                                              |                         |                                                                                                                                                                                           |              |
|   | ļ        | <u> </u>                    | <u> </u>      | <u> </u>   | <u> </u>          |                  |                                              |                         | ^<br>                                                                                                                                                                                     |              |
| ÷ |          |                             | <u> </u>      | <br>       | <u> </u>          | <u> </u>         |                                              |                         |                                                                                                                                                                                           | -            |
| • |          | 1                           | 1             |            | +                 |                  |                                              |                         |                                                                                                                                                                                           |              |
|   | <u> </u> |                             |               |            |                   |                  |                                              |                         |                                                                                                                                                                                           |              |
|   | <u> </u> |                             | 1             |            | 1                 |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          |                             | 1             |            |                   | ŀ                |                                              |                         |                                                                                                                                                                                           |              |
|   |          | 1                           | T             |            |                   |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          | 1                           |               |            |                   |                  |                                              |                         |                                                                                                                                                                                           |              |
|   | <b></b>  | <u> </u>                    | ļ             |            | ļ                 | <u> </u>         |                                              |                         |                                                                                                                                                                                           |              |
|   | <b> </b> | <u> </u>                    | <u> </u>      |            | ··· ·             |                  |                                              |                         |                                                                                                                                                                                           | $\vdash$     |
|   |          |                             | <u> </u>      |            |                   |                  |                                              |                         |                                                                                                                                                                                           | $\vdash$     |
|   | <u> </u> |                             | 1             |            |                   |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          | i                           |               |            | 1                 |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          |                             |               |            |                   |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          |                             |               |            |                   |                  |                                              |                         | •                                                                                                                                                                                         |              |
|   |          |                             |               |            | ļ                 | <b>[]</b>        |                                              |                         |                                                                                                                                                                                           | F            |
|   |          | ļ                           |               |            | <u> </u>          |                  |                                              |                         |                                                                                                                                                                                           | F            |
|   |          | <u> </u>                    |               |            | ł                 | ┝                |                                              |                         | . *                                                                                                                                                                                       | $\vdash$     |
|   |          |                             |               |            | <b> </b>          |                  |                                              |                         |                                                                                                                                                                                           | F            |
|   |          | <del> </del>                |               |            | <u> </u>          |                  | · · ·                                        |                         |                                                                                                                                                                                           |              |
|   | <u> </u> | t                           |               |            |                   |                  |                                              |                         |                                                                                                                                                                                           | L            |
|   |          |                             |               | •          |                   |                  |                                              |                         |                                                                                                                                                                                           | C            |
|   |          | {                           |               |            | •                 | · ·              | •                                            | _                       |                                                                                                                                                                                           |              |
|   |          | ļ                           |               |            | ļ                 |                  |                                              | •                       |                                                                                                                                                                                           | F            |
|   |          | <u> </u>                    |               |            | Į                 |                  |                                              |                         |                                                                                                                                                                                           | ┝            |
|   |          |                             |               |            |                   |                  |                                              |                         | •                                                                                                                                                                                         | $\mathbf{F}$ |
|   |          |                             |               |            | <u> </u>          | ┝╌╌┥             |                                              |                         |                                                                                                                                                                                           | F            |
|   |          |                             |               |            |                   |                  |                                              |                         |                                                                                                                                                                                           | F            |
|   |          | <u> </u>                    |               |            | 1                 |                  |                                              |                         |                                                                                                                                                                                           |              |
|   |          |                             |               |            |                   |                  |                                              |                         | DEC 4 1 1001                                                                                                                                                                              | E            |
|   |          |                             |               |            |                   |                  |                                              |                         | DEC 1 1 1991                                                                                                                                                                              | F            |
|   |          |                             |               |            | <u> </u>          |                  |                                              |                         |                                                                                                                                                                                           | ┢            |
|   |          |                             | <b></b>       |            | <b></b>           | <b> </b>         |                                              |                         |                                                                                                                                                                                           | ┢            |
|   | , (      | • J                         | а I           | I          | 4                 | • •              |                                              | •                       |                                                                                                                                                                                           |              |

ATLANTIC TESTING LABORATORIES, Limite

Report No. ETCD1150-1-5-9 SUBSURFACE INVESTIGATION Corning Hospital CLENT -\_\_\_\_Location of Boring See Plan Corning, NY PROJECT Subsurface Investigation-Proposed Building Addition, Corning Hospital, Corning, NYDors, stort 4/17/91 Finish 4/17/91 Boring No B-6 Sheet 1 of 2 Ground Woter Observations Date Time Depth 15.3' Casing of 4/17/91 Casing Hommer Sompler Hammer AM 32.0 4/18/91 AM 14.8' Caved at Wt \_\_\_\_\_ ibs. Wt \_\_\_\_\_140 \_ lbs. Foll \_\_\_\_\_ in. 30 in, Fall \_\_\_\_ Cosing Ground Elev. 101.0\* H.S. Auger 4-1/4" I.D. CLASSIFICATION 0F MATERIAL and - 35 - 50 % er and a some - 20 - 35 % or a some - 20 - 35 % or a some - 20 - 35 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 - 30 % or a some - 20 % BLOWS ON OEPTH NS/FT. MPLE 10. SAMPLER HLA 0F YPE f-fine No. 5 - C<sup>#</sup> \_\_\_\_\_\_.

