

August 4, 2025

Solean West LLC Timothy Ryan 400 Market Industrial Park, Suite 32 Wappingers Falls, New York 12590

Dear Timothy Ryan:

Re: Periodic Review Report (PRR)
Response Letter
Olean Redevelopment Parcel 2,
Site No.: C905032
Olean (C), Cattaraugus County

The New York State Department of Environmental Conservation (NYSDEC) has reviewed your Periodic Review Report (PRR) and IC/EC Certification for following period: March 15, 2024, to March 15, 2025.

NYSDEC hereby accepts the PRR and associated Certification. The frequency of Periodic Reviews for this site is 1 year(s), your next PRR is due on April 15, 2026. You will receive a reminder letter and updated certification form 75-days prior to the due date. Regardless of receipt or not, of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

While NYSDEC can accept the certification, the following items warranted comment for correction in future reports:

- 1) <u>Section 3.1.3.1, First Paragraph</u>: The PRR states Appendix E presents a summary of monitoring data and a graphic chart, however, there is no Appendix E included in the PRR. Please revise accordingly;
- 2) <u>Section 3.1.4</u>, <u>First Paragraph</u>: The discussion of monitoring wells meeting groundwater quality standards for arsenic and lead does not include W-14. Please revise accordingly;

Timothy Ryan August 4, 2025 Page 2

- 3) <u>Figures Table of Contents</u>: The list of figures does not include '7. Soil Vapor Extraction Map'. Please revise accordingly; and
- 4) <u>Equipment Calibration Log</u>: It is not clear if equipment was calibrated for all parameters. The calibration log should indicate if equipment was calibrated for a certain parameter. If the parameter is not applicable to the equipment for calibration, it should clearly be noted as such.

If you have any questions, or need additional certification forms, please contact me at 716-851-7220 or e-mail: jason.kryszak@dec.ny.gov.

Sincerely,

Jason Kryszak, G.I.T. Project Manager

JK:JB

ec:

Benjamin McPherson – NYSDEC Timothy Ryan – Solean West Michael Lesakowski – Roux Lori Riker – Roux

Periodic Review Report March 15, 2024 to March 15, 2025

Olean Redevelopment Parcel 2 BCP Site No. C905032 Olean, New York

April 2025

Prepared for:

Solean West LLC

Prepared by:

Roux Environmental Engineering and Geology, D.P.C. 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218

Table of Contents

1.	Introduction	1
	1.1 Site Background	1
	1.2 Purpose and Scope	2
2	Site Overview	3
	2.1 Site Redevelopment Activities	
2	Site Management Plan	
Э.	3.1 Monitoring and Sampling Plan	
	3.1.1 LNAPL Monitoring/Recovery System	
	3.1.2 Groundwater Sampling and Analysis	
	3.1.2.1 Results	
	3.1.3 SVE System and Monitoring	
	3.1.3.1 Results	
	3.1.4 Monitoring Results Summary	
	3.2 Operation & Maintenance Plan	
	3.2.1 SVE System	
	3.2.1.1 Routine System Operation and Maintenance	
	3.2.1.1 System Monitoring Devices and Alarms	
	3.2.2 Annual Inspection and Certification Program	
	3.3 Excavation Work Plan	
	3.3.1 Institutional Controls	
	3.3.2 Engineering Controls	
4.	Conclusions and Recommendations	
	4.1 Conclusions	
	4.2 Recommendations	13
5.	Declaration/Limitation	14

Tables

- 1. LNAPL Monitoring and Collection Log
- 2. Groundwater Monitoring Well Water Levels
- 3. 2008-2024 Groundwater Analytical Summary Organics
- 4. 2008-2024 Groundwater Analytical Summary Metals

Figures

- 1. Site Location and Vicinity Map
- 2. Site Plan (Pre-Remediation)
- 3. Site Plan (Post-Remediation)

Table of Contents (Cont'd)

- 4. Survey/Tax Parcel Map
- 5. Site Cover System Map
- 6. Groundwater Isopotential Map (July 2024)
- 7. Soil Vapor Extraction System Map

Appendices

- A. Site Inspection Forms
- B. Site Photolog
- C. Groundwater Sampling Field Forms and Analytical Data

1. Introduction

Roux Environmental Engineering & Geology, D.P.C. (Roux), formerly Benchmark Civil/Environmental Engineering & Geology, PLLC (Benchmark), has prepared this Periodic Review Report (PRR) on behalf of Solean West LLC (Solean West) to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C905032, located in Olean, Cattaraugus County, New York (see Figure 1), commonly referred to as the Olean Redevelopment Parcel 2 (Site).

This PRR has been prepared for the Site in accordance with NYSDEC DER-10/Technical Guidance for Site Investigation and Remediation (May 3, 2010). This PRR and the NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form (see Appendix A) have been completed for the post-remedial activities at the Site for reporting period March 15, 2024 to March 15, 2025.

1.1 Site Background

The Olean Redevelopment Parcel 2 Site is a portion of a larger former refinery operation that operated in the Olean area from the mid-1800s through the 1950s. Separate refineries operated on the Site and were merged in 1902 into the Vacuum Oil Company, and then in 1931 became the Socony-Vacuum Oil Company until 1954 when the refinery closed (see Figure 2). The property was divided into multiple parcels in the 1960s. Felmont Oil Company (Felmont) constructed an anhydrous ammonia plant on the northern parcels where they manufactured ammonia from natural gas. Felmont sold the ammonia to Agway for use in manufacturing fertilizer at Agway's plant located on what is now referred to as Olean Redevelopment Parcel 1. In 1983, Agway purchased the portion of the Felmont site that included the ammonia production plant. Agway dismantled and sold both the ammonia and fertilizer plants in 1984.

The properties adjoining and near the Site include commercial and industrial properties including a vacant former industrial site (Olean Redevelopment Parcel 1) remediated under the BCP and undergoing redevelopment for commercial use to the south; Southern Tier Rail line to the north; a former industrial site (Olean Redevelopment Parcel 3) remediated under the BCP and redeveloped as a commercial solar farm to the east; and a Verizon Service Center to the west.

A Remedial Action Work Plan (RAWP) was prepared and submitted by Olean Gateway, LLC in March 2014 and approved by NYSDEC to address the residual soil and groundwater remediation. The remedial program was successful in achieving the remedial objectives for the Site, and the Site Management Plan (SMP) and Final Engineering Report (FER) were approved by NYSDEC in October 2014 and December 2014. The Certificate of Completion (COC) was received December 14, 2015 and recorded December 24, 2015.

The Site has been redeveloped as a photovoltaic solar system consisting of nominally 300 solar arrays to in-feed the nearby National Grid commercial electrical system (grid) as described in the 2017 PRR. Figures 2 and 3 illustrate the pre- and post-remediation site conditions.

1.2 Purpose and Scope

The SMP requires, among other things, periodic inspection, and certification that the institutional and engineering controls implemented at the Site remain in place and are functioning as designed. This PRR serves that purpose as well as documenting post-remedial actions taken since the COC was issued and during this reporting period, if any.

2. Site Overview

The Site is located at 1470 Buffalo Road in the City of Olean, Cattaraugus County, New York and identified as Section 94.047 Block 2 and Lot 28.1 on the Cattaraugus County Tax Map (see Figure 4). The Site is an approximately 9.1-acre area and is bounded by the Southern Tier Rail Authority railroad tracks to the north, the Olean Redevelopment Parcel 1 (NYSDEC BCP Site C905031) to the south, the Olean Redevelopment Parcel 3 (NYSDEC BCP Site C905033) to the east, and Verizon Service Center to the west. The owner of the Site at the time of issuance of the SMP was Olean Gateway LLC. Site ownership was transferred to Solean West LLC in 2016. Remedial activities conducted between 2010 and 2015 were completed in accordance with the approved Interim Remedial Measures (IRM) Work Plan and RAWP. The remedial activities included:

Interim Remedial Measures

IRMs were previously performed in 2010 by ExxonMobil in accordance with the IRM Work Plan. The IRM Report for the Buffalo Street properties (referred to previously as BCP Site Nos. 1, 2 & 3) was prepared in March 2011 prior to the property being purchased by Olean Gateway. The previous IRM activities associated with the Olean Redevelopment Site 2 consisted of the following:

- Closure/removal of several structures/tanks:
 - One vault structure (20'x20'x8' deep) contained sediment/soil on the bottom of the vault, samples of which did not indicate the presence of significant levels of organics. The vault was closed in-place by filling with sand.
 - Two approximately 3,500-gallon and one 13,000-gallon steel underground storage tanks (USTs) were found by W&C that, when found, contained sand. A sample of the sand contained only minor detections of organics and, as such, the USTs were considered "closed in-place" by the NYSDEC.
 - Ten USTs were identified on the western portion of the Site. The USTs were believed to be process tanks associated with wax manufacturing. Liquid and solid samples from the tanks contained minor concentrations of organics. The size of the tanks ranged from approximately 700 to 2,300 gallons. The tanks were removed from the Site.
- Recovery of measurable light non-aqueous phase liquid (LNAPL) from groundwater monitoring wells via sorbent socks.

Remedial Actions

The following is a summary of the remedial actions completed by Olean Gateway at the Olean Redevelopment Parcel 2:

- Approximately 2,715 tons of arsenic-contaminated soil/fill was excavated, loaded, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY.
- Approximately 143 tons of mercury-contaminated soil/fill was excavated, loaded, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY.
- Approximately 638 tons of grossly contaminated petroleum soils (GCPS) was excavated, loaded, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY.

- Approximately 33,767 linear feet of subsurface metallic product piping (steel, cast iron, lead and copper) was exposed, tapped, evacuated of contents, removed, cleaned, and recycled. An additional 156 linear feet of wood pipe was also exposed, tapped, evacuated of contents, removed, cleaned, and disposed off-site. Piping that extended beyond the property boundary was capped and/or grouted at the apparent property line. Approximately 240 cubic yards of GCPS was excavated during piping removal activities and treated on the on-site force vented biopiles (FVBPs) and reused as backfill below the cover system.
- Approximately 25, 55-gallon drums were generated from the removal of the abandoned subsurface piping. The contents of the piping included LNAPL, residual pipe scale, and product sludge. The drums were disposed at CWM Chemical Services, LLC, located in Model City, NY. Water extracted from excavations during piping removal was pumped into holding tanks, treated with bag filters and granular activated carbon (GAC) on-site, pumped into a secondary on-site temporary holding tank, sampled, and discharged to the City of the Olean sanitary sewer with approval under an Industrial Pretreatment Program permit.
- A soil vapor extraction (SVE) system was installed and operated to address GCPS remaining inplace in the deeper soil/fill from approximately 2 to 15 feet below ground surface (fbgs). The SVE
 system included the installation of 13 SVE wells, associated conveyance piping, and placement
 of one trailer mounted SVE blower (refer to Figure 6). Emissions from the SVE system are
 controlled using a biofilter contained within an approximate 20-foot by 8-foot steel roll-off box
 outfitted with perforated pipe. The biofilters contain an approximate 1-foot-thick gravel layer at
 the base of the box overlain by approximately 3 feet of wood chip and compost filter medium,
 which allowed the naturally occurring microbes to bioremediate the air stream and control the
 nuisance odors from the SVE system.
- LNAPL recovery was completed using hydrocarbon absorbent socks at monitoring well WCMW-1 and a product pump at well W-14. The LNAPL thickness at these two groundwater monitoring wells varied from 0 to 6.5 feet in well W-14 and 0.02 to 0.6 feet in well WCMW-1 in 2014-2015; there was no evidence of LNAPL in well WCMW-4 in 2014-2015. During LNAPL monitoring events, the socks were wrung of product and reinstalled. The volume of recovered LNAPL from well W-14 was approximately 48 gallons and well WCMW-1 0.5 gallons. Recovered product was transferred to properly labeled and sealed 55-gallon drums at the Site for future off-site disposal. Socks with obvious staining/saturation of LNAPL were removed and replaced with new socks.
- A final cover system consisting of a demarcation layer, minimum 12 inches of clean imported soil, and vegetation was installed at the Site in April-May 2015. Prior to redevelopment, the vegetation was established across the Site.
- An Environmental Easement was executed in December 2015 between Olean Gateway and NYSDEC and recorded with the deed in the Cattaraugus County Clerk's office to restrict land use to commercial/industrial operations; restrict the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH or County DOH; and prevent future exposure to any contamination remaining at the Site.

Development and implementation of the SMP for management of remaining contamination as required by the Environmental Easement., which includes plans for (1) institutional and engineering controls, (2) excavation, (3) monitoring and reporting, and (4) operation and maintenance.

2.1 Site Redevelopment Activities

The Site was sold by Olean Gateway to Solean West in March 2016. Solean West leases the land to the Solar Company. The COC was transferred from Olean Gateway on June 21, 2016 to Solean West LLC (Solean West) and 1470B PV LLC (Solar Company). The Site was redeveloped, in accordance

with the NYSDEC-approved August 31, 2016 Work Plan for Redevelopment Activities, as a photovoltaic solar system consisting of nominally 300 solar arrays to in-feed the nearby National Grid commercial electrical system (grid). Redevelopment construction began in October 2016 and was substantially complete as of the date of the 2017 PRR. Solar facility construction activities included installation of a new access road, concrete pad, aboveground equipment, power poles, fence gates and support poles, and conduits. Two power poles, four equipment support poles, four gate posts, fence posts, and a small amount of conduit (for Verizon/National Grid communications) penetrated through the cover system; all other construction activities occurred on the ground surface or above the demarcation layer. No additional redevelopment activities occurred during this reporting period.

3. Site Management Plan

An SMP was prepared for the Site and approved by the Department in November 2015. The SMP includes a Monitoring and Sampling Plan, an Operation & Maintenance (O&M) Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easement. A brief description of the components of the SMP is presented below.

3.1 Monitoring and Sampling Plan

The monitoring and sampling plan specifies the methods used for sampling of:

- LNAPL monitoring and collection.
- Sampling and analysis of groundwater.
- Remedial SVE system monitoring.
- Site-wide inspection.
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

3.1.1 LNAPL Monitoring/Recovery System

LNAPL has historically been detected on-site in monitoring wells WCMW-1 and W-14. Well WCMW-4 was previously monitored for LNAPL but NYSDEC approved the removal of the well from the LNAPL monitoring in a comment letter dated June 21, 2021. Table 1 presents a summary of the monthly LNAPL measurements for the period of July 17, 2014 through February 28, 2025. During the March 15, 2024 to March 15, 2025 reporting period, LNAPL was not detected in well WCMW-1. LNAPL is typically recovered using hydrocarbon absorbent socks in well WCMW-1. The adsorbent socks are installed in the well at the LNAPL/water interface. As indicated in Table 1, there were no sock change-outs for well WCMW-1 during this reporting period. During monthly inspections, socks that had obvious staining/saturation of LNAPL are removed and replaced with new socks. Used socks that are changed out are containerized in drums, labeled, and characterized for off-site disposal. An oil skimmer was installed in well W-14 in September 2015 and replaced in July 2016. The belt on the oil skimmer was replaced on May 16, 2024 after Roux field personnel observed that it was ripped and continually rolling over on itself. Any recoverable product generated by the belt skimmer goes directly into the on-site storage drum for disposal and therefore no product level measurements were taken. An increase in recovered product was noted in the on-site storage drum during the June 25 and October 20, 2024 and January 24, 2025 monthly inspections. Approximately four gallons of LNAPL was recovered from well W-14 this reporting period. The on-site drum currently contains approximately 33 gallons of product. The drums will be shipped off-site when full.

3.1.2 Groundwater Sampling and Analysis

Roux completed the annual groundwater monitoring event August 5 and 6, 2024, and collected samples from wells W-13, W-14, W-17, W-28, WCMW-4, and WCMW-1. Well W-14, despite having 0.61 feet of measurable product in the well, was sampled for the first time in August 2024. Field staff observed little visible product on the bailer and in the groundwater bailed and decided to

sample. Field staff will consult with the Project Manager during the 2025 sampling event as well W-14 continues to generate LNAPL during monthly monitoring events. A groundwater sample was obtained from each well and analyzed for target compound list (TCL) volatile organic compounds (VOCs) and tentatively identified compounds (TICs) using USEPA Method 8260; semi-VOCs and TICs via USEPA Method 8270; and arsenic and lead using USEPA Method 6010. Appendix C includes field notes from the groundwater sampling event and the laboratory analytical data package. Table 2 summarizes groundwater elevations from 2012 through 2024. Tables 3 and 4 summarize the 2024 analytical results as well as historic groundwater quality data.

3.1.2.1 Results

Groundwater Elevations

On July 29, 2024, depth to groundwater was measured across all three Olean Redevelopment Parcel Sites (ORP-1, -2, and -3). The groundwater elevations were contoured using this water level data as shown on Figure 6. Although Figure 6 implies a southwest groundwater flow, elevations are generally flat across the center of the Site with a slight gradient in the uppermost sand and gravel aquifer toward the southeast, which is consistent with the prior groundwater contour maps. As shown on Figure 7, all wells except W-13 are downgradient of the SVE system.

Analytical Data

Analytical results from the August 2024 groundwater sampling event are presented in Table 3 (VOCs and SVOCs) and Table 4 (metals).

VOCs

Groundwater samples from wells W-13, W14, W-28, WCMW-4, and WCMW-1 did not contain VOCs at concentrations above NYSDEC Class GA groundwater quality standards and guidance values (GWQS/GVs). Results from well W-17 indicated five VOCs above GWQSs, with concentrations at the same order of magnitude as those detected in 2023. VOC-TICs were detected at all wells except well W-13. The VOC-TIC concentrations in wells W-17 and W-28 have been fluctuating since 2021 but are both below 75 ug/L. The VOC-TIC concentration in WCMW-4 (12.8 ug/L) slightly increased from non-detect results over the last five years. The VOC-TIC concentrations in well WCMW-1 were consistent with the June 2023 results. Well W-14 was sampled for the first time with a VOC-TIC concentration of 13.2 ug/L.

SVOCs

Several SVOCs exceed GWQS/GVs including benzo(a)anthracene (three wells), benzo(a)pyrene (three wells), benzo(b)fluoranthene (three wells), benzo(k)fluoranthene (one well), chrysene (four wells), indeno(1,2,3-cd)pyrene (three wells), and phenol (two wells). Phenol was detected for the first time at wells W-13 and WCMW-4. The other SVOCs are generally consistent with recent results. Only one SVOC remains above GWQS at wells W-13 and WCMW-1. Well W-17 had no SVOC GWQS exceedances in 2023 and 2024. SVOC-TICs in well WCMW-4 increased from 258 ug/L in June 2023 to 1,320 ug/L in August 2024. SVOC-TIC concentrations in wells W-13, W-17, WCMW-1 and W-28 decreased from June 2023 to August 2024. W-14 was sampled for the first time with a SVOC-TIC concentration of 113 ug/L.

Metals

Arsenic was detected at concentrations well below the GWQS in the six wells sampled. Lead was not detected at wells W-13, W-14, W-28, and WCMW-1 and was detected at concentrations well below the GWQS in well W-17. Lead was detected at a concentration of 40.92 ug/L exceeding the GWQS of 25 ug/L in well WCMW-4. The water in this well was dark in color with a turbidity reading above 1,000 Nephelometric Turbidity Units (NTUs); therefore, the lead exceedance is likely due to the high amounts of solids in the sample collected.

3.1.3 SVE System and Monitoring

The SVE system (referred to as 2-SVE-1) was in operation at the Site from October 2014 to November 2023.

The SVE system is comprised of two main components:

- 1. The collection system constructed of a series of vertical extraction wells and extraction well manifold piping.
- 2. The trailer mounted mechanical SVE system that includes a blower, motor and ancillary equipment that generates the vacuum and moves the extracted vapor to the biofilter.

The blower is manifolded to a series of 13 wells designated 2-SVE-1 through 2-SVE-13 (refer to Figure 7). The extracted air is conveyed through 4" PVC piping installed below grade from the wells to the blower. Figure 7 shows the approximate piping network. The extracted air is treated in a biofilter prior to discharge to the atmosphere. The biofilter treatment medium consists of a mixture of compost and mulch (approx. 50% each by weight). The natural bacteria in the biofilter use the organics in the waste stream as a source of energy. The biofilter medium needs to be maintained in a slightly wet state and periodically mixed (fluffed-up). Biofilter media requires mixing when nuisance odors become an issue or when a thick cake layer forms on top preventing proper venting. The top 4-6 inches of the biofilter media is mixed/raked periodically to keep the media broken up and loose. Raking of the biofilter was not required during the 2023-2024 reporting period due to low effluent PID readings. Table D-1 records biofilter mixing events, SVE monitoring parameters, and tracks total VOC mass removal rates and amounts.

On November 18, 2019, Solean West submitted a request to NYSDEC with verification soil/fill sampling data for consideration of termination of the SVE operation since the VOC removal had leveled off as evidenced by the data submitted in the PRR. The Department replied on January 6, 2020 stating that system shutdown was not approved; however, the SVE operation could be reduced and optimized to focus on treating areas that still show impact. After further discussions with the Department, an additional request was filed on March 16, 2020¹ proposing the shut-down of the eastern leg of the SVE system (SVE wells 2-SVE-8 through 2-SVE-13). This request proposed the following revisions to the SMP for operation of SVE System 2-SVE-1 effective immediately:

 Discontinue operation of the eastern leg of the SVE system, which includes wells 2-SVE-8 through 2-SVE-13.

Periodic Review Report | ROUX | 8

¹ Benchmark Environmental Engineering & Science, PLLC. March 16, 2020 Letter to NYSDEC Re: SMP Revision 1: Operation of SVE System 2-SVE-1 Olean Redevelopment Parcel 2 (Site No. C905032).

- Continue operation of wells 2-SVE-2 through 2-SVE-6 and discontinue operation of wells 2-SVE-1 and 2-SVE-7 due to consistently low wellhead PID readings and to obtain higher vacuum at the operating wells.
- Continue PID readings at wellheads 2-SVE-1 through 2-SVE-13.
- Discontinue operation of the SVE system during the winter months (December through March) with startup once temperatures are consistently above 32°F.

On April 1, 2020² the Department issued an approval of the proposed reduction in SVE system operation, which superseded the operational requirements of the SMP. On April 7, 2020, Benchmark attempted to shut off the proposed wells listed above, which resulted in an increase in vacuum. Alternative wells had to be shut off to relieve pressure on the system. Wells with the highest PID readings were left open to better balance the operating system. SVE wells 2-SVE-2, -7, -9, and -12 were turned off to further optimize the system.

On July 19, 2023, the Department approved the Solean West Verification Soil Sampling (VSS) Work Plan. On August 23, 2023, Roux completed two soil borings: VSS-7 (proximate to historic sample location VSS-5) and VSS-8 (proximate to historic sample location VSS-6). At the time of the September 12, 2019 verification soil sampling event, VSS-5 (14-16 fbgs) and VSS-6 (8-10 fbgs) had the highest PID readings (284 ppm and 583 ppm respectively) and benzene was detected at 0.24 ppm at VSS-6, exceeding the Unrestricted Soil Cleanup Objective (USCO) of 0.06 ppm. During the July 2023 VSS event, the highest PID value observed at VSS-7 was 530 ppm at 19 fbgs. Despite wet conditions encountered at 6 fbgs, NYSDEC requested VSS-7 be sampled at 13-15 fbgs due to strong odor and visible product. The highest PID value observed at VSS-8 was 652 ppm at 19 fbgs but groundwater was encountered at 17 fbgs so VSS-8 was sampled from 14-16 fbgs. Both VSS-7 and VSS-8 samples were analyzed using USEPA Method 8260 for TCL VOCs plus TICs. Except for a low concentration of acetone in VSS-7, all VOC concentrations were below USCOs. Appendix D contains a summary of analytical results and the analytical data package from the July 2023 VSS event.

SVE system was turned off on November 9, 2023 for winter shutdown and was not restarted. On July 10, 2024, NYSDEC approved the decommissioning of the SVE system. The decommissioning has not yet been completed as of this PRR reporting period.

3.1.3.1 Results

The SVE system was successful in removing volatile organic vapors from the subsurface soil/fill. Appendix E presents a summary of monitoring data and a graphic chart. The estimated mass of organic petroleum hydrocarbon removed through November 9, 2023 is 7,564 pounds. The rate of removal for 2-SVE-1 decreased from a maximum of 95 pounds per day during the initial mass removal period (2014) to an average of 0.2 pounds per day over the 2023-2024 reporting period

Periodic Review Report | ROUX | 9

² New York State Department of Environmental Conservation. April 1, 2020 Letter to Mr. Paul Curran, Solean West LLC, Re: Olean Redevelopment Parcel 2 #C905032, Olean (C), Cattaraugus County, Soil Vapor Extraction (SVE) Operation.

prior to system shut down. Since the system has been shut down, a system check was not completed during the reporting period.

3.1.4 Monitoring Results Summary

The amount of LNAPL recovered from well W-14 decreased from 7 gallons during the 2023-2024 reporting period to 4 gallons during the 2024-2025 reporting period. No product was recovered from well WCMW-1 during this reporting period; 0.2 gallons were recovered during the 2023-2024 reporting period. Groundwater quality has primarily remained the same at all monitoring wells including at well W-17 where five VOCs continue to exceed GWQSs. VOCs were not detected above GWQS/GVs in wells W-13, W-14, W-28, WCMW-4, and WCMW-1. Wells W-13 W-14, and W-28 contain SVOCs above GWQSs. Well WCMW-1 has historically not been sampled due to visible product and WCMW-4 has typically been dry. During the August 2024 event, product was not observed in WCMW-1 and WCMW-4 generated enough water for sampling. Seven SVOCs in WCMW-4 and one SVOCs at WCMW-1 were detected exceeding GWQSs. SVOCs were not detected in well W-17 at concentrations above GWQS/GVs. Monitoring wells W-13, W-17, W-28, WCMW-1 meet the GWQS for arsenic and lead. Well WCMW-4 meets the GWQS for arsenic but exceeded the GWQS for lead; however, the exceedance is likely due to the high turbidity in the sample collected. WCMW-4 went dry before field personnel were able to collect a dissolved metal sample. The SVE system was very effective in removing organics vapors from the vadose zone and continued to show a diminished organic removal rate up until its shutdown in November 2023.

3.2 Operation & Maintenance Plan

The O&M Plan addresses operation and maintenance for the SVE systems.

3.2.1 SVE System

3.2.1.1 Routine System Operation and Maintenance

The SVE system is designed to require little maintenance over the expected duration of use at the Site. The blower bearing housing is oil-filled and checked once per month. If the level is below the overflow, SAE 40 weight oil is added through the top fill port of the housing. Grease fittings for the blower shaft are topped off periodically (i.e., every 2 months). No system checks were conducted as the SVE system has been shut down since November 2023 with the plan to decommission the system per the approval of the NYSDEC.

3.2.1.2 System Monitoring Devices and Alarms

Monitored system operating conditions that trigger a local (red panel light) and remote (common autodialer channel) alarm condition include low air vacuum, high air pressure, moisture separator tank high level, condensate tank high level, and heater/exhaust fan failure. Except for heater/exhaust fan failure, these alarm conditions automatically shut down the SVE system. A trailer entry (security) relay also triggers a local and remote alarm but does not cause system shutdown. Blower and condensate pump failure (e.g., due to thermal overload, power loss, or manual shut down) also triggers the autodialer. If the SVE system alarm is activated, the autodialer

will contact Roux. Based on the alarm fault, Roux will respond and/or contact the appropriate repair vendor (e.g., electrician, mechanical repair service). The system monitoring devices and alarms are not currently operating, as the SVE system has been shut down since November 2023 with the plan to decommission the system per the approval of the NYSDEC.

3.2.2 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines the requirements for the Site to certify and attest that the institutional controls and/or engineering controls (IC/ECs) employed at the Site are unchanged from the previous certification. The annual certification primarily consists of an annual Site Inspection to complete the NYSDEC's IC/EC Certification Form. The Site inspection will verify that the IC/ECs:

- Are in place and effective.
- Are performing as designed.
- That nothing has occurred that would impair the ability of the controls to protect the public health and environment.
- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls.
- Access is available to the Site to evaluate continued maintenance of such controls.

A Site inspection was conducted on March 6, 2025 by Ms. Charlotte Clark, Senior Engineer I, under the direction of Lori Riker, P.E., who meets the requirements of a Qualified Environmental Professional (QEP). No observable indication of intrusive activities, cover failure, or use of groundwater were noted during the Site inspection. Appendix A includes the completed Site Management PRR Notice – IC/ECs Certification Form. Appendix B is a photolog showing the condition of the Site at the time of the March 6, 2025, inspection.

3.3 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the approved SMP for the Site. The EWP provides guidelines for the management of soil and fill material during intrusive activities. There were no intrusive activities during the 2024-2025 reporting period. As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the BCA for the Site.

3.3.1 Institutional Controls

- Groundwater-Use Restriction: The use of groundwater for potable and non-potable purposes is prohibited.
- Land-Use Restriction: The controlled property may be used for commercial and/or industrial use.
- Implementation of the SMP including the O&M Plan and EWP.

3.3.2 Engineering Controls

 Vapor Mitigation: There are no buildings on the Site and, as such, no active sub-slab depressurization (ASD) systems exist.

- SVE System: The SVE system was operated and monitored from October 2014 until December 2023. Approval for the decommissioning of the system was received on July 10, 2024 with plans to decommission the system the week of April 28, 2025.
- LNAPL Recovery/Monitoring: LNAPL recovery and monitoring has been performed monthly via absorbent socks in well WCMW-1 and an oil skimmer in well W-14.
- Groundwater Monitoring: Annual sampling was completed in July 2024.
- Cover System: The cover system is intact and functioning as intended.

At the time of the Site inspection, the Site was compliant with all IC/EC requirements.

Periodic Review Report | ROUX | 12

4. Conclusions and Recommendations

4.1 Conclusions

At the time of the March 6, 2025 inspection, the Site complied with the SMP. Specifically, the Site is compliant with the ICs including land-use restrictions, groundwater-use restrictions, and the EWP component. The Site is compliant with the ECs as described below:

- Long-term groundwater monitoring indicates overall improved groundwater quality; well W-17 continues to be the only well sampled that exceeds GWQS/GVs for five VOCs. Seven SVOCs were detected exceeding GWQS/GVs across five of the wells sampled compared to six SVOCs across four wells sampled in June 2023.
- Oil skimming from well W-14 resulted in recovery of approximately four gallons of LNAPL this reporting period.
- The SVE system was turned off on November 9, 2023, for winter shutdown and was not restarted. On July 10, 2024, NYSDEC approved decommissioning of the SVE system. The decommissioning has not yet been completed as of this PRR reporting period.

4.2 Recommendations

If groundwater samples collected during the July 2025 event have high turbidity, the samples will be filtered by the laboratory and analyzed for dissolved arsenic and lead. Roux intends to decommission the SVE wells, trailer, and biofilter the week of April 28, 2025. Details of the decommissioning along with SVE well decommissioning logs will be included with the 2026 PRR.

5. Declaration/Limitation

Roux Environmental Engineering and Geology, D.P.C. personnel conducted the annual site inspection for BCP Site No. C905032, Olean, New York according to generally accepted practices. This report complies with the scope of work provided to Solean West LLC by Roux Environmental Engineering and Geology, D.P.C.

This report has been prepared for the exclusive use of Solean West LLC. The contents of this report are limited to information available at the time of the Site inspection. The findings herein may be relied upon only at the discretion of Solean West LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Roux Environmental Engineering and Geology, D.P.C.

- 1. LNAPL Monitoring and Collection Log
- 2. Groundwater Monitoring Well Water Levels
- 3. 2008-2024 Groundwater Analytical Summary Organics
- 4. 2008-2024 Groundwater Analytical Summary Metals

4387.0001P100/CVRS ROUX

TABLE 1 SVE SYSTEM 2-SVE-1 LNAPL MONITORING AND COLLECTION LOG

OLEAN REDEVELOPMENT PARCEL 2 NYSDEC BCP SITE NO. C905032 OLEAN, NEW YORK

Description								OLEAN, NEW							
				1	W	SMW-1	ı				1	W-14			
1929FIA JUR Y 23 19 23 52 0.33 0 Removed Y 20 86 25 68 4.8 4 4 4 1 1 1 1 1 1 1		Initials	Present? (Y / N)	Depth (fbTOR)	Level (fbTOR)	Level (feet)	Recovered (gallons)	Absorbent Sock? (Y / N)	Present?	Depth	Level (fbTOR)	Level	Recovered	Accumulated Volume Collected (gallons)	Skimmer Operational?
115 14 July Y 2280 2255 0.02									V	20.06		1 0	1 4		NA NA
1973 3 3 7 2 2 6 2 2 6 2 2 6 2 2															NA NA
27715 3.0															NA NA
371115															NA
31115															NA NA
31115															NA NA
18 18 18 18 18 18 18 18														26	NA
44015															NA
172715															NA NA
92/15 PWW Y 22/92 22/95 0.03 0 N Y 20.38 27/0 6.62 5 45															NA NA
1929 15 PWW														45	NA
1014415 PWW Y 22.88 22.91 0.03 0 N Y 22.75 20.3 6.55							-							48	NA
10/28/15 ML															NA Y
1111115 M.															Y
12916 M.				22.32	22.34	0.02	0	Υ	Υ	23.38	27.98	4.6			Υ
1922 15 ML															Y
15716 ML															Y
22716 ML															Y
44/216 BG			Υ	20.94	20.96	0.02	0	N		22.18	22.29			-	Υ
S4416 ML															Y
60216 ML															Y
78616 BMG															Y
BIMG	7/6/16	BMG	Υ					Y	Υ						Υ
BHG														98 (Note A)	Y
9/19/16 BMG														132 139 (Note B)	Y Y
1002716 BMG N NA 21.86 0 0.1 N Y 22.95 22.97 0.02 29 21.4 11/22/16 BMG N NA 22.11 0 0 0 N Y NA 23.23 NA 10 22.4 12/21/16 BMG N NA 21.55 0 0 N Y 22.7 22.74 0.04 0 22.4 1/5/17 BMG N NA 20.38 0 0 N Y 21.6 21.62 0.02 0 22.4 22.14/17 BMG N NA 18.9 0 0 N Y 19.9 19.92 0.02 3 22.7 3/28/17 BMG N NA 20.14 0 0 N Y 21.1 21.15 0.05 1 22.6 4/11/17 BMG N NA 20.14 0 0 N Y 21.1 21.15 0.05 1 22.6 4/11/17 BMG N NA 20.14 0 0 N Y 21.1 21.15 0.05 1 22.6 4/11/17 BMG N NA 20.35 0 0 N Y 21.1 21.31 0.31 0 22.6 6/28/17 BMG N NA 21.45 0 0 N Y 22.5 22.51 0.01 0 22.6 6/28/17 BMG N NA 22.25 0 0 N Y 22.5 22.51 0.01 0 22.6 6/28/17 BMG N NA 22.25 0 0 N Y 23.25 23.46 0.21 1 22.5 6/28/17 CFD N NA 23.06 0 0 N Y 23.25 23.46 0.21 1 22.5 22.6 10/26/17 CFD Y 23.71 23.85 0.14 0.2 Y Y 23.95 23.99 0.04 7.5 24.4 10/26/17 CFD N NA 24.05 0 0 N Y 23.85 23.97 0.12 2 25.6 22.6 10/26/17 CFD N NA 24.05 0 0 N Y 23.85 23.97 0.12 2 25.6 12/26/17 CFD N NA 24.05 0 0 N Y 23.85 23.97 0.12 2 25.6 12/26/17 CFD N NA 24.05 0 0 N N N N N 21.89 21.93 0.04 0 25.7 24/26/17 CFD N NA 24.05 0 0 N N N N N 21.89 21.93 0.04 0 25.7 24/26/17 CFD N NA 24.05 0 0 N N N N N 21.89 21.93 0.04 0 25.6 24/26/17 CFD N NA 24.05 0 0 N N N N N 21.89 21.93 0.04 0 25.6 24/26/17 CFD N NA 24.05 0 0 N N N N N 21.89 21.93 0.04 0 25.6 25.6 24/26/18 CFD N NA 24.05 0 0 N N N N N 21.33 NA 0 25.7 24/26/18 CFD N NA 24.05 0														185 (Note C)	Y
1221/16 BMG	10/27/16	BMG		NA	21.86	0	0.1	N	Υ	22.95	22.97	0.02	29	214	Υ
115/17														224	Y
21/14/17 BMG N NA 18.9 0 0 N Y 19.9 19.92 0.02 3 227															Y
3/28/17 BMG N NA 20.14 0 0 N Y 21.1 21.15 0.05 1 228														227	Y
5/30/17 BMG N NA 20.35 0 0 N Y 21 21.31 0.31 0 222 6/28/17 BMG N NA 21.45 0 0 N Y 22.5 22.51 0.01 0 228 8/9/17 CFD N NA 22.25 0 0 N Y 23.25 23.46 0.21 1 228 8/9/17 CFD N NA 23.06 0 0 N Y 24.05 24.15 0.1 12.5 242 (No 9/26/17 CFD Y 23.71 23.85 0.14 0.2 Y Y 23.95 23.99 0.04 7.5 248 10/26/17 CFD Y 24.02 24.12 0.1 0.1 Y 23.85 23.99 0.04 7.5 248 11/28/17 CFD N NA 24.05 0 0 N	3/28/17	BMG	N		20.14	0		N		21.1	21.15	0.05	1	228	Υ
6/28/17 BMG														228 (Note D)	Y
T/24/17															Y
8/9/17														229	Y
10/26/17 CFD														242 (Note E)	Υ
11/28/17 CFD N														249	Y
12/26/17 CFD N															Y Y
1/25/18 CFD N NA 23.68 0 0 N N NA 20.92 NA 1 257 2/15/18 CFD N NA 20.43 0 0 Y N NA 21.33 NA 0 257 3/12/18 CFD N NA 19.56 0 0 N N NA 20.35 NA 0 257 4/27/18 CFD N NA 19.06 0 0 0 N N NA 20.84 NA 1 258 5/24/18 CFD Y 21.02 21.05 0.03 0.05 Y N NA 21.24 NA 0.25 258 6/28/18 CFD Y 22.58 22.61 0.03 0.05 Y N NA 21.24 NA 0.25 258 7/17/18 CFD Y 22.12 22.14 0.02 0.2		CFD							Y		21.93			256	Y
3/12/18 CFD N NA 19.56 0 0 N N NA 20.35 NA 0 257														257	Y
4/27/18 CFD N NA 19.06 0 0 N N NA 20.84 NA 1 258 5/24/18 CFD Y 21.02 21.05 0.03 0.05 Y N NA 21.24 NA 0.25 258 6/28/18 CFD N NA 21.48 0 0 N N NA 21.86 NA 0.25 258 7/17/18 CFD Y 22.58 22.61 0.03 0.05 Y N NA 23.6 NA 0.5 258 8/11/18 CFD Y 22.12 22.14 0.02 0.2 Y N NA 23.45 NA 3 262 8/11/18 CFD Y 22.12 22.14 0.02 0.2 Y N NA 23.45 NA 3 262 8/11/18 CFD N NA 21.03 0.02 0.1															Y
5/24/18 CFD Y 21.02 21.05 0.03 0.05 Y N NA 21.24 NA 0.25 255 6/28/18 CFD N NA 21.48 0 0 N N NA 21.86 NA 0.25 255 7/17/18 CFD Y 22.58 22.61 0.03 0.05 Y N NA 21.86 NA 0.25 255 8/11/18 CFD Y 22.12 22.14 0.02 0.2 Y N NA 23.45 NA 0.5 255 8/11/18 CFD N NA 21.9 0 0 N N NA 22.93 NA 1 263 9/24/18 CFD N NA 21.9 0 0 N N NA 22.93 NA 1 263 10/15/18 CFD N NA 21.10 0 0 N <td></td> <td>257</td> <td>Y</td>														257	Y
7/17/18 CFD Y 22.58 22.61 0.03 0.05 Y N NA 23.6 NA 0.5 258 8/11/18 CFD Y 22.12 22.14 0.02 0.2 Y N NA 23.45 NA 3 262 9/24/18 CFD N NA 21.9 0 0 N N NA 22.93 NA 1 262 10/15/18 CFD Y 21.01 21.03 0.02 0.1 Y N NA 21.94 NA 0.5 264 11/29/18 CFD N NA 21.14 0 0 N N NA 21.53 NA 0.5 264 1/220/18 CFD N NA 22.14 0 0 N N NA 21.53 NA 0.5 264 1/20/18 CFD N NA 22.14 0 0 N	5/24/18	CFD	Υ	21.02	21.05	0.03	0.05	Υ	N	NA	21.24	NA	0.25	259	Υ
8/11/18 CFD Y 22.12 22.14 0.02 0.2 Y N NA 23.45 NA 3 262 9/24/18 CFD N NA 21.9 0 0 N N NA 22.93 NA 1 263 10/15/18 CFD Y 21.01 21.03 0.02 0.1 Y N NA 22.93 NA 1 263 11/29/18 CFD N NA 21.14 0 0 N N NA 21.53 NA 0.5 264 11/29/18 CFD N NA 221.6 0 0 N N NA 21.53 NA 0.5 264 11/29/18 CFD N NA 22.16 0 0 N N NA 21.53 NA 0.5 268 1/29/18 CFD N NA 22.13 0 0 N <														259	Y
9/24/18 CFD N NA 21.9 0 0 N N N NA 22.93 NA 1 263															Y
10/15/18 CFD Y 21.01 21.03 0.02 0.1 Y N NA 21.94 NA 0.5 264														263	Y
12/20/18 CFD N NA 22.16 0 0 N N NA 21.10 NA 0.50 265 1/2/1/19 CFD N NA 20.31 0 0 Y N NA 20.62 NA 1.00 266 2/13/19 CFD Y 19.03 19.06 0.03 0.2 Y N NA 19.89 NA 1.5 267 3/21/19 CFD Y 20.08 20.09 0.01 0.1 Y N NA 21.00 NA 1.0 266 4/24/19 CFD N NA 20.67 0 0 Y N NA 21.60 NA 0 268 5/24/19 CFD N NA 20.27 0 0 N N NA 21.05 NA 0.25 266 6/21/19 CFD N NA 19.98 0 0 N	10/15/18	CFD	Y	21.01	21.03	0.02	0.1	Υ	N	NA	21.94	NA	0.5	264	Y
1/21/19														264	Y
2/13/19															Y
3/21/19 CFD Y 20.08 20.09 0.01 0.1 Y N NA 21.00 NA 1.0 268 4/24/19 CFD N NA 20.67 0 0 Y N NA 21.60 NA 0 268 5/24/19 CFD N NA 20.27 0 0 N N NA 21.05 NA 0.25 268 6/21/19 CFD N NA 19.98 0 0 N N NA 20.86 NA 0 268 7/30/19 CFD N NA 20.12 0 0 N N NA 21.00 NA 0.25 268														267	Y
5/24/19 CFD N NA 20.27 0 0 N N NA 21.05 NA 0.25 266 6/21/19 CFD N NA 19.98 0 0 N N NA 20.86 NA 0 268 7/30/19 CFD N NA 20.12 0 0 N N NA 21.00 NA 0.25 268	3/21/19	CFD		20.08	20.09	0.01	0.1		N	NA	21.00	NA	1.0	268	Υ
6/21/19 CFD N NA 19.98 0 0 N N NA 20.86 NA 0 266 7/30/19 CFD N NA 20.12 0 0 N N N NA 21.00 NA 0.25 269														268	Y
7/30/19 CFD N NA 20.12 0 0 N N NA 21.00 NA 0.25 269															Y
														269	Y
	8/23/19	CFD	N	NA	17.27	0	0	N	N	NA	20.84	NA	2.0	271	Y
														272 277	Y
														277 (Note F)	Y Y

TABLE 1 SVE SYSTEM 2-SVE-1 LNAPL MONITORING AND COLLECTION LOG

OLEAN REDEVELOPMENT PARCEL 2 NYSDEC BCP SITE NO. C905032 OLEAN, NEW YORK

				W	CMW-1						W-14			
Date	Inspector's Initials	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Change Absorbent Sock? (Y / N)	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Accumulated Volume Collected (gallons)	Skimmer Operational?
12/30/19	CWE	Υ	21.77	21.8	0.03	0	N	N	NA	22.7	NA	0	277	Υ
1/30/20	CWE	N	NA NA	20.45	0	0	N	N	NA NA	21.4 20.15	NA NA	0.0	277 277	Y
2/27/20 3/30/20	CWE	N N	NA NA	19.5 19.51	0	0	N N	N N	NA NA	20.15	NA NA	0.0	277	Y
4/27/20	CWE	N	NA	19.7	0	0	N	N	NA	20.70	NA	1.0	278	Ý
5/28/20	CWE	N	NA	20.31	0	0	N	N	NA	21.2	NA	0.0	278	Y
6/29/20	CWE	N	NA	21.51	0	0	N	N	NA	22.44	NA	0.0	278	Y
7/31/20 8/31/20	CWE	Y	24.41 25.72	24.6 25.98	0.19 0.26	0	N N	N N	NA NA	23.50 25.32	NA NA	0.0 12.0	278 290	Y
9/28/20	CWE	Y	24.2	24.51	0.26	0	Y	N N	NA NA	25.32	NA NA	5.0	290	Y
10/29/20	CWE	Y	24.3	24.5	0.2	0	N	N	NA	25.40	NA	0.0	295	Y
11/25/20	CWE	Υ	24.1	24.21	0.11	0	N	N	NA	25.10	NA	0.0	295	Υ
12/17/20	CFD	Y	23.48	23.52	0.04	0	N	N	NA	24.69	NA	0.0	295	Y
1/21/21 2/22/21	CWE	N Y	NA 22.84	21.91 23	0 0.16	0	N N	N N	NA NA	22.75 23.81	NA NA	0.0	295 295	Y
3/25/21	CWE	Y	22.12	22.23	0.10	0	N	N	NA NA	23.12	NA NA	0.0	295	Y
4/12/21	CWE	Y	21.95	22.05	0.11	0	N	N	NA NA	22.71	NA	0.0	295	Y
5/20/21	CWE	Y	21.15	21.19	0.04	0	N	N	NA	21.9	NA	0.0	295	Υ
6/24/21	CWE	Y	21.99	22.09	0.1	0	N	Υ	NA	22.87	NA	1.0	296	Y
7/29/21	CWE	N Y	NA 20.98	19.71	0.03	0	N	Y N	NA NA	20.40 21.8	NA NA	2.0 0.0	298 298	Y
8/30/21 9/30/21	CWE	Y	20.98	21.01 21.92	0.03	0	N N	N N	NA NA	22.41	NA NA	0.0	298	Y
10/28/21	CWE	Ý	21.75	21.76	0.01	0	N	N	NA	22.78	NA	0.0	298	Y
11/29/21	CWE	Υ	21.35	21.39	0.04	0	N	N	NA	22.21	NA	0.0	298	Υ
12/29/21	CWE	Υ	21.00	21.11	0.11	0	N	N	NA	21.7	NA	0.0	298	Υ
1/24/22	CWE	Y	21.00	21.09	0.09	0	N	N	NA NA	21.88	NA	0.0	298	Y
2/14/22 3/21/22	CWE	Y	21.77 18.71	21.82 19.01	0.05	0	N N	N N	NA NA	22.70 19.56	NA NA	0.0	298 298	Υ
4/26/22	CWE	N	NA	19.89	0.5	0	Y	N	NA NA	20.71	NA	0.0	298	Y
5/31/22	CWE	Y	20.88	20.93	0.05	0	N	N	NA	21.65	NA	0.0	298	Y
6/30/22	CWE	Υ	21.85	21.87	0.02	0	Υ	N	NA	22.49	NA	0.0	298	Y
7/28/22	CWE	Y	23.06	23.1	0.04	0.09	Y	N	NA	23.80	NA	0.0	298	Y
8/29/22 9/29/22	CWE	Y	23.88 23.62	23.99 23.65	0.11	0.05	Y N	N N	NA NA	25.22 24.66	NA NA	0.0	298 298	Y
10/31/22	CWE	Ý	23.88	23.91	0.03	0	N	N	NA NA	24.72	NA	1.0	299	Ý
11/28/22	CWE	Υ	23.01	23.08	0.07	0	N	N	NA	23.81	NA	1.0	300	Υ
12/29/22	CWE	Υ	21.84	21.86	0.02	0	N	N	NA	22.72	NA	0.0	300	Υ
1/23/23	CWE	N	NA	20.45	0	0	N	N	NA	21.25	NA	0.0	300	Y
2/9/23 3/23/23	CWE	N N	NA NA	20.52	0	0	N N	N N	NA NA	21.35 20.9	NA 0	0.0	300 300	Y
4/24/23	CWE	N	NA NA	20.45	0	0	N	N	NA	21.25	0	0.0	300	Y
5/30/24	CWE	N	NA	22.25	0	0	N	N	NA	23.05	0	0.0	300	Υ
6/26/23	CWE	Υ	23.32	23.39	0.07	0.05	Υ	Υ	NA	24.22	0	0.0	300	Υ
7/31/23 8/15/23	BMG MTF	Y	23.57 23.89	23.6 23.91	0.03	0.1 0	N N	Y	24.82 NA	24.85 25.09	0.03	1.0 3.0	301 304	Y
8/28/23	MTF	Y	24.5	24.57	0.02	0	Y	N N	NA NA	25.09	0	2.0	304	Y
10/24/23	MTF	Ϋ́	24.81	25.08	0.27	0.08	N N	N	NA	26.43	0	0.0	306	Ý
11/16/23	MTF	N	NA	25.83	0	0	N	N	NA	26.27	0	1.0	307	Υ
1/9/24	MTF	N	NA	24.53	0	0	N	N	NA	24.3	0	0.0	307	Y
2/1/24	MTF MTF	N N	NA NA	22.97	0	0	N N	N N	NA NA	22.54	0	0.0	307	Y
3/14/24 4/11/24	MTF	N N	NA NA	21.5 21.73	0	0	N N	N N	NA NA	22.30 22.39	0	0.0	307 307	Y
5/16/24	MTF	N	NA	20.66	0	0	N	Y	NA	21.38	0	0.0	307	Ý
6/25/24	MTF	N	NA	21.37	0	0	N	N	NA	22.21	0	2.0	309	Υ
7/30/24	MTF	N	NA	20.84	0	0	N	N	NA	22.01	0	0.0	309	Y
8/29/24 9/26/24	MTF MTF	N N	NA NA	22.42 23.01	0	0	N N	N N	NA NA	23.2 23.29	0	0.0	309 309	Y Y
10/20/24	MTF	N N	NA NA	23.65	0	0	N N	N N	NA NA	23.29	0	1.0	310	Y
11/14/24	MTF	N	NA	23.62	0	0	N	N	NA	24.34	0	0.0	310	Ý
12/17/24	MTF	N	NA	24.08	0	0	N	N	NA	24.58	0	0.0	310	Υ
1/24/25	MTF	N	NA	24.59	0	0	N	N	NA	24.36	0	1.0	311	Y
2/28/25	MTF	N	NA	23.09	0	0	N	N	NA	22.43	0	0.0	311	Υ
	Collected This F	Donortina Dorio	d			0.00 gal						4 gal		

Date	Note or Comment
7/17/14	Well W14 had blockage in the well casing. No measurement made.
1/15/15	W14 False Reading, Bailer had ~2.2 feet of product, more viscous than past rounds, Recovered 1.75 gallons of LNAPL
9/29/15	Set-up product skimmer
10/14/15	Used Spill Buddy to recover LNAPL, skimmer not functioning properly. Sock in well WCMW1 in good condition.
4/12/16	Note 1: Well W-14 cut down 3.47'.
7/7/16	Installed new solar panel powered skimmer at well W-14. Set to run on auto for 2 hours per day.
7/15/16	Note A: Transfer 40 gallons of oil from skimmer drum to storage drum. No product/water level measurements were collected
8/12/16	Note B: Transfer 45 gallons of oil from skimmer drum to storage drum. No product/water level measurements were collected.
9/19/16	Note C: Transfer 47 gallons of oil from skimmer drum to storage drum.
4/11/17	Note D: 48 Gallons accumulated product in drum since last time skimmer drum emptied.
8/8/17	Note E: Transfer 52 gallons of oil from skimmer drum to storage drum.
11/19/19	Note F: Transfer 45 gallons of oil from skimmer drum to storage drum.

Shaded cells are data collected pre-remediation; all other data collected post-remediation.

GROUNDWATER MONITORING WELL WATER LEVELS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL 2 OLEAN, NEW YORK

Well	Purpose of Well	Top of Riser (TOR) Elevation (ft)	Depth to Water (ft)	(ft)	Depth to Water (ft)	(ft)	Depth to Water (ft) 5/16 to	Elevation (ft)		Liquid Elevation (ft) 12/22/17		Liquid Elevation (ft) /2018	Depth to Water (ft) 12/19 to	Liquid Elevation (ft) 12/20/18	Depth to Water (ft)					Liquid Elevation (ft)				Liquid Elevation (ft) /2023	Depth to Water (ft)	Liquid Elevation (ft) /2024
WCMW-1	LNAPL	1430.89											19.58	1411.31	20.12	1410.77	22.32	1408.57	22.02	1409.13	23.15	1407.84	22.70	1408.23	22.53	1408.36
WCMW-4	GWQM	1426.95	18.36	1408.59	15.81	1411.14	13.87	1413.08	18.03	1408.92	16.05	1410.90	14.55	1412.40	15.90	1411.05	18.37	1408.58	16.29	1410.66	Ċ	lry	18.31	1408.64	17.55	1409.40
W-13	GWQM	1431.14	24.32	1406.82			19.41	1411.73	22.20	1408.94	21.25	1409.89	19.65	1411.49	20.16	1410.98	21.28	1409.86	21.80	1409.34	23.05	1408.09	22.64	1408.50	22.54	1408.60
W-14	LNAPL	1432.14										-	20.43	1411.71	17.72	1414.42	22.30	1409.84	19.34	1412.89	24.19	1407.96	23.48	1408.66	24.02	1408.12
W-17	GWQM	1424.83	18.36	1406.47	15.74	1409.09	13.87	1410.96	16.40	1408.43	15.40	1409.43	14.14	1410.69	14.62	1410.21	15.83	1409.00	16.82	1408.01	17.31	1407.52	16.80	1408.03	16.79	1408.04
W-28	GWQM	1433.29	26.34	1406.95			21.52	1411.77	24.50	1408.79	23.30	1409.99	21.63	1411.66	22.28	1411.01	23.38	1409.91	23.95	1409.34	25.14	1408.15	24.74	1408.55	24.66	1408.63

Notes:

Depth to water from top of well riser.

1) W14 well riser was increased by 3.47 feet (based on TOC delta) in November 2015. Revised well top of riser elevation is 1432.14'. Historic top of riser elevation was 1428.67'.

Acronyms: NA = Not available

-- = Not measured

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL 2 OLEAN, NEW YORK

D1	CWOS/CV ²								W 42							
Parameter ¹	GWQS/GV ²	07/17/14	12/17/14	04/13/15	09/02/15	08/10/16	12/14/16	05/16/17	W-13 12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22	06/13/23	08/07/24
Volatile Organic Compounds	(ug/L)			0 11 10 10												
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.79 J	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12 J	ND	1.7 J	ND	1.7 J
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total TICs		29.4	NA	11.3	3.05	ND	0.894	0.636	52.5	7.76	38.0	133	6.35	1.09	1.23	ND
Total VOCs		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12.0 J	0.79 J	1.70	ND	ND
Semi-Volatile Organic Comp	ounds (ua/L)	•											•		•	
Acenaphthene 4	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04 J	0.04 J	0.04 J	ND
Anthracene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04 J	ND
Benzo(a)anthracene 4	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND
Benzo(a)pyrene ⁴	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene 4	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND
Benzo(q,h,i)perylene 4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene 4	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01 J	ND
Bis (2 ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J	ND
Carbazole		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Chrysene ⁴	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01 J	ND
Dibenzo(a,h)anthracene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND
Fluorene 4	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone		NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene 4		NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene ⁴	10 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol ⁴		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 JB	ND	ND	0.03 J	0.03 J	ND
Phenol	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6 J
Pyrene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J	ND	ND	ND
Total TICs		19.9	ND	ND	13.3	54.2	19.6	161	124	124	189	72.7	22.7	62.5	195	126
Total SVOCs		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	0.04	0.12	1.77	3.6

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.
- 3. WCMW4 not sampled in June 2020 due to well being dry
- 4. SVOC results obtained using Method 1,870D-SIM, (starting June 2021 to present)
- 5. W-14 was sampled for the first time on 8/5/2024 despite having >0.1 ft of measureable product

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = Not analyzed
- F1 = MS and/or MSD Recovery is outside acceptance limits
- " * " = Groundwater Quality Guidance Value
- "--" = Sample not analyzed for parameter or no SCO available for the parameter.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- B = Compound was found in the blank and sample

BOLD = Analytical result exceeds individual GWQS/GV.

= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL 2 OLEAN, NEW YORK

1																	
Parameter ¹	GWQS/GV ²	02/22/12	07/17/14	12/17/14	04/13/15	09/02/15	08/10/16	12/14/16	05/17/17	W-17 12/22/17	06/11/18	07/10/19	06/19/20	06/27/21	08/02/22	06/13/23	08/07/24
Volatile Organic Compounds	(ua/L)	02/22/12	07/17/14	12/1//14	04/13/15	09/02/15	00/10/10	12/14/16	05/17/17	12/22/17	06/11/16	07/10/19	00/19/20	06/2//21	00/02/22	06/13/23	00/07/24
1,2,4-Trimethylbenzene	5 5	123	61.2	145	134	70.7	57.3	67.7	43.6	60.9 F1	93.3	ND	78	ND	110	110	100
1.2-Dichlorobenzene	3	3.1	2.63	2.68	3.23	2	1.91	2.23	1.4	1.95	3.25	ND	ND	4.40	2.8 J	ND	2.3 J
1,3,5-Trimethylbenzene	5	35.9	18.6	32.6	35.9	14.7	14.3	9.2	7.37	6.9	2.27	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	1	1.6	ND	ND	1.01	ND	ND	ND	ND	1.11	ND	ND	1.3 J	ND	ND	0.88 J
Acetone	50	28.7	ND	ND	44 J	ND	ND	ND	ND	3.6 J							
Benzene	1	12.2	4.06	4.8	5.58	7.1	7.86	7.37	3.94	7.31	12	5.2 J	9.3 J	19	12	14	9.9
Chlorobenzene	5	4	5.7	3.68	3.57	3.19	3.21	2.78	1.95	2.33	2.57	ND	ND	2.4 J	1.7 J	ND	1.5 J
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND								
Cyclohexane		NA	56.2	NA	76.4	34.8	32.2	37.4	31.3	38.2	69.6	35	49	65	47	54 J	49
Ethylbenzene	5	1.1	ND	1.02	1.52	ND	ND	2.2 J	1.8 J	ND	2.8						
Isopropylbenzene	5	NA	5.51	12.1	12.2	6.66	5.83	5.91	4.39	6.56	10.2	9.1 J	ND	16	10	11 J	9.9
m&p-Xylene			16.4	8.05	3	ND	2.66	ND	ND	2.68	2.94	ND	ND	6	4.9 J	ND	5.5
Methylcyclohexane		NA	70	70	113	57.5	33.2	45.4	36.4	51.1 F1	82.7	31	54	110	64	61 J	58
n-Butylbenzene	5	0.51	ND	ND	1.71	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	11	5.15	11.1	12.2	5.6	5.47	5.51	3.8	5.61	8.31	ND	ND	14	9.3	10 J	9.0
p-Isopropyltoluene	5	NA	ND	1.29	1.49	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
o-Xylene			59.4	132	105	76.2	58.4	68	50.5	63.7 F1	82	ND	82	120	100	120	120
sec-Butylbenzene	5	1.4	1.29	1.37	1.99	ND	ND	ND	ND	ND	1.38	ND	ND	1.8 J	ND	ND	0.86 J
tert-Butylbenzene	5	0.35	ND	ND	ND	ND	ND	ND	ND	ND							
Toluene	5	6.5	3.16	4.82	2.71	1.75	1.44	1.75	ND	1.66	2.04	ND	ND	2.2 J	1.7 J	ND	1.8 J
Total xylenes	5	162	75.8	140	108	76.2	61.1	68.0	50.5	66.4	84.9	80	82	126	104.9	120	125.5
Total TICs		517	583	NA	190	148	87.2	174	68.9	96.6	287	98.0	ND	102	102	30.3	72.7
Total VOCs		391	311	429	512	281	224	253	185	250	375	124	272	365	365	380	501
Semi-Volatile Organic Comp																	
Acenaphthene 4	20	NA	ND	ND	ND	ND	ND	ND	ND	ND							
Anthracene 4	50	NA	ND	ND	ND	ND	ND	0.09 J	0.1	ND							
Benzo(a)anthracene 4	0.002	NA	ND	ND	ND	ND	ND	0.04 J	ND	ND							
Benzo(a)pyrene 4	0.002	ND	ND	ND	ND	ND	ND	ND	ND								
Benzo(b)fluoranthene 4	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND							
Benzo(g,h,i)perylene ⁴		ND	ND	ND	ND	ND	ND	ND	ND								
Benzo(k)fluoranthene 4	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND							
Bis (2 ethylhexyl)phthalate	5	NA NA	10.3	ND	ND	ND	ND	ND NA	ND 0.50.1	ND	ND						
Carbazole 4		NA NA	ND ND	ND ND	ND ND	ND ND	NA ND	0.56 J	0.57 J ND	ND ND							
Chrysene ⁴ Dibenzo(a,h)anthracene	0.002	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.03 J ND	ND ND	ND ND							
	50	NA NA	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.03 J	ND ND
Fluoranthene ⁴	50	NA NA	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	0.27	0.28	0.03 3	0.21
Indeno(1,2,3-cd)pyrene	0.002	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND
Isophorone	0.002	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND
1-Methylnaphthalene ⁴		NA NA	NA NA	2.62	NA NA	NA NA	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND
Naphthalene ⁴	10 *	NA NA	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.17	0.18	0.24	0.1
Pentachlorophenol ⁴		ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	0.24 0.14 J	0.09 J
Phenanthrene ⁴	50	NA NA	ND	ND ND	2.2 JB	ND	ND ND	ND ND	0.14 3 ND	0.09 J							
Phenol	2	ND	ND ND	ND	ND	ND ND	ND	ND	ND								
Pyrene ⁴	50	NA NA	ND	ND ND	ND ND	ND	0.05 J	ND	0.04 J	ND							
Total TICs		NA NA	175	ND	147	385	238	46.9	337	61.6	46.6	508	373	446	328	415	190
Total SVOCs		NA NA	10.3	2.62	ND	ND ND	ND	ND	ND	ND	ND	2.2	ND	0.44	0.49	1.41	0.46
70.070003	I	///	, 0.0	2.02	,,,,,	,,,,	,,,,,	110	,,,,,	,,,,,	110		,,,,,	0.77	0.70		0.40

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.
- 3. WCMW4 not sampled in June 2020 due to well being dry
- 4. SVOC results obtained using Method 1,870D-SIM, (starting June 2021 to present)
- 5. W-14 was sampled for the first time on 8/5/2024 despite having >0.1 ft of measureable product

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = Not analyzed
- F1 = MS and/or MSD Recovery is outside acceptance limits
- " * " = Groundwater Quality Guidance Value
- "--" = Sample not analyzed for parameter or no SCO available for the parameter.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- B = Compound was found in the blank and sample

BOLD = Analytical result exceeds individual GWQS/GV.

= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL 2 OLEAN, NEW YORK

Parameter ¹	GWQS/GV ²							W-28									WCI	MW-4				WCI	MW-1	W-14
		02/22/12	08/10/16	12/14/16	05/16/17	12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22	06/13/23	08/07/24	08/11/16	12/14/16	05/17/17	12/22/17	06/12/18	07/10/19	06/14/23	08/07/24	06/14/23	08/07/24	08/05/24
Volatile Organic Compounds	(ug/L)																							
1,2,4-Trimethylbenzene	5	0.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.95 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.95 J
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.0 J	ND	ND	ND	ND	ND	ND	2.6 J	ND	5.9 J	4.0 J	4.0 J
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		NA	ND	ND	ND	ND	ND	ND	ND	0.72 J	0.95 J	0.94 J	0.93 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65 J	2.1 J
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		NA	ND	ND	ND	ND	ND	ND	ND	0.92 J	0.94 J	0.54 J	1.4 J	ND	ND	ND	ND	ND	ND	ND	ND	35	35	2.6 J
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	0.38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93 J	ND
tert-Butylbenzene	5	0.43	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total xylenes	5	0.44	ND 238	ND 43.6	ND 424	ND 46.5	ND 24.5	ND 94.0	ND 64.0	ND 29.8	ND 32.3	ND 33.2	ND 64.4	ND 635	ND 4.00	ND ND	ND ND	ND ND	ND	ND	ND 12.8	ND 99.5	ND 107	ND 13.2
Total TICs Total VOCs		155 1.50	ND	43.6 ND	131 ND	46.5 ND	34.5 ND	94.0 ND	64.0 ND	1.64	1.89	1.48	64.1 7.28	635 ND	1.00 ND	ND ND	ND ND	ND ND	ND ND	ND 2.60	12.8 ND	40.9	40.6	9.7
Semi-Volatile Organic Comp		1.50	ND	ND	ND	ND	ND	ND	ND	1.04	1.09	1.40	7.20	ND	ND	ND	ND	ND	ND	2.00	ND	40.9	40.0	3.1
Acenaphthene 4	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	0.63	ND	0.22
Anthracene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	0.08 J	ND	ND	ND	0.09 J	0.1	ND	ND	ND	ND	0.04 J	ND	ND	ND	ND
Benzo(a)anthracene 4	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05 J	0.04 J	0.08 J	0.04 J	ND	ND	ND	ND	ND	0.03 J	0.23	0.96	0.05 J	0.14
Benzo(a)pyrene ⁴	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J	0.08 J	ND	ND	ND	ND	ND	ND	0.04 J	0.18	0.56	0.05 J	0.13
Benzo(b)fluoranthene ⁴	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	0.04 J	ND	ND	ND	ND	ND	ND	0.05 J	0.18	0.35	0.04 J	0.08 J
Benzo(g,h,i)perylene 4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	0.04 J	ND	ND	ND	ND	ND	ND	0.1 J	0.29	0.25	0.03 J	0.08 J
Benzo(k)fluoranthene ⁴	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01 J	0.05 J	0.04 J	ND	ND
Bis (2 ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5 J	ND	ND	ND	ND	ND	ND	ND	2.3 J	2.3 J	ND	ND	ND
Carbazole		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.56 J	0.57 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene ⁴	0.002	0.57	ND	ND	ND	ND	ND	ND	ND	ND	0.08 J	0.11	0.3	0.03 J	ND	ND	ND	ND	ND	0.06 J	0.65	2.3	0.18	0.48
Dibenzo(a,h)anthracene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND	ND	ND	ND	ND	ND	0.02 J	0.07	0.18	ND	ND
Fluoranthene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04 J	0.09 J	ND	0.03 J	ND	ND	ND	ND	0.04 J	0.42	0.54	0.08 J	ND
Fluorene ⁴	50	0.63	ND	ND	ND	ND	ND	ND	ND	0.3	ND	0.68	0.63	0.28	0.29	ND	ND	ND	ND	ND	0.32	2.3	0.63	0.22
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.09 J	ND	ND	ND	ND	ND	ND	0.04 J	0.13	0.12	ND	0.03 J
Isophorone		NA	ND	ND	ND	ND	ND	ND	0.99 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene 4		ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene ⁴	10 *	ND	ND	ND	ND	ND	ND	ND	ND	0.09 J	ND	ND	0.06 J	0.18	0.24	ND	ND	ND	ND	ND	0.08 J	ND	0.08 J	ND
Pentachlorophenol ⁴		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14 J	ND	ND	ND	ND	0.06 J	ND	ND	ND	ND
Phenanthrene ⁴	50	0.74	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J	ND	ND	ND	ND	ND	ND	ND	ND	0.91	5.4	0.5	ND
Phenol	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6 J	ND	ND	ND
Pyrene ⁴	50	0.55 J	ND	ND	ND	ND	ND	ND	ND	0.04 J	0.12	0.1	0.23	ND	0.04 J	ND	ND	ND	ND	0.05 J	0.68	1.7	0.18	0.38
Total TICs		413	392	74.1	469	32.8	ND	301	204	250	290	241	70.1	328	415	257	123	77.0	315	258	1320	437	125	113
Total SVOCs		2.49	ND	ND	ND	ND	ND	ND	0.99	0.51	0.25	2.59	1.64	0.49	1.41	ND	ND	ND	ND	2.84	ND	15.33	ND	1.76

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.
- 3. WCMW4 not sampled in June 2020 due to well being dry
- 4. SVOC results obtained using Method 1,870D-SIM, (starting June 2021 to present)
- 5. W-14 was sampled for the first time on 8/5/2024 despite having >0.1 ft of measureable product

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = Not analyzed
- F1 = MS and/or MSD Recovery is outside acceptance limits
- " * " = Groundwater Quality Guidance Value
- "--" = Sample not analyzed for parameter or no SCO available for the parameter.

TABLE 4 2008-2024 GROUNDWATER ANALYTICAL SUMMARY - METALS

PERIODIC REVIEW REPORT **OLEAN REDEVELOPMENT PARCEL 2 OLEAN, NEW YORK**

Damamatau ¹	Metals (ug/L)						W	-13											W-	-17						W-14
Parameter	GWQ5/GV	08/29/08	08/10/16	12/14/16	05/16/17	12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22	06/13/23	08/05/24	08/29/08	08/10/16	12/14/16	05/17/17	12/22/17	06/11/18	07/10/19	06/19/20	06/27/21	08/02/22	06/13/23	08/06/24	08/05/24
Metals (ug/L)																										
Arsenic	25	3.6	ND	4.0	4.0 J	3.55 J	3.28	5.4	ND	1.38	ND	1.22	1.49	1.15												
Lead	25	<3.0	ND	1.2	ND	ND	ND	<3.0	7.9	17.9	ND	ND	ND	3 J	ND	ND	ND	0.47 J	0.88 J	ND						

D1	0140010112								W-	-28										WCMW-4				WCMW-1	
Parameter'	GWQS/GV ²	02/16/11	05/18/11	08/17/11	11/16/11	02/22/12	08/10/16	12/14/16	05/16/17	12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22	06/13/23	08/06/24	05/17/17	06/11/18	07/10/19	06/13/23	08/07/24	06/14/23	06/14/23	08/06/24
Metals (ug/L)																									
Arsenic	25	30.4	20.5	27.1	20	70.4	ND	16.9	ND	ND	ND	9.8 J	13 J	6.3	4.0 J	6.92	2.31	22	27.1	140	4.65	14.64	7.04	0.00189	1.89
Lead	25	30.4	NA	NA	NA	NA	17.2	ND	6.3	ND	ND	5.8 J	3.3 J	ND	ND	1.13	ND	9.6	12.7	29	4.79	40.92	1.1	ND	ND

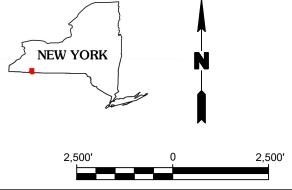
Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.
- 3. WCMW4 not sampled in June 2020 due to well being dry
- 4. W-14 was sampled for the first time on 8/5/2024 despite having >0.1 ft of measureable product

ND = Parameter not detected above laboratory detection limit.

NA = Not analyzed

J = Estimated value; result is less than the sample quantitation limit but greater than zero.


BOLD = Analytical result exceeds individual GWQS/GV.

= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

FIGURES

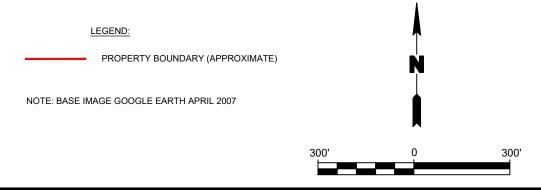
- 1. Site Location and Vicinity Map
- 2. Site Plan (Pre-Remediation)
- 3. Site Plan (Post-Remediation)
- 4. Survey/Tax Parcel Map
- 5. Site Cover System Map
- 6. Groundwater Isopotential Map (July 2024)

4387.0001P100/CVRS ROUX

SITE LOCATION AND VICINITY MAP

PERIODIC REVIEW REPORT

OLEAN REDEVELOPMENT SITE 2 (NYSDEC BCP SITE NO. C905032) OLEAN, NEW YORK

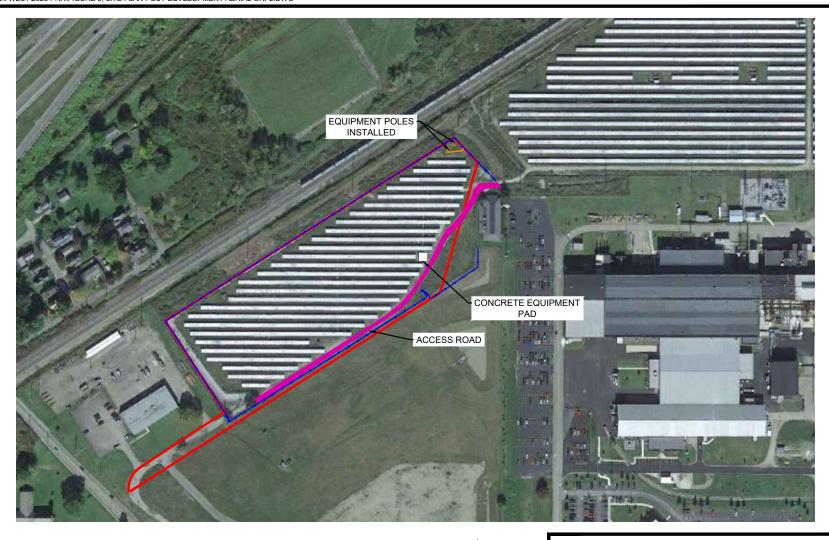

Prepared for:

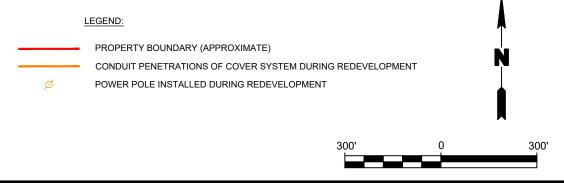
SOLEAN WEST LLC

Compiled by:	Date: MARCH 2024	FIGURE
Prepared by: CMC	Scale: AS SHOWN	
Project Mgr: MAL	Project:	1
File: FIGURE 1; SITE L	OCATION & VICINITY MAP.DV	/G

SITE PLAN PRE-REMEDIATION

PERIODIC REVIEW REPORT


OLEAN REDEVELOPMENT PARCEL 2 (NYSDEC BCP SITE NO. C905032) OLEAN, NEW YORK


Prepared for:

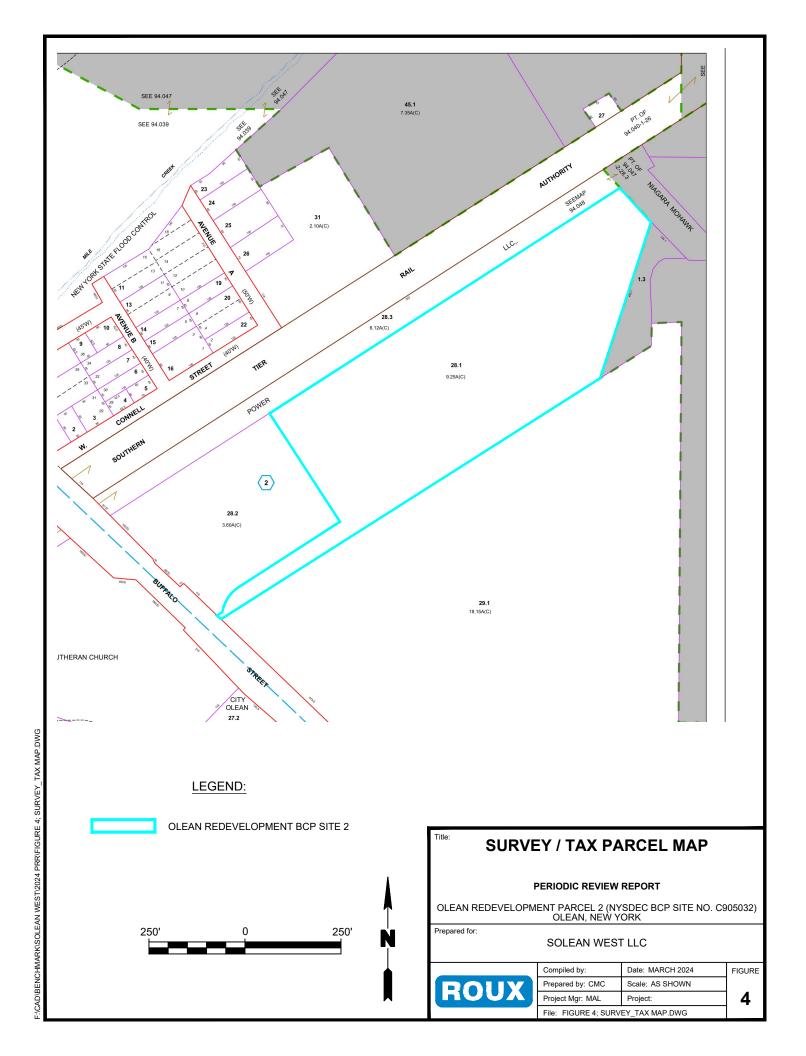
SOLEAN WEST LLC

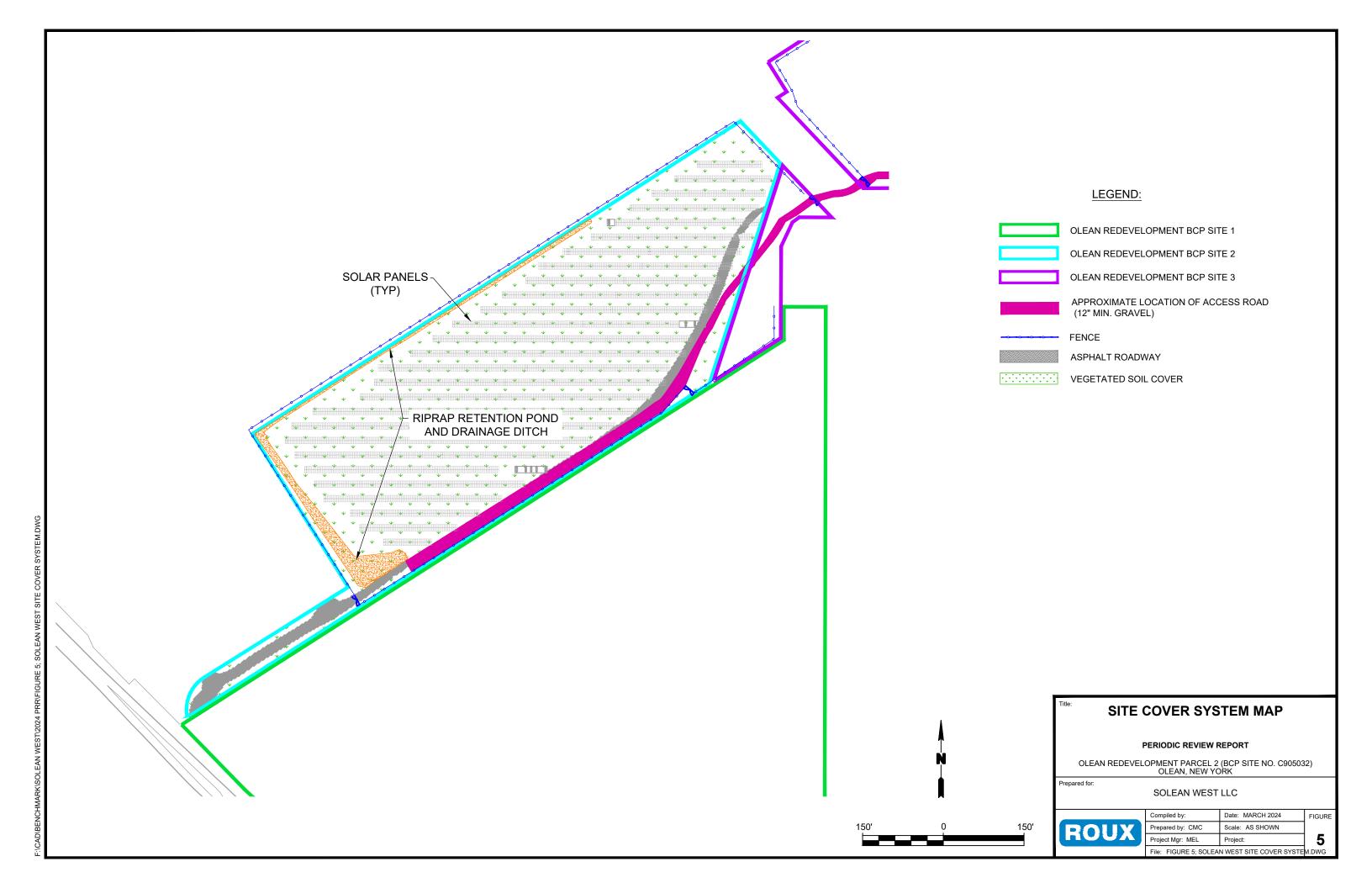
DOLLY	
RUUA	
	Г

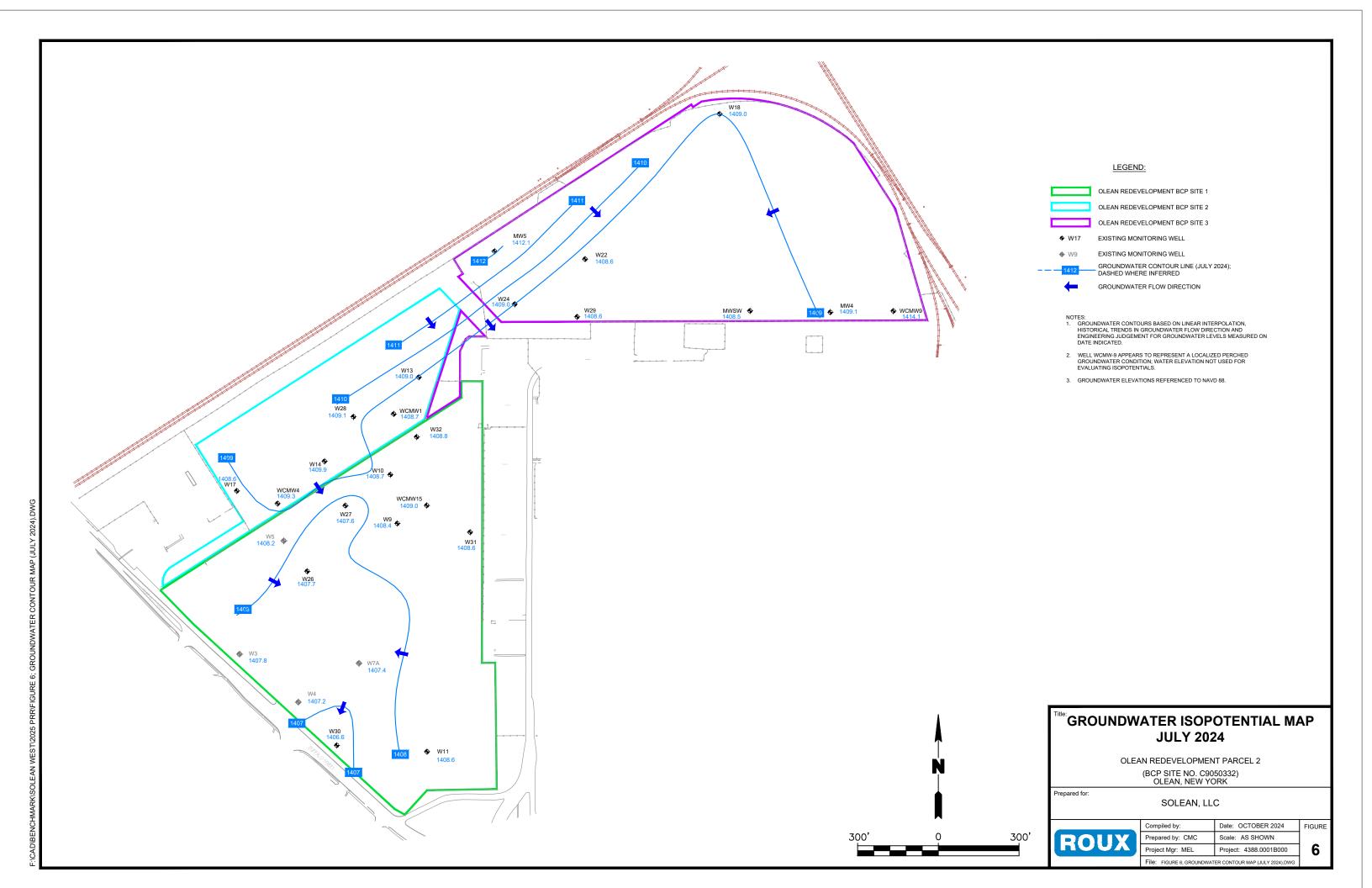
Compiled by:	Date: MARC H2024	FIGUR
Prepared by: CMC	Scale: AS SHOWN	
Project Mgr: MAL	Project:	2
File: FIGURE 2; SITE PLAN PRE-REMEDIATION ORP2.DWG		

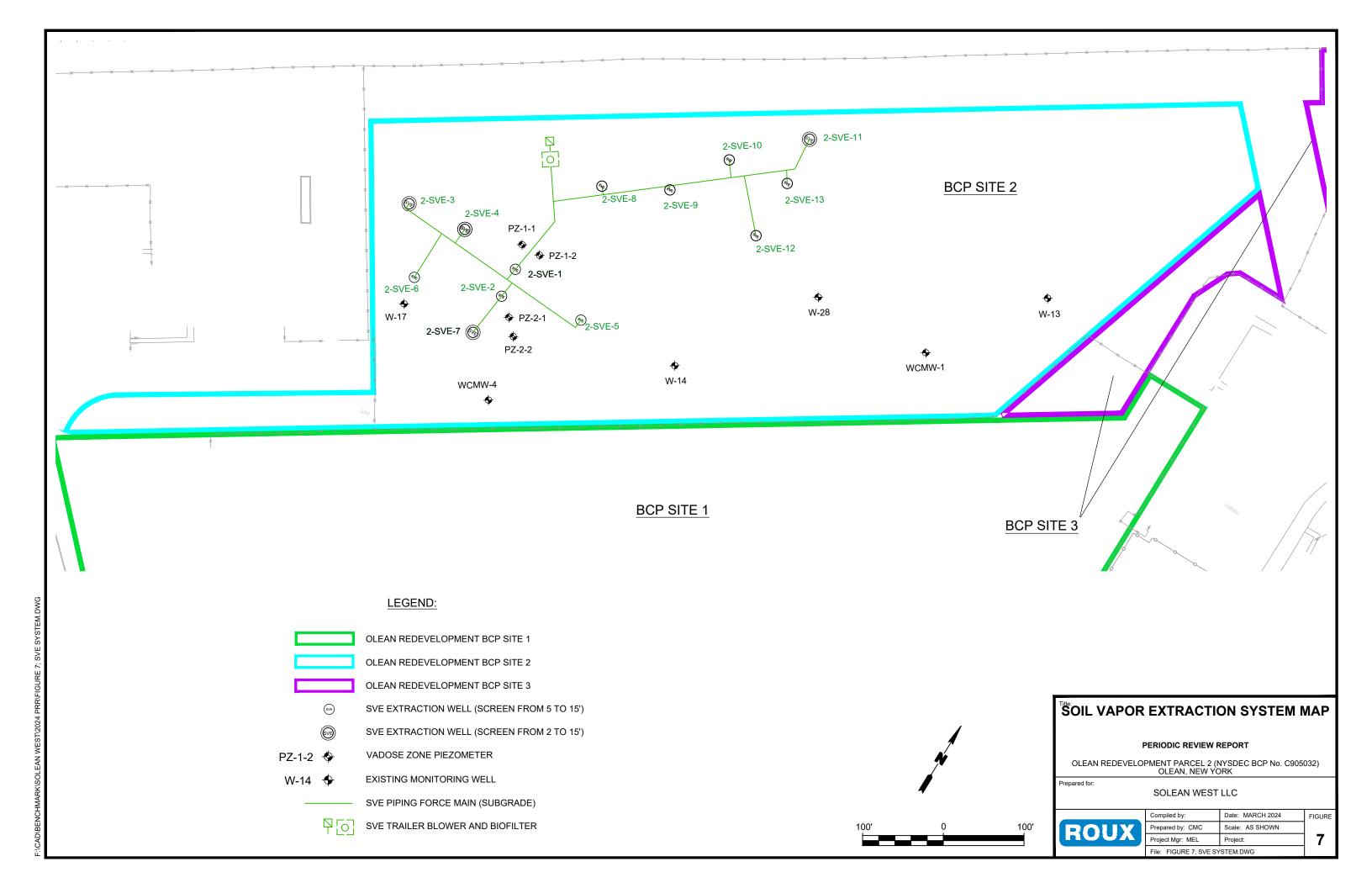
SITE PLAN POST-REMEDIATION

PERIODIC REVIEW REPORT


OLEAN REDEVELOPMENT PARCEL 2 (NYSDEC BCP SITE NO. C905032) OLEAN, NEW YORK


Prepared for:


SOLEAN WEST LLC



Compiled by:	Date: MARCH 2024	FIGURE
Prepared by: CMC	Scale: AS SHOWN	
Project Mgr: MAL	Project:	3
File: FIGURE 3; SITE PL	L ORP2.DW	

APPENDICES

- A. Site Inspection Forms
- B. Site Photolog (March 6, 2025)
- C. Groundwater Sampling Field Forms and Analytical Data
- D. SVE Decommissionuing Logs

4387.0001P100/CVRS ROUX

APPENDIX A

Site Inspection Forms

4387.0001P100/CVRS ROUX

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No. C905032	Site D	etails		Box 1	
Sit	e Name Olean Redeve	opment Parcel 2				
City Co	e Address: 1470 Buffalo y/Town: Olean unty: Cattaraugus e Acreage: 9.033	Street Zip Code	e: 14760			
Re	porting Period: March 1	5, 2024 to March 15, 2	2025			
					YES	NO
1.	Is the information above	e correct?			X	
	If NO, include handwritt	en above or on a sepa	arate sheet.			
2.	Has some or all of the s tax map amendment du		l, subdivided, merged, or ur riod?	ndergone a		×
3.	Has there been any cha (see 6NYCRR 375-1.11		during this Reporting Perio	d		X
4.	Have any federal, state for or at the property du		(e.g., building, discharge) b riod?	een issued		×
			, include documentation of ubmitted with this certific			
5.	Is the site currently und	ergoing development				X
					Box 2	
					YES	NO
6.	Is the current site use c Commercial and Indust		(s) listed below?		X	
7.	Are all ICs in place and	functioning as design	ed?	X		
			ON 6 OR 7 IS NO, sign and o OF THIS FORM. Otherwise		ınd	
AC	Corrective Measures Wo	k Plan must be subm	itted along with this form t	o address th	nese issı	ues.
Sig	nature of Owner, Remedia	al Party or Designated	Representative	Date		

		Box 2	Α
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C905032 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

94.047-2-28.1 Solean West LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan O&M Plan

O&M Plan IC/EC Plan

- -The property may be used for commercial and/or industrial use;
- -All engineering controls (ECs) must be operated and maintained as specified in the Site Management Plan (SMP);
- -All ECs must be inspected at a frequency and in a manner defined in the SMP.
- -The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Cattaraugus County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- -Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- -Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- -All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- -Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP:
- -Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP; and
- -Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.

Box 4

Description of Engineering Controls

Parcel Eng	ineering Control	
94.047-2-28.1		
	or Mitigation	
	er System Sparging/Soil Vapor Extraction	
	undwater Treatment System	
	e, that will consist either of structures such as buildings,	.
	lopment or a soil cover in areas where the upper one f	
of exposed surface soil will exceed the applica	able SCOs;	
	g the methods outlined in the SMP and RAWP;	
	ate residual contamination in subsurface soil; and	
-a vapor mitigation system for any future build	ing(s) developed on-site.	
		Box 5
Periodic Review Report (PRR	t) Cortification Statements	
r chodic neview report (i niv) Joernmenton Statements	
1. I certify by checking "YES" below that:		
 a) the Periodic Review report and reviewed by, the party making the E 	all attachments were prepared under the direction of, a Engineering Control certification;	and
are in accordance with the requiren	d belief, the work and conclusions described in this cer nents of the site remedial program, and generally acce ion presented is accurate and compete.	
ongineering praesees, and the mermat	·	NO
	X	
For each Engineering control listed in Box following statements are true:	x 4, I certify by checking "YES" below that all of the	
(a) The Engineering Control(s) em since the date that the Control was	ployed at this site is unchanged put in-place, or was last approved by the Department;	
(b) nothing has occurred that would the environment;	d impair the ability of such Control, to protect public he	alth and
	to be provided to the Department, to evaluate the te the continued maintenance of this Control;	
(d) nothing has occurred that would Site Management Plan for this Con	d constitute a violation or failure to comply with the trol; and	
	nism is required by the oversight document for the site, cient for its intended purpose established in the docum	
	YES	NO
	X	
	JESTION 2 IS NO, sign and date below and EREST OF THIS FORM. Otherwise continue.	
A Corrective Measures Work Plan must be	submitted along with this form to address these issu	ies.

Date

Signature of Owner, Remedial Party or Designated Representative

IC CERTIFICATIONS SITE NO. C905032

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Michael Les print na	akowski at 2558 Hamburg Turnpi	ingineering and Geology, D.P.C. ke, Suite 300, Buffalo, NY 14218 s address
am certifying as	Designated Representative of Owner	(Owner or Remedial Party)
	Remedial Party, or Designated Representative	# 25 Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

punishable as a Class. A misdemeanor, pursuant to	Section 210.45 of the Penal Law.
I at 2558 Har	vironmental Engineering and Geology, D.P.C. mburg Turnpike, Suite 300, Buffalo, NY 14218 print business address
am certifying as a Professional Engineer for the	Owner
Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification	O77625- Stamp (Required for PE)

APPENDIX B

Site Photolog

4387.0001P100/CVRS ROUX

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 3:

Photo 4:

March 6, 2025 Site Visit

Photo 1: Stone access road (looking northeast)

Photo 2: Rip rap pond and drainage ditch (looking northwest)

Photo 3: Vegetative soil cover around solar panels and belt skimmer shed (looking west)

Photo 4: Vegetative soil cover between solar panel rows and northern fence line (looking southwest)

SITE PHOTOGRAPHS

Photo 5:

Photo 7:

Photo 6:

Photo 8:

March 6, 2025 Site Visit

Photo 5: Site vegetative soil conditions around typical solar panel rows (looking southeast)

Photo 6: SVE trailer and biofilter

Photo 7: Vegetative soil cover (looking north)

Photo 8: Riprap retention area with electrical conduit and solar panels beyond (looking east)

SITE PHOTOGRAPHS

Photo 9:

Photo 10:

Photo 9: East portion of the Site (looking southwest)

Photo 10: East portion of the Site (looking north)

Groundwater Sampling Field Forms and Analytical Data

4387.0001P100/CVRS ROUX

EQUIPMENT CALIBRATION LOG

Projec	et Name: O lan	GW	Moni4	miny Parce	112	Date:	8/5/24		
Client	JETYO					Instrumer	0] вм 🔲	Rental
	METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
	pH meter	units	10:22	Myron L Company Ultra Meter 6P	6213516 6243084 6212375	TB	4.00 7.00	3.96 6.97	
					6243003		10.01	9.96	
	Turbidity meter	NTU		Hach 2100P or 2100Q Turbidimeter	06120C020523 (P)		10 NTU verification <0.4 20 100 800	19 96 792:	
	Sp. Cond. meter	uS mS		Myron L Company Ultra Meter 6P	6213516		mS @ 25 °C		
	PID	ppm		MinRAE 2000			open air zero ppm Iso. Gas		MIBK response factor = 1.0
	Dissolved Oxygen	ppm		HACH Model HQ30d	171932597009		100% Satuartion	10076	e.
	Particulate meter	mg/m ³					zero air	*	
	Radiation Meter	uR/H					background area		
	TIONAL REMARKS: ARED BY:				DATE:				

EQUIPMENT CALIBRATION LOG

Projec	ECT INFORMATION t Name:	l: 			Date: {	Date: 8/6/24				
Project Client:						Instrumen	t Source:	вм 🔲	Rental	
	METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS	
	pH meter	units		Myron L Company Ultra Meter 6P	6213516 6243084 6212375	TB	4.00 7.00	7,41		
					6243003		10.01	10.45		
	Turbidity meter	NTU		Hach 2100P or 2100Q Turbidimeter	06120C020523 (P)		10 NTU verification <0.4 20 100 800	1 2007		
	Sp. Cond. meter	uS mS		Myron L Company Ultra Meter 6P	6213516		mS @ 25 °C			
	PID	ppm		MinRAE 2000			open air zero ppm Iso. Gas	5	MIBK response factor = 1.0	
	Dissolved Oxygen	ppm		HACH Model HQ30d	171932597009	TB	100% Satuartion	620)		
	Particulate meter	mg/m ³					zero air			
	Radiation Meter	uR/H					background area			
	TIONAL REMARKS: PARED BY:				DATE:					

GROUNDWATER FIELD FORM

Project Name: Olean Redenlymant Location: Parce 1

Project No.:

Date: Field Team: 753

							Pield	ream: 75	23	
DTW (stat	epth (fbTOR): ic) (fbTOR): ic) (fbTOR): ic) (fbTOR): ic) Water Level (fbTOR) ic) Initial ic) Agent ic) Age	2.5 4 9.6 0 Acc. Volume (gallons) 0.00 1.5 2.5 3.5 4.5	Water Col	727	7.03 6 (us) 7072 1065 1022 1011 990.0	Purpose: I	-	75/24 (22,92	9 13:18	Smar Pu
Sample In	6 7 8 9 9 10 offermation:	4.5	7.33 7.29	18.71	986.0	62 71	l. 04 l. 39	-84.		

Well N Product De	epth (fbTOR):	3. 47	Diameter (1	II	Sample D	ate / Time:	8/5/24	12:08
DTW (stati	c) (fbTOR):	4.02	One Woll)	imn (n):	9.03		n sampled: 🦪	24.83	74.00
Total Depti		3.05	Total Volum	ne Purged (gal	67000		□ Developmer	nt M Samp	ie 🔲 Purge & Sample
_	Water	Acc.	, star voidr	ruiged (gai	18.9	Purge Met	hod: Da	Ikr	- arge & Sample
Time	Level (fbTOR)	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP	Appearance &
0:57	o Initial	0100	8.27	17.9	1065	51	(mg/L)	(mV)	Odor
1,55	124.85	6.3	6.12	19		34	1.46	-119	Clear w/ small.
1.49	224.83	12.6	736	184	1059	34	1.67	-9	11
2:00	324.83	18.9	7/38	17.6	1051		1.68	-65	- 11
	6	I W. W.	7=6-1		1001	25 AC	1.70	-76	(1
	5				- 2	350,000			
	,	- 2							
8		- 1		- ent					
9									
1	0								
Sample Int	formation:								
	24.32	18.9	(02)	10 1					
	24.82	8.9	7.61	18-1	1071	25	1.58	- 56	y
		10	7:61	18.9	してす	23	1.41	=107	11

しのマネ REMARKS: W14: Presumed inaccovate product level remainings. Little product visible on probelbailer. Destermined that w14 was ready for

Sampling.

Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation

1.46

Diam	Vol. (g/ft)				
1"	0.041				
2"	0.163				
4"	0.653				
6"	1.469				

Stabilization Criteria

11

-107

Parameter	Criteria
рН	± 0.1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

Groundwater Field Form-Roux xls GWFF - BM

GROUNDWATER FIELD FORM

Perroi

Project Name: Olean Redeve lepment

Location: Parcal 2 Project No.: Field Team: 75/3

	- CP									
Well No	. WC mu	V-1	Diameter (in	nches):	,	Sample Dat	e / Time: 8/	16/24	1115	
Product De	pth (fbTOR):		Water Column (ft): 6 47			DTW when sampled:				
DTW (statio	c) (fbTOR):	2.53	One Well V	olume (gal):	.05	Purpose:) Development	☐ Sample	Purge & Sample	
Total Depth		9-0	Total Volum	ne Purged (gal):	6.5	Purge Meth	od: Lew	Plow		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1030	o Initial	0.00	6.08	14.0	1227	> 1000	134	36	Dark turbed will	
10:40	1 22.71	2.00	6.87	14.2	1189	132	1.00	-9	Less turbid wi	
10:94	222.71	3.00	6.97	13.4	1175	75	1.10	~56		
10:57	3 22.71	4,00	6,95	13.8	1123	68	97	~73	11	
10:55	14.22.71	4.5	6.99	13.9	1171	33 77	7.08	179	11	
11:06	538. 4Q	5.00	7,0 4	13.9	1178	77	1,10	100	11	
	6	~			T	6 16				
	7				-	A STATE OF THE STA		\$E.1		
	8					7 No. 2	JS) _{J2} Er	1		
	9						15.35	1		
	10									
Sample I	nformation:	4							2-4	
1115	S1 22.71	6,00	7.05	14.2	1167	82	. 32	491	11	
1126	\$2 22.71	6.50	7.08	14.3	1169	36	.92	-94	//	

Well No	D. W/7	-	Diameter (in	nches):	4"	Sample Dat	e/Time: 8	6/24	12 15
Product De	pth (fbTOR):		Water Colu	mn (ft):	9.81	DTW when	sampled:	17,19	
DTW (statio	c) (fbTOR): i	49	One Well V	olume (gal):	6.40	Purpose: C	Development	☐ Sample	□ √ Purge & Sample
Total Depth	(fbTOR):	6,60	Total Volum	ne Purged (gal):		Purge Meth	od: Lon	Flow	
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp (deg C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
11.20	o Initial	0.00	7.76	15.0	767.5	Soool	59	~+1	Turbid, petr
N155	114/38	450	7.94	14.7	6.86.5	5	1:17	-101	LASS TUNNOS
12 100	217.24	3.00	7-25	14.5	7633	UR	1.13	-96	1)
15:07	F6.+18	4.25	7-18	14.3	850.2	7,7	1.14	-92	7)
12110	DE. FI 1	4.75	7.12	15.1	851,4	18	114	-93	1)
	B								
	6								
	7								
	В								ζ.
	9								
	10								
Sample Information:									
12115	51 17/12	5,25	7,19	14.5	9189.	14	153	-910	N
1228	S2 17,07	8.5	7,32	157	94217	10	1.31	-80	\overline{D}

REMARKS: Burk Blind Dup Kente

Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation

Diam,	Vol. (g/ft)
1"	0,041
2"	0.163
4"	0.653
6"	1.469

Stabilization Criteria							
Parameter	Criteria						
pН	± 0.1 unit						
SC	± 3%						
Turbidity	± 10%						
DO	± 0.3 mg/L						
ORP	± 10 mV						

PREPARED BY:

Groundwater Field Form-Roux xis GWFF - 8M

المامل

GROUNDWATER FIELD FORM

Ostor.

Project Name: Olean Redevelopment ocation: Pared 2 Project No.:							Field Tea	am: 13		
	WCMu		Diameter (ii		211	Sample Da	ate / Tin	ne: 🗞	16/24	1541
	pth (fbTOR):	, ,	Water Colu	7.	1.7	DTW when	sampl		8.54	,
DTW (statio		7.55		olume (gal):	435	Purpose:			☐ Sample	Purge & Sample
Total Depth		20,22		ne Purged (gal)		Purge Met	_	Ball		
Total Deptil	Water	Acc.					T			
Time	Level (fbTOR)	Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	(1	DO mg/L)	ORP (mV)	Appearance & Odor
1307	o Initial	0.00	7,24	17.8	1004	Siowo	1.5	73	- 57	Dark turbid
309	Dry	.435							3	
	2									
	3									
	4									8 "
	5									
	6									
	7									
	8									
	9									
	10									
Sample	Information:						1		4	
154 I	si 18.54			ľ			T			
10-11	S2						-			
			-l	100 op	· moh	THE REAL PROPERTY.				00
	, , , ,	per	, c	inches): 4	11	I			0111	
Well N	o. WZE	5	Diameter (i	n		-Sample D			8/6/24	(5)04
	epth (fbTOR):		Water Colu	. , ,	01	DTW whe			24.67	Purge & Sample
	ic) (fbTOR): 👌 ^t				3,924	Purpose:			☐ Sample	Purge & Sample
Total Dept	h (fbTOR): 3	0.6+	Total Volur	ne Purged (gal):	(2.00	Purge Me	tnoa:	15 av	ilor	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	,	DO (mg/L)	ORP (mV)	Appearance & Odor
Town	o Initial	000	9-18	14.4	1089	161	<u> </u>	89	-50	Dark
11129	125.17	4,00	2.31	143	1098	100		. U'U	-80	
1420	225.63	8,00		- 1 V	1104	राज्य		23	-97	
1957	32507		7.40	14-0	1106	11000		16	-93	
1452	4 500 1	1.86.700	12.00	10.6		Sie				
	5									
	6						1			
	7									
	8				t ===					
	9		<u> </u>				3			
	10									
										il
	Information:		~ 500	100	1. 12	Steen	11.	29	-80	
1504	s12467	12.00	777	100	1127	2000	-	15	-88 -106	
1526	s2 2.4 66	18,00	1.92	1512	104	1000	144	<u> </u>		l bilization Criteria
DEMAR	/C. /// =	O man	4 - 4	(DO 100	6.129	\/.	nlume (- Calculation		
	KS: MS.	X (MSI)	taker	Con poor			Diam.	Vol. (g/ft)		
IZEIAIWIZI							1"	0.041	sc	
IVEINIVIVI									1	100/
KLWAN							2"	0.163	Turbi	dity ± 10%
KLIMAKI							2" 4"	0.163	DC	

Groundwater Field Form-Roux xls GWFF - BM

PREPARED BY:

ANALYTICAL REPORT

Lab Number: L2444516

Client: Roux

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Charlotte Clark Phone: (716) 856-0599

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Report Date: 08/21/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ANALYTICAL

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

 Lab Number:
 L2444516

 Report Date:
 08/21/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2444516-01	W13	WATER	OLEAN NY	08/05/24 13:18	08/07/24
L2444516-02	W17	WATER	OLEAN NY	08/06/24 12:15	08/07/24
L2444516-03	W28	WATER	OLEAN NY	08/06/24 15:04	08/07/24
L2444516-04	W14	WATER	OLEAN NY	08/05/24 12:08	08/07/24
L2444516-05	WCMW1	WATER	OLEAN NY	08/06/24 11:15	08/07/24
L2444516-06	WCMW4	WATER	OLEAN NY	08/06/24 15:41	08/07/24
L2444516-07	BLIND DUP	WATER	OLEAN NY	08/06/24 08:00	08/07/24
L2444516-08	TRIP BLANK	WATER	OLEAN NY	08/02/24 08:01	08/07/24

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516
Project Number: 4387.0001B000 Report Date: 08/21/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

Case Narrative (continued)

Report Submission

August 21, 2024: This final report includes the results of all requested analyses.

August 14, 2024: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2444516-06D: The sample has elevated detection limits due to the dilution required by the sample matrix (foam).

Semivolatile Organics

The WG1958098-4/-5 MS/MSD recoveries, performed on L2444516-03, are below the acceptance criteria for 4-nitrophenol (0%/0%), 2,4-dinitrophenol (0%/0%), and caprolactam (0%/0%) due to the concentration of these compounds in the MS/MSD falling below the reported detection limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/21/24

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

L2444516

08/05/24 13:18

Refer to COC

08/07/24

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

SAMPLE RESULTS

08/21/24

Report Date:

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2444516-01

Client ID: W13

OLEAN NY Sample Location:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/12/24 16:15

Analyst: MJV

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloropropene ND ug/l 0.50 0.18 1 1,1,2-Trichloropropene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 1,2-Dichloropropenehane ND ug/l 0.50 0.13 1 1,1,1,2-Trich	
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 1-Chlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1 1,1,1-Trichloropropene ND ug/l 0.50 0.19 1 1 1,1,1-Trichloropropene ND ug	
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1,1,2-Trichloroethane ND ug/l 2.5 0.70 1 1,1,1-Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.16 1 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 1,1,2,2-Tetrachloroethane ND ug/l	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.17 1 Bromoform ND ug/l 0.50	
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.17 1 Bromoform ND ug/l 0.50	
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16	
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 2.5 0.70 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 Benzene ND ug/l 0.50 0.1	
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1<	
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Chloromethane ND ug/l 2.5 0.70 1	
Bromomethane ND ug/l 2.5 0.70 1	
Vinyl chloride ND ug/l 1.0 0.07 1	
Chloroethane ND ug/l 2.5 0.70 1	
1,1-Dichloroethene ND ug/l 0.50 0.17 1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Trichloroethene ND ug/l 0.50 0.18 1	
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-01 Date Collected: 08/05/24 13:18

Client ID: W13 Date Received: 08/07/24

Sample Location: OLEAN NY Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborougl	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-01 Date Collected: 08/05/24 13:18

Client ID: W13 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	89	70-130
Dibromofluoromethane	109	70-130

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

SAMPLE RESULTS

Report Date: 08/21/24

Lab ID: Date Collected: 08/06/24 12:15 L2444516-02

Client ID: W17

Sample Location: OLEAN NY Date Received: Field Prep:

Lab Number:

08/07/24 Not Specified

L2444516

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/12/24 18:41

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	1.5	J	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	9.9		ug/l	0.50	0.16	1
Toluene	1.8	J	ug/l	2.5	0.70	1
Ethylbenzene	2.8		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	2.3	J	ug/l	2.5	0.70	1

L2444516

Project Name: SOLEAN WEST 2024 GWM Lab Number:

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-02 Date Collected: 08/06/24 12:15

Client ID: W17

Date Received: 08/07/24 Sample Location: Field Prep: Not Specified OLEAN NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	0.88	J	ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	5.5		ug/l	2.5	0.70	1	
o-Xylene	120		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	3.6	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	0.86	J	ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	9.9		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	9.0		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	100		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	49		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	58		ug/l	10	0.40	1	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-02 Date Collected: 08/06/24 12:15

Client ID: W17 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	72.7	J	ug/l	1
Unknown Benzene	10.5	J	ug/l	1
Unknown Cycloalkane	5.25	J	ug/l	1
Cyclopentane, Methyl-	15.2	NJ	ug/l	1
Unknown	6.41	J	ug/l	1
Cyclohexane, 1,1-dimethyl-	5.76	NJ	ug/l	1
Unknown	5.99	J	ug/l	1
Unknown Benzene	4.62	J	ug/l	1
Cyclohexane, 1,4-dimethyl-	4.35	NJ	ug/l	1
Unknown Cycloalkane	8.01	J	ug/l	1
Indane	6.60	NJ	ug/l	1

% Recovery	Acceptance Qualifier Criteria	
101	70-130	
103	70-130	
95	70-130	
99	70-130	
	101 103 95	% Recovery Qualifier Criteria 101 70-130 103 70-130 95 70-130

L2444516

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Report Date: 08/21/24

Lab Number:

SAMPLE RESULTS

Lab ID: L2444516-03 Date Collected:

Client ID: W28

Sample Location: OLEAN NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/12/24 17:28

Analyst: MJV

Date Collected:	08/06/24 15:04
Date Received:	08/07/24
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 Report Date: 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-03 Date Collected: 08/06/24 15:04

Client ID: Date Received: 08/07/24 W28

Sample Location: Field Prep: Not Specified OLEAN NY

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab 1,4-Dichlorobenzene	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene	Volatile Organics by GC/MS - Westl	oorough Lab					
1,4-Dichlorobenzene ND ugfl 2.5 0.70 1 Methyl tert butyl ether ND ugfl 2.5 0.17 1 p/m-Xylene ND ugfl 2.5 0.70 1 o-Xylene ND ugfl 2.5 0.70 1 o-Xylene ND ugfl 2.5 0.70 1 Styrene ND ugfl 2.5 0.70 1 Styrene ND ugfl 5.0 1.0 1 Acetone 4.0 J ugfl 5.0 1.0 1 Acetone 4.0 J ugfl 5.0 1.0 1 Carbon disulfide ND ugfl 5.0 1.0 1 2-Butanone ND ugfl 5.0 1.0 1 4-Methyl-2-pentanone ND ugfl 5.0 1.0 1 2-Butanone ND ugfl 2.5 0.70 1 Brow	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether ND ug/l 2.5 0.17 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 4.0 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 1,2-Dibromothane ND ug/l 2.5 0.70 1 1,2-Dibromothane ND ug/l 2.5 0.70 1	1,4-Dichlorobenzene	ND			2.5	0.70	1
pr/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.5 1 Acetone 4.0 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1,2-Dibromosthane ND ug/l 2.5 0.70 1 1-Publybenzene ND ug/l 2.5 0.70 1 1	Methyl tert butyl ether	ND			2.5	0.17	1
ND	p/m-Xylene	ND			2.5	0.70	1
cis+1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 4.0 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Biromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1	o-Xylene	ND			2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 4.0 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Hexanone ND ug/l 2.5 0.70 1 1,2-Dibrono-3 ND ug/l 2.5 0.70 1 1,2-Dibrono-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibrono-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibrono-3-chloropropane ND ug/l 2.5 0.70 <	cis-1,2-Dichloroethene	ND			2.5	0.70	1
Dichlorodifluoromethane ND	Styrene	ND			2.5	0.70	1
Acetone 4.0 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND			5.0	1.0	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1	Acetone	4.0	J		5.0	1.5	1
Amethyl-2-pentanone ND Ug/l 5.0 1.0 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Sioprophilouene ND ug/l 2.5 0.70 1 1,2-3-Trichlorobenzene ND	2-Butanone	ND		ug/l	5.0	1.9	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane 0.93 J ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 <td< td=""><td>2-Hexanone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></td<>	2-Hexanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1	Bromochloromethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane 0.93 J ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 </td <td>1,2-Dibromoethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.0</td> <td>0.65</td> <td>1</td>	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane 0.93 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 1,4-Dioxane ND ug/l 250 61. 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.0 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 1,5-Trimethylbenzene ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.93 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.93 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.93 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.93 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 0.93 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane 0.93 J ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
Freon-113 ND ug/l 2.5 0.70 1	Cyclohexane	0.93	J	ug/l	10	0.27	1
	1,4-Dioxane	ND		ug/l	250	61.	1
Methyl cyclohexane 1.4 J ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	1.4	J	ug/l	10	0.40	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-03 Date Collected: 08/06/24 15:04

Client ID: W28 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

64.1	J	ug/l	1
7.25	NJ	ug/l	1
5.38	J	ug/l	1
3.42	J	ug/l	1
2.59	J	ug/l	1
5.03	J	ug/l	1
8.10	J	ug/l	1
2.71	NJ	ug/l	1
3.13	J	ug/l	1
6.92	J	ug/l	1
2.95	J	ug/l	1
4.19	J	ug/l	1
2.63	J	ug/l	1
3.78	NJ	ug/l	1
2.56	J	ug/l	1
3.49	J	ug/l	1
	7.25 5.38 3.42 2.59 5.03 8.10 2.71 3.13 6.92 2.95 4.19 2.63 3.78 2.56	7.25 NJ 5.38 J 3.42 J 2.59 J 5.03 J 8.10 J 2.71 NJ 3.13 J 6.92 J 2.95 J 4.19 J 2.63 J 3.78 NJ 2.56 J	7.25 NJ ug/l 5.38 J ug/l 3.42 J ug/l 2.59 J ug/l 5.03 J ug/l 8.10 J ug/l 2.71 NJ ug/l 3.13 J ug/l 6.92 J ug/l 2.95 J ug/l 2.95 J ug/l 2.63 J ug/l 3.78 NJ ug/l 2.56 J ug/l

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	103		70-130	

L2444516

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

SAMPLE RESULTS

1 00/21/21

Report Date: 08/21/24

Lab Number:

Lab ID: L2444516-04

Client ID: W14

Sample Location: OLEAN NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/12/24 16:39

Analyst: MJV

Date Collected: 08/05/24 12:08
Date Received: 08/07/24
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-04 Date Collected: 08/05/24 12:08

Client ID: W14

Date Received: 08/07/24 Field Prep: Sample Location: OLEAN NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.0	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-lsopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	0.95	J	ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	2.1	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	2.6	J	ug/l	10	0.40	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-04 Date Collected: 08/05/24 12:08

Client ID: W14 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	13.2	J	ug/l	1
Unknown Aromatic	2.51	J	ug/l	1
Unknown Aromatic	1.17	J	ug/l	1
Unknown Benzene	1.79	J	ug/l	1
Unknown Benzene	1.27	J	ug/l	1
Unknown Aromatic	1.28	J	ug/l	1
Unknown Aromatic	1.07	J	ug/l	1
Unknown Benzene	1.19	J	ug/l	1
Cyclohexene, 1-methyl-	1.42	NJ	ug/l	1
Indane	1.48	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	107	70-130	

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Report Date: 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-05

Client ID: WCMW1 Sample Location:

Field Prep:

Date Collected:

08/06/24 11:15 08/07/24

OLEAN NY

Date Received: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 08/12/24 17:53

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2444516

08/21/24

Project Name: SOLEAN WEST 2024 GWM Lab Number:

Project Number: 4387.0001B000

L2444516-05

WCMW1

OLEAN NY

SAMPLE RESULTS

Date Collected: 08/06/24 11:15

Date Received: 08/07/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	4.0	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	0.93	J	ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	0.65	J	ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	35		ug/l	10	0.40	1	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-05 Date Collected: 08/06/24 11:15

Client ID: WCMW1 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	107	J	ug/l	1
Unknown	10.5	J	ug/l	1
Unknown Aromatic	7.45	J	ug/l	1
Unknown Naphthalene	6.72	J	ug/l	1
Unknown Benzene	7.34	J	ug/l	1
Indane	11.3	NJ	ug/l	1
Unknown Benzene	15.9	J	ug/l	1
Unknown Benzene	16.3	J	ug/l	1
Unknown Cycloalkane	17.8	J	ug/l	1
Unknown Aromatic	6.85	J	ug/l	1
Unknown Cycloalkane	6.81	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	101	70-130	

L2444516

08/06/24 15:41

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

08/21/24

Lab Number:

Report Date:

Date Collected:

SAMPLE RESULTS

Lab ID: D L2444516-06

Client ID: WCMW4 Sample Location: OLEAN NY Date Received: 08/07/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/13/24 17:49

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methylene chloride	ND		ug/l	12	3.5	5	
1,1-Dichloroethane	ND		ug/l	12	3.5	5	
Chloroform	ND		ug/l	12	3.5	5	
Carbon tetrachloride	ND		ug/l	2.5	0.67	5	
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5	
Dibromochloromethane	ND		ug/l	2.5	0.74	5	
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5	
Tetrachloroethene	ND		ug/l	2.5	0.90	5	
Chlorobenzene	ND		ug/l	12	3.5	5	
Trichlorofluoromethane	ND		ug/l	12	3.5	5	
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5	
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5	
Bromodichloromethane	ND		ug/l	2.5	0.96	5	
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5	
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5	
Bromoform	ND		ug/l	10	3.2	5	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5	
Benzene	ND		ug/l	2.5	0.80	5	
Toluene	ND		ug/l	12	3.5	5	
Ethylbenzene	ND		ug/l	12	3.5	5	
Chloromethane	ND		ug/l	12	3.5	5	
Bromomethane	ND		ug/l	12	3.5	5	
Vinyl chloride	ND		ug/l	5.0	0.36	5	
Chloroethane	ND		ug/l	12	3.5	5	
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5	
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5	
Trichloroethene	ND		ug/l	2.5	0.88	5	
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-06 D Date Collected: 08/06/24 15:41

Client ID: WCMW4 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene	Volatile Organics by GC/MS - Wes	tborough Lab					
1.4-Dichlorobenzene ND ug/l 12 3.5 5 Methyl tert butyl ether ND ug/l 12 0.83 5 p/m-Xylene ND ug/l 12 3.5 5 Oxylene ND ug/l 12 3.5 5 cis-1,2-Dichloroethene ND ug/l 12 3.5 5 Styrene ND ug/l 12 3.5 5 Styrene ND ug/l 25 5.0 5 Styrene ND ug/l 25 5.0 5 Cacton ND ug/l 25 5.0 5 Cacton ND ug/l 25 5.0 5 Carbon disulfide ND ug/l 25 5.0 5 2-Butanone ND ug/l 25 5.0 5 4-Methyl-2-pentanone ND ug/l 25 5.0 5 2-Hoxanone ND ug/l <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>12</td> <td>3.5</td> <td>5</td>	1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether ND ug/l 12 0.83 5 p/m-Xylene ND ug/l 12 3.5 5 o-Xylene ND ug/l 12 3.5 5 cis-1,2-Dichloroethene ND ug/l 12 3.5 5 Styrene ND ug/l 12 3.5 5 Dichlorodifluoromethane ND ug/l 25 5.0 5 Acetone ND ug/l 25 5.0 5 Acetone ND ug/l 25 5.0 5 Carbon disulfide ND ug/l 25 5.0 5 Carbon disulfide ND ug/l 25 5.0 5 Carbon disulfide ND ug/l 25 5.0 5 4-Methyl-2-pentane ND ug/l 25 5.0 5 E-Butylonone ND ug/l 12 3.5 5 1,2-Dibromothane	1,4-Dichlorobenzene	ND			12	3.5	5
prim-Xylene ND ug/l 12 3.5 5 o-Xylene ND ug/l 12 3.5 5 clist-12-Dichloroethene ND ug/l 12 3.5 5 Styrene ND ug/l 12 3.5 5 Dichlorodiffuoromethane ND ug/l 25 5.0 5 Acetone ND ug/l 25 7.3 5 Carbon disulfide ND ug/l 25 5.0 5 Carbon disulfide ND ug/l 25 5.0 5 2-Butanone ND ug/l 25 5.0 5 4-Methyl-2-pentanone ND ug/l 25 5.0 5 2-Hexanone ND ug/l 25 5.0 5 2-Hexanone ND ug/l 12 3.5 5 1,2-Dibromochane ND ug/l 12 3.5 5 1,2-Dibromochane ND <td>Methyl tert butyl ether</td> <td>ND</td> <td></td> <td></td> <td>12</td> <td>0.83</td> <td>5</td>	Methyl tert butyl ether	ND			12	0.83	5
ND	p/m-Xylene	ND			12	3.5	5
Styrene ND ug/l 12 3.5 5 5	o-Xylene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane ND	cis-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Acetone ND ug/l 25 7.3 5 Carbon disulfide ND ug/l 25 5.0 5 Carbon disulfide ND ug/l 25 9.7 5 Carbon disulfide ND ug/l 25 5.0 5 Carbon disulfide ND ug/l 12 3.5 5 Carbon disulfied ND ug/l 12 3.5 5 Carbon disulfie	Styrene	ND		ug/l	12	3.5	5
Carbon disulfide ND ug/l 25 5.0 5 2-Butanone ND ug/l 25 9.7 5 4-Methyl-2-pentanone ND ug/l 25 5.0 5 2-Hexanone ND ug/l 25 5.0 5 Bromochloromethane ND ug/l 12 3.5 5 1,2-Dibromoethane ND ug/l 10 3.2 5 n-Butylbenzene ND ug/l 12 3.5 5 n-Butylbenzene ND ug/l 12 3.5 5 sec-Butylbenzene ND ug/l 12 3.5 5 sec-Butylbenzene ND ug/l 12 3.5 5 sec-Butylbenzene ND ug/l 12 3.5 5 lac-Butylbenzene ND ug/l 12 3.5 5 lac-Butylbenzene ND ug/l 12 3.5 5 lsopropylbenzene<	Dichlorodifluoromethane	ND		ug/l	25	5.0	5
2-Butanone ND	Acetone	ND		ug/l	25	7.3	5
A-Methyl-2-pentanone ND	Carbon disulfide	ND		ug/l	25	5.0	5
2-Hexanone ND	2-Butanone	ND		ug/l	25	9.7	5
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
1,2-Dibromoethane ND	2-Hexanone	ND		ug/l	25	5.0	5
n-Butylbenzene ND ug/l 12 3.5 5 sec-Butylbenzene ND ug/l 12 3.5 5 sec-Butylbenzene ND ug/l 12 3.5 5 sec-Butylbenzene ND ug/l 12 3.5 5 slsopropylbenzene ND ug/l 12 3.5 5 slsopropylbenzene ND ug/l 12 3.5 5 slsopropylbenzene ND ug/l 12 3.5 5 n-Propylbenzene ND ug/l 12 3.5 5 n-Propylbenzene ND ug/l 12 3.5 5 slsopropylbenzene ND ug/l 10 1.2 5 slsopropylbenzene ND ug/l 50 1.4 5 slsopropylbenzene ND ug/l 50 1.4 5 slsopropylbenzene ND ug/l 1200 300 5 slsopropylbenzene ND ug/l 1200 300 5 slsopropylbenzene ND ug/l 12 3.5 5	Bromochloromethane	ND		ug/l	12	3.5	5
ND	1,2-Dibromoethane	ND		ug/l	10	3.2	5
1,2-Dibromo-3-chloropropane ND ug/l 12 3.5 5 Isopropylbenzene ND ug/l 12 3.5 5 p-Isopropylbenzene ND ug/l 12 3.5 5 n-Propylbenzene ND ug/l 12 3.5 5 1,2,3-Trichlorobenzene ND ug/l 12 3.5 5 1,2,4-Trichlorobenzene ND ug/l 12 3.5 5 1,3,5-Trimethylbenzene ND ug/l 12 3.5 5 1,2,4-Trimethylbenzene ND ug/l 12 3.5 5 Methyl Acetate ND ug/l 10 1.2 5 Cyclohexane ND ug/l 50 1.4 5 1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 12 3.5 5	n-Butylbenzene	ND		ug/l	12	3.5	5
Sopropylbenzene ND ug/l 12 3.5 5 5 5 5 5 5 5 5 5	sec-Butylbenzene	ND		ug/l	12	3.5	5
P-Isopropyltoluene ND ug/l 12 3.5 5 n-Propylbenzene ND ug/l 12 3.5 5 1,2,3-Trichlorobenzene ND ug/l 12 3.5 5 1,2,4-Trichlorobenzene ND ug/l 12 3.5 5 1,3,5-Trimethylbenzene ND ug/l 12 3.5 5 1,2,4-Trimethylbenzene ND ug/l 12 3.5 5 Methyl Acetate ND ug/l 10 1.2 5 Cyclohexane ND ug/l 50 1.4 5 1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 1200 300 5	1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
ND	Isopropylbenzene	ND		ug/l	12	3.5	5
1,2,3-Trichlorobenzene ND ug/l 12 3.5 5 1,2,4-Trichlorobenzene ND ug/l 12 3.5 5 1,3,5-Trimethylbenzene ND ug/l 12 3.5 5 1,2,4-Trimethylbenzene ND ug/l 12 3.5 5 Methyl Acetate ND ug/l 10 1.2 5 Cyclohexane ND ug/l 50 1.4 5 1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 12 3.5 5	p-Isopropyltoluene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene ND ug/l 12 3.5 5 1,3,5-Trimethylbenzene ND ug/l 12 3.5 5 1,2,4-Trimethylbenzene ND ug/l 12 3.5 5 Methyl Acetate ND ug/l 10 1.2 5 Cyclohexane ND ug/l 50 1.4 5 1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 12 3.5 5	n-Propylbenzene	ND		ug/l	12	3.5	5
1,3,5-Trimethylbenzene ND ug/l 12 3.5 5 1,2,4-Trimethylbenzene ND ug/l 12 3.5 5 Methyl Acetate ND ug/l 10 1.2 5 Cyclohexane ND ug/l 50 1.4 5 1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 12 3.5 5	1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trimethylbenzene ND ug/l 12 3.5 5 Methyl Acetate ND ug/l 10 1.2 5 Cyclohexane ND ug/l 50 1.4 5 1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 12 3.5 5	1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
Methyl Acetate ND ug/l 10 1.2 5 Cyclohexane ND ug/l 50 1.4 5 1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 12 3.5 5	1,3,5-Trimethylbenzene	ND		ug/l	12	3.5	5
Cyclohexane ND ug/l 50 1.4 5 1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 12 3.5 5	1,2,4-Trimethylbenzene	ND		ug/l	12	3.5	5
1,4-Dioxane ND ug/l 1200 300 5 Freon-113 ND ug/l 12 3.5 5	Methyl Acetate	ND		ug/l	10	1.2	5
Freon-113 ND ug/l 12 3.5 5	Cyclohexane	ND		ug/l	50	1.4	5
	1,4-Dioxane	ND		ug/l	1200	300	5
Methyl cyclohexane ND ug/l 50 2.0 5	Freon-113	ND		ug/l	12	3.5	5
	Methyl cyclohexane	ND		ug/l	50	2.0	5

Tentatively Identified Compounds				
Total TIC Compounds	12.8	J	ug/l	5
Unknown	7.50	J	ug/l	5
Unknown Cycloalkane	5.25	J	ug/l	5

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-06 D Date Collected: 08/06/24 15:41

Client ID: WCMW4 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	107	70-130	

08/06/24 08:00

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

SAMPLE RESULTS

Lab Number: L2444516

Report Date: 08/21/24

Date Collected:

Lab ID: L2444516-07

Client ID: **BLIND DUP** Sample Location: OLEAN NY

Date Received: 08/07/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/12/24 18:17

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	1.5	J	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	10		ug/l	0.50	0.16	1
Toluene	1.8	J	ug/l	2.5	0.70	1
Ethylbenzene	3.0		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	2.4	J	ug/l	2.5	0.70	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-07 Date Collected: 08/06/24 08:00

Client ID: BLIND DUP Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	0.87	J	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	5.6		ug/l	2.5	0.70	1
o-Xylene	120		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.9	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	0.88	J	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	10		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	9.8		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	110		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	51		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	63		ug/l	10	0.40	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-07 Date Collected: 08/06/24 08:00

Client ID: BLIND DUP Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	76.0	J	ug/l	1
Cyclohexane, 1,1-dimethyl-	5.80	NJ	ug/l	1
Unknown Benzene	10.8	J	ug/l	1
Unknown	6.11	J	ug/l	1
Unknown Cycloalkane	8.50	J	ug/l	1
Unknown Aromatic	7.19	J	ug/l	1
Unknown Cycloalkane	4.57	J	ug/l	1
Cyclopentane, Methyl-	15.8	NJ	ug/l	1
Unknown Cycloalkane	5.57	J	ug/l	1
Unknown	6.88	J	ug/l	1
Unknown Benzene	4.75	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	101	70-130	

08/02/24 08:01

Project Name: SOLEAN WEST 2024 GWM

TRIP BLANK

Project Number: 4387.0001B000

SAMPLE RESULTS

Lab Number: L2444516

Report Date: 08/21/24

Lab ID: L2444516-08 Date Collected: Client ID:

Date Received: 08/07/24 Field Prep: Not Specified

Sample Location: OLEAN NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/12/24 15:51

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

 Lab ID:
 L2444516-08
 Date Collected:
 08/02/24 08:01

 Client ID:
 TRIP BLANK
 Date Received:
 08/07/24

Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds				
No Tentatively Identified Compounds	ND	ug/l	1	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-08 Date Collected: 08/02/24 08:01

Client ID: TRIP BLANK Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	104	70-130	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/13/24 09:44

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	06 Batch:	WG1958701-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2444516

Project Name: SOLEAN WEST 2024 GWM Lab Number:

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/13/24 09:44

A-Dichlorobenzene ND	arameter	Result	Qualifier Units	RL	MDL	
Methyl tert butyl ether ND ug/l 2.5 0.17 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70	olatile Organics by GC/MS	- Westborough Lab	for sample(s):	06 Batch:	WG1958701-5	
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70	1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70	Methyl tert butyl ether	ND	ug/l	2.5	0.17	
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodiffuoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromothane ND ug/l 2.5 0.70 1,2-Dibromothane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 <td>p/m-Xylene</td> <td>ND</td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td></td>	p/m-Xylene	ND	ug/l	2.5	0.70	
Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70	o-Xylene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5	cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 <td>Styrene</td> <td>ND</td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td></td>	Styrene	ND	ug/l	2.5	0.70	
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1-sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l	Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70	Acetone	ND	ug/l	5.0	1.5	
A-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70	Carbon disulfide	ND	ug/l	5.0	1.0	
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l </td <td>2-Butanone</td> <td>ND</td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td></td>	2-Butanone	ND	ug/l	5.0	1.9	
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 lsopropylbenzene ND ug/l 2.5 0.70 lsopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70 Freon-113 ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61 Freon-113 ND ug/l	2-Hexanone	ND	ug/l	5.0	1.0	
n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.23 Trional ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70	Bromochloromethane	ND	ug/l	2.5	0.70	
sec-Butylbenzene ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Cyclohexane ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61 1,4-Dioxane ND ug/l 2.5 0.70	n-Butylbenzene	ND	ug/l	2.5	0.70	
Isopropylbenzene ND ug/l 2.5 0.70	sec-Butylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene ND ug/l 2.5 0.70 n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
n-Propylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	p-Isopropyltoluene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	n-Propylbenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	ND	ug/l	2.0	0.23	
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND	ug/l	10	0.27	
3	1,4-Dioxane	ND	ug/l	250	61.	
Methyl cyclohexane ND ug/l 10 0.40	Freon-113	ND	ug/l	2.5	0.70	
	Methyl cyclohexane	ND	ug/l	10	0.40	

L2444516

Project Name: SOLEAN WEST 2024 GWM Lab Number:

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/13/24 09:44

Parameter	Result	Qualifier	Units	5	RL	MDL	
Volatile Organics by GC/M	IS - Westborough La	b for sampl	e(s):	06	Batch:	WG1958701-5	
Tentatively Identified Compounds							
Total TIC Compounds	1.16	J		ug/l			
Unknown	1.16	J		ug/l			

		Acceptance	
Surrogate	%Recovery Qual	ifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	103	70-130	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/12/24 10:09

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-05,07-08	Batch: WG1958728	3-5
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	

L2444516

Project Name: SOLEAN WEST 2024 GWM Lab Number:

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/12/24 10:09

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-05,07-08	Batch: WG1958728	-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.17	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

L2444516

Lab Number:

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/12/24 10:09

Parameter	Result	Qualifier	Units	s RL	ı	MDL
Volatile Organics by GC/MS - West	borough La	b for sampl	e(s):	01-05,07-08	Batch:	WG1958728-5
Tentatively Identified Compounds						
No Tentatively Identified Compounds	ND			ug/l		

		Acceptance
Surrogate	%Recovery Qu	ualifier Criteria
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	106	70-130

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 06	Batch: WG	1958701-3	WG1958701-4				
Methylene chloride	93		100		70-130	7		20	
1,1-Dichloroethane	110		110		70-130	0		20	
Chloroform	97		110		70-130	13		20	
Carbon tetrachloride	100		100		63-132	0		20	
1,2-Dichloropropane	100		110		70-130	10		20	
Dibromochloromethane	93		100		63-130	7		20	
1,1,2-Trichloroethane	92		110		70-130	18		20	
Tetrachloroethene	100		100		70-130	0		20	
Chlorobenzene	98		100		75-130	2		20	
Trichlorofluoromethane	110		95		62-150	15		20	
1,2-Dichloroethane	110		120		70-130	9		20	
1,1,1-Trichloroethane	100		100		67-130	0		20	
Bromodichloromethane	97		100		67-130	3		20	
trans-1,3-Dichloropropene	89		98		70-130	10		20	
cis-1,3-Dichloropropene	92		100		70-130	8		20	
Bromoform	79		94		54-136	17		20	
1,1,2,2-Tetrachloroethane	86		100		67-130	15		20	
Benzene	100		110		70-130	10		20	
Toluene	98		100		70-130	2		20	
Ethylbenzene	95		99		70-130	4		20	
Chloromethane	100		100		64-130	0		20	
Bromomethane	64		80		39-139	22	Q	20	
Vinyl chloride	110		100		55-140	10		20	

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 06	Batch: WG	1958701-3	WG1958701-4				
Chloroethane	120		130		55-138	8		20	
1,1-Dichloroethene	98		100		61-145	2		20	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	98		96		70-130	2		20	
1,2-Dichlorobenzene	94		100		70-130	6		20	
1,3-Dichlorobenzene	97		100		70-130	3		20	
1,4-Dichlorobenzene	96		100		70-130	4		20	
Methyl tert butyl ether	80		95		63-130	17		20	
p/m-Xylene	95		100		70-130	5		20	
o-Xylene	95		100		70-130	5		20	
cis-1,2-Dichloroethene	100		100		70-130	0		20	
Styrene	95		100		70-130	5		20	
Dichlorodifluoromethane	100		93		36-147	7		20	
Acetone	71		100		58-148	34	Q	20	
Carbon disulfide	110		110		51-130	0		20	
2-Butanone	92		110		63-138	18		20	
4-Methyl-2-pentanone	72		96		59-130	29	Q	20	
2-Hexanone	72		94		57-130	27	Q	20	
Bromochloromethane	99		110		70-130	11		20	
1,2-Dibromoethane	88		100		70-130	13		20	
n-Butylbenzene	92		97		53-136	5		20	
sec-Butylbenzene	91		93		70-130	2		20	
1,2-Dibromo-3-chloropropane	71		87		41-144	20		20	

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough L	ab Associated	sample(s): (06 Batch: WG	1958701-3	WG1958701-4			
Isopropylbenzene	90		94		70-130	4		20
p-Isopropyltoluene	92		94		70-130	2		20
n-Propylbenzene	93		95		69-130	2		20
1,2,3-Trichlorobenzene	82		98		70-130	18		20
1,2,4-Trichlorobenzene	86		95		70-130	10		20
1,3,5-Trimethylbenzene	92		95		64-130	3		20
1,2,4-Trimethylbenzene	89		94		70-130	5		20
Methyl Acetate	86		100		70-130	15		20
Cyclohexane	100		96		70-130	4		20
1,4-Dioxane	66		90		56-162	31	Q	20
Freon-113	100		95		70-130	5		20
Methyl cyclohexane	96		88		70-130	9		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	113	114	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	89	91	70-130
Dibromofluoromethane	103	101	70-130

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s):	01-05,07-08 Ba	tch: WG19	58728-3 WG1958	3728-4	
Methylene chloride	100		100		70-130	0	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	100		110		70-130	10	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	110		100		70-130	10	20
Dibromochloromethane	99		98		63-130	1	20
1,1,2-Trichloroethane	110		100		70-130	10	20
Tetrachloroethene	120		110		70-130	9	20
Chlorobenzene	110		110		75-130	0	20
Trichlorofluoromethane	110		110		62-150	0	20
1,2-Dichloroethane	100		110		70-130	10	20
1,1,1-Trichloroethane	110		110		67-130	0	20
Bromodichloromethane	110		100		67-130	10	20
trans-1,3-Dichloropropene	100		100		70-130	0	20
cis-1,3-Dichloropropene	100		100		70-130	0	20
Bromoform	88		94		54-136	7	20
1,1,2,2-Tetrachloroethane	93		98		67-130	5	20
Benzene	110		110		70-130	0	20
Toluene	110		110		70-130	0	20
Ethylbenzene	110		110		70-130	0	20
Chloromethane	110		110		64-130	0	20
Bromomethane	120		120		39-139	0	20
Vinyl chloride	110		110		55-140	0	20

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-05,07-08 Bate	ch: WG19	58728-3 WG1958	3728-4	
Chloroethane	120		120		55-138	0	20
1,1-Dichloroethene	100		98		61-145	2	20
trans-1,2-Dichloroethene	110		100		70-130	10	20
Trichloroethene	110		110		70-130	0	20
1,2-Dichlorobenzene	100		110		70-130	10	20
1,3-Dichlorobenzene	110		110		70-130	0	20
1,4-Dichlorobenzene	110		100		70-130	10	20
Methyl tert butyl ether	96		94		63-130	2	20
p/m-Xylene	110		110		70-130	0	20
o-Xylene	120		110		70-130	9	20
cis-1,2-Dichloroethene	110		100		70-130	10	20
Styrene	120		110		70-130	9	20
Dichlorodifluoromethane	100		97		36-147	3	20
Acetone	73		79		58-148	8	20
Carbon disulfide	110		100		51-130	10	20
2-Butanone	76		82		63-138	8	20
4-Methyl-2-pentanone	85		89		59-130	5	20
2-Hexanone	78		82		57-130	5	20
Bromochloromethane	110		110		70-130	0	20
1,2-Dibromoethane	97		99		70-130	2	20
n-Butylbenzene	110		110		53-136	0	20
sec-Butylbenzene	110		100		70-130	10	20
1,2-Dibromo-3-chloropropane	76		83		41-144	9	20

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s): (01-05,07-08 Bat	ch: WG195	8728-3 WG1958	3728-4		
Isopropylbenzene	110		110		70-130	0		20
p-Isopropyltoluene	110		100		70-130	10		20
n-Propylbenzene	110		110		69-130	0		20
1,2,3-Trichlorobenzene	93		100		70-130	7		20
1,2,4-Trichlorobenzene	98		100		70-130	2		20
1,3,5-Trimethylbenzene	110		100		64-130	10		20
1,2,4-Trimethylbenzene	110		100		70-130	10		20
Methyl Acetate	78		85		70-130	9		20
Cyclohexane	100		100		70-130	0		20
1,4-Dioxane	76		82		56-162	8		20
Freon-113	110		100		70-130	10		20
Methyl cyclohexane	100		100		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	100	103	70-130
Toluene-d8	107	100	70-130
4-Bromofluorobenzene	94	98	70-130
Dibromofluoromethane	102	102	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - ID: W28	- Westborough	Lab Assoc	ciated sample((s): 01-05,07-08	QC Batch ID: WG	G1958728-6 V	/G1958728-7 QC S	Sample	: L2444516-03 Client
Methylene chloride	ND	10	9.9	99	10	100	70-130	1	20
1,1-Dichloroethane	ND	10	11	110	11	110	70-130	0	20
Chloroform	ND	10	11	110	11	110	70-130	0	20
Carbon tetrachloride	ND	10	12	120	11	110	63-132	9	20
1,2-Dichloropropane	ND	10	10	100	11	110	70-130	10	20
Dibromochloromethane	ND	10	9.5	95	9.7	97	63-130	2	20
1,1,2-Trichloroethane	ND	10	13	130	12	120	70-130	8	20
Tetrachloroethene	ND	10	11	110	10	100	70-130	10	20
Chlorobenzene	ND	10	10	100	10	100	75-130	0	20
Trichlorofluoromethane	ND	10	11	110	12	120	62-150	9	20
1,2-Dichloroethane	ND	10	10	100	10	100	70-130	0	20
1,1,1-Trichloroethane	ND	10	11	110	11	110	67-130	0	20
Bromodichloromethane	ND	10	10	100	10	100	67-130	0	20
trans-1,3-Dichloropropene	ND	10	9.3	93	9.6	96	70-130	3	20
cis-1,3-Dichloropropene	ND	10	9.8	98	10	100	70-130	2	20
Bromoform	ND	10	8.3	83	8.5	85	54-136	2	20
1,1,2,2-Tetrachloroethane	ND	10	9.3	93	9.4	94	67-130	1	20
Benzene	ND	10	11	110	11	110	70-130	0	20
Toluene	ND	10	10	100	11	110	70-130	10	20
Ethylbenzene	ND	10	10	100	10	100	70-130	0	20
Chloromethane	ND	10	11	110	12	120	64-130	9	20
Bromomethane	ND	10	7.7	77	8.3	83	39-139	8	20
Vinyl chloride	ND	10	12	120	13	130	55-140	8	20

Matrix Spike Analysis Batch Quality Control

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number:

L2444516

Report Date:

08/21/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS ID: W28	- Westborough	Lab Assoc	ciated sample	(s): 01-05,07-08	QC Batch ID: Wo	G1958728-6 W	VG1958728-7 QC S	Sample	: L2444516-03 Clien
Chloroethane	ND	10	12	120	11	110	55-138	9	20
1,1-Dichloroethene	ND	10	10	100	10	100	61-145	0	20
trans-1,2-Dichloroethene	ND	10	11	110	11	110	70-130	0	20
Trichloroethene	ND	10	11	110	11	110	70-130	0	20
1,2-Dichlorobenzene	ND	10	9.4	94	9.2	92	70-130	2	20
1,3-Dichlorobenzene	ND	10	9.4	94	8.9	89	70-130	5	20
1,4-Dichlorobenzene	ND	10	9.4	94	9.0	90	70-130	4	20
Methyl tert butyl ether	ND	10	9.5	95	9.6	96	63-130	1	20
o/m-Xylene	ND	20	21	105	21	105	70-130	0	20
o-Xylene	ND	20	21	105	21	105	70-130	0	20
cis-1,2-Dichloroethene	ND	10	11	110	11	110	70-130	0	20
Styrene	ND	20	21	105	21	105	70-130	0	20
Dichlorodifluoromethane	ND	10	11	110	10	100	36-147	10	20
Acetone	4.0J	10	12	120	11	110	58-148	9	20
Carbon disulfide	ND	10	11	110	11	110	51-130	0	20
2-Butanone	ND	10	9.4	94	9.4	94	63-138	0	20
4-Methyl-2-pentanone	ND	10	8.7	87	8.8	88	59-130	1	20
2-Hexanone	ND	10	8.4	84	8.6	86	57-130	2	20
Bromochloromethane	ND	10	11	110	11	110	70-130	0	20
1,2-Dibromoethane	ND	10	9.5	95	9.7	97	70-130	2	20
n-Butylbenzene	ND	10	6.7	67	5.9	59	53-136	13	20
sec-Butylbenzene	ND	10	7.4	74	6.6	66	Q 70-130	11	20
1,2-Dibromo-3-chloropropane	ND	10	7.5	75	7.6	76	41-144	1	20

Matrix Spike Analysis Batch Quality Control

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number:

L2444516

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS				•			61958728-6 W						Client
ID: W28	vvestborougn	Lab 713300	nated sample(3). 01 00,01 00	QO Dai	on ib. we	71000720 0 11	01000	1201 QU	Jampie.	LZ-1-101	0 00	Olicit
Isopropylbenzene	ND	10	9.3	93		8.6	86		70-130	8		20	
p-Isopropyltoluene	ND	10	7.5	75		6.6	66	Q	70-130	13		20	
n-Propylbenzene	ND	10	9.0	90		8.2	82		69-130	9		20	
1,2,3-Trichlorobenzene	ND	10	7.2	72		6.6	66	Q	70-130	9		20	
1,2,4-Trichlorobenzene	ND	10	6.7	67	Q	6.0	60	Q	70-130	11		20	
1,3,5-Trimethylbenzene	ND	10	8.8	88		8.2	82		64-130	7		20	
1,2,4-Trimethylbenzene	ND	10	9.2	92		8.6	86		70-130	7		20	
Methyl Acetate	ND	10	7.1	71		7.1	71		70-130	0		20	
Cyclohexane	0.93J	10	10	100		9.1J	91		70-130	9		20	
1,4-Dioxane	ND	500	370	74		360	72		56-162	3		20	
Freon-113	ND	10	10	100		9.5	95		70-130	5		20	
Methyl cyclohexane	1.4J	10	8.2J	82		7.1J	71		70-130	14		20	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	99	100	70-130
4-Bromofluorobenzene	95	95	70-130
Dibromofluoromethane	100	102	70-130
Toluene-d8	100	100	70-130

SEMIVOLATILES

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

SAMPLE RESULTS

Date Collected: 08/05/24 13:18

Report Date: 08/21/24

Lab ID: L2444516-01

Client ID: W13

Sample Location: OLEAN NY

Field Prep:

Date Received:

Lab Number:

08/07/24 Refer to COC

L2444516

Sample Depth:

Matrix: Water Analytical Method: 1,8270E

Analytical Date: 08/11/24 20:06

Analyst: LJG

Extraction Method: EPA 3510C Extraction Date: 08/10/24 07:31

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			~g/.				

08/07/24

Date Received:

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-01 Date Collected: 08/05/24 13:18

Client ID: W13

Sample Location: OLEAN NY Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	3.6	J	ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Tentatively Identified Compounds				
Total TIC Compounds	126	J	ug/l	1
Unknown	9.70	J	ug/l	1
Unknown	11.3	J	ug/l	1
Unknown	8.20	J	ug/l	1
Unknown	9.60	J	ug/l	1
Unknown	37.4	J	ug/l	1
Unknown Ketone	32.7	J	ug/l	1
Unknown	4.90	J	ug/l	1
Unknown	7.60	J	ug/l	1
Unknown Organic Acid	4.90	J	ug/l	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-01 Date Collected: 08/05/24 13:18

Client ID: W13 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	98	10-120
4-Terphenyl-d14	86	41-149

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-01 Date Collected: 08/05/24 13:18

Client ID: W13 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 08/10/24 07:31
Analytical Date: 08/11/24 01:12

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	nb				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	ND		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-01 Date Collected: 08/05/24 13:18

Client ID: W13 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	109	23-120
2-Fluorobiphenyl	80	15-120
2,4,6-Tribromophenol	80	10-120
4-Terphenyl-d14	83	41-149

L2444516

08/21/24

08/12/24 08:26

Project Name: SOLEAN WEST 2024 GWM

L2444516-02

OLEAN NY

W17

Project Number: 4387.0001B000

SAMPLE RESULTS

Date Collected: 08/06/24 12:15

Date Received: 08/07/24

Extraction Method: EPA 3510C

Lab Number:

Report Date:

Extraction Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270E

Analytical Date: 08/13/24 02:33

Analyst: ΕK

Bis(2-chloroethyl)ether ND ug/l 2.0 0.39 1 3.3°-Dichlorobenzidine ND ug/l 5.0 1.8 1 1 1 2.4°-Dinitrotoluene ND ug/l 5.0 0.54 1 1 2.4°-Dinitrotoluene ND ug/l 5.0 0.54 1 1 2.4°-Dinitrotoluene ND ug/l 5.0 0.54 1 1 2.4°-Dinitrotoluene ND ug/l 5.0 0.34 1 1 2.4°-Dinitrotoluene ND ug/l 2.0 0.39 1 2 2 2 2 2 2 2 2 2	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3,3*Dichlorobenzidine ND ug/l 5.0 1.8 1 2,4*Dinitrotoluene ND ug/l 5.0 0.54 1 2,6*Dinitrotoluene ND ug/l 5.0 0.84 1 4*Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4*Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chlorosporpyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorosympyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 Nitrobenzene ND ug/l 2.0 0.92 1 NDAPADPA ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)hythalate ND ug/l 5.0 </td <td>Semivolatile Organics by GC/MS - Wes</td> <td>tborough Lab</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Semivolatile Organics by GC/MS - Wes	tborough Lab					
2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chlorisopropyl)ether ND ug/l 5.0 0.40 1 Bis(2-chlorisopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Isophorone ND ug/l 5.0 0.86 1 Isophorone ND ug/l 2.0 0.20 1 ND ug/l 2.0 0.20 1 NDAPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.96 1	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
2,6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorosephoxy)methane ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.90 1 Nitrobenzene ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Di-n-outylphthalate ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.92 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.92 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.92 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.47 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.40 1	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorosopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1.2 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 NITrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 NDPA/DPA ND ug/l 5.0 0.91 1 Bis(2-cthylhexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-cthylhexyl)phthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 0.96 1 Dimethyl phthalate ND ug/l 4-Chloroaniline ND ug/l 4-Chloroaniline ND ug/l 4-N Ug/l 4-N	2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 20 1.2 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 0.91 1 Butyl benzyl phthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Diethyl phthalate ND ug/l 5.0	2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
Bis(2-chloroisopropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.84 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Hexachlorocyclopentadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
Sophorone ND ug/l 5.0 0.86 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
Nitrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-ctylphthalate ND ug/l 5.0 0.96 1 Di-nethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.47 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.2 1	Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
NDPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-cytylphthalate ND ug/l 5.0 0.96 1 Di-n-cytylphthalate ND ug/l 5.0 0.76 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.92 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1	Isophorone	ND		ug/l	5.0	0.86	1
n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 0.76 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.92 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 1,2,4,5-Tetrachlorobenzene ND ug/l 1.0 0.24 1	Nitrobenzene	ND		ug/l	2.0	0.20	1
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 0.76 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.92 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 <	NDPA/DPA	ND		ug/l	2.0	0.92	1
Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 2.3 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 2.3 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Di-n-octylphthalate ND ug/l 5.0 2.3 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Diethyl phthalate	ND		ug/l	5.0	0.76	1
4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.2 1 0-Nitroaniline ND ug/l 5.0 1.4 1 0-Nitroaniline ND ug/l 5.0 1.4 1 0-Nitroaniline ND ug/l 2.0 0.40 1 0-Nitroaniline ND ug/l 10 0.24 1	Dimethyl phthalate	ND		ug/l	5.0	0.92	1
2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	Biphenyl	ND		ug/l	2.0	0.20	1
3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	4-Chloroaniline	ND		ug/l	5.0	0.47	1
4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	2-Nitroaniline	ND		ug/l	5.0	1.0	1
Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	3-Nitroaniline	ND		ug/l	5.0	1.2	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1	4-Nitroaniline	ND		ug/l	5.0	1.4	1
	Dibenzofuran	ND		ug/l	2.0	0.40	1
Acetophenone ND ug/l 5.0 0.92 1	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
	Acetophenone	ND		ug/l	5.0	0.92	1
2,4,6-Trichlorophenol ND ug/l 5.0 2.1 1	2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1

Project Name: Lab Number: SOLEAN WEST 2024 GWM L2444516

Project Number: 4387.0001B000 Report Date: 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-02 Date Collected: 08/06/24 12:15

Client ID: W17

Date Received: 08/07/24 Sample Location: Field Prep: Not Specified OLEAN NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Tentatively Identified Compounds				
Total TIC Compounds	190	J	ug/l	1
Unknown Benzene	4.70	J	ug/l	1
Unknown	4.20	J	ug/l	1
Unknown	5.00	J	ug/l	1
Unknown Benzene	20.8	J	ug/l	1
Unknown	4.90	J	ug/l	1
Unknown	5.50	J	ug/l	1
Unknown Benzene	57.2	J	ug/l	1
Cyclic Octaatomic Sulfur	17.2	NJ	ug/l	1
Unknown	7.30	J	ug/l	1
Unknown	4.20	J	ug/l	1
Unknown Benzene	59.1	J	ug/l	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-02 Date Collected: 08/06/24 12:15

Client ID: W17 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	10	Q	21-120
Phenol-d6	15		10-120
Nitrobenzene-d5	60		23-120
2-Fluorobiphenyl	63		15-120
2,4,6-Tribromophenol	22		10-120
4-Terphenyl-d14	75		41-149

L2444516

Lab Number: **Project Name:** SOLEAN WEST 2024 GWM

Project Number: Report Date: 4387.0001B000

08/21/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/06/24 12:15 L2444516-02

Client ID: Date Received: 08/07/24 W17 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/12/24 08:26 Analytical Method: 1,8270E-SIM Analytical Date: 08/13/24 16:27

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	0.10		ug/l	0.10	0.02	1
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	0.21		ug/l	0.10	0.03	1
Phenanthrene	0.06	J	ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	0.09	J	ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-02 Date Collected: 08/06/24 12:15

Client ID: W17 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	12	Q	21-120
Phenol-d6	18		10-120
Nitrobenzene-d5	83		23-120
2-Fluorobiphenyl	68		15-120
2,4,6-Tribromophenol	20		10-120
4-Terphenyl-d14	72		41-149

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

SAMPLE RESULTS

Date Collected: 08/06/24 15:04

Report Date: 08/21/24

Lab ID: L2444516-03

Client ID: W28

Sample Location: OLEAN NY

Field Prep:

Date Received:

Lab Number:

08/07/24 Not Specified

L2444516

Sample Depth:

Matrix: Water Analytical Method: 1,8270E

Analytical Date: 08/13/24 03:40

Analyst: EK

Extraction Method: EPA 3510C Extraction Date: 08/12/24 08:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			~g/.				

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-03 Date Collected: 08/06/24 15:04

Client ID: W28 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Tentatively Identified Compounds				
Total TIC Compounds	70.1	J	ug/l	1
Unknown	5.80	J	ug/l	1
Unknown	8.60	J	ug/l	1
Unknown	6.00	J	ug/l	1
Unknown	4.30	J	ug/l	1
Cyclic Octaatomic Sulfur	17.8	NJ	ug/l	1
Unknown	5.00	J	ug/l	1
Unknown	6.00	J	ug/l	1
Unknown	6.10	J	ug/l	1
Unknown Alkane	5.60	J	ug/l	1
Unknown	4.90	J	ug/l	1

Project Name: Lab Number: SOLEAN WEST 2024 GWM L2444516

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/06/24 15:04 L2444516-03

Date Received: Client ID: 08/07/24 W28 Sample Location: Field Prep: OLEAN NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	10	Q	21-120
Phenol-d6	19		10-120
Nitrobenzene-d5	69		23-120
2-Fluorobiphenyl	64		15-120
2,4,6-Tribromophenol	22		10-120
4-Terphenyl-d14	72		41-149

L2444516

Project Name: Lab Number: SOLEAN WEST 2024 GWM

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-03 Date Collected: 08/06/24 15:04

Date Received: Client ID: W28 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/12/24 08:26 Analytical Method: 1,8270E-SIM Analytical Date: 08/13/24 17:32

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.09	J	ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	0.06	J	ug/l	0.10	0.02	1
Benzo(a)anthracene	0.08	J	ug/l	0.10	0.03	1
Benzo(a)pyrene	0.08	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.04	J	ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	0.30		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	0.04	J	ug/l	0.10	0.02	1
Fluorene	0.63		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	0.23		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: Lab Number: SOLEAN WEST 2024 GWM L2444516

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/06/24 15:04 L2444516-03

Date Received: Client ID: 08/07/24 W28 Sample Location: Field Prep: OLEAN NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	12	Q	21-120
Phenol-d6	18		10-120
Nitrobenzene-d5	84		23-120
2-Fluorobiphenyl	68		15-120
2,4,6-Tribromophenol	22		10-120
4-Terphenyl-d14	77		41-149

L2444516

08/21/24

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

SAMPLE RESULTS

Date Collected: 08/05/24 12:08

Lab Number:

Report Date:

Lab ID: L2444516-04

Client ID: W14

Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/10/24 07:31 Analytical Method: 1,8270E

Analytical Date: 08/11/24 20:29

Analyst: LJG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
Isophorone	ND		ug/l	5.0	0.86	1
Nitrobenzene	ND		ug/l	2.0	0.20	1
NDPA/DPA	ND		ug/l	2.0	0.92	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
Diethyl phthalate	ND		ug/l	5.0	0.76	1
Dimethyl phthalate	ND		ug/l	5.0	0.92	1
Biphenyl	ND		ug/l	2.0	0.20	1
4-Chloroaniline	ND		ug/l	5.0	0.47	1
2-Nitroaniline	ND		ug/l	5.0	1.0	1
3-Nitroaniline	ND		ug/l	5.0	1.2	1
4-Nitroaniline	ND		ug/l	5.0	1.4	1
Dibenzofuran	ND		ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
Acetophenone	ND		ug/l	5.0	0.92	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1

Project Name: Lab Number: SOLEAN WEST 2024 GWM L2444516

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-04 Date Collected: 08/05/24 12:08

Client ID: W14

Date Received: 08/07/24 Field Prep: Sample Location: OLEAN NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
p-Chloro-m-cresol	ND		//	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	 1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-04 Date Collected: 08/05/24 12:08

Client ID: W14 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	113	J	ug/l	1
Unknown Alkane	15.1	J	ug/l	1
Unknown	4.50	J	ug/l	1
Unknown	5.70	J	ug/l	1
Unknown	6.40	J	ug/l	1
Unknown	7.80	J	ug/l	1
Unknown	13.5	J	ug/l	1
Unknown	6.60	J	ug/l	1
Unknown	4.50	J	ug/l	1
Unknown	9.90	J	ug/l	1
Unknown	5.30	J	ug/l	1
Unknown	4.60	J	ug/l	1
Unknown	6.40	J	ug/l	1
Unknown	9.40	J	ug/l	1
Unknown	4.70	J	ug/l	1
Unknown	8.60	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	40	21-120	
Phenol-d6	36	10-120	
Nitrobenzene-d5	66	23-120	
2-Fluorobiphenyl	73	15-120	
2,4,6-Tribromophenol	73	10-120	
4-Terphenyl-d14	78	41-149	

L2444516

08/21/24

Lab Number: **Project Name:** SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

SAMPLE RESULTS

Report Date:

Lab ID: L2444516-04 Date Collected: 08/05/24 12:08

Date Received: 08/07/24 Client ID: W14 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/10/24 07:31 Analytical Method: 1,8270E-SIM Analytical Date: 08/11/24 01:28

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ıb				
Acenaphthene	0.22		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	0.14		ug/l	0.10	0.03	1
Benzo(a)pyrene	0.13		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.08	J	ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	0.48		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	0.08	J	ug/l	0.10	0.02	1
Fluorene	0.22		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	0.03	J	ug/l	0.10	0.02	1
Pyrene	0.38		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: Lab Number: SOLEAN WEST 2024 GWM L2444516

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/05/24 12:08 L2444516-04

Date Received: Client ID: 08/07/24 W14 Sample Location: Field Prep: OLEAN NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	108	23-120
2-Fluorobiphenyl	76	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	77	41-149

L2444516

08/21/24

Project Name: SOLEAN WEST 2024 GWM

L2444516-05

WCMW1

OLEAN NY

Project Number: 4387.0001B000

SAMPLE RESULTS

08/06/24 11:15

Date Collected: Date Received: 08/07/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270E Analytical Date: 08/13/24 04:02

Analyst: ΕK Extraction Method: EPA 3510C **Extraction Date:** 08/12/24 12:31

Semivolatile Organics by GC/MS - Westborn Bis(2-chloroethyl)ether 3,3'-Dichlorobenzidine	ND ND ND ND	ug/l	2.0		
3,3'-Dichlorobenzidine	ND	ug/l	2.0		
·			2.0	0.39	1
	ND	ug/l	5.0	1.8	1
2,4-Dinitrotoluene	ND	ug/l	5.0	0.54	1
2,6-Dinitrotoluene	ND	ug/l	5.0	0.84	1
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.39	1
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.24	1
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.40	1
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.84	1
Hexachlorocyclopentadiene	ND	ug/l	20	1.2	1
Isophorone	ND	ug/l	5.0	0.86	1
Nitrobenzene	ND	ug/l	2.0	0.20	1
NDPA/DPA	ND	ug/l	2.0	0.92	1
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.91	1
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.4	1
Butyl benzyl phthalate	ND	ug/l	5.0	2.6	1
Di-n-butylphthalate	ND	ug/l	5.0	0.96	1
Di-n-octylphthalate	ND	ug/l	5.0	2.3	1
Diethyl phthalate	ND	ug/l	5.0	0.76	1
Dimethyl phthalate	ND	ug/l	5.0	0.92	1
Biphenyl	ND	ug/l	2.0	0.20	1
4-Chloroaniline	ND	ug/l	5.0	0.47	1
2-Nitroaniline	ND	ug/l	5.0	1.0	1
3-Nitroaniline	ND	ug/l	5.0	1.2	1
4-Nitroaniline	ND	ug/l	5.0	1.4	1
Dibenzofuran	ND	ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.24	1
Acetophenone	ND	ug/l	5.0	0.92	1
2,4,6-Trichlorophenol	ND	ug/l	5.0	2.1	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-05 Date Collected: 08/06/24 11:15

Client ID: WCMW1 Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1	
2-Chlorophenol	ND		ug/l	2.0	0.65	1	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1	
2-Nitrophenol	ND		ug/l	10	2.0	1	
4-Nitrophenol	ND		ug/l	10	1.4	1	
2,4-Dinitrophenol	ND		ug/l	20	5.4	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1	
Phenol	ND		ug/l	5.0	0.35	1	
2-Methylphenol	ND		ug/l	5.0	2.3	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1	
Carbazole	ND		ug/l	2.0	0.31	1	
Atrazine	ND		ug/l	10	1.0	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	1.2	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-05 Date Collected: 08/06/24 11:15

Client ID: WCMW1 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	125	J	ug/l	1
Unknown Alkane	8.20	J	ug/l	1
Unknown	5.30	J	ug/l	1
Unknown	5.90	J	ug/l	1
Unknown Benzene	5.30	J	ug/l	1
Unknown	5.50	J	ug/l	1
Unknown Benzene	7.70	J	ug/l	1
Unknown	4.50	J	ug/l	1
Unknown Naphthalene	4.60	J	ug/l	1
Unknown	7.80	J	ug/l	1
Unknown	9.00	J	ug/l	1
Unknown	9.20	J	ug/l	1
Unknown	6.80	J	ug/l	1
Unknown	7.40	J	ug/l	1
Cyclic Octaatomic Sulfur	33.0	NJ	ug/l	1
Unknown	4.40	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	25	21-120	
Phenol-d6	24	10-120	
Nitrobenzene-d5	65	23-120	
2-Fluorobiphenyl	63	15-120	
2,4,6-Tribromophenol	54	10-120	
4-Terphenyl-d14	76	41-149	

L2444516

Project Name: Lab Number: SOLEAN WEST 2024 GWM

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/06/24 11:15 L2444516-05

Client ID: Date Received: 08/07/24 WCMW1 Sample Location: Field Prep: OLEAN NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/12/24 12:31 Analytical Method: 1,8270E-SIM Analytical Date: 08/13/24 16:43

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - We	stborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.08	J	ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	0.08	J	ug/l	0.10	0.02	1
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.03	1
Benzo(a)pyrene	0.05	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.04	J	ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	0.18		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.02	1
Fluorene	0.63		ug/l	0.10	0.03	1
Phenanthrene	0.50		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	0.18		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

O/AIII EE IAEGGETG

 Lab ID:
 L2444516-05
 Date Collected:
 08/06/24 11:15

 Client ID:
 WCMW1
 Date Received:
 08/07/24

Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	24	21-120
Phenol-d6	27	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	66	15-120
2,4,6-Tribromophenol	43	10-120
4-Terphenyl-d14	79	41-149

L2444516

08/21/24

08/12/24 12:31

Project Name: SOLEAN WEST 2024 GWM

L2444516-06

WCMW4

OLEAN NY

Project Number: 4387.0001B000

SAMPLE RESULTS

Date Collected: 08/06/24 15:41

Lab Number:

Report Date:

Extraction Date:

Date Received: 08/07/24
Field Prep: Not Specified

Extraction Method: EPA 3510C

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8270E

Analytical Date: 08/13/24 04:25

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
Isophorone	ND		ug/l	5.0	0.86	1
Nitrobenzene	ND		ug/l	2.0	0.20	1
NDPA/DPA	ND		ug/l	2.0	0.92	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Bis(2-ethylhexyl)phthalate	2.3	J	ug/l	3.0	1.4	1
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
Diethyl phthalate	ND		ug/l	5.0	0.76	1
Dimethyl phthalate	ND		ug/l	5.0	0.92	1
Biphenyl	ND		ug/l	2.0	0.20	1
4-Chloroaniline	ND		ug/l	5.0	0.47	1
2-Nitroaniline	ND		ug/l	5.0	1.0	1
3-Nitroaniline	ND		ug/l	5.0	1.2	1
4-Nitroaniline	ND		ug/l	5.0	1.4	1
Dibenzofuran	ND		ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
Acetophenone	ND		ug/l	5.0	0.92	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-06 Date Collected: 08/06/24 15:41

Client ID: WCMW4 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - West	oorough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1	
2-Chlorophenol	ND		ug/l	2.0	0.65	1	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1	
2-Nitrophenol	ND		ug/l	10	2.0	1	
4-Nitrophenol	ND		ug/l	10	1.4	1	
2,4-Dinitrophenol	ND		ug/l	20	5.4	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1	
Phenol	2.6	J	ug/l	5.0	0.35	1	
2-Methylphenol	ND		ug/l	5.0	2.3	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1	
Carbazole	ND		ug/l	2.0	0.31	1	
Atrazine	ND		ug/l	10	1.0	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	1.2	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

 Lab ID:
 L2444516-06
 Date Collected:
 08/06/24 15:41

 Client ID:
 WCMW4
 Date Received:
 08/07/24

Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	1320	J	ug/l	1
Unknown	250	J	ug/l	1
Unknown Organic Acid	34.4	J	ug/l	1
Unknown Alkane	42.0	J	ug/l	1
Sulfur	37.9	NJ	ug/l	1
Unknown	17.2	J	ug/l	1
Unknown	18.5	J	ug/l	1
Unknown	36.6	J	ug/l	1
Unknown	62.3	J	ug/l	1
Unknown Alkane	16.6	J	ug/l	1
Unknown	58.4	J	ug/l	1
Cyclic Octaatomic Sulfur	471	NJ	ug/l	1
Unknown	20.8	J	ug/l	1
Unknown	38.5	J	ug/l	1
Unknown	106	J	ug/l	1
Unknown Organic Acid	105	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	20	Q	21-120	
Phenol-d6	19		10-120	
Nitrobenzene-d5	41		23-120	
2-Fluorobiphenyl	38		15-120	
2,4,6-Tribromophenol	33		10-120	
4-Terphenyl-d14	42		41-149	

L2444516

Project Name: SOLEAN WEST 2024 GWM Lab Number:

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-06 Date Collected: 08/06/24 15:41

Client ID: WCMW4 Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 08/12/24 12:31
Analytical Date: 08/13/24 17:00

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - West	borough La	ab				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	 1
Fluoranthene	0.42		ug/l	0.10	0.03	 1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	 1
Naphthalene	0.08	J	ug/l	0.10	0.02	 1
Benzo(a)anthracene	0.23		ug/l	0.10	0.03	 1
Benzo(a)pyrene	0.18		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.18		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	0.05	J	ug/l	0.10	0.03	1
Chrysene	0.65		ug/l	0.10	0.03	1
Acenaphthylene	0.12		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	0.29		ug/l	0.10	0.02	1
Fluorene	0.32		ug/l	0.10	0.03	1
Phenanthrene	0.91		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	0.07	J	ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	0.13		ug/l	0.10	0.02	1
Pyrene	0.68		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: Lab Number: SOLEAN WEST 2024 GWM L2444516

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/06/24 15:41 L2444516-06

Date Received: Client ID: 08/07/24 WCMW4 Sample Location: Field Prep: OLEAN NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	19	Q	21-120
Phenol-d6	19		10-120
Nitrobenzene-d5	61		23-120
2-Fluorobiphenyl	42		15-120
2,4,6-Tribromophenol	31		10-120
4-Terphenyl-d14	46		41-149

L2444516

08/06/24 08:00

Project Name: SOLEAN WEST 2024 GWM

OLEAN NY

Project Number: 4387.0001B000

SAMPLE RESULTS

Report Date: 08/21/24

Lab Number:

Lab ID: L2444516-07 Date Collected:
Client ID: BLIND DUP Date Received:

Date Received: 08/07/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 08/12/24 12:31

Analytical Method: 1,8270E Extraction Date: 08/12/24 12:3

Analytical Date: 08/13/24 04:47

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1		
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1		
Isophorone	ND		ug/l	5.0	0.86	1		
Nitrobenzene	ND		ug/l	2.0	0.20	1		
NDPA/DPA	ND		ug/l	2.0	0.92	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1		
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1		
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1		
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1		
Diethyl phthalate	ND		ug/l	5.0	0.76	1		
Dimethyl phthalate	ND		ug/l	5.0	0.92	1		
Biphenyl	ND		ug/l	2.0	0.20	1		
4-Chloroaniline	ND		ug/l	5.0	0.47	1		
2-Nitroaniline	ND		ug/l	5.0	1.0	1		
3-Nitroaniline	ND		ug/l	5.0	1.2	1		
4-Nitroaniline	ND		ug/l	5.0	1.4	1		
Dibenzofuran	ND		ug/l	2.0	0.40	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1		
Acetophenone	ND		ug/l	5.0	0.92	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1		

L2444516

08/21/24

Project Name: SOLEAN WEST 2024 GWM

L2444516-07

BLIND DUP

OLEAN NY

Project Number: 4387.0001B000

SAMPLE RESULTS

Date Collected: 08/06/24 08:00

Date Received: 08/07/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	0.90	J	ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Tentatively Identified Compounds				
Total TIC Compounds	172	J	ug/l	1
Cyclic Octaatomic Sulfur	19.3	NJ	ug/l	1
Unknown	4.10	J	ug/l	1
Unknown	4.10	J	ug/l	1
Unknown	4.20	J	ug/l	1
Unknown Benzene	19.3	J	ug/l	1
Unknown Benzene	51.4	J	ug/l	1
Unknown	5.80	J	ug/l	1
Unknown	5.70	J	ug/l	1
Unknown Benzene	51.5	J	ug/l	1
Unknown	6.20	J	ug/l	1

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-07 Date Collected: 08/06/24 08:00

Client ID: BLIND DUP Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

2-Fluorophenol 21 21-120 Phenol-d6 20 10-120 Nitrobenzene-d5 59 23-120 2-Fluorobiphenyl 60 15-120	Surrogate	% Recovery	Acceptance Qualifier Criteria
Nitrobenzene-d5 59 23-120	2-Fluorophenol	21	21-120
	Phenol-d6	20	10-120
2-Fluorobiphenyl 60 15-120	Nitrobenzene-d5	59	23-120
	2-Fluorobiphenyl	60	15-120
2,4,6-Tribromophenol 39 10-120	2,4,6-Tribromophenol	39	10-120
4-Terphenyl-d14 68 41-149	4-Terphenyl-d14	68	41-149

Project Name: Lab Number: SOLEAN WEST 2024 GWM L2444516

Project Number: Report Date: 4387.0001B000 08/21/24

SAMPLE RESULTS

Lab ID: Date Collected: 08/06/24 08:00 L2444516-07

Client ID: Date Received: **BLIND DUP** 08/07/24 Sample Location: Field Prep: OLEAN NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/12/24 12:31 Analytical Method: 1,8270E-SIM Analytical Date: 08/13/24 17:16

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.02	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	ND		ug/l	0.10	0.03	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1		
Naphthalene	0.10		ug/l	0.10	0.02	1		
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1		
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1		
Chrysene	ND		ug/l	0.10	0.03	1		
Acenaphthylene	ND		ug/l	0.10	0.02	1		
Anthracene	ND		ug/l	0.10	0.02	1		
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1		
Fluorene	0.20		ug/l	0.10	0.03	1		
Phenanthrene	0.04	J	ug/l	0.10	0.04	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1		
Pyrene	ND		ug/l	0.10	0.04	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1		
Pentachlorophenol	ND		ug/l	0.80	0.06	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.02	1		

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

SAMPLE RESULTS

Lab ID: L2444516-07 Date Collected: 08/06/24 08:00

Client ID: BLIND DUP Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	21	21-120
Phenol-d6	23	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	67	15-120
2,4,6-Tribromophenol	39	10-120
4-Terphenyl-d14	80	41-149

L2444516

Lab Number:

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/10/24 08:55

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 08/09/24 20:36

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	IS - Westboroug	h Lab for s	ample(s):	01,04	Batch:	WG1957564-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.39
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.8
2,4-Dinitrotoluene	ND		ug/l	5.0		0.54
2,6-Dinitrotoluene	ND		ug/l	5.0		0.84
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.39
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.24
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.40
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.84
Hexachlorocyclopentadiene	ND		ug/l	20		1.2
Isophorone	ND		ug/l	5.0		0.86
Nitrobenzene	ND		ug/l	2.0		0.20
NDPA/DPA	ND		ug/l	2.0		0.92
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.91
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1.4
Butyl benzyl phthalate	ND		ug/l	5.0		2.6
Di-n-butylphthalate	ND		ug/l	5.0		0.96
Di-n-octylphthalate	ND		ug/l	5.0		2.3
Diethyl phthalate	ND		ug/l	5.0		0.76
Dimethyl phthalate	ND		ug/l	5.0		0.92
Biphenyl	ND		ug/l	2.0		0.20
4-Chloroaniline	ND		ug/l	5.0		0.47
2-Nitroaniline	ND		ug/l	5.0		1.0
3-Nitroaniline	ND		ug/l	5.0		1.2
4-Nitroaniline	ND		ug/l	5.0		1.4
Dibenzofuran	ND		ug/l	2.0		0.40
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.24
Acetophenone	ND		ug/l	5.0		0.92
2,4,6-Trichlorophenol	ND		ug/l	5.0		2.1
p-Chloro-m-cresol	ND		ug/l	2.0		0.61

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

L2444516

Report Date: 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270E 08/10/24 08:55

Analyst:

Extraction Method: EPA 3510C

Extraction Date:

Lab Number:

08/09/24 20:36

JG

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS	S - Westborough	n Lab for s	ample(s):	01,04	Batch: WG19	57564-1
2-Chlorophenol	ND		ug/l	2.0	0.65	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	
2-Nitrophenol	ND		ug/l	10	2.0	
4-Nitrophenol	ND		ug/l	10	1.4	
2,4-Dinitrophenol	ND		ug/l	20	5.4	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	
Phenol	ND		ug/l	5.0	0.35	
2-Methylphenol	ND		ug/l	5.0	2.3	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	
Carbazole	ND		ug/l	2.0	0.31	
Atrazine	ND		ug/l	10	1.0	
Benzaldehyde	ND		ug/l	5.0	1.1	
Caprolactam	ND		ug/l	10	1.2	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	

Tentatively Identified Compounds				
Total TIC Compounds	34.2	J	ug/l	
Unknown	11.2	J	ug/l	
Unknown	8.10	J	ug/l	
Unknown	8.70	J	ug/l	
Unknown Organic Acid	6.20	J	ug/l	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 08/10/24 08:55 Extraction Date: 08/09/24 20:36

Analyst: JG

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01,04 Batch: WG1957564-1

Surrogate	%Recovery Quality	Acceptance fier Criteria
2-Fluorophenol	54	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	74	10-120
4-Terphenyl-d14	89	41-149

L2444516

Lab Number:

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/10/24 16:38 Extraction Date: 08/09/24 20:36

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab	for sample	e(s): 01,04	Batch:	WG1957565-1
Acenaphthene	ND		ug/l	0.10	0.02	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	0.03	J	ug/l	0.10	0.03	
Hexachlorobutadiene	ND		ug/l	0.50	0.02	
Naphthalene	ND		ug/l	0.10	0.02	
Benzo(a)anthracene	ND		ug/l	0.10	0.03	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	
Chrysene	ND		ug/l	0.10	0.03	
Acenaphthylene	ND		ug/l	0.10	0.02	
Anthracene	ND		ug/l	0.10	0.02	
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	
Fluorene	ND		ug/l	0.10	0.03	
Phenanthrene	ND		ug/l	0.10	0.04	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	
Pyrene	ND		ug/l	0.10	0.04	
2-Methylnaphthalene	ND		ug/l	0.10	0.03	
Pentachlorophenol	ND		ug/l	0.80	0.06	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.02	

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/10/24 16:38 Extraction Date: 08/09/24 20:36

Analyst: JJW

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01,04 Batch: WG1957565-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
		04.400
2-Fluorophenol	61	21-120
Phenol-d6	46	10-120
Nitrobenzene-d5	106	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	71	10-120
4-Terphenyl-d14	93	41-149

L2444516

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000 Repo

Report Date: 08/21/24

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/13/24 00:19

Analyst: EK

Extraction Method: EPA 3510C Extraction Date: 08/12/24 08:26

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	02-03,05-07	Batch:	WG1958098-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	
Isophorone	ND		ug/l	5.0	0.86	
Nitrobenzene	ND		ug/l	2.0	0.20	
NDPA/DPA	ND		ug/l	2.0	0.92	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	
Diethyl phthalate	ND		ug/l	5.0	0.76	
Dimethyl phthalate	ND		ug/l	5.0	0.92	
Biphenyl	ND		ug/l	2.0	0.20	
4-Chloroaniline	ND		ug/l	5.0	0.47	
2-Nitroaniline	ND		ug/l	5.0	1.0	
3-Nitroaniline	ND		ug/l	5.0	1.2	
4-Nitroaniline	ND		ug/l	5.0	1.4	
Dibenzofuran	ND		ug/l	2.0	0.40	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	
Acetophenone	ND		ug/l	5.0	0.92	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Report Date: 08/21/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/13/24 00:19

Analyst: EK

Extraction Method: EPA 3510C Extraction Date: 08/12/24 08:26

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	02-03,05-07	Batch:	WG1958098-1
2-Chlorophenol	ND	ug/l	2.0	0.65	
2,4-Dichlorophenol	ND	ug/l	5.0	1.7	
2,4-Dimethylphenol	ND	ug/l	5.0	2.0	
2-Nitrophenol	ND	ug/l	10	2.0	
4-Nitrophenol	ND	ug/l	10	1.4	
2,4-Dinitrophenol	ND	ug/l	20	5.4	
4,6-Dinitro-o-cresol	ND	ug/l	10	2.3	
Phenol	ND	ug/l	5.0	0.35	
2-Methylphenol	ND	ug/l	5.0	2.3	
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0	1.4	
2,4,5-Trichlorophenol	ND	ug/l	5.0	2.1	
Carbazole	ND	ug/l	2.0	0.31	
Atrazine	ND	ug/l	10	1.0	
Benzaldehyde	ND	ug/l	5.0	1.1	
Caprolactam	ND	ug/l	10	1.2	
2,3,4,6-Tetrachlorophenol	ND	ug/l	5.0	2.2	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 08/13/24 00:19 Extraction Date: 08/12/24 08:26

Analyst: EK

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 02-03,05-07 Batch: WG1958098-1

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
2-Fluorophenol	31	21-120		
Phenol-d6	31	10-120		
Nitrobenzene-d5	57	23-120		
2-Fluorobiphenyl	62	15-120		
2,4,6-Tribromophenol	52	10-120		
4-Terphenyl-d14	75	41-149		

L2444516

Lab Number:

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM
Analytical Date: 08/13/24 16:11

Analyst: RP

Extraction Method: EPA 3510C Extraction Date: 08/12/24 08:26

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M VG1958099-1	S-SIM - Westbo	rough Lab	for sample(s	s): 02-03,0	05-07 Batch:	
Acenaphthene	ND		ug/l	0.10	0.02	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.03	
Hexachlorobutadiene	ND		ug/l	0.50	0.02	
Naphthalene	ND		ug/l	0.10	0.02	
Benzo(a)anthracene	ND		ug/l	0.10	0.03	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	
Chrysene	ND		ug/l	0.10	0.03	
Acenaphthylene	ND		ug/l	0.10	0.02	
Anthracene	ND		ug/l	0.10	0.02	
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	
Fluorene	ND		ug/l	0.10	0.03	
Phenanthrene	ND		ug/l	0.10	0.04	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	
Pyrene	ND		ug/l	0.10	0.04	
2-Methylnaphthalene	ND		ug/l	0.10	0.03	
Pentachlorophenol	ND		ug/l	0.80	0.06	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.02	

L2444516

Project Name: SOLEAN WEST 2024 GWM Lab Number:

Project Number: 4387.0001B000 **Report Date:** 08/21/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/13/24 16:11 Extraction Date: 08/12/24 08:26

Analyst: RP

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 02-03,05-07 Batch WG1958099-1

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
2-Fluorophenol	31	21-120		
Phenol-d6	31	10-120		
Nitrobenzene-d5	78	23-120		
2-Fluorobiphenyl	63	15-120		
2,4,6-Tribromophenol	40	10-120		
4-Terphenyl-d14	76	41-149		

Lab Control Sample Analysis Batch Quality Control

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Report Date: 08/21/24

arameter	LCS %Recovery	LCSI Qual %Reco	, , , , ,	overy nits RPD	RPD Qual Limits	
emivolatile Organics by GC/MS - W	estborough Lab Associa	ted sample(s): 01,04	Batch: WG1957564-2	WG1957564-3		
Bis(2-chloroethyl)ether	77	76	40-	140 1	30	
3,3'-Dichlorobenzidine	82	75	40-	140 9	30	
2,4-Dinitrotoluene	84	82	48-7	143 2	30	
2,6-Dinitrