

PACTIV CORPORATION

MACEDON FILMS SITE MACEDON, NEW YORK

FINAL REMEDIAL WORK PLAN APRIL 2012 Site # C859025

Index # B8-0669-04-06

Prepared for Pactiv Corporation Canandaigua, New York

REMEDIAL WORK PLAN FOR THE MACEDON FILMS SITE MACEDON, NEW YORK 14502

Prepared for:

PACTIV CORPORATION 2651 BRICKYARD ROAD

CANANDAIGUA, NEW YORK 14424

Prepared by:

URS CORPORATION

77 GOODELL STREET

BUFFALO, NY 14203

APRIL 2012

I, Jack E. Wilcox, P.E., certify that I am currently a NYS registered professional engineer, and that this Remedial Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Jack E. Wilcox, P.E. URS Corporation

TABLE OF CONTENTS

1.0	INTE	RODUCI	TION		1-1
	1.1	Genera	al		1-1
	1.2	Purpos	se		1-1
2.0	BAC	KGROU	ND		2-1
	2.1	Site D	escription		2-1
	2.2	Land U	Use and Z	oning	2-1
	2.3	Site H	istory		2-2
	2.4	Geolog	gy and Hy	drogeology	2-3
3.0	PRE	VIOUS I	NVESTIC	GATIONS	3-1
	3.1	Interin	n Remedia	l Measure	3-2
	3.2	Site In	vestigatio	n Findings	
		3.2.1	Soil		3-3
		3.2.2	Groundy	vater	3-5
		3.2.3	Soil Cor	ntamination In Relation to Groundwater Contamination	3-6
		3.2.4	Standard	ds, Criteria and Guidance Values	3-7
4.0	PRO	POSED	REMEDI	AL ALTERNATIVE	4-1
	4.1	Enviro	onmental E	Easement	4-1
	4.2	Site M	lanagemer	ıt Plan	
		4.2.1	Institutio	onal Control Plan	
			4.2.1.1	Excavation Plan	4-3
			4.2.1.2	Health and Safety Plan	4-3
			4.2.1.3	Community Air Monitoring Plan	4-4
5.0	PRO	JECT SO	CHEDUL	Е	5-1
6.0	REFI	ERENCI	ES		6-1

FIGURES

Figure 1-1	Site Location Map
Figure 3-1	Soil Sampling Locations

Figure 3-2 Groundwater Sampling Locations

TABLES

- Table 3-1Summary of Detected Analytes in Soil
- Table 3-2
 Summary of Detected Analytes in Groundwater

ABBREVIATIONS

Agencies

NYSDEC	New York State Department of Environmental Conservation
USEPA	United States Environmental Protection Agency

Units of Measure

bgs	Below Ground Surface
µg/kg	Micrograms per Kilogram
mg/kg	Milligrams per Kilogram

Regulatory

BCA	Brownfield Site Cleanup Agreement
BCP	Brownfield Cleanup Program
NYCRR	New York Codes, Rules and Regulations
TOGS	Technical and Operational Guidance Series

Environmental

PCE	Tetrachloroethene
SVOC	Semi-volatile Organic Compound
VOC	Volatile Organic Compound

Miscellaneous

RI	Remedial Investigation
URS	URS Corporation

1.0 INTRODUCTION

1.1 <u>General</u>

This *Remedial Work Plan* (RWP) for the Macedon Films Site at 112 Main Street in Macedon, New York, was prepared by URS Corporation on behalf of Pactiv Corporation (Pactiv). This site is being managed under the Brownfield Cleanup Program (BCP) in accordance with Brownfield Site Cleanup Agreement (BCA) number B8-0669-04-06 between Pactiv and the New York State Department of Environmental Conservation (NYSDEC). The site property was sold by Pactiv in January 2001. The location of the Macedon Films Site is shown in Figure 1-1. The NYSDEC identification number for this site is C859025.

1.2 Purpose

URS has prepared this RWP in accordance with the requirements of NYSDEC *Technical Guidance for Site Investigation and Remediation* (DER-10). The purpose of this RWP is to provide guidelines for the completion of necessary actions for implementation of the selected remedy.

2.0 BACKGROUND

2.1 <u>Site Description</u>

Pactiv's former Macedon facility (Macedon Films) is located on Main Street in the Village of Macedon, Wayne County, New York. It occupies 6.95 acres of the westernmost part of a 23.6-acre industrial complex. The 23.6-acre complex includes approximately 92,000 square feet of building space and includes manufacturing facilities for Pliant Corporation (formerly Huntsman Design Products). The location of the site is shown on Figure 1-1.

The site is bordered by a New York State Barge Canal (Barge Canal) spillway and a Pennsylvania Central railroad spur to the north, New York State Route 31 to the south, New York State Route 350 to the west, and Pliant Corporation to the east. Quaker Road and a truck trailer parking area are situated east of Pliant Corporation.

2.2 Land Use and Zoning

The site is currently inactive and the existing manufacturing building is vacant. The specific future land use of the property is unknown, but based on current zoning, future use will be restricted to industrial. Existing deed restrictions (Wayne County, 2001) for the site limit its use to industrial uses. The site is situated within a Village of Macedon Industrial District. The zoning ordinance describes acceptable land uses as "any use of a light industrial nature which involves only the processing, assembly, compounding, or packaging of previously prepared or refined materials". Acceptable uses include manufacture of machinery, fabrication of metal products, fabrication of paper products, fabrication of wood products, food and associated industries, and warehousing or storage of goods. Other acceptable uses are office buildings, scientific or research laboratories, the compounding and processing of pharmaceutical and cosmetic products, commercial storage buildings, and other uses deemed similar in nature by the Planning Board.

2.3 <u>Site History</u>

In the 1920s, the site was developed for vegetable canning operations. Sanborn maps from 1906, 1912, and 1931 show that there were also lumberyards and a creamery previously located on the site.

Polyethylene flexible packaging products were manufactured at the site since the 1950s. Polyethylene resin pellets were processed and extruded to form a film that was subsequently converted into packaging products such as produce bags. Manufacturing operations ceased at the site in July 2004.

Previous investigations (listed in Section 3.0) have indicated the presence of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in soil and groundwater samples collected at various locations throughout the site. However, the data indicated that neither the soil nor the groundwater at the site has been significantly impacted by releases or past operations at the site, and various remedial measures have been completed to address any identified sources of contamination.

Past significant spills/releases have been addressed by various remedial actions. During the 1970s, leaking diesel fuel ASTs and gasoline USTs resulted in impacted soils in the area northeast of Building 11. In 1978, contaminated soils were excavated to approximately 10 feet below ground surface (bgs). Then in 1988, approximately 266 tons of impacted soil were excavated and disposed of off-site during removal of seven underground storage tanks (five cosolvent tanks, one methyl alcohol tank, and one hazardous waste storage tank).

In 1982 approximately 5,000 gallons of lacolene were released to the subsurface and the NYS Barge Canal. The product released to the canal was recovered immediately. A multi-phase remediation system was implemented to recover the product released in the subsurface.

Also during the 1980s, approximately 500 gallons of fuel oil from an AST were released by leaking underground piping. Fuel oil was removed from underground lines, and soil surrounding the lines and the former AST and containment area was excavated. Fuel oil was also recovered by the multi-phase extraction system. Existing deed restrictions (Wayne County, 2001) for the site limit its use to industrial uses and prohibits the use of groundwater beneath the site as a source of potable water.

2.4 Geology and Hydrogeology

Previous investigations completed at the site indicate that the overburden at the site generally consists of brown and gray fine- to medium-grained sand with traces of silt and angular gravel above a one- to two-foot thick layer of brown and gray clay. Bedrock at the site generally occurs between eight and 16.5 feet bgs. Groundwater at the site occurs between 5 and 15 feet bgs, and generally flows from the southwest toward the northeast. Seasonal water level fluctuations in the Barge Canal and spillway affect the localized groundwater flow patterns and water levels beneath the northern portion of the site, but groundwater consistently flows toward the canal spillway in the investigation area. The site geology and hydrogeology is discussed in detail in the RI Report (URS, 2005).

3.0 PREVIOUS INVESTIGATIONS

Previous investigations completed at the site have been documented in the following reports:

- Environmental Priority Initiative Preliminary Assessment, Mobil Chemical Company, Macedon Packaging, USEPA, June 30, 1992.
- Soil-Gas Survey Building 10 Courtyard Storm Drain No. 93 Area, Mobil Chemical Company, Macedon, New York, H&A of New York, January 1995.
- Environmental Audit Tenneco Packaging Specialty Products, Macedon, New York, CH2M Hill, April 19, 1997.
- Summary of Environmental Issues and Investigation Plan, Tenneco Packaging Macedon Plant, IT Corporation, July 1998.
- Site Assessment and Closure of Two Chemical Bulk Storage Tanks, CBS Registration No. 8-000025, Tenneco Packaging Macedon Facility, IT Corporation, January 1999.
- SPDES Investigation Report, URS, 1999.
- Soil and Groundwater Investigation for Pactiv Macedon, New York, URS, 2000.
- Revised Water Table Maps Soil Gas Survey Former Pactiv Facility Macedon, New York, URS, 2002a.
- SWMU Questionnaire for Macedon, NY, URS, 2002b.
- Remedial Investigation Report, Macedon Films Site, URS, 2005.
- Supplemental Investigation Report, Macedon Films Site, URS, 2009.
- Cadmium Contaminated Soil Investigation Letter Report, Macedon Films Site, Pactiv/URS, 2011a.
- Cadmium Contaminated Soil Investigation and Excavation Letter Report, Macedon Films Site, Pactiv/URS, 2011b.

3.1 Interim Remedial Measure

One (1) surface soil sample collected in the "courtyard area" during the Supplemental Remedial Investigation (URS, 2009) contained cadmium in excess of its NYSDEC Part 375 Industrial Reuse Soil Cleanup Objective (SCO). In November 2010, the NYSDEC requested that this sample location and adjacent soils be excavated and removed. This excavation was undertaken in January 2011 (Pactiv/URS, 2011a). However, cadmium was detected at a concentration exceeding the industrial soil cleanup objective (60 mg/kg) in one confirmation soil sample, SS-4-C4. In June 2011, additional shallow soil sampling was performed in the courtyard area to further delineate cadmium contamination identified in sample SS-4-C4. A URS geologist collected 15 surface soil samples (0 to 6 inches bgs) and 3 subsurface samples (6 to 12 inches bgs). Sample locations were arranged in a grid with a spacing of approximately 2-feet.

Cadmium concentrations in surface soil samples ranged from 27.9 to 623 mg/kg. Cadmium was detected at concentrations exceeding the restricted use industrial soil cleanup objective (60 mg/kg) in 11 of 15 surface soil samples. Cadmium concentrations in the shallow subsurface soil samples (6-12 inches) ranged from 10.3 to 17.9 mg/kg, falling below the SCO.

Based on these sampling results, an interim remedial measure was implemented to remove shallow cadmium contaminated soil from the courtyard area (Pactiv/URS, 2011b). On July 11, 2011, URS completed the hand excavation of approximately 4 cubic yards of soil. The soil was excavated to a depth of approximately 6 inches bgs over an area of approximately 220 square feet. Confirmation soil sampling was performed to demonstrate complete removal of cadmium contaminated soil to below the industrial soil cleanup objective. URS collected four confirmation soil samples from locations near each corner of the excavation area. The confirmation samples were submitted to Columbia Analytical Services (CAS) in Rochester, New York, for analysis of cadmium by US EPA method 6010C. Laboratory results indicate that all confirmation soil sample results were below the industrial soil cleanup objective. The excavated area was not backfilled because the surrounding buildings are scheduled to be demolished, and the area will subsequently be re-graded.

Excavated soil was placed in 55-gallon open-top steel drums. URS collected a composite soil sample from the drums for waste characterization. The sample was submitted to CAS' laboratory for analysis of toxicity characteristic leaching procedure (TCLP) RCRA metals. The

analysis indicated that the excavated soil contained leachable cadmium requiring disposal of the soil at a facility permitted to accept hazardous waste. The soils were removed from the site on November 9, 2011, and transported under hazardous waste manifest to the RINECO waste management facility located in Benton, Arkansas. A letter report documenting the removal of cadmium contaminated soil (Pactiv/URS, 2011b) was submitted to the NYSDEC in September 2011.

3.2 Site Investigation Findings

3.2.1 <u>Soil</u>

Analytical results for compounds detected during all previous investigations since 1996 are summarized in Table 3-1. Sample results from locations that have since been excavated and disposed of off-site at a permitted disposal facility are not included in Table 3-1. Data are compared to the following cleanup objectives listed in Title 6 of the New York Codes, Rules and Regulations (NYCRR), Subpart 375-6.8:

- Table 375-6.8(a) Unrestricted Use Soil Cleanup Objectives, and
- Table 375-6.8(b) Restricted Use Soil Cleanup Objectives Protection of Public Health, Industrial Use.

The following bullets summarize the data in comparison to the cleanup objectives:

- Various VOCs were detected at five (5) sampling points (MA-8A, MSB-01, MSB-02, MSB-03 and MSB-08) at concentrations exceeding their unrestricted use criteria. No VOCs were detected at concentrations exceeding the industrial restricted use SCOs. The VOCs exceeding the unrestricted SCOs included benzene; toluene; ethylbenzene; xylenes; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenze; and acetone. Acetone, detected at 57 micrograms per kilogram (µg/kg) at sampling point MSB-08 (6-8 feet bgs), is believed to be present due to laboratory contamination.
 - Tetrachloroethene (PCE) was detected at a concentration of 730,000 µg/kg at sampling point MSB-04 (4-6 feet bgs) collected on October 20, 1999. This concentration exceeds both the unrestricted use objective of 1,300 µg/kg and

the industrial restricted use objective of $300,000 \text{ }\mu\text{g/kg}$. To evaluate potential PCE contamination in this area, the following actions were taken:

- In 2002, a soil gas survey was conducted in the area of the waste ink tank to evaluate the extent of the PCE detected at boring MSB-4. Five soil gas samples (SG-1 through SG-5), including one duplicate sample from location SG-4, were collected from four locations at a depth of 5 feet bgs surrounding boring MSB-4. There were no detections of PCE in any of the soil gas samples (URS, 2002a).
- In February 2005, an additional soil boring (MSB-08) was completed at the MSB-04 location to confirm the presence of PCE detected in 1999. However, PCE was not detected in either of the two soil samples collected from MSB-08 at the 4-6 and 6-8 feet bgs intervals.
- PCE was not detected in soil gas or soil samples collected from the immediate vicinity of MSB-04. Additionally, PCE has never been detected in groundwater samples collected from the site wells. Therefore, the PCE detected in MSB-04 is considered to be anomalous, not representative of site conditions, and is not considered a concern.
- Phenol, a SVOC, was detected at a concentration of 1,100 µg/kg at sampling point MSB-01 (8-10 feet bgs). This concentration exceeds the unrestricted use objective of 330 µg/kg, but does not exceed the industrial restricted use objective of 1,000,000 µg/kg.
- Metals were detected at two (2) sampling points [MA-7A (lead and silver) and MA-20 (mercury)] at concentrations exceeding their unrestricted use SCO, but not their industrial restricted use criteria.
 - Cadmium, detected above the industrial restricted use criteria (60 mg/kg) in the Courtyard Area, was excavated and disposed of off-site at a permitted disposal facility. The maximum cadmium concentration detected in the confirmation soil samples, and in sample locations that were not removed during the excavation, is 47.6 mg/kg. The confirmation soil sampling documents that the soil excavation in the courtyard area completed as part of an IRM was effective at removing cadmium contaminated soil at

concentrations exceeding the industrial use SCOs. The unrestricted use criterion is 2.5 mg/kg or rural background, whatever is greater. All but one (1) sample (CONF-3-SW) collected in the courtyard area contained greater than 2.5 mg/kg of cadmium.

The soil from the remaining sampling points did not contain compounds at concentrations exceeding 6 NYCRR Subpart 375-6.8 criteria.

Figure 3-1 shows the soil sampling points in relation to the site features, and reveals that the points with VOC exceedances are located between Buildings 10, 11 and 12; within the former solvent, waste ink, gasoline and diesel tank areas. Figure 3-1 also shows that sampling point SS-04 (metals exceedances) was located in a courtyard between Building 14A and Building 13H. The area of soil removal is indicated with a hatched pattern within the courtyard area on Figure 3-1.

3.2.2 Groundwater

The Environmental Audit Tenneco Packaging Specialty Products, Macedon, New York (CH2M, April 1997) and Site Assessment and Closure of Two Chemical Bulk Storage Tanks, CBS Registration No. 8-000025, Tenneco Packaging Macedon Facility (IT, January 1999) reports describe the results of groundwater screening completed by collecting groundwater samples from temporary groundwater wells. In these samples, metals in the aquifer upgradient and downgradient of the site facility, were detected at similar concentrations. VOCs and SVOCs were detected in the aquifer downgradient of the site facility; near Buildings 10, 11 and 12, and within the former solvent, waste ink, gasoline, and diesel tank areas.

The results of the screening study prompted further investigations using permanent monitoring wells. These investigations are documented in the *Soil and Groundwater Investigation* letter report (URS, 2000), *Remedial Investigation Report* (URS, 2005) and *Supplemental Investigation Report* (URS, 2009). The data presented in these reports was used to generate Table 3-2, which presents a summary of analytes detected in groundwater collected at the site since 1999, and compares these data to NYSDEC Technical & Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Class GA.

Groundwater samples from 10 monitoring wells (MMW-1 through MMW-10) and one piezometer (MP-1), shown on Figure 3-2, were analyzed for VOCs, SVOCs, polychlorinated biphenyls, metals and dissolved metals. Table 3-2 shows that no compounds were detected above their TOGS criteria in the groundwater collected from these wells in the most recent sample collected at each location. In summary:

- VOCs were detected in groundwater from monitoring well MMW-03, at concentrations exceeding their TOGS criteria, during the 11/1/1999, 3/13/2000 and 4/6/2005 monitoring events. However, during the last three monitoring events at this well (6/1/2005, 7/23/2008, and 2/11/2009), no VOCs were detected at concentrations exceeding their TOGS criteria.
- VOCs were detected in groundwater from monitoring wells MMW-06, MMW-09 and MMW-10, at concentrations exceeding their TOGS criteria, during the 7/23-24/2008 monitoring event. However, during the last monitoring event at these wells (2/11-12/2009), no VOCs were detected at concentrations exceeding their TOGS criteria.
- SVOCs were detected in groundwater from monitoring wells MMW-02, MMW-04, MMW-05 and MP-01, at concentration exceeding their TOGS criteria, during the 1999-2000 monitoring events. However, during subsequent monitoring events at these wells, no SVOCs were detected at concentrations exceeding their TOGS criteria.

The groundwater from the remaining monitoring wells did not contain compounds at concentrations exceeding TOGS criteria.

Figure 3-2 shows the monitoring wells in relation to the site features, and depicts the groundwater flow direction at that site.

3.2.3 Soil Contamination In Relation to Groundwater Contamination

The data presented in the *Supplemental Investigation Report* (URS, June 2009) show that the groundwater in wells immediately downgradient of former tank areas (MMW-02, MMW-03 and MMW-04) does not contain compounds at concentrations exceeding their TOGS criteria. These wells are screened at the same depths that the soil samples with VOC exceedances were

3-6

collected, suggesting that any residual soil contamination in the former tank areas is not impacting the quality of adjoining groundwater.

The Supplemental Investigation Report (URS, June 2009) also shows that the groundwater in the monitoring well near sampling point SS-04 (MMW-07), located within the courtyard area, does not contain compounds at concentrations exceeding their TOGS criteria, suggesting that the soil contamination in this area is not impacting the quality of adjoining groundwater.

3.2.4 Standards, Criteria and Guidance Values

As noted above, contaminants were detected both in soil and groundwater at the site. Consequently, the following documents were utilized in order to determine whether or not the concentrations exceeded regulatory standards, guidance values or other criteria established for soil and groundwater.

<u>Soil</u>

6 NYCRR Subpart 375-6.8 (Remedial Program Soil Cleanup Objectives for industrial restricted use and unrestricted use)

Groundwater

NYSDEC TOGS 1.1.1

It should be noted that TOGS 1.1.1 criteria assumes that groundwater is utilized, or may be potentially utilized in the future, as a source of drinking water. At the Macedon Films Site, groundwater is not currently used as a source of drinking water, nor is it likely to be a source of drinking water in the future. The Macedon Water Department is not aware of any water supply wells in Macedon. According to the Village of Macedon Public Works, Lake Ontario is the source of drinking water supplied to the Village of Macedon. According to the New York State Department of Health Source Water Assessment database, there are no public water supply wells in the Village or Town of Macedon.

4.0 PROPOSED REMEDIAL ALTERNATIVE

URS completed a Remedial Alternatives Analysis in November 2011. Based on the analysis of alternatives, the selected remedy consists of implementing Institutional Controls/Environmental Easement. No other remedial action is included as part of this remedy.

This alternative satisfies the remedial objectives by limiting exposure to soil above 6 NYCRR Subpart 375 soil cleanup objectives for an industrial reuse scenario. Industrial use of the site is consistent with the current and foreseeable future reuse of the property. Institutional Controls/Environmental Easement also provides for long term enforcement of the existing deed restrictions by use of the environmental easement.

4.1 <u>Environmental Easement</u>

An environmental easement will be implemented for the property to enforce existing deed restrictions on land use and groundwater use. The existing deed, dated January 2001, stipulates that the property will only be used for industrial purposes and the use of groundwater beneath the site as a drinking source will be prohibited. The environmental easement will:

- Ensure that the existing restrictions on land use and groundwater use included in the current deed are maintained by the property owner and any future property owners;
- Reference the Site Management Plan (SMP) which includes an excavation plan describing removal, management and handling of soil encountered during excavation of the site which exceeds the residential use SCGs; and
- Set forth the requirements for the periodic certification that the institutional controls for the site will:
 - o Remain in place;
 - o Are in the DEC-approved form; and

4 - 1

• Nothing has occurred that would impair the ability of the controls to protect public health and the environment.

URS will prepare a draft environmental easement using the template provided by the NYSDEC. Prior to submitting the draft environmental easement, the following items will be completed and provided with the draft environmental easement submittal:

- ➤ A title report, current within 6 months;
- A written commitment form a New York State-licensed title insurance company to provide title insurance upon the recording of the easement (to be obtained by Pactiv);
- A metes and bounds description of the site;
- A survey of the site in a form approved by the NYSDEC;
- A survey endorsement current to within 3 months (if requested by the NYSDEC); and
- The property owner's agreement to establish and maintain the easement in a form which is expressly made enforceable by the NYSDEC set out in such form as to be recordable pursuant to Real Property Law Section 291.

4.2 <u>Site Management Plan</u>

The main component of the environmental easement covered by this work plan is preparation of a SMP in accordance with DER-10, Section 6.2. The SMP will provide a general description of the site, describe the controls in-place, as well as describe the nature and extent of the remaining contamination at the site.

4.2.1 Institutional Control Plan

The main component of the SMP will be the Institutional Control Plan (IC Plan). An IC plan is required for all sites for which the remedy does not allow for unrestricted use. The IC plan details the steps and media-specific requirements necessary to assure the institutional and/or engineering controls remain in place and effective. The IC Plan will include:

i. a description of all institutional controls (no engineering controls are planned);

- ii. the steps necessary for the periodic certification of the institutional controls;
- iii. a provision for implementing any of the following plans; an Excavation Plan, a Health And Safety Plan (HASP), and a Community Air Monitoring Plan (CAMP).
- iv. any other provisions necessary to identify or establish methods for implementing the institutional controls required by the site remedy; and
- v. a provision to add the environmental easement or deed restriction as an appendix to the SMP upon its execution/issuance.

4.2.1.1 Excavation Plan

The excavation plan will present procedures to be followed in the event that invasive activities such as drilling or excavation are carried out in areas where soil contamination may exceed residential soil cleanup objectives. At a minimum, the plan will include provisions for the

- i. removal, management and handling of soil encountered during excavation of the site, which exceeds the residential use soil SCGs;
- ii. handling and quality of the fill brought to the site;
- installation, management and repair of any subsurface utilities or structures at the site, including provisions to allow utilities to work on or near the site without causing any exposure to the public or workers;
- iv. health and safety procedures that comply with 29 CFR 1910.120 and subdivision
 1.9 (c) and a CAMP are to be followed for all excavations or other activities at
 the site which may encounter remaining contamination; and
- v. notification to DER.

4.2.1.2 Health and Safety Plan

The SMP will include requirements for the development of a HASP in accordance with 29 CFR 1910.120 that will cover any intrusive activities to be carried out at the site. The HASP

will be required for all contractors engaged in work where the public using the site, surrounding community, or the site workers may be exposed to remaining contamination. The plan will be prepared by a qualified person in accordance with the most recently adopted and applicable general industry (29 CFR 1910) and construction (29 CFR 1926) standards of OSHA, the U.S. Department of Labor, as well as any other federal, state or local applicable statutes or regulations. A copy of the health and safety plan (HASP) will be available at the site during the conduct of all activities to which it is applicable.

4.2.1.3 Community Air Monitoring Plan

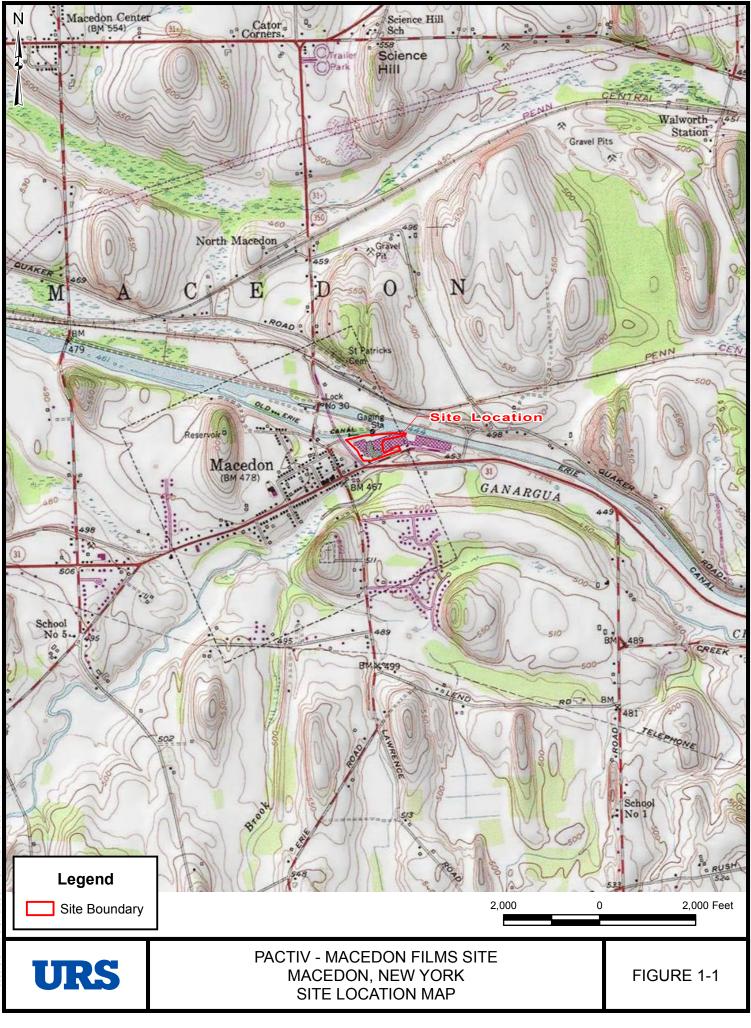
The SMP will also include requirements for a CAMP to be followed during the completion of any intrusive activities to address community health and safety. The CAMP will identify measures and/or actions to ensure that the public living and working near the site as well as employees or visitors to any facility located on the site are protected from exposure to site contaminants during intrusive activities, remedial actions or on-site treatment actions undertaken during the investigation and/or remediation of the site, including site management

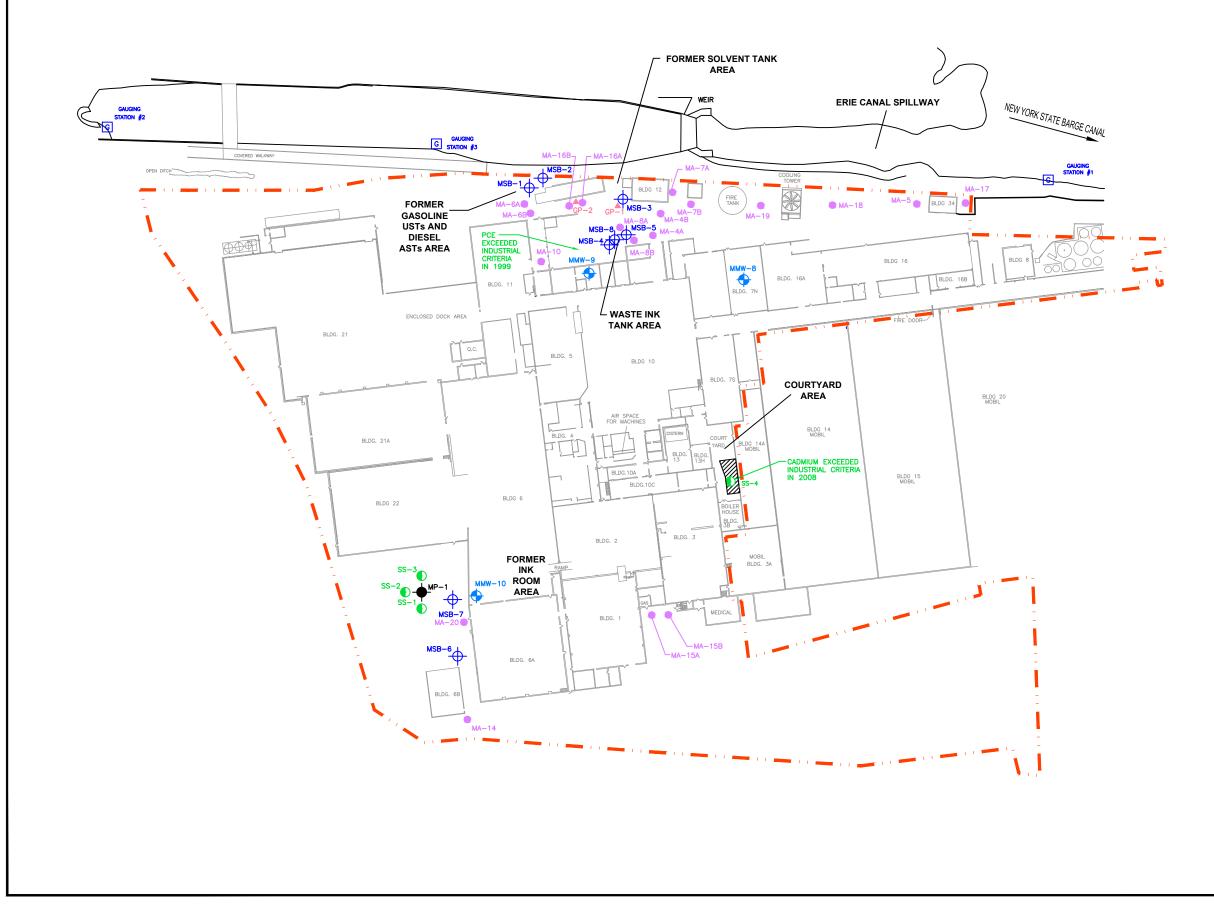
The CAMP will present the requirements as stated in the NYSDOH Generic Community Air Monitoring Plan obtained in Appendix 1A of DER-10, Generic Community Air Monitoring Plan. Monitoring will be conducted for VOCs and particulates during any future intrusive activities.

5.0 **PROJECT SCHEDULE**

The table below presents the estimated project schedule dates, and deliverable due dates for the Pactiv Site Remedial Action Program.

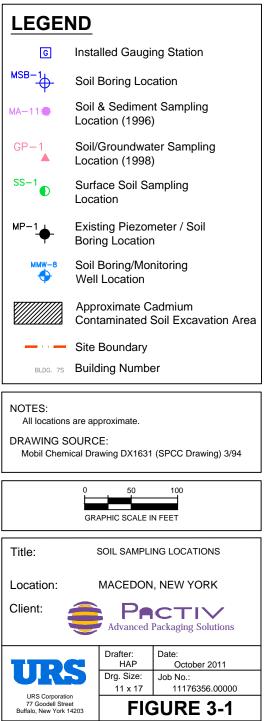
Item Number	Action	Date
1	Submit Draft RA Work Plan	February 10, 2012
2	NYSDEC Review and Approval	February 15, 2012
3	Submit Final RA Work Plan	April 2, 2012
4	Prepare Draft Site Management Plan (SMP) and Environmental Easement	April 23, 2012
5	NYSDEC Review and Comment	May 7, 2012
6	Submit Final SMP and Environmental Easement	May 21, 2012
7	Periodic Certifications	TBD

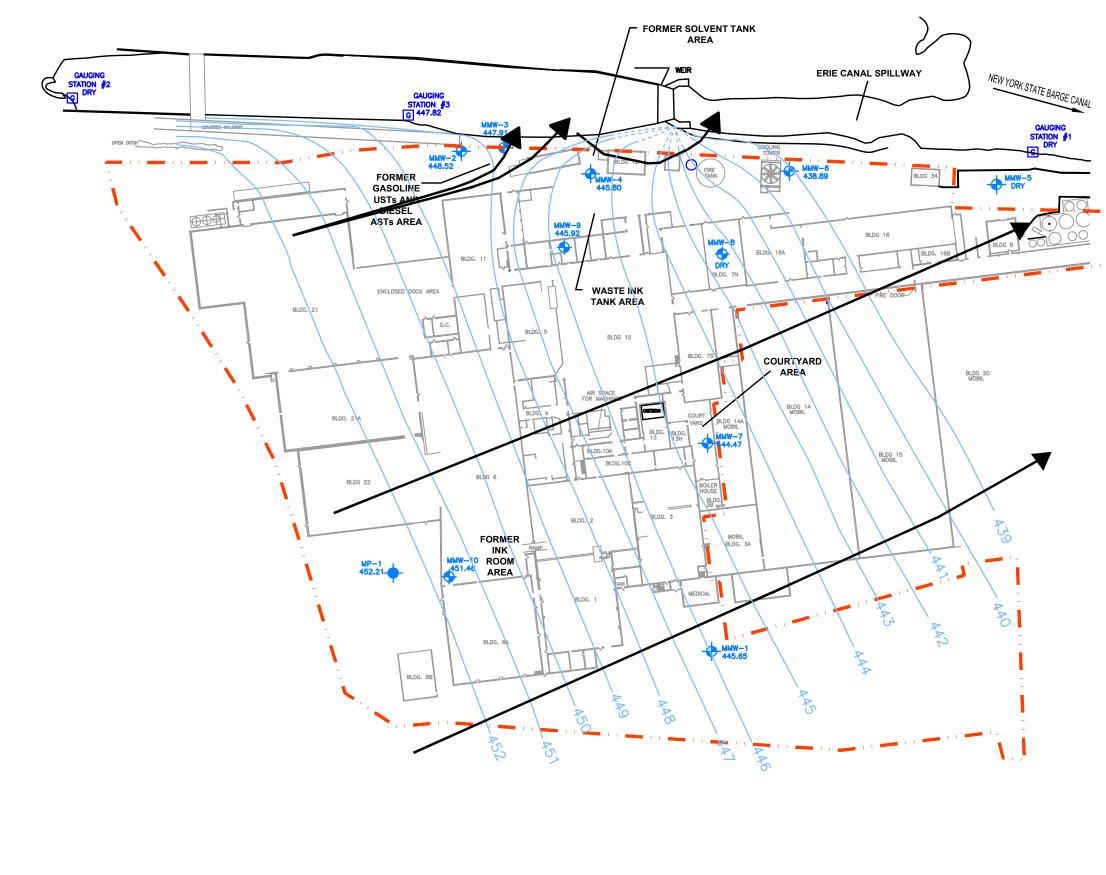

6.0 **REFERENCES**


- CH2M Hill, 1997. Environmental Audit Tenneco Packaging Specialty Products, Macedon, New York, April.
- Haley & Aldrich of New York, 1995. Soil-Gas Survey Building 10 Courtyard Storm Drain No. 93 Area, Mobil Chemical Company, Macedon, New York, January.
- International Technology Corporation, 1999. Site Assessment and Closure of Two Chemical Bulk Storage Tanks, CBS Registration No. 8-000025, Tenneco Packaging Macedon Facility, January.
- IT Corporation, 1998. Summary of Environmental Issues and Investigation Plan, Tenneco Packaging Macedon Plant, July.
- Pactiv/URS, 2011a. Cadmium Contaminated Soil Investigation at Macedon Films Site, Brownfield Cleanup Program #B8-0669-04-06, Site I.D. C859025. Letter from Mr. Marcus Merriman (Pactiv Corporation) to Mr. Jason Pelton (NYSDEC), February.
- Pactiv/URS, 2011b. Cadmium Contaminated Soil Investigation and Excavation at the Macedon Films Site, Brownfield Cleanup Program #B8-0669-04-06, Site I.D. C859025. Letter from Mr. Marcus Merriman (Pactiv Corporation) to Mr. Jason Pelton (NYSDEC), September.
- Wayne County, January 2001. Bargain and Sale Deed with Covenant Against Grantor's Acts (Macedon) between Pactiv Corporation and Carlisle Plastics, L.P.
- United States Environmental Protection Agency (USEPA), 1992. Environmental Priority Initiative Preliminary Assessment, Mobil Chemical Company, Macedon Packaging, June.
- URS Corporation (URS), 1999. SPDES Investigation Report, August.
- URS, 2000. Soil and Groundwater Investigation for Pactiv Macedon, New York, August.
- URS, 2002a. *Revised Water Table Maps Soil Gas Survey Former Pactiv Facility Macedon, New York,* September.

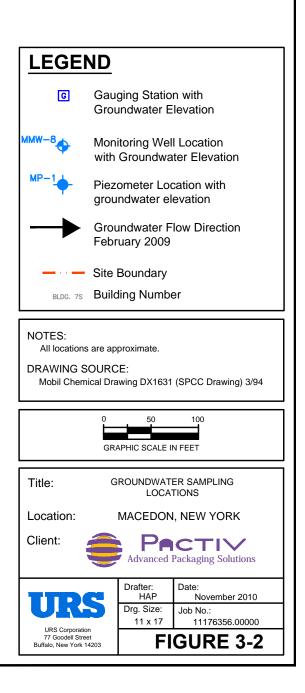
URS, 2002b. SWMU Questionnaire for Macedon, NY, October.

- URS, 2005. *Remedial Investigation Report* for the Pactiv Corporation-Macedon Films Site, November.
- URS, 2009. Supplemental Investigation Report for the Pactiv Corporation-Macedon Films Site, June.


FIGURES



True North Per Barge Canal Mapping Prepared By State of New York



True North Per Barge Canal Mapping Prepared By State of New York

TABLES

TABLE 3-1 SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS MACEDON FILM SITE

Page 1 of 2

Location I.D	<u> </u>			MA-4A	MA-4B	MA-5	MA-6A	MA-6B	MA-7A	MA-7A	MA-7B	MA-8A	MA-8A	MA-8B	MA-10	MA-14	MA-15A	MA-15B	MA-16A	MA-16B	MA-17	MA-18	MA-19	MA-20	GP-1	GP-2	MP-1	MSB-01	MSB-02	MSB-03
Sample I.D				MA-4A	MA-4B	MA-5-2	MA-6A-2	MA-6B-2	MA-7A-1	MA-7A-3	MA-7B-2	MA-8A-2	MA-8A-3	MA-8B-2	MA-10-1	MA-14-2	MA-15A-2	MA-15B-2	MA-16A-2	MA-16B-2	MA-17-2	MA-18-2	MA-19-2	MA-20-2	GP-1	GP-2	MP-1 (4'-5')	MSB-1 (8'-	MSB-2 (8'-	MSB-3 (8'-
Depth Interval				4.0-5.1	4.8-5.7	5.0-6.0	6.0-7.0	7.0-8.0	0.4-1.0	4.0-4.8	6.4-7.1	6.5-7.1	8.0-9.0	6.0-6.8	2.0-2.7	1.0-1.2	2.0-2.5	1.5-2.0	1.0-2.0	1.0-2.0	2.5-3.0	4.6-5.6	8.0-9.0	4.1-5.0	10.0-12.0	10.0-12.0	4.0-5.0	10') 8.0-10.0	10') 8.0-10.0	10') 8.0-10.0
		O site																												
Date Sampled	Linita	Crite		10/29/96	10/29/96	10/28/96	5 10/29/96	10/29/96	10/29/96	10/29/96	10/30/96	10/29/96	10/29/96	10/29/96	10/29/96	10/29/96	10/31/96	10/31/96	10/29/96	10/29/96	10/30/96	10/30/96	10/30/96	10/31/96	11/16/98	11/16/98	10/22/99	10/25/99	10/25/99	10/21/99
Parameter Volatile Organic Con		IND	UNK																											
1.2.4-Trimethylbenzene	UG/KG	380000	3600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7800	31000	1400 J
1,3,5-Trimethylbenzene (Mesitylene)	UG/KG	380000	8400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3100	9300	ND
2-Hexanone	UG/KG	-	-	ND	ND	ND	ND	ND	9	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	ND
4-Isopropyltoluene (p-Cymene)	UG/KG	-	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	340 J	1900	ND
Acetone	UG/KG	1000000	50	ND	ND	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	35	35	NA	NA	ND	ND	ND
Benzene	UG/KG UG/KG	89000 700000	60	ND ND	ND 7.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	820 ND	ND ND	ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND	ND	NA NA	NA NA	NA NA	ND ND	170 J ND	ND
Chloroform Ethylbenzene	UG/KG UG/KG	780000	370 1000	ND	7.2 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA	ND	ND	ND	ND	ND	NA	ND ND	ND ND	NA	NA	NA	900	7700	ND 2100 J
Isopropylbenzene (Cumene)	UG/KG	-	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	220 J	1000	ND
Naphthalene	UG/KG	1000000	12000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1400	6300	1700 J
n-Propylbenzene	UG/KG	1000000	3900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	930	3100	ND
sec-Butylbenzene	UG/KG	1000000	11000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	370 J	1600	ND
Tetrachloroethene	UG/KG	300000	1300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	ND
Toluene	UG/KG	1000000	700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	190 J	ND	110000
m&p-Xylene	UG/KG	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	1800	25000	4000
o-Xylene	UG/KG	- 1000000	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	ND 1800	220 J	790 J
Xylene (total) Semivolatile Organic C	UG/KG		260	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1800	25220	4790
2-Methylnaphthalene	UG/KG		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	NA	NA	NA	8500	22000	11000
Acenaphthene	UG/KG	1000000	20000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	1200 J
Acenaphthylene	UG/KG	1000000	100000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND
Anthracene	UG/KG	1000000	100000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	212	68 J	NA	ND	ND	910 J
Benzo(a)anthracene	UG/KG	11000	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	670	NA	NA	ND	ND	511	ND	NA	ND	ND	ND
Benzo(a)pyrene	UG/KG	1100	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	550	NA	NA	ND	ND	561	ND	NA	ND	ND	ND
Benzo(b)fluoranthene	UG/KG	11000	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	830	NA	NA	ND	ND	658	ND	NA	ND	ND	ND
Benzo(g,h,i)perylene Benzo(k)fluoranthene	UG/KG UG/KG	1000000 110000	100000 800	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND 380	ND ND	NA NA	ND ND	ND ND	ND ND
bis(2-Ethylhexyl)phthalate	UG/KG	-	- 000	ND	ND	ND	ND	ND	1400	ND	ND	ND	NA	600	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	NA	NA	NA	ND	ND	ND
Carbazole	UG/KG	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	NA	NA	NA	ND	ND	ND
Chrysene	UG/KG	110000	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	630	NA	NA	ND	ND	671	ND	NA	ND	ND	ND
Dibenz(a,h)anthracene	UG/KG	1100	330	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	NA	NA	NA	ND	ND	ND
Dibenzofuran	UG/KG	1000000	7000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	NA	NA	NA	ND	1500 J	ND
Di-n-butylphthalate	UG/KG	-	-	ND	ND	ND	ND	ND	ND	2600 B	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	NA	NA	NA	ND	ND	ND
Fluoranthene	UG/KG	1000000	100000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	1500	NA	NA	ND	ND	2036	ND 004	NA	ND	ND	ND
Fluorene	UG/KG	1000000	30000	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND	ND ND	NA	ND ND	ND ND	ND ND	ND ND	NA	NA NA	ND ND	ND	93 J	204 ND	NA NA	1200 J ND	4100 ND	2200
Indeno(1,2,3-cd)pyrene Naphthalene	UG/KG UG/KG	11000 1000000	500 12000	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND 83 J	NA	2800	7500	ND 1800 J
Phenanthrene	UG/KG	1000000	12000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	970	NA	NA	ND	ND	713	292	NA	2400	5900	4100
Phenol	UG/KG	1000000	330	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	ND	ND	NA	NA	NA	1100 J	ND	ND
Pyrene	UG/KG	1000000	100000	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	1300	NA	NA	ND	ND	1773	ND	NA	ND	ND	ND
Polychlorinated Big	ohenyls																													
	UG/KG	25000	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
Metals																														
	MG/KG	16	13	2.95		ND	NA	NA	3.64		NA	1.28	NA	2.78	3.36		NA	2.75	NA	NA	NA	1.75	ND 24.0	ND 12						
Barium Cadmium	MG/KG MG/KG	10000 60	350 2.5	23.5 ND	43.1 ND	10.2 ND	NA NA	NA NA	46.3 1.87	NA NA	NA NA	11.3 ND	NA NA	27.9 ND	55 ND	37.1 ND	NA NA	89 ND	NA NA	NA NA	NA NA	18.8 ND	34.9 ND	13 ND						
Cadmium Chromium	MG/KG MG/KG	60	2.5	8.59	ND 14.2	4.3	NA	NA	1.87	NA	NA NA	4.68	NA	9.47	ND 11.2	8.19	NA	NA NA	NA	NA	NA	NA	NA	13.7	NA NA	NA	NA	8.39	ND 9.19	4.03
Lead	MG/KG	3900	63	0.39 ND	27.4	4.3 ND	NA	NA	81	NA	NA	4.00 ND	NA	9.47	48.2	11.3	NA	17.1	NA	NA	NA	6.96	9.19	4.03 ND						
Mercury	MG/KG	5.7	0.18	ND	ND	ND	NA	NA	ND	NA	NA	ND	NA	ND	+0.2 ND	ND	NA	0.266	NA	NA	ND	0.50 ND	ND	ND						
Selenium	MG/KG	6800	3.9	1.68	2.79	ND	NA	NA	2.11	NA	NA	0.686	NA	2.33	1.58	1.81	NA	3.42	NA	NA	NA	1.19	1.35	2.05						
Silver	MG/KG	6800	2	ND	ND			NA	2.26	NA	NA	ND	NA	ND	ND		NA	ND			NA	ND	ND	ND						

Only Soils Remaining In Place Are Included

IND - NYCRR Part 375.6 - Industrial Use SCOs

UNR - NYCRR Part 375.6 - Unrestricted Use SCOs

ND = Not detected

J = Estimated value

NA = Not Analyzed

RED = Value > IND

SHADED = Value > UNR

TABLE 3-1 SUMMARY OF DETECTED SOIL ANALYTICAL RESULTS MACEDON FILM SITE

Page 2 of 2

		100.04	NOD 05		MOD of		NOD 00	14144 00	1000		00.04	00.00	00.00	00.4.00	00 4 00	00 (4 0)	00 (4 0)			00 (1 0)		00 (1 0)				
Location I.D.		MSB-04	MSB-05	MSB-06	MSB-07	MSB-08	MSB-08	MMW-08	MMW-09	MMW-10	SS-01	SS-02	SS-03	SS-4-C2	SS-4-C2	SS (4,0)	SS (4,-2)	SS (2,-2)	SS (0,-2)	SS (4,-2)	SS (0,0)	SS (-4,2)	CONF-1	CONF-2	CONF-3	CONF-4
Sample I.D.		MSB-4 (4-6')) MSB-5 (12'- 14')	MSB-6 (4')	MSB-7 (4')	MSB-8 (4-6')	MSB-8 (6- 8')	MMW-8 8'- 12'	MMW-9 4'-8'	MMW-10 4'- 5.4'	SS-1 (07/22/2008)	SS-2 (07/22/2008)	SS-3 (07/22/2008)	SS-4-C2	DUP- 011111	SS (4,0)	SS (4,-2)	SS (2,-2)	SS (0,-2)	SS (4,-2)	SS (0,0)	SS (-4,2)	CONF-1-NW	CONF-2-NE	CONF-3-SW	CONF-4-SE
Depth Interval (ft)		4.0-6.0	12.0-14.0	4.0-4.0	4.0-4.0	4.0-6.0	6.0-8.0	8.0-12.0	4.0-8.0	4.0-5.4	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0-0.5	0-0.5	0-0.5	0-0.5	0.5-1.0	0.5-1.0	0.5-1.0	0.5-1.0	0.5-1.0	0.5-1.0	0-0.5
Date Sampled	Criteria	10/20/99	10/20/99	10/22/99	10/22/99	02/15/05	02/15/05	07/22/08	07/22/08	07/22/08	07/22/08	07/22/08	07/22/08	01/11/11	01/11/11	06/09/11	06/09/11	06/09/11	06/09/11	06/09/11	06/09/11	06/09/11	07/11/11	07/11/11	07/11/11	07/11/11
Parameter Units	s IND UNR		-	· · · ·			·																			·
Volatile Organic Compound	ds																									/
1,2,4-Trimethylbenzene UG/KG		ND	ND	NA	NA	ND	130 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene (Mesitylene) UG/KG		ND	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone UG/KG 4-Isopropyltoluene (p-Cymene) UG/KG		ND ND	ND ND	NA NA	NA NA	ND ND	ND 190 J	ND NA	ND	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Isopropyltoluene (p-Cymene) UG/KG Acetone UG/KG		ND	ND	NA	NA	ND	190 J	ND	NA ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	2.4 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene UG/KG		ND	ND	NA	NA	ND	8.1 J	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene (Cumene) UG/KG	G	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene UG/KG	G 1000000 12000	ND	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene UG/KG		ND	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene UG/KG		ND	ND	NA	NA	ND	21 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene UG/KG		730000	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	2.1 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m&p-Xylene UG/KG		ND	ND	NA	NA	ND	17 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene UG/KG Xylene (total) UG/KG	G 1000000 260	ND ND	ND	NA	NA NA	ND NA	7.8 J NA	NA ND	NA ND	NA ND	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA
Xylene (total) UG/KG Semivolatile Organic Compou		ND	ND	NA	INA	<u>NA</u>	<u>INA</u>	ND	ND	ND	INA	NA	NA	NA	NA	NA	INA	INA	NA	NA	NA	NA	INA	NA	NA	NA
2-Methylnaphthalene UG/KG		11000	ND	NA	NA	ND	ND	ND	ND	110 J	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene UG/KG		1600 J	ND	NA	NA	ND	870	ND	ND	54 J	63 J	89 J	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	130 J	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene UG/KG	G 1000000 100000	1700 J	ND	NA	NA	ND	150 J	ND	ND	390 J	160 J	270 J	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene UG/KG	G 11000 1000	ND	ND	NA	NA	ND	ND	ND	ND	880	410 J	620	140 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	670	390 J	520	160 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	580	350 J	500	140 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	330 J	280 J	320 J	120 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	520	370 J	430 J	130 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate UG/KG Carbazole UG/KG		ND ND	ND ND	NA NA	NA NA	140 J ND	170 J ND	ND ND	ND ND	450 ND	160 J 68 J	200 J 130 J	220 J ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	690	420 J	590	170 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	92 J	54 J	83 J	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	100 J	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-butylphthalate UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	130 J	51 J	55 J	88 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene UG/KG	G 1000000 100000	ND	ND	NA	NA	ND	110 J	ND	ND	1600	890	1500	320 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene UG/KG	G 1000000 30000	3400 J	ND	NA	NA	ND	1100	ND	ND	130 J	52 J	86 J	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	340 J	250 J	310 J	100 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	330 J	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene UG/KG		6100	ND	NA	NA	140 J	2200	ND	ND	910	550	980	140 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenol UG/KG		ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene UG/KG	G 1000000 100000	ND	ND	NA	NA	ND	190 J	ND	ND	1200	710	1000	240 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Polychlorinated Biphenyls Aroclor 1260 UG/KG	G 25000 100	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alociol 1260 OG/KG	2000 100	INA			INA	INA	INA	INA	IN/A	INA	שא	שא		IN/A	INA	INA	INA	INA	INA	INA	N/A	IN/A	INA	IN/A	INA	
Arsenic MG/KG	G 16 13	ND	3.37	NA	NA	NA	NA	ND	1.3	0.29 J	4.2	2.9	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium MG/KG		9.47	10.6	NA	NA	NA	NA	9.6	1.0	50.4	65.7	54.5	72.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium MG/KG		ND	ND	NA	NA	NA	NA	ND	ND	ND	0.42 J	0.47 J	0.55 J	42.3	41.9		27.9	32.2	37.2	17.3	10.3		8.68	9.93	1.8	9.91
Chromium MG/KG		2.9	7.71	NA	NA	NA	NA	5.3	11.8	8.2	14.8	13	15.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead MG/KG	G 3900 63	6.37	14	NA	NA	NA	NA	3.5 J	8.1 J	6.6 J	52.1 J	52.2 J	53.6 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury MG/KG	G 5.7 0.18	ND	ND	0.0963	0.0816	NA	NA	0.01 J	0.02 J	0.03 J	0.09	0.09	0.07	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		-			· · · · ·	4	4	1																		NIA
Selenium MG/KG Silver MG/KG		2.59 ND	1.91 ND	NA NA	NA NA	NA NA	NA NA	1.2 J ND	ND ND	1.3 J ND	1.5 J ND	0.72 J ND	2.3 J ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Only Soils Remaining In Place Are Included

IND - NYCRR Part 375.6 - Industrial Use SCOs

UNR - NYCRR Part 375.6 - Unrestricted Use SCOs

ND = Not detected

J = Estimated value

NA = Not Analyzed

RED = Value > IND

SHADED = Value > UNR

TABLE 2SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTSMACEDON FILM SITE

Page 1 of 2

Location I.D.			MMW-01	MMW-01	MMW-01	MMW-01	MMW-01	MMW-01	MMW-02	MMW-02	MMW-02	MMW-02	MMW-02	MMW-02	MMW-03	MMW-03	MMW-03	MMW-03	MMW-03	MMW-03	MMW-03	MMW-04	MMW-04	MMW-04	MMW-04	MMW-04	MMW-04	MMW-05
Sample I.D.			MMW-1	MMW-1	MMW-1	MMW-1	MMW-01	MMW-1	MMW-2	MMW-2	MMW-2	MMW-2	MMW-02	MMW-2	MMW-3	MMW-3	DUP-	MMW-3	MMW-3	MMW-03	MMW-3	MMW-4	MMW-4	MMW-4	MMW-4	MMW-04	MMW-4	MMW-5
Date Sampled			11/02/99	03/13/00	04/06/05	05/31/05	(07/23/08) 07/23/08	02/12/09	11/01/99	03/13/00	04/06/05	06/01/05	(07/23/08) 07/23/08	02/12/09	11/01/99	03/13/00	04.06.05	04/06/05	06/01/05	(07/23/08) 07/23/08	02/11/09	11/01/99	03/13/00	04/06/05	06/01/05	(07/23/08) 07/23/08	02/11/09	11/01/99
Parameter	Units	TOGS		00,10,00	0 1/00/00	00,01,00	01120,000	02/12/00		00,10,00	0 11 00/00	00/01/00	01/20/00	02,12,00		00,10,00	0 1/00/00	0 1100/00	00/01/00	01120/00	02,11,000	11/01/00	00,10,00	0 11 00,00	00/01/00	01/20/00	02,11,00	
Volatile Organic Compounds																												
1.1.1-Trichloroethane	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1.2-Trichloro-1.2.2-trifluoroethane	UG/L	5	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	ND	ND	NA
1.2.4-Trimethylbenzene	UG/L	5	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	46	25	48	52	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND
4-Isopropyltoluene (p-Cymene)	UG/L	5	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	1.6 J	ND	0.32 J	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND
Acetone	UG/L	50	ND	ND	10 J	2.3 J	ND	ND	ND	ND	6.4 J	ND	ND	ND	ND	5.5 J	16 J	25	1.5 J	ND	ND	ND	5.9 J	9.6 J	1.7 J	ND	4.1 J	ND
Benzene	UG/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.56 J	0.67 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	UG/L	60	ND	11	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	34	ND	ND	ND	ND	ND	ND	47	ND	ND	ND	ND	ND
Chloroform	UG/L	7	ND	ND	0.41 J	0.85 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	47 ND	ND	ND	ND	ND	ND
Ethylbenzene	UG/L	5	ND	ND	0.413 ND	0.85 J	ND	ND	ND	ND	ND	ND	ND	ND	2.2 J	1.4 J	0.61 J	0.65 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene (Cumene)	UG/L	5 5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2 J 2.3 J	1.4 J 1.3 J	2.3	0.65 J 2.4	0.49 J	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	UG/L	50	ND	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND	ND	ND	2.3 J ND	2.1 J	ND	2.4 ND	0.49 J ND	ND	ND	ND	2.4 J	ND	ND	ND	ND	ND
Methyl tert-butyl ether	UG/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Z.T J ND	ND	ND	ND	ND	ND	ND	Z.4 J ND	ND	ND	ND	ND	ND
	UG/L	- 10	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	ND	ND	NA
Methylcyclohexane						-				NA						-								NA ND				NA ND
Naphthalene	UG/L	10	ND	ND	ND	ND	NA	NA	ND		ND	ND	NA	NA	20	5.6	3.9	4	ND	NA	NA	3.6 J	ND		ND	NA	NA	
n-Butylbenzene	UG/L	5	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	0.5 J	0.62 J	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND
n-Propylbenzene	UG/L	5	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	5.2	2.7J	6.4	6.3	0.5 J	NA	NA	ND	ND	ND	ND	NA	NA	ND
sec-Butylbenzene	UG/L	5	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	1.7 J	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND
Toluene	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.2	ND	ND	ND	ND	ND	ND
m&p-Xylene	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	8.6	1	1	ND	ND	ND	2.1 J	ND	ND	ND	ND	ND	ND
o-Xylene	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.34 J	0.52 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semivolatile Organic Compounds												115												NB				NIE
2-Methylnaphthalene	UG/L		1.1 J	ND	ND	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.3 J	ND	ND	ND	ND	ND	ND
4-Methylphenol (p-cresol)	UG/L	1	1.1 J	ND	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	NA	NA	ND	ND	1.6 J	ND	NA	NA	ND	ND	ND
Acenaphthene	UG/L	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND	2.3 J	ND	ND	ND	ND	ND	ND
Anthracene	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1 J	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	UG/L	5	1.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8 J	ND	ND	ND	1.3 J	ND
Dibenzofuran	UG/L	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND	ND	ND
Diethylphthalate	UG/L	50	1.1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.4 J	ND
Di-n-butylphthalate	UG/L	50	1.2 J	1.0 J	ND	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND	2.2 J	ND	ND	ND	ND	ND	ND	1.6 J	2.6 J	ND	ND	ND	ND	1.7 J
Fluorene	UG/L	50	1.9 J	ND	ND	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND	3.3 J	ND	ND	ND	ND	ND	ND	ND	2.1 J	ND	ND	ND	ND	ND
Isophorone	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	UG/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.3 J	ND	ND	ND	ND	ND	ND
Phenanthrene	UG/L	50	5.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8 J	ND	ND	ND	ND	2.1 J
Phenol	UG/L	1	18	ND	ND	ND	ND	ND	9.9 J	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	2.8 J
Metals																												
Arsenic	UG/L	25	ND	NA	ND	NA	2.4 J	ND	ND	NA	ND	NA	ND	ND	ND	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND
Barium	UG/L	1000	139	NA	103	NA	68.8	49.5 J	204	NA	99.9	NA	38.1	25.9 J	147	NA	NA	NA	NA	107	54.4 J	193	NA	NA	NA	98.9	22.5 J	153
Cadmium	UG/L	5	ND	NA	ND	NA	ND	ND	ND	NA	ND	NA	ND	ND	ND	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND
Chromium	UG/L	50	25.4	NA	ND	NA	2.4 J	ND	42	NA	ND	NA	1.1 J	ND	17.3	NA	NA	NA	NA	1.6 J	ND	10	NA	NA	NA	1.3 J	ND	17.6
Selenium	UG/L	10	6.66	NA	ND	NA	ND	ND	5.78	NA	ND	NA	ND	ND	ND	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	6.2
Dissolved Metals	•																		-									
Barium	UG/L	1000	61.2	NA	NA	NA	NA	NA	79.5	NA	NA	NA	NA	NA	103	NA	141	135	NA	NA	NA	139	NA	20.8	NA	NA	NA	91.8
Selenium	UG/L		ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	ND	ND	NA	NA	NA	ND	NA	ND	NA	NA	NA	5.64

ND = Not Detected

J = Estimated value

NA = Not Analyzed

TOGS = NYSDEC Ambient Water

Quality Standards. Class GA.

RED = Value Exceeds TOGS

UG/L = Micrograms per Liter

TABLE 2SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTSMACEDON FILM SITE

Page 2 of 2

Leastion I D			MMW-05	MMW-05	MMW-05		MMW-06	MMW-06	MMW-06	MMW-07	MMW-07	MMW-07	MMW-07	MMW-07	MMW-08	MMW-09		MMW-10	MMW-10	MP-01	MP-01	MP-01	MP-01	MP-01
Location I.D.					MMW-05	MMW-06		MMW-06		_	DUP		MMW-07	-	MMW-08	MMW-09	MMW-09	MMW-	-				MP-01	-
Sample I.D.			MMW-5	MMW-5	(07/23/08)	MMW-6	MMW-6	(07/23/08)	MMW-6	MMW-7	050602	MMW-7	(07/24/08)	MMW-7	(07/24/08)	(07/24/08)	MMW-9	10(07/24/08)	MMW-10	MP1	MP1	MP-1	(07/24/08)	MP-1
Date Sampled			04/06/05	06/01/05	07/23/08	04/06/05	06/01/05	07/23/08	02/11/09	04/06/05	06/01/05	06/01/05	07/24/08	02/12/09	07/24/08	07/24/08	02/12/09	07/24/08	02/12/09	11/01/99	03/13/00	06/01/05	07/24/08	02/11/09
Parameter	Units	TOGS																						
Volatile Organic Compounds																								
1,1,1-Trichloroethane	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.62 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	NA	NA	ND	NA	NA	0.38 J	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND
1,2,4-Trimethylbenzene	UG/L	5	ND	ND	NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA
4-Isopropyltoluene (p-Cymene)	UG/L	5	ND	ND	NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA
Acetone	UG/L	50	14 J	ND	ND	7.8 J	ND	ND	ND	6.6 J	1.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	12 J	ND	12	ND
Benzene	UG/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	UG/L	50	ND	ND	ND	0.91 J	0.69 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	UG/L	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	UG/L	7	0.71 J	0.64 J	ND	30	24	21	1.2	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.99 J	ND	ND	ND	ND	ND	ND
Isopropylbenzene (Cumene)	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	UG/L	10	ND	ND	ND	ND	ND	ND	0.53 J	ND	ND	ND	ND	ND	ND	22	7.1	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	UG/L	-	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	100	ND	NA	NA	NA	1.1	ND
Naphthalene	UG/L	10	ND	ND	NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA
n-Butylbenzene	UG/L	5	ND	ND	NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA
n-Propylbenzene	UG/L	5	ND	ND	NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA
sec-Butylbenzene	UG/L	5	ND	ND	NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA
Toluene	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	ND	ND	ND	ND	ND	ND
o-Xylene	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semivolatile Organic Compounds						=																		
2-Methylnaphthalene	UG/L	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol (p-cresol)	UG/L	1	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND
Acenaphthene	UG/L	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	UG/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	ND
Dibenzofuran	UG/L	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethylphthalate	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	UG/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	UG/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	UG/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals		05		N1.4		ND	K I A			ND	N1.4	N/A	ND	ND	ND	ND	ND	NB	ND	ND				
Arsenic	UG/L	25	ND	NA	ND	ND	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Barium	UG/L	1000	139	NA	115	ND	NA	12.8 J	49.3 J	67.4	NA	NA	60.5	69.8 J	23.8	39.5	38.4 J	52.8	32.9 J	202	53.1	NA	31.8	31.5 J
Cadmium	UG/L	5	ND	NA	ND	ND	NA	ND	ND	ND	NA	NA	0.65 J	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Chromium	UG/L	50	ND	NA	1.1 J	ND	NA	2.3 J	ND	ND	NA	NA	1.3 J	ND	1.7 J	1.7 J	ND	1.2 J	ND	24.4	ND	NA	1.0 J	ND
Selenium	UG/L	10	ND	NA	5.1 J	ND	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	4.8 J	5.1 J	ND	14.5	ND	NA	7.6 J	8.7 J
Dissolved Metals		4000	N1.4	N1.4	N1 A	N1.4	K I A	N1 A	N1.4	N1.4	N1.4	N/A	N I A	K I A	NI A	N I A	K1A	N1 A	N14	74.0	N1.4	N/A	N I A	NIA
Barium	UG/L	1000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	71.6	NA	NA	NA	NA
Selenium	UG/I	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.85	NA	NA	NA	NA

ND = Not Detected

J = Estimated value

NA = Not Analyzed

TOGS = NYSDEC Ambient Water

Quality Standards. Class GA.

RED = Value Exceeds TOGS

UG/L = Micrograms per Liter