| E | DEP          | 3AM | SANPL I  | . £  |          | u o v m−madium<br>o x m−madium<br>u t−coorse | m-medium Little 10 20% |        |                                                            |
|---|--------------|-----|----------|------|----------|----------------------------------------------|------------------------|--------|------------------------------------------------------------|
|   |              |     |          | FROM | TO       | 1                                            |                        | - Ū    | m - madium Little - 10 - 20%<br>t - coorse trace - 0 - 10% |
|   |              |     |          | 0.0  | 0.3      | AUG                                          | ER                     | 0.3    | ASPHALT I                                                  |
|   |              |     | 1        | 0.3  | 1.0      | AUG                                          | ER                     | 1.0'   | Brown cmf GRAVEL; and cmf SAND [                           |
|   |              | _   | 1        | 1.0  | 3.0      | SS                                           | 13                     | 1      | Brown cmf SAND; and cmf GRAVEL;                            |
|   |              |     |          |      |          |                                              | 7                      | 1      | little SILT (moist, non-plastić) 7                         |
|   |              |     |          |      |          |                                              | 4                      | 1      | Probable Fill                                              |
|   |              |     |          |      |          |                                              | 3                      | i 3.0' |                                                            |
|   |              |     | 2 1      | 3.0  | 5.0      | ss                                           | 3                      |        | Brown f SAND and SILT; trace f                             |
| 1 |              |     |          | 1    |          |                                              | 3                      | 1      | GRAVEL (moist, non-plastic) No                             |
|   |              |     |          |      |          | ł                                            | 3                      |        | recovery with spoon, recovered                             |
|   |              |     |          |      |          |                                              | 4                      | 5.0'   | with auger; Probable Fill                                  |
| Ĩ | 1            |     | 3        | 5.0  | 7.0      | SS                                           | 3                      |        | Tan SILT; some f SAND; trace CLAY                          |
|   |              | 1   |          |      |          |                                              | 6                      | ]      | (moist, very slightly plastic)                             |
|   | <u></u>      |     |          |      | -        |                                              | 6                      | ]      |                                                            |
|   | 0            |     |          |      |          |                                              | 7                      | 7.0'   |                                                            |
|   |              |     | 4        | 7.0  | 9.0      | SS                                           | 10                     |        | Brown cmf GRAVEL; and cmf SAND;                            |
|   | V            |     | ļ        |      |          |                                              | 7                      |        | little SILT; trace CLAY (moist,                            |
|   |              |     | ļ        |      |          |                                              | 10                     |        | slightly plastic)                                          |
|   |              |     |          |      |          |                                              | 9                      |        |                                                            |
|   |              |     | 5        | 9.0  | 11.0     | SS                                           | 8                      |        | Similar Soils (wet, slightly                               |
| _ |              |     |          |      |          |                                              | 6                      |        | plastic)                                                   |
|   | _            |     |          |      |          |                                              | 8                      |        |                                                            |
|   | 4            |     | <u> </u> |      |          |                                              | 9                      | _      |                                                            |
|   |              |     |          |      |          |                                              |                        | 13.0'  |                                                            |
|   | _            |     | 6        | 15.0 | 17.0     | SS                                           |                        |        | Brown cmf GRAVEL; and cmf SAND;                            |
| _ | _            |     |          |      | <i>.</i> |                                              | 9                      |        | trace SILT; trace CLAY (saturated                          |
| - | 4            |     |          |      |          |                                              | 21                     |        | non-plastic)                                               |
|   | -            |     |          |      |          |                                              | 24                     |        |                                                            |
| _ | $\perp$      |     |          |      |          |                                              |                        | 18.5'  | <b></b>                                                    |
| _ | _            |     | 7        | 20.0 | 22.0     | SS                                           | 41                     |        | Brown cmf GRAVEL; and cmf SAND;                            |
| _ | $\downarrow$ |     | 1        |      |          |                                              | 19                     |        | little SILT (saturated, non-                               |
| _ | $\bot$       |     |          |      |          |                                              | 11                     |        | plastic)                                                   |
| _ | _            |     |          |      |          |                                              | 11                     |        |                                                            |
| _ | 4            |     |          |      |          |                                              |                        |        |                                                            |
|   |              |     |          |      |          |                                              |                        |        | DEC 1 1 1991                                               |
|   | 1            | 1   | 1        | 1    |          |                                              |                        |        |                                                            |

. .

P --- PISTON TYPE SAMPLE

D-1

BNIS

## ATLANTIC TESTING LABORATORIES, Limited

**(** 

BORING NO. B-6 REPORT NO. ETCD1150-1-5-91 SEET 2 OF 2

| F        | - <u>r</u> -                |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-----------------------------|---------------|------|-------------------|----------------|----------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 06774    | CANHO<br>CANHO<br>ELOWE/FT. | KANPLE<br>No. | ! .  | PTH<br>DF<br>MFLI | TYPE<br>BANPLE | BLOWS ON<br>SAMPLER<br>PER<br>SAMPLER<br>0.0 | DEPTH<br>. OF<br>Change | CLASSIFICATION         OF         MATERIAL           f = fine         end = 35-50 %         end = 35-50 %           m = medium         some = 20=35 %         end = 35-50 %           c = coerse         Ettle = 10=20 %         end = 35-50 %           trace = 0=10 %         end = 35-50 %         end = 35-50 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                             | 1             | FROM | TO                |                | a.a                                          | ~. 9                    | trocs - 0-10% *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             | 18            | 25.0 |                   | <b>\$</b> S    | 15                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ~ ~                         |               | ĺ    |                   |                | 14                                           |                         | Brown cmf GRAVEL; some cmf SAND;<br>little SILT (saturated, non-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | <u></u>                     | 1             |      |                   |                | 14                                           |                         | plastic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 0                           | <u> </u>      |      | <u> </u>          |                | 20                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             | 9             | 30.0 | 32.0              |                | -                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | +                           |               |      | 1 32.0            | 55             | 70<br>65                                     |                         | Similar Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | 1                           |               |      | 1                 |                | 43                                           |                         | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | ĺ                           |               |      | 1                 |                | 39                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         | Boring Terminated at 32.0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | <u> </u>                    |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | +                           |               |      |                   |                |                                              |                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 1                           |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1                           |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| )        | 1                           | 1 1           |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1                           | 1             |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1                           | <u> </u>      |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | <u> </u>                    |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | <u> </u>                    |               |      |                   |                |                                              | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u> | <u> </u>                    | <u> </u>      |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             | ╏───┤         |      |                   | <u> </u>       |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | +                           |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1                           |               |      |                   |                |                                              |                         | h h h h h h h h h h h h h h h h h h h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | 1                           |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | T                           |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b> </b> | 1                           | ┝╍╍╸╉         |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         | / · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                             |               |      |                   |                |                                              |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b></b>  | <u> </u>                    |               |      |                   |                |                                              |                         | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                             |               | i    |                   |                |                                              |                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                             |               |      |                   |                |                                              |                         | here and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               | ·    |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | <b></b>                     |               |      | <u> </u>          | <u> </u>       | · · ·                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | <u> </u>                    |               |      |                   |                | ·                                            | ·                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b> </b> | ┣────┤                      |               |      |                   | +              |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b> </b> | <b>├</b> ───┤               |               |      |                   |                |                                              |                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                             | ┝╼╼╋          |      |                   |                |                                              |                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         | DEC 1 1 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                             |               |      |                   |                |                                              |                         | · _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                             |               |      |                   |                |                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 $\mathcal{C}$ 

ATLANTIC TESTING LABORATORIES, Limited

SUBSURFACE INVESTIGATION

| CL    | E                  | NT-       |               | ning Ho<br>ning, N | <u>spital</u><br>Y |                 |                         | L                     | acation of Boring See                  | Plan                                                                          |                         |
|-------|--------------------|-----------|---------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------------------------------------|-------------------------------------------------------------------------------|-------------------------|
| PF    | 201                | IEC.      | T Sub         | surface            | Investi            |                 | ion-Proposed            |                       |                                        |                                                                               |                         |
|       |                    |           | <u>Add</u>    | <u>1110n,</u>      | Corning            | HOST            | pital, Corni            | ng, NYC               | ate, start <u>4/17/91</u>              | Finish <u>4/17/9</u>                                                          | ]                       |
| Во    |                    |           |               |                    |                    |                 | 2                       |                       | Ground Woter<br>Date Time<br>/17/91 PM | Observations<br>Depth Casing<br>20.0' 32.0                                    | aț                      |
| v     |                    |           | •             | ommer<br>ibs       |                    |                 | ler Hammer<br>140 lbs.  |                       | /17/91 PM                              | 15.0' Caved                                                                   |                         |
|       |                    |           |               |                    |                    |                 | in                      |                       | ······································ | <u> </u>                                                                      |                         |
|       |                    |           |               |                    |                    |                 |                         |                       | ······                                 |                                                                               |                         |
| Gr    | 6un                | id E      | lev           | 101.0±             |                    |                 | <u>    4-1/4"  </u> I.; | n                     |                                        |                                                                               |                         |
|       |                    |           |               | 930                |                    | . AUQU          | SLOWS ON                |                       | CLASSIFICATION                         | OF MATERIAL                                                                   | 1 3                     |
| 7     |                    | /FT       |               | 027                |                    |                 | 1                       | 2 1                   | f-fine                                 | and - 35 - 50 %                                                               | ATI                     |
| OEPTN | CASIN              | BLOWS/FT  | 3AMPLE<br>NO. | SANPI              | . t                | T YPE<br>DAMPLE |                         | DEPTN<br>OF<br>Change | m-medium<br>C-coorse                   | and - 35 - 50 %<br>some - 20 - 35 %<br>little - 10 - 20 %<br>trace - 0 - 10 % | STANDARO<br>PENETRATION |
|       | <u> </u>           |           | <br>          | FROM               | TO                 | <br>            | <u>aa 2-</u>            |                       |                                        |                                                                               | • • • ·                 |
|       | 4                  | $\square$ |               | 0.0                | 0.3                |                 | JER                     | 0.3                   | ASPHALT                                |                                                                               | 1                       |
|       | $\left  - \right $ |           | 1             | 1.0                | $\frac{1.0}{3.0}$  | I AUG<br>I SS   | IER<br>7                | 1.0                   | Brown cmf SAND;<br>Brown mf GRAVEL     |                                                                               | <u> </u>                |
|       |                    |           |               |                    |                    | 1               | 7                       |                       | little SILT (Co.                       |                                                                               |                         |
|       |                    |           |               |                    |                    |                 | 7                       |                       | (moist, non-pla:                       | stic) FILL                                                                    |                         |
|       |                    |           | 2             | 3.0                | 5.0                | l<br>h ee       |                         | 3.0'                  | Brown of SANDA                         | some SILT; little                                                             | <u> </u>                |
|       |                    |           |               |                    | 2.0                | 33              | 5                       |                       | mf GRAVEL (mois:                       |                                                                               | 1                       |
|       |                    |           |               |                    |                    |                 | 7                       | 5 01                  | Possible Fill                          | -, ,,                                                                         |                         |
|       |                    |           | 3             | 5.0                | 7.0                | ss.             | 6                       | 5.0'                  | Tan SILT. some                         | E SAND; trace CLAY                                                            | <u> </u>                |
|       |                    |           |               |                    |                    | 33              | 3                       |                       | (moist, slightly                       |                                                                               | <u> </u>                |
|       |                    | ĸ         |               |                    |                    | [               | 3                       |                       | -                                      | •                                                                             |                         |
|       | <u> </u>           | 1<br>5    | 4             | 7.0                | 9.0                | ss              |                         | 7.0'                  | Tannish-Brown S                        | ILT; some mf GRAVI                                                            |                         |
|       |                    |           |               | •                  |                    |                 | . 7                     |                       | some f SAND; tra                       | ace CLAY (moist,                                                              |                         |
|       |                    |           |               |                    | -                  |                 | 10                      | 9.0'                  | slightly plastic                       | 2)                                                                            | <b></b>                 |
| _     |                    |           | 5             | 9.0                | 11.0               | ss              |                         | 9.0                   | Brown cmf GRAVE                        | * and omf SAND:                                                               | <u> </u>                |
|       |                    |           |               |                    |                    |                 | 15                      |                       | some SILT (mois                        | t, non-plastic)                                                               |                         |
|       |                    |           |               |                    |                    | ļ               | 17                      |                       |                                        | •                                                                             |                         |
|       |                    |           |               |                    |                    |                 | 21                      | 13.5'                 |                                        | _                                                                             | <b> </b>                |
|       |                    |           | 6             | 15.0               | 17.0               | SS              |                         |                       | Brown cmf GRAVE                        | L; and cmf SAND;                                                              |                         |
| ļ     |                    |           |               |                    |                    |                 | 19                      |                       | little SILT (sat<br>plastic)           | turated, non-                                                                 |                         |
|       |                    |           |               |                    |                    |                 | 20                      |                       | hreartc)                               |                                                                               |                         |
|       |                    |           |               |                    |                    |                 |                         | ]                     | <b>.</b>                               |                                                                               |                         |
|       | <b> </b>           |           | 7             | 20.0               | 22.0               | 55              | 26 30                   |                       | Brown cmf GRAVE                        | L; some cmf SAND;                                                             |                         |
|       |                    | $\vdash$  |               |                    |                    | <u> </u>        | 26                      |                       | plastic)                               | Luidleg, <u>n</u> on                                                          |                         |
|       |                    |           |               |                    |                    |                 | 29                      |                       |                                        |                                                                               |                         |
|       |                    |           |               |                    |                    |                 |                         |                       |                                        | 1 1 1991                                                                      |                         |
|       |                    |           |               |                    |                    |                 |                         |                       |                                        | 1001                                                                          |                         |
| £\$   | 8 P 1              | <u> </u>  | SPOON         | I SAMPLE           |                    |                 |                         |                       |                                        |                                                                               |                         |
| U —   | UN                 | ai s,     |               | TUBE               |                    | DRI             | LLERS                   | Mike                  | Hawkins, Paul Mc/                      | Loon                                                                          |                         |
| • _   | <b>2</b> 11        | TON       | TYPE          | SAMPLE             |                    |                 |                         |                       |                                        |                                                                               |                         |

(

0-1

| E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E <th>DEPTH<br/>CABING<br/>CABING<br/>BLOWE/FT.</th> <th>8 A MPL F<br/>No.</th> <th>DEPTH<br/>OF<br/>Sampli</th> <th>TYPE</th> <th>BLOWS ON<br/>SAMPLER<br/>PER</th> <th>E</th> <th>CLASSIFICATION OF MATERIA<br/>f = fine end = 35<br/>m = medium eome = 20</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEPTH<br>CABING<br>CABING<br>BLOWE/FT. | 8 A MPL F<br>No. | DEPTH<br>OF<br>Sampli | TYPE   | BLOWS ON<br>SAMPLER<br>PER            | E                    | CLASSIFICATION OF MATERIA<br>f = fine end = 35<br>m = medium eome = 20 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|-----------------------|--------|---------------------------------------|----------------------|------------------------------------------------------------------------|
| I     8     25.0     27.0     ss     73       w     IOD       w     Bouncing       x     9     30.0     32.0     ss     24       x     36     36       x     36       x     36       x     36       x     36       x     37       x     36       x     37       x     37       x     37       x     38       x     37       x     37       x     38       x     39       x     31       x     32.0 <sup>T</sup> x     36       x     37       x     38       x     39       x     30       x     31       x     32.0 <sup>T</sup> x     32.0 <sup>T</sup> x     37       x     38       x     39       x       x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DE CA                                  | N X<br>V<br>V    |                       |        | 54 MPLER<br>0.0                       | DEPTH<br>OF<br>CHANE | c - coarse Sittle = 10                                                 |
| ±     100       w     Bouncing       x     9       x     9       x     30.0       x     32.0       x     33       x     36       x     37       x     36       x     37       x     36       x     37       x     37       x     37       x     38       x     37       x     38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 8                |                       |        | 73                                    |                      |                                                                        |
| Similar Soils       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~                                   |                  |                       |        | 100                                   |                      | NO RECOVERY                                                            |
| D     Image: constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 1                                      |                  |                       |        | Bouncing                              |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        | •                                     |                      |                                                                        |
| Boring Terminated at 32.0 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 9                | 30.0 32.0             | )   ss | 24                                    |                      | Similar Soils                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        | 33                                    |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        | 36                                    |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      | Boring Terminated at 32.0                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | İ                |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       | + +    |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        | · · · · · · · · · · · · · · · · · · · |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | ·                |                       | +      |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       | ┽╌┼    | -                                     |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       | ┼─┤    |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       | +      |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | <u> </u>         | · · · ·               | ┿╌┼    | •                                     |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        | •                                     | •                    | -                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       | +      |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                  |                       |        |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u> {                              |                  |                       | ┼─┤    |                                       |                      |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | t                |                       | ++     |                                       |                      |                                                                        |

 $_{\frown}$  (

( \_\_\_) (

୍ର

ATLANTIC TESTING LABORATORIES, Limited

SUBSURFACE INVESTIGATION Report N

(

D-1

Report No. ETCD1150-1-5-91

| C               | LÆ       | NT.         | <u> </u>      | rning Ho<br>rning, M | ospital NY |            |                  |                        | Location of Bering                 | See Plan                                                                      |                |
|-----------------|----------|-------------|---------------|----------------------|------------|------------|------------------|------------------------|------------------------------------|-------------------------------------------------------------------------------|----------------|
| P               | 20.      | JEC         |               |                      |            | igat       | ion-Proposed     | Build                  | ing                                |                                                                               |                |
| • •             | Ψ        |             | Ado           | lition,              | Corning    | Hos        | pital, Corni     | ng, NY                 | Oate, start4/18,                   | /91 Finish 4/18/9                                                             | 1              |
| Bo              | irinç    | ) No        |               |                      | Sheet      |            |                  |                        |                                    | ater Observations<br>Depth Casing                                             |                |
|                 |          | Cas         | ling H        | ommer                |            | Some       | ler Hammer       | _ 47                   | /18/91 _AM                         | 14.9'32                                                                       | .0'            |
|                 |          |             |               | ib:                  |            |            | 140 lbs.         |                        | <u>/18/91 AM</u>                   | 15.0' Cave                                                                    | d at l         |
| F               | all      |             |               | ii                   | n. Fal     | I          | <u> </u>         |                        |                                    |                                                                               |                |
| c.              |          |             | 9 <b>.</b>    | 101.0±               | Cos        | sing       |                  | <del></del>            |                                    |                                                                               |                |
|                 | Vui      |             | .167          | 101.0                |            | S Aug      | <u>4-1/4"</u> I. | D. —                   |                                    |                                                                               |                |
|                 | Ī        |             | 1             |                      |            |            | SLOWS ON         |                        | CLASSIFICATIO                      | ON OF MATERIAL                                                                | ž              |
| -               | ۱.       | /FT         | μ.            |                      | F          |            |                  | <b>=</b>               | f-fine                             |                                                                               |                |
| DEPTH           | CASING   | BLOWS/FT.   | SAMPLE<br>ND. | SANP                 | -          | TYPE       | PSR              | DEPTH<br>DF.<br>Change | m-medium                           | and - 35 - 50 %<br>some - 20 - 35 %<br>little - 10 - 20 %<br>trace - 0 - 10 % | E NE TRATION   |
|                 |          | ē,          |               | FROM                 | TO         |            | <u>aa 2</u>      | 0                      | C-coorse                           | froce - 0 - 10 %                                                              |                |
|                 |          | $\leq$      |               | 0.0                  | 0.3        | AUC        |                  | 0.3'                   | ASPHALT                            |                                                                               |                |
|                 |          | <b> </b>    |               | 0.3                  | 1.0        | AUG        |                  | 1.0'                   |                                    | ); and cmf GRAVEL                                                             |                |
|                 | ┝        |             |               | 1.0                  | 3.0        | <u>s</u> s |                  |                        |                                    | VEL; and cmf SAND;                                                            |                |
|                 |          | <u> </u>    |               |                      |            |            | 14               |                        | little SILT (1                     | moist, non-plastic)                                                           | <b></b>        |
|                 |          |             |               |                      |            |            | 9                |                        | FILL                               |                                                                               | <b></b>        |
|                 |          |             | 2             | 3.0                  | 5.0        | 65         | 14               |                        | Similar Soils                      | (moist, non-plastic                                                           |                |
|                 |          |             |               |                      |            |            | 9                |                        | FILL                               | (mener) non braser                                                            | -1             |
|                 |          | ļ           |               | ļ                    |            | [          | 8                |                        |                                    |                                                                               |                |
| _               | <u> </u> |             |               | 5.0                  |            |            | 4                | 5.0'                   |                                    |                                                                               |                |
|                 |          |             | 3             | 5.0                  | 7.0        | SS         |                  |                        | Brown cmf SANI                     | ; some mf GRAVEL;                                                             |                |
|                 | 6        | ¥           |               |                      |            |            | 10               |                        | little SILT (F<br>  Brick) (moist. | lack Organics, Wood<br>slightly plastic)                                      | <sup>1</sup> / |
|                 | 1        | ц<br>ц      |               |                      |            |            | 16               | _7,0'                  | FILL                               | , erteucià bigacici                                                           |                |
|                 |          | 2           | 4             | 7.0                  | 9.0        | SS         | 14               |                        | Brown cmf GRAV                     | VEL; some cmf SAND;                                                           |                |
|                 | _        | 2           |               |                      |            |            | 14               |                        | little SILT (m<br>Probable Fill    | noist, non-plastic)                                                           |                |
|                 | -        | <u>&lt;</u> |               |                      |            |            | <u>12</u><br>16  | 9.01                   | FIODADIE FIII                      |                                                                               |                |
|                 |          |             | 5             | 9.0                  | 11.0       | 55         |                  | 9.0.                   | Brown cmf CRAT                     | /EL; some cmf SAND;                                                           | - <u> -</u>    |
|                 |          |             |               |                      |            |            | 8                |                        | little SILT: 1                     | Little CLAY (moist,                                                           |                |
|                 |          |             |               |                      |            |            | 9                |                        | slightly plast                     | :ic)                                                                          |                |
|                 |          | ┝╼╼┤        |               |                      |            |            | 20               | 16                     | _                                  |                                                                               |                |
|                 |          | ┝╌┤         | 6             | 15.0                 | 17.0       |            | 40               | 15.0'                  |                                    |                                                                               |                |
|                 |          | ⊢┤          | <u> </u>      | 10.0                 | 1/.0       | SS         | 40<br>65         |                        | Brown Cmr GRAV                     | EL: some cmf SAND;<br>saturated, non-                                         |                |
|                 |          |             |               |                      | ·          |            | 22               |                        | plastic)                           | alurated, non-                                                                | <b> </b>       |
|                 |          |             |               |                      |            |            | 33               |                        |                                    |                                                                               |                |
|                 |          |             |               |                      |            |            |                  |                        |                                    |                                                                               |                |
|                 |          | -           | _7            | 20.0                 | 22.0       | <b>8</b> 5 | 22<br>15         |                        | Similar Soils                      |                                                                               |                |
|                 | -        | ┝╼┥         |               |                      |            |            | 15               |                        |                                    |                                                                               | <b> </b>       |
|                 |          |             |               |                      |            |            | 17               |                        |                                    |                                                                               | <b>—</b>       |
|                 |          |             |               |                      |            |            |                  |                        | חב                                 | C 1 1 1991                                                                    | <b> </b>       |
| <del>.,  </del> |          |             |               |                      |            |            |                  |                        |                                    | I T I I I I I I I I I I I I I I I I I I                                       |                |
|                 |          |             |               |                      |            |            |                  |                        |                                    | <u> </u>                                                                      |                |
| - 12            | 8 P L    | .17         | SPOON         | SAMPLE               |            |            |                  |                        |                                    |                                                                               |                |
| u —             | UNC      | DI 8.       | SHELBY        | TUBE .               |            | DRIL       | LERS             | Mike                   | Hawkins, Paul 1                    | fcAloon                                                                       |                |
| ۰.              | PIS      | TON         | TYPE          | SAMPLE               |            |            |                  |                        |                                    |                                                                               |                |

| . *       |           |                     | •                                            | TLAN'<br>FRING NG _ |                  |          |                                       |                         | DRATORIES, Limi        |               |                         |
|-----------|-----------|---------------------|----------------------------------------------|---------------------|------------------|----------|---------------------------------------|-------------------------|------------------------|---------------|-------------------------|
| <b>)(</b> | DEPTH     | CABING<br>BLOWB/FT. | 844PLE                                       | DET                 | РТН<br>17<br>6-1 | TYPE     | BLOYS ON<br>BANMLER<br>MER<br>BANMLER | 0697H<br>- 09<br>Chambe |                        |               | STANDAND<br>PENETAATION |
|           |           | <b>.</b>            | 3                                            | PROM                | TO               |          | ۵۵                                    | a. 5                    |                        | troce - 0-10% | 1 L                     |
|           |           |                     | 8                                            | 25.0                | 27.0             | 59       | 15                                    |                         | Similar Soils          |               |                         |
|           |           | ЕR                  |                                              |                     |                  |          | 8                                     |                         |                        |               |                         |
|           | <u> </u>  | 0                   |                                              |                     |                  |          | 22                                    |                         |                        |               |                         |
|           |           | U 1                 | 9                                            | 30.0                | 32.0             | 59       | ·<br>11                               |                         | Similar Soils          |               |                         |
|           |           |                     | 9                                            | 30.0                | 34.0             | 59       | 16                                    |                         | SIMITAL SOTIS          |               |                         |
|           |           |                     |                                              |                     |                  |          | 20                                    |                         |                        |               |                         |
|           |           |                     |                                              |                     |                  |          | 17                                    |                         | Boring Terminated at 3 | 2.0           |                         |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               |                         |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               | <b> </b>                |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               |                         |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               | $\vdash$                |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               | L                       |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               |                         |
| ^<br>,    |           |                     |                                              |                     |                  |          |                                       |                         |                        |               |                         |
| •         |           |                     |                                              |                     |                  |          |                                       |                         |                        |               |                         |
| ()        |           |                     |                                              |                     |                  |          |                                       |                         |                        |               | $\vdash$                |
| 1         | <b> </b>  | ļ                   | ļ                                            |                     |                  |          |                                       |                         |                        |               |                         |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               |                         |
|           |           |                     |                                              |                     |                  | <u> </u> |                                       |                         |                        |               | $\vdash$                |
|           |           |                     |                                              |                     |                  |          |                                       |                         | ^                      | *             |                         |
|           |           |                     |                                              |                     |                  | Ī        |                                       |                         |                        |               |                         |
|           |           | [                   |                                              |                     |                  | ┼──      |                                       |                         |                        |               |                         |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        | *             |                         |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               | -                       |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               | L                       |
|           |           |                     |                                              |                     |                  |          |                                       |                         |                        |               |                         |
|           |           |                     |                                              |                     |                  | [        |                                       |                         |                        | ~             | $\vdash$                |
|           | <b> </b>  |                     | <b>├</b> ───                                 |                     |                  |          |                                       |                         | 1                      |               | L                       |
|           |           | [                   |                                              |                     |                  |          |                                       |                         |                        |               | $\vdash$                |
|           |           | ļ                   |                                              |                     | <u> </u>         | ╂        |                                       |                         |                        |               | F                       |
|           | <b> </b>  |                     |                                              |                     | · · ·            |          | •                                     | 1                       |                        |               | F                       |
|           |           |                     |                                              |                     |                  |          |                                       | { ·                     |                        |               | ┝                       |
|           |           | <b> </b>            |                                              | <u> </u>            | <u> </u>         | ┼──      |                                       | 1                       |                        |               | L                       |
|           |           |                     | <u> </u>                                     |                     |                  |          |                                       | ]                       |                        |               | F                       |
| ( Y       |           |                     | <u>                                     </u> | [                   | [                |          |                                       |                         |                        |               | F                       |
| serie 🗸   |           | <b> </b>            | <u> </u>                                     |                     | <u> </u>         | ┼──      |                                       | 1                       |                        |               | E                       |
|           |           |                     |                                              |                     |                  |          |                                       | ]                       | DEC 11                 | 1001          | F                       |
|           | <b></b>   | <u> </u>            | <b> </b>                                     | <b> </b>            | <u> </u>         |          | ļ                                     | 1                       | · PLUIA                | 1001          | F                       |
| A.        | <b>}</b>  | <b>i</b>            |                                              |                     |                  |          |                                       | 1                       |                        | •             | Ľ                       |
|           | · · · · · | 1                   | 1                                            | 1                   | 1                | 1        | 1                                     | 1                       | 1                      |               | ł                       |

### APPENDIX IV

(

(

(

e<sup>geres</sup>

### SUBSURFACE PROFILES

• •

ETC01150 CORNING HOSPITAL ADDITION

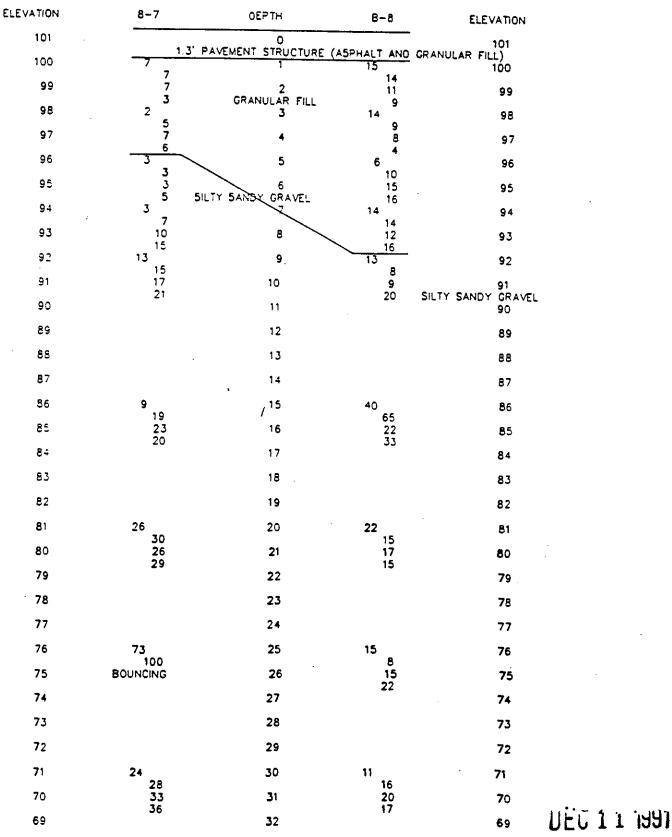
STANDARD PENETRATION TESTING RESULTS

## •NCTE. VALUES PROVIDED REPRESENT BLOW COUNTS FOR SIX INCH ADVANCEMENT OF A SPLIT BARREL SAMPLER

#### SECTION A-A

L

( )


| ELEVATION  | 8-1                  | OEPTH         | B-2                  | OEPTH                   | 8-3                | ELEVATIC |
|------------|----------------------|---------------|----------------------|-------------------------|--------------------|----------|
| 101        | <del></del>          | 0             |                      |                         |                    | 101      |
| 100        | 5                    | <u>1.3'</u> _ | 10                   | ASPHALT AND GRAN        | IULAR FILL)        | 101      |
| 99         | 5<br>2<br>2          | 2             | 18<br>12             | 2                       | 5                  | 99       |
| 98         | 2                    | 3             | 12<br>10             | 2<br>GRANULAR FILL<br>3 | 4                  | 98       |
| 97         | 6<br>13<br>17        | 4             | 8<br>10              | 4                       | 4                  | 97       |
| 96         | 4                    | 5             | 10<br>12             | 5                       | 5                  | 96       |
| 95         | 6<br>8               | é             | 12<br>8              | 6                       | 97                 | 95       |
| 94         | 10<br>8              | 7             | 9<br>6               | 7                       | 9                  | 94       |
| 93         | 10<br>30             | 8             | 8<br>11<br>8         | 8                       | 4<br>5             | 93       |
| 93         | 8                    | 9             | 6                    | 9                       | 6<br>8             | 92       |
| <b>9</b> 1 | 11<br>11<br>11       | 10            | 6<br>8<br>11         | 10                      | 8<br>13<br>13      | 91       |
| 90         | 3 E                  | 11            | 11                   | 11                      | 13                 | 90       |
| 89         |                      | 12            | SANDY SILTY GR       | AVEL 12                 |                    | 89       |
| 88         |                      | 13            |                      | 13                      |                    | 83       |
| 87         |                      | 14            |                      | 14                      |                    | 87       |
| 86         | 17                   | 15            | 19                   | 15                      | 15                 | 86       |
| 85         | 25<br>25<br>27       | 16            | 18<br>20<br>54       | 16                      | 21<br>30           | 85       |
| 84         | <b>L</b> '           | 17            | 4                    | 17                      | 36                 | 84       |
| 83         |                      | 18            |                      | 18                      |                    | 83       |
| 82         |                      | 19            |                      | 19                      |                    | 82       |
| 81         | 18<br>28             | 20            | 17                   | 20                      | 16                 | 81       |
| 80         | 28<br>25<br>25       | 21            | · 27<br>40<br>35     | 21                      | 35<br>35<br>40     | 80       |
| 79         |                      | 22            |                      | 22                      | 40                 | 79       |
| 78         |                      | 23            |                      | 23                      |                    | 78       |
| 77         |                      | 24            |                      | 24                      |                    | 77       |
| 76         | 25<br>27<br>28<br>35 | 25            | 16<br>21<br>26<br>29 | 25                      | 22<br>11<br>8<br>9 | 76       |
| 75         | 28<br>35             | 26            | 26                   | 26                      | 11<br>8            | 75       |
| 74         |                      | 27            | 20                   | 27                      | 9                  | 74       |
| 73         |                      | 28            |                      | 28                      |                    | 73       |
| 72         |                      | 29            |                      | 29                      |                    | 72       |
| 71         | 18<br>24             | 30            | 21<br>28             | 30                      | 19<br>- 19         | 71       |
| 70         | 18<br>24<br>29<br>33 | 31            | 28<br>37<br>29       | 31                      | - 19<br>11<br>18   | 70       |
| 69         |                      | 32            | 24                   | 32                      | 18                 | 69       |

NOTE: The subsurface conditions depicted above are interpolated from soil boring data. Actual subsurface conditions may vary from those shown here. STANDARD PENETRATION TESTING RESULTS

•NOTE: VALUES REPRESENT BLOW COUNTS FOR A SIX INCH ADVANCEMENT OF A SPLIT BARREL SAMPLER

SECTION 8-8

?



NOTE: The subsurface conditions depicted above are interpolated from soil boring data. Actual subsurface conditions may vary from those shown here.

#### ETCD11SO CORNING HOSPITAL ADDITION

#### STANDARD PENETRATION TESTING RESULTS

#### •NOTE: VALUES PROVIDED REPRESENT BLOW COUNTS FOR SIX INCH AQVANCEMENT OF A SPLIT BARREL SAMPLER

SECTION C-C

42

- {

| EVATION    | 8-2            | 8-5               | OEPTH                       | B-4               | 8-8            | 8-8                | ELEVATION |
|------------|----------------|-------------------|-----------------------------|-------------------|----------------|--------------------|-----------|
| 101<br>100 | 18             | 10                | 3' PAVEMENT STRUCTU         | RE (ASPHALT AND C |                | ·····              | 101       |
| 99         | 18<br>12<br>12 | 10<br>9<br>5<br>7 | -                           | 13                | 13 7           | 15                 | 100       |
| 98<br>98   | 12             | 7                 | GRANULAR FILL<br>3          | . *               | 7 4 3          | 14<br>11<br>9      | 99        |
| 97         | 8<br>10<br>10  | 1:                |                             | 2<br>3<br>4       | 3              | 14<br>9<br>8<br>4  | 98        |
| 96         | 10<br>12       | / 5               | s                           |                   |                | 8                  | 97<br>98  |
| 95         | 12<br>8<br>9   | 7                 |                             | 12                | 8<br>8<br>7    | 10<br>15<br>18     | 95        |
| 94         | 5 9            | 13                | 6<br>SANDY SILTY GRAVE<br>7 | 14 14 7           | 10 7           | 14                 | 94        |
| 93         | 8              | 6<br>8<br>8       | 8                           | 7<br>11           | 7              | 14                 | 93        |
| 92         | 8              | 7                 | 9                           | 7                 | 9<br>8         | 12<br>18<br>13     | 92        |
| 91         | 6<br>8<br>1:   | 5<br>8            | 10                          | 15<br>13<br>15    | 6<br>8<br>9    | 13<br>8<br>9<br>20 | 91        |
| 90         | 11             | 16                | 11                          | 15                | 9              | 20                 | 90        |
| 89         | ,              | ,                 | 12                          |                   |                |                    | 29        |
| 88         |                |                   | 13                          |                   |                |                    | 88        |
| 87         |                | ·                 | 14                          |                   |                |                    | 87        |
| 86         | 19             | 10                | 15                          | 18                | 8              | · 40               | 58        |
| 25         | 18<br>20<br>54 | 15<br>20<br>17    | 18                          | 15<br>20<br>22    | 9<br>21<br>24  | 85<br>22<br>33     | 85        |
| 84         | 54             | 17                | 17                          | 22                | 24             |                    | 84        |
| 83         |                | ÷                 | 18                          |                   |                |                    | 83        |
| 82         |                | •                 | 19                          |                   |                |                    | 82        |
| 81         | 17             | 19 33             | 20                          | 15                | 41<br>19       | 22                 | 81        |
| 80         | 27<br>40<br>35 | 33<br>16<br>15    | 21                          | 17<br>18<br>9     | 11<br>11       | 15<br>17<br>15     | 80        |
| 79         | 55             | 15                | 22                          | -                 |                | •2                 | 79        |
| 78         |                |                   | 23                          |                   |                |                    | 78        |
| 77         |                | `                 | 24                          |                   |                |                    | 77        |
| 76         | 16<br>21       | 18<br>23          | 25                          | 18<br>19          | 15<br>14       | 15<br>8            | 78        |
| 75         | 21<br>28<br>29 | 23<br>24<br>29    | - 28                        | 19<br>19<br>23    | 14<br>14<br>20 | . 8<br>15<br>22    | 75        |
| 74         |                |                   | 27                          |                   |                |                    | 74        |
| 73         |                |                   | 28                          |                   |                |                    | 73        |
| 72         |                |                   | 29                          |                   |                |                    | 72        |
| 71         | 21<br>25       |                   | 30                          | 28<br>29          | 70<br>85       | 11<br>18           | 71        |
| 70         | 28<br>37<br>29 |                   | 31                          | 29<br>33<br>39    | 85<br>43<br>39 | 18<br>20<br>17     | 70        |
| 89         |                |                   | 32                          |                   |                | ••                 | 89        |

1.2.5

(

NOTE: The subsurface conditions depicted above are interpolated from soil boring data. Actual subsurface conditions may vary from those shown here.

- -

٠



Engineering Architecture Environmental

# **APPENDIX 4**

**Test Pit Photograph Log** 





TP-01



TP-01: Glass bottle



TP-02: Ceramic, brick, metal



TP-02: Ash, cinders, brick



TP-02: Ash, cinders, brick, concrete



TP-03: White ash





TP-03: Wood, metal

TP-04: Brick, metal, ash, and cinders



TP-04: Apparent concrete foundation



TP-04: Brick, metal, ash and cinders



TP-05: Wood



TP-05: Brick, ash, cinders, concrete, ceramic



TP-05: Brick, ash, cinders, concrete, ceramic



TP-06: White ash, brick





TP-06: Glass

TP-06: Brick, ceramic





TP-07: Brick, ash, cinders

TP-07: Ash, cinders, brick, concrete



TP-07: Brick, ceramic, glass pieces, ash,



TP-07: Brick, metal, clay jug, ceramic, glass pieces, glass bottles