I

GARLOCK – KLOZURES SITE WAYNE COUNTY PALMYRA, NEW YORK

SITE MANAGEMENT PLAN

NYSDEC Site Number: C859001

Prepared for:

Garlock Sealing Technologies, LLC
1666 Division Street
Palmyra, New York 14522

Prepared by:

GHD Consulting Services Inc. 5788 Widewaters Parkway Syracuse, New York 13214 315.802.0260

Revisions to Final Approved Site Management Plan:

Revision	Date		NYSDEC
No.	Submitted	Summary of Revision	Approval Date
0	May 8, 2008	Original Submittal	
1	February 2009	Revised Submittal	
2	May 2015	Revised Submittal – Removed building	
		pressurization monitoring	
3	July 2024	Updated to New NYSDEC Template	

JULY 2024

CERTIFICATION STATEMENT

I JEFFREY P. LAMBERT certify that I am currently a NYS registered Professional Engineer and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and Green Remediation (DER-31).

P.E.

7/26/2024

DATE

TABLE OF CONTENTS

GARLOCK – KLOZURES SITE WAYNE COUNTY PALMYRA, NEW YORK

SITE MANAGEMENT PLAN

Table of Contents

1.0	INTR	ODUCTION	1
1.1	Ger	neral	1
1.2	Rev	isions and Alterations	2
1.3	Not	ifications	3
2.0	SUMN	MARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS	5
2.1	Site	Location and Description	5
2.2	Phy	sical Setting	5
2	.2.1	Land Use	5
2	.2.2	Geology	6
2	.2.3	Hydrogeology	6
2.3	Inve	estigation and Remedial History	7
2.4	Rer	nedial Action Objectives	10
G	roundv	vater	10
2.5	Rer	naining Contamination	10
2	.5.1	Soil	10
2	.5.2	Groundwater	10
2	.5.3	Soil Vapor	11
3.0	INSTI	TUTIONAL CONTROL PLAN	12
3.1	Ger	neral	12
3.2	Inst	itutional Controls	12
4.0	Monit	oring and sampling plan	14
4.1	Ger	neral	14
4.2	Site	– Wide Inspection	14
5.0	OPER	ATION AND MAINTENANCE PLAN	16
5.1	General16		
6.0	PERIO	DDIC ASSESSMENTS/EVALUATIONS	17
6.1	Cli	nate Change Vulnerability Assessment	17

6.2 Gr	een Remediation Evaluation18		
6.2.1	Timing of Green Remediation Evaluations19		
6.2.2 Re	Remedial Systems		
6.2.3 Bu	ilding Operations19		
6.2.4	Frequency of System Checks, Sampling, and Other Periodic Activities19		
•	etrics and Reporting		
_	. 3		
_	, ,		
7.0. REP	ORTING REQUIREMENTS22		
7.1 Pe	riodic Review Report22		
7.1.1	Certification of Institutional Controls23		
7.2 Co	rrective Measures Work Plan24		
7.3 Re			
	ERENCES26		
olo ILLI	20		
List of Tab	les		
	<u>Page</u>		
	1-1 Notifications5		
List of Fig			
List of Figu	ires		
	Site Location Map		
	Site Layout Map		
List of App	pendices		
	A Environmental Easement		
•	B Available Boring Logs		
	C Excavation Work Plan		
	D RI Soil Results Summary		
	E RI Groundwater Results Summary		
	F RI Soil Vapor Results Summary		
	G Site Management Forms		
	H Green Remediation Form		
	Remedial System Optimization Table of Contents		
	Request to Import/Reuse Fill Material Form		
List of Atta	nchments		

1 Historical Garlock Facility PFAS Assessment Data

List of Acronyms

BCA Brownfield Cleanup Agreement
BCP Brownfield Cleanup Program
CAMP Community Air Monitoring Plan
CFR Code of Federal Regulation
COC Certificate of Completion
CP Commissioner Policy

DER Division of Environmental Remediation ECL Environmental Conservation Law

EWP Excavation Work Plan

GHD GHD Consulting Services Inc.

HASP Health and Safety Plan IC Institutional Control

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health NYCRR New York Codes, Rules and Regulations

O&M Operation and Maintenance

OM&M Operation, Maintenance and Monitoring

P.E. or PE Professional Engineer

PFAS Per- and Polyfluoroalkyl Substances

PID Photoionization Detector PRR Periodic Review Report

QEP Qualified Environmental Professional

RAO Remedial Action Objective RAWP Remedial Action Work Plan RI Remedial Investigation

RP Remedial Party

RSO Remedial System Optimization

SCO Soil Cleanup Objective SMP Site Management Plan

SSDS Sub-Slab Depressurization System

SVI Soil Vapor Intrusion

ES EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance, and reporting activities required by this Site Management Plan:

Site Identification:

Site Identification No.: C859001 Garlock – Klozures Site, 1666 Division Street, Palmyra, New York 14522

Institutional Controls:

- 1. The property may be used for industrial use;
- 2. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Wayne County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- 3. Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in this SMP;
- 4. All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- 5. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- 7. Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;

Site Identification No.: C859001 Garlock – Klozures Site,

1666 Divisi			Street, Palmyra, New York 14522	
	8. Vegetable gardens and farming on the Site are prohibited; and			
	n sl th	An evaluation shall be performed to determine the need for further investigation and remediation should large scale redevelopment occur, if any of the existing structures are demolished, or if the subsurface is otherwise made accessible.		
Engineering Controls:	None			
Inspections:			Frequency	
1. Site-Wide Inspection			Annually	
Monitoring:				
1. None				
Maintenance:				
1. Site-Wide Maintenance			As needed	
Reporting:				
1. Periodic Review Report		Triennially – starting with 2024 submittal (2021 to 2024 reporting period)		

Further descriptions of the above requirements are provided in detail in the latter sections of this Site Management Plan.

Site Identification:

1.0 INTRODUCTION

1.1 General

This Site Management Plan (SMP) is a required element of the remedial program for the Klozures Site located in Palmyra, New York (hereinafter referred to as the "Site"). See Figures 1 and 2. The Site is currently in the New York State (NYS) Brownfield Cleanup Program (BCP), Site No. C859001, which is administered by New York State Department of Environmental Conservation (NYSDEC or Department).

Garlock Sealing Technologies, LLC entered into a Brownfield Cleanup Agreement (BCA), Index #B8-0690-05-04 in August 2005 with the NYSDEC to remediate the Site. Figures showing the Site location and boundaries of this Site are provided in Figures 1 and 2. The boundaries of the Site are more fully described in the metes and bounds Site description that is part of the Environmental Easement provided in Appendix A.

After completion of the remedial work, some contamination was left at this Site, which is hereafter referred to as "remaining contamination". Institutional Controls (ICs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Wayne County Clerk, requires compliance with this SMP and all ICs placed on the Site.

This SMP was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

It is important to note that:

- This SMP details the Site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC); and
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6 NYCRR Part 375 and the BCA (Index #B8-0690-05-04; Site #C859001) for the Site, and thereby subject to applicable penalties.

All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the Site is provided in Table 1-1 of this SMP.

This SMP was prepared by GHD Consulting Services Inc. (GHD), on behalf of Garlock Sealing Technologies, LLC, in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2009, and the guidelines provided by the NYSDEC. This SMP addresses the means for implementing the ICs that are required by the Environmental Easement for the Site.

1.2 Revisions and Alterations

Revisions and alterations to this plan will be proposed in writing to the NYSDEC's project manager. The NYSDEC can also make changes to the SMP or request revisions from the remedial party. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shutdown of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the Site conditions. All approved alterations must conform with Article 145 Section 7209 of the Education Law regarding the application of professional seals and alterations. For example, any changes to as-built drawings must be stamped by a New York State Professional Engineer. In accordance with the Environmental Easement

for the Site, the NYSDEC project manager will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER -10 for the following reasons:

- 1. 60-day advance notice of any proposed changes in Site use that are required under the terms of the BCA, 6 NYCRR Part 375, and/or Environmental Conservation Law.
- 2. 7-day advance notice of any field activity associated with the remedial program.
- 3. 15-day advance notice of any proposed ground-intrusive activity to depths exceeding 1-foot below ground surface (bgs) pursuant to the Excavation Work Plan. If the ground-intrusive activity qualifies as a change of use as defined in 6 NYCRR Part 375, the above mentioned 60-day advance notice is also required.
- 4. Notice within 48 hours of any damage or defect to the foundation, structures, or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- 5. Notice within 48 hours of any non-routine maintenance activities.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- 6. At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the Brownfield Cleanup Agreement (BCA), and all approved work plans and reports, including this SMP.
- 7. Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1-1 includes contact information for the above notifications and a full listing of Site-related contact information. The information on this table will be updated as necessary to provide accurate contact information.

Table 1-1: Notifications*

<u>Name</u>	Contact Information	Required Notification**	
Joshuah Klier – NYSDEC Project Manager	(585) 226-5357 joshuah.klier@dec.ny.gov	All Notifications	
David Pratt – NYSDEC Project Manager's Supervisor	(585) 226-5449 david.pratt@dec.ny.gov	All Notifications	
NYSDEC Site Control	DERSiteControl@dec.ny.gov	Notifications 1 and 8	
Julia Kenney – NYSDOH Project Manager	(518) 402-7873 julia.kenney@health.ny.gov	Notifications 4, 6, and 7	
Garlock Sealing Technologies, LLC; Carrie SanAngelo – Site Owner and Remedial Party	(315) 597-7311 carrie.Sanangelo@garlock.com	All Notifications	
GHD Consulting Services Inc.; Jeffrey Lambert – Remedial Engineer	(860) 747-8245 jeffrey.lambert@ghd.com	As Needed	
Lippes Mathias, LLP; Amy L. Reichhart – Remedial Party Attorney	(585) 770-7590 ext. 1810 areichhart@lippes.com	As Needed	

^{*} Note: Notifications are subject to change and will be updated as necessary.

^{**} Note: Numbers in this column reference the numbered bullets in the notification list in this section.

2.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The Site is located in Palmyra, Wayne County, New York and is identified as a portion of Parcel Number 64.111-00-839.937 on the Wayne County Tax Map (see Figure 2). The Site is an approximately 7-acre portion of the larger parcel and is bounded by: Red Creek and additional property owned by Garlock to the north, including a portion of the Site No. 3 BCP Site (#C859028); a commercial lumber yard to the south with Mud Creek farther south; additional property owned by Garlock, including a portion of the Site No. 3 BCP Site (#C859028) and the Gylon BCP Site (#C859027) to the east; and additional property owned by Garlock and off-Site residential properties along Division Street to the west (see Figure 2 – Site Layout Map). The boundaries of the Site are more fully described in Appendix A –Environmental Easement. The owner of the Site parcel at the time of issuance of this SMP is:

Garlock Sealing Technologies, LLC

2.2 Physical Setting

2.2.1 Land Use

The Site consists of the following: an approximately 116,000 square foot manufacturing building (known as Klozures); asphalt and concrete paved driving lanes, loading docks, and sidewalks; maintained landscaping areas, a stormwater management feature and associated State Pollutant Discharge Elimination System (SPDES) outfall to Red Creek; and minor wooded land adjacent to Red Creek. The Site is zoned industrial and is currently utilized by Garlock for industrial uses.

The properties adjoining the Site and in the neighborhood surrounding the Site primarily include commercial, residential, and vacant properties. The properties immediately south of the Site include commercial and vacant properties; the properties immediately north of the Site include Red Creek, additional Garlock-owned property, and a railroad corridor; the properties immediately east of the Site include additional Garlock-owned property in the BCP (Site #C859027 and Site #C859028); and the properties to the west of the Site include additional Garlock-owned property and residential properties.

2.2.2 Geology

Based on historical soil borings completed at the Site, it appears that the upper 2 to 3 feet of soil consists of a sandy fill material with minor amounts of sand and gravel, which is underlain by approximately 5 to 7 feet of reddish-brown sand and silt. A greenish-gray silt layer was identified beneath this sand and silt layer and extends to a depth of between 18 and 25 feet below ground surface (bgs), where weathered bedrock was identified. Available Site-specific boring logs are provided in Appendix B.

2.2.3 Hydrogeology

The Site is somewhat constrained hydraulically by Mud Creek and the Erie Canal to the south and Red Creek to the north. Groundwater flow on the Site moves generally north-northeast toward Red Creek, which is consistent with area topography and drainage characteristics and indicated that Red Creek is a local discharge zone for shallow groundwater. A general depiction of groundwater flow for the Garlock property is included in Appendix E.

Within the Site, the direction of groundwater flow is likely affected by heterogeneities in the subsurface. These heterogeneities would tend to create localized modifications in the direction of groundwater flow causing it to move at angles to the general north-northeast flow direction.

Based on historical observations, the depth to groundwater varies across the Site from approximately 5 to 15 feet bgs, with some identified depths to groundwater being as much as 25 feet bgs in isolated areas. There are currently no groundwater monitoring wells present on the Site.

2.3 Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 8.0 – References.

Garlock was accepted into the New York State BCP on March 31, 2005 and completed at Remedial Investigation at the Site in accordance with the requirements of the Brownfield Cleanup Agreement (#B8-0690-05-04, August 2005). A summary of investigation is provided below. Complete information was previously provided in the Remedial Investigation Report (S&W Redevelopment of North America, LLC, November 2006).

Soil analytical results from the Remedial Investigation and previous Site studies indicate that impacts to Site soils are limited. The past use of the Site was primarily parking, wooded land, and historical storage of coal. With the exception of a few analytes, soil samples obtained from the Site generally meet NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs). A few semi-volatile organic compounds (SVOCs) exceed Unrestricted Use SCOs in surface soil samples, and only one analyte (benzo(a)pyrene) was detected in one surface soil sample (SS-1) at a concentration in excess of the applicable Industrial Use SCO (1.6 milligrams per kilogram [mg/kg] versus the Industrial Use SCO of 1.1 mg/kg). This sample was taken from the rear portion of the Site, in a location where coal had been historically stockpiled. The only other detected exceedances of the Industrial Use SCOs were for one SVOC, benzo(a)pyrene, at 8 to 10 feet bgs at two locations, B-13 and B-18. At the time, it was believed that the exceedances at depth were likely the result of past earth

moving activity at the Site. The detected concentrations were 1.4 mg/kg and 3.6 mg/kg, respectively, versus the Industrial Use SCO of 1.1 mg/kg.

Groundwater samples taken from the Site during the RI in 2006 detected exceedances of the New York State Technical and Operational Guidance Series (TOGS) Class GA drinking water standards for benzene (1 location), several polycyclic aromatic hydrocarbons (PAHs – 7 locations), total polychlorinated biphenyls (PCBs – 2 locations), and metals (10 locations). Based on the groundwater sampling methodology, the exceedances of metals, PCBs, and PAHs were believed to be related to particulates entrained in the groundwater samples. Based on the data and historical use of the Site, there did not appear to be an ongoing source of contamination to groundwater located at the Site.

Based on the data and findings of the Remedial Investigation, and an assessment of remedial alternatives, the selected and NYSDEC-approved remedy for the Site was No Further Action with institutional controls that prohibited groundwater use and limited future Site activities to industrial uses. In late 2006 when the initial SMP for the Site was approved, in the absence of a complete soil vapor intrusion (SVI) evaluation, the potential for SVI was addressed through a requirement to maintain a SVI mitigation system, which consisted of a requirement that the Klozures building's existing heating, ventilation, and air conditioning (HVAC) system maintain a minimum positive indoor air pressure of 0.002 inches of water column (inWC) in the production and office areas.

During the first quarter of 2015, Garlock undertook a comprehensive SVI evaluation at the Site to determine if mitigation was required. Garlock retained GHD to complete a SVI evaluation in accordance with the Soil Vapor Intrusion Evaluation Work Plan (GHD, January 29, 2015), which was approved by the NYSDEC and New York State Department of Health (NYSDOH) in advance.

The SVI evaluation methods and findings are summarized in the Klozures BCP Site Soil Vapor Intrusion Evaluation Report (GHD, May 2015; Appendix F). Based on the SVI evaluation sampling and analytical results for soil vapor, sub-slab, indoor air, and ambient (background) air samples, it was concluded that the need for monitoring or mitigating SVI in the Klozures building was not warranted. The NYSDEC and NYSDOH concurred that measures to address SVI were no longer necessary for the Site and that use of the building's existing HVAC system to address potential SVI could be discontinued. As a result of the SVI evaluation, the requirements for monitoring and maintaining positive pressure within the Klozures building as an SVI mitigation system were removed.

Groundwater sampling at the Garlock facility for perfluorinated chemicals (PFCs) analysis, more recently referred to as per- and polyfluorinated alkyl substances (PFAS), was requested by NYSDEC via a November 22, 2017 letter to Garlock. A work plan (GHD, February 20, 2018) was prepared and submitted to NYSDEC and subsequently approved. GHD collected groundwater samples from five groundwater monitoring wells at the facility, including MW-5, MW-24, MW-31, MW0610-5, and MW0911-01, on April 3, 2018 and submitted them for laboratory analysis of 24 PFCs via modified United States Environmental Protection Agency (USEPA) Method 537. Laboratory analytical results detected concentrations of Perfluorooctanoic Acid (PFOA) between an estimated 585 1.67 nanograms per liter (ng/L; MW-24) and ng/L (MW-5)Perfluorooctanesulfonic Acid (PFOS) between an estimated 0.183 ng/L (MW-31) and 3.93 ng/L (MW-5). The current NYSDEC ambient water quality guidance values are 6.7 ng/L for PFOA and 2.7 ng/L for PFOS. PFOA concentrations exceed the guidance value in groundwater samples taken from MW-5, MW-31, MW0610-5, and MW0911-01. PFOS concentrations exceed the guidance value in groundwater samples taken from MW- 5. None of the groundwater monitoring wells sampled are located on or upgradient of the Klozures BCP Site. Excerpts from the previously submitted analytical results report (GHD, May 15, 2018), consisting of summary tables and a figure depicting specific analytical results, are included in Attachment 1.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site are as follows:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

2.5 Remaining Contamination

2.5.1 Soil

As summarized in Section 2.3 above, historical investigations have detected minimal soil contamination in isolated areas and the NYSDEC approved a No Further Action remedy for the Site. Given the long history of use of the property by Garlock for industrial purposes, and given the contamination known to exist on the other two Garlock BCP Sites, Garlock proactively requires that the same Excavation Work Plan (EWP, Appendix C) be followed for excavations on any of the three BCP Sites, including this Site even though there is no established Engineering Control that needs to be maintained.

Figures and tables summarizing soil conditions at the Site at the time of the RI are included in Appendix D.

2.5.2 Groundwater

As summarized in Section 2.3 above, historical investigations detected some groundwater contamination in isolated areas, which was suspected to be attributable to entrained soil particles rather than Site-related groundwater impacts, and the NYSDEC approved a No Further Action remedy for the Site. Given the long history of use of the property by Garlock for industrial purposes, and given the contamination known to exist on the other two Garlock BCP Sites, it is possible that contaminated groundwater is

present on the Site and institutional controls are in place to mitigate that potential exposure route.

Figures and tables summarizing groundwater conditions at the Site at the time of the RI are included in Appendix E.

2.5.3 Soil Vapor

As discussed in Section 2.3 above, initial soil vapor sample results from 2005 resulted in the Site building maintaining a positive pressure as a means of SVI mitigation. However, based on laboratory analytical results of an additional evaluation performed in 2015, NYSDEC and NYSDOH approved the discontinuation of SVI mitigation at the Site. Historical sample results are included in the figures and tables in Appendix F.

3.0 INSTITUTIONAL CONTROL PLAN

3.1 General

Since remaining contamination exists at the Site, Institutional Controls (ICs) are required to protect human health and the environment. This IC Plan describes the procedures for the implementation and management of all ICs at the Site. The IC Plan is one component of the SMP and is subject to revision by the NYSDEC project manager.

This plan provides:

- A description of all ICs on the Site;
- The basic implementation and intended role of each IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of IC, such as the implementation of the EWP (as provided in Appendix C) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site; and
- Any other provisions necessary to identify or establish methods for implementing the ICs required by the Site remedy, as determined by the NYSDEC project manager.

3.2 Institutional Controls

A series of ICs is required by the Environmental Easement to: (1) prevent future exposure to remaining contamination; and, (2) limit the use and development of the Site to industrial uses only. Adherence to these ICs on the Site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the

Environmental Easement. The IC boundaries are the same as the Site boundary. These ICs are:

- The property may be used for: industrial use;
- The use of groundwater underlying the property is prohibited without necessary
 water quality treatment as determined by the NYSDOH or the Wayne County
 Department of Health to render it safe for use as drinking water or for industrial
 purposes, and the user must first notify and obtain written approval to do so
 from the Department;
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material, including the excavation of Site soil, must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- Vegetable gardens and farming on the Site are prohibited; and
- An evaluation shall be performed to determine the need for further investigation and remediation should large scale redevelopment occur, if any of the existing structures are demolished, or if the subsurface is otherwise made accessible.

4.0 MONITORING AND SAMPLING PLAN

4.1 General

This Monitoring Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring Plan may only be revised with the approval of the NYSDEC project manager.

This Monitoring Plan describes the methods to be used for:

• Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

To adequately address these issues, this Monitoring Plan provides information on:

• Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP.

4.2 Site – Wide Inspection

Site-wide inspections will be performed at a minimum of once per year. These periodic inspections must be conducted when the ground surface is visible (i.e. no snow cover). Site-wide inspections will be performed by a qualified environmental professional as defined in 6 NYCRR Part 375, a Professional Engineer (PE) who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State. Modification to the frequency or duration of the inspections will require approval from the NYSDEC project manager. Site-wide inspections will also be performed after all severe weather conditions that may affect the Site. During these inspections, an inspection form will be completed as provided in

Appendix G – Site Management Forms. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including Site usage;
- General Site conditions at the time of the inspection;
- Whether stormwater management systems, such as basins and outfalls, are working as designed;
- The Site management activities are being conducted; and
- Confirm that Site records are up to date.

Reporting requirements are outlined in Section 7.0 of this plan.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure occurs at the Site, verbal notice to the NYSDEC project manager must be given by noon of the following day. In addition, an inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the IC implemented at the Site by a qualified environmental professional, as defined in 6 NYCCR Part 375. Written confirmation must be provided to the NYSDEC project manager within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public. The remedial party will submit follow-up status reports to the NYSDEC within 45 days of the event on actions taken to respond to any emergency event requiring ongoing responsive action, describing and documenting actions taken to restore the Site.

5.0 OPERATION AND MAINTENANCE PLAN

5.1 General

The Site remedy does not rely on any mechanical systems, such as groundwater treatment systems, sub-slab depressurization systems, or air sparge/soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not included in this SMP.

6.0 PERIODIC ASSESSMENTS/EVALUATIONS

6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given Site and associated remedial systems. Vulnerability assessments provide information so that the Site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

This section provides a current vulnerability assessment that evaluates the vulnerability of the Site and/or engineering controls to severe storms/weather events and associated flooding. This section also identifies vulnerability assessment updates that will be conducted for the site in Periodic Review Reports.

- Flood Plain: Portions of the Site adjacent to Red Creek, as determined by a flood risk assessment map, would be at an elevated risk for experiencing flooding within the next 30 years.
- Sea Level Rise: The Site is not at risk of experiencing flooding due to sea level rise or storm surge events as the Site is located a significant distance, both horizontally and vertically, from the coast.
- Site Drainage and Storm Water Management: The Site does not have a significant risk of flooding during significant rain or snow melt events. On-Site stormwater is managed with existing stormwater features that readily drain to Red Creek via either overland flow or multiple stormwater outfalls. The majority of the Site is topographically higher than Red Creek.
- Erosion: No significant erosion has been identified on Site to date. There is potential for erosion at the northern border of the Site, adjacent to Red Creek or in the Site's stormwater management feature. This potential is monitored during routine Site inspections and appropriate actions taken when deemed necessary.

- High Wind: Currently, there are no areas or remedial systems on Site which would be susceptible to effects from high winds.
- Drought: The Site is at a very low risk of experiencing drought, according to the FEMA National Risk Index.
- Electricity: There are no components of the Site remedy or on-going maintenance and monitoring that require electricity.
- Spill/Contaminant Release: There are no chemicals or wastes generated at the Site as part of remediation and on-going monitoring.
- Wildfires: The Site in not at a significant risk of being impacted directly by wildfire activity

6.2 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including Site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. There was no remediation necessary for the productive reuse of the Site and, since maintaining and monitoring of building pressurization to prevent potential SVI has been discontinued with the approval of the NYSDEC and NYSDOH, there are no active remedial components that require energy usage, monitoring, or maintenance. The only on-going requirement is a yearly inspection of the Site, the timing of which is combined with the Site inspections required on Garlock's other BCP Sites for efficiency and to limit the amount of energy and resources required to complete.

This section, if remedies are implemented in the future, will provide an environmental footprint analysis of the remedy, as implemented at that time. This section of the SMP will also provide a summary of green remediation evaluations to be completed for the Site during Site management and reported in Periodic Review Reports (PRRs), if necessary in the future.

6.2.1 <u>Timing of Green Remediation Evaluations</u>

For major remedial system components, which there currently are none at the Site, green remediation evaluations and corresponding modifications will be undertaken as part of a formal Remedial System Optimization (RSO), if and when necessary, or at any time that the NYSDEC project manager feels appropriate, (e.g. during significant maintenance events or in conjunction with storm recovery activities).

Modifications resulting from green remediation evaluations, if and when necessary, will be routinely implemented and scheduled to occur during planned/routine operation and maintenance activities after approval from the DER project manager. Reporting of these modifications will be presented in the PRR.

6.2.2 Remedial Systems

Remedial systems will be operated properly considering the current **S**ite conditions to conserve materials and resources to the greatest extent possible. Consideration will be given to operating rates and use of reagents and consumables. Spent materials will be sent for recycling, as appropriate.

6.2.3 **Building Operations**

Structures including buildings and sheds will be operated and maintained to provide for the most efficient operation of the remedy, while minimizing energy, waste generation and water consumption.

6.2.4 Frequency of System Checks, Sampling, and Other Periodic Activities

Transportation to and from the Site, use of consumables in relation to visiting the Site in order to conduct system checks and/or collect samples, and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be

accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

6.2.5 Metrics and Reporting

As discussed in Section 7.0 and as shown in Appendix H, information on energy usage, solid waste generation, transportation and shipping, water usage and land use and ecosystems will be recorded to facilitate and document consistent implementation of green remediation during Site management and to identify corresponding benefits. A set of metrics has been developed and will be evaluated over time to ensure that green remediation actions are achieving the desired results.

6.3 Remedial System Optimization

A Remedial System Optimization (RSO) study will be conducted any time that the NYSDEC project manager or the remedial party requests in writing that an in-depth evaluation of the remedy is needed. An RSO may be appropriate if any of the following occur:

- The remedial actions have not met or are not expected to meet RAOs in the time frame estimated in the Decision Document;
- The management and operation of the remedial system is exceeding the estimated costs;
- The remedial system is not performing as expected or as designed;
- Previously unidentified source material may be suspected;
- Plume shift has potentially occurred;
- Site conditions change due to development, change of use, change in groundwater use, etc.;
- There is an anticipated transfer of the site management to another remedial party or agency; and
- A new and applicable remedial technology becomes available.

An RSO will provide a critique of a Site's conceptual model, give a summary of past performance, document current cleanup practices, summarize progress made toward the Site's cleanup goals, gather additional performance or media specific data and information, and provide recommendations for improvements to enhance the ability of the present system to reach RAOs or to provide a basis for changing the remedial strategy.

The RSO study, if necessary, will focus on overall Site cleanup strategy, process optimization, and management with the intent of identifying impediments to cleanup and improvements to Site operations to increase efficiency, cost effectiveness, and remedial time frames. Green remediation technology and principals are to be considered when performing the RSO.

7.0. REPORTING REQUIREMENTS

7.1 Periodic Review Report

A Periodic Review Report (PRR) will be submitted to the NYSDEC project manager beginning sixteen (16) months after the Certificate of Completion is issued. After submittal of the initial Periodic Review Report, the next PRR shall be submitted every third year, starting with the 2024 submittal, to the NYSDEC project manager or at another frequency as may be required by the NYSDEC project manager. In the event that the Site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the Site described in Appendix A -Environmental Easement. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

- Identification, assessment, and certification of all ICs required by the remedy for the Site.
- Results of the required annual Site inspections and severe condition inspections, if applicable.
- Description of any change of use, import of materials, or excavation that occurred during the certifying period.
- A Site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the Site-specific Remedial Action Work Plan (RAWP), ROD, or Decision Document;
 - Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring Plan;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan;
 - An update to the climate change vulnerability assessment if Site or external conditions have changed since the previous assessment, and recommendations to address vulnerabilities.

- A summary of the Green Remediation evaluation, including a quantitative and qualitative overview of a Site's environmental impacts and recommendations to improve the remedy's environmental footprint, if necessary based on future Site changes. The PRR will include the completed Summary of Green Remediation Metrics form provided in Appendix H, if remedial systems are required at the Site in the future.
- The overall performance and effectiveness of the remedy.

7.1.1 Certification of Institutional Controls

Following the last inspection of the reporting period, a qualified environmental professional as defined in 6 NYCRR Part 375 or Professional Engineer licensed to practice and registered in New York State will prepare, and include in the Periodic Review Report, the following certification as per the requirements of NYSDEC DER-10:

"For each institutional control identified for the Site, I certify that all of the following statements are true:

- The institutional control employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Site management plan for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document;
- *Use of the Site is compliant with the Environmental Easement.*
- No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and

- The information presented in this report is accurate and complete.
- Every 5 years, the following certification will also be added: *The assumptions made in the qualitative exposure assessment remain valid.*

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative] for the Site."

The signed certification will be included in the Periodic Review Report.

The Periodic Review Report will be submitted, in electronic format, to the NYSDEC project manager and the NYSDOH project manager. The Periodic Review Report may also need to be submitted in hard-copy format if requested by the NYSDEC project manager.

7.2 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional control or failure to conduct Site management activities, a Corrective Measures Work Plan will be submitted to the NYSDEC project manager for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC project manager.

7.3 Remedial System Optimization Report

If an RSO is to be performed (see Section 6.3), upon completion of an RSO, an RSO report must be submitted to the NYSDEC project manager for approval. A general

outline for the RSO report is provided in Appendix I. The RSO report will document the research/investigation and data gathering that was conducted, evaluate the results and facts obtained, present a revised conceptual Site model, and present recommendations. RSO recommendations are to be implemented upon approval from the NYSDEC. Additional work plans, design documents, HASPs, etc., may still be required to implement the recommendations, based upon the actions that need to be taken. A final engineering report and update to the SMP may also be required.

The RSO report will be submitted, in electronic format, to the NYSDEC project manager and the NYSDOH project manager.

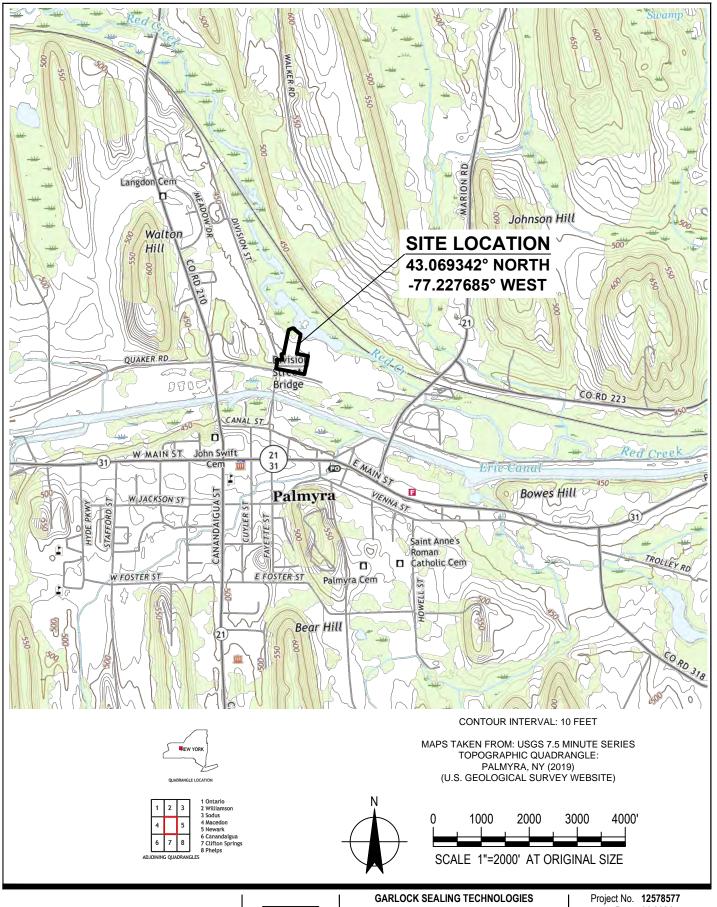
8.0 REFERENCES

6 NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.

GHD Consulting Services Inc., 2015. Soil Vapor Intrusion Evaluation Letter Work Plan. January 29, 2015.

GHD Consulting Services Inc., 2015. Klozures BCP Site Soil Vapor Intrusion Evaluation. May 2015.

NYSDEC DER-10 - "Technical Guidance for Site Investigation and Remediation".

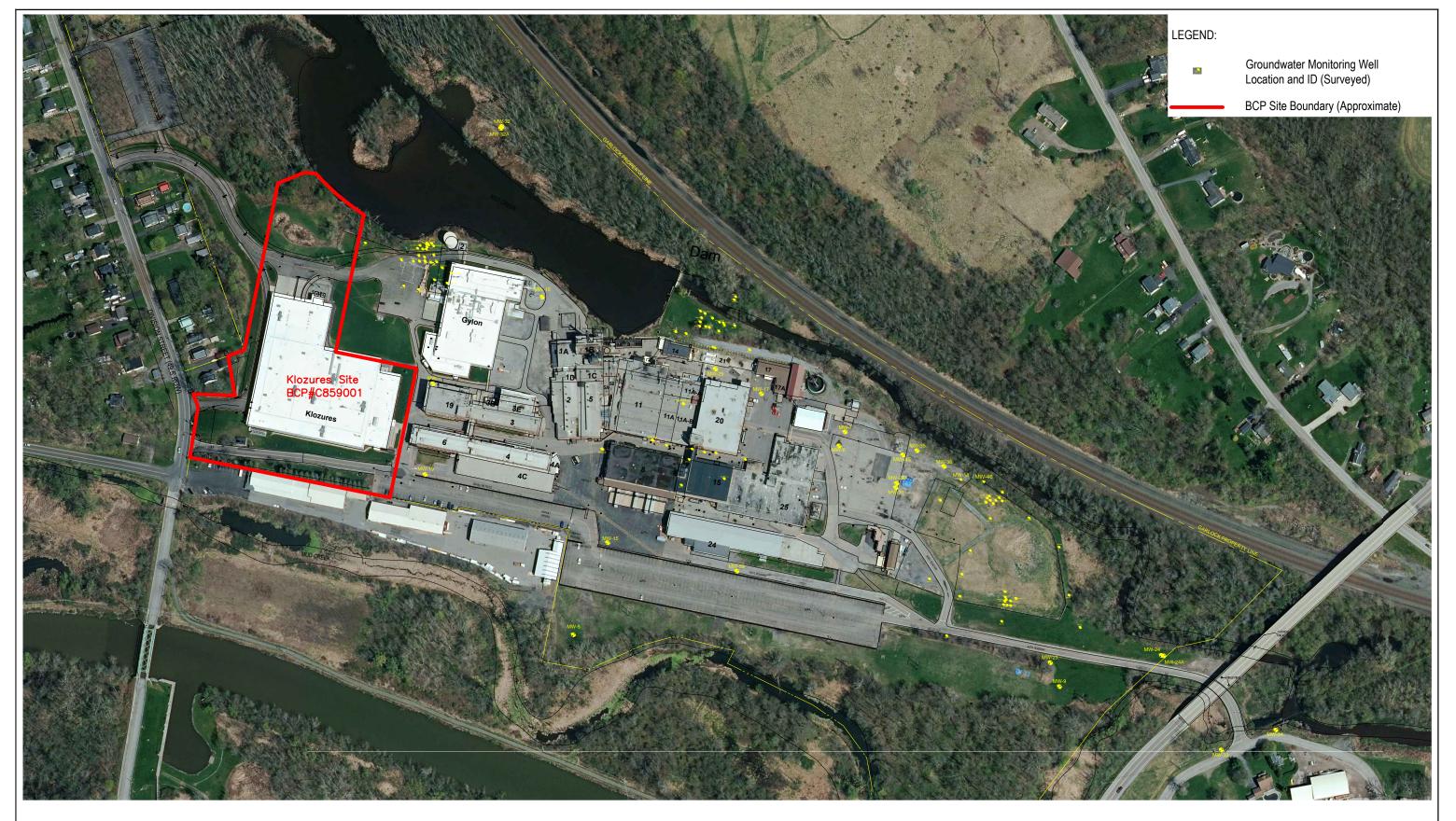

NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).

NYSDEC, 2006. Certificate of Completion, Garlock Sealing Technologies Klozures, Site No. 859001.

S&W Redevelopment of North America, LLC, 2006. Remedial Investigation Report. November 2006, Revised December 2006.

S&W Redevelopment of North America, LLC, 2007. Soil Vapor Intrusion Evaluation. November 2007.

FIGURES



GARLOCK SEALING TECHNOLOGIES SITE MANAGEMENT PLAN KLOZURES BCP SITE (#C859001)

Date **01.2024**

SITE LOCATION MAP

FIGURE 1

- The BCP Site boundary and Garlock property boundary are approximate.
 Site features based on field surveys provided by others.
 Aerial images are 1-foot resolution true color imagery dated 2018 and taken from the NYS GIS Clearinghouse website.

SCALE 1"=250' AT ORIGINAL SIZE

GARLOCK SEALING TECHNOLOGIES SITE MANAGEMENT PLAN KLOZURES BCP SITE (#C859001)

Project No. **12578577**Date **02.2024**

SITE LAYOUT MAP

FIGURE 2

SMP Template: October 2023

APPENDICES

SMP Template: October 2023

APPENDIX A

ENVIRONMENTAL EASEMENT

*** DO NOT DETACH ***

Wayne County Clerk's Office

Recording Page

Receipt #:	172005	FEES	
Instrument #:	R9079679	Recording and Filing:	54.00
Date:	12/19/2006	Transfer Tax:	0.00
Time:	10:47A	Basic Tax:	0.00
Doc Type:	EASEMENTS	Local Tax:	0.00
1st OR:	GARLOCK SEALING TECH	Additional Tax:	0.00
1st EE:	GARLOCK SEALING TECH	Special Tax:	0.00
Town:	-	Withheld:	0.00
Pages:	8	Total:	54.00
Serial #:	-	MORTGAGE TAX	
Employee ID:	EB	Amount Taxed:	0.00
Transfer Tax #:	1285	TRANSFER TAX	
		Consideration Amount:	0.00

State of New York County of Wayne

*** WARNING -

This sheet constitutes the Clerks endorsement required by Section 319 of the Real Property Law of the State of New York.

Wayne County Clerk

* *** DO NOT DETACH *** *

* *** THIS IS NOT A BILL *** *

R9079679 12/19/2006 10:47AM Page: 1 of 8 B 401

ENVIRONMENTAL EASEMENT

THIS INDENTURE made this 22 day of Avenue, 2006, between Garlock Sealing Technologies, LLC residing at (or having an office at) 1666 Division Street Palmyra, New York 14522(the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("brownfield sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of environmental easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and of ensuring the potential restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that environmental easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a brownfield site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and;

WHEREAS, Grantor, is the owner of real property located in the Town of Palmyra, Wayne County, New York known and designated as a portion of the parcel on the tax map of the Wayne County Real Property as tax map parcel number 64.111-00-839.937, being the same as that property conveyed to Grantor by deed on July 19, 1929, and recorded on July 30, 1929 in the Land Records of the Wayne County Clerk at page 251, liber 288 of Deeds, comprised of approximately 7.0 acres, and hereinafter more fully described in Schedule A attached hereto and made a part hereof (the "Controlled Property"); and;

WHEREAS, the Commissioner does hereby acknowledge that the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation established at this Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36;and

NOW THEREFORE, in consideration of the covenants and mutual promises contained herein and the terms and conditions of Brownfield Cleanup Agreement Number B8-0690-05-04 (BCP Site No. C859001), Grantor grants, conveys and releases to Grantee a permanent Environmental Easement pursuant to Article 71, Title 36 of the ECL in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes.</u> Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of

Environmental Easement/March 2005 NYSDEC Page 1 of 5

R9079679 12/19/2006 10:4

ASE

operation, maintenance, and/or monitoring requirements; and to ensure the potential restriction of future uses of the land that are inconsistent with the above-stated purpose.

- 2. Institutional Controls. The following controls apply to the use of the Controlled Property, run with the land are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees, and any person using the Controlled Property:
- A. The Controlled Property may be used for industrial use as long as the following long-term engineering/institutional controls are employed:
 - (i) the use of the groundwater underlying the Controlled Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, is prohibited unless the user first obtains permission to do so from the Department; and
 - (ii) the excavation of site soil will be done in accordance with the Department approved Site Management Plan.
- B. The Controlled Property may not be used for a higher level of use such as commercial use and the above-stated institutional controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an environmental easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

- D. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- E. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury that the controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls employed at the Controlled Property were approved by the NYSDEC, and that nothing has occurred that would impair the ability of such control to protect the public health and environment or constitute a violation or failure to comply with any Site Management Plan for such controls and giving access to such Controlled Property to evaluate continued maintenance of such controls.
- 3. Right to Enter and Inspect. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

R9079679 12/19/2006 10:47AM Page: 3 of 8

- Reserved Grantor's Rights. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Controlled Property, including:
- 1. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement:
- 2. The right to give, sell, assign, or otherwise transfer the underlying fee interest to the Controlled Property by operation of law, by deed, or by indenture, subject and subordinate to this Environmental Easement:

5. Enforcement

- A. This environmental easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this environmental easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.
- B. If any person intentionally violates this environmental easement, the Grantee may revoke the Certificate of Completion provided under ECL Article 27, Title 14, or the Satisfactory Completion of Project provided under ECL Article 56, Title 5 with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach. Grantor shall then have a reasonable amount of time from receipt of such notice to cure. At the expiration of said second period, Grantee may commence any proceedings and take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement in accordance with applicable law to require compliance with the terms of this Environmental Easement.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar its enforcement rights in the event of a subsequent breach of or noncompliance with any of the terms of this Environmental easement.
- Notice. Whenever notice to the State (other than the annual certification) or approval from the State is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing its County tax map number or the Liber and Page or computerized system tracking/ identification number and address correspondence to:

Division of Environmental Enforcement Office of General Counsel New York State Department of Environmental Conservation 625 Broadway Albany New York 12233-5500

12/19/2006 10:47AM Page: 4 of 8

Environmental Easement/March 2005 NYSDEC Page 3 of 5

Such correspondence shall be delivered by hand, or by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. Recordation. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment.</u> This environmental easement may be amended only by an amendment executed by the Commissioner of the New York State Department of Environmental Conservation and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This environmental easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation.</u> If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Grantor's Name

Bv:

Tiela.

Date: 22 November 200

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of

Environmental Conservation

Bv:

Denise M. Sheehan, Commissioner

Wayne County Clerk

K90/96/9

12/19/2006 10:4/

Page: 5 of 8

EASE

Grantor's Acknowledgment STATE OF NEW YORK COUNTY OF MIMOL) ss: On the 31 mil day of Movement, in the year 200, before me, the undersigned, personally appeared Dem Firme will, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument. MISSERHINE COLLO PAGE C. Stones of M. L. Monros Co. Grantee's Acknowledgment STATE OF NEW YORK (See next page) On the 22 m day of Well, in the year 200, before me, the undersigned, personally appeared , personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument. Notary Public - State of New York

h The sections of the section

August 1 s. o. C. Dens of R.T., Monroe Cor - ma Commission Courses

R9079679 12/19/2006 10:47AM Page: 6 of 8

Grantee's Acknowledgment

STATE OF NEW YORK)
COUNTY OF ALBANY) ss:)

On the 18th day of December, in the year 2006 before me, the undersigned, personally appeared Decise M. Sheekan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

MARK D. SANZA
Notary Public, State of New York
No. 02SA6010701
Qualified in Albany County
Commission Expires July 20, 20/0

K/R to: Christoper Rockwell

40 Garlock Sealing Technologies, LCC

1666 Division Street

Palmyn, NY 14522

The County Clark

12/19/2006 10:47AM Page: 7 of 8

SCHEDULE A

Commencing at point in the easterly right of way of Division Street at its intersection with the division line between the lands of tax account number 064.111-00-839.937 on the south and lands of tax account number 064.111-08-765.906 on the north, said point being the POINT OF BEGINNING;

- 1) thence S 87°40'20" E along said division line a distance of 117.01 feet to a angle point;
- 2) thence N 9°57'45" W continuing along said division line a distance of 112.83 feet to a point in the southerly boundary of lands of tax account number 064.111-08-765.913;
- 3) thence N 70°33'15" E along said southerly boundary a distance of 48.00 feet to a point;
- 4) thence N 11°29'58" E through the lands of tax account number 064.111-00-839.937 a distance of 475.38 feet to a point;
- 5) thence N 68°42'57" E continuing through the lands of tax account number 064.111-00-839.937 a distance of 81.27 feet to a point;
- 6) thence S 80°57'36" E continuing through the lands of tax account number 064.111-00-839.937 a distance of 24.02 feet to a point;
- 7) thence S 47°15'15" E continuing through the lands of tax account number 064.111-00-839.937 a distance of 146.96 feet to a point;
- 8) thence S 58°03'08" E continuing through the lands of tax account number 064.111-00-839.937 a distance of 35.63 feet to a point;
- 9) thence S 11°29'58" W continuing through the lands of tax account number 064.111-00-839.937 a distance of 386.30 feet to a point;
- 10) thence S 78°30'02" E continuing through the lands of tax account number 064.111-00-839.937 a distance of 229.65 feet to a point;
- 11) thence S 11°29'58" W continuing through the lands of tax account number 064.111-00-839.937 a distance of 367.98 feet to a point in the northerly boundary of lands of tax account number 064.111-00-821.867;
- 12) thence N 78°31'45" W along said northerly boundary a distance of 570.83 feet to a point in the aforementioned easterly right of way of Division Street;
- 13) thence N 9°31'15" E along said right of way a distance of 83.07 feet to a point;
- 14) thence N 9°31'15" E continuing along said right of way a distance of 56.90 feet to a point;
- 15) thence N 19°26'45" W continuing along said right of way a distance of 40.33 feet to the POINT OF BEGINNING.

The above described parcel contains 7.06 acres (307585 sq. ft.)

SMP Template: October 2023

APPENDIX B

AVAILABLE SOIL BORING LOGS

WEI IN DIMBNIT Symbol Description Symbol Description Strata symbols Soil Samplers Asphalt Auger APRICES Crushed Stone Fill Clayey Silt Silt Silt and Clay Clayey Silt / Highly Weathered Shale Clay and Silt Topsoil Sand isc. Symbols Water table at date indicated =

Symbol Description

Standard penetration test

Notes:

- 1. These subsurface logs form a part of the geotechnical report, and should not be separated from the report.
- 2. The information presented on these subsurface logs are subject to the limitations, discussions and conclusions presented in the report.
- 3. The subsurface conditions between the subsurface exploration locations, including topsoil and fill thicknesses, will vary.
- 4. The subsurface logs should not be used as the sole means of estimating material quantities, including fill, topsoil and/or organic subsoils, for bidding purposes. Discussions presented in this report of subsurface conditions may aid in estimating quantities. The contractor is ultimately responsible for performing any additional site observations/explorations to aid in bidding.

ANNED BIEGE (BENEA

но	LE	ио		B-1					SURF. ELEV. 99.6	
PR	OJE	CT RC	н-95-	260					LOCATION Palmyra	
		Ne	w Mar	ufac	turir	ıg Pl	ant		New York	
CL	IEN	T Gar	lock						TE STARTED 10/27/95 COMPLETE	10/27/95
דר) ET)	Sample	Sample No.	0-6	Ī	S ON S	Γ -	N	GRAPHIC	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
0							•		3" ASPHALT 0.25	
	7-	S-1	1	2	2	3	4	\bigotimes	6" Crushed Stone	
	7	S-2	2	2	2	2	4		Grey CLAYEY SILT, trace fine sand (moist, loose) FILL 5.0	No recovery for sample No. S-2.
5 -	1	S-3	2	2	2	2	4		Black and reddish brown SAND, some fine Gravel/Slag, little	
	-	S-4	3	5	6	9	11		Clayey Silt, trace asphalt (moist, loose) FILL 7.5	
́э -		S-5	8	15	16	16	31		Greenish-grey CLAYEY SILT, little Sand (moist, firm) contains partings of light	
									grey clayey silt (moist, compact)	-
									color changes to dark grey	– –
ς -	- 	S-6	15	38	50	-	88		(dry)	
										
: :a -	7	S-7	13:	11	12	6	23		70.5	
. u	,							<u>KNAX</u>	Boring complete at 20.5 feet.	 Free standing water was not encountered at boring completion.
	1			:						-
	-			i						-
				! !					·	
-				<u> </u>						
			1	!						- -
										
-			-					1		
								1		
· ·										_
								" SP	OON 12 " WITH 140 1b	
		LING _ BY Kur			PER	BLOW			SHEET 1 OF 1	

HOLE	-		B-2					SURF. ELEV98.	9	
PROJ	ECT RO							LOCATION Palmyra		
	Ne	w Mai	nufac	turi	ng Pl	ant		New York		-
CLIE	NT <u>Gar</u>	lock					DA	TE STARTED 10/27/95 COMPLE	TED	10 27 95
Somple	Sample No.	0-6		12-18	1	z	GRAPHIC	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS
0			1	 	 			B" ASPHALT		
ď	S-1	1	• 2	1	2	3		3	.25	
							\mathbb{X}	0	.75	
7	<u>S-2</u>	3	: 1	1	2	2	\ggg	Black ASH and CINDERS, little Gravel (moist, loose) FILL		
s -		<u> </u>		<u> </u>			₩	contains a seam of grey and brown mottled CLAYEY SILT,		
7	S-3	1	<u>}</u> 2	1	1	3	-	little reddish brown Slag	_ _	
	S-4	1	<u>; </u>	2	2	3	+	Dark brown SAND, little	6.5	
7		 	 -				\otimes	Gravel, little Clayey Silt, little Gasket material	-	
	S-5	12	17	15	15	32	$\otimes \otimes$	(moist, loose) FILL		
.c —			!				EEE	Greenish-grey CLAYEY SILT,	2.0	-
		 						trace fine sand, contains a seam of brown fine sand		
		1	;				K111	(moist, compact)	-	•
	S-6	18	25	35	38	60		grades to little fine Sand	-	No sand seams in
.5 -		1		33	30		1933	(dry, very compact)	-	- Sample No. 6.
							1911			
							FRATA	Grey CLAYEY SILT, little Sand,		
	S-7	18	14	10	-	24		little fractured Rock (very moist, firm)		
5 -		1	:				FG27		1.0	
-		1		-				Boring complete at 20.0 feet.	\vdash	Free standing water was not encountered
-		<u> </u>					1		-	at boring completion.
= +			:							_
-			<u> </u>	· · · ·]		_	
-		i							<u> </u>	
-				! 			1 1		-	
. '							1 1		-	
		Í	:				1			
]			· • • • • • • • • • • • • • • • • • • •
	 -	<u> </u>	 -							
		! 					1 1		_	
= +-	·	<u> </u>		<u> </u>			} }		_	_
-		:	:				1		-	
				 			1		-	
		:					1 1		-	
<u>. </u>							1			
							<u></u> l			
	R OF B LING _						" SPO	OON 12 " WITH 140 1)	
	BY <u>Ku</u> r			FER	TUUW			SHEET 1 OF	1	
_										

AND BIRITALIAN PROPERTY

HOLE NO. B-3 SURF. ELEV. 99.1 LOCATION Palmyra PROJECT RCH-95-260 New Manufacturing Plant New York CLIENT Garlock DATE STARTED 10/27/95 COMPLETED 10/27/95 BLOWS ON SAMPLE DESCRIPTION & CLASSIFICATION WATER TABLE & REMARKS 0-6 | 6-12 | 12-18 | 18-24 | N TB" ASPHALT 0,25 3 4 4 S-1 6" CRUSHED STONE Black ASH, little fine Gravel, little Sand, trace roots (moist, loose) FILL contains little Slag S-2 3 3 2 S-3 contains a seam of gasket material Grey CLAYEY SILT, little Sand, trace roots 7 S-4 WOH 5 S-5 6 (moist, loose) 10.5 Brown SILT, little fine Sand Greenish-grey CLAYEY SILT, trace fine sand (moist, compact) 26 45 S-6 | 15 20 25 color changes to dark grey (wet, firm) S-7 14 18 Free standing water Boring complete at 20.0 feet. was not encountered at boring completion. FALLING 30 " PER BLOW

SHEET 1 OF 1

ED BY Kurt Miller

	LE 1	_		B - 4					SURF. ELEV. 99.4		· · ·
PRO)JE(CT RC							LOCATION Palmyra		
		Ne	w Mar	ufac	turir	ng Pl	ant		New York		
CL	ENT	Gar.	lock					DA	TE STARTED 10/30/95 COMPLETE	D _	10 30 95
	0	9		BLOW	S ON S	AMPLE		္ခ		T	
DEPTH (FEET)	Samp	Sample No.	0-6	6-12	12-18	15-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS
Û]			XXX	B" ASPHALT		
	7_	S-1	4	3	4	3	7	\bowtie	0.25 GRUSHED STONE	Γ	
•								\bowtie	0.5	Γ	
	7_	S-2	2	3	1	1	4	\bowtie	Light brown and black GASKET material and manufacturing		No recovery for Sample No. 3.
				<u> </u>				\bowtie	waste (moist, loose) FILL	Ē.	
-	/_	S-3	1	2	1	1	3	$\swarrow\!$	GASKET material (moist,loose)		- (*
								\bowtie	FILL		-
	7_	S-4	3	5	3	8	8		0.8		•
									Brown SILT and CLAY, trace fine sand (moist, medium)		["
10 -	7_	S-5	8	10	11	13	21	161717	9.0	<u> </u>	_ \. _
	_							1/1/1/	Greenish-grey CLAYEY SILT, trace sand (dry, firm)	<u> </u>	
	-							KH11	12.0	<u> </u>	
	-								Grey CLAYEY SILT/ Highly Weathered SHALE	<u> </u>	. !
,									(very moist, loose)	-	,
15 -	7 –	S-6	5	3	5	8	8		;		-
	_	i							·	_	· · · · · · · · · · · · · · · · · · ·
	-									_	
i		S-7	18	28	16	18	44		(compact)	-	
i	<i>_</i>			20		-			20.0		
20 -		i							Boring complete at 20.0 feet.		Free standing water
		į							- -	_	was encountered at 6.8 feet below
										_	ground surface upon
		Ì									boring completion.
25 -	· .										
	;										
	·										
			· · · · ·							_	
31 -		<u>-</u>		}					÷		
	-									_	
	<u>-</u>							•		_	~.
	· —							}		_	
			:	! !						_	
15 -			:	!	! 			1			-
	-		<u> </u>	i i	1					-	
	-		<u> </u>	!	ļ			-		-	
	-		<u>:</u> !	 	<u> </u>			1		-	
	-		<u>:</u> !	1	 			1		_	
	<u> </u>		!	<u> </u>		<u> </u>				<u> </u>	
1UMI	BER	OF B	LOWS	TO D	RIVE	2	2	" SP	00N 12 " WITH 140 1b		
		ING _			PĖR	BLOW					
}GE1	ים כ	Kur	t Mil	ller					SHEET 1 OF 1		

FANIFENNIABIA) (#1

	е ио							SURF. ELEV. 98.9		
PROJ	ECT RC							LOCATION Palmyra	 ·	
		w Mar	ufac	turir	ng Pl	ant		New York	· · · · ·	
	NT Gar	lock						re started 10/27/95 COMPLETE	:D	10/27/95
PTH B	Sample No.	0-6	BLOW 6-12	12-18	T	N.	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS
0		<u> </u>	<u> </u>				Larrance and	3" ASPHALT	 	
	S-1	1	3	. 3	3	6		6" CRUSHED STONE	1_	
	S-2	3	2	2	1	4		Red and Black SAND, little Silt, little fine Gravel/Slag		
5 -	S-3	2	1	1	1	2	\bigotimes	(moist, loose) FILL grades to little Clayey	-	
	S-4	1	1	2	5	3		Silt		
								trace organics (moist, loose) FILL		
.c -	S-5	5	8	9	10	17		Greenish-grey CLAYEY SILT, trace fine sand, contains		
							KH11	partings of brown silt (moist, firm)	-	
								color changes to brownish	 	•
5 -	<u>s-6</u>	15	17	8	13	25		grey ,		
						<u> </u>		17.0 Grey CLAYEY SILT, little Sand	_	
	5-7	9	15	31	-	46		(dry, compact)		
:c 							PIA	Boring complete at 20.0 feet.	,	Free standing wate was not encountered at boring
	-		, d X						_ '	completion.
:										
							,		_	
								. *		
= +	1			<u> </u>						
										••·
								·	<u> </u>	
-= +	· •		<u> </u> 				-			
			i				1			
			<u> </u>				1		- -	
<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	

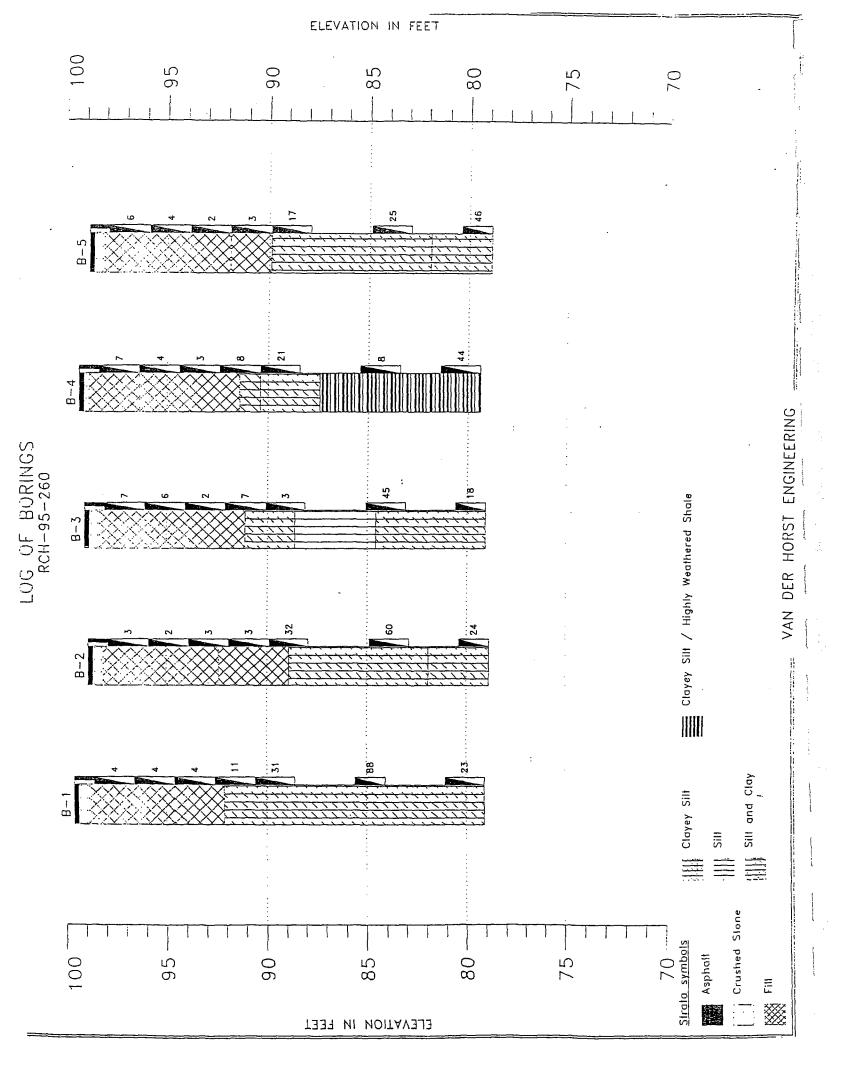
γ	NEDIN:								
	LE NO.							SURF. ELEV. 99.2	
PR	OJECT <u>RC</u>				D1			LOCATION Palmyra	
CT.				turi	19 P.1	ant		New York	
<u></u>	IENT Gar	TOCK.					DA	TE STARTED 10/27/95 COMPLETE	D <u>10:27/95</u>
EPTH FEET)	Sample Sample No.	0-6	i	12-18	1	N	GRAPHIC	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
Q		1	 	 		 		B" ASPHALT	
	S-1	6	3	2	1	5	\boxtimes	0.25	<u> </u>
	/						1	6" CRUSHED STONE 0.75	
	S-2	3	; 2 _.	1	2	3		Black SAND, little fine	
-	7		İ				\mathbb{W}	Gravel, trace silt, trace gasket material	
. 5 -	S-3	3	2	3	2	5	\times	(moist, loose) FILL	
	7		-					grades to "and" GASKET material	
	S-4	1	1	1	1	2		7.0	
							\mathbb{W}	Grey and brown CLAYEY SILT and SAND, contains a seam of	
ic	S-5	1	; 3	3	4	6		black crushed stone	-
_ 4.	/		<u> </u>				WU	(wet, loose) FILL 9.0	·
	· 		1					Dark grey CLAY and SILT,	_
	ļ		<u> </u>					trace fine sand, trace organics (moist, loose)	
			<u> </u>				nn	,,	
<u>: </u>	S-5	3	15	15	10	30	ИИ	15.0	
		· · · · ·	: !				H	Brown SILT, little fine Sand (moist, firm)	_
	·		<u> </u>				1/1/1/	15.75	_
	- S-6	7	7	7		14	KR31	Grey CLAYEY SILT, some Sand, trace highly weathered Shale	
	3-6		!			14		(moist, firm)	-
೭೦ –			<u> </u>				10111	Boring complete at 20.0 feet.	Free standing
	,		<u> </u>						water was not
			i -				1		 encountered at boring completion.
			i :					ļ	
	-		<u>.</u>						_
- E			1						
			!]		_
	·								_
Ì			<u> </u>						-
3: -	;								
	. ! 		!						_
	·		: 					<u> </u>	_
	·								_
	: 		<u> </u>				1		
35 -	<u> </u>		<u> </u>						
	-		· 				-		<u> </u>
	:		<u> </u>						 -
			·						_
		<u> </u>	<u> </u>	 			4		
<u> </u>	<u> </u>		1	<u> </u>			<u> </u>		

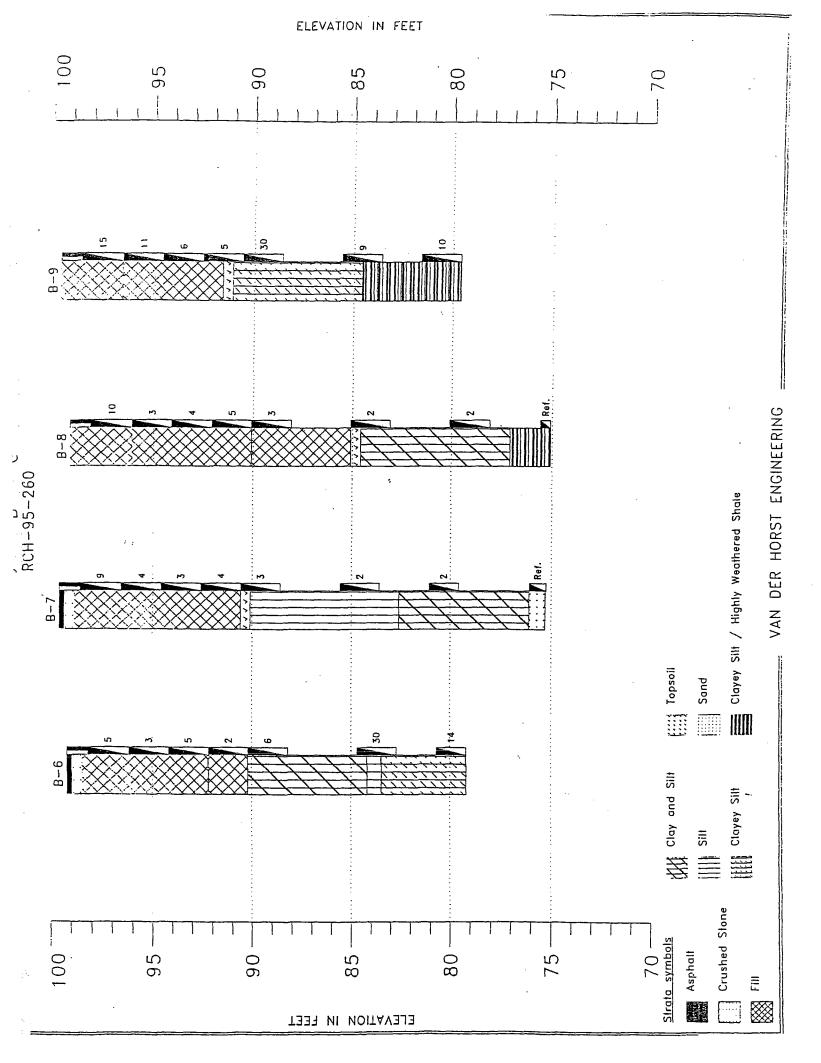
ANSTREAMENT OF THE PARTY OF THE HOLE NO. B-7 SURF. ELEV. 99.6 LOCATION Palmyra PROJECT RCH-95-260 New Manufacturing Plant New York CLIENT Garlock _ DATE STARTED ___10/27/95 __ COMPLETED __10/27/95 BLOWS ON SAMPLE PEPTH FEET) DESCRIPTION & CLASSIFICATION WATER TABLE & REMARKS 0-6 6-12 12-18 18-24 0 B" TOPSOIL 0.25 2 | 3 S-1 6 3 9 6" CRUSHED STONE Black and light brown SAND, little Brick fragments, S-2 2 2 little Plastic, trace organics (moist, loose) FILL S-3 1 2 1 3 grades to trace asphalt grades to trace gasket material S-4 3 | 2 3 4 Possible BURIED TOPSOIL S-5 1 2 9.5 Dark grey SILT, little Sand, trace organics, trace clay contains trace shells 2 · S-6 1 1 2 17.0 Greyish brown CLAY and SILT (very moist, very soft) S-7 2: , 1 20 -23.5 S-7 2 50/4 Ref. Ref. - Sampler Greyish brown SAND, some refusal Gravel, little Clayey Silt Ξ (wet, very compact) Free standing water was not encountered Boring complete at 24.3 feet at boring with sampler refusal. completion. MBER OF BLOWS TO DRIVE 2 " SPOON 12 " WITH 140 1b . FALLING 30 " PER BLOW SHEET 1 OF 1 GED BY Kurt Miller

			260					SURF. ELEV. 99.1	
PROJE	CT RC							LOCATION Palmyra	
		w Man	uiac	turin	ig PI	ant		New York	
CLIEN	T Gar	lock					DA	TE STARTED 10/27/95 COMPLETE	ID <u>10/27/95</u>
<u>e</u> ;	. elc		BLOW	S ON S	AMPLE		¥,,		
Sample	Sampla No.	0-6	6-12	12-18	18-24	N	GRAPHIC	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS .
0 1							$\swarrow\!$	Red and White SAND and CLAYEY	
7.	S-1	5	6	4	2	10	\bowtie	SILT, little Gravel, little Gasket material	
<u> </u>							\boxtimes	(moist, loose) FILL	
7.	S-2	1	1	2	2	3	\bowtie	Reddish brown and black	
		<u> </u>					\bowtie	CLAYEY SILT, little Sand,	
	S-3	1	2	2	2	4	\bowtie	little Gasket material	
							\bowtie	(moist, loose) FILL	
	S-4	(-)	3	_ 2	3	5	\bowtie		
7							\bowtie	9.0	
	S-5	2	1	2	3	3		Brown SILT, little Sand,	
7		i j					\bowtie	trace organics, trace clay (moist, very soft) FILL	
							\bowtie	(morse, very sore) Find	
							\bowtie	`,	
							\bowtie	14.0	
1	S-6	1_1	1	1	5	2	MIN	Possible BURIED TOPSOIL	
7]								Grey CLAY and SILT	
								(very moist, very soft)	
							ŊИ		
							ИИ		
1.	S-7	1	1	1	1	2	ИИ	color changes to brown	
							ИИ		
					-			22.0	
								Grey CLAYEY SILT/ Highly	_
	S-8	50	-	-	-	Ref.		weathered SHALE 24.0	Ref Sampler
1								Boring complete at 24.0 feet	refusal
								with sampler refusal.	Free standing water was not
		<u> </u>							_ encountered at
'-		<u> </u>	 				}		boring completion
-		1							<u></u>
1:		<u> </u>	<u> </u>					,	
-		<u> </u>							
	<i></i>								
		<u> </u>							_
1		<u> </u>	<u> </u>				1		
		<u> </u>	<u> </u>						
		<u> </u>					1		_
								•	
]		
1 5		i	1	1			i	1	-

'ARIKABIH (42/4)(42)

ANNED RIGHTON


		NO							SURF. ELEV. 99.6	
PK	Ju E	CT RC				D3			LOCATION Palmyra	
CT.	ר ביאו	<u>Ne</u> T Gar	w Man	urac	curir	id br		אַת	New York TE STARTED 10/30/95 COMPLETE	n 10/20/95
<u>.</u>	, ,		TOCK	DI 0111	S ON S	11/2/5			TE STARTED 10/30/93 COMPHETE	10/30/93
PTH (ET)	Sample	Sampie No.	0-6		12-18	1	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
0								XX	Black ASH and orange GASKET	
	7-	S-1	12	9	6	5	15		material, little Sand, trace roots (moist, firm) FILL	
		S-2	7	6	5	9	11		J.O Light brown BRICK/CONCRETE	-
	y -							\bowtie	fragments, little gasket material (moist, firm) FILL	
5 -		S-3	2	3	3	8	6	\bowtie	(loose)	
	7 -							\otimes	·	_
	7	S-4	9	2	3	8	5	\bowtie	8.0	
	_							PVIX	Dark brown BURIED TOPSOIL	
٦ _		S-5	13	14	16	14	30	K111	(moist, loose) 8.5	<u>¥</u>
								KN11	Greenish-grey CLAYEY SILT,	
								F1717	little fine Sand (moist, firm)	
						<u>-</u>		E111		
•								E133		<u>.</u>
5 -	7-	S-6	6	5	4	2	9	6777	15.0	
•	. —						 		Dark gréy CLAYEY SILT/Highly weathered SHALE, trace sand	
	-								•	_
			3.		7	7.7				_
٠.	7-	S-7	3: :	3		11	10		22.0	_
:d -	 								Boring complete at 20.0 feet.	Free standing water
	-									was encountered at 9.5 feet below
				·i						ground surface upon
	-								·	boring completion.
	-					•				
. –	1				,					-
	_							ļi		_
	١.						_			_
										_
	 								· ·	
	-								-	_
	-		<u> </u>						}	-
	-			ļ						_
	-			<u> </u>				}		-
-	+-		<u> </u>							
	-			 		<u> </u>		1		_
	-	·		 	 	ļ	<u> </u>	-	<u> </u>	
	-		 	 	 			1	}	
	-				 	<u> </u>	<u> </u>	1		
=	1				<u></u>	<u> </u>	<u> </u>	<u> </u>		
ſ	BER	OF B	LOWS	TO D	RIVE	2	2	" SP	OON 12 " WITH 140 1b	•
		ING _								
177	D E	Y Kur	t Mil	ller					SHEET 1 OF 1	


HOLE N			B-3					SURF. ELEV	
PROJEC	T Ga	rlock	Com	pany				LOCATION Palmyra, New Yo	ork
	Blo	dg. 2	5 Ad	ditio	on			RCH-95-023	
CLIENT	LaB	ella	Asso	ciate	es		DA	TE STARTED 2/7/95 COMPLETE	ED 2/7/95
- B	B)C		BLOW	S ON S	AMPLE		일		
	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
	1.	13	4	3	2	7		ASPHALT 0.5	No split-spoon recovery for Sam
7	2	2	1	1	1	2		Reddish brown-black ASH and CINDERS (moist, loose) FILL	No. 2.
5 -	3	2	3	3	3	6	\bigotimes	(wet)	<u> </u>
	4	3	2	1	2	3			
7 : 7 :	5	1	1	1	3	2		8" Black SILT (possible	
10		<u> </u>						buried topsoil) (very moist) 8.7 Brown SILT and CLAY, trace	
								sand (moist, very soft)	
15	6	1	2	3	3	5		contains seams of brown Silt (very moist, soft)	
								Light brown CLAY and SILT, trace sand (wet, very soft)	
								crace sand (wee, very sort)	
20 -	7	1	1	1	1	2		:	
25	8	2	14	11	11	25	run	23.5 Gray highly weathered ROCK Fragments (dry, firm)	-
		1	!					Boring complete at 25.0 feet.	was encountered
									- 6.6 feet at bori completion.
30			1	 					_
				 	<u> </u>		1		-
							1		-
35			1	<u> </u>			_		
					1				
1		-					_		-

ABSID BANKABIANU

APPENDIX C: Boring Profiles

Appendix B: Test Boring Logs
(December 2005)

H NICTNICEDINIC	CLIENT	LOCATION	
Engineering	DATE STARTED	COMPLETED	
	BLOVS ON SAMPLE	u l	
Search Sand G-	0-6 6-12 12-18 19-24 N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
	2 2 3 5 5	SAND and GRAVEL, trace silt (moist, loose)	Water was encontered at 2.0 feet
2. 5		Gray SHALE, soft to medium hard, some fractures	Run no. 1 - 2.5 ft to 5.0 ft - Recovery 95% RQD 50%

Spilt-Spoon Sampe Shelby Tube Sample Auger Sample or Test Pit Sample Bulk Sample Rock Core or Pavement Core

Identification of soil type is made on the basis of an estimate of particle sizes, and in the case of fine grained soils, also on the basis of plasticity.

SOIL TYPE	SOIL PARTICLE SIZE	DESCRIPTION
Boulder	> 12"	
Cobble	12" to 3"	
Gravel -course	3" to 3/4"	Course Grained
Gravel -fine	3/4" to No 4	(Granular)
Sand -course	No 4 to No 10	,
Sand -medium	No 10 to No 40	
Sand -fine	No 40 to No 200	
Silt -Non Plasic (Granular)	< No 200	Fine Grained
Clay-Plastic (Cohesive)	< No 200	
		

The following terms are used in classifying soils consisting of mixtures of two or more soil types. The estimates are based on weight of total sample.

TERM	PERCENT OF TOTAL SAMPLE										
"and"	35% to 50%										
"some"	20% to 35%										
"little"	10% to 20%										
"trace"	less than 10%										

When sampling gravelly soils with a standard split-spoon sampler, the true percentage of gravel is often not recovered due to the relatively small sampler diameter.

RELATIVE COMPACTNESS AND CONSISTENCY

GRA	NULAR SOILS	COHESIVE SOILS						
Term	Blows per Foot (SPT N-value)	Term	Blows per Foot (SPT N-value)					
Loose	< 11	Very Soft	< 3					
Firm	11 to 30	Soft	3 to 5					
Compact	11 to 50	Medium	5 to 15					
Very Compact	> 50	Stiff	15 to 25					
· •		Hard	> 25					

Large particles encountered in the soils during sampling, such as large gravel, cobbles and boulders, will often significantly influence the blows per foot (SPT N-values) recorded during the penetration test.

SOIL DEPOSITION STRUCTURE

The following terms are used to describe the deposition structure of the soils, particularly fine grained soils.

TERM	DEFINED BY
Varved	horizontal uniform layers or seams of soils(s).
Layer	soil deposit more than 6" thick.
Seam	soil deposit less than 6" thick
Parting	soil deposit less than 1/4" thick
Laminated	irregular, horizontal and angled seams and partings of soil(s).

ROCK CLASSIFICATION TERMINOLOGY

CLASSIFICATION	TERM	DEFINED BY
Hardness	Soft Medium Hard Hard Very Hard	Scratched by fingernail Scratched easily by pocketknife Scratched with difficulty by pocketknife Cannot be scratched by a pocketknife
Weathering	Very Weathered Weathered Sound	Estimated from the relative amounts of disintegration (of the rock), iron staining, rock core recovery, soil seams, etc.
		Natural breaks in the rock layers
Bedding	Laminated Thin Bedded Bedded Thick Bedded Massive	< 1" thick 1" to 4" thick 4" to 12" thick 12" to 36" thick > 36" thick
Fracturing	Quantitative descriptions such as "highly", "moderately" or "slightly" fractured, depths over which fractures are noted, and relative angles of the fractures (if applicable).	to the horizontal rock layers, or at some angle to the (horizontal) rock layers.

Symbol Description Symbol Description Strata symbols Clayey SILT TOPSOIL SAND Silty SAND Misc. Symbols SILT Water table at date indicated Sandy SILT Water table at date indicated SAND and SILT Soil Samplers Standard penetration test Decomposed Bedrock Auger **ASPHALT** FILL SAND with Gravel

tes:

These subsurface logs form a part of the geotechnical report and should not be seperated from the report.

Silty SAND with ROCK FRAGMENTS

GRAVEL and SAND

The information presented on these subsurface logs are subject to the limitations, discussions and conclusions presented in the report.

The subsurface conditions between the subsurface exploration locations, including topsoil and fill thicknesses, will vary.

The subsurface logs should not be used as the sole means of estimating material quantities, including fill, topsoil and/or organic subsoils, for bidding purposes. Discussions presented in this report of subsurface conditions may aid in estimating quantities. The contractor is ultimately responsible for performing any additional site observations/explorations to aid in bidding.

Engine		D.	ATE S				·	2-16-05 COMPLETED	12-16-05-		
Sample (Laad)	Sample No.	0-6	6-12	12-18		N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMA	
0	1	2	3	3	4	6	7777		+		
								ORGANICS/ROOTS (wet)			
	2	4	5	5	5	10		TOPSOIL	<u></u>		
5 -	3	3	3	10	15	13		Brown Silty SAND, trace roots/organics		-	
7	4	17	20	26	37	46		(wet) grades to no roots/organics (loose)	-	*	
10	5	13	18	38	50	56		Brown Silty SAND, little Gravel (wet, firm)	-		
10								Brown to Grayish-Brown SILT, trace clay, trace gravel, trace sand		Free standing was not encount upon boring completion.	
15			·					contains seams of sand (wet, compact) grades to little Clay (very moist, very compact)		- ·	
								GLACIAL TILL			
20								Test boring was completed at a depth of 11 feet.	_	-	
25									_	-	
									F		
30										-	
									-		
35											
					_				_		
40											

ierney	H	OLE N	ro	В-	-2	_	SURF. ELEV. 445	PROJECT NO.: TGE.0
G eotechnica	.,						LOCATION Palmyra,	New York
ngineering		LIENT						
	D.	ATE S				12	-16-05 COMPLETED	12-16-05-
Sample H1da	0-6	6-12	12-18		N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMAR
0 1	2	3	2	2	5	7777	Dark-Brown Silty SAND mixed	
	10	01	1.6	00	27	i dinisi	with ORGANICS/ROOTS (wet, loose)	
2	10	21	16	20	37		TOPSOIL mixed with ORGANIC SUBSOIL	-
5 - 3	10	15	16	16	31		Brown Sandy SILT, little Gravel	
4	26	28	35	40	63		(wet, compact)	
5	20	20	30	29	50		Reddish-Brown SILT, trace to little Clay, trace to	
10					-		little Gravel, trace sand (very moist, compact)	
							color changes to Brown grades to trace clay	
							(very compact) grades to little Clay contain seams of fine sand	
15 - 6	22	28	34	37	62		(moist, compact) grades to trace clay, trace	
							sand, trace gravel (very compact)	
7	17	30	37	47	67		grades to little fine sand	
20							(very moist) GLACIAL TILL ,	
							Test boring was completed	was not encounte
							at a depth of 20 feet.	<pre>upon boring completion.</pre>
25								
	-							
20	-		:		, <u>-</u>			
30								
35								
					,			_
								<u></u>
40								
						<u> </u>		

Tierney	HOL	LE NO.	B-3		SURF. ELEV. 447 PROJECT NO.: TGE.05.
Geotechnical	PRO	JECT Kl	ozure B	ıildin	ng LOCATION Palmyra, New York
Engineering	CLI	ENT Gar	lock Se	al. Te	ech.
	DAT	E STARTI	ED	12	2-15-05 COMPLETED 12-15-05.
Sample No.		6-12 12-18		GRAPHIC LOG	DESCRIPTION & CLASSIFICATION WATER TABLE & REMARKS
0 1	3	4 3	6 7	,,,,,	Dark-Brown SILT mixed with
	3 5 13 33 5 37 50				<u> </u>
30					
N=NUMBER OF B WT. FALLING _ LOGGED BY M.A	30	" PER	BLOW	_ " S1	POON12

l ierne							- 4	_	SURF. ELEV. 452 PROJECT NO.: TGE.05
3 eote	ech	nnical							g LOCATION Palmyra, New York
ngin	ee	ring		LIENT ATE S'					-19-05 COMPLETED 12-19-05
	-				S ON SA				
EPTH EET)		Sample No.	0-6	6-12	12-18		N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION WATER TABLE & REMARK
0	J	1	5	3	3	2	6	$\times\!\!\times\!\!\times$	7 4" ASPHALT
ļ							ļ		Dark-Brown SAND and GRAVEL,
	7	2	3	5	6	10	11		little Silt (very moist)
							7.6		FILL
5 -		3	12	26	50		76		Brown Silty SAND, little
			80	41	30	60	71		Gravel Cobbles and/or
	7	4	80	41	30	- 80			(very moist) boulders were
·			65	50/4			REF.		(firm) encountered below feet.
									Brown Sandy SILT, little Free standing wa
10								1 1	Gravel was not encounte
								1	(moist, very compact) upon boring GLACIAL TILL completion.
									Test boring was completed
									at a depth of 8.8 feet with
15 -]]	sample refusal.
			ļ				ļ		· —
							 		
							 	1	<u> </u>
:				<u> </u>		ļ <u>-</u>	 		
20 –	H							1	
				1					
]	_
			<u> </u>	ļ		ļ	<u> </u>		_
25 –			<u> </u>	<u> </u>		ļ	ļ	-	
			<u> </u>	 	<u> </u>	ļ	 	-	<u> </u>
			-	 		 		1	
			_	 		}	╁	1	
				 		╁──	 	1	
30 -			+			 		1	
				1					
]	
							<u> </u>	_	_
35 -				ļ	ļ		 	4	
				 -			 	4	<u> </u>
				-				-{	<u> </u>
				-	+	-	 	-	
		ļ		+	+-	+	-	-	<u> </u>
40 -	+	 	-		+	+	 	-	
			+		-	-	+	-	
								_ " :	SPOON 12 " WITH 140 lb
TT. E	'AI	LING			" PE E 0, <u>E</u>]		W		SHEET 1 OF 1

• iern	еу		H	OLE N	10	В	-5		SURF.	ELEV	439	PRO	JECT NO.:	TGE.05.0
Geotechnical PROJECT Klozure						ozure	Bui	ldin	ıg	, Net	v York			
E ngir	200	rina	C	LIENT	Gar	lock	Seal	. Te	ch.					
L	100	mig	. D	ATE S	TART	ED _		12	2-15-05	ċ	COMPLETED _		12-15	5-05.
	<u>_0</u>	<u>a</u>		BLOW	S ON S	AMPLE	,	₽	[\top		
DEPTH (FEET)	Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESCR	RIPTION & CLA	ASSIFICATION		WATER TABL	E & REMARKS
0		1	2	3	2	4	5	44.44			mixed with			
									(wet)	CS/ROOTS				
	7	2	5	6	14	18	20		1 1		TOPSOIL			
		3	10	22	24	20	46			Silty SAND	, little	-' 		
5 -	7						10		Gravel (wet)			-	<u>-</u>	
		4	13	18	22	20	40		L	h-Gray SI	IJ trace	-3		
									sand, t	race to 1:	ittle			
		5	10	27	40	55	67	F = =	Gravel (mois	.+\				
10 -	7							EE		seams of	color		_	
	-								brown (comp	agt)		-		
	┞								POS	SIBLE GLAC	CIAL TILL	-		
	-							E = =			LT, little	8		
1-								E =		agments, trace clay				•
15 -								= = =		trace cray			•	
										DECOMPOSE	ED BEDROCK		Free stan	_
	_									ring was o	completed	L	was not e upon bori	
1									at a de	pth of 10	feet.	-	completio	
20 -	+											-	•	•
												H		
			-									<u> </u>		
25 ~													•	
	-											\vdash		
	-											<u> </u>		
	-											-	4.	
30 -														
1											-			
												<u> </u>		
35 -														
	-						·					-		
	-											-		
												\vdash		
	-											\vdash		
40 -														
												<u></u>		
N=NUM	3ER	OF B	Lows	TO DI	RIVE		2	" S	POON	12 " 1	WITH140		 1b	· ·
WT. F	ALL	ING _	30		PER	BLOW		_		·			- -	
LOGGE	В	Y M.A	.Fior	illo	, EIT		· .			SI	HEET 1	OF _	11	

Tierney	H	OLE N	10	В	-6		SURF. ELEV. 445	PROJECT NO.: TGE.05
G eotechnical							LOCATION Palmyra,	New York
ngineering		LIENI ATE S			Seal		ch. -15~05 COMPLETED	12 15 05
	1					,	COMPLETED _	12-15-05-
Sample Sample No.	0-6	6-12	/S ON S/		N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARK
0 1	5	3	4	5	7	,,,,,	Dark-Brown SILT mixed with	
							ORGANICS/ROOTS (wet)	
2	6	7	9	13	16		TOPSOIL	
	ļ		<u> </u>		<u> </u>		Reddish-Brown Silty SAND,	Cobbles and/or
5 - 3	12	21	25	30	46		some Gravel/Rock Fragments	boulders were
4	40	50	-		REF.		(wet) 	encountered belo
7 - 3	140	30			REF.		Reddish-Brown to Brown Sandy SILT, little Gravel	depth of 4 feet. REFSample refu
5	48	50			REF.		(wet, firm)	
							Brown Sandy SILT, little	4
10	 						Gravel/Rock Fragments	
							<pre>(very moist, compact) (wet)</pre>	
6							GLACIAL TILL	
							Test boring was completed	No recovery for sample no.6.
15	<u> </u>						at a depth of 13 feet with	Free standing wa
	 -						sample and auger refusal upon an apparent boulder.	was not encounte
	 						upon an apparent bourder.	upon boring completion.
	-							
								<u> </u>
20	 							
				-				
	<u> </u>							
25	ļ			-				
								_
								-
	1	<u> </u>				1		 -
	-					!		
30								
] '		
	ļ							
35	ļ	ļ	ļ					
	 				-			-
	<u> </u>				 	-		_
		 	1			-		<u> </u>
		 			ļ	1		_
40	+	-				1		
f i		 -	ļ	ļ	ļ	4		<u></u>

Tiern	еу		H	OLE N	ю	В	-7	<u></u>	SURF.	ELEV.		443	PRO	JECT NO.:	TGE .05.
Geot	ecl	hnical	PI	ROJEC	T <u>Kl</u>	ozure	e Bui	ldin	g	LOC	ATION	Palmyra	, Ne	w York	
Engir			CI	LIENT	<u>Gar</u>	lock									
			D2	ATE S	TART	ED		12	-21-05	<u> </u>	co	MPLETED		12-22	2-05-
DEPTH	ple	ple .		BLOW	S ON S	AMPLE	· · · · · · ·	울							
DEPTH (FEET)	Sam	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESC	RIPTION 8	ł CLAS	SIFICATION		WATER TABLE	E & REMARKS
0	7	1	2	2	2	3	4		<u> </u>	OPSOIL			0.5		
		2	7	6	15	18	21		Brown roots	Silty S	AND,	trace	-		
	7							1	(ver	y moist	:, loc	ose)			
5	7	3	20	16	21	20	37		(fir	SILT, s			4	Cobbles a boulders	-
		4	18	20	19	21	39		little	to som		avel/Rock	-	encounter	ed below
	7		10	20	13		39	1	Fragme (moi	ents .st, com	pact)		-	depth of	4 feet.
	7	5	9	5	9	28	14					6 , trace	5.5		
10 -	4	6	50/3					╙╨╨		trace r			모	_ Difficult	to auger
	-	-	30/3					E	(moi	st, fir	m) 		10-	below a d	epth of 1
												dittle cace clay		feet.	
		7	6	13	26	37	39	E==	(moi			acc ord;	<u> </u>	Hydropunc	h was
15 –	7		-	13	26	37	39	Ĕ≣╡	(Wec	_		BEDROCK		advanced	at boring
								<u> </u>	Test b				16	completion Free stan	
	-									epth of			<u> </u>	was not exwith auge	
	F												-	depth of	13 feet.
20 –							· · · · · ·							Free stand was encou	ntered
	-											•	_	inside the	
	-												-	upon bori	ng
25 -	\bot													completion	n.
	-												_		
	\vdash												-		
30	+											•			
	-												-		
}	-												_		
35	+												-		
													-		
ļ	-														
	-												-		
40	+						-						-		
													上	·	
1=NUME	ER	OF B	LOWS '	TO DE	RIVE		2	" SE	POON	12	" WI	TH 140)	lb	;
VI. FA	LL	ING _	30	"	PER	BLOW									
.oggei	B	Y M.A	.Fior	illo,	, EIT						SHE	ET 1	OF	1	

Tierney	,	H	OLE N	ю	B-	-8		SURF. ELEV. 449	PR	ROJECT NO.: TGE.05
Geotec	hnical	PI	ROJEC	T Kl	ozure	Bui	ldin	g LOCATION Palm	yra, N	iew York
		C	LIENT	Gar	lock	Seal	. Te	ch.	·	
Engine	enng	D	ATE S	TARTI	ED		12	2-15-05 COMPLET	ED	12-15-05
v	· o		BLOW	S ON S	AMPLE		<u></u>			
Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESC RIPTION & CLASSIFICAT	'ION	WATER TABLE & REMARKS
0	1	8	3	3	2	6	****	6" TOPSOIL		Encountered auger
							4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	Dark-Brown SILT mixed w	ith	refusal upon an apparent boulder
	2	7	10	9	7	19	0 00	Organics/Roots (wet, loose)	<u> </u> _	_ feet. Boring was
		2.1		20	25		1135	ORGANIC SUBSOI	ь -	relocated approximately 6 i
5 —	3	31	28	30	35	58		Brown GRAVEL, some Silt	2 y	to the south and
	4	24	48	50		98		SAND	- -	 redrilled to prop
		23	70	- 30		30		(very moist, firm)	}	_ depth. Cobbles and/or
	5	16	12	10	20	22		Brown Sandy SILT, some	-	boulders were
								Gravel/Rock Fragments (moist, very compact)	-	encountered below
10							ĒΞΞ	grades to SAND and SILT	,	depth of 4 feet.
.]								little Gravel (very moist, very compa	ct)	-
}							E = =	GLACIAL TI		<u> </u>
							<u> </u>	Greenish-Gray SILT, some	e9	- -
15		ļ						Gravel/Rock Fragments,	.	
	6	12	15	16	18	31	E = =	trace to little Sand, to	race	-
							= = =	(very moist, firm)	-	- ,
							FE	(wet, compact)	-	-
	<u> </u>								}-	-
20 -	7	12	20	17	13	37	E = =		 -	
7		1					F = =	DECOMPOSED BEDRO		-
F-								Test boring was complete	22	Free standing wat
1								at a depth of 22 feet.		 was not encounter upon boring
25 —								_	_	completion.
	<u> • </u>								-	
									<u> </u>	-
		}					}		-	-
1			· · · · · ·				1		-	-
30 🕂	 						1		-	
[1		-	-
ŀ		 							-	-
										-
35							1			-
35]			
Į										·
										_
							1			_
40		<u> </u>	<u> </u>	<u> </u>	<u> </u>					
			ļ		ļ		1		_	_
	<u> </u>	<u> </u>	1	<u></u>	<u></u>	<u> </u>	<u></u>			
N=NUMBE	R OF B	LOWS	TO D	RIVE		2	. " 5	POON 12 " WITH _	140	_ 1b
WT. FAI	LLING _	30	r	' PER	BLOW	1				
LOGGED	BY M.F	A.Fio	rillo	EI'	T			SHEET	1 0	F 1

∎ ierney	<i>t</i>	H	OLE 1	MO	В	-9	SURF. ELEV. 446 PR	ROJECT NO.: TGE.05.
Geotec	hnical	P	ROJEC	T <u>Kl</u>	ozure	e Bui	ng LOCATION Palmyra, N	New York
Engine	arina	C	LIENT	<u>Gar</u>	lock	Seal	ech.	
L ighter	cing	D	ATE S	START	ED _		12-15-05 COMPLETED	12-16-05-
DEPTH H	Sample No.	0-6	BLOW 6-12	12-18	18-24	N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
0	1	3	5	5	5	10	6" TOPSOIL	Encountered auger
	2	7	9	15	15	24	Reddish-Brown Silty SAND, little Gravel (very moist, loose) Reddish-Brown SILT, little	refusal upon an apparent boulder a depth of 10.5 feet Boring was relocat approximately 12 f
5 -	4	25 75/4	38	50/2		REF.	Sand, little to some Gravel/Rock Fragments (very moist, firm) Brown SAND and fine GRAVEL,	to the east and redrilled to propo depth as B-9A. REFSample refusa
10	3	73/4				REF.	Compact Comp	- Free standing wate was not encountere
15							Test boring was completed at a depth of 10.5 feet with auger refusal upon an apparent boulder.	upon boring completion.
20								- - · ·
25								-
30								-
35								- - -
40								- - -
N=NUMBER WT. FALI LOGGED R	LING _	30		PER	BLOW		SPOON 12 " WITH 140 SHEET 1 OF	1b F <u>1</u>

l iern	ey		H	OLE N	ю	В-	9A		SURF.	ELEV.		446	PRO	JECT N	o.: _	TGE	.05
Geot	ech	nical	Pi	ROJEC	T Kl	ozure	e Bui	ldin	ıg	LOCA	MOIT	Palmyra	, Ne	w York			
Engir	nee	rina			: Gar												;
			D						2-16-05 -		_ COM	IPLETED		1	2-16-	05.	_
DEPTH (FEET)	Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESC	RIPTION &	CLASS	SIFICATION		WATER	TABLE 8	REM.	ARKS
0										d to a dithout :				Refer B-9	also	to	bor
5 -		•												-			le de commune que
10 -														_			Transaction to the state of the
													- - -				
15 -		6	70/4				REF.	ग्रस्कान	Grayra	h-Brown CK FRAGN			-15	REF Free was n	stand: ot end	ing coun	wate
20 —									at a d	oring wa epth of ample re	15.4	mpleted feet	5.4	upon : compl			;
25 -														_			
	-												_				
30													-	_			
35 -														-			
								-				·	-				
40 -															=		_==
N=NUM WT. F								- " 5	SPOON _	12	. " WI	TH1	40	1b			
LOGGE											_ SHE	ET1	_ OF	1			

∎ iern	ey		H	OLE N	ro	В-	-10	_	SURF.	ELEV.		450	PROJ	JECT NO.:	TGE.05.0
Geote	ecl	hnical								LOCAT	CION	Palmyra,	New	York	
Engir	nee	erina		LIENT							<u> </u>				
	,		D.	ATE S							_ COI	APLETED _		12-15	5-05.
DEPTH (FEET)	Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC	DESC	RIPTION & (CLASS	SIFICATION		WATER TABL	E & REMARKS
0		1	6	3	4		7	$\otimes\!\!\!\otimes$	4" A	SPHALT P	AVEM	ENT 0.3	2		
				-			ļ	\bowtie		SAND and	GRA	VEL,	-		
	7	2	4	4	5	7	9		little (moi	-			-		
		3	8	7	11	24	18					FILL	<u>,</u>	Cobbles a	
5 -	7							111111		h-Brown			1	boulders encounter	
	1	4	23	25	25	34	50		Sand,	little G	rave	1, trace		depth of	
									(moi	st) to litt	1 a B.	l-	<u> </u>		
		5	55	50/4			REF.		Fragme		TG K	ock	-		
10 -	\dashv	;							(fir	m) 			6	•	
										SAND, li to little					
ļ									(wet	, compac	t)				
	_									to Silt			<u>_</u>		
15 -		6	35	50/4			REF.		contai	n seams			Ţ	i	÷
		0	35	30/4			REF.		coarse (wet				\vdash		
Ì							-		("-	,		*.	\vdash		
20 -	4	7	50 /				REF.		color Brown	changes ·	to G	rayish-		Free stan	ding wate
	-						ļ			G	LACI	AL TILL		was not e	ncountere
	-					-				oring was		npleted	<u>" -</u>	upon bori	
l	-						 	}		epth of i			F	Borehole	was left
	.							1		•				open over free stan	night and ding wate
25 -														was encou	ntered at
													<u> </u>	depth of the next	14.9 feet day.
	-							Į į					\vdash		•
	-						 	1					\vdash		
30 -								1					<u> </u>		
							ļ						<u></u>		
35 -	\dashv	· ·		-			-	1					-		•
									1				-		
								1					H		
40 -	Ш														
3.0 ∽									1						
		-	<u> </u>	<u> </u>	l	<u> </u>	<u> L</u>	<u></u>	<u> </u>		====		<u> </u>		
								. " S	BPOON _	12	" WI	TH140)	1b	
WT. F							1				e u n	다 1 1	OF	1	
こうらのほど	ב ע	14. W	гто	-1110	, -1	<u> </u>					. one	ET1_	OF.		

Tierney		Н	OLE N	ю	B-	-11		SURF. ELEV. 449	PRO	JECT NO.: TGE.05
Geotech	nnical	P	ROJEC	T Kl	ozure	e Bui	ldir	g LOCATION Palmyra,	Nev	w York
	erina		LIENI							
		D.	ATE S					-20-05 COMPLETED		12-21-05.
Sample Sa	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARK
0	1	10	4	7		11		4" ASPHALT PAVEMENT		
						ļ		Brown SAND and GRAVEL,	2	
7	2	. 6	9	9	14	18	4	little Silt (moist)		
	3	7	9	16	7	25		FILL	-	
5 —								Brown Silty SAND, some	1-	-
7	4	8	11	9	6	20	×	Gravel, trace silt (wet, firm)		
				4.5		<u></u>	E = =	Brown SAND and GRAVEL,	+	
7	5	24	10	15	20	25	==	trace silt (very moist, firm)	 	
10	6	50				REF.	E = =	L	,}	REFSample refu
	-						ĒĒ	Greenish-Gray SILT, trace to little fine Gravel/Rock		
							ΕΞΞ	Fragments (moist)		
	7	42	35	53		88	ΕΞΞ	(very moist, firm)		Difficult to aug
15	. ,	42	35	23		00	===	<pre>(moist) (very compact)</pre>	-	below a depth of
							E			feet.
							<u> </u>			•
		4=	50 (4				ĖΞΞ		<u>_</u>	
20	8	45	50/4			REF.	E = 3			-
]===	-	=	-
	9	21	50			REF.	= =	DECOMPOSED BEDROCK	 	Hydropunch was
25 🕂								Test boring was completed		advanced at bori completion.
								at a depth of 24 feet with spoon refusal.	H	Free standing wa
[was encountered depth of 22 feet
									L	boring completio
30 ++									<u> </u>	-
									-	
35 🕂						-				-
						 	-		-	
						 	1		H	
40										-
									F	
=			<u>I</u>			1	<u> </u>		<u> </u>	
NUMBER							. " S	POON 12 " WITH 140		1b
. FALL			" rillo	PER		i		SHEET 1	OF	1

Geote	CU	Ilicai					Seal				Palmyra,		
Engin	ee	ring					SEGI		-13-05	COI	MPLETED		12-14-05
			1									T-	
DEPTH (FEET)	Sample	Sample No.	0-6	6-12	12-18		N	GRAPHIC LOG	DESCRIPTIO	N & CLAS	SIFICATION		WATER TABLE & REM
- 0		1	8	9	11		20	XXX	4" ASPHAI	T PAVEN	ENT 	12	- 111 1/0-
	7								Brown SAND	and GRA		"	Cobbles and/or boulders were
	7	2	4	5	4	4	9		little Silt (moist)	:		-	encountered be depth of 6 fee
ļ		3	3	4	9	9	13		L		FILL	-1-	
5 -	7								Reddish-Bro	own Silt some Gra	ry SAND, avel	_	
	7	4	7	18	33	50/4	51		(very moi	ist)	-		
		5	33	44	50		94		Reddish-Bro	own Sand	dy SILT,	7	
									little to s	some Gra	evel		
10 -									(wet) grades to S	Silty SA	AND, some		
						ļ	ļ		Gravel/Rock	c Fragme	ents	-	
	-		ļ			ļ	ļ		(very moist	-		-	
		7	65/5				REF.		h		IAL TILL	14	Difficult to a below a depth
15 -	\Box		65/5			 	KEE.	₽∃∃	Greenish-Gr				feet.
	-		-		· ·	 		EEE	Rock Fragme trace sand		cace cray,		
						 	 	ŧΞΞ	(moist)				
		8	37	48	65		113	ĘΞΞ	(very con	mpact)			•
0.0	7							EΞ	1		D BEDROCK		Free standing
20 -	Π					<u> </u>	ļ	4	Test boring	y was co		20	was encounter
					ļ		 	-	at a depth	of 20	feet.	-	depth of 17 fe
	-		 			 		1				-	boring comple Borehole was
	1 }		 	 	 	┼	 	1				F	overnight and
25 -	╂┤		+	-	1	 		1	}				standing water encountered a
			-					1					depth of 11.3
]				\	the next day.
							<u> </u>	4	ļ			<u> </u>	
30 -			<u> </u>		<u> </u>	<u> </u>	ļ	4				-	-
				ļ	 	 	 	4	ļ			<u> </u>	
	1		-				 	-	l			 	
	1 }		-	 	-	 	 	-{					
			-	 	+		+	1					
35 -	H		+	+	+	 	1	1					_
	1			<u> </u>	1	1	1	1					
			1	 	1	1		7					
												<u> </u>	_
40	T							4				_	
													
מטא=אט	ر اعدال	D OF	DI.OWS	י חיים	חם דנת		2	11	SPOON 12	2 " 7	WITH 1	40	1b

l iern	еу		H	OLE N	10	В-	13_		SURF_ ELEV. 444	PROJE	CT NO.: TGE.05
Geote	- ecl	nnical	PI	ROJEC	T Klo	ozure	Bui	ldin	g LOCATION Palmyra,	New :	York
Engir			CI	LIENT	Gar	Lock	Seal				
L igit	100	amy	D2	ATE S	TARTE	ED _		12	-12-05 COMPLETED		12-13-05-
	9	ē.		BLOW	S ON SA	MPLE		운동			
DEPTH (FEET)		Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	WATER TABLE & REMARK?
0		1	3	3	4	5	7.		6" TOPSOIL	.5	,
							-		Greenish-Gray Clayey SILT, trace fine Sand	<u> </u>	Cobbles and/or
	7	2	10	15	19	12	34		(very moist, medium)	├ b	oulders were
		3	20	25	50/4		REF.		(moist, hard) grades to Dark-Brown	1	encountered below lepth of 4 feet
5 -	\dashv						-		TOPSOIL	T	opsoil found in
		4	39	65			REF.		POSSIBLE FILL		sample no. 3 was probable "fallen"
								E = =	Greenish-Gray SILT, trace	6 i	nto the spoon fr
		5	20	24	50/4		REF.	E = =	to little Clay, trace rock	t	the top.
10 -			-	-	50/5		DEE	ΕΞΞ	fragments	_B	ifficult to auge
		6	24	38	50/5		REF.	EEE	(moist)		pelow a depth of
								E==			Geet.
			- -	 				E			
15 -		· · · · · · · · · · · · · · · · · · ·						E			
13				ļ	ļ		ļ	<u> </u>		` _	,
					ļ			ŧ==		-	(
		. 7	75		<u> </u>		REF.	<u> </u>	DECOMPOSED BEDROCK	<i></i>	
					<u> </u>		<u> </u>	1	Test boring was completed		ree standing wat was encountered a
20 -]	at a depth of 18.5 feet with spoon refusal.		lepth of 8 feet up ooring completion
						ļ	<u> </u>	4	With apoon relaber.		Soring completion Sorehole was left
				-				-			vernight and free
	}		-	 	 		1	1			standing water was encountered at a
25 ~	H		 		}		-	1			lepth of 7 feet the
]		r	next day.
							<u> </u>			_	
		· .	ļ	<u> </u>	 			4		_	
30 -	├		-		-	 	}	4	,	-	
			 	+	 	 	+	1		 	
				-	1	 	 	1			
]			
35 -	L						1	1			
23	1			<u> </u>	 			4		L	
					 	-	+	4		-	
			 	-	-	-	+	\dashv		+	
			+	+	+	+-	+	1		-	
40	+			+	1	 	1	7			
	1							<u> </u>			<u> </u>
N=NUN	ŒĒ	ROF	BLOWS	TO	DRIVE		2	11 (SPOON 12 " WITH 14	0 1	ь
		LING						_			
LOGGE	ED	BY M.	A.Fic	rill	o, EI	T			SHEET 1	OF _	1

Tierne	y	H	OLE N	10	В-	-14	SURF . ELEV. 451 PROJECT NO.: TGE.
Geoted	chnical	P	ROJEC	T Kl	ozure	e Bui	ilding LOCATION Palmyra, New York
Engine	ering						l. Tech.
		D2		TARTI			12-13-05 COMPLETED 12-13-05.
DEPTH (FEET)	Sample No.	0-6	6-12	12-18		N	DESCRIPTION & CLASSIFICATION WATER TABLE & REMA
0	1	8	8	6		14	4" ASPHALT
	2	4	3	3	3	6	Brown GRAVEL and SAND, little Silt Cobbles and/or
5 -	3	8	11	13	23	24	FILL encountered be
	4	27	35	40	50	75	Gravel, trace to little
	5	20	34	46	48	80	(moist, loose) (firm) Reddish-Brown Sandy SILT,
10							little Gravel (moist, very compact) contain seams of medium- coarse sand
15	6	85				REF.	(very moist, wet) grades to SILT and SAND, little Gravel (moist)
=	7	50/2				REF.	
20							Test boring was completed completion. at a depth of 17.2 feet with spoon and auger refusal.
25							
30							
35							
40 -							
N=NUMBE WT. FAI LOGGED	LING _	30	"	PER	BLOW		" SPOON 12 " WITH 140 1b SHEET 1 OF 1

ı ıern	еу		H	OLE N	io	В-	15		SURF.	ELEV.		450	PRO	JECT NO.: TGE.05
Geot	ech	nical	PI	ROJEC	T Kl	ozure	e Bui	ldir	ıg	LOCA	TION	Palmyra,	Nev	w York
E ngir	166	rina	CI	LIENT	Gar.	lock	Seal	. Te	ch.					
m ngn		11119	D2	ATE S	TART	ED		12	2-13-05		_ COI	MPLETED _	·	12-13-05
DEPTH (FEET)	Sample	Sample No.	0-6	BLOW 6-12	12-18	18-24	N	GRAPHIC LOG	DESC	RIPTION &	CLASS	SIFICATION		WATER TABLE & REMARK
0		1	5	3	3		6	$\times\!\!\times\!\!\times$	√ 4" A	SPHALT				
										GRAVEL	and S	AND,	.3	
	7-	2	5	5	11	14	16	1	little (moi				_	
		3	3	5	14	14	19	-		50,		FILL	-	Cobbles and/or
5 -	7 }		3	5	14	14	19	-	1 .	h-Brown			1	boulders were
	7	4	26	28	50/5		REF.	1	111	little (y moist		1	<u> </u>	encountered belo depth of 6 feet
			100/								· 		-2-	
		5	100/ 5				REF.		Gravel	Silty S	AND,	some		
10 -	Ц.	·						4		y moist; , firm)			ļ	_
	-							-	∤ └─ <i>─</i>	Silty S			6	
	-						-	1	Gravel	/Rock F	ragme		-	
							-		(ver	y moist) G		L TILL	十	
15 -	7	6	39	42	28	50/5	70	ΕΞΞ	Greeni		. — — —		4	Difficult to aug below a depth of
10							ļ	ĖΞΞ	sand,	trace r		ragments,		feet.
	-							₽ΞΞ	trace (moi	clay st, very	v com	pact)	-	
	-							EEE	, -	,	,	, ,	-	
		7	35	50/4			REF.	E					 	
20 -								ΕΞΞ						-
	-							ĘΞΞ					L .	
	-	8	55	50/4			REF.	F==					-	•
			33	30/ 4			KEE.	===		DECOM	POSED	BEDROCK	<u></u>	
25 -						-		1				mpleted	4	Free standing wa was encountered
										epth of				depth of 16 feet
								1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Lugur	•	_	boring completio
	-							-					}_	
30 -				- 			-	-					-	-
]						
								_					<u>_</u>	
35 -	\vdash							-	}					-
								-					\vdash	
								1					-	
								1	1				 	
40 -									[_
40 -									ļ					_
			<u> </u>	<u></u>	<u> </u>		<u> </u>	<u></u>	<u></u>		 :		<u> </u>	
		OF B						- " S	EPOON	12	" WI	TH 14	0	1b
		ING _					7				arm	1 min 1	Λ <u>-</u>	1
بلافافالاسد	ם ע	M.A	101	1110	, L.L.	Τ					_ SHE	ET 1	OE	1

iern	ey	1			10		-16		SURF. ELEV. 448 PROJECT NO.: TGE.05.
Geot	ec	hnical	P	ROJE	T Kl	ozure	e Bui	ldir	ng LOCATION Palmyra, New York
E ngir	104	erina	C:	LIENT	Gar	lock	Seal	. Te	ech.
- ngn	100	zinig	D	ATE S	TART	ED		1.2	2-13-05 COMPLETED 12-13-05.
	₀	Ф		BLOW	/S ON S	AMPLE		_	
DEPTH (FEET)	Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION WATER TABLE & REMARKS
0		1	4	8	10		18	$\otimes\!\!\!\otimes$	4" ASPHALT Auger refusal was
		 			ļ		<u> </u>	\bowtie	Brown GRAVEL and SAND, denth of 3 feet
		2	70/0			ļ	REF.	\bowtie	little Silt (wet, firm) Boring was redril
									approximately 4 i
5 -	\vdash			ļ	-			-	grades to grout fragments to the north of to original location
					ļ			-	Test boring was completed - Auger refusal was
			ļ		 			-	at depths ranging from 3 to encountered at a 3.5 feet with auger refusal depth of 3.5 feet
								1	3.5 feet with auger refusal depth of 3.5 feet (refer to Remarks). Boring was redril
	-					<u> </u>			again approximate
10 -	H							1	feet to the south the original
					-				location. Auger
]	refusal was
									encountered at a depth of 3.5 feet
15 -									Free standing wat
									was not encounter
									upon boring — completion.
									 - ,
20 -									
									
								1	
25 -									
23				<u> </u>					
									_
	-								_
	-								<u> </u>
30 -	\dashv							}	
									
35 -				L				1	
35 -]	
]	
]	
40 -	\sqcup								
									<u> </u>
	ليا					<u> </u>	<u> </u>	<u> </u>	
								" S	SPOON 12 " WITH 140 1b
		LING _					ſ		Ann
OGGE]	נ נ	BY M.A	.F101	1110	, EIT	<u>'</u>			SHEET _ 1 OF _ 1

T iern G eote	-	nical							SURF. ELEV. 448 G LOCATION Palmyra,	
E ngir	iee	ring			Gar TARTI		Seal		2-14-05 COMPLETED	12-14-05
DÉPTH (FEET)		Sample No.	0-6	BLOW 6-12	S ON SA	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMA
0	7	1	6	7	8		15		4" ASPHALT Brown GRAVEL and SAND,	Boring was dri
		3	20	15	28	38	43		little Silt (wet, firm)	to the east of original locat:
5 —		4	75/5				REF.		Reddish-Brown SAND and SILT, little to some Gravel (moist, compact)	
10		5	39	50/4			REF.		(very moist, very compact) GLACIAL TILL Greenish-Gray SILT, little	
10 —									Rock Fragments, trace clay (very moist)	
15 –		6	30	30	50/4		REF.		(wet)	
			75/4				REF.		DECOMPOSED BEDROCK	
20 -			73/4				REF.		Test boring was completed at a depth of 19.4 feet with spoon refusal.	Free standing was encountered depth of 12 fee boring completi
25 —										
30 —										
35 -	-									
40 -								 		
	ALL	ING _		'	' PER	BLOV		" 5	SPOON 12 " WITH 140	0 1b

Tierney	,	H	OLE N	۱O	B-	17		SURF. ELEV. 444	PROJECT NO.: TGE.05.
Geotec	hnical	Pl	ROJEC	ET Kl	ozure	∋ Bui	ldir	g LOCATION Palmyra,	New York
ngine	ering			Gar.		Seal			10.10.05
		D2		TARTI				-12-05 COMPLETED	12-12-05
Sample S	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
0	1	4	3	3	3	6		6" TOPSOIL	
		ļ		<u> </u>			4	Brown fine SAND, little	1_
7	2	3	4	6	8	10	-	Silt, little Gravel, trace clay	
	3	3	7	11	15	18	1	(moist, loose)	
5			-				1	<pre>(wet) grades to little Clay</pre>	
	4	36	30	34	30	64]	POSSIBLE FILL	No Recovery for sample No. 4.
							1		sample No. 4.
	5	7	11	50/3		REF.	ШШ	Grayish-Brown SILT, trace	<u> </u>
10							₽₽₽	gravel, trace clay	
1						 	E	(very moist)	
							E = =	Greenish-Gray SILT, trace gravel, trace fine sand,	-
							EE	trace clay	
15 -	6	37	44	70		114	EEE	(moist)	· .
						ļ	ŧΞΞ		- '
	7	30	30	30	27	60	[= =		-
7	•						‡==	DECOMPOSED BEDROCK	-
20								Test boring was completed	
20								at a depth of 19 feet.	was encountered a depth of 9 feet u
						ļ	1		boring completion
							-		 -
		l					1		<u> </u>
25]		<u></u>
		-					1		
						<u> </u>	-		-
			-				-		-
30		<u> </u>		 	<u> </u>		1		
							1		
]		
1 1			 	 		<u>}</u>	-		<u></u>
35			ļ				-		
				-		-	1		-
		 			-	1	1		
							1		<u></u>
40]		
40									
1		<u> </u>	<u> </u>		L	<u> </u>	<u></u>		<u> </u>

Geotechnical Engineering PROJECT Klozure Building LOCATION Palmyra, New York CLIENT Garlock Seal. Tech. DATE STARTED 12-19-05 COMPLETED 12-19-05. BLOWS ON SAMPLE PROJECT Klozure Building LOCATION Palmyra, New York CLIENT Garlock Seal. Tech. DATE STARTED 12-19-05 COMPLETED 12-19-05. BLOWS ON SAMPLE PROJECT Klozure Building LOCATION Palmyra, New York CLIENT Garlock Seal. Tech. DATE STARTED 12-19-05 COMPLETED 12-19-05. BLOWS ON SAMPLE PROJECT Klozure Building LOCATION Palmyra, New York CLIENT Garlock Seal. Tech. DATE STARTED 12-19-05 COMPLETED 12-19-05. BLOWS ON SAMPLE PROJECT COMPLETED 12-19-05. BLOWS ON SAMPLE PROJECT COMPLETED 12-19-05. DESCRIPTION & CLASSIFICATION WATER TABLE & REMAINS PROJECT COMPLETED 12-19-05. DESCRIPTION & CLASSIFICATION WATER TABLE & REMAINS PROJECT COMPLETED 12-19-05. DESCRIPTION & CLASSIFICATION WATER TABLE & REMAINS PROJECT COMPLETED 12-19-05.	
DEPTH (FEET) Date STARTED 12-19-05 COMPLETED 12-19-05. DEPTH (FEET) DEPTH (FEET) DESCRIPTION & CLASSIFICATION WATER TABLE & REMAINS	
DEPTH (FEET) BLOWS ON SAMPLE DESCRIPTION & CLASSIFICATION WATER TABLE & REMAINDENT Dark—Brown SAND and GRAVEL, 2 3 3 2 2 5 Little Silt	
DEPTH (FEET)	
0 1 7 7 3 10 5" ASPHALT Dark-Brown SAND and GRAVEL, 2 3 3 2 2 5 little Silt	ARKS
Dark-Brown SAND and GRAVEL, 2 3 3 2 2 5 little Silt	
2 3 3 2 2 5 little Silt	
	1
war in the contract of the property of the contract of the con	i
3 2 1 1 2 2 FILL 5 Paddish-Brown Silty SAND	[
reduish Blown Silty SAND,	Į
4 8 13 23 23 36 3	r
POSSIBLE FILL	
5 50/3 REF. Brown Sandy SILT, little Gravel, trace clay	
10 (very moist, compact) Free standing	wat
GLACIAL TILL was not encoun	
Test boring was completed upon boring at a depth of 10 feet with completion.	٠,
auger refusal upon an	1
apparent boulder. Redrilled as B-18A.	
as B-10A.	
20	
25	
30	
35	
40	
N=NUMBER OF BLOWS TO DRIVE 2 "SPOON 12 "WITH 140 1b	
WT. FALLING 30 " PER BLOW LOGGED BY M.A.Fiorillo, EIT SHEET 1 OF 1	

G eoteci	hnical		OLE 1 ROJE(·18A e Bui	— Ildir	SURF. ELEV. 451 G LOCATION Palmyra,	PROJECT NO.: TGE.05 New York
Engine				Gar					
= rigirio c		D.	ATE S	START	ED _		1.	2-19-05 COMPLETE D _	12-19-05
See The See	ole		BLOW	VS ON S	AMPLE		₽ ,,		
Sample Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
5 -								Augered to a depth of 12 feet without sampling.	Refer also to bor B-18
10 -	6	25	35	50		85	0 H H H H H H H H H H H H H H H H H H H		REFSample refus
15	7	50/4				REF.		<pre>fine Sand, little Gravel (wet, very compact)</pre>	F .
20	8	50/4				REF.		GLACIAL TILL	
25 -	9	12	20	30	50	50		Greenish-Gray SILT, little Gravel (very moist, compact) DECOMPOSED BEDROCK Test boring was completed	Hydropunch was advanced at boring
30								at a depth of 26 feet.	<pre>was encountered at depth of 24 feet u boring completion. </pre>
35									
40									·

T iern	еу		H	OLE N	io	B-	·19		SURF. ELEV. 451	PROJEC	T NO.:TGE.05
G eot	ecl	nnical	P	ROJEC	T <u>Kl</u>	ozure	e Bui	ldir	dg LOCATION Palmyra	New Y	ork
E ngir	100	rina	C	LIENT	<u>Gar</u>	lock	Seal	. Te	ech.		
= 11911	100	ing.	D.	ATE S	TART	ED _	·	1	2-14-05 COMPLETED		12-14-05-
DEDTU	<u>e</u>	99		BLOW	S ON S	AMPLE		일,,			
DEPTH (FEET)	Sam	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	W	ATER TABLE & REMARKS
0	J	1	10	6	5		11	$\times\!\!\times\!\!\times$	4" ASPHALT PAVEMENT		
								<u> </u>	Brown SAND and GRAVEL,	-	obbles and/or
	7	2	4	4	4	7	8	-	little Silt (moist)	L	oulders were
							1.5		The FILL		countered below both of 4 feet
5 -	7	3	3	6	9	8	15) - 	Dark-Brown SAND, little	.5	
		4	3	5	7	11	12	000	Gravel	<u> </u> -	
	7	*	3	3		11	12	85	(very moist) (wet, loose)	_	
		5	48	28	30	25	58		(we c, 100se)		
	7							7.6	POSSIBLE FILL		
10 —								.O.	Brown SAND, some Gravel,	4	
	-							\ \$0``	little Silt		
								GO C	(very moist, firm)	H	
								2	Brown SAND, some Gravel,	8	
15 –		6	48	50/5			REF.		little Silt		
15									(wet, very compact) grades to Silty SAND, some		
									Gravel/Rock Fragments		
									(wet)	L	
									·		
20 -	7	7	12	18	17	18	35		GLACIAL TILL	<u> </u>	
									Greenish-Gray SILT, little	5	
	-							ΕΞΞ	Rock Fragments, trace clay	\vdash	
	-							ΈΞΞ	(wet)	-	
		8	19	29	44	50/4	73	ŧ = :	(very compact)		
25 —								= =	DECOMPOSED BEDROCK		
									Test boring was completed		ee standing wat
]	at a depth of 25.9 feet	4	s not encountered on boring
									with spoon refusal.		mpletion.
30 -	\sqcup			<u> </u>				1		<u> </u>	
	-							1		<u> </u>	,
	-									_	
	-							-		<u></u>	
	-							-		<u> </u>	
35 –	\dashv							1	·		
						<u> </u>		1		H	
	-						ļ	1		-	
								1		\vdash	
	-	-						1		-	
40 —	H		<u></u>	-				1		 	
								†		 	
											
		OF B					2	. " 5	SPOON12 " WITH14	<u> </u>	
		ING _ SY M.A			PER		ľ		SHEET 1	OF '	1

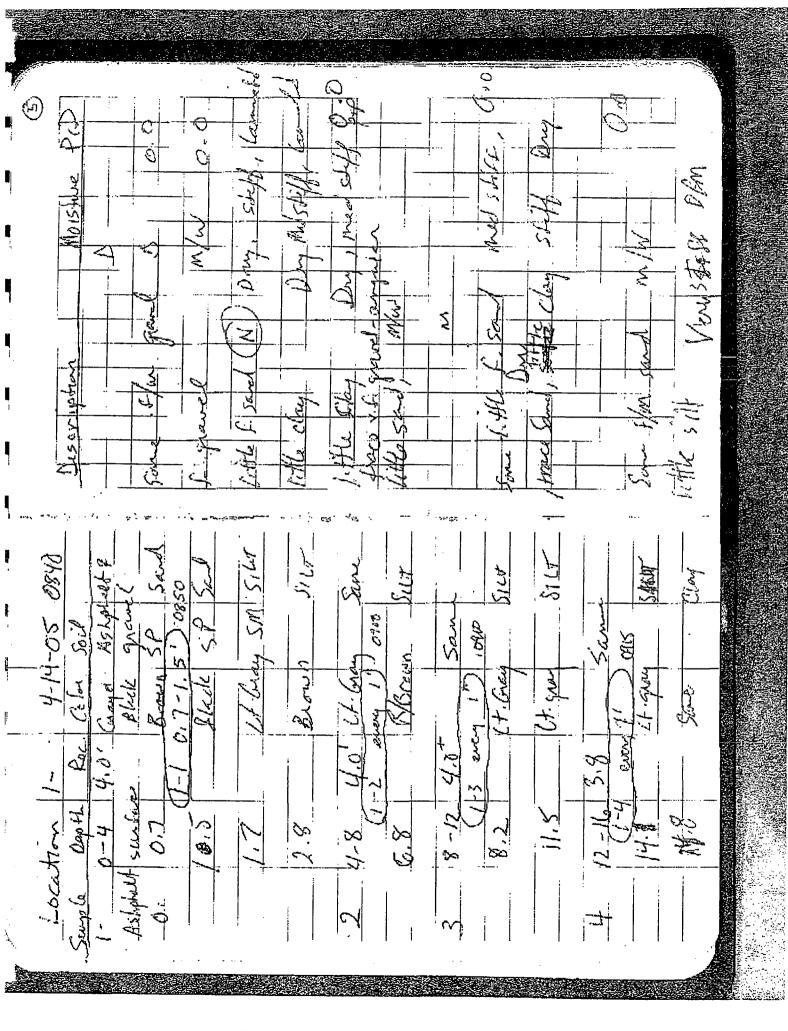
Tiern	еу		H	OLE 1	10	В-	-22		SURF.	ELEV.	44	3	PROS	JECT NO.:	TGE.05.(
Geot	ecl	hnical	P	ROJEC	T <u>Kl</u>	ozur	∋ Bui	ldir	ng	LOCA	TION P	almyra,	New	York	
Engir			C	LIENT	: Gar	lock	Seal	. T∈	ech.				<u> </u>		
L igh	100	anny	D	ATE S	TART	ED		1	2-12-05		_ COMPI	LETED _		12-12	2-05-
DEPTH	e e	e e		BLOW	S ON S	AMPLE	T	을 ,,							
(FEET)	Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESC	RIPTION &	CLASSIFI	ICATION		WATER TABL	E & REMARKS
0		1	6	6	7	ļ	13		√ 4" A	SPHALT E	PAVEMEN	T0.3	12		
				<u> </u>	5	7	10	\bowtie	Brown little	SAND and	i GRAVE	L,	_		
	7	2	5	5	3	-	10	- [(wet				-		
		3	3	7	8	11	15					FILL			
5 ~	7							 		sh-Gray			-	-	
	7	4	10	12	19	15	31	F = :		tle Clay v moist,					
								ÈΞΞ	(fir			•			
		5	12	12	24	34	36	E = =		POSSIBI	E FILL		-	REFSamp	le refusa
10 -								ĒΞΞ	Greeni:	 sh-Gray	SILT.		6	-	
								E E E		tle Clay			-		
				-				ĘΞΞ	(ver	y moist,	compa	ct)			
	7	6	42	44	29	40	73	Ē	grades	to litt	le fine	e Sand			
15 –								E	(MOL:	st, ver	A comba	act)			
1.5								ĖΞΞ	grades	to trac	e rock		<u> </u>		
		7	27	44	50/4		REF.	= = =	fragme	nts			<u> </u>		
								1	 	DECOMPO		17,4	∦		ding wate ncountere
								1		oring wa epth of				upon bori	ng
20 –]		poon ref		500		completio	n.
i	-						<u> </u>						_		
	.							ļ	İ				\vdash		
25 ~	+							1					-		
									}				F	,	
							ļ						<u> </u>		
30 -	\dashv							1					<u> </u>		
							ļ						-		
													 		
35 -]							
33									<u>.</u>						
							 						\vdash		
	-						 	}					-		
	-						 	1					-		
40 -	$\mid + \mid$						 	-	-						
								<u> </u>							
N=NTIMI	BEE	3 OF 2	T.OWG	ת חת	RIVE		2	11 0	POON	12	" WITH	1/10)	1b	
WT. F											******	T.46			
LOGGE		_									SHEET	1	OF	1	

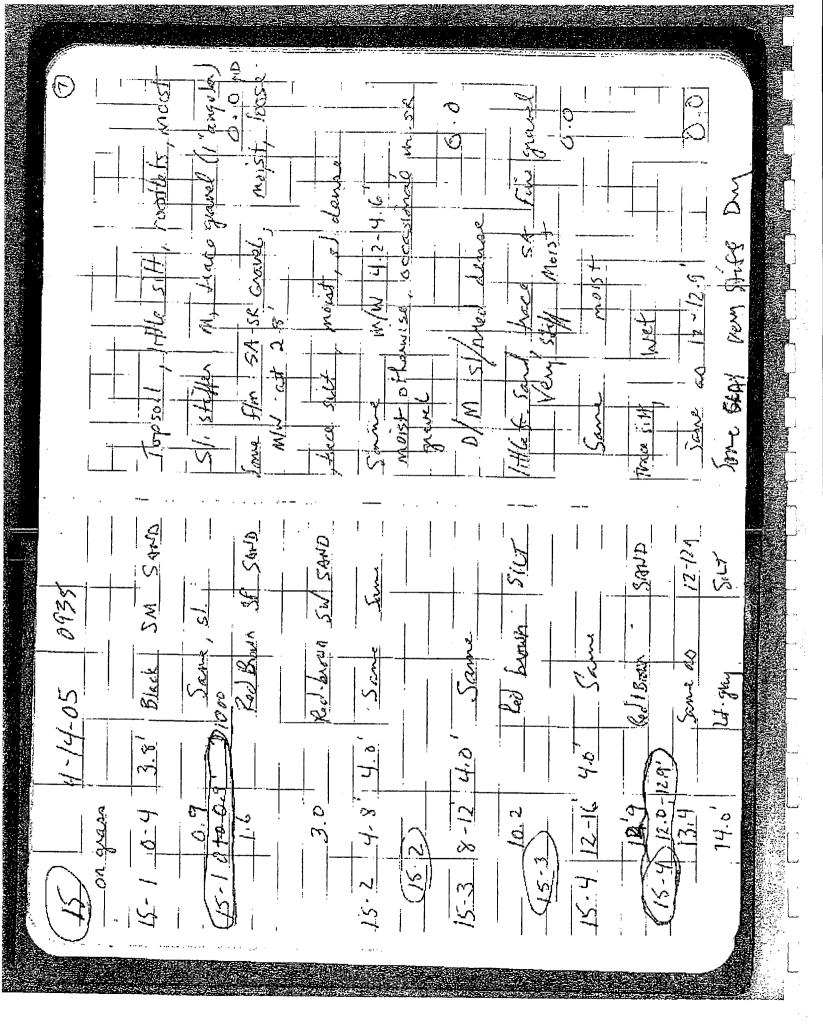
T ierney								SURF. ELEV. 436	
${\sf G}$ eotec	hnical							LOCATION Palmyra,	New York
Engine	erina			Gar Gar					<u> </u>
g	•·····9	D.	ATE S	STARTI	ED		1	2-16-05 COMPLETED	12-16-05
9	<u>0</u>		BLOW	S ON S	AMPLE		₽.,		
Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
0 -	1	20	16	21		37	$\times\!\!\times\!\!\times$	\ 4" ASPHALT PAVEMENT	
							\bowtie	Brown SAND and GRAVEL,	
	2	45	50	50/4		REF.	<u> </u> ===	little Silt	REFSample refus
			<u> </u>	ļ	ļ	ļ	ΕΞΞ	(moist, compact)	
5	3	26	32	48	50	80	ΕΞ	L	
							ΕΞΞ	Greenish-Gray SILT, trace to little Clay, trace sand,	<u></u>
	4	55				REF.	F==	trace rock fragments	
						ļ	EEE	(moist)	
	5	11	27	50/4		REF.	EEE	(very compact)	
10				 			ΕΞΞ		·
						<u> </u>	E==		<u> </u>
			ļ			ļ	EEE		
			-	-			ΕΞΞ		
	6	40	50/4			REF.	E = =	DECOMPOSED BEDROCK	
15		40	30/4	-		REF.		Test boring was completed	Free standing water
			 				}	at a depth of 14.8 feet	was not encountere
								with spoon refusal.	upon boring
									completion.
									
20									
									-
							1	•	
									 [
<u></u>							1		
25									
									
ļļ]		
30									<u> </u>
									<u> </u>
	_								
									 -
	·						-		
35			-	ļ			1		
			ļ	-			-		
							1		
			<u> </u>	<u> </u>			-		
			<u> </u>				1		
40			<u> </u>	-			-		
				ļ					
	<u> </u>	L	<u> </u>	<u> </u>	<u></u>	<u></u>	<u></u>		
=NUMBE	R OF B	LOWS	TO D	RIVE		2	. " S	POON 12 " WITH 140	1b
T. FAL							-		_
OGGED	BY M.A	.Fio:	rillo	, EII	22			SHEET 1	OF 1

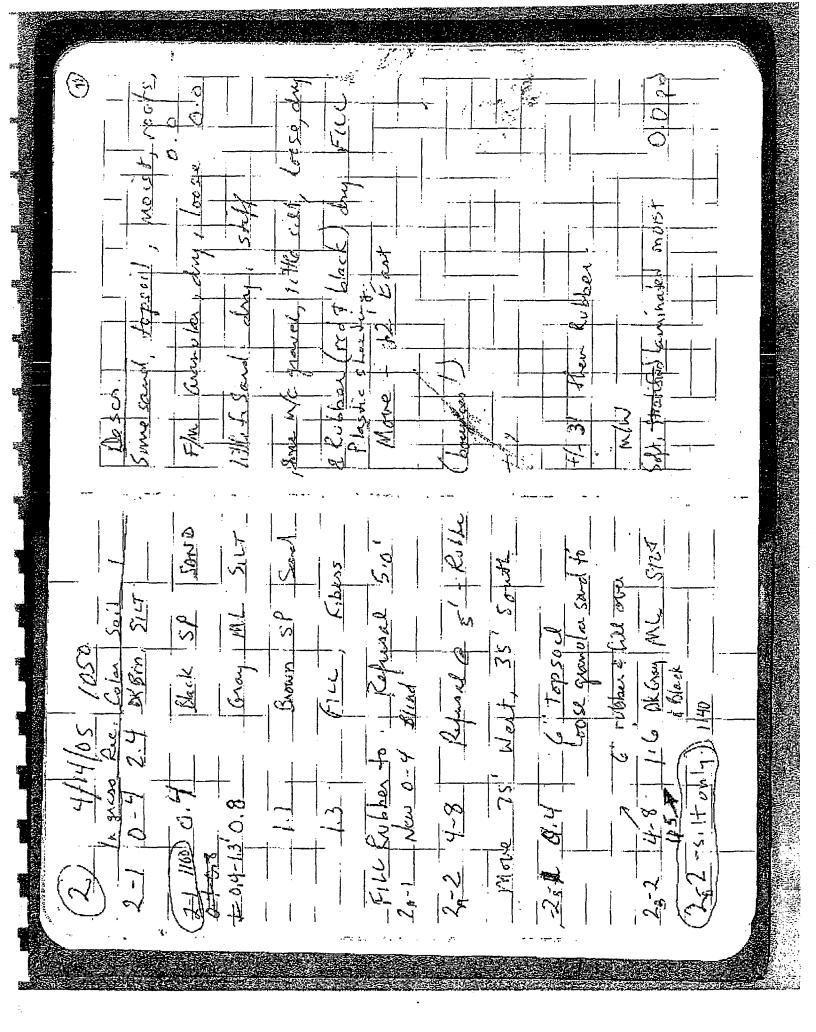
		ring	D.	ATE S					2-20-05 COMPLETED	12-20-05-
DEPTH (FEET)	Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC	DESCRIPTION & CLASSIFICATION	WATER TABLE & RE
0		1	5	4	2		6	\otimes	4" ASPHALT PAVEMENT	
								\bowtie	Brown SAND and GRAVEL,	
	7	2	4	4	7	8	11	₩	little Silt (moist)	_
		3	7	7	6	7	13	₩	FILL	_
5 -	7		 '			 ' -	13	\bigotimes	Dark-Brown SAND, little	
		4	10	25	25	38	50		Gravel	
	7								(moist) color changes to Brown	
	/_	5	20	45	29	22	74		grades to SILT and SAND, Little Gravel, trace clay	Cobbles and/o
10 -			ļ						(wet, firm)	encountered b
	7	6	11	8	8	23	16		contain black sand (wet)	depth of 8 fe
Ī		7	13	15	65		80		FILL	
			13				- 55	E	Brown SILT and SAND, little	_
		8	46	50			REF.		Gravel (very moist, compact)	No recovery f
15 ~									grades to little Rock	sample no. 8.
İ								==	Fragments (very compact)	
	. -							==	(wet, firm)	
		9	8	10	15	45	25	= =	GLACIAL TILL	Hydropunch wa
20 -	7					13		= =	Greenish-Gray SILT, little Gravel, trace clay	—— advanced at b
Í									(moist, very compact) (wet, firm)	completion. Free standing
									DECOMPOSED BEDROCK	was encounter
	-								Test boring was completed	depth of 16 f boring comple
25 –	_				-				at a depth of 21 feet.	
	-	<u></u>								<u> </u>
	-									
										_
30	+				····			ļ		
Ī	-									→
	-	·						}		_
	-									
ا ءِ ا	_]	_
35 -										
									[
	-		 					1		
	-	<u></u>								_
40 -	+		 					}		
			<u> </u>				L	<u>_</u>		_

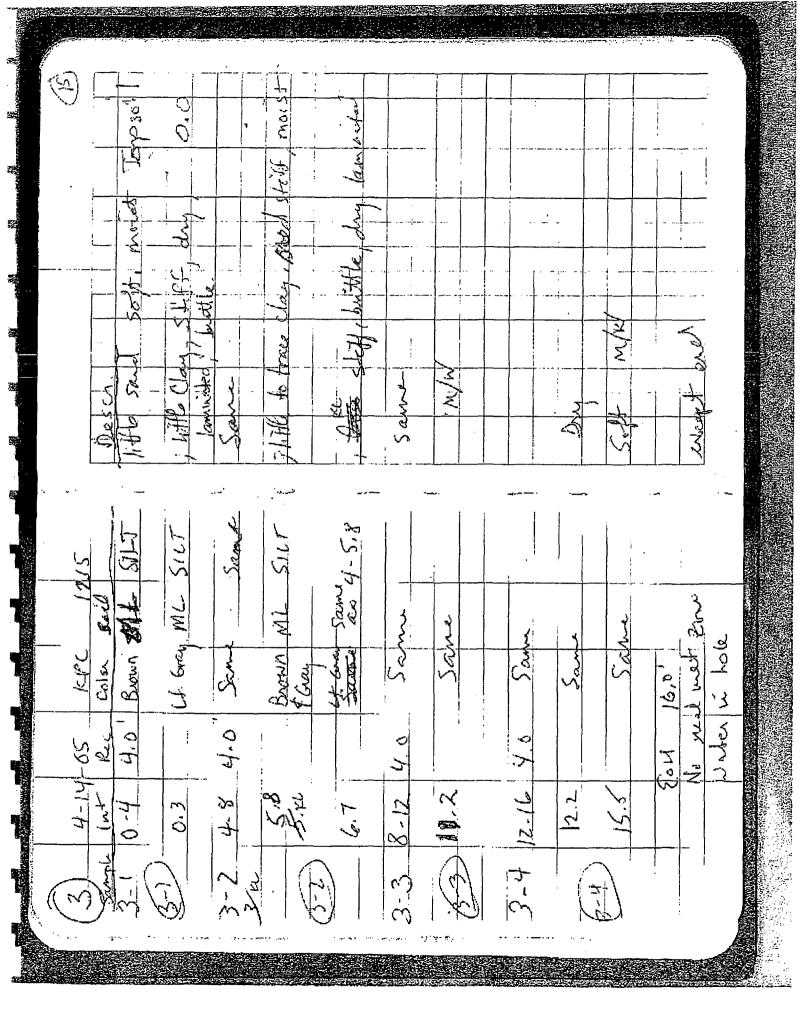
Tiern	ey		H	OLE N	ro	A	-1	SURF	ELEV.		441	PROJ	ECT NO.:	TGE.05
Geot				ROJEC	T Kl	ozure	Bui	ding	LOCA'	TION	Palmyra	, New	York	
Engir			C					Tech.						
		9	DZ					12-22-05		_ COM	(PLETED		12-22	2-05
DEPTH (FEET)	Sample Sample	No.	0-6		12-18		N	DESC	RIPTION &	CLASS	SIFICATION		WATER TABL	E & REMARK
0		Ĺ	7	7	10		17		ASPHALT E	PAVEM		_	,	
									SAND and	d GRA	0. VEL,	32		
		2	8	10	12	18	22	- trace (mod						
								= -	.50)		FILL		Free star	ading wa
5 ~	 								sh-Gray			.5	was not	encounte
								to lit	tle Clay	y, tra	ace fine		upon bori	
								(moi					comptett	JII .
								(fi:		POSED	BEDROCK			
10 -									oring wa			- ∤	•	
								atao	lepth of	4 fee	et.	 		
15 -														•
	 											-		
												\vdash		
20 -	<u> </u>											<u> </u>		
												-		
											•			
25 -												ļ		
												-		
												-		
30 -	 											<u> </u>		
	l											-		
												-		
35 -														
												<u> </u>		
												-		
			<u> </u>				 					<u> </u>		
40 -													•	
					<u> </u>							Ι.		
N=NUM	BER O	F B	LOWS	TO D	RIVE		2	" SPOON _	12	" WI	TH 14	0	lb	
WT. F		_					7			cum	'Erm 1	0.77	1	

Tiern	ey		H	OLE 1	10	A	-2		SURF.	ELEV.	442	PR	OJEC'	r no.:	TGE.05.
Geot	ecl	nnical								LOCA!	rion Paln	nyra, N	ew Yo	ork	
E ngii	nee	erina							ech.						·
		<u>9</u>	D	ATE S	TART	ED _		12	2-22-05		_ COMPLET	TED		12-22	-05-
DEDTU	e Se	elc .		BLOW	/S ON S/	AMPLE	1	<u>∃</u> ,,							
DEPTH (FEET)	Sam	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC	DESCF	RIPTION &	CLASSIFICA	TION	WA	ATER TABLE	& REMARKS
0		1	7	6	9		15	\otimes	\ 4" A:	SPHALT F	AVEMENT	0.32			
								E			GRAVEL,		_		
	7	2	6	11	18	17	29	<u> </u>	trace (moi			_	-		
	H							 	1	,	F	ILL _			ding wate
5 -	╀	-						┨			SILT, tra				ntered at
	-				-			-		cle Clay	, trace i	fine -			8 feet up
	-							1	Sand	y moist)					mpletion. was left
								1	(mois	st, firm	ι)	 	_		and free
								1	ļL		OSED BEDF	41			water was
10 -	\sqcap	,						1		oring wa epth of	s complet	ced			ed at a 7 feet th
									ac a Ge	per or	Teet.			xt day.	
													-		
15	\sqcup														
	-						i	-							•
	l þ											,			
	 					!		1				-			
	-							-				<u> </u>	r		
20 -								1							
		-											•		
]					_		
													•		
25 -															
	-														
	-						·					<u> </u>			
	-											<u> </u>			
	-											F			
30 -												<u> </u>			
		:													
35 -															
33															
	 											_			
40 -	- -														
	-							4							
=					l			<u> </u>							
								. " S	POON	12	" WITH	140	_ 1b		
		ING _					•				C		_		
JUGGE.	ט פ	Y M.A	.F101	1110	, LIT				· · · · · · · · · · · · · · · · ·		SHEET	1 OF	r = 1		

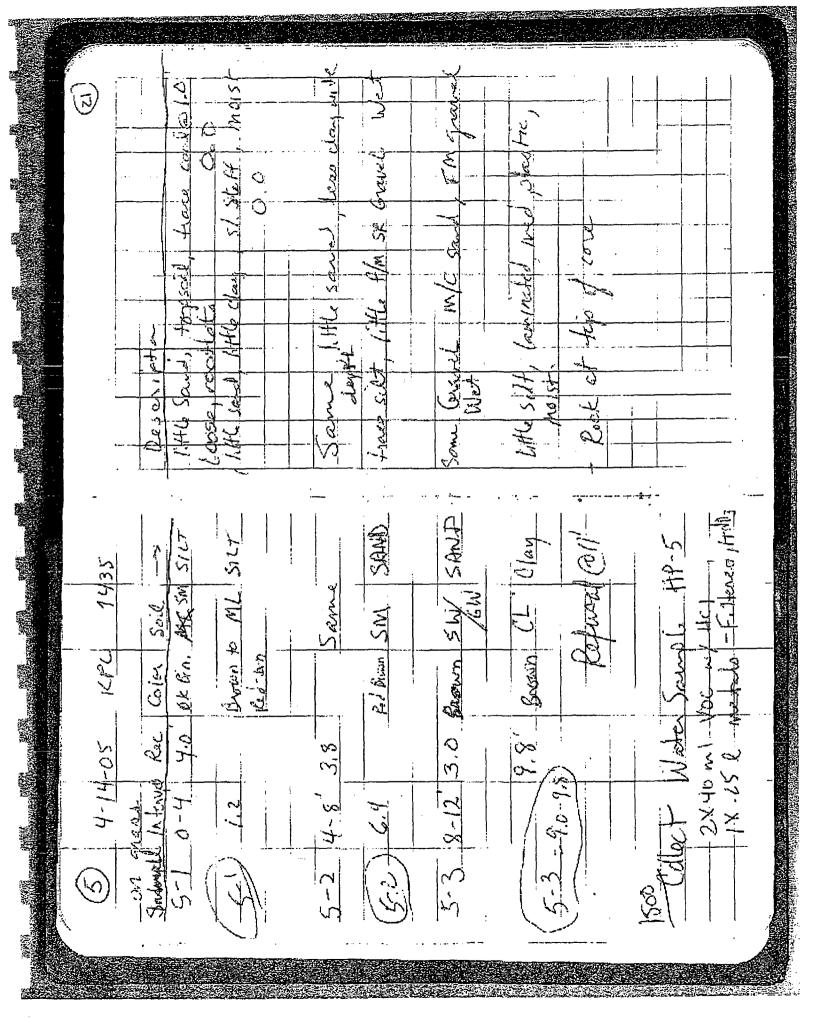

Tierne	ЭУ		H	OLE N	o	<u>A</u> -	-3		SURF. ELEV. 442 PROJECT NO.: TGE.0
Geote	echi	nical	PI	ROJEC	T Kl	ozure	e Bui	ldin	ng LOCATION Palmyra, New York
E ngin	eer	ina		LIENT					
		9	D2						2-22-05 COMPLETED 12-22-05
DEPTH (FEET)	Sample	Sample No.	0-6	BLOW 6-12	S ON SA 12-18	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION WATER TABLE & REMARK
0		1	7	5	7		12	XXX	4" ASPHALT PAVEMENT
		2	7	7	11	14	18		Brown SAND and GRAVEL, trace silt (moist)
_ [FILL Free standing wa
5									Greenish-Gray SILT, trace was encountered to little Clay, trace fine Sand (very moist) Borehole was left overnight and from DECOMPOSED BEDROCK standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring completion overnight and from Standing water was encountered depth of 8 feet boring w
10									Test boring was completed at a depth of 4 feet. encountered at a depth of 7 feet next day.
15									
20									-
25 -									
30									
35									
40 —									
N=NUME WT. FA	LL:	ING _	30		PER	BLOW] _ " S	SPOON 12 " WITH 140 1b SHEET 1 OF 1

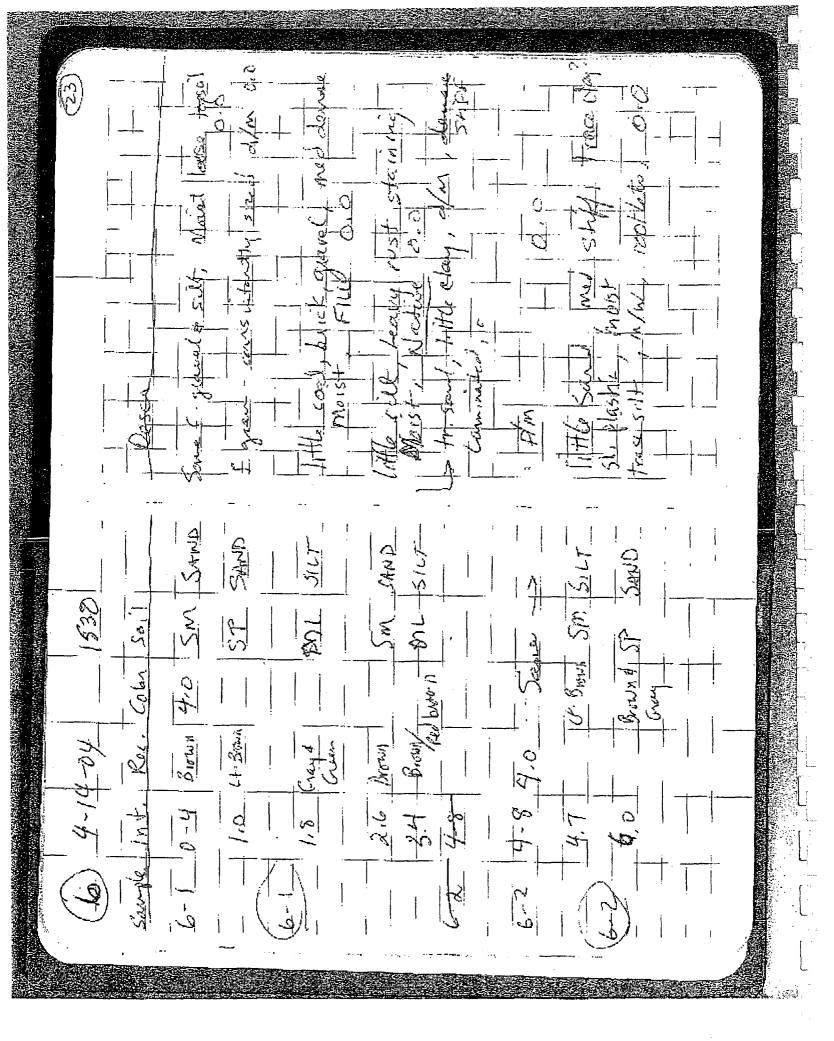

i iern	-	hnical		OLE N			-20 - Bui	 ldin	g LOCATION Palmyra,	PROJECT NO.: TGE.05. New York
_				LIENT						
Engin	ee	ering		ATE S					2-14-05 COMPLETED	12-14-05
			Γ	BLOW	S ON SA	AMPLE		O		
DEPTH (FEET)	Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG		WATER TABLE & REMARKS
0		1	5	6	6		12	\bowtie	4" ASPHALT PAVEMENT	,
		2	5	8	13	11	21		Brown SAND and GRAVEL, Little Silt (moist)	Cobbles and/or boulders were encountered below
_		3	7	12	18	24	30		FILL 	depth of 4 feet
5 -									Reddish-Brown SILT and SAND, some Gravel	
		4	17	32	25	22	57		(very moist) (wet, firm)	
		5	40	50/4			REF.		grades to little Rock Fragments	REFSample refus
10 -	1								Reddish-Brown Sandy SILT, Little Gravel	
	-								contain seams of medium- coarse sand	_
	t								(very moist)	
15		6	55/2				REF.		GLACIAL TILL	No recovery for sample no. 6.
	-								Reddish-Brown Clayey SILT, little Gravel/Rock	Free standing wat
	-						<u> </u>		Fragments	was not encounter upon boring
	┢								contain seams of medium-	completion.
20 -									coarse sand (very moist)	· .
20	-								GLACIAL TILL	
İ	-					 .			Test boring was completed	<u> </u>
l	-								at a depth of 14.2 feet with spoon and auger	_
25 -									refusal upon an apparent boulder.	-
25									boulder.	
	-					<u> </u>	 			
	}									-
	-									
30 –										
							ļ			
	-		ļ <u>.</u>				<u> </u>			
	-						 			_
35 -	+							1		
			<u> </u>							
							 			_
40 -			<u> </u>		<u> </u>	<u> </u>	<u> </u>	1		
			 	 			 	1		-
T. F2	AL1	LING _	30		PER	BLOW		. " S	POON 12 " WITH 140 SHEET 1	1b OF 1

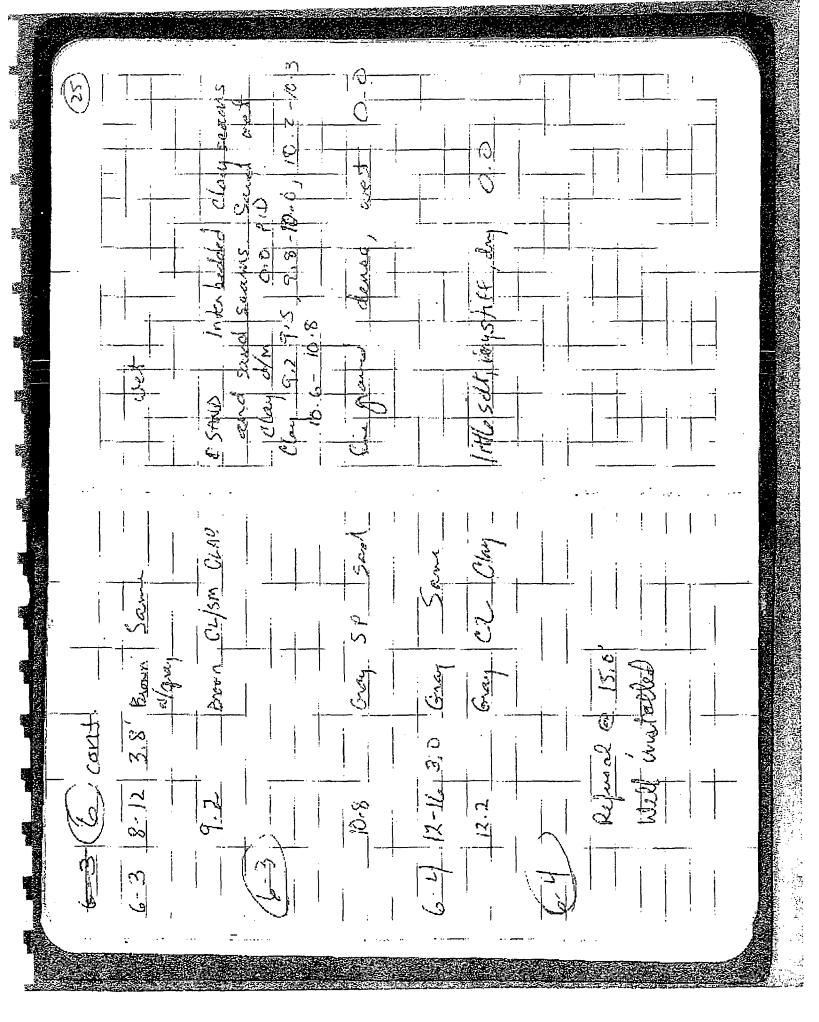

I lern	Су			OLE N			-21			PROJECT NO.: _TGE.0
Geote	ЭС	hnical			-				g LOCATION Palmyra,	New York
E ngir	100	erina	C	LIENT	Gar	lock				
 g		21 II 7 G	Di	ATE S	TART	ED _		12	COMPLETED	12-21-05
	e	<u>a</u>		BLOW	S ON S	AMPLE		⊋ "		
DEPTH (FEET)	Sample	Sample No.	0-6	6-12	12-18	18-24	N	GRAPHIC LOG	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMAR
0		1	18	15	21		36	$\times\!\!\times\!\!\times$	7 4" ASPHALT PAVEMENT	
									Brown SAND and GRAVEL,	1
		2	12	6	5	4	11	α υ	little Silt	
								\$50	(moist) FILL	
5 -	7	3	3	2	4	7	6	93:	L	
									Dark-Gray to Brown SILT, some Sand, little Clay,	
		4	14	11	16	20	27	EEB	Little Gravel, little	_
								===	Asphalt Fragments	
		5	18	39	48	50	87	E = 3	(moist) 	REFSample refu
10 -								ΕΞΞ	FILL	
10		6	29	50			REF.	 == ==================================	<u> 2</u>	Difficult to aud below 10 feet.
								EE	Brown SAND, little Silt, Some Gravel, trace roots	
		7	22	10	17	33	27	EEB	(wet, firm)	
								===	POSSIBLE FILL	_
15 -								E=3	Greenish-Gray SILT, trace	
		8	40	20	10	6	30	E = 3	gravel, trace sand, trace	Hydropunch was advanced at bori
	\Box							===	clay (very moist)	completion.
						,			(firm)	Free standing wa
	-								1	was not encounted
20 -	\dashv								POSSIBLE DECOMPOSED BEDROCK	with augers at 1 feet. Free stand
	}								Greenish-Gray SILT, little	water was encour
	}						<u> </u>		Rock Fragments, trace clay (moist, very compact)	at a depth of 11
	-								(very moist, firm)	feet upon boring completion.
	+				-				(wet) DECOMPOSED BEDROCK	-
25	+								Test boring was completed	
	ŀ								at a depth of 17 feet.	_
	ŀ								•	 -
	ł							}		-
	ŀ									-
30	\dashv									
	 							1		-
										_
	ŀ						 -	1 1		-
	ŀ						 			—
35 –	\dashv									
	1			-			 			-
	ł						 			 -
	}						-	†		 -
	-						 			_
40 -	-				<u>. </u>			┥		
								{		· ·
N=NUME							2		POON 12 " WITH 140	1b

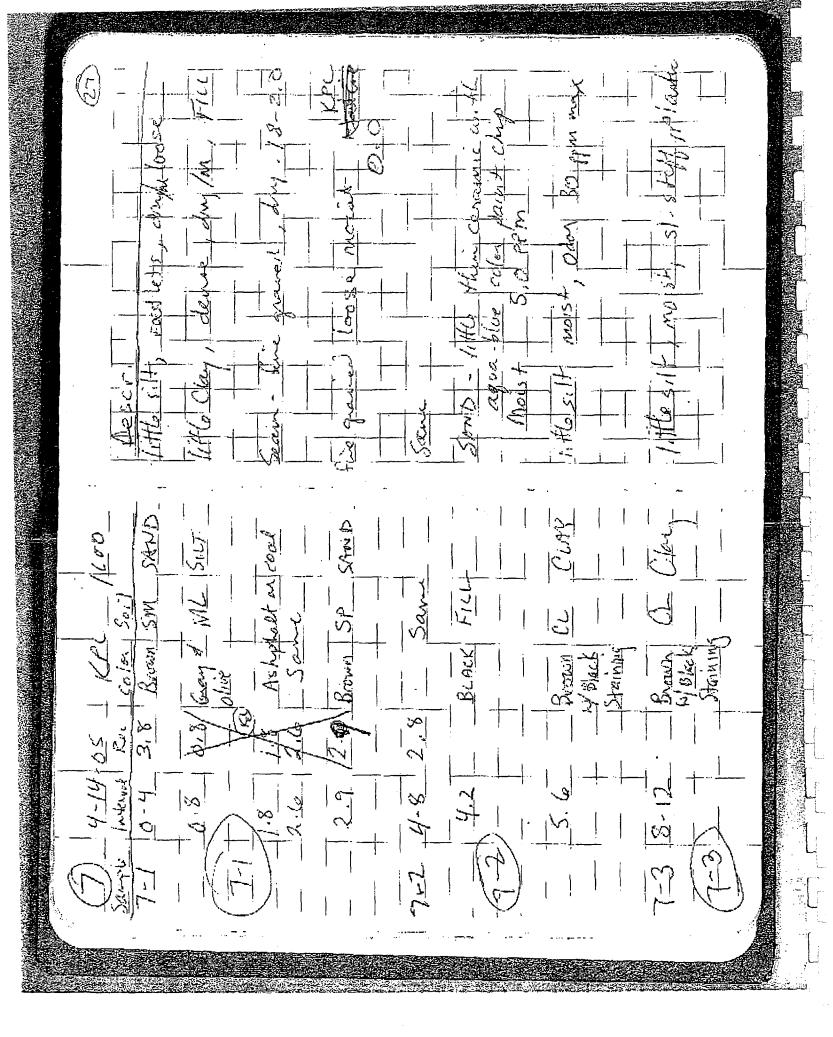

WT. FALLING 30 " PER BLOW

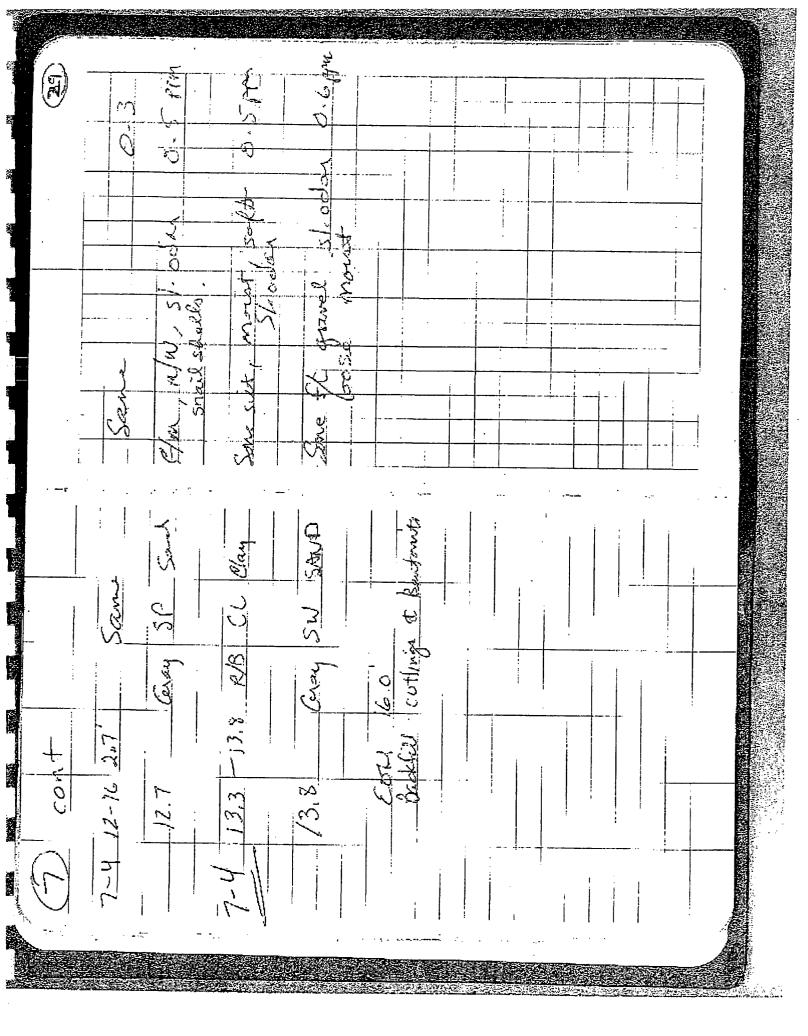
LOGGED BY M.A.Fiorillo, EIT SHEET 1 OF 1

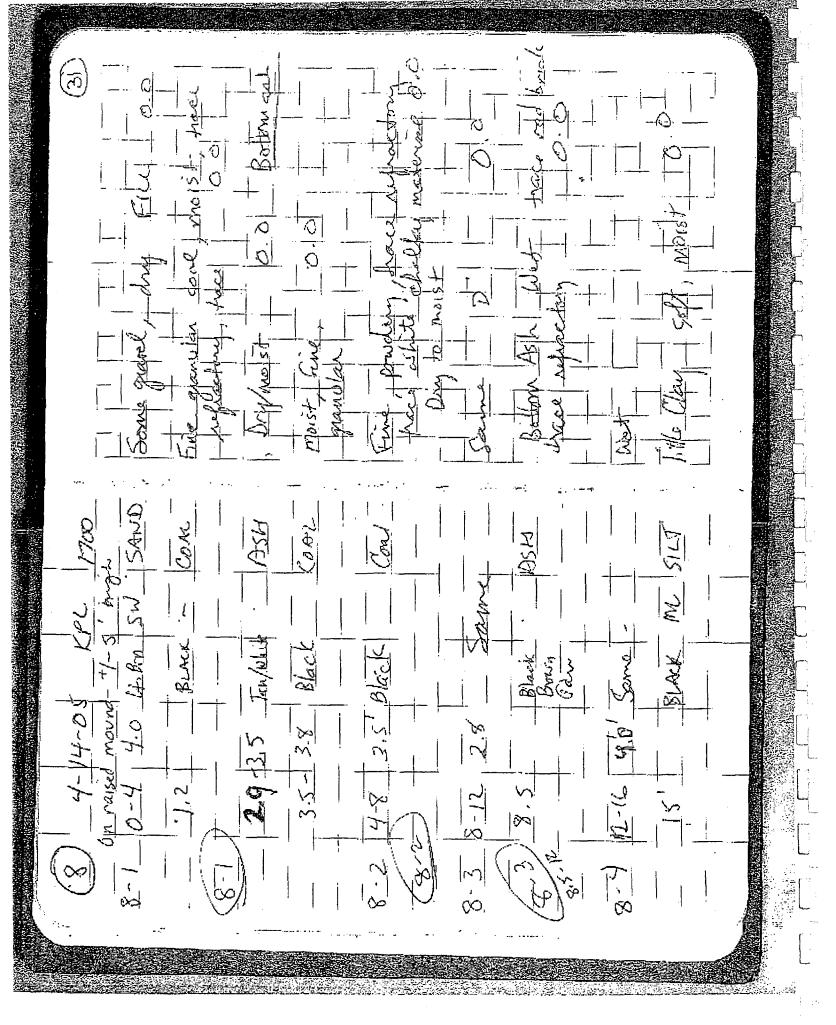


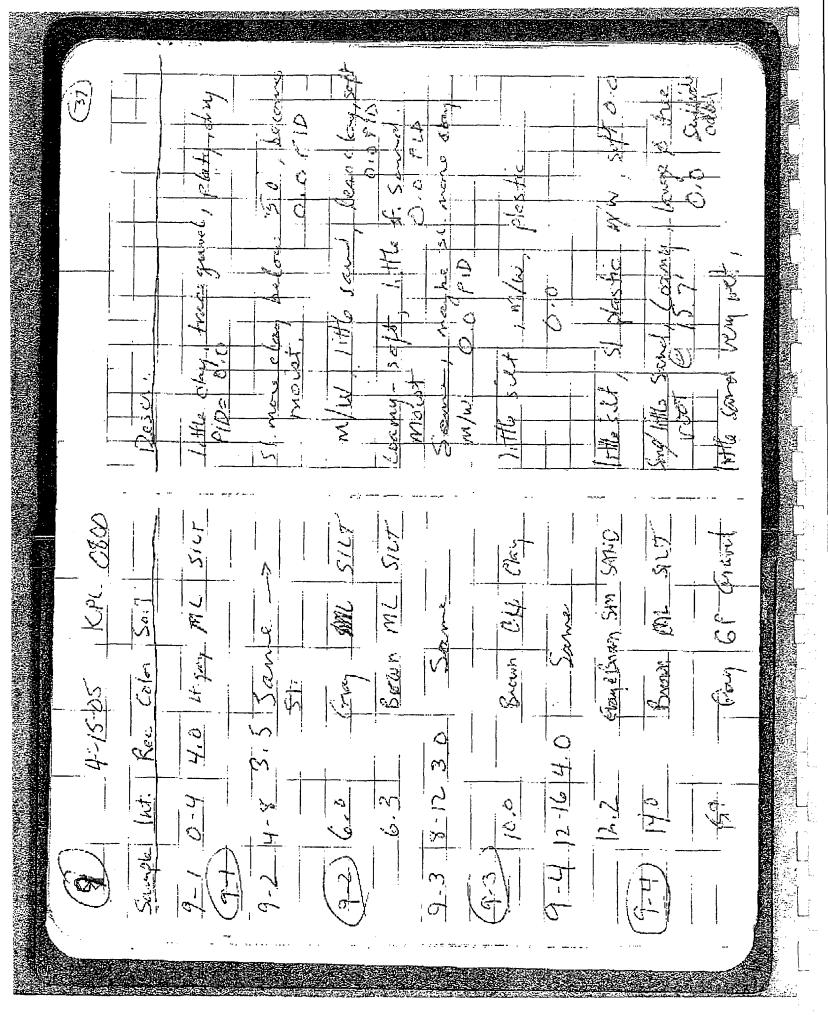


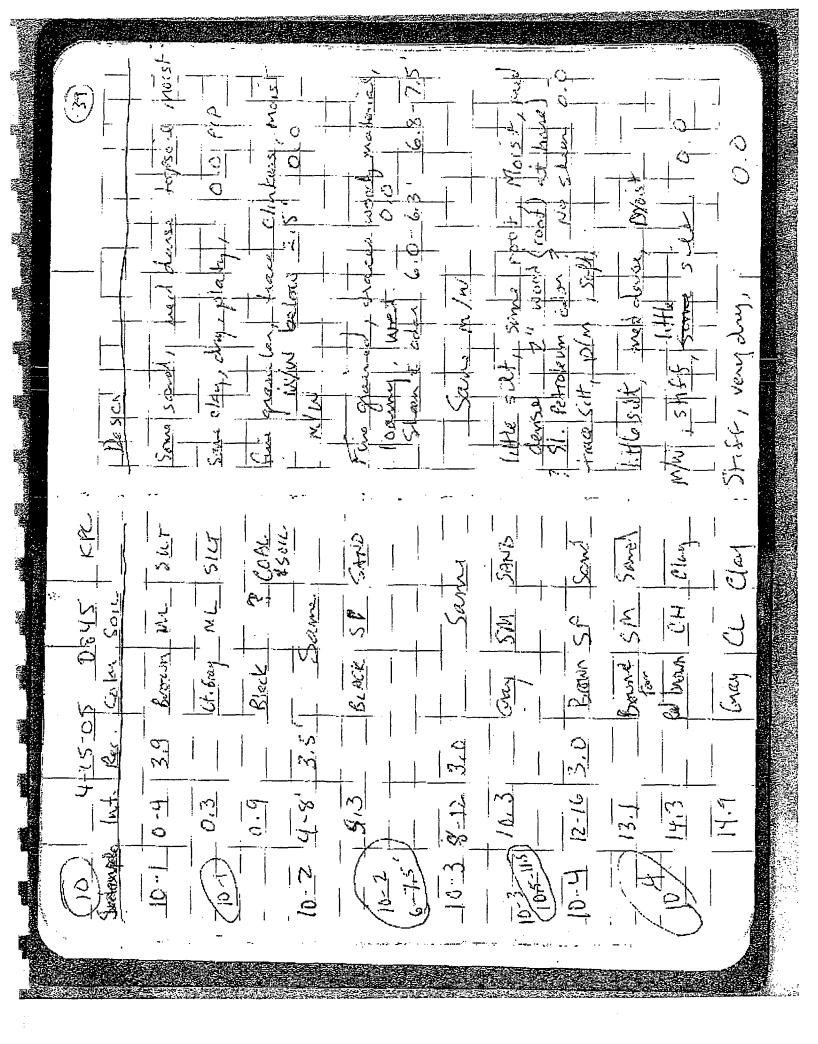


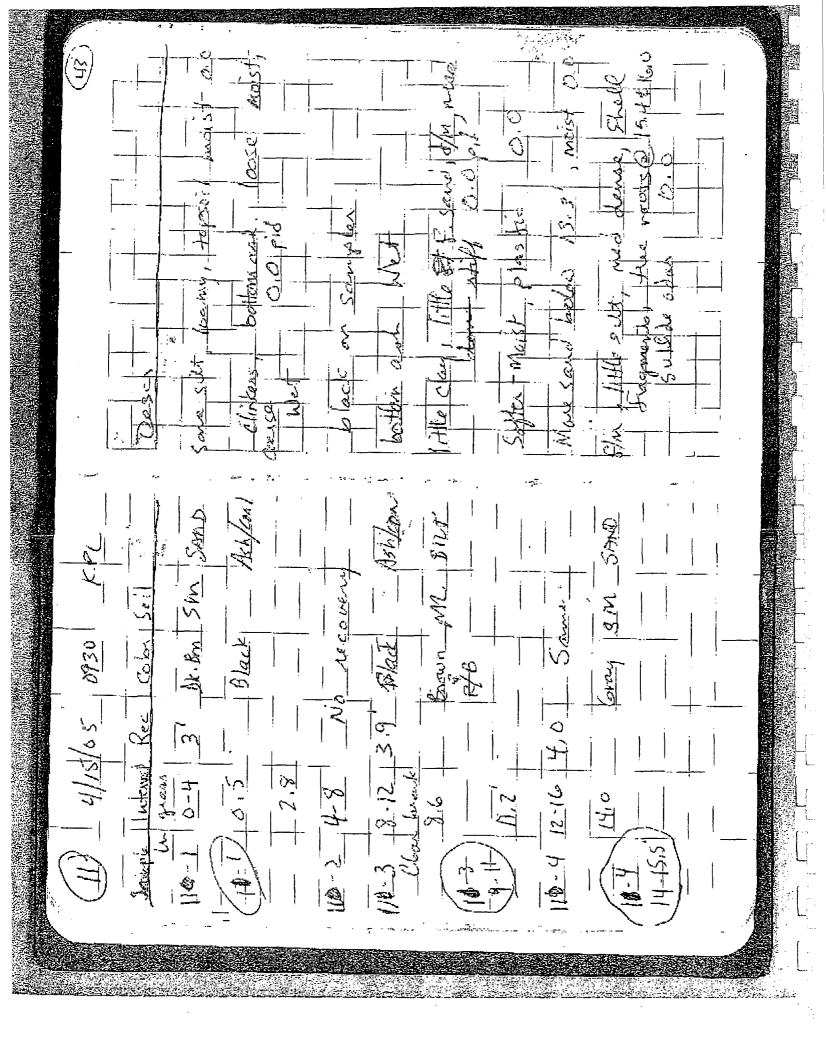


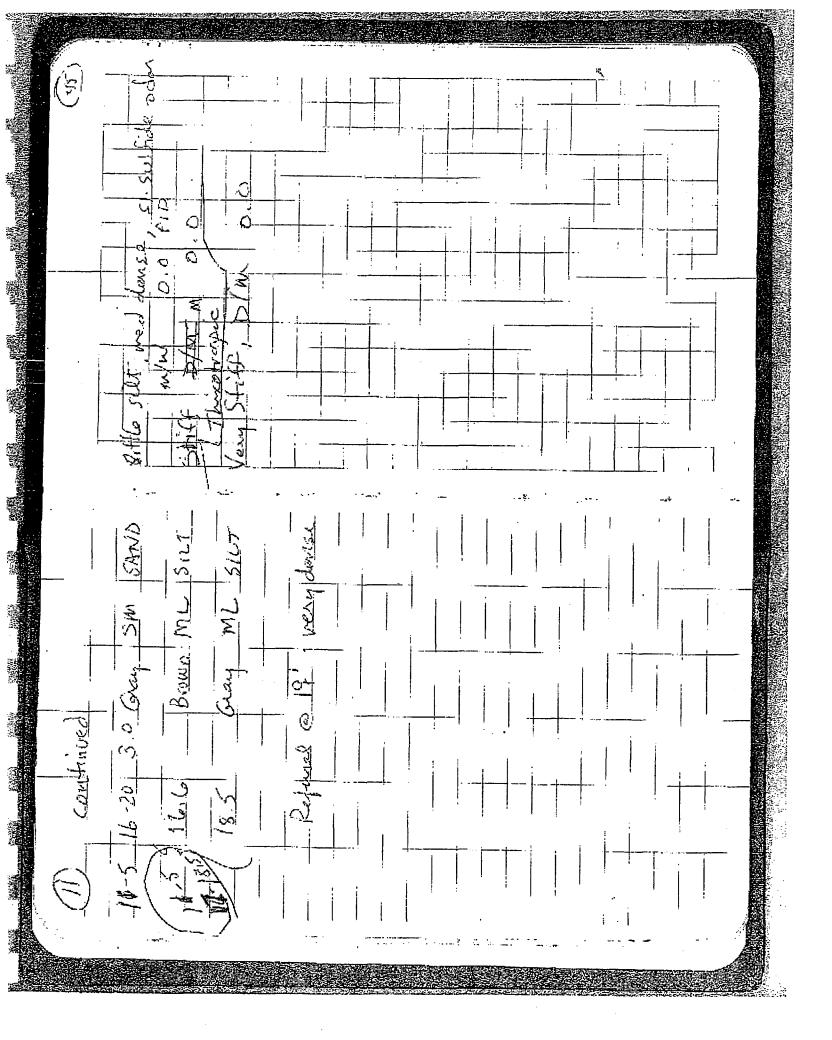

Detak the Plata 1. Hangy soum ML 15167 - Brown ML SILT CF. gay mic Liteal PID Wishtow 4.0 Brown 4-14-05 1430 | Motol Well = 5 4.0 12.6 [- 12.6 [- 12.6 []] 3 12 grass 0,2 4.4

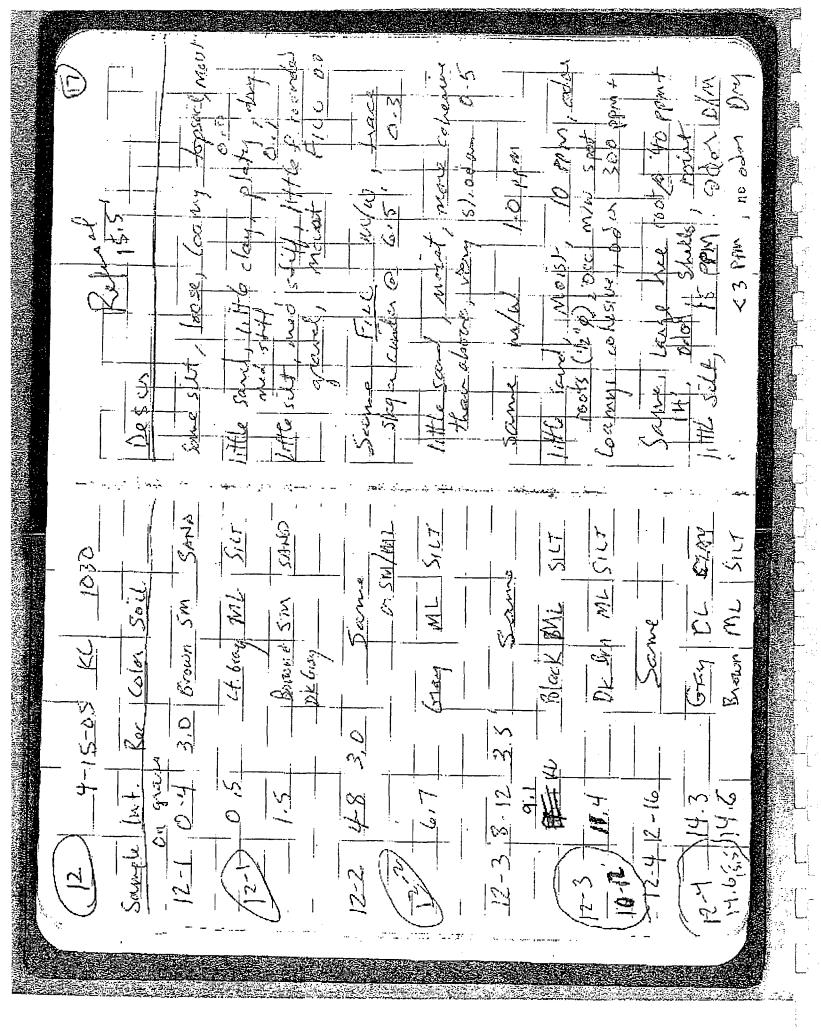


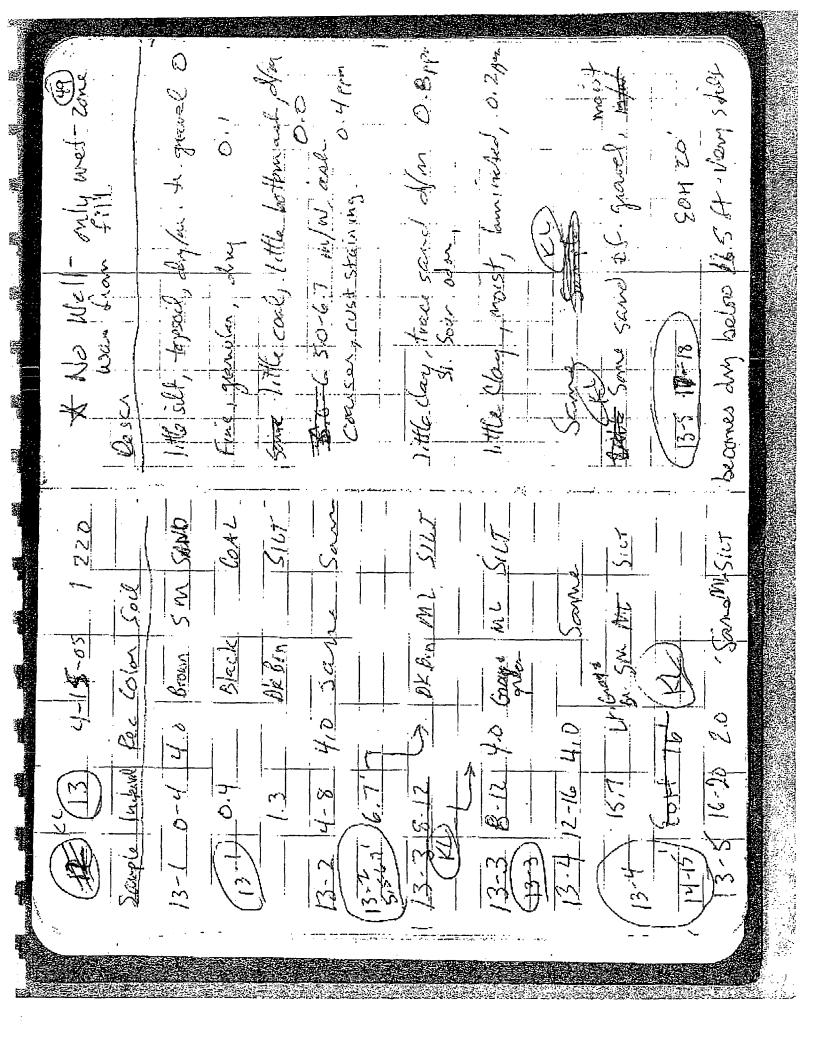


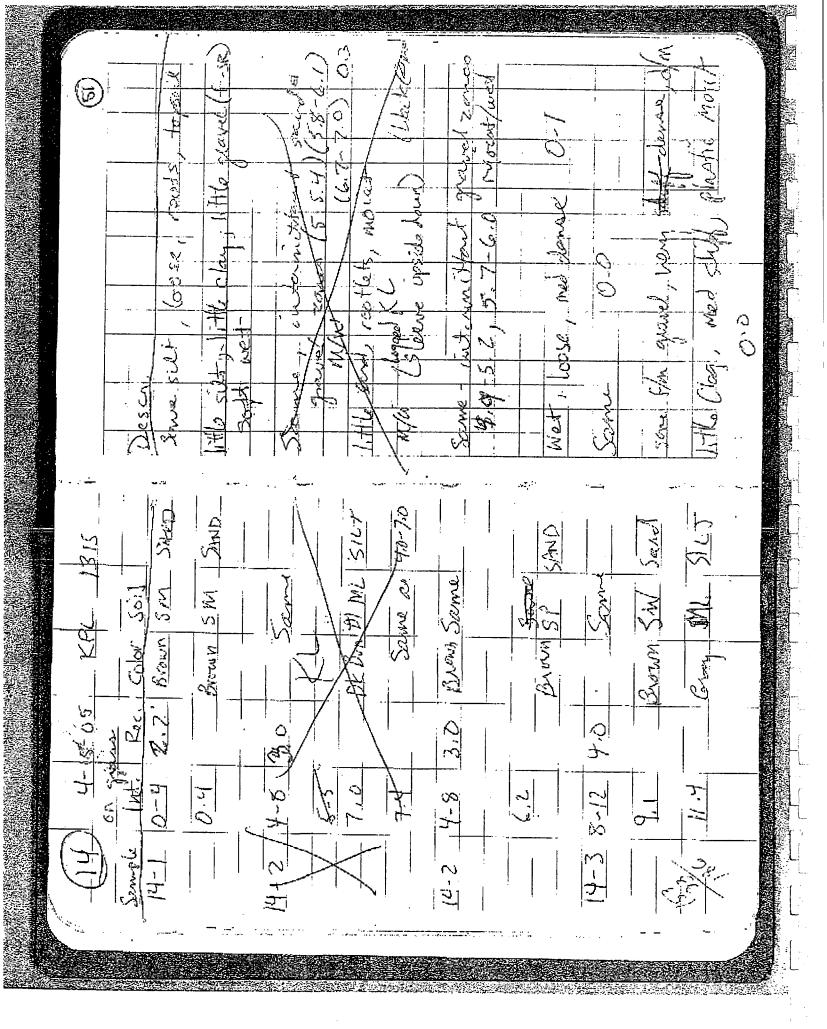


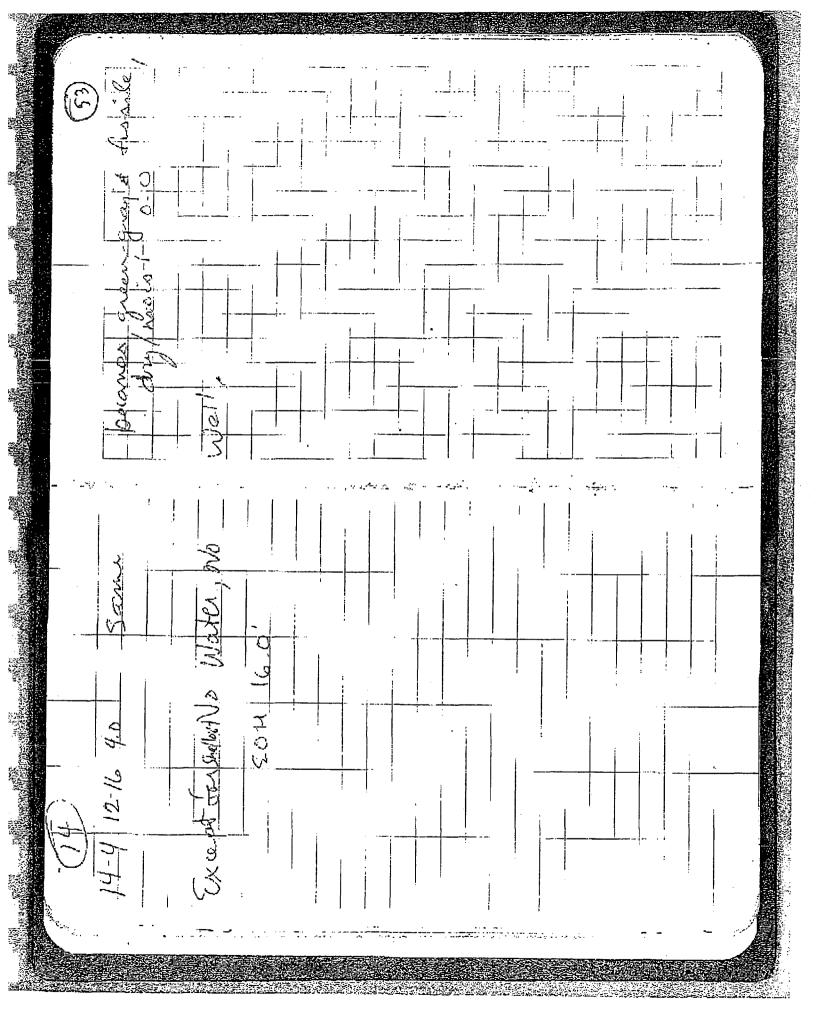


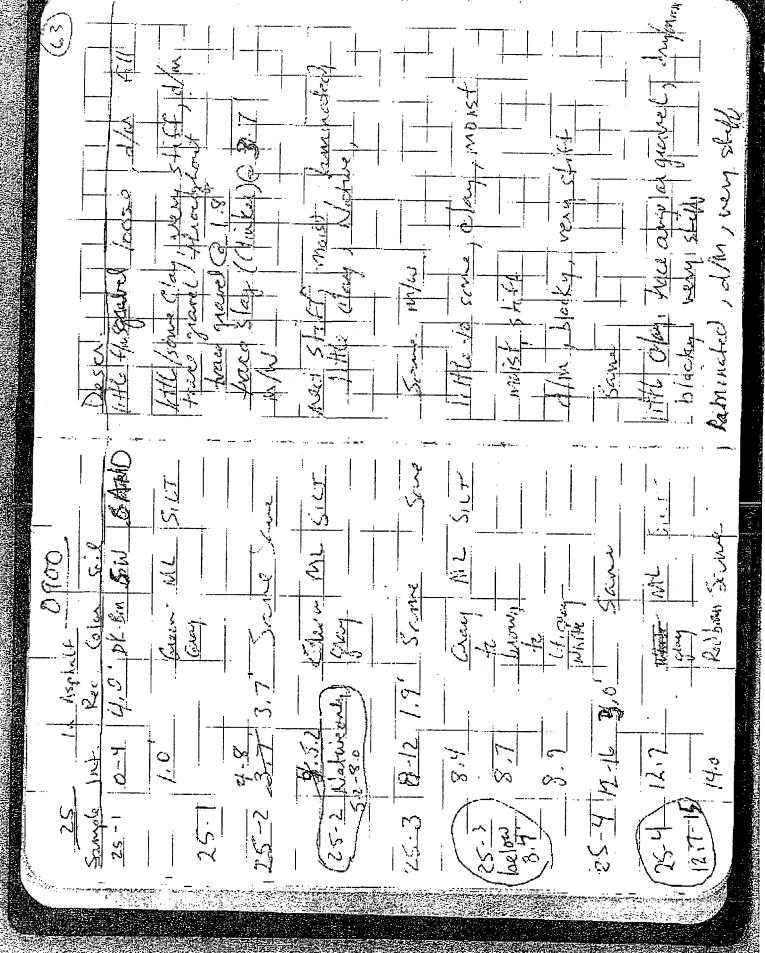


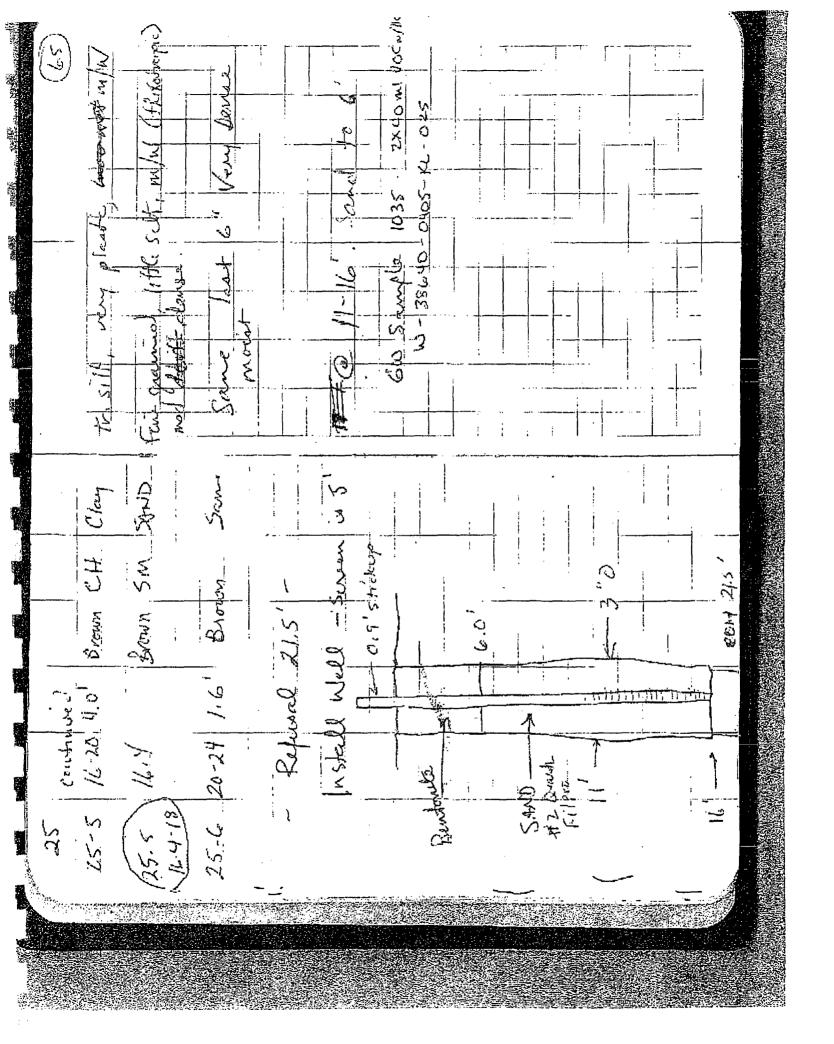


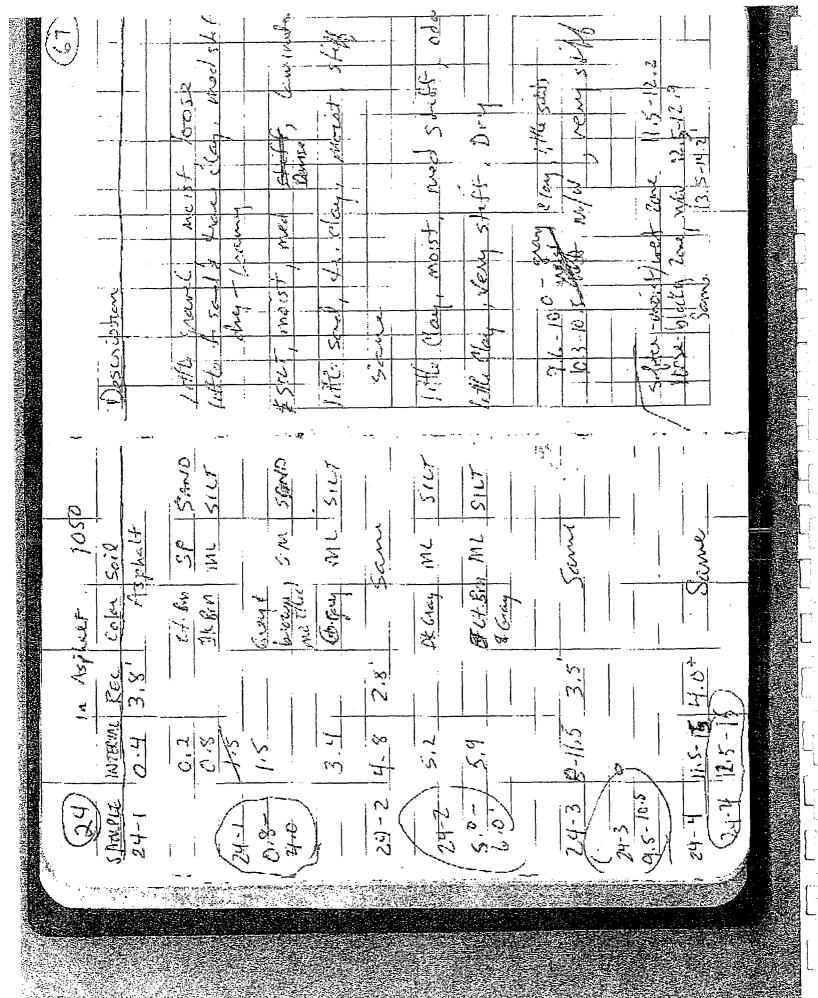


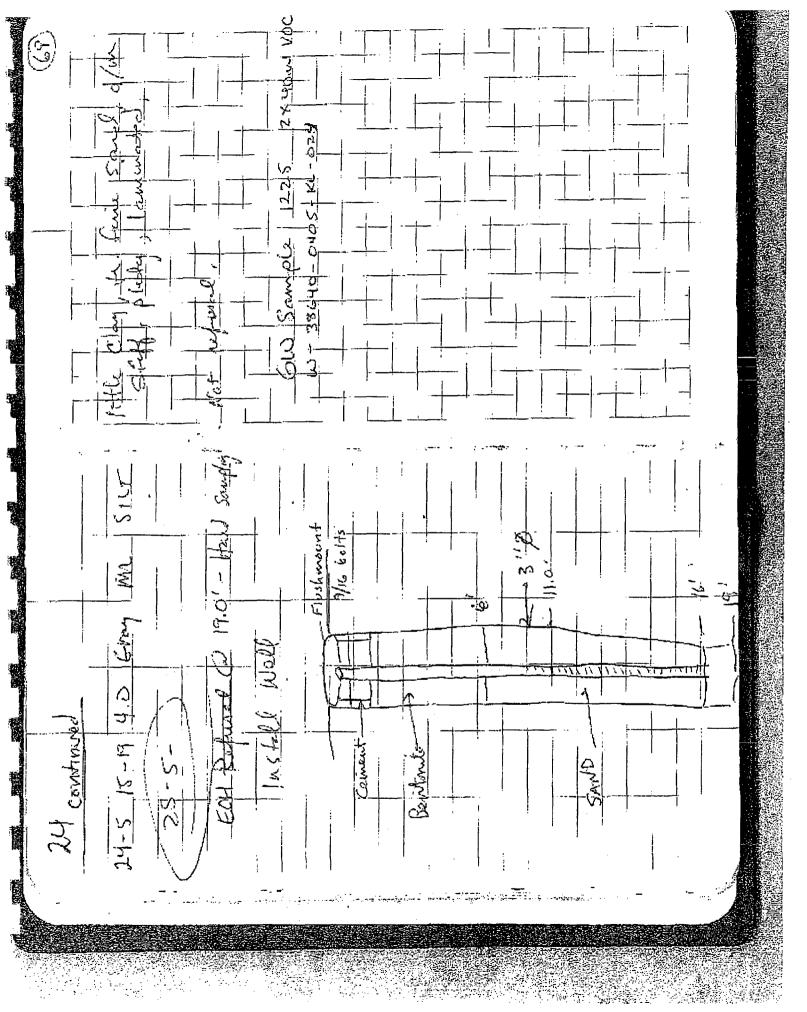


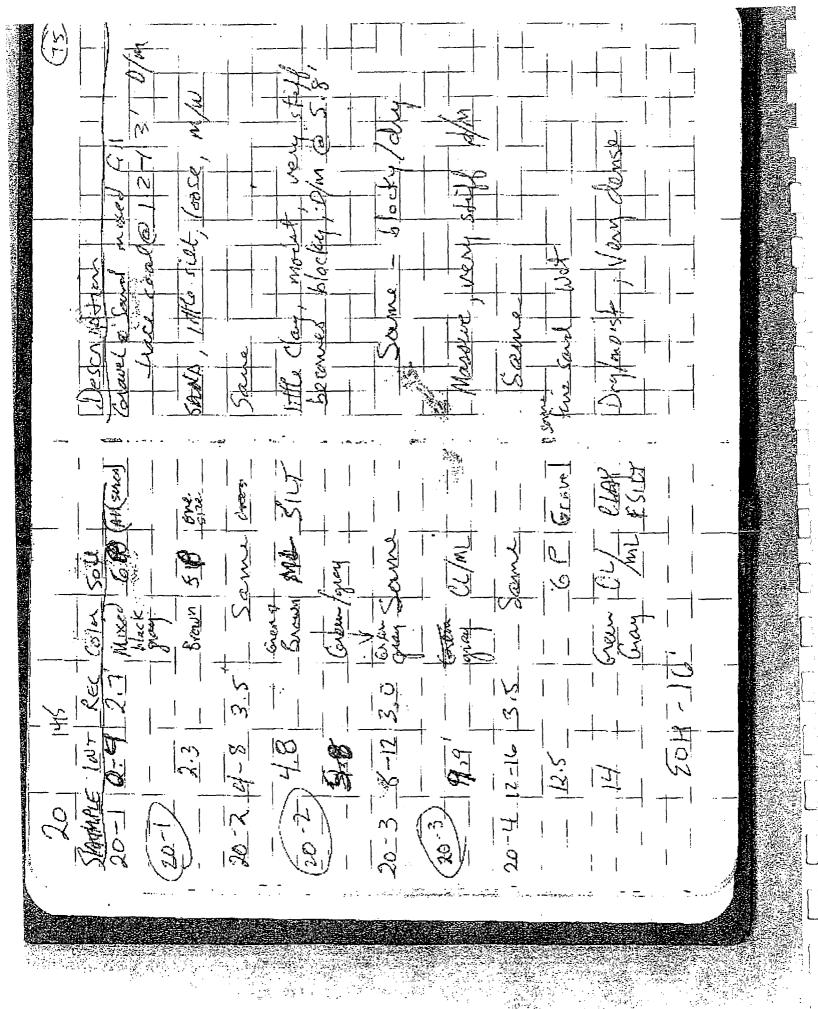


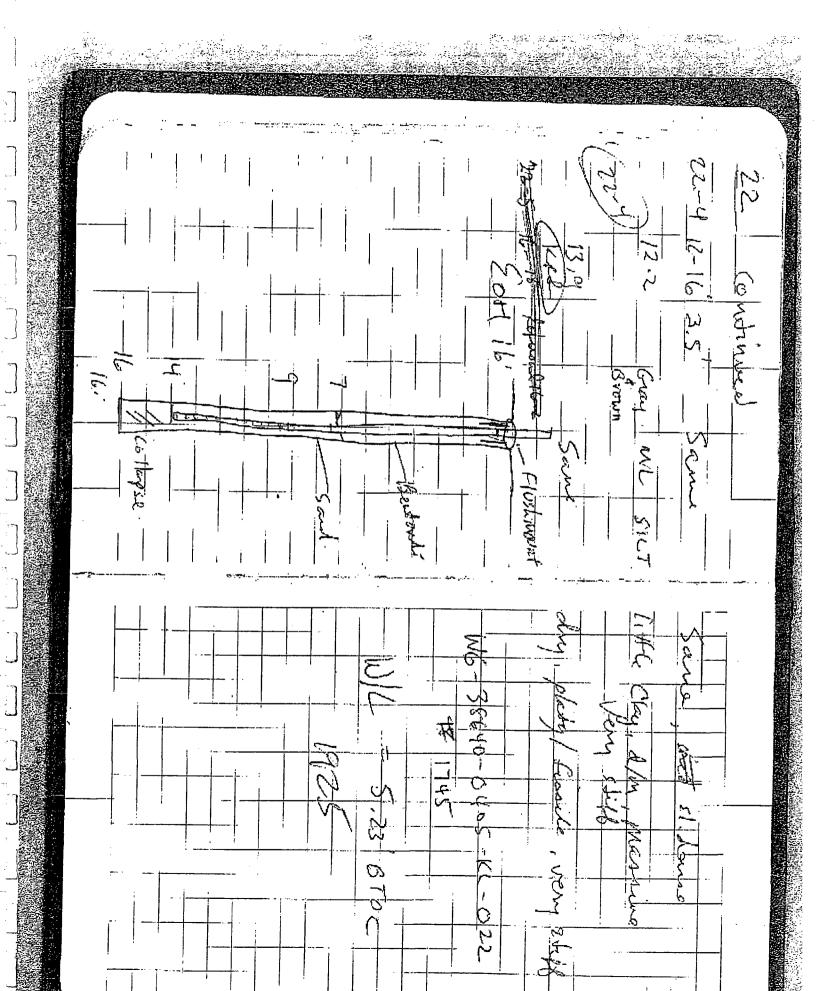




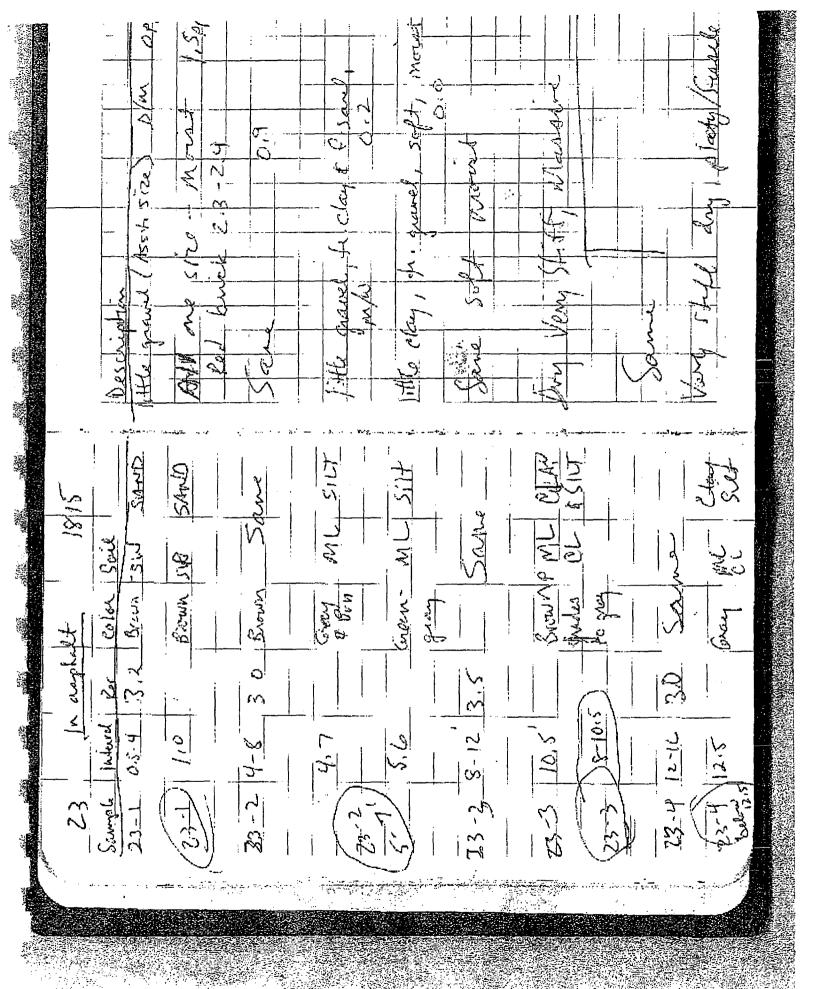








	2				300		
	Sample	-JW-	Rec	Colour	503		Design
,	21-1	h-0	4,0+	Brann	JAN J	SAND	Same Sitt warmy togossical hadist,
		4		(4: Brn	رم ح	SAND	(Hilms size) (50 se m/w
		1.7		75	ML	\$167	Witte Class Taco Garal (lass 14 asted)
		y de	·	•		-5	clay platy, leaves stort, but Gesille
 	21-2	4.1	4,0	it gray	N. S. S. S. S. S. S. S. S. S. S. S. S. S.		Same
		2,0		St. gracy	200	CAN	Citle selt, and est maderne very
A P				d Leotoh		Marian y ± r	
	21-3	8-12	e.h		ame		Same
	,	2.5		J. Gray	ML	SUF	1.the Clary , 3 att, Fissile, dry year
				•			
		[0.2]		Brown	SM	SAND	Save 5 Why with
terseny meta		9.7		- having	7 5	2151	Same Child wood (2004 5 ship)
				200]		N.C. A.L.
	71-17	12-16	4,0	X	S. S. S.	1	Sales Charlotte
		17:1		hope in	7	Sict	Title P. same Mr on M. Blocky of the
							The state of the s


 (\mathfrak{P}) [159] Jug = +12-con-tu (9) 19 M

.

22-1 3,2 Cray Brown MAS TRANK Same AX 7. かんがん SHOPE A SANIA White day out Moral

APPENDIX C

EXCAVATION WORK PLAN (EWP)

C-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination or breach or alter the Site's cover system, the Site owner or their representative will notify the NYSDEC project manager and the project manager's supervisor listed in the table below. Table C-1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information.

Table C-1: Notifications*

Joshuah Klier – NYSDEC Project Manager	(585) 226-5357 joshuah.klier@dec.ny.gov
David Pratt - NYSDEC Project Manager's	(585) 226-5449
Supervisor	david.pratt@dec.ny.gov
NYSDEC Site Control	DERSiteControl@dec.ny.gov
Julia Kenney – NYSDOH Project Manager	(518) 402-7873
	julia.kenney@health.ny.gov
Garlock Sealing Technologies, LLC; Carrie	(315) 597-7311
SanAngelo – Site Owner and Remedial Party	Carrie.Sanangelo@garlock.com
GHD Consulting Services Inc.; Jeffrey	(860) 747-8245
Lambert – Remedial Engineer	jeffrey.lambert@ghd.com
Lippes Mathias, LLP; Amy L. Reichhart –	(585) 770-7590 ext. 1810
Remedial Party Attorney	areichhart@lippes.com

^{*} Note: Notifications are subject to change and will be updated as necessary.

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for Site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated, any modifications of truck routes, and any work that may impact an engineering control;
- A summary of environmental conditions anticipated to be encountered in the
 work areas, including the nature and concentration levels of contaminants of
 concern, potential presence of grossly contaminated media, and plans for any
 pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work, and submittals (e.g., reports) to the NYSDEC documenting the completed intrusive work;
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP, 29 CFR 1910.120 and 29 CFR 1926 Subpart P;
- A copy of the contractor's health and safety plan (HASP), in electronic format;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with the required request to import form and all supporting documentation including, but not limited to, chemical testing results.

The NYSDEC project manager will review the notification and may impose additional requirements for the excavation that are not listed in this EWP. The alteration, restoration and modification of engineering controls must conform with Article 145 Section 7209 of the Education Law regarding the application professional seals and alterations.

C-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based (e.g. photoionization detector) soil screening will be performed during all excavations into known or potentially contaminated

material (remaining contamination) or a breach of the cover system. A qualified environmental professional as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State will perform the screening. Soil screening will be performed when invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-Site disposal and material that requires testing to determine if the material can be reused on-Site as soil beneath a cover or if the material can be used as cover soil. Soils that are observed to be stained, discolored, have a sheen, or produce elevated PID readings (i.e., sustained 10 parts per million [ppm] or greater) will be considered potentially contaminated and stockpiled for further assessment per Sections C-6 and C-7. Further discussion of off-Site disposal of materials and on-Site reuse is provided in Sections C-6 and C-7 of this Appendix.

C-3 SOIL STAGING METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by the NYSDEC.

C-4 MATERIALS EXCAVATION AND LOAD-OUT

A qualified environmental professional as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and remedial party (if applicable) and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the Site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the Site. A Site utility stakeout will be completed for all utilities prior to any ground intrusive activities at the Site.

Loaded vehicles leaving the Site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements). Trucks transporting contaminated soil must have either tight-fitting opaque covers that are secured on the sides and/or back, or opaque covers that are locked on all sides.

A truck wash will be operated on-Site, as appropriate. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the Site until the activities performed under this section are complete. Truck wash waters will be collected and disposed of off-Site in an appropriate manner.

Locations where vehicles enter or exit the Site shall be inspected daily for evidence of off-Site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the Site are clean of dirt and other materials derived from the Site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to Site-derived materials. Material accumulated from the street cleaning and egress cleaning activities will be disposed off-Site at a permitted landfill facility in accordance with all applicable local, State, and Federal regulations.

C-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the Site will be secured with either tight-fitting opaque covers that are secured on the sides and/or back, or opaque covers that are locked on all sides. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks loaded with Site materials will exit the vicinity of the Site using only the most appropriate routes, which will take into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-Site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project Site.

Egress points for truck and equipment transport from the Site will be kept clean of dirt and other materials during Site remediation and development.

Queuing of trucks will be performed on-Site in order to minimize off-Site disturbance. Off-Site queuing will be prohibited.

C-6 MATERIALS DISPOSAL OFF-SITE

All material excavated and removed from the Site will be treated as contaminated and regulated material and will be transported and disposed off-Site in a permitted facility in accordance with all local, State, and Federal regulations. If disposal of material from this Site is proposed for unregulated off-Site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC project manager. Unregulated off-Site management of materials from this Site will not occur without formal NYSDEC project manager approval.

Off-Site disposal locations for excavated soils will be identified in the preexcavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, (e.g. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C&D debris recovery facility). Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include, but will not be limited to: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-Site will be handled consistent with 6 NYCRR Parts 360, 361, 362, 363, 364 and 365. Material that does not meet Unrestricted Use SCOs is prohibited from being taken to a New York State C&D debris recovery facility (6 NYCRR Subpart 360-15 registered or permitted facility).

C-7 MATERIALS REUSE ON-SITE

The qualified environmental professional, as defined in 6 NYCRR Part 375, will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material (i.e. contaminated) does not remain on-Site. Contaminated on-Site

material, including historic fill and contaminated soil, that is acceptable for reuse on-Site will be placed below a demarcation layer or impervious surface, and will not be reused within the cover system or within landscaping berms. Contaminated on-Site material may only be used beneath the Site cover as backfill for subsurface utility lines with prior approval from the DEC project manager.

Proposed materials for reuse on-Site must be sampled for full suite analytical parameters including per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane. The sampling frequency will be in accordance with DER-10 Table 5.4(e)10 unless prior approval is obtained from the NYSDEC project manager for modification of the sampling frequency. The analytical results of soil/fill material testing must meet the Site use criteria presented in NYSDEC DER-10 Appendix 5 – Allowable Constituent Levels for Imported Fill or Soil for all constituents listed, and the NYSDEC Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (April 2023 or date of current version, whichever is later) guidance values. Approvals for modifications to the analytical parameters must be obtained from the NYSDEC project manager prior to the sampling event.

Soil/fill material for reuse on-Site will be segregated and staged as described in Sections C-2 and C-3 of this EWP. The anticipated size and location of stockpiles will be provided in the 15-day notification to the NYSDEC project manager. Stockpile locations will be based on the location of Site excavation activities and proximity to nearby Site features. Material reuse on-Site will comply with requirements of NYSDEC DER-10 Section 5.4(e)4. Any modifications to the requirements of DER-10 Section 5.4(e)4 must be approved by the NYSDEC project manager.

Any demolition material proposed for reuse on-Site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-Site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the Site will not be reused on-Site.

C-8 FLUIDS MANAGEMENT

All liquids to be removed from the Site, including but not limited to, excavation dewatering, decontamination waters, and groundwater monitoring well purge and development waters, will be handled, transported and disposed off-Site at a permitted facility in accordance with applicable local, State, and Federal regulations. Dewatering, purge, and development fluids will not be recharged back to the land surface or subsurface of the Site, and will be managed off-Site, unless prior approval is obtained from NYSDEC.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

C-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities, the existing cover will be restored. The existing cover is comprised of a minimum of 12 inches of clean soil, asphalt pavement, concrete covered sidewalks, and concrete building slabs. A demarcation layer, consisting of orange snow fencing material, white geotextile, or equivalent material, will be placed prior to backfilling the excavation to provide a visual reference to the top of the remaining contamination zone, the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this SMP, if appropriate and approved by the NYSDEC based on their review and approval of either the EWP or pre-work notification associated with the proposed work. If the type of cover changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), a figure showing the modified surface will be included in the subsequent Periodic Review Report and in an updated SMP. The alteration, restoration, and modification of engineering controls must conform with Article 145 Section 7209 of the Education Law regarding the application of professional seals and alterations.

C-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the Site will be approved by the qualified environmental professional, as defined in 6 NYCRR Part 375, and will be in compliance with provisions in this SMP prior to receipt at the Site. A Request to Import/Reuse Fill or Soil form, which can be found at http://www.dec.ny.gov/regulations/67386.html, will be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review. A copy of the form is presented in Appendix J of the SMP.

Material from industrial sites, spill sites, other environmental remediation sites, or potentially contaminated sites will not be imported to the Site.

All imported soils will meet the backfill and cover soil quality standards established in 6 NYCRR 375-6.7(d) and DER-10 Appendix 5 for commercial use. Soils that meet 'general' fill requirements under 6 NYCRR Part 360.13, but do not meet backfill or cover soil objectives for this Site, will not be imported onto the Site without prior approval by NYSDEC project manager. Soil material will be sampled for the full suite of analytical parameters, including PFAS and 1, 4-dioxane. Solid waste will not be imported onto the Site.

Trucks entering the Site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

C-11 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by the NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

C-12 EXCAVATION CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition. The NYSDEC project manager will be promptly notified of the discovery.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes [TAL metals, TCL volatiles and semi-volatiles (including 1,4-dioxane), TCL pesticides and PCBs, and PFAS], unless the Site history and previous sampling results provide sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC project

manager for approval prior to sampling. Any tanks will be closed as per NYSDEC regulations and guidance.

Identification of unknown or unexpected contaminated media identified by screening during invasive Site work will be promptly communicated by phone within two hours to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the Periodic Review Report.

C-13 COMMUNITY AIR MONITORING PLAN

Air monitoring will be conducted during Site work, in accordance with a Community Air monitoring Plan (CAMP), as required by Appendix A-I of NYSDEC's DER-10. The objective of this CAMP is to provide a measure of protection for the downwind community from potential airborne contaminant releases that might arise as a result of work conducted on Site. The CAMP will include monitoring for volatile organic compounds (VOCs) and particulate matter (e.g. airborne "dust"). The CAMP specifies methods that must be used to conduct air monitoring, and the specific instruments to be used. Action levels for VOCs and dust are provided.

The location of air sampling stations based on generally prevailing wind conditions will be adjusted on a daily or more frequent basis based on actual wind directions to provide an upwind and at least two downwind monitoring stations. These locations will be shown on a figure provided to the NYSDEC at the time the CAMP is implemented.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

C-13A: Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures

When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates must reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative-pressure enclosures, or special ventilation devices should be considered to prevent exposures related to the work activities and to control dust and odors. Consideration should be given to implementing the planned activities when potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings.

- If total VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 part-per-million, monitoring should occur within the occupied structure(s). Depending upon the nature of contamination, chemical-specific colorimetric tubes of sufficient sensitivity may be necessary for comparing the exposure point concentrations with appropriate pre-determined response levels (response actions should also be pre-determined). Background readings in the occupied spaces must be taken prior to commencement of the planned work. Any unusual background readings should be discussed with NYSDOH prior to commencement of the work.
- If total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 micrograms per cubic meter, work activities should be suspended until controls are implemented and are successful in reducing the total particulate concentration to 150 micrograms per cubic meter or less at the monitoring point.
- Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be

monitored. Response levels and actions should be pre-determined, as necessary, for each Site.

C-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors off-Site. If nuisance odors are identified at the Site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the remedial party's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-Site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-Site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

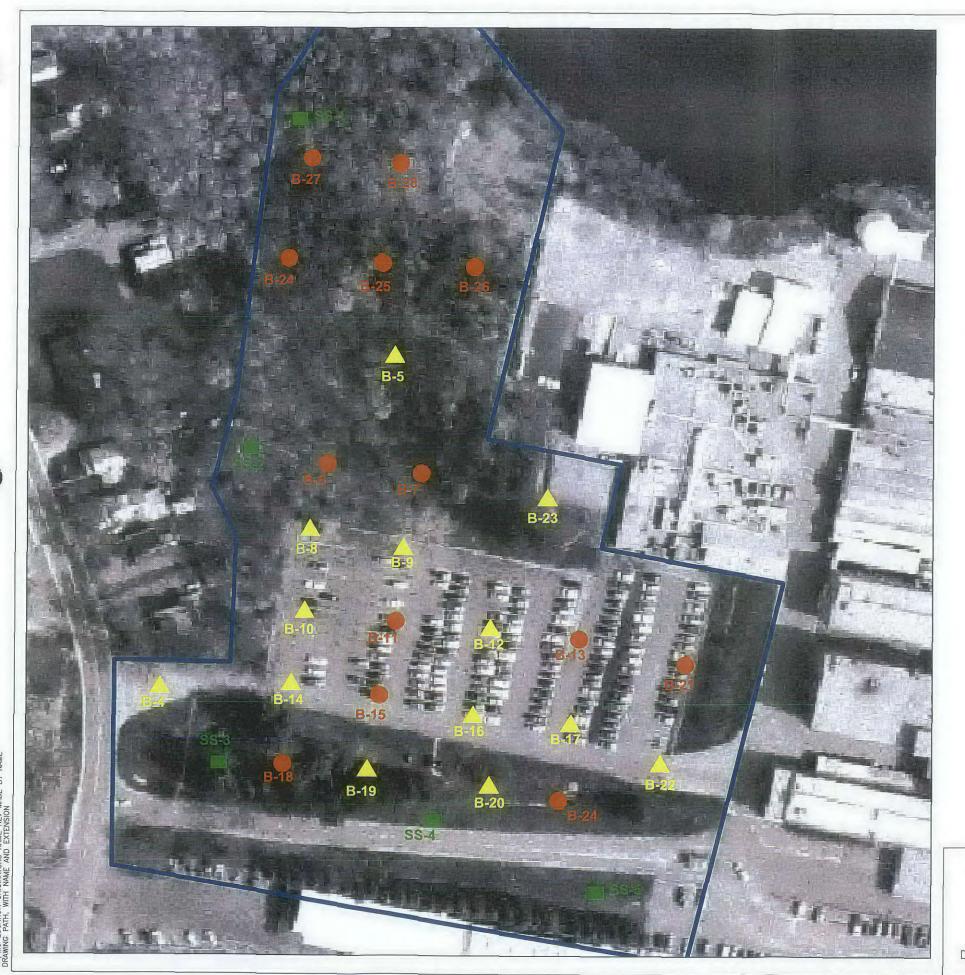
If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-Site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

C-15 DUST CONTROL PLAN

Particulate monitoring must be conducted according to the Community Air Monitoring Plan (CAMP) provided in Section C-13. If particulate levels at the Site exceed the thresholds listed in the CAMP or if airborne dust is observed on the Site or leaving the Site, the dust suppression techniques listed below will be employed. The remedial party will also take measures listed below to prevent dust production on the Site.

A dust suppression plan that addresses dust management during invasive on-Site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved using a dedicated on-Site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-Site roads will be limited in total area to minimize the area required for water truck sprinkling.

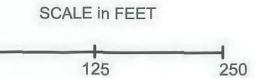

C-16 OTHER NUISANCES

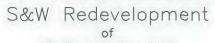

A plan for rodent control will be developed and utilized by the contractor prior to and during Site clearing and Site grubbing, and during all remedial work, as appropriate.

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

APPENDIX D

REMEDIAL INVESTIGATION SOIL DATA





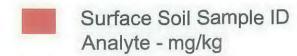
Soil Boring Samples Screened with a PID and Laboratory Analyzed (Location Approximate)

Soil Boring Screened with a PID

Approximate Site Boundary

North America, LLC

Syracuse, New York


DATE:11/2006 JOB No: N6009

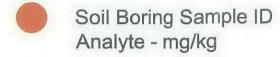

Garlock Site 1666 Division Street Wayne County Palmyra, New York

FIGURE 3-1

Soil Borings/Surface Soil/Screened Sample Locations

Approximate Site Boundary

SCALE in FEET

125

S&W Redevelopment North America, LLC

Syracuse, New York

DATE:11/2006 JOB No: N6009

Garlock Site 1666 Division Street Wayne County Palmyra, New York

250

FIGURE 4-2 Soil Exceedances of Industrial Standards

Table 4-2 (p. 1 of 5). Garlock Sealing Technologies Klozure's BCP Site. Surface Soil Sample Results. VOCs, October 2006.

Analyte	Soil Cleanu	n Guidanca	Τ		Samala	Identific	ntion			_
	- Con Cidano	5 - ainmon	 	т —	Jampie	Maintill	T		Γ	
VOCs	TAGM 4045	Track 2 Restricted Industrial	\$S-1 10/16/06	88-2 10/16/06	10/	S-3 16/06	SS-4 10/16/6)6	SS-5	
1,1,1-trichloroethane	0.8	1,000	L,		U	u	l	Ü		U
1,1,2,2-tetrachioroethane	0.6		"		U	U	1	U	ĺ	U
1,1,2-trichloroethane			"		U	U	ŀ	U	ŀ	U
1,1-dichloroethane	0.2	480	"		U	U		U		U
1,1-dichloroethene	0.4	1,000	"		U	U		U		U
1,2,4-trichlorobenzene	3.4		"		U	U		U		U
1,2-dibromo-3-chloropropane	ŀ				U	U		U	ł	U
1,2-dibromoethane			l u		U	U	1	u		U
1,2-dichlorobenzene	7.9	1,000	"		U	Ü	1	u	l	U
1,2-dichloroethane	0.1	60	"		u l	Ü	1	u	1	U
1,2-dichtoropropane 1.3-dichtorobenzene	1.6	500	"		u l	U	1	U		U
1.4-dichlorobenzene	1.5 8.5	560 250	"		u l	U		U	i	U
2-butanone	0.3	250	"		ü	Ü	l	U	!	U
2-Hexanone	0.3		1 5		ü	U		U	Ì	U
4-methyl-2-pentanone	1 1] :		ül	ü	i .	U	1	U
Acetone	0.2	1,000	0.0058 J		U 0.004			Ü		Ü
benzene	0.06	89	0.0036		U 0.004	Z JB	l .	ü	1	U
bromodichloromethane	0.50	03	1 5		ŭl	ŭ	l	ŭ	ŀ	ü
bromoform	1		ا ا		ŭl	ŭ		ŭ	ļ .	ŭ
bromomethane	1		ا ا		ŭl	ŭ	l .	ŭ	ł	Ü
carbon disulfide	2.7		i ü		ŭl	ŭ	į .	ŭ	ĺ	ŭ
carbon tetrachloride	0.6	44	l ŭ		ان	ŭ		ŭ	į.	ŭ
chlorobenzene	1.7	1,000	l ŭ		ŭ	ŭ		ŭ		ŭ
chloroethane	1.9	.,	l ŭ		ŭl	ŭ		ŭ		ŭ
chloroform (trichloromethane)	0.3	700	l ŭ		ŭl	ŭ		ŭ		ŭ
chtoromethane			l ŭ		ŭl	ũ		ŭ		ŭ
cis-1.2-dichlorgethene	Į.	1,000	l ū		ŭ	Ū		ũ	ł	ŭ
cis-1,3-dichloropropena	l	.,	1 0		ŭ	ũ	ı	ŭ	i	ŭ
cyclohexane			ا ت		ũ	ū	•	Ū	l	Ū
Dibromochloromethane	ŀ		l ū		Ü	ũ	i	ŭ	i	ŭ
dichlorodifluoromethane	ŀ		l ū	1	ūÌ	Ū	ŀ	ū	1	Ū.
ethylbenzene	5.5	780	l ū	1	ūΙ	Ū		Ū		ū
Isopropylbenzene			l u	1	υl	U		Ū		Ū
Methyl acetate	1		l u	i	υl	U		U		u
Methyl cyclohexane			l u	1	υl	U		u		Ū
Methyl tert butyl ether		1,000	l u	ı	υİ	U		Ü,		Ū
methylene chloride	0.1	1,000	0.0051 JE	0.0044	JB 0.003	8 JB	0.0032	JB	0.0035	JB
styrene	i		U	1	υj	U	ŀ	U		U
tetrachioroethylene	1.4	51	U]	u]	U		U		U
toluene	1.5	1,000	Jυ		u	U	1	U		U
trans-1,2-dichtoroethene	0.3	1,000	ļu		u	U	ľ	U		U
trans-1,3-dichloropropene	1		j u		U	U	1	U		U
trichloroethene	0.7	400	ļ u		u [u		U		U
trichlorofluoromethane (CFC-11)	1		l u		u	U		u		U
trifluorotrichloroethane (Freon 113)	6		ļυ		u	U	l	U		U
vinyt chloride	0.2	27	ļ		u	U		u		U
Xylene (total)	1.2	1,000	U	1	u [U	L	U		U

Notes:
All units in ppm
B- Method Blank Contamination
J- Estimated
U- Non-detect
Bold Type Face Exceeds TAGM RSCOs
(Shaded values a xceed Treck 2 industrial Values

Table 4-2 (p. 2 of 5). Garlock Sealing Technologies Klozure's BCP Site. Surface Soil Sample Results.SVOCs. October 2006.

Analyte	Cle	anup Guidance V	alue		Sample L	ocations			
SVOCs	TAGM 4046	Track 2 Restricted Industrial	SS-1 10/16/06	SS-2 10/16/06	SS-3 10/16/06	SS-4 10/16/06		SS-5 10/16/06	6
2,2'-oxybis (1-Chloropropane)	1		U	ū	ŋ		U		U
2,4,5-trichlorophenol	0.1		U	u	U		U		U
2,4,6-trichlorophenol			U U	U	U		U		U
2,4-dichlorophenol	0.4		!	u i	U		U	ì	U
2,4-dimethylphenol 2,4-dinitrophenol			!	Ü	u .		U	l	U
2,4-dinitrotoluene	0.2		!	U	Ü		U		U
2,6-dinitrotoluene			U		U		U		U
2-chloronaphthaiene	1		្រី <u>ប៉</u>	ü	Ü		Ü		Ü
2-chlorophenol	0.8			ŭ	ŭ		ŭ	1	ŭ
2-methylnaphthalene	36.4		ŭ		ŭ	0.15	J	0.14	J
2-methylphenol	0.1		l ül	ŭl	ŭ	0.15	ŭ	0.17	ŭ
2-nitroaniline	0.43		l ŭi	ŭ	ŭ		ŭ		ŭ
2-nitrophenol	0.33		انّا	ŭ	ŭ.		ŭ		ŭ
3,3-dichlorobenzidine			ا ن	ŭ	ũ		ũ		ŭ
3-nitroaniline	0.5		l űl	Ū	ū		Ū		Ū
4,6-dinitro-2-methylphenol			Ū	ŭ	ŭ		ū	ŀ	ũ
4-bromophenyl phenyl ether			Ü	U	U		U		Ū
4-chloro-3-methylphenol	0.24		U	υj	U		U	ŀ	U
4-chloroaniline	0.22		u	u J	. 0		U	l	U
4-chlorophenyl phenyl ether	Į.		u	U	U		U		U
4-methylphenol	0.9		ן יי	Ü	u i		U	l	U
4-nitroaniline			u l	U	U		U		U
4-nitrophenol	1 1		u u		Ü		U		U
acenaphthene	50	1,000	0.005		Ü		Ų		U
acenaphthytene acetophenone	41	1,000	0.096 J U	Ü	u	0.13	J		u
anthracene	50	1,000	0.28 J	ül	Ü	0.26	J		U
atrazine	30	1,000	U.28 U	ŭl	ប៉	U.26	ŭ		ŭ
benzaldehvde	i		انا	ŭl	ŭl		ŭ		ŭ
benzo(a)anthracene	0.22	11	1.5	ŭ	ŭ	1,1	ı T	0.56	
benzo(a)pyrene	0.06	1.1	1.6	ũ l	ũ	1	1	0.64	
benzo(b)fluoranthene	1.1	11	2.1 °M	ŪΙ	ū	0.94	•	1	М
benzo(g,h,i)perylene	i	1,000	1.7 M	u l	U	0.74	М	0.79	
benzo(k)fluoranthene	1.1	11	0.92	υl	υl	0.82	М	0.61	М
biphenyl	i		U	u	U		U		U
bis(2-chloroethoxy)methane			l u	υį	U		U		U
bis(2-chloroethyl) ether			υl	υį	U		U	•	U
bis(2-ethylhexyl) phthalate	500		0.18 JB	0.12 JB	0.12 JB	0.12	JB	0.15	JB
butyl benzyl phthalate	500		y l	u	U		U	ŀ	U
Caprolactam			[V]	u l	Ü		Ų		U
carbazole			0.16 J	u l	U	0.1	٦,	0.09	J
chrysene dibenz(a,h)anthracene	0.4 0.01	110 1.1	1.8 0.4 M	u l	Ü	1.2	١.	0.75	
dibenz(a,n)animacene dibenzofuran	6.2	1.1	0.4 M	u l	U	0.16]]	0.18	IJ
diethyl phthalate	7.1		l ül	ül	ü	0.07	Ŋ		Ü
dimethyl phthalate	2		l ül	ដ	ŭ		Ü		ü
di-n-butylphthalate	8.1			ŭl	ŭl		ŭ.	1	ŭ
di-n-octyphthalate	50		ان	ŭl	ŭ		ŭ	1	ŭ
fluoranthene	50	1,000	2.5	ŭl	ŭ	1.6	-	1.4	-
fluorene	50	1,000	L.U u	ŭ	ŭ	0.059	J		U
hexachiorobenzene	0.41	12	ŭΙ	ŭ	ŭl		ŭ		ŭ,
hexachlorobutadiene	I		ŭ	U	ŭ		Ū	1	ũ
hexachlorocyclopentadiene	I		Ū	U	Ū		Ū		Ū.
hexachloroethane	I		U	U	U		U	1	U
indeno(1,2,3-cd)pyrene	3.2	11	2	U	U	0.81		0.79	М
isophorane	4.4		U	U	U		U	l	U
naphthalene	13	1,000	U	u l	u l	0.078	J		U
nitrobenzene	0.2		u u	u l	Ņ.		U		U
n-nitrosodi-n-propytamine	I		u u	u l	y		U		U
n-nitrosodiphenylamine	1 .		U U	ü	u l		U	1	U
pentachlorophenol	1 50	55	0 D	ü	u !		U	٠	U
phenanthrene	50 0.03	1,000 1,000	0.92 U	U t	U	1	U	0.51	U
phenol									

Notes:
All units in ppm
B- Method Blank Contamination
J- Estimated
U- Non-detect
M- Manually integrated peak
Bold Type Face Exceeds TAGM RSCOs
Shaded values, exceed Track 2 Indiantal Values

Table 4-2 (p. 3 of 5). Garlock Sealing Technologies Klozure's BCP Site. Surface Soil Sample Results. Metals And Cyanide. October 2008

Analyte	Cleanup Gui	dance Value		_			Sample Iden	tific	ation			
		Track 2	ł .									
	1	Restricted	85-1		55-2		SS-3		SS-4		SS-5	
Metals (mg/Kg)	TAGM 4046	Industrial	10/16/0	6	10/16/06	;	10/16/06		10/16/06		10/16/06	6
Atuminum			10,700		4,060		10,600		6,070		13,100	
Antimony	1			U		u		U		U		U
Arsenic	7.5	16	6.5	В	2.9	В	8.0	В	3.0	В	5.5	В
Barium	300	10,000	87.1		25.6	J	81.6		44.5		123	
Beryilium	0.16	2,700		u		u		U		U	ľ	U
Cadminum	1	60	Į.	U		U		U		u		U
Calcium			15,100	_	49,200	i	15,200	_	30,500		4,260	
Chromium Total	10	1,500	17.7)	5.3		13.7]	8.5		28.6	□•
Cobatt	30		7.7		3.5		8.7	_	5.4		11	-
Copper	25	10,000	22.2		12		29		17.1		34,9	
Cyanide (totał)	1	10,000	0.11	8		U	0.158	•	0.144	В		U
iron	2,000		19,300]	8,200	J • I	25,500	7	13,500	٦٠	26,000	٦.
Lead	1 .	3,900	46.5		5.7	В	23.6	_	27	_	46.8	~
Magnesium	1		9,080		17,600		10,800		12,500		4,860	J
Manganese	1	10,000	834		428		1,360		588		872	
Mercury	0.1	5.7	0.071			u	0.041		0.043	В	0.061	
Nickel	13	10,000	19.6]•	8.2		22.6	7	11.3		29.4	٦٠
Potassium			1,050	-	828		1,150	_	839		1,180	-
Selenium	2	6,800	2.4	8		U		U		U		U
Silver	,	6,800	i	U		U		U		u		U
Sodium			236	- 1	181	1	154	1	288		2,290	
Thallium	l .		l	υj		υj		U.		U	l	U
Vanadium	150		18.4	l	7.9	- 1	22.6		12.1		23.6	
Zinc	20	10,000	177	Ŀ	46.9	Ľ	159	$1 \cdot$	142	<u>٠</u>	138	ı

Notes
All units in ppm
B- Estimated
J- Method Blank Contamination
U- Non-detect
Bold Type Face* Exceeds TAGM RSCOs
Dots exceed Track 2 Industrial Values

Table 4-2 (p. 4 of 5). Garlock Sealing Technologies Klozure's BCP Site. Surface Soit Sample Results. PCBs. October 2006

Analyte	Soil Cleanup			Sampl	e Identification		7-1-1-1-1-1-1
PBCs (ug/Kg)	TAGM RSCOs	Track 2 Restricted Industrial	SS-1 10/16/06	SS-2 10/16/06	SS-3 10/16/06	SS-4 10/16/06	SS-5 10/16/06
Aroclor 1016			U	Ü	Ü	Ū	υ
Aracior 1221			U	U	U	U	υj
Aroclor 1232	l		Ų	U	U	U	U
Aroclor 1242			U	U	U	U	U
Aroclor 1248	}		U) U	U	υ	U
Aroclor 1254]		lυ	U	U	u l	υ
Aroclor 1260			0.02 M	U	U	υl	υ
Total PBCs	1	25	0.02	ND	ND	ND	ND
Total Solids %			83.7	92.8	90.4	84.8	70.5

Notes:
All units in ppm
B- Method Blank Contamination
J- Estimated
U- Non-detect
M- Manually integrated peak
Bold Type Face Exceeds TAGM RSCOs
Shaded values exceed Track 2 Industrial Values

Table 4-2 (p. 5 of 5). Garlock Sealing Technologies Klozure's BCP Site. Surface Soil Sample Results, Pesticides. October 2006.

Analyte	Soil Cleanup				S	ample ident	ificat	ion			
Pests (ug/Kg)	TAGM RSCOs	Track 2 Restricted Industrial	SS-1 10/16/06	SS-2 10/16/0	6	SS-3 10/16/0	6	SS-4 10/16/0		SS-5 10/16/0	
alpha BHC	0.11	6.8	Ü		U		U		Ù		U
beta-BHC	0.2	14	lυ		U		U		U		U
delta-BHC	0.3	1000	U		U		U		U		U
gamma-BHC (Lindane)	0.06	23	ļυ		U		U		U		U
Heptachlor	0.1	29	U		U		U		υl		U
Aldrin	0.041	1.4	U		U		U		U		U
Heptachlor epoxide	0.02		, u		U		U		U		U
Endosulfan I	0.9	920	U		U	0.00064	JH		U		U
Dieldrin	0.044	2.8	0.068	0.00043	J	0.0014	J	0.0031	JM	0.019	
4,4'-DDE	2.1	120	0.13 M	0.0015	J	0.0056		0.0072	М	0.0022	J
Endrin	0.1	410	U	1	U		U		U		U
Endosulfan II	0.9	920	U		U		U	1	υl		U
4,4'-DDD	2.9	180	U		U		U	0.0011	JM		U
Endosulfan sulfate	1 1	920	U	1	U		U		U		U
4,4'-DDT	2,1	94	0.15	0.00053	J	0.00082	U	0.003	J	0.0033	U
Methoxychlor			ļυ	1	U		U		υj		U
alpha-Chlordane	0.54	47	U		U	i	U		U I		U
gamma-Chlordane	0.54		ļυ	1	U		U		U		U
Toxaphene	į.		U	1	U		U		υl		U
Endrin aldehyde			l u	ŀ	U		U		υl		Ū
Endrin ketone	1		U	1	Ü		U		ŪΙ		ũ

Notes: All units in ppm B- Method Blank Contamination

J- Estimated

U- Non-detect

Bold Type Face Exceeds TAGM RSCOs Shaded Value exceed Track 2 Industrial Values

Table 4-3 (1 of 4). Garlock Sealing Technologies. Klozure's Building Soil Sample Results. VOC Results.

VOCs (ppb)	TAGM 4046 RSCO	Track 2 Restricted Industrial	B-6 12/15/2005 8-10 ft	B-7 12/21/2005 8 ft	Dup. B-7 6- 12/21/2005 6-8ft	B-11 12/20/2005 8-10 ft	B-13 12/12/2005 8-10 ft	B-15 12/15/2005 14-16ft	B-18 12/19/2006 14-16ft	B-21 12/21/2006 8-10ft	B-24 12/20/2005 8-10ft	B-24 2/9/2006 12-16ft	B-25 2/9/2006 4-8 ft	B-26 2/9/2006 8-11 ft	B-27 2/9/2006 0-4ft	B-28 2/9/200 4-8 ft
1,1,1-trichloroethane	0.8	1,000	L				U	U	L				U	U	U	_
,1,2,2-tetrachloroethane	0.6		1	1	U	U	U	U	L	U	(U	U	U	U	
1,2-trichloroethane		-	t	I L	U	U	U	U	1	U	1	U	U	U	U	0
1-dichloroethane	0.2	480	l			U	U	U	U	U	T.	U	U	U	U	
1-dichloroethene	0.4	1,000	l t	8		U	ū	Ü	T.		T.	U U	U	U	Û	
2,4-trichlorobenzene	3.4		1	125		Ü	l ū	U	T.	ii.	i i	11	l II	U	Ü	
2-dibromo-3-chloropropane			i i		100	Ü	ŭ	Ü	1	II.	Ĭ.	il II	l ŭ	11	l II	
2-dibromoethane	-	22	1.			Ü	Ŭ	Ü	l u		- ũ	il ü	Ü	Ū	i ii	
2-dichlorobenzene	7.9	1,000	l i			ŭ	U	Ü	l ü		ĭ		Ü	li ii	l ŭ	
2-dichloroethane	0.1	60	1			ŭ	l ü	Ü	l	7.7	i t		1	11	l ii	
2-dichloropropane	0.1		L	_		Ü	Ü	U	l u		1		11	11	l ü	
3-dichlorobenzene	1.6	560		_		Ü	Ü	Ü			1	-	1 0	1	11	
-dichlorobenzene	8.5	250			20	J ü		Ü					0	1 11	0	
outanone	0.3			Ü	120	1 ŭ	U	Ú	l u			N. In the second second	0	1	U U	
Hexanone		77	1				U				100	0.00	T ii		ŭ	1
		-				U	U	n	U	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	U			0		
methyl-2-pentanone	1		U	-		U	U	U	U		U	and the second	U	U	U	0.0050
etone	0.2	1,000	0.011 J	0.0052 J	10 YOU WAR 1995		U	Ü	0.0043 J	U	U	700 PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	.00	U	U	0.0058
nzene	0.06	89	U	U		U	U	U	U		U		U	U	U	
omodichloromethane			U	_		U	U	U	U		U		U	U	U	
omoform		22	U	_		U	U	U	U	1000	U	U	U	U	U	
omomethane	**		U			U	U	U	U		U	U	U	U	U	- Common to the
rbon disulfide	2.7	75.	U	_		U	U	Ü	U		U	U	U	U	U	0.00048
rbon tetrachloride	0.6	44	U			U	U	U	U	155	U	U	U	U	U	
lorobenzene	1.7	1,000	U			U	U	U	U		U	U	U	U	U	
loroethane	1.9		U	U		1-2	U	U	U		U	U	U	U	U	1
loroform (trichloromethane)	0.3	700	U	U	U	U	U	U	Ü	U	U	U	U	U	U	
loromethane		**	0.0057 U.	U	U	0.0058 UJ	U	0.0055 UJ	0.0067 U.	I U	0.006 U.	J U	U	U	U	
-1,2-dichloroethene		1,000	U	U	U	U	U	U	U	U	U	U	U	U	U	
s-1,3-dichloropropene	***		U	U	Ü	U	Ü	Ü	U	U	U	U	U	U	Ü	
clohexane	**		U	U	U	U	U	U	U	0.0067 UJ	U	U	U	U	U	
promochloromethane		144	U	U	U	U	U	U	U			U	U	U	U	
hlorodifluoromethane		22	0.0057 U.				0.0073 UJ	0.0055 UJ	0.0057 U.		i i	U	U	U	Ü	
nylbenzene	5.5	780	U	IN S	10.70,000		U	U	U		Ü	Ü	Ü	Ü	Ū	
ppropylbenzene			Ü	Company of the Compan	Ũ		Ŭ	ŭ	l ŭ		i ii	l u	11	Ū	Ü	
thyl acetate			ł ŭ	U			Ü	ŭ	Ĭ		Ŭ	11	11	Ü	U	
ethyl cyclohexane	(Am)		l ü	l ü	l ü		Ü	Ŭ	0.00072 J	0.0013 J	11	1 11	1 11	l U	11	
ethyl tert butyl ether		1,000	11	1 0	Ü		11	Ü	U.00072	0.0013	11	11	II	l ü	11	3
ethylene chloride	0.1	1,000	0.0018 J	1 0			U	Ü	Ü		11	0.0051 JB	0.0085 B	0.0068 B	0.01 B	0.017
rene	0.1	1,000	0.0016	U			U	U	Ü		1	0.0031 35	U.0000 B	0.0000	0.01	0.017
rachloroethylene	1.4	51	U	U	Ü		Ü	U	Ü		1	0	l u	11	0	
achioroethylene Jene	1.4	1,000	l ü	_	100		Ü		at the Latter Country of the		0	U	U	U	U	0.00064
			-	U				U	0.00079 J	0.0024 J	U	0	U	l U	U	0.00061
ns-1,2-dichloroethene	0.3	1,000	U	U	U	1,000	U	U	U		U	0		0	9	
ns-1,3-dichloropropene		400	U	_	U		U	U	U		U	U	U	U	U	0.0051
chloroethene	0.7	400	U	_	U		U	U	U		U	U	U	U	U	0.0061
hlorofluoromethane (CFC-11)	**		U	U	U	U	U	U	U		U	U	U	U	U	
uorotrichloroethane (Freon 113)	6	**	U	U	U		U	U	U	U	U	J	U	U	U	
nyl chloride	0.2	27	U				U	U	U	U	U	U	U	U	U	
lene (total)	1.2	1,000	U	U	U	U	U	U	0.0012 J	U	U	U	U	U	U	

Notes:
All units in ppm
B- Method Blank Contamination
J- Estimated
U- Non-detect
Bold Type Face Exceeds TAGM RSCOs
Shaded Value Exceeds Track 2 Industrial

Data Obtained From February 2006 CRA Tables

Table 4-3 (2 of 4). Garlock Sealing Technologies. Klozure's Building Soil Sample Results. SVOC Results.

		Track 2 Restricted	B-6 12/15/2005	B-7 12/21/2005	Dup. B-7 12/21/2005	B-11 12/21/2005	B-13 12/12/2005	B-15 12/13/2005	B-18 12/21/2006	B-21 12/20/2005	B-24 2/9/2006	B-25 2/9/2006	B-26 2/9/2006	B-27 2/9/2006 0-4ft	B-28 2/9/20 4-8 f
SVOCs	TAGM 4046	Industrial	8-10 ft	6-8 ft	6-8 ft	8-10 ft	8-10 ft	14-16ft U	8-10ft U	8-10ft	12-16ft	4-8 ft	8-11 ft		4-01
-oxybis (1-Chloropropane) 5-trichlorophenol	0.1	-	U	Ü	11	11	l II	Ü		1000	11	1	I L		
			Ü	Ü	11	Ü	11	Ŭ		11	11	1	1	i l	
-trichlorophenol	0.4	**	l ii	Ü	U	l ü	0	l ü		l ii	11	1	1	1 0-	
chlorophenol	0.4				U		11	l ü		l ü	11	1		1	
methylphenol		-	U	U	40	U	U	170			U	1		1	
nitrophenol	0.2	**	1.8 U	1.8 UJ	1.9 UJ	U	U	U	100.41	1.9 UJ	Ü				
nitrotoluene			U	U	U	U	U	U	149.1	U					
itrotoluene	1	**	U	U	U	U	U	U	U	U	U	[,		
naphthalene		**	U	U	U	U	U	U	U	U	U		,	, I	
ophenol	0.8	**	U	U	U	U	U	U		U)	0	
ylnaphthalene	36.4	**	U	U	U	U	U	U	U	0.065 J	U	L	,	0	
/lphenol	0.1	4-	U	U	U	U	U	U	U	U	U	L		J U	
miline	0.43	144	Ü	U	U	U	U	U	U	U	U	E E	J L	U	
henol	0.33		U	U	11	II.	U	U	U	U	U	1)	ן ט	
llorobenzidine	0.00		Ŭ	ŭ	Ü	11	l ii	Li Li	11	11	Ü	1		ا ت	
				Ü	- 11	11	11	11	i ii	ŭ		i i	1	1 0	
niline	0.5		U		U	0	11	0	11	l ü		1		il ül	
tro-2-methylphenol		**	U	U	Ü	0	U	0	0	l ü					
ophenyl phenyl ether	- J-		U	U	U	U	U	U	U					9 9	
o-3-methylphenol	0.24	**	U	U	U	U	U	U	U	U					
paniline	0.22		U	U	U	U	U	Ü	U	U)	0	
phenyl phenyl ether		22	U	U	U	U	U	Ü	U	U	U		J	ا ن	
Iphenol	0.9	2.	U	U	U	U	U	Ü	U	U	U	1)	J U U	
niline		22	U	U	U	U	U	Ü	U	U	U	1	J L	U U	
henol	1		1.8 UJ	Ü	Ü	U	4.6 UJ	1.8 U.	I U	l u	U	l t	1	J U	
	50	1,000	1.0	ŭ	11	Ŭ	0.051 J	0.015 J	i i	i u	u	ĺ	1	ı U	
nthene					U	100	0.031	0.010	l ii	l ü	11	i i		il ûl	
thylene	41	1,000	U	U	U	U	0	U		l ü	11	1	1	1 11	
enone	-	V=	U	U	U	U	U	U	0		0			3 0	
ene	50	1,000	U	U	U	U	0.021 J	0.028 J	1.6 J	U	U			3 9	
			U	U	U	U	U	U	U	U	U		,	9	
lehyde			Ü	U	U	0.059 J	U	U	U	U	U		,	J U	2 3 2 1
a)anthracene	0.22	11	U	U	U	0.015 J	1.3	0.1 J	4.3	U	J	L	J L	J U	0.021
a)pyrene	0.06	1.1	11	U	U	0.014 J	1.4	0.08 J	3.6 J	U	J	L	J	U U	0.02
b)fluoranthene	1.1	11	0.024 J	U	TI.	0.02 J	1.8 U	0.13 J	4.4	U	J	L	1	U	0.036
		1,000	0.016 J	Ü	Ü	0.014 J	0.9 J	0.069 J	21	U	U	į.	J L	J U	
g,h,i)perylene			U.016 J	Ü	II.	0.0068 J	0.81 J	0.074 J	1.8 J	Ü		T.	1	il us	
k)fluoranthene	1.1	11	75	Ü		0.0000	0.01	0.074 0	1.0	ŭ		l i			
yl			U		U	U	U	0	0	Ü	1	1			
hloroethoxy)methane		**	Ü	U	U	U	U	U			0				
nloroethyl) ether		**	0.38 UJ	U	U	U	0.96 UJ	0.37 Uc		U			, , , ,		0.000
hylhexyl) phthalate	500	*-	5.6	0.6	1.1	1.5	0.751	1	0.46 J	0.61	0.087 U	0.034	0.12	J 0.095 J	0.039
nzyl phthalate	500		U	U	Ü	U	U	U	U	U	U	ا ا	J		
ictam			U	U	U	U	U	U	U	U	U		J t	2010000	0.083
ole		4	ū	U	U	U	0.17 J	0.045 J	U	U	U	L	1	J U	
	0.4	110	ŭ	Ü	11	0.019 J	1,5	0.11 J	4.1	U	J	t		U U	0.029
ne			Ü	Ü	11	0.013	0.11 J	11	0.57	l u	11	1	1	il U	
a,h)anthracene	0.01	1.1	U		0	0	0.11		0.19 J	l u		1	il i	il ul	
ofuran	6.2	7	U	u	U	U	U	U	0.19 0	0	11		1	il ii	
hthalate	7.1	27	U	U	U	U	0	U	U	U	0			1	
I phthalate	2		U	U	U	U	U	U							
/lphthalate	8.1	-	U	U	U	U	U	U	The state of the s			I		2011	
lphthalate	50	144	U	U	U	U	U	U	U			l t			2 2 2
nene	50	1,000	0.033 J	U	U	0.039 J	3.2	0.33 J	8.4	U		1			0.046
10,10	50	1,000	U	U	Î	Û	0.59 J	U	THE RESERVE TO A STATE OF THE PARTY OF THE P	U	U	1	J	J U	
probenzene	0	12	Ü	Ü	11	l ii	11	Ü		U	U	l	J	ט ע	
			U	Ü	11	l ü	11	11	Ŭ	0.00		1			
robutadiene		7			U		U		Ü	l ü		i			
procyclopentadiene			Ü	U	U	U	U	0	1.77	l u		1			
proethane	**	**	U	U	U	U	U	Ŭ.	U	30		1 2		74	
,2,3-cd)pyrene	3.2	11	U	U	U	U	U	U	U	U				E COL	
one	4.4		U	U	U	0.0087 J	0.77 J	0.063 J	1.9 J	U		L			
lene	13	1,000	U	U	U	U	U	U	U	U					
zene	0.2		Ŭ	ũ	11	Ü	Ü	L)	U	Ü	U	1	J		
	0.2		Ŭ	Ü	11	U	11	11	U		U	1			
odi-n-propylamine			970	U		U	11	11	l ii	Ü		i			
odiphenylamine			U		U		0	0	11	l ü		i		Cha. Ung	
lorophenol	1	55	U	U	U	U	U	0.00	0			1			0.028
threne	50	1,000	0.017 J	U	U	0.021 J	1.3	0.23 J	4.3	U					0.020
	0.03	1,000	U	U	U	0.036 J	U	U	0	U					0.00-
	50	1,000	0.025 J	U	1.1	0.032 J	2.6	0.25 J	6.7	U	J	1	1	1 1	0.035

Notes:

Data Obtained From February 2006 CRA Tables

B- Method Blank Contamination
J- Estimated
U- Non-detect
Bold Type Face Exceeds TAGM RSCOs
Shaded Value Exceeds Track 2 Industrial

Table 4-3 (3 of 4). Garlock Sealing Technologies. Klozure's Building Soil Sample Results. Metals Results.

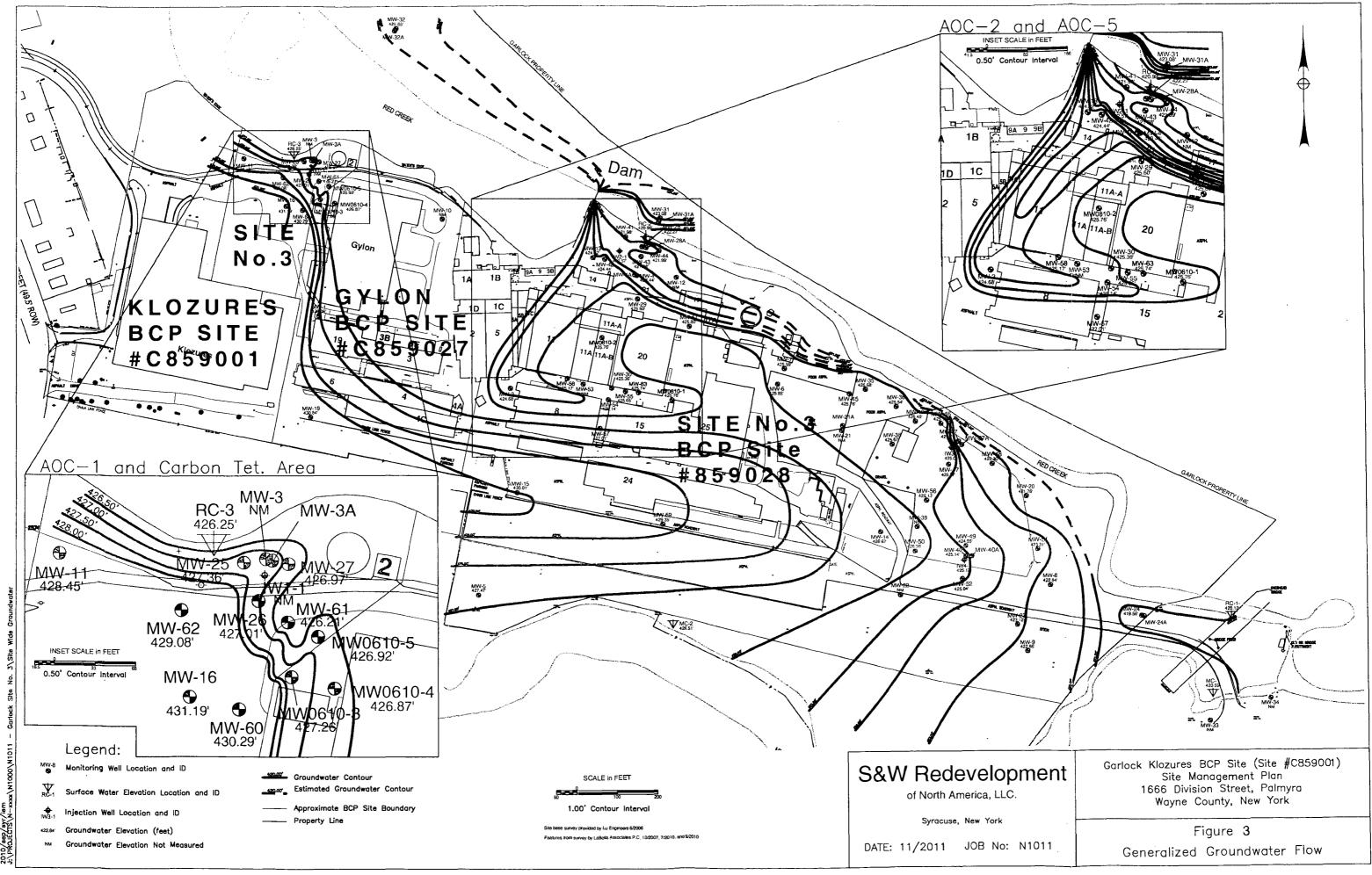
Metals (mg/Kg)	TAGM 4046	Track 2 Restricted Industrial	B-6 12/15/2005 8-10 ft.	B-7 12/21/200 6-8 ft.	05	Dup. B-7 12/21/2005 6-8 ft.	B-11 12/20/2005 8-10 ft,	B-13 12/12/2005 8-10 ft.	B-15 12/13/2005 14-15 ft.	B-18 12/19/2005 14-16 ft.	B-21 12/21/2006 8-10ft	B-24 12/20/2005 8-10ft	B-24 2/9/2006 12-16ft	B-25 2/9/2006 4-8 ft	B-26 2/9/2006 8-11 ft	B-27 2/9/2006 0-4ft	B-28 2/9/2006 4-8 ft
Aluminum	-4	**	3,660	11,500		12,600	6,820	8,480	10,500	2,190	15,700	15,200	10,200	17,100	14,200	12,500	10,100
Antimony	-	49	6.9 UJ		U	U	U	8.7 UJ	6.7 UJ	U	0.44 J		U	U	U	U	1
Arsenic	7.5	16	2	4.4	71	6.7	3.3	3.6	6	1.5	1.1 J	1.1 J	9.2	8.5	1.1 B	5.3	4.7
Barium	300	10,000	26	24		26.5	17.1 J	62.1	33	13.7 J	26.8	100	26.8 J	44.9 J	29.4 J	41 J	73.3
Beryllium	0.16	2,700	U	0.34	*J	0.39 *J	0.24 *J	0.26 *J	0.35 *J	U	0.46 *J	0.53 *J	0.3 *E				0.4
Cadminum	1	60	0.14 J		U	U	U	0.37 J	0.19 J	U	U	U	0.1 B	1000	0.6 B	0.1 B	0.3
Calcium			41,900 _ J	26,100		69,800	13,100 J						41,600 J	26,100 J	50,900 J	1,720 J	2,420
Chromium Total	10	6,800	17.9 *	18.8	*	20 *	10	13.6	18 *	3.7	25.9 *	21.8	17.2	27.1 *	22.5 *	19.4	14,3
Cobalt	30		3.3 J	12.8		8.6	5.4 J	5.4 J	10.3	2.1 J	24.4	8.9	9.5	12.2	15.1	9.2	6.3
Copper	25	10,000	11.9	11.9		10.9	14.9	17.2	18.2	4.8	19.4	5	16.1	20.4	5.4	15.3	12.3
ron	2,000		10,900 *	18,500	*	20,100 *	12,700 *	14,500 *	19,700 *	5,680 *	23,300 *	20,700 *	18,500 *	25,900 *	19,900 *	21,000 *	16,000 *
_ead	44	3,900	4.5	12.1		19.5	11.2	35.5	10.7	3.4	4.1	3.4	23	23.9	2.3	17.9	20
Magnesium		**	16,100	23,800		29,500	39,900	6,150	37,600	13,600	14,200	34,100	30,100 J	27,900 J	38,000 J	6,720	3,780
Manganese		10,000	351	272		376	466	499	981	252	275	420	439 J	351 J	415 J	361 J	819
Vercury	0.1	5.7	0.025 J	0.027	J	U	U	0.065 J	0.017 J	U	0.029 J		0.1 B	0.1 *B	0.029 B		0.1
Nickel	13	10,000	7.7	23.9	*	27.1 *	13.9 *	13.8 *	22 *	3.9 J	43.7 *	29.6	29.2 *	35.4	30.5	21.5	14.7
Potassium	-4		913	2,560		2,870	1,710	1,620	3,110	572	3,200	5,970	2,500	2,930	3,420	2,260	1,210
Selenium	2	6,800	U		U	U	U	0.45 J	U	U	U	U	U	U	U	U	
Silver	2.	6,800	U		U	U	U	U	U	U	U	U	U	U	U		
Sodium		44	91 J	81.7	J	92.8 J	443 J	57.5 J	528 J	356 J	436 J	512 J	96.3 B	46.1 B	147 B		
hallium		40	U	0.76	J	1 J	2	U	U	0.83 J	0.89 J	1.8	0.8 B	1000		L	
/anadium	150	44	9.5	12.9		14	10.1	15.3	13	6.8	15.7	17.1	14.2	18.4	14.9	18.6	16.6
Zinc	20	10,000	33.9 *	33.5	*	34.7	53.6	87.8	26.8 *	25.2 *	40 *	33.1 *	95.5	J 74 *J		49.7* *.	74*
Cyanide (total)													0.1 J	0.1 BJ	0.1 Bu	0.1 B	J 0.1 E

Notes
All units in ppm
B- Estimated
J- Method Blank Contamination
U- Non-detect
Bold Type Face Exceeds TAGM RSCOs
Shaded Value Exceeds Track 2 Industrial

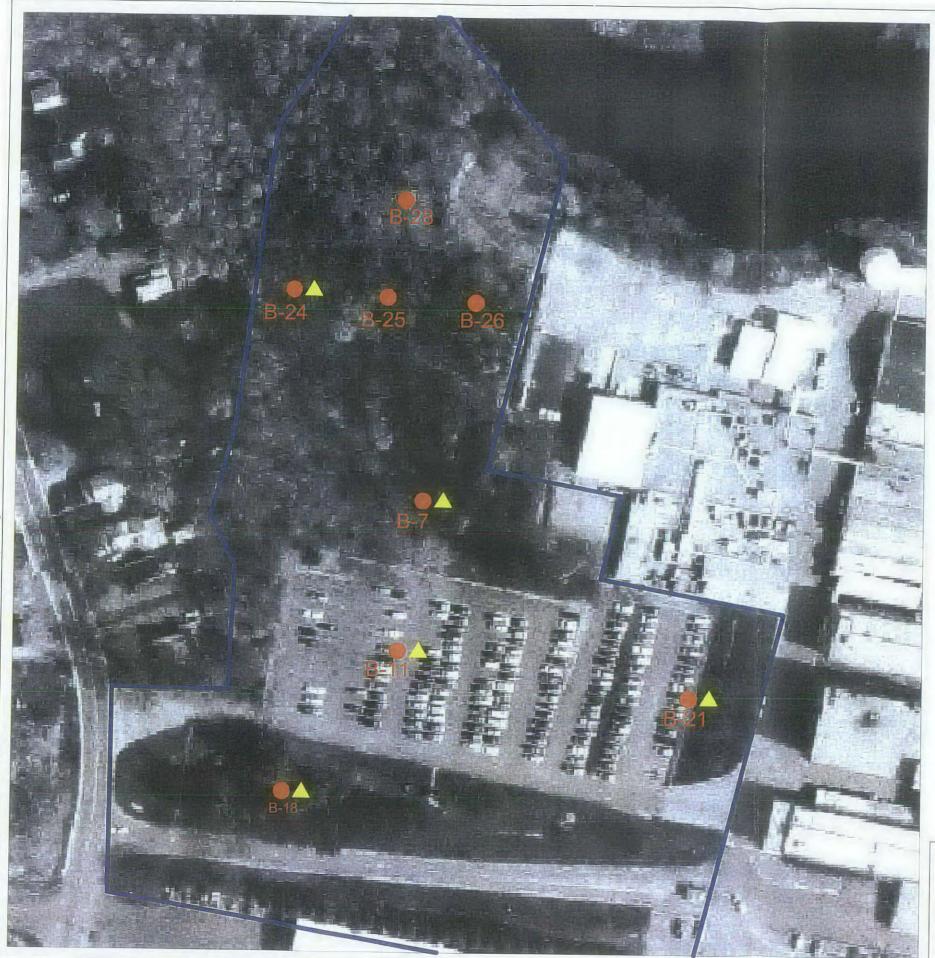
Data Obtained From February 2006 CRA Tables

Table 4-3 (4 of 4). Garlock Sealing Technologies. Klozure's Building Soil Sample Results. PCB Results.

PBCs (umg/Kg)	TAGM RSCOs	Track 2 Restricted Industrial	B-6 12/15/2005 8-10	B-7 12/21/2005 6-8	Dup. B-7 12/21/2005 6-8	B-11 12/20/20 8-10	1.55	B-13 12/12/2005 8-10	B-15 12/13/2005 14-16	B-18 12/19/2005 14-16	B-21 12/21/2005 8-10		B-24 12/10/2005 8-10	B-24 2/9/2006 12-16ft	B-25 2/9/2006 4-8 ft	B-26 2/9/2006 8-11 ft	B-27 2/9/2006 0-4ft	B-28 2/9/2006 4-8 ft
Aroclor 1016			U	U		J	U	U			U	U	U	U	U	U	U	· ·
Aroclor 1221			U	U		J	U	U	3	1	U	U	U	U	U	U	U	l
Aroclor 1232			U	U		J	U	U	1	1	U	U	U	U	U	U	U	1
Aroclor 1242			U	U		J	U	U	3	I	U	U	U	U	U	U	U	t
Aroclor 1248		1	U	U		J	U	U		l l	U	U	U	U	U	U	U	1
Aroclor 1254			U	U		J	U	U		1	U	U	U	U	U	U	U	ţ
Aroclor 1260			U	U		J	U	U			U	U	U	U	U	U	U	1
Total PCBs	10	25	ND U	ND U	ND	J ND	U	ND U	ND	ND ND	U ND	U	ND U	ND	ND	ND	ND	ND
Total Solids			87.4	87.8	84.5	86.8		68.9	90.1	87.8	83		8.2	76.1	80.1	84.8	85.1	75.1


Notes:
All units in ppm
B- Method Blank Contamination
J- Estimated
U- Non-detect
Bold Type Face Exceeds TAGM RSCOs
Shaded Value Exceeds Track 2 Industrial

Data Obtained From February 2006 CRA Tables


SMP Template: October 2023

APPENDIX E

REMEDIAL INVESTIGATION GROUNDWATER DATA

X-REF: NAMES?

Groundwater Samples (Location Approximate)

Soil Vapor Well

Approximate Site Boundary

Syracuse, New York

DATE:11/2006 JOB No: N6009

Garlock Site 1666 Division Street Wayne County Palmyra, New York

FIGURE 3-2 Groundwater and Soil Vapor Well Locations

PZ-15 (491.24)

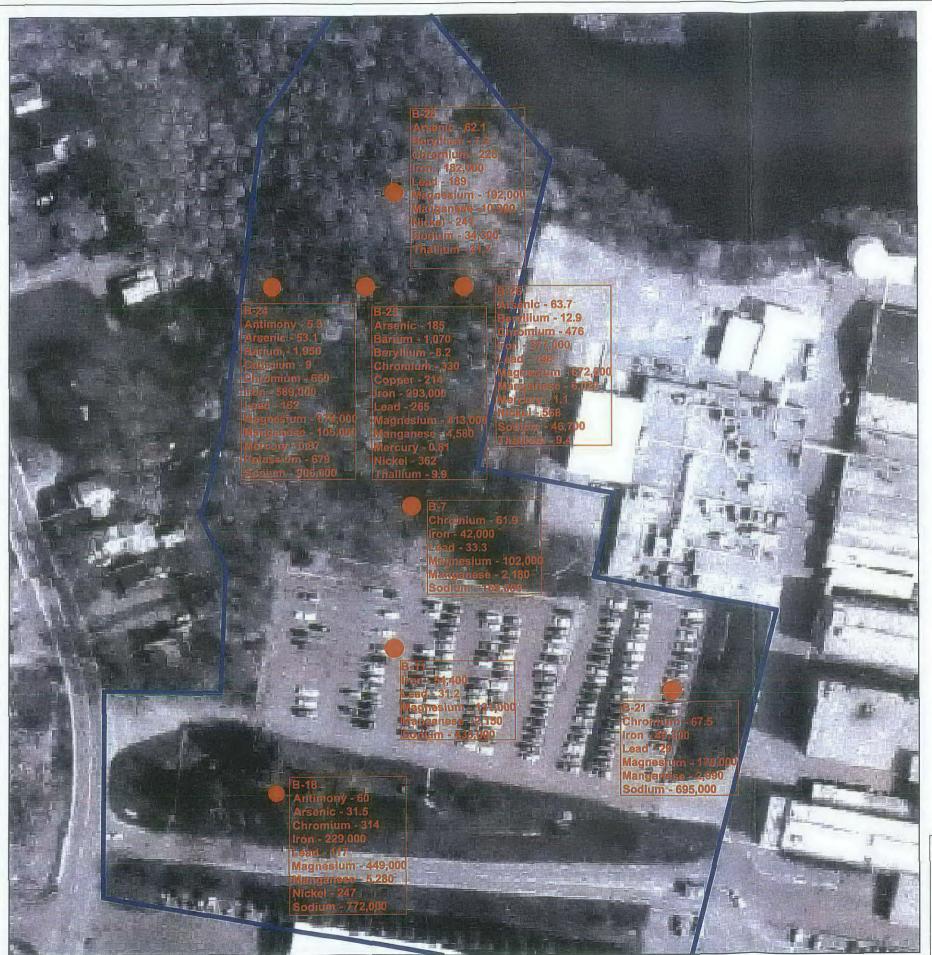
Piezometer (groundwater elevation)

Groundwater Contour (feet)

Klozures Site Boundary

Note: Based on a Conestoga-Rover and Associates potentiometric contour figure included in the Garlock Sealing Technologies February 2006 Site Investigation Work Plan

S&W Redevelopment


North America, LLC


Syracuse, New York

DATE:11/2006 JOB No: N6009

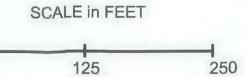
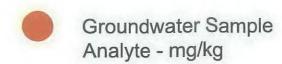

Garlock Site 1666 Division Street Wayne County Palmyra, New York

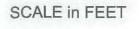
FIGURE 4—1
Groundwater Flow Contours

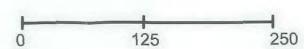
Approximate Site Boundary

Syracuse, New York


DATE:11/2006 JOB No: N6009

Garlock Site 1666 Division Street Wayne County Palmyra, New York


FIGURE 4-3
Groundwater Exceedances (Metals)


5008-N6009- Garlock Palmyra\N6009 - Klozures Site\Figures\Garlock Fig 4-3.dwg

Approximate Site Boundary

S&W Redevelopment of North America, LLC

Syracuse, New York

DATE:11/2006 JOB No: N6009

Garlock Site 1666 Division Street Wayne County Palmyra, New York

FIGURE 4-4

Groundwater Exceedances (VOCs, SVOCs, and PCBs)

Jacy Frin N6000\N6008-N6009- Garlock Palmyra\N6009 - Klozures Site\Figures\Garlock Fig 4-4.4wg

X-REF: NAMES? 2006/november/syracuse/AM

Table 4-4 (1 of 4). Garlock Sealing Technologies BCP Site. Klozure's Building Groundwater Sample Results. VOC Results.

VOCs (ppb)	NYS TOGS Water Qulaity Standard	B-25 2/10/2006	B-26 2/10/2006	B-28 2/10/2006	B-28 duplicate 2/10/2006	B-7 12/22/2006	B-11 12/21/2006	B-18 12/19/2006	B-21 12/21/2006	B-24 12/21/2006	B-24 Duplicat 12/20/2006
1,1,1-trichloroethane	5	U	U	U	U	U	11	33			
,1,2,2-tetrachloroethane	5	U	Ü	Ü	Ü	U	U	U	U	U	1
1,2-trichloroethane	1	Ü	U	U	U		U	u	U	U	1
.1-dichloroethane	5	Ü	ŭ l	U	1	U	U	U	U	U	
.1-dichloroethene	5	Ü			U	u	U	U	U	U	
,2,4-trichlorobenzene	5	U	U	U	U	U	U	U	U	U	D 10
2-dibromo-3-chloropropane	0.04	U	U	U	U	U	U	U	U	U	0
,2-dibromoethane			U	U	U	U	U	U	Ü	U	
the state of the s	0.0006	U	U	U	U	U	U	U	U	U	
2-dichlorobenzene	3	U	U	U	U	U	U	U	U	U	
,2-dichloroethane	0.6	U	U	U	U	U	U	U	U	U	
2-dichloropropane	1	U	U	U	U	U	U	U	U.	U	
3-dichlorobenzene	3	U	U	U	U	U	U	U	U	U	
4-dichlorobenzene	3	U	U	U	U	U	U	U	U	U	1
butanone	50	1.4 J	0.51 J	0.75 J	U	2.3 J	2.5 J	1.2 J	1.7 J	0.89 J	1.4
Hexanone	50	U	U	U	U	U	U	U	U	U	
methyl-2-pentanone		U	U	U	U	U	U	U	U	U	
cetone	50	6.3 JB	1.8 JB	2.8 JB	2.3 JB	10	11	U	6.1 J	U	
enzene	1	U	U	U	U	2.6	U	U	U	U	0.53
omodichloromethane	50	U	U	U	U	U	U	U	U	U	
omoform	50	U	U	U	U	U	U	U	U	U	
omomethane (methyl bromide)	5	U	Ü	U	U	1 UJ	U	U	Ü	U	
arbon disulfide	60	U	Ü	U	υ	U	U	U	U	Ü	
arbon tetrachloride	5	U	U	U	U	U	U	U	U	U	
nlorobenzene	5	U	U	Ü	U	Ü	Ū	Ü	Ū	Ü	
nloroethane	5	U	Ü	Ü	U	U	Ü	Ŭ	ŭ	Ŭ	
nloroform (trichloromethane)	7	U	U	U	l U	U	Ū.	Ü	Ü	Ü	
nloromethane	5	U	U	0.15 J	0.17 J	1 UJ	Ü	ŭ	Ü	Ü	
s-1,2-dichloroethene	5	Ü	Ü	U	U	U	Ŭ	ŭ	Ŭ	U	1 3
s-1,3-dichloropropene	0.4	Ü	ŭ	Ü	Ŭ	Ŭ	Ü	Ü	Ű	U	1
clohexane		ŭ	0.15 J	0.12 J	Ü	Ü	Ü	0.18 J	0.14 J	0.17 J	0.24
ibromochloromethane	5	Ü	U	U	ŭ	Ü	Ü	U.18 U	U.14 J	U.17 J	0.24
chlorodifluoromethane	5	Ü	U	Ü	Ü	Ü	Ü	U	Ü	U	
hylbenzene	5	Ü	U	U	U	0.69 J	Ü	U	Ü	U	
opropylbenzene	5	U I	U	U	U	U.69 J	U	1,000	U	1,00	
	3	U						U		U	
ethyl acetate			U	U	U	U	U	U	U	U	
ethyl cyclohexane		U	U	U	U	U	U	U	U	U	1
ethyl tert butyl ether	10	U	U	U	U	U	U	U	U	U	
ethylene chloride	5	U	U	U	U	U	U	U	U	U	
yrene	5	U	U	U	U	0.4 J	U	U	U	U	
trachloroethylene	5	U	U	U	U	U	U	U	U	U	
uene	5	U	U	U	U	0.46	U	0.24 J	0.2 J	0.34 J	0.4
ans-1,2-dichloroethene	5	U	U	U	U	U	U	U	U	U	
ans-1,3-dichloropropene	0.4	U	U	U	U	U	U	U	.U.	U	
chloroethene	5	U	U	U	U	U	U	U	U	U	
chlorofluoromethane (CFC-11)	5	U	U	U	U	U	U	U	U	U	
fluorotrichloroethane (Freon 113)	5	U	U	U	U	U	U	U	U	U	
nyl chloride	2	U	U	U	U	U	U	U	U	U	
ylene (total)		Û	Ü	U	U	4.6	U	U	Ú	U	

Notes:

B- Method Blank Contamination

J- Estimated

U- Non-detect

Exceeds Standard

Data Obtained From February 2006 CRA Table Groundwater Sampling Feburary 2006-VOC

SVOCs (ppb)	NYS TOGS Water Qulaity Standard	B-25 2/10/2006	B-26 2/10/2006	B-28 2/10/2006	B-28 duplicate 2/10/2006	B-7 12/22/2006	B-11 12/21/2006	B-18 12/19/2006	B-21 12/21/2006	B-24 12/21/2006	B-24 Duplicate 12/20/2006
2,2'-oxybis (1-Chloropropane)	5	U	U	U	U	U	U	U	U	U	-
2,4,5-trichlorophenol	*-	ŭ	ŭ	Ü	Ü	Ü	Ü	Ü	Ü	Ú	U
2,4,6-trichlorophenol		Ü	ŭ	Ü	Ü	Ü	Ü	U	U	U	U
2,4-dichlorophenol	5	Ü	ŭ	Ü	U	U	Ü				Ü
2,4-dimethylphenol	50	Ü	υ	Ü	Ü	Ü	Ü	U	U	U	U
2,4-dinitrophenol	10	U	ŭ	U	U			U	U	U	1.3 J
2,4-dinitrotoluene	5	Ü	Ü			50 UJ	106 UJ	U	U	U	U
2,6-dinitrotoluene	5			U	U	U	U	U	U	U	U
		U	U	U	U	U	U	U	U	U	U
2-chloronaphthalene	10	U	U	U	U	U	U	U	U	U	Ü
2-chlorophenol	-	U	U	U	U	U	U	U	U	U	U
2-methylnaphthalene	~	U	U	U	U	0.82 J	1.1 J	0.55 J	U	1.1 J	1 U
2-methylphenol	**	U	U	U	U	1 J	1.7 J	U	U	2.1 J	2.4 J
2-nitroaniline	5	U	U	U	U	U	U	U	U	U	U
2-nitrophenol		U	U	U	U	U	Û	U	U	U	l ū
3,3-dichlorobenzidine	5	U	U	U	U	U	Ū	U	ŭ	U	ŭ
3-nitroaniline	5	U	u	U	U	U	Ŭ	U	ŭ	Ü	Ü
4,6-dinitro-2-methylphenol		U	Ü	Ū	Ū	ŭ	ŭ	Ü	Ü	U	Ü
4-bromophenyl phenyl ether	440	Ü	ũ	Ŭ	Ü	Ü	Ü	U	Ü	Ü	Ü
4-chloro-3-methylphenol	-24	Ü	ũ	Ŭ	ŭ	Ü	u	Ü	U	Ü	
4-chloroaniline	5	Ü	Ü	Ü	ŭ	U	Ü				U
4-chlorophenyl phenyl ether	~	Ü	U	Ü	U			U	U	U	U
4-methylphenol	**	U	Ü	U	Ü	U	U	U	U	U	U
4-nitroaniline	5	U	Ü			2.5 J	4.8 J	0.83	U	7.5 J	8.1 J
				U	U	U	U	U	U	U	U
4-nitrophenol		U	U	U	U	U	U	U	U	U	U
acenaphthene	20	U	U	U	U	U	U	7.1 J	U	U	U
acenaphthylene	**	U	U	U	U	U	U	U	U	0.97 J	0.7 J
acetophenone	1 -	U	U	U	U	U	U	U	U	Ü	Ü
anthracene	50	U	U	U	U	U	U	2.8 J	U	0.41 J	0.32 J
atrazine	7.5	U	U	U	U	U	U	U	U	U	U
benzaldehyde	729	U	U	U	U	U	U	1.5 J	U	1.6 J	1.7 J
benzo(a)anthracene	0.002	U	U	U	U	U	U	2.2	U	0.36	0.25
benzo(a)pyrene	ND	U	U	U	U	U	U	1.4 J	Û	0.29 J	U
benzo(b)fluoranthene	0.002	U	U	U	U	Ü	U	1.9	U	0.32 J	0.23 J
benzo(g,h,i)perylene		Ü	ŭ	U	Ü	Ü	Ü	0.74 J	ŭ	U	U
benzo(k)fluoranthene	0.002	Ü	ŭ	Ü	ŭ	ŭ	Ü	0.86	ŭ	Ü	ŭ
biphenyl	5	U	Ü	Ü	ŭ	Ü	Ü	U	ŭ	Ü	Ü
bis(2-chloroethoxy)methane	5	Ü	Ü	ŭ	Ü	Ü	ŭ	U	Ü	U	Ü
bis(2-chloroethyl) ether	1	Ü	Ü	U	Ü	Ü	Ü	U	Ü	U	Ü
bis(2-ethylhexyl) phthalate	5		Ü				Ü	U			
					1.1 J	35			U	35	U
butyl benzyl phthalate	50	U	U	U	U	U	U	U	U	U	U
Caprolactam	-	2.1 JB	2.9 JB	3.4 JB	2 JB	0.77 J	U	1.3 J	U	U	U
carbazole	Single Control	U	U	U	U	U	U	1 1	ប	U	U
chrysene	0.002	U	U	U	U	U	U	2.2 J	U	0.45 J	0.23 J
dibenz(a,h)anthracene	44	U	U	U	U	U	U	0.2 J	U	U	U
dibenzofuran	-	U	U	U	U	U	U	1 J	U	U	U
diethyl phthalate	50	U	U	U	U	U	U	U	U	U	U
dimethyl phthalate	50	U	U	U	U	U	U	U	U	U	U
di-n-butylphthalate	50	U	U	U	U	0.97 J	1.2 J	U	U	U	0.68 J
di-n-octylphthalate	50	U	U	U	Ú	U	U	Ü	Ü	Ü	Ü
fluoranthene	50	Ū	Ü	U	0.58 JB	ŭ	ŭ	9.7 J	ŭ	1.9 J	1.3 J
fluorene	50	Ü	Ü	Ü	U	ŭ	ŭ	1.6 J	ŭ	0.74 J	0.64 J
hexachlorobenzene	0.04	Ü	U	Ŭ	Ü	U	Ü	U	ΰ	U.74 U	U.04 U
		Ü		Ŭ	Ű	U			Ü	Ü	
hexachlorobutadiene	0.5		U				U	U			U
hexachlorocyclopentadiene	5	U	U	U	U	U	U	U	U	U	U
hexachloroethane	5	U	U	U	U	U	U	U	U	U	U
	0.002	U	U	u	U	U	U	0.71 J	U	U	U
indeno(1,2,3-cd)pyrene	50	U	U	U	U	U	U	U	U	U	U
isophorone		0.48 J	U	U	U	0.68 J	1.1 J	0.59 J	U	1 J	0.92 J
	10				1.7	U	U		100		
isophorone naphthalene	10 0.4	U	U	U	U	0	U	U	U	U	U
isophorone			u u	U	U	U	Ü	Ü	U	U	
isophorone naphthalene nitrobenzene n-nitrosodi-n-propylamine	0.4	U	U	Ü	U	U	U	U	U	U	U
isophorone naphthalene nitrobenzene n-nitrosodi-n-propylamine n-nitrosodiphenylamine	0.4	U	U			U		U	U U		U
isophorone naphthalene nitrobenzene n-nitrosodi-n-propylamine n-nitrosodi-npropylamine pentachlorophenol	0.4 50 1	υ υ υ	U U U	U U	U U U	U U U	U U U	U U	บ บ บ	υ υ υ	U U U
isophorone naphthalene nitrobenzene n-nitrosodi-n-propylamine n-nitrosodiphenylamine	0.4 50	U U	U	U	U	U	U	U	U U	U	U U U 2.2 J 15 J

Notes: B- Method Blank Contamination J- Estimated U- Non-detect Exceeds Standard

Data Obtained From February 2006 CRA Tables Groundwater Sampling February 2006-SVOCs

Table 4-4 (3 of 4) Garlock Sealing Technologies BCP Site. Klozure's Building Groundwater Sample Results. Metal Results.

Metals (ug/L)	NYS TOGS Water Qulaity Standard	B-25 2/10/20 ug/L		B-26 2/10/200 ug/L	06	B-28 2/10/200 ug/L	06	B-28 duplio 2/10/200 ug/L	1200000	B-7 12/22/20 ug/L	06	B-11 12/21/20 ug/L	006	B-11 Dupli 12/21/20 ug/L		B-18 12/19/20 ug/L	06	B-21 12/21/20 ug/L	006	B-24 12/21/2006 ug/L
Aluminum		205,000		332,000		147,000		45,600		21,300		1,330	J	4,320	J	175,000		33,900		316,000
Antimony	3		U		U		U		U		U		U	100000	U	60	UJ		U	5.3 J
Arsenic	25	185		63.7		62.1		18.9		4.7	J		U		U	31.5	200	7	J	53.1
Barium	1,000	1,070		655		933	*	274		191	J	116	J	130	J	596	,	438		1950
Beryllium	3	8.2	J	12.9	J	7.2	J	2.7	BJ	0.87	J	1 11 11 11	U		11	6.8	1	1.9	.1	12
Cadminum	5		U		U		U	-	U	-25-5	U	0.76	.1	1.2	1	3.2	1	0.83	1	9
Calcium		576,000	J	578,000	J	253,000	J	177,000	J	207,000		531,000		365,000	0	887.000		321,000	J	1,000,000
Chromium Total	50	330		476		226	1	68.5		61.9		10.2	.1	17.8	J	314		67.5	1	650
Cobalt	-	99.7		169		82.2	1	24.6	В	20.5	.1	14	.1	13	.1	86.3	1	41.5	1	351
Copper	200	214		199		156		43.6		65.5		65.3		86.8	0	186		60.5	0	458
Iron	300	293,000		377,000		182,000	1	56,800		42,000		54,400		60.100	1	229,000	1	49,300	1	589000
Lead	25	265		198		189		53		33.3		31.2		32.6		117		29		162
Magnesium	35,000	413,000		672,000		192,000	1	102,000		102,000		131,000	1	106,000		449,000		170,000		674,000
Manganese	300	4,580	J	6,020	J	10,900	J	5,540	J	2,180		2.150		2.050		5,280		2990	1	105000
Mercury	0.7	0.81		1.1		0.58	1	0.16	В		U		U		11	0.45	,	2000	U	0.87
Nickel	100	362		568		241		75.6		71		48.1	100	44.7	-	247		76.7		679
Potassium		66,900	J	99,300	J	42,000	J	16,800	J	30,500		54,300		68,200		203,000	1	35,900		153,000
Selenium	10		U		U		U		U	133.	U		U	V	U		U	50,000	U	, 50,000
Silver	50		U		U		U		U		U	-	U		U		U		U	
Sodium	20,000	10,600		46,700		34,300		33,700		159,000		435,000		503,000		772,000		695000	1	906000
Thallium	0.5	9.9	В	9.4	В	21.7		11.1		A CONTRACTOR OF THE PARTY OF TH	U	7	J	10.7			U	10.4		8.6 J
Vanadium		261		333		189		59.7	-	27	J	2.3	1	6	J	217		40	1	392
Zinc	2,000	710	J	1,090	J	1,320	J	366	J	127		211		350		941		294		1,100

Notes

B- Estimated

J-Method Blank Contamination

U- Non-detect

Exceeds Standard

Data Obtained From February 2006 CRA Tables Groundwater Sampling February 2006-Metals

Table 4-4 (4 of 4). Garlock Sealing Technologies BCP Site. Klozure's Building Groundwater Sample Results. PCB Results.

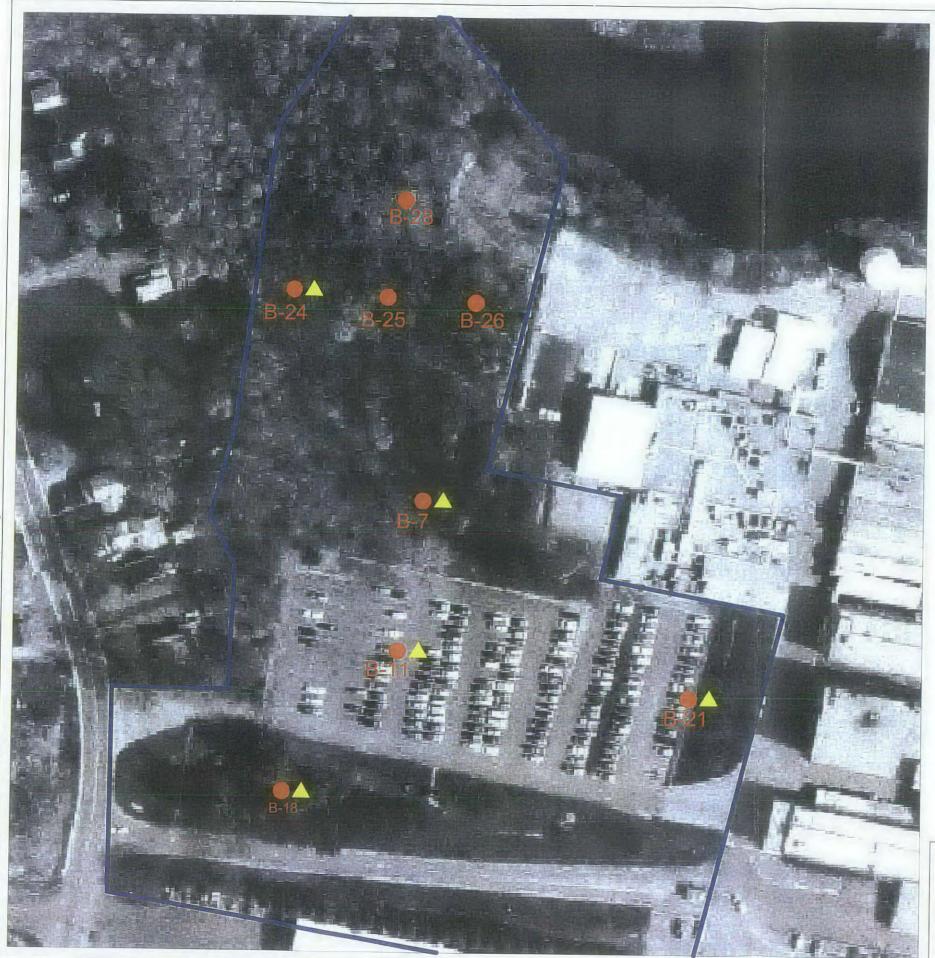
PCBs (ug/L)	NYS TOGS Water Qulaity Standard	B-25 2/10/2006 ppb	2/	B-26 10/2006 ppb	B-28 2/10/2006 ppb	B-28 2/10/2006 ppb	B-7 12/22/2006 ug/L	B-11 12/21/2006 ug/L	B-11 Duplicate 12/21/2005 ug/L	B-18 12/19/2006 ug/L	B-21 12/21/2006 ug/L	B-24 12/21/2006 ug/L
Aroclor 1016			J	U	U	U	U	U	U	U	11	B
Aroclor 1221			J	U	U	U	U	U	U	II.	11	R
Aroclor 1232			J	U	U	U	U	U	Ü	II I	II	B
Aroclor 1242		0.37	J	.2 J	U	U	U	Ü	l ŭl	11	ii l	R
Aroclor 1248			J	U	U	U	Ü	Ü	l ŭ	ĬI	11	R
Aroclor 1254			J	U	U	U	Ü	Ü	l ii	ii l	ii l	B
Aroclor 1260			J	U	U	U	Ü	11	l il	11	11	B
Total PCBs	0.09	0.37	(.2	0	0	0	0	0	0	0	0

Notes

U- Non-detect

J- Method Blank Contamination

PBCs - Polychlorinated biphenyls


Exceeds Standard

Data Obtained From February 2006 CRA Tables Groundwater Sampling February 2006- PCBs

SMP Template: October 2023

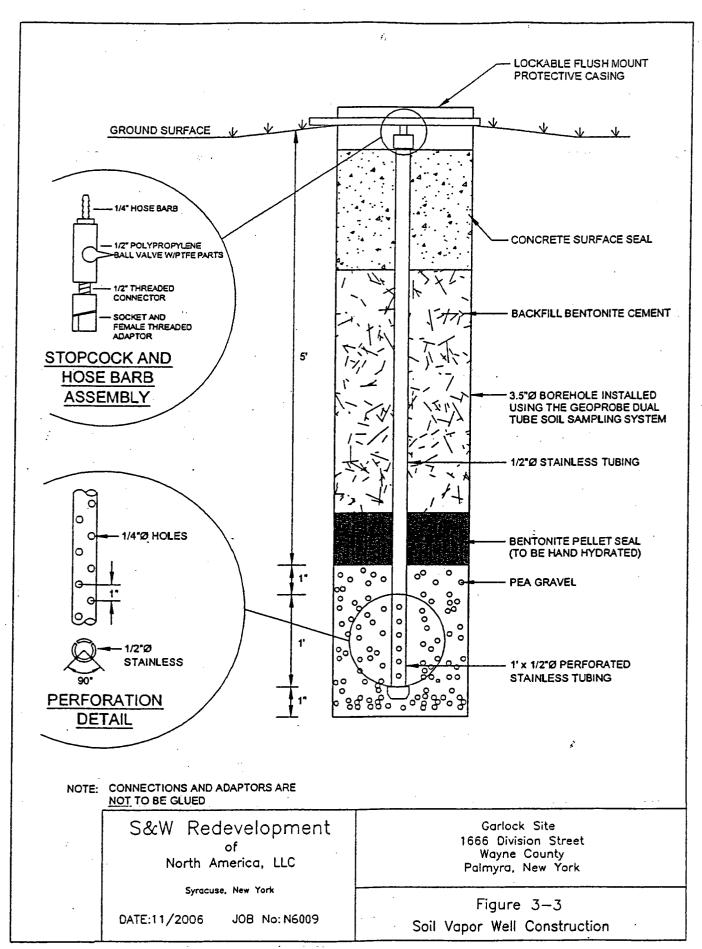
APPENDIX F

REMEDIAL INVESTIGATION SOIL VAPOR DATA

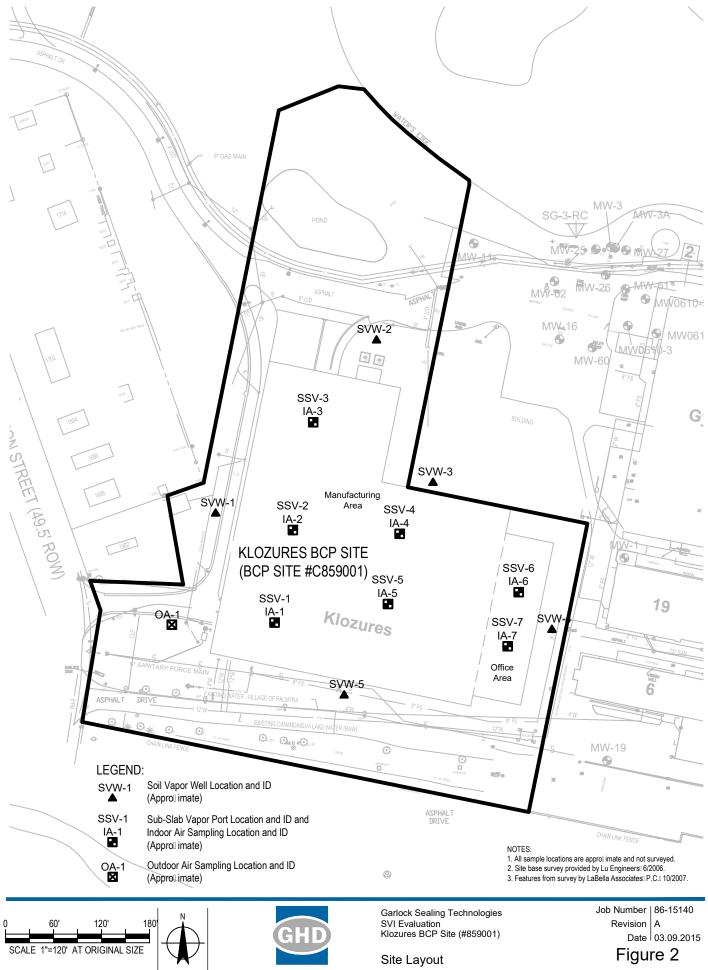
Groundwater Samples (Location Approximate)

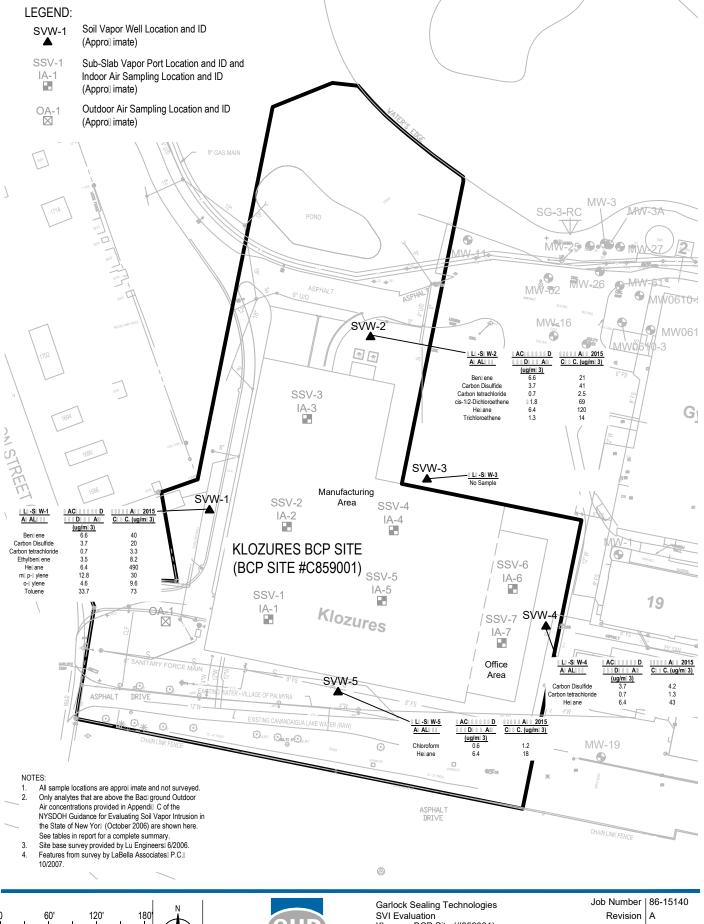
Soil Vapor Well

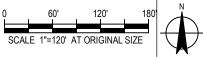
Approximate Site Boundary



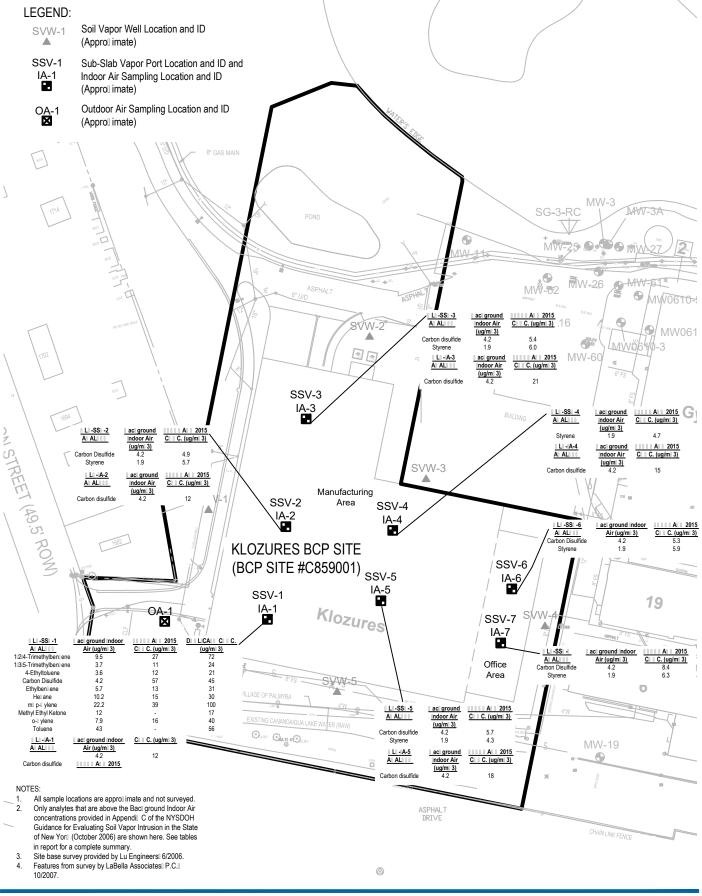
Syracuse, New York


DATE:11/2006 JOB No: N6009


Garlock Site 1666 Division Street Wayne County Palmyra, New York


FIGURE 3-2 Groundwater and Soil Vapor Well Locations

*



Klozures BCP Site (#859001)

Date 03.10.2015

Soil Vapor Well Sample Results

Figure 3

Garlock Sealing Technologies SVI Evaluation Klozures BCP Site (#859001) Sub-Slab Vapor, Indoor Air and Outdoor Air Sample Results Job Number | 86-15140 Revision | A Date | 03.10.2015

Figure 4

Table 4-5. Garlock Sealing Technologies Klozure's BCP Site. Soil Vapor Screening Results. VOCs.

Analyte					Sample Identifi	cat	ion			
	B-7		B-11		B-18		B-21		B-24	
VOC's	B16		B2		B9		B13		B12	
	12/30/2005		12/30/2005		12/30/2005		12/30/2005		12/30/2005	
1,1,1-trichloroethane		U	0.47			U		U	1.2	
1,1,2,2-tetrachloroethane	J	U		U		U		U		U
1,1,2-trichloroethane 1,1-dichloroethane		U		U		U		U		U
1,1-dichloroethene		U		Ü		U		U		u
1,2,4-trichlorobenzene		Ü		ŭ		U		U		Ü
1,2,4-trimethylbenzene	1.8	٠	1.6	٦	4.9	٠	1.7	٠	1.5	٦
1,2-dibromoethane (ethylene dibromide)	1.0	U	1.0	u	7.3	U	1.,	U	1.5	u
1,2-dichlorobenzene	1	Ū		ŭ		Ŭ		Ũ		ŭ
1,2-dichloroethane	1	U		Ū		Ū		Ũ		ũ
1,2-dichloropropane		Ų		Ų		U		U		U
1,2- dichlortetrafluoroethane (CFC 114)		U		U		U		U		U
1,3,5-trimethylbenzene	0.61		0.52			U	0.49		0.54	
1,3-butadiene		U		U		U		U		U
1,3-dichlorobenzene	J	U		U		U		U		U
1,4-dichlorobenzene	0.78		0.44			U	0.71		0.8	
1,4- dioxane	1 -	U		υ	055	U		U		U
2-butanone (MEK)	3		6.2		920	l	2.8		6.2	١., ا
2-Hexanone 4- ethyl toluene	1	U	0.41		4.3	ı		U	1	U
	1.7	U	1.8	u	3.2 160	1	1.7	U	1.6	u
4-methyl-2-pentanone (MIK) Acetone	9.7	J	14	٧	100		5.8	J	62	٦
benzene	3.6		2.9		150		11		6.7	
benzyl chloride	5.5	υ		u		υ		U	4. .	u
bromodichloromethane		U		Ū		Ũ		Ū		ũ
bromoform		U		Ü		Ū		U		Ū
bromomethane (methyl bromide)		υ		U		U		U		U
carbon disulfide	0.92		1.5		39		34		50	i
carbon tetrachloride		U		υ		U		U		U
chlorobenzene		U		U		U		U		U
chloroethane		U		U		U		U		U
chloroform (trichloromethane)	3.2		6.2		5.8		3.2		4.3	
chloromethane (methyl chloride)	0.32		0.22	٠.,		U		U		U
cis-1,2-dichloroethene cis-1,3-dichloropropene	l	CC		U		υ		U		U
cyclohexane	1.2	٥	1.7	٦	150	٠	27	U	17	۰
Dibromochloromethane	1,2	U	1.7	υ	130	U	2,	U	17	υ
dichlorodifluoromethane (CFC-12)	1.2	٠	0.83	_	1.6	•	0.5	Ū		ŭ
ethanol	13		19		140		15		20	
ethylbenzene	1.8		2.3		4		2.2		1.9	
hexachlorobutadiene	1	υ		U		U		U		υ
hexane	2.6		2.9	- 1	230	į	29		4.6	1
isopropyl alcohol (manufacturing-strong acid)	7.6	l	4.7		4	- 1	3.6		6.3	
Isopropylbenzene	0.49			U		U		U		U
m & P- xylene	7.7		9.2		11		8.8		8.3	
Methyl tert butyl ether	0.76		1.1		1.8		0.84		1.1	إر
methylene chloride n-Heptane	0.48	J	0.36 2.4	J	48	U	5.4	U	1.8	Ų
n-neptatte n-propylbenzene	0.43	J	2.4 0.51	٦	2.2	J	0.38	J	0.43	٦,
o-xylene	2.2		2.9		5.8		2.3		2.3	
styrene		U		u	5.0	U		U		U
tetrachloroethene	0.93	-	0.95	-		Ū	1.2	-	0.91	
tetrahydrofuran	3.4		5.4			Ü		U	4.3	
toluene	17		20	ļ	75		25		32	
trans-1,2-dichloroethene	1	U		U		U		U		U
trans-1,3-dichloropropene		υ		U		U		U		υ
trichloroethene	0.46		0.51	1		U	0.88		1.2	
trichlorofluoromethane (CFC-11)	1.3		0.49		4.4		2.2		1.5	
trifluorotrichloroethane (Freon 113)	1	υ		U		U		U		U
vinyl chloride	1	υ		U		U		U		U
helium (%)	0.27		4		0.14		0.086		0.14	
Notes:	<u>L</u>							_		

Values in ug/m³
J- estimated
U- non-detect at associated value
Tables adapted based on data provided in Conestoga-Rovers & Associates February 23, 2006 Supplemental Site Investigation Report.

Table 1 (Page 1 of 1): Field Data. Garlock Sealing Technologies - Klozures BCP Site. Palmyra, NY.

Sample ID	Canister Number	Regulator Number	Start Time	Vacuum at Start ("Hg)	End Time	Vacuum at End ("Hg)	Location	Temperature (°C)	Relative Humidity (%)	Pressure ("H ₂ 0)
KLZ-SVW-1	563	1161	9:45	30	13:45	5	Outdoors West	29.7	5.7	0.003
KLZ-SVW-2	85	400	10:15	29	14:15	4	Outdoors North	29.7	5.7	0.003
KLZ-SVW-3	190	172	10:30	29	14:30	26.5	Outdoors North	29.7	5.7	0.003
KLZ-SVW-4	158	253	10:50	30	14:50	5	Outdoors East	29.7	5.7	0.003
KLZ-SVW-5	544	343	9:15	30	13:15	3	Outdoors South	29.7	5.7	0.003
KLZ-SSV-1	541	1166	11:50	>30	11:50	5	Manufacturing	70.4	35.6	0.054
KLZ-SSV-2	88	388	12:10	29	12:10	6	Manufacturing	69.6	34.8	0.056
KLZ-SSV-3	419	441	12:20	>30	12:20	8	Manufacturing	71.0	35.7	0.056
KLZ-SSV-4	324	391	12:30	30	12:30	4	Manufacturing	70.4	34.4	0.058
KLZ-SSV-5	358	443	12:45	30	12:45	5	Manufacturing	70.6	34.3	0.056
KLZ-SSV-6	465	1170	11:25	29	11:25	12	Office	67.9	34.0	0.054
KLZ-SSV-7	223	455	11:35	26	11:35	3	Office	69.8	35.3	0.054
KLZ-IA-1	1179	374	11:50	30	11:50	10	Manufacturing	70.4	35.6	0.054
KLZ-IA-2	366	1159	12:10	29	12:10	6	Manufacturing	69.6	34.8	0.056
KLZ-IA-3	1198	380	12:20	>30	12:20	2	Manufacturing - MS/MSD	71.0	35.7	0.056
KLZ-IA-4	370	373	12:30	29	12:30	7	Manufacturing	70.4	34.4	0.058
KLZ-IA-5	89	396	12:45	29	12:45	7	Manufacturing	70.6	34.3	0.056
KLZ-IA-6	326	376	11:25	30	11:25	8	Office	67.9	34.0	0.054
KLZ-IA-7	542	398	11:35	>30	11:35	9	Office	69.8	35.3	0.054
KLZ-OA-1	1194	386	12:00	30	12:00	4	Outdoors West	31.2	5.9	0.000
Duplicate	471	1166	11:50	>30	11:50	5	Manufacturing - KLZ-SSV-1	70.4	35.6	0.054

Table 2 (Page 1 of 1): Summary of Soil Vapor Well Laboratory Analytical Results. Garlock Sealing Technologies - Klozures BCP Site. Palmyra, NY.

Table 2 (Page 1 of 1): Summary of S ANALYTE	Air Guideline	Background	Background			MPLE IDENTIFICATI	ON	
(ug/m³)	Values*	Outdoor Air**	Indoor Air***	KLZ-SVW-1	KLZ-SVW-2	KLZ-SVW-3	KLZ-SVW-4	KLZ-SVW-5
Sample Date				2/7/2015	2/7/2015	2/7/2015	2/7/2015	2/7/2015
VOCs by EPA Method TO-15		0.0	00.0	R.L.	R.L.	R.L.	R.L.	R.L.
1,1,1-Trichloroethane		2.6	20.6	0.60 J	U 0.82	-	U 0.82	0.55 J
1,1,2,2-Tetrachloroethane				U 1	U 1	-	U 1	U 1
1,1,2-Trichloroethane		<1.6	<1.5	U 0.82	U 0.82	-	U 0.82	U 0.82
1,1-Dichloroethane		<0.6	<0.7	UJ 0.61	UJ 0.61	-	UJ 0.61	UJ 0.61
1,1-Dichloroethene		<1.4	<1.4	U 0.59	U 0.59	-	U 0.59	U 0.59
1,2,4-Trichlorobenzene		<6.4	<6.8	U 1.1	U 1.1	-	U 1.1	U 1.1
1,2,4-Trimethylbenzene		5.8	9.5	3.5	2.7	-	2.8	2.8
1,2-Dibromoethane		<1.6	<1.5	U 1.2	U 1.2	_	U 1.2	U 1.2
1,2-Dichlorobenzene		<1.2	<1.2	U 0.9	U 0.9	_	U 0.9	U 0.9
1,2-Dichloroethane		<0.8	<0.9					
						•		
1,2-Dichloropropane		<1.6	<1.6	U 0.69	U 0.69	-	U 0.69	U 0.69
1,3,5-Trimethylbenzene		2.7	3.7	2.3	1.3	-	1.1	1.1
1,3-butadiene		<3.4	<3.0	U 0.33	U 0.33	-	U 0.33	U 0.33
1,3-Dichlorobenzene		<2.2	<2.4	U 0.9	U 0.9	-	U 0.9	U 0.9
1,4-Dichlorobenzene		1.2	5.5	U 0.9	U 0.9	-	U 0.9	1.5
1,4-Dioxane				U 1.1	U 1.1	-	U 1.1	U 1.1
2,2,4-trimethylpentane				23	13	-	7.1	0.61 J
4-ethyltoluene		3	3.6	1.7	1.0	-	1.1	0.88
Acetone		43.7	98.9	87	43	_	38	27
Allyl chloride	1	70.1	55.5	U 0.47	43 U 0.47	_	U 0.47	U 0.47
	1	6.0	0.4			-	6.4	
Benzene		6.6	9.4	40	21	-		1.3
Benzyl chloride		<6.4	<6.8	U 0.86	U 0.86	-	U 0.86	U 0.86
Bromodichloromethane				U 1	U 1	-	U 1	U 1
Bromofluorobenzene				U o	U o	-	U o	U o
Bromoform				U 1.6	U 1.6	-	U 1.6	U 1.6
Bromomethane		<1.6	<1.7	U 0.58	U 0.58	-	U 0.58	U 0.58
Carbon disulfide		3.7	4.2	20	41	-	4.2	0.93
Carbon tetrachloride		0.7	<1.3	3.3	2.5	_	1.3	U 0.25
Chlorobenzene		<0.8	<0.9	U 0.69	U 0.69		U 0.69	U 0.69
Chloroethane		<1.2	<0.9			•		
						-		
Chloroform		0.6	1.1	U 0.73	U 0.73	-	U 0.73	1.2
Chloromethane		3.7	3.7	U 0.31	U 0.31	-	U 0.31	U 0.31
cis-1,2-Dichloroethene		<1.8	<1.9	U 0.59	69	•	U 0.59	U 0.59
cis-1,3-Dichloropropene		<2.2	<2.3	U 0.68	U 0.68	-	U 0.68	U 0.68
Cyclohexane				270	78	-	12	3.3
Dibromochloromethane				U 1.3	U 1.3	-	U 1.3	U 1.3
Ethyl acetate		1.5	5.4	U 0.9	U 0.9	-	U 0.9	U 0.9
Ethylbenzene		3.5	5.7	8.2	4.0		2.1	1.5
-		3.3	3.7		6.7			-
Freon 11				6.0		-	3.4	0.90
Freon 113				5.7	U 1.1	-	U 1.1	1.0 J
Freon 114				U 1	U 1	-	U 1	U 1
Freon 12				U 0.74	4.3	-	2.8	2.1
Heptane				210	59	-	22	18
Hexachloro-1,3-butadiene		<6.4	<6.8	U 1.6	U 1.6	-	U 1.6	U 1.6
Hexane		6.4	10.2	490	120	-	43	18
Isopropyl alcohol				U 0.37	U 0.37	-	U 0.37	2.6
m&p-Xylene		12.8	22.2	30 J	13 J	-	6.8 J	5.9 J
Methyl Butyl Ketone				U 1.2	U 1.2	_	U 1.2	U 1.2
Methyl Ethyl Ketone		11.3	12	U 0.88	U 0.88		U 0.88	U 0.88
		11.3	12			•	0 0.00	0.00
Methyl Isobutyl Ketone				UJ 1.2	UJ 1.2	-	UJ 1.2	UJ 1.2
Methyl tert-butyl ether		6.2	11.5	U 0.54	U 0.54	-	U 0.54	U 0.54
Methylene chloride	60	6.1	10	U 0.52	U 0.52	-	U 0.52	U 0.52
o-Xylene		4.6	7.9	9.6	4.0	-	2.5	2.3
Propylene				U 0.26	U 0.26	-	U 0.26	U 0.26
Styrene		1.3	1.9	U 0.64	U 0.64	-	U 0.64	U 0.64
Tetrachloroethylene	100	6.5	15.9	U 1	U 1		U 1	U 1
Tetrahydrofuran			. 5.0	U 0.44	U 0.44	-	U 0.44	U 0.44
Toluene		33.7	43	73	41		20	19
		33.1	43			-		
trans-1,2-Dichloroethene		l		U 0.59	17	-	U 0.59	U 0.59
trans-1,3-Dichloropropene		<1.4	<1.3	U 0.68	U 0.68	-	U 0.68	U 0.68
Trichloroethene	5	1.3	4.2	U 0.21	14	-	U 0.21	U 0.21
			1					
Vinyl acetate				U 0.53	U 0.53	-	U 0.53	U 0.53
				U 0.53 U 0.66	U 0.53 U 0.66	-	U 0.53 U 0.66	U 0.53 U 0.66

Bold and shaded cell indicates result exceeds the NYSDOH Guideline Value

Bold and thick outlined cell indicates result is above the 90th Percentile Background Outdoor Air Concentration
Bold, thick outlined, and shaded cell indicates result is above the 90th Percentile Background Indoor Air Concentration

^{* -} Guideline values established in Table 3.1 of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (May 2006).

^{** - 90}th Percentile of the Building Assessment and Survey Evaluation (BASE) Database, SUMMA Carister Method - Outdoor Air (Table C2 in Appendix C of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006).

^{*} South Percentage of the Building Assessment and outry Evaluation (BASE) Database, SUMMA Canister Method - Indoor Air (Table C2 in Appendix C of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006).

U - Analyzed for but not detected above the laboratory reporting limit

R.L. - Laboratory Reporting Limit

^{(-) -} The summa canister did not collect a sample from KLZ-SVW-3. The laboratory suspects the soil at the well location was too tight for the vacuum to obtain a sample. Bold analyte indicates it is used in Garlock's manufacturing process

Table 3 (Page 1 of 4): Summary of Sub-Slab Vapor, Indoor Air, and Outdoor Air Laboratory Analytical Results. Garlock Sealing Technologies - Klozures BCP Site. Palmyra, NY.

ANALYTE	Air Guideline	Background				SAMPL	E IDE	NTIFI	CATION			
(ug/m³)	Values*	Indoor Air***	KLZ-	SSV-1	Γ	KLZ	Z-IA-1			DUPL	ICATE	:
Sample Date			2/8/	2015		2/8	/2015			2/8/	2015	
										(KLZ-	SSV-1)
VOCs by EPA Method TO-15				R.	L.			R.L.			R.L.	R.P.D.
1,1,1-Trichloroethane		20.6		U 0.8	32		U	0.82		U	0.82	-
1,1,2,2-Tetrachloroethane				U 1.	.0		U	1.0		U	1.0	
1,1,2-Trichloroethane		<1.5		U 0.8	32		U	0.82		U	0.82	
1,1-Dichloroethane		<0.7		UJ 0.6			UJ	0.61		UJ	0.61	-
1,1-Dichloroethene		<1.4		U 0.5	59		U	0.59		U	0.59	
1,2,4-Trichlorobenzene		<6.8		U 1.	.1		U	1.1		U	1.1	-
1,2,4-Trimethylbenzene		9.5	27			0.88			72			90.91%
1,2-Dibromoethane		<1.5		U 1.			U	1.2		U	1.2	-
1,2-Dichlorobenzene		<1.2		U 0.9			U	0.90		U	0.90	-
1,2-Dichloroethane		<0.9		U 0.6			U	0.61		U	0.61	-
1,2-Dichloropropane		<1.6		U 0.6	69		U	0.69		U	0.69	-
1,3,5-Trimethylbenzene		3.7	11			0.59	J		24		l	74.29%
1,3-butadiene		<3.0		U 0.3			U	0.33		U	0.33	-
1,3-Dichlorobenzene		<2.4		U 0.9			U	0.90		U	0.90	-
1,4-Dichlorobenzene		5.5		U 0.9			U	0.90		U	0.90	-
1,4-Dioxane				U 1.	.1		U	1.1		U	1.1	-
2,2,4-trimethylpentane			1.5				U	0.70	1.5		•	0.00%
4-ethyltoluene		3.6	12				U	0.74	21			54.55%
Acetone		98.9	43			14			25	J		52.94%
Allyl chloride				U 0.4	47		U	0.47		U	0.47	-
Benzene		9.4	4.6			0.89			4.9			6.32%
Benzyl chloride		<6.8		U 0.8			U	0.86		U	0.86	-
Bromodichloromethane				U 1.			U	1.0		U	1.0	-
Bromofluorobenzene				U o			U	0		U	0	-
Bromoform				U 1.			U	1.6		U	1.6	-
Bromomethane		<1.7		U 0.5	58		U	0.58		U	0.58	-
Carbon disulfide		4.2	57		L	12			45			23.53%
Carbon tetrachloride		<1.3		U 0.2		0.57				U	0.25	-
Chlorobenzene		<0.9		U 0.6			U	0.69		U	0.69	-
Chloroethane		<1.1		U 0.4	40		U	0.40		U	0.40	-
Chloroform		1.1	0.63	J			U	0.73	0.73			14.71%
Chloromethane		3.7		U 0.3		0.81				U	0.31	
cis-1,2-Dichloroethene		<1.9		U 0.5	59		U	0.59		U	0.59	-
cis-1,3-Dichloropropene		<2.3		U 0.6	88		U	0.68		U	0.68	-
Cyclohexane			6.8				U	0.52	6.6			2.99%
Dibromochloromethane				U 1.			U	1.3		U	1.3	-
Ethyl acetate		5.4		U 0.9	90	1.3				U	0.90	-
Ethylbenzene		5.7	13			3.0			31			81.82%
Freon 11			1.9			1.3			1.9			0.00%
Freon 113				U 1.			U	1.1		U	1.1	-
Freon 114				U 1.	0		U	1.0		U	1.0	-
Freon 12			2.8			2.6			2.7			3.64%
Heptane			16				U	0.61	29			57.78%
Hexachloro-1,3-butadiene		<6.8		U 1.	6		U	1.6		U	1.6	-
Hexane		10.2	15				U	0.53	30			66.67%
Isopropyl alcohol				U 0.3	37	4.4			4.9			171.92%
m&p-Xylene		22.2	39			11	J		100		l	87.77%
Methyl Butyl Ketone				U 1.			U	1.2		U	1.2	-
Methyl Ethyl Ketone		12		U 0.8		6.0			17			180.31%
Methyl Isobutyl Ketone				UJ 1.:			UJ	1.2		UJ	1.2	-
Methyl tert-butyl ether		11.5		U 0.5			U	0.54		U	0.54	-
Methylene chloride	60	10		U 0.5	52	0.56			1.0			63.16%
o-Xylene		7.9	16			3.2			40			85.71%
Propylene			I	U 0.2			U	0.26		U	0.26	-
Styrene		1.9	I	U 0.6			U	0.64		U	0.64	-
Tetrachloroethylene	100	15.9	I	U 1.0			U	1.0		U	1.0	-
Tetrahydrofuran 				U 0.4	14		U	0.44		U	0.44	-
Toluene		43	24			4.4			56			80.00%
trans-1,2-Dichloroethene			I	U 0.5			U	0.59		U	0.59	-
trans-1,3-Dichloropropene		<1.3	I	U 0.6	88		U	0.68		U	0.68	-
Trichloroethene	5	4.2	0.70				U	0.21	0.70			0.00%
Vinyl acetate			I	U 0.5			U	0.53		U	0.53	-
Vinyl Bromide				U 0.6			U	0.66	1	U	0.66	-
Vinyl chloride		<1.9	I	U 0.1	10		U	0.10		U	0.10	-

Bold, thick outlined, and shaded cell indicates result is above the 90th Percentile Background Indoor Air Concentration

^{* -} Guideline values established in Table 3.1 of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (May 2006).

^{*** - 90}th Percentile of the Building Assessment and Survey Evaluation (BASE) Database, SUMMA Canister Method - Indoor Air (Table C2 in Appendix C of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006).
U - Analyzed for but not detected above the laboratory reporting limit

J - Estimated value

R.L. - Laboratory Reporting Limit

RPD - Relative Percent Difference between the duplicate and parent sample concentrations. When one sample is non-detect, the laboratory reporting limit is used as the concentration for the calculation.

RPD = 2(Sample Value - Duplicate Sample Value)

⁽Sample Value + Duplicate Sample Value)

 $^{(\ \}hbox{-}\ \hbox{)}\ \hbox{-}\ \hbox{Not applicable since both the sample and the duplicate sample concentrations were non-detect for specific analyte}.$

Bold analyte indicates it is used in Garlock's manufacturing process

Bold and shaded cell indicates result exceeds the NYSDOH Guideline Value

Table 3 (Page 2 of 4): Summary of Sub-Slab Vapor, Indoor Air, and Outdoor Air Laboratory Analytical Results. Garlock Sealing Technologies - Klozures BCP Site. Palmyra, NY.

Table 3 (Page 2 of 4): Summary of Sub-Slab Vapor, Inc. ANALYTE	Air Guideline	Background	nd SAMPLE IDENTIFICATION												
(ug/m³)	Values*	Indoor Air***	KLZ	-SSV-	2	KL	Z-IA-2		KLZ	-SSV-	3	KL	Z-IA-3		
Sample Date			2/8	/2015		2/8	3/2015		2/8	3/2015		2/8	/2015		
VOCs by EPA Method TO-15					R.L.			R.L.			R.L.			R.L.	
1,1,1-Trichloroethane		20.6		U	0.82		U	0.82		U	0.82		U	0.82	
1,1,2,2-Tetrachloroethane		20.0		U	1.0		U	1.0		U	1.0		U	1.0	
1,1,2-Trichloroethane		<1.5		U	0.82		U	0.82		U	0.82		U	0.82	
		_		UJ			UJ			UJ			UJ		
1,1-Dichloroethane		<0.7			0.61			0.61			0.61			0.61	
1,1-Dichloroethene 1,2,4-Trichlorobenzene		<1.4 <6.8		U	0.59		U			U	0.59		U		
			6.9	U	1.1	0.50		1.1		U	1.1	0.00		1.1	
1,2,4-Trimethylbenzene		9.5	6.9	ш		0.59	J		6.9	Ш		0.69	J		
1,2-Dibromoethane		<1.5		IJ	1.2		U	1.2		IJ	1.2		U	1.2	
1,2-Dichlorobenzene		<1.2		-	0.90		U	0.90		-	0.90		-	0.90	
1,2-Dichloroethane		<0.9		U	0.61		U	0.61		U	0.61		U	0.61	
1,2-Dichloropropane		<1.6		U	0.69		U	0.69	۱	U	0.69		U	0.69	
1,3,5-Trimethylbenzene		3.7	2.5				U	0.74	2.4				U	0.74	
1,3-butadiene		<3.0		U	0.33		U	0.33		U	0.33		U	0.33	
1,3-Dichlorobenzene		<2.4		U	0.90		U	0.90		U	0.90		U	0.90	
1,4-Dichlorobenzene		5.5		U	0.90		U	0.90		U	0.90		U	0.90	
1,4-Dioxane				U	1.1		U	1.1		U	1.1		U	1.1	
2,2,4-trimethylpentane				U	0.70		U	0.70	0.56	J			U	0.70	
4-ethyltoluene		3.6	2.4				U	0.74	2.5				U	0.74	
Acetone		98.9	43			14			43			15	J		
Allyl chloride				U	0.47		U	0.47		U	0.47		U	0.47	
Benzene		9.4	1.1			1.1			1.2			1.1			
Benzyl chloride		<6.8		U	0.86		U	0.86		U	0.86		U	0.86	
Bromodichloromethane				U	1.0		U	1.0		U	1.0		U	1.0	
Bromofluorobenzene				U	0		U	0		U	0		U	0	
Bromoform				U	1.6		U	1.6		U	1.6		U	1.6	
Bromomethane		<1.7		U	0.58		U	0.58		U	0.58		U	0.58	
Carbon disulfide		4.2	4.9		1 1	12		1	5.4		1	21	J	ì	
Carbon tetrachloride		<1.3		U	0.25	0.63		•		U	0.25	0.63			
Chlorobenzene		<0.9		Ü	0.69		U	0.69		U	0.69		U	0.69	
Chloroethane		<1.1		U	0.40		U	0.40		U	0.40		Ü	0.40	
Chloroform		1.1	0.54	J			Ū	0.73	0.59	J			Ū	0.73	
Chloromethane		3.7		Ū	0.31	1.0	-			Ū	0.31	1.2	-		
cis-1.2-Dichloroethene		<1.9		Ü	0.59		U	0.59		Ü	0.59		U	0.59	
cis-1,3-Dichloropropene		<2.3		U	0.68		U	0.68		U	0.68		U	0.68	
Cyclohexane		\Z.0	0.96	·	0.00		U	0.52		U	0.52	0.69	·	0.00	
Dibromochloromethane			0.30	U	1.3		U	1.3		U	1.3	0.03	U	1.3	
Ethyl acetate		5.4		U		1.0	U	1.3		U		0.94	U	1.3	
		5.7	3.6	U	0.90	1.0			3.6	U	0.90	0.94			
Ethylbenzene		5.7													
Freon 11			1.9			1.5			1.9			1.9			
Freon 113			3.9				U	1.1		U	1.1	0.92	J		
Freon 114			0.5	U	1.0	0.0	U	1.0		U	1.0	0.7	U	1.0	
Freon 12			2.5			2.9			2.6			3.7	J		
Heptane				U	0.61		U	0.61		U	0.61		U	0.61	
Hexachloro-1,3-butadiene		<6.8		U	1.6		U	1.6		U	1.6		U	1.6	
Hexane		10.2		U	0.53		U	0.53		U	0.53	2.2			
Isopropyl alcohol				U	0.37	5.4			11			8.1	J		
m&p-Xylene		22.2	13	J		4.0	J		13	J		3.0	J		
Methyl Butyl Ketone				U	1.2		U	1.2		U	1.2		U	1.2	
Methyl Ethyl Ketone		12	9.1			8.3			5.6	J		7.1	J		
Methyl Isobutyl Ketone				UJ	1.2		UJ	1.2		UJ	1.2		UJ	1.2	
Methyl tert-butyl ether		11.5		U	0.54		U	0.54		U	0.54	0.97			
Methylene chloride	60	10		U	0.52	0.94				U	0.52	0.52			
o-Xylene		7.9	4.6			1.3			4.5			1.2			
Propylene				U	0.26		U	0.26		U	0.26	l	U	0.26	
Styrene		1.9	5.7				U	0.64	6.0			1	U	0.64	
Tetrachloroethylene	100	15.9		U	1.0		U	1.0	0.88	J	-	l	U	1.0	
Tetrahydrofuran				U	0.44		U	0.44	1	U	0.44	1	U	0.44	
Toluene		43	7.5			4.7			8.0			4.1	J		
trans-1,2-Dichloroethene				U	0.59		U	0.59	1	U	0.59	1	U	0.59	
trans-1,3-Dichloropropene		<1.3		U	0.68		U	0.68	1	U	0.68	1	U	0.68	
Trichloroethene	5	4.2	0.97				Ū	0.21	1.5			1	Ū	0.21	
Vinyl acetate				U	0.53		Ū	0.53	1	U	0.53	l	Ū	0.53	
Vinyl Bromide				Ū	0.66		U	0.66	l	Ü	0.66	l	Ū	0.66	
Vinyl chloride		<1.9		Ü	0.10		Ü	0.10	l	Ü	0.10	1	Ü	0.10	
All values reported as un/m ³	ı	11.0			0.10			0.10			0.10		<u> </u>	0.10	

All values reported as ug/m³

U - Analyzed for but not detected above the laboratory reporting limit

J - Estimated value

R.L. - Laboratory Reporting Limit
Bold analyte indicates it is used in Garlock's manufacturing process

Bold and shaded cell indicates result exceeds the NYSDOH Guideline Value
Bold, thick outlined, and shaded cell indicates result is above the 90th Percentile Background Indoor Air Concentration

ANALYTE	Air Guideline	Background													
(ug/m³)	Values*	Indoor Air***	KLZ	-ssv-	4	KL	Z-IA-4		KLZ	-SSV-	5	KL	Z-IA-5		
Sample Date			2/8	/2015		2/8	3/2015		2/8	3/2015		2/8	/2015		
VOCs by EPA Method TO-15					R.L.			R.L.			R.L.			R.L.	
1,1,1-Trichloroethane		20.6		U	0.82		U	0.82	0.60	J			U	0.82	
1,1,2,2-Tetrachloroethane				U	1.0		U	1.0		U	1.0		U	1.0	
1,1,2-Trichloroethane		<1.5		U	0.82		U	0.82		U	0.82		U	0.82	
1,1-Dichloroethane		< 0.7		UJ	0.61		UJ	0.61		UJ	0.61		UJ	0.61	
1,1-Dichloroethene		<1.4		U	0.59		U	0.59		U	0.59		U	0.59	
1,2,4-Trichlorobenzene		<6.8		U	1.1		U	1.1		U	1.1		U	1.1	
1,2,4-Trimethylbenzene		9.5	6.0			0.93			7.2				U	0.74	
1,2-Dibromoethane		<1.5		U	1.2		U	1.2		U	1.2		U	1.2	
1,2-Dichlorobenzene		<1.2		U	0.90		U	0.90		U	0.90		U	0.90	
1,2-Dichloroethane		<0.9		U	0.61		U	0.61		U	0.61		U	0.61	
1,2-Dichloropropane		<1.6		U	0.69		U	0.69		U	0.69		U	0.69	
1,3,5-Trimethylbenzene		3.7	2.5				U	0.74	2.4				U	0.74	
1,3-butadiene		<3.0		U	0.33		U	0.33		U	0.33		U	0.33	
1,3-Dichlorobenzene		<2.4		U	0.90		U	0.90		U	0.90		U	0.90	
1,4-Dichlorobenzene		5.5		U	0.90		U	0.90		U	0.90		U	0.90	
1,4-Dioxane				U	1.1		U	1.1		U	1.1		U	1.1	
2,2,4-trimethylpentane			0.51	J			U	0.70		U	0.70		U	0.70	
4-ethyltoluene		3.6	2.0				U	0.74	2.4				U	0.74	
Acetone		98.9	33			15			38			12			
Allyl chloride				U	0.47		U	0.47		U	0.47		U	0.47	
Benzene		9.4	2.7			0.93			1.5			0.93			
Benzyl chloride		<6.8		U	0.86		U	0.86		U	0.86		U	0.86	
Bromodichloromethane				U	1.0		U	1.0		U	1.0		U	1.0	
Bromofluorobenzene				U	0		U	0		U	0		U	0	
Bromoform				U	1.6		U	1.6		Ū	1.6		U	1.6	
Bromomethane		<1.7		U	0.58		U	0.58		Ü	0.58		U	0.58	
Carbon disulfide		4.2	3.2			15		1	5.7		1	18		1	
Carbon tetrachloride		<1.3		U	0.25	0.50				U	0.25	0.57		2	
Chlorobenzene		<0.9		Ū	0.69		U	0.69		Ū	0.69		U	0.69	
Chloroethane		<1.1		Ū	0.40		Ū	0.40		Ū	0.40		Ü	0.40	
Chloroform		1.1	0.98	_			Ū	0.73		Ū	0.73		Ū	0.73	
Chloromethane		3.7		U	0.31	1.1	-			Ū	0.31	0.99	-		
cis-1,2-Dichloroethene		<1.9		Ü	0.59		U	0.59		U	0.59	0.55	U	0.59	
cis-1,3-Dichloropropene		<2.3		U	0.68		Ü	0.68		U	0.68		U	0.68	
Cyclohexane		VZ.0	2.8	·	0.00		Ü	0.52	1.4	Ü	0.00		IJ	0.52	
Dibromochloromethane			2.0	U	1.3		Ü	1.3	17	U	1.3		U	1.3	
Ethyl acetate		5.4		IJ	0.90	0.83	J	1.3		IJ	0.90	0.79	J	1.3	
Ethylbenzene		5.7	3.7	U	0.90	0.69	J		3.2	U	0.90	0.69	J		
Freon 11		5.7	2.2			1.5			1.9			1.5			
Freon 113			2.2	U	1.1	1.5	U	1.1	1.5	U	1.1	1.5	U	1.1	
Freon 114				U	1.0		U	1.0		U	1.0		U	1.0	
Freon 12			3.0	U	1.0	2.0	U	1.0	2.7	U	1.0	2.8	U	1.0	
Heptane			9.4			2.9	U	0.61	6.0			2.0	U	0.61	
Hexachloro-1,3-butadiene		<6.8	9.4	U	1.6		U	1.6	6.0	U	1.6		U	1.6	
Hexane		10.2	7.4	U	1.6		U	0.53	3.1	U	1.0		IJ	0.53	
Isopropyl alcohol		10.2	11			5.3	U	0.53	7.1			3.7	U	0.53	
		00.0													
m&p-Xylene		22.2	14	J		2.3	J		12	J		1.7	J		
Methyl Butyl Ketone		40		U	1.2	- 0	U	1.2		U	1.2		U	1.2	
Methyl Ethyl Ketone		12	6.8	J		5.9			5.9	J		6.8			
Methyl Isobutyl Ketone				UJ	1.2		UJ	1.2		UJ	1.2		UJ	1.2	
Methyl tert-butyl ether		11.5		U	0.54		U	0.54		U	0.54		U	0.54	
Methylene chloride	60	10		U	0.52	0.52				U	0.52	0.49	J		
o-Xylene		7.9	4.6			0.87			4.2			0.74			
Propylene				U	0.26		U	0.26		U	0.26		U	0.26	
Styrene		1.9	4.7				U	0.64	4.3		ı	1	U	0.64	
Tetrachloroethylene	100	15.9	I	U	1.0		U	1.0	1.0			1	U	1.0	
Tetrahydrofuran			I	U	0.44		U	0.44		U	0.44		U	0.44	
Toluene		43	7.9			3.4			7.9			3.2			
trans-1,2-Dichloroethene		Ì	I	U	0.59		U	0.59	1	U	0.59	1	U	0.59	
trans-1,3-Dichloropropene		<1.3		U	0.68		U	0.68	l	U	0.68	l	U	0.68	
Trichloroethene	5	4.2	1.1				U	0.21	0.81				U	0.21	
Vinyl acetate			I	U	0.53		U	0.53		U	0.53		U	0.53	
Vinyl Bromide		Ì	I	U	0.66		U	0.66	1	U	0.66	1	U	0.66	
Vinyl chloride	I	<1.9	1	Ü	0.10		Ū	0.10	l	Ü	0.10	ı	Ü	0.10	

Bold analys indicates it is used in Carlock's manufacturing process

Bold analys indicates it is used in Carlock's manufacturing process

Bold and shaded cell indicates result exceeds the NYSDOH Guideline Value

Bold, thick outlined, and shaded cell indicates result is above the 90th Percentile Background Indoor Air Concentration

^{* -} Guideline values established in Table 3.1 of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (May 2006).
*** - 90th Percentile of the Building Assessment and Survey Evaluation (BASE) Database, SUMMA Canister Method - Indoor Air (Table C2 in Appendix C of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006).

U - Analyzed for but not detected above the laboratory reporting limit

J - Estimated value
R.L. - Laboratory Reporting Limit

Table 3 (Page 4 of 4): Summary of S ANALYTE				alytical Re	esults. (Garlock	Sealing 1	Γechno						Y.				
(ug/m³)	Air Guideline Values*	Background Outdoor Air**	Background Indoor Air***	KI Z	-SSV-6	s 1	KI 2	Z-IA-6	34	MPLE IDE	-SSV-			Z-IA-7	1	KI Z	-OA-1	
Sample Date	Values	Cutubbi Aii	IIIdooi Ali		3/2015			/2015			/2015			/2015			/2015	
·																		
VOCs by EPA Method TO-15						R.L.			R.L.			R.L.			R.L.			R.L.
1,1,1-Trichloroethane		2.6	20.6		U	0.82		U	0.82		U	0.82		U	0.82		U	0.82
1,1,2,2-Tetrachloroethane					U	1.0		U	1.0		U	1.0		U	1.0		U	1.0
1,1,2-Trichloroethane		<1.6	<1.5		U	0.82		U	0.82		U	0.82		U	0.82		U	0.82
1,1-Dichloroethane		<0.6	<0.7		UJ	0.61		UJ	0.61		UJ	0.61		UJ	0.61		UJ	0.61
1,1-Dichloroethene		<1.4	<1.4		U	0.59		U	0.59		U	0.59		U	0.59		U	0.59
1,2,4-Trichlorobenzene		<6.4	<6.8		U	1.1		U	1.1		U	1.1		U	1.1		U	1.1
1,2,4-Trimethylbenzene		5.8	9.5	6.8			0.79			7.2			0.79				U	0.74
1,2-Dibromoethane		<1.6	<1.5		U	1.2		U	1.2		U	1.2		U	1.2		U	1.2
1,2-Dichlorobenzene		<1.2	<1.2		U	0.90		U	0.90		U	0.90		U	0.90		U	0.90
1,2-Dichloroethane		<0.8	<0.9		U	0.61		U	0.61		U	0.61		U	0.61		U	0.61
1,2-Dichloropropane		<1.6	<1.6		U	0.69		U	0.69		U	0.69		U	0.69		U	0.69
1,3,5-Trimethylbenzene		2.7	3.7	2.5				U	0.74	2.9			0.59	J			U	0.74
1,3-butadiene		<3.4	<3.0		U	0.33		U	0.33		U	0.33		U	0.33		U	0.33
1,3-Dichlorobenzene		<2.2	<2.4		U	0.90		U	0.90		U	0.90		U	0.90		U	0.90
1,4-Dichlorobenzene		1.2	5.5		U	0.90		U	0.90		U	0.90		U	0.90		U	0.90
1,4-Dioxane					U	1.1		U	1.1		U	1.1		U	1.1		U	1.1
2,2,4-trimethylpentane				0.70				U	0.70	0.70				U	0.70		U	0.70
4-ethyltoluene		3	3.6	2.7				U	0.74	2.6				U	0.74		U	0.74
Acetone		43.7	98.9	45			12			34			12			12		
Allyl chloride					U	0.47		U	0.47		U	0.47		U	0.47		U	0.47
Benzene		6.6	9.4	1.8			0.83			2.9			0.80			0.89		
Benzyl chloride		<6.4	<6.8		U	0.86		U	0.86		U	0.86		U	0.86		U	0.86
Bromodichloromethane					U	1.0		U	1.0		Ū	1.0		Ū	1.0		Ü	1.0
Bromofluorobenzene					Ü	0		Ü	0		Ü	0		Ü	0		IJ	0
Bromoform					Ü	1.6		U	1.6		Ü	1.6		Ü	1.6		IJ	1.6
Bromomethane		<1.6	<1.7		U	0.58		IJ	0.58		IJ	0.58		IJ	0.58		IJ	0.58
Carbon disulfide		3.7	4.2	5.3	-	0.50		U	0.47	8.4		1	0.37	J	0.50		U	0.47
Carbon tetrachloride		0.7	<1.3	0.44		1	0.57	U	0.47	0.44		1	0.37	U	0.25	0.63	U	0.47
Chlorobenzene		<0.8	<0.9	0.44	U		0.57	U		0.44	U			II.	0.25	0.63	Ш	0.69
						0.69			0.69			0.69		IJ			IJ	
Chloroethane		<1.2	<1.1	0.70	U	0.40		U	0.40	4.0	U	0.40		-	0.40		•	0.40
Chloroform		0.6	1.1	0.73				U	0.73	1.0			0.07	U	0.73	0.00	U	0.73
Chloromethane		3.7	3.7		U	0.31	1.1				U	0.31	0.97			0.99		
cis-1,2-Dichloroethene		<1.8	<1.9		U	0.59		U	0.59		U	0.59		U	0.59		U	0.59
cis-1,3-Dichloropropene		<2.2	<2.3		U	0.68		U	0.68		U	0.68		U	0.68		U	0.68
Cyclohexane				2.2				U	0.52	3.0				U	0.52		U	0.52
Dibromochloromethane					U	1.3		U	1.3		U	1.3		U	1.3		U	1.3
Ethyl acetate		1.5	5.4		U	0.90		U	0.90		U	0.90		U	0.90		U	0.90
Ethylbenzene		3.5	5.7	4.6				U	0.65	4.4				U	0.65		U	0.65
Freon 11				1.7			1.5			1.9			1.4			1.4		
Freon 113					U	1.1		U	1.1		U	1.1		U	1.1		U	1.1
Freon 114					U	1.0		U	1.0		U	1.0	0.91	J			U	1.0
Freon 12					U	0.74	3.3			2.5			3.0			2.9		
Heptane				10			0.61			9.0				U	0.61		U	0.61
Hexachloro-1,3-butadiene		<6.4	<6.8		U	1.6		U	1.6		U	1.6		U	1.6		U	1.6
Hexane		6.4	10.2		U	0.53	0.81				U	0.53		U	0.53		U	0.53
Isopropyl alcohol				9.1			4.4				U	0.37	5.0				U	0.37
m&p-Xylene	1	12.8	22.2	16	J		0.78	J		18	J		1.0	J		0.61	J	
Methyl Butyl Ketone	1]		U	1.2		U	1.2		U	1.2		U	1.2		U	1.2
Methyl Ethyl Ketone		11.3	12	9.1			1.8			8.0	J		1.8			0.74	J	
Methyl Isobutyl Ketone					UJ	1.2		UJ	1.2		UJ	1.2		UJ	1.2		UJ	1.2
Methyl tert-butyl ether		6.2	11.5		U	0.54		U	0.54		U	0.54		U	0.54		U	0.54
Methylene chloride	60	6.1	10	2.5			0.45	J			U	0.52		U	0.52		U	0.52
o-Xylene		4.6	7.9	5.2				U	0.65	5.7			0.52	J			U	0.65
Propylene		-	-		U	0.26		U	0.26		U	0.26		Ü	0.26		Ü	0.26
Styrene		1.3	1.9	5.9		1		U	0.64	6.3		1		U	0.64		U	0.64
Tetrachloroethylene	100	6.5	15.9	0.68	J			U	1.0	0.75	J			U	1.0		IJ	1.0
Tetrahydrofuran	100	0.0	13.3	0.00	U	0.44		U	0.44	0.73	U	0.44		IJ	0.44		IJ	0.44
Toluene		33.7	43	9.4	U	U.44	3.1	U	0.44	11	U	0.44	5.4	U	0.44	1.1	U	0.44
	1	33.1	40	3.4	- 11	0.50	5.1	- 11	0.50	- 11	- 11	0.50	5.4	U	0.50	1.1	U	0.50
trans-1,2-Dichloroethene		-4.4	-1.0		U	0.59		U	0.59		U	0.59		IJ	0.59		IJ	0.59
trans-1,3-Dichloropropene	_	<1.4	<1.3	4.0	U	0.68		U	0.68	10	U	0.68		-	0.68		-	0.68
Trichloroethene	5	1.3	4.2	1.6	U			U	0.21	1.2	U			U	0.21		U	0.21
Vinyl Barrida	1]			0.53			0.53		-	0.53		U	0.53		•	
Vinyl Bromide					U	0.66		U	0.66		U	0.66		U	0.66		U	0.66
Vinyl chloride All values reported as un/m ³	<u> </u>	<1.8	<1.9	I	U	0.10		U	0.10		U	0.10		U	0.10		U	0.10

All values reported as ug/m³

^{* -} Guideline values established in Table 3.1 of the NYSDOH Gudance for Evaluating Soil Vapor Intrusion in the State of New York (May 2006).

^{** - 90}th Percentille of the Building Assessment and Survey Evaluation (BASE) Databases, SUMMA Canister Method - Outdoor Air (Table C2 in Appendix C of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006).
*** - 90th Percentile of the Building Assessment and Survey Evaluation (BASE) Database, SUMMA Canister Method - Indoor Air (Table C2 in Appendix C of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006).

U - Analyzed for but not detected above the laboratory reporting limit

J - Estimated value R.L. - Laboratory Reporting Limit

Bold analyte indicates it is used in Garlock's manufacturing process

Bold and shaded cell indicates result exceeds the NYSDOH Guideline Value

Bold and thick outlined cell indicates result is above the 90th Percentile Background Outdoor Air Concentration
Bold, thick outlined, and shaded cell indicates result is above the 90th Percentile Background Indoor Air Concentration

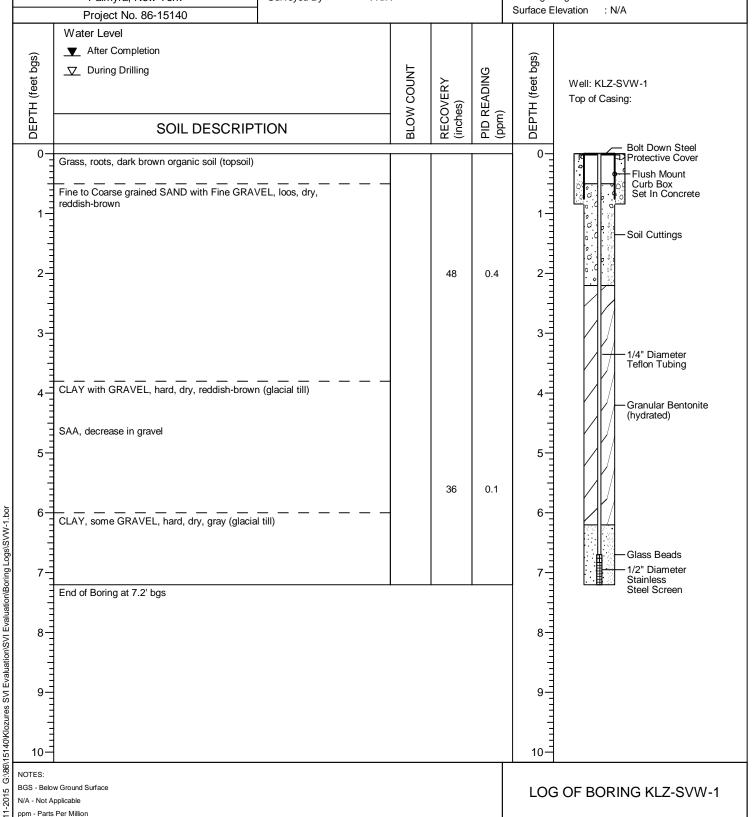
Garlock Sealing Technologies Klozures BCP Site (#C859001) 1666 Division Street Palmyra, New York

SAA - Same As Above

Depth of Boring : 7.2-feet bgs
Drilling Contractor : Parratt-Wolff

Driller : Shawn B.

Drilling Method : Direct Push
Sample Equipment : 4' Macrocore
Field Geologist : Ian McNamara


Initial Depth to GW : N/A Stable Depth to GW : N/A Surveyed By : N/A LOG OF BORING KLZ-SVW-1

(Page 1 of 1)

(Page 1 of 1)

Date Started : February 5, 2015
Date Completed : February 5, 2015

Northing/Latitude : N/A
Easting/Longitude : N/A
Surface Elevation : N/A

Garlock Sealing Technologies Klozures BCP Site (#C859001) 1666 Division Street

03-11-2015 G:\86\15140\Klozures SVI Evaluation\SVI Evaluation\Boring Logs\SVW-2.bor

SAA - Same As Above

: 7.1-feet bgs Depth of Boring **Drilling Contractor** : Parratt-Wolff

Driller : Shawn B. **Drilling Method** : Direct Push

Sample Equipment : 4' Macrocore Field Geologist : Ian McNamara

: N/A Initial Depth to GW Stable Depth to GW : N/A

LOG OF BORING KLZ-SVW-2

(Page 1 of 1)

(Page 1 of 1)

Date Started : February 5, 2015 Date Completed : February 5, 2015

Northing/Latitude : N/A

	Palmyra, New York	Surveyed By : N/A				Easting/Lo	ongitude : N/A
	Project No. 86-15140			1	\vdash	T T	. 14/1
DEPTH (feet bgs)	Water Level ▼ After Completion □ During Drilling		BLOW COUNT	RECOVERY (inches)	PID READING (ppm)	DEPTH (feet bgs)	Well: KLZ-SVW-2 Top of Casing:
DEF	SOIL DESCRIPTION		BLC	REC (incl	E pd		
0- 1- 3- 4-	Gravel Fine to Coarse grained SAND with Fine GRAN reddish-brown, trace of brick fragments and circ	/EL, loose, dry,		42	0.2	2- 3- 3- 5-	Bolt Down Steel Protective Cover Flush Mount Curb Box Set In Concrete Soil Cuttings 1/4" Diameter Teflon Tubing Granular Bentonite (hydrated)
6	CLAY and SILT, some GRAVEL, medium-stif	f, dry, gray (glacial till)		36	0.1	6	- Glass Beads - 1/2" Diameter
/ -	End of Boring at 7.1' bgs			1	<u> </u>	7-	Stainless Steel Screen
8-						8 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
NOTES: BGS - Belov N/A - Not A	w Ground Surface pplicable					LOG	G OF BORING KLZ-SVW-2
pm - Parts	Per Million						(Page 1 of 1)

Garlock Sealing Technologies Klozures BCP Site (#C859001) 1666 Division Street

: 7.2-feet bgs Depth of Boring **Drilling Contractor** : Parratt-Wolff

Driller : Shawn B. **Drilling Method** : Direct Push

Sample Equipment : 4' Macrocore Field Geologist : Ian McNamara

: N/A Initial Depth to GW Stable Depth to GW : N/A

LOG OF BORING KLZ-SVW-3

(Page 1 of 1)

Date Started : February 5, 2015 Date Completed : February 5, 2015

Northing/Latitude : N/A

	Palmyra, New York	Stable Depth to GW : N/A Surveyed By : N/A				Easting/Lo Surface El	ngitude : N/A
	Project No. 86-15140		I	ı		T I	evalion . IV/A
DEPTH (feet bgs)	Water Level ▼ After Completion ▼ During Drilling		BLOW COUNT	VERY s)	PID READING (ppm)	DEPTH (feet bgs)	Well: KLZ-SVW-3 Top of Casing:
DEPT	SOIL DESCRIP	TION	BLOW	RECOVERY (inches)	PID RE (ppm)	DEPTH	
0-	Grass, roots, dark brown organic soil (topsoil) CLAY with GRAVEL and Fine to Coarse Grain gray, trace of concrete and brick fragments (fil	ned SAND, hard, dry,				0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Bolt Down Steel Protective Cover Flush Mount Curb Box Set In Concrete
2-				42	1.5	2-	Soil Cuttings
3-	SAA, asphalt, brick fragments. hard, dry					3-	1/4" Diameter Teflon Tubing — Granular Bentonite
5-				30	0.2	5-1111	(hydrated)
Boring Logs/SVW-3.bol	CLAY with GRAVEL, hard, dry, reddish-brown End of Boring at 7.2' bgs	n (glacial till)				6- - 7-	Glass Beads 1/2" Diameter Stainless Steel Screen
G:\(\text{B6\15140\Klozures S\M Evaluation\S\M Evaluation\Boring Logs\;SVW-3.bor\) G:\(\text{D1}\) G:\(B6\15140\Klozures S\M Evaluation\S\M Evaluation\Boring Logs\;SVW-3.bor\) G:\(\text{B6\15140\Klozures S\M Evaluation\Boring Logs\;SVW-3.bor\) G:\(\text{B6\15140\Klozures S\M Evaluation\Boring Logs\;SVW-3.bor\) G:\(\text{B6\15140\Klozures S\M Evaluation\Boring S						8-1	
15140/Klozures SVI Ev 101					,	9-	
BGS - Beld						LOG	OF BORING KLZ-SVW-3
Ppm - Part SAA - San	ts Per Million me As Above		(Page 1 of 1)				

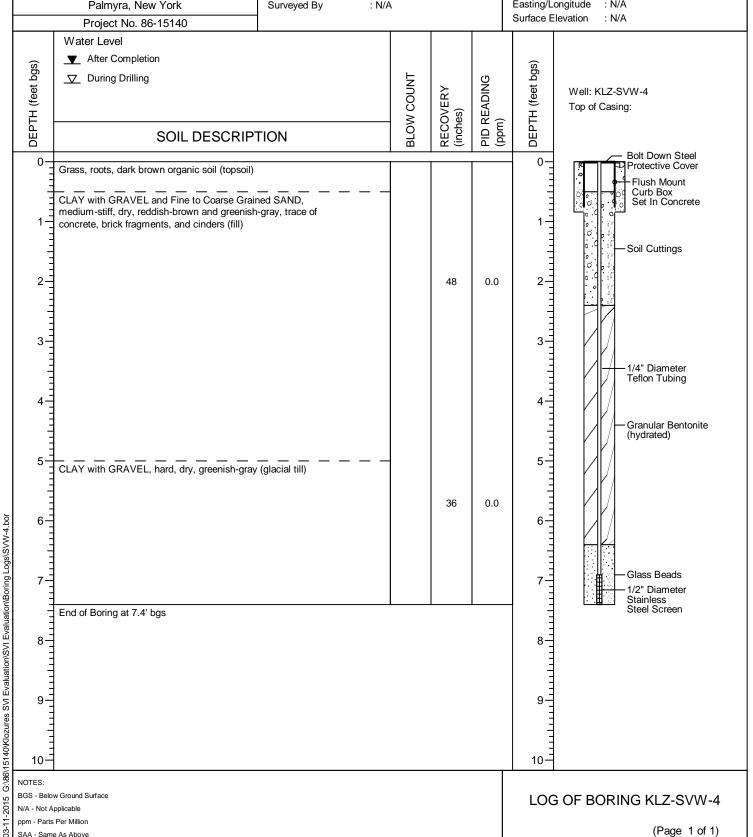
Garlock Sealing Technologies Klozures BCP Site (#C859001) 1666 Division Street Palmyra, New York

SAA - Same As Above

Depth of Boring : 7.4-feet bgs **Drilling Contractor** : Parratt-Wolff

Driller : Shawn B. **Drilling Method** : Direct Push

Sample Equipment : 4' Macrocore Field Geologist : Ian McNamara


: N/A Initial Depth to GW Stable Depth to GW : N/A Surveyed By : N/A

LOG OF BORING KLZ-SVW-4

(Page 1 of 1)

Date Started : February 5, 2015 **Date Completed** : February 5, 2015

Northing/Latitude : N/A Easting/Longitude : N/A

Garlock Sealing Technologies Klozures BCP Site (#C859001) 1666 Division Street Palmyra, New York

G:\86\15140\Klozures SVI Evaluation\SVI Evaluation\Boring Logs\SVW-5.bor

03-11-2015

ppm - Parts Per Million

SAA - Same As Above

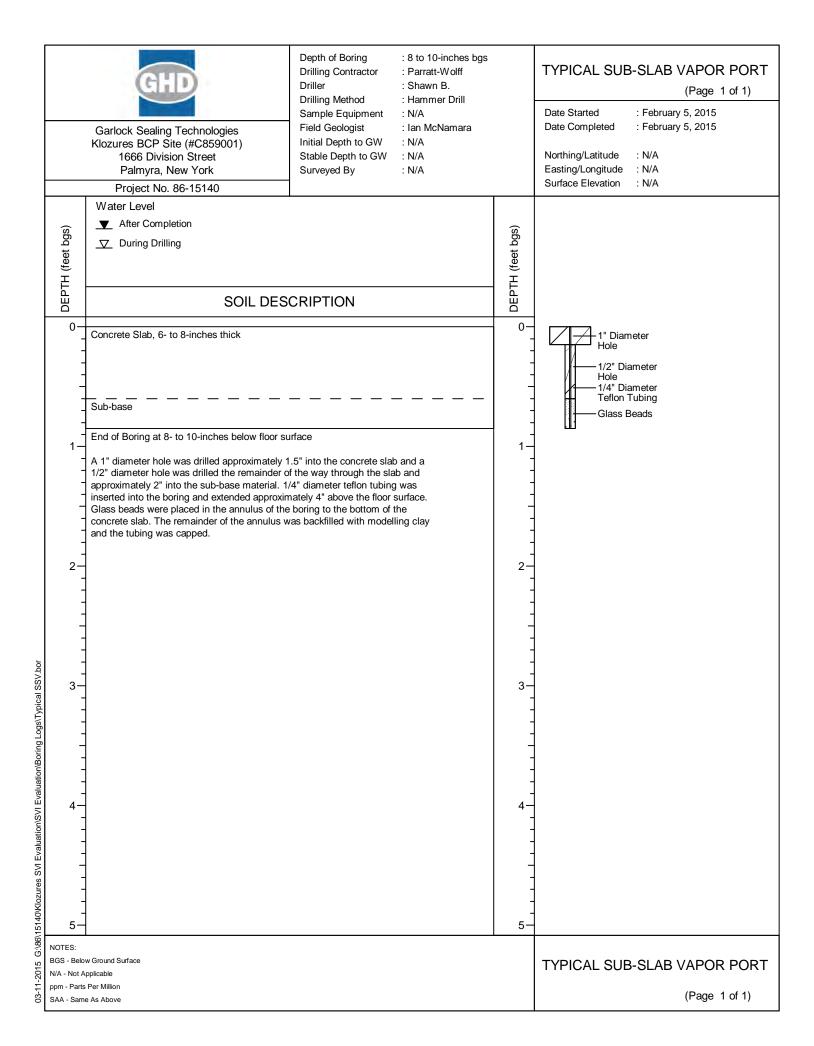
Depth of Boring : 4-feet bgs
Drilling Contractor : Parratt-Wolff

Driller : Shawn B.
Drilling Method : Direct Push

Sample Equipment : 4' Macrocore Field Geologist : Ian McNamara

Initial Depth to GW : N/A Stable Depth to GW : N/A Surveyed By : N/A

LOG OF BORING KLZ-SVW-5


(Page 1 of 1)

(Page 1 of 1)

Date Started : February 5, 2015
Date Completed : February 5, 2015

Northing/Latitude : N/A
Easting/Longitude : N/A
Surface Elevation : N/A

	Palmyra, New York Surveyed By : N/A					Easting/Lo		
	Project No. 86-15140				ı		Surface El	evation : N/A
DEPTH (feet bgs)	Water Level ▼ After Completion ✓ During Drilling SOIL DESCRIP	TION		BLOW COUNT	RECOVERY (inches)	PID READING (ppm)	DEPTH (feet bgs)	Well: KLZ-SVW-5 Top of Casing:
-	0012 22001111			Δ_	æ ≔	<u> </u>	_	— Bolt Down Steel
2- 3-	Grass, roots, dark brown organic soil (topsoil) SILT with Fine to Medium Grained SAND and medium-stiff, dry, trace cinders (fill)	GRAVEL,			42	1.5	2 1 1 2 3 4	Protective Cover Flush Mount Curb Box Set In Concrete Granular Bentonite (hydrated) 1/4" Diameter Teflon Tubing Glass Beads 1/2" Diameter Stainless Steel Screen
5	CLAY with Fine to Coarse Grained SAND and reddish-brown (glacial till)	GRAVEL, hard, dry			30	0.2	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
9 - 10 - NOTES:	End of Boring at 7' bgs Second boring advanced to 4' bgs approximat KLZ-SVW-5 was installed there due to wet so first boring.						8	
<u> </u>	BGS - Below Ground Surface N/A - Not Applicable PORT PORT PORT PORT PORT PORT PORT PORT							

APPENDIX G

SITE MANAGEMENT FORMS

GARLOCK SEALING TECHNOLOGIES KLOZURES BCP SITE (SITE #C859001) INSPECTION FORM

	Inspection Data Annual	Co	onstruction Post-Construction	
	Location:			
	Inspection Date:			
	Inspected By:		_	
1		Y or N	Problem Identified/Action Taken	
	Condition of pavement : Are there areas of pavement or crushed stone where sub-soil is exposed?			
	Condition of building floors (lowest building levels): Are any cracks or gaps present?			
	Stockpiled Materials : Are temporary soil stockpiles or construction materials protected from erosion?			
	Erosion Control : Are erosion/storm water control devices in place?			
	Backfill : Has backfill been applied to excavation areas in accordance with the site Excavation Plan?			
	Dust Control : Have dust control measures been implemented as needed during the conduct of construction work?			
	If current inspection is construction or post-con	istruction,	describe the nature of the construction project:	

If the current inspection is due to an incident or accident, describe the nature of the incident/accident and the corrective measures being taken.

APPENDIX H

GREEN REMEDIATION FORM

Summary of Green Remediation Metrics for Site Management

Site Name:	Site Code:
Address:	City:
State:	County:
Start Date:	 covered by the Initial Report submittal)
Current Reporting Period	_
Reporting Period From:	To:
Contact Information	
Preparer's Name:	Phone No.:
Preparer's Affiliation:	

I. Energy Usage: Quantify the amount of energy used directly on-site and the portion of that derived from renewable energy sources.

	Current Reporting Period	Total to Date
Fuel Type 1 (e.g. natural gas (cf))		
Fuel Type 2 (e.g. fuel oil, propane (gals))		
Electricity (kWh)		
Of that Electric usage, provide quantity:		
Derived from renewable sources (e.g. solar,		
wind)		
Other energy sources (e.g. geothermal, solar		
thermal (Btu))		

Provide a description of all energy usage reduction programs for the site in the space provided on Page 3.

II. Solid Waste Generation: Quantify the management of solid waste generated onsite.

	Current Reporting Period (tons)	Total (tons)	to	Date
Total waste generated on-site				
OM&M generated waste				
Of that total amount, provide quantity:				
Transported off-site to landfills				
Transported off-site to other disposal facilities				
Transported off-site for recycling/reuse				
Reused on-site				

Provide a description of any implemented waste reduction programs for the site in the space provided on Page 3.

III. Transportation/Shipping: Quantify the distances travelled for delivery of supplies and lab-supplied bottles, shipping of laboratory samples, and the removal of waste.

	Current Reporting Period (miles)	Total to Date (miles)
Standby Engineer/Contractor		
Laboratory Courier/Delivery Service		
(bottle and sample delivery)		
Waste Removal/Hauling		

Provide a description of all mileage reduction programs for the site in the space provided on Page 3. Include specifically any local vendor/services utilized that are within 50 miles of the site.

IV. Water Usage: Quantify the volume of water used on-site from various sources.

	Current	Total to Date
	Reporting Period	(gallons)
	(gallons)	
Total quantity of water used on-site		
(not including treated water)		
Of that total amount, provide quantity:		
Public potable water supply usage		
Surface water usage		
On-site groundwater usage		
Collected or diverted storm water usage		

Provide a description of any implemented water consumption reduction programs for the site in the space provided on Page 3.

V. Land Use and Ecosystems: Quantify the amount of land and/or ecosystems disturbed and the area of land and/or ecosystems restored to a pre-development condition (i.e. Green Infrastructure).

	Current Reporting Period (acres)	Total to E (acres)	Date
Land disturbed			
Land restored			

Provide a description of any implemented land restoration/green infrastructure programs for the site in the space provided on Page 3.

Description of green remediation programs reported above
(Attach additional sheets if needed)
Energy Usage:
Waste Generation:
waste Generation:
Transportation/Shipping:
Water usage:
Land Use and Ecosystems:
Recommendations/Other:
210002222222222222222222222222222222222
CONTRACTOR CERTIFICATION
I, (Name) do hereby certify that I am
(Contractor Name), which
is responsible for the work documented on this form. According to my knowledge and
belief, all of the information provided in this form is accurate and the site management program complies with the DER-10, DER-31, and CP-49 policies.
program complies with the DEK-10, DEK-31, and CF-49 policies.
Date Contractor

APPENDIX I

REMEDIAL SYSTEM OPTIMIZATION TABLE OF CONTENTS

REMEDIAL SYSTEM OPTIMIZATION FOR GARLOCK SEALING TECHNOLOGIES, LLC – KLOZURES BCP SITE

TABLE OF CONTENTS

- 1.0 INTRODUCTION
- 1.1 SITE OVERVIEW
- 1.2 PROJECT OBJECTIVES AND SCOPE OF WORK
- 1.3 REPORT OVERVIEW
- 2.0 REMEDIAL ACTION DESCRIPTION
- 2.1 SITE LOCATION AND HISTORY
- 2.2 REGULATORY HISTORY AND REQUIREMENTS
- 2.3 CLEAN-UP GOALS AND SITE CLOSURE CRITERIA
- 2.4 PREVIOUS REMEDIAL ACTIONS
- 2.5 DESCRIPTION OF EXISTING REMEDY
- 2.5.1 System Goals and Objectives
- 2.5.2 System Description
- 2.5.3 Operation and Maintenance Program
- 3.0 FINDINGS AND OBSERVATIONS
- 3.1 SUBSURFACE PERFORMANCE
- 3.2 TREATMENT SYSTEM PERFORMANCE
- 3.3 REGULATORY COMPLIANCE
- 3.4 MAJOR COST COMPONENTS OR PROCESSES
- 3.5 SAFETY RECORD
- 4.0 RECOMMENDATIONS
- 4.1 RECOMMENDATIONS TO ACHIEVE OR ACCELERATE SITE CLOSURE
- 4.1.1 Source Reduction/Treatment
- 4.1.2 Sampling
- 4.1.3 Conceptual Site Model (Risk Assessment)
- 4.2 RECOMMENDATIONS TO IMPROVE PERFORMANCE
- 4.2.1 Maintenance Improvements
- 4.2.2 Monitoring Improvements

- 4.2.3 Process Modifications
- 4.3 RECOMMENDATIONS TO REDUCE COSTS
- 4.3.1 Supply Management
- 4.3.2 Process Improvements or Changes
- 4.3.3 Optimize Monitoring Program
- 4.3.4 Maintenance and Repairs
- 4.4 RECOMMENDATIONS FOR IMPLEMENTATION

APPENDIX J

REQUEST TO IMPORT/REUSE FILL MATERIAL FORM

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e) and 6NYCRR Part 360.13. Use of this form is not a substitute for reading the applicable regulations and Technical Guidance document.

SECTION 1 - SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that passes a size 100 sieve?

Is this virgin material from a permitted mine or quarry?

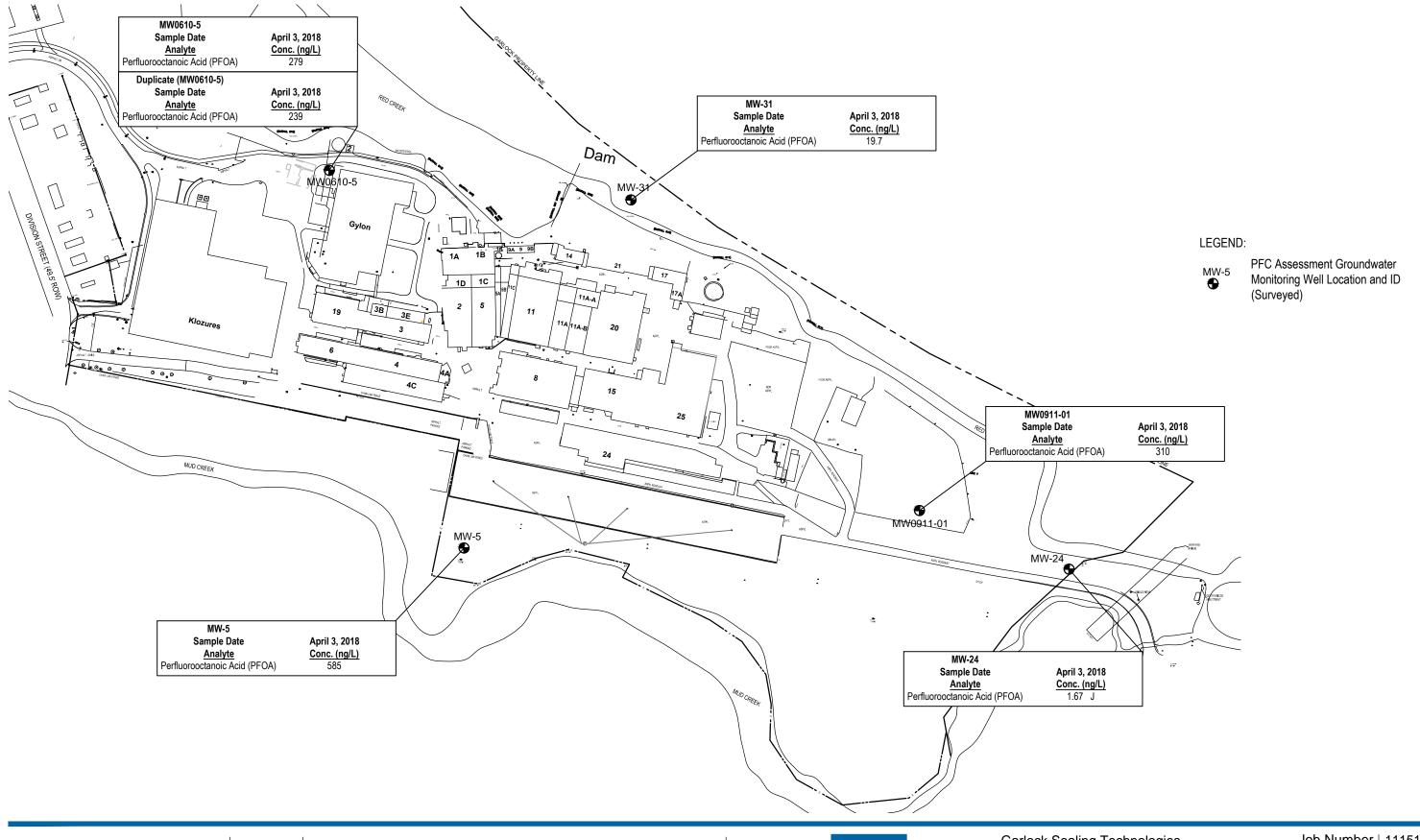
Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.4(e)5 (other material), no chemical testing needed.


SECTION 3 CONT'D - SAMPLING				
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):				
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.				
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.				
SECTION 4 – SOURCE OF FILL				
Name of person providing fill and relationship to the source:				
Location where fill was obtained:				
Identification of any state or local approvals as a fill source:				
If no approvals are available, provide a brief history of the use of the property that is the fill source:				
Provide a list of supporting documentation included with this request:				

The information provided on this form is	accurate and complete.
Signature	Date
Print Name	-
Firm	-

ATTACHMENTS

ATTACHMENT 1

HISTORICAL GARLOCK FACILITY PFAS ASSESSMENT DATA

NOTES:

- 1. Concentrations reported in nanograms per liter (ng/L) parts per trillion (ppt)
- 2. Site features based on field surveys provided by others.

Garlock Sealing Technologies 1666 Division Street, Palmyra, NY PFC Groundwater Assessment

Site Layout and Groundwater Analytical Results - PFOA Job Number | 11151882 Revision | A Date | 05.08.2018

Figure 2

Table 1 Groundwater Elevations

Groundwater Elevations and Volumes													
Monitoring Well I.D.	Date	Reference Point	Reference Elevation (feet)	DTW (feet)	DOW (feet)	Water Elevation (feet)	Volume (gal)						
MW-5	4/3/2018	Top of PVC	436.67	8.22	19.40	428.45	1.81						
MW-24	4/3/2018	Top of PVC	426.58	3.11	14.80	423.47	1.89						
MW-31	4/3/2018	Top of PVC	426.62	1.71	17.90	424.91	2.62						
MW0911-01	9/24/2014 12/4/2014			10.27 10.15	16.62 16.62	424.14 424.26	1.03 1.05						
	3/23/2015 6/29/2015			7.65	16.62 16.62	425.94 426.76	1.32						
	9/24/2015 12/21/2015 3/24/2016	Top of PVC		9.67 8.58	16.62 16.62 16.65	424.33 424.74 425.83	1.06 1.13 1.31						
	6/22/2016 9/28/2016		434.41	10.31	16.67 16.46	424.10 422.51	1.03						
	12/22/2016 3/21/2017			8.70 8.55	16.51 16.60	425.71 425.86	1.27						
	6/28/2017 9/26/2017			9.51 10.00	16.69 16.70	424.90 424.41	1.16 1.09						
	12/19/2017 4/3/2018			9.10 8.11	16.70 16.70	425.31 426.30	1.23						
MW0610-05	9/22/2014 12/5/2014 3/23/2015			4.08 4.79 3.30	15.35 15.35 15.35	427.45 426.74 428.23	1.83 1.71 1.95						
	6/29/2015 9/24/2015			3.62 4.67	15.35 15.35	426.23 427.91 426.86	1.90						
	12/21/2015 3/24/2016	Top of PVC		4.42	15.52 15.48	427.11 427.55	1.80						
	6/22/2016 9/28/2016		431.53	4.30 4.80	15.50 15.30	427.23 426.73	1.81						
	12/22/2016 3/21/2017			4.00	15.34 15.49	427.53 427.63	1.84						
	6/28/2017 9/26/2017			4.45 4.73	15.60 15.60	427.08 426.80	1.81 1.76						
	12/19/2017 4/3/2018			4.48 3.62	15.66 15.64	427.05 427.91	1.81 1.95						

Table 2 (Page 1 of 1): Summary of Groundwater Sample Laboratory Analytical Results. Garlock Sealing Technologies. 1666 Division Street, Palmyra, NY. April 2018.

Analyte	US EPA Health	MW-5		MW-24 4/3/2018		MW-31 4/3/2018			MW0610-5 4/3/2018			MW0911-01 4/3/2018			Duplicate (MW0610-5) 4/3/2018				Field Blank 4/3/2018				
(ng/L)	Advisory Level																						
PFCs by Modified EPA Method 537						4/3/2016 MDL		4/3/2016 MDL		4/3/2018 MDL					RPD	4/3/2010 MDL							
Perfluorobutanoic Acid (PFBA)		5.89		0.117	0.943	- 1	0.117	3.53		0.113	30.9		0.117	24.2		0.121	24.9		0.117	21.51%		U	0.117
Perfluoropentanoic Acid (PFPeA)		3.03	- 11	0.076	0.343	11	0.076	3.33	U	0.113	66.2		0.076	8.44		0.079	54.6		0.076	19.21%		11	0.076
, ,		1.21	ı	0.078	0.557	ı	0.076	0.641	ı	0.074	00.2	- 11	0.076	1.44		0.102	34.0	11	0.076			11	0.078
Perfluorobutanesulfonic Acid (PFBS)		5.18	J		0.337	J		0.041	J	0.095	71.4	U	0.096	13.8	J	0.102	59.1	U		N/A		11	0.096
Perfluorohexanoic Acid (PFHxA)				0.113		J	0.113		J							-			0.113	18.85%			
Perfluoroheptanoic Acid (PFHpA)		5.78		0.083	0.282	J	0.083	0.731	J	0.080	32.4		0.083	18.6		0.086	27.1		0.083	17.82%			0.083
Perfluorohexanesulfonic Acid (PFHxS)		0.678	J	0.096	0.382	J	0.096	0.152	J	0.093	0.382	J	0.096		U	0.100		U	0.096	119.67%		U	0.096
Perfluorooctanoic Acid (PFOA)	70	585		0.045	1.67	J	0.045	19.7		0.043	279		0.045	310		0.047	239		0.045	15.44%	0.843	J	0.045
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)		0.286	J	0.173	0.182	J	0.173		U	0.167	77.1		0.173		U	0.180	64.5		0.173	17.80%		U	0.173
Perfluoroheptanesulfonic Acid (PFHpS)		0.464	J	0.138		U	0.138		U	0.134		U	0.138		U	0.144		U	0.138	N/A		U	0.138
Perfluorononanoic Acid (PFNA)		1.68	J	0.090	0.193	J	0.090		U	0.087	1.15	J	0.090	2.78		0.093	0.871	J	0.090	27.61%		U	0.090
Perfluorooctanesulfonic Acid (PFOS)	70	3.93		0.100	0.525	J	0.100	0.183	J	0.096	0.536	J	0.100	1.70	J	0.103	0.378	J	0.100	34.57%	0.207	J	0.100
Perfluorodecanoic Acid (PFDA)		3.93		0.170		U	0.170		U	0.164	0.439	J	0.170	2.30		0.176	0.178	J	0.170	84.60%		U	0.170
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)		3.32		0.260		U	0.260		U	0.251	1.01	J	0.260		U	0.269	0.718	J	0.260	33.80%		U	0.260
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)		4.71		0.224		U	0.224		U	0.216		U	0.224		U	0.232		U	0.224	N/A		U	0.224
Perfluoroundecanoic Acid (PFUnA)		7.06		0.171		U	0.171		U	0.165		U	0.171	1.17	J	0.177		U	0.171	N/A		U	0.171
Perfluorodecanesulfonic Acid (PFDS)		6.52		0.198		U	0.198		U	0.192		U	0.198		U	0.206		U	0.198	N/A		U	0.198
Perfluorooctanesulfonamide (FOSA)		3.02		0.202		U	0.202		U	0.196		U	0.202		U	0.210		U	0.202	N/A		U	0.202
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)		4.72		0.333		U	0.333		U	0.321		U	0.333	0.400	J	0.345		U	0.333	N/A		U	0.333
Perfluorododecanoic Acid (PFDoA)		7.45		0.082		U	0.082		U	0.079		U	0.082	0.392	J	0.085	0.111	J	0.082	30.05%	0.086	J	0.082
Perfluorotridecanoic Acid (PFTrDA)		5.61		0.081		U	0.081		U	0.078		U	0.081	0.189	J	0.084		U	0.081	N/A	0.082	J	0.081
Perfluorotetradecanoic Acid (PFTA)		5.83		0.064	0.136	J	0.064	0.124	J	0.062	0.136	J	0.064	0.226	J	0.067	0.146	J	0.064	7.09%	0.125	J	0.064
TOTAL PFAS		662.268			5.277			25.271			560.653			385.637			471.602				1.343		

US EPA Health Advisory Level - Lifetime drinking water health advisory levels (EPA, May 2016). EPA's health advisories are non-enforceable and non-regulatory and provide technical information.

All values reported in nanograms per liter (ng/L) - parts per trillion (ppt)

MDL - Method Detection Limit

U - Analyzed for but not detected above method detection limit identified

J - Indicates an estimated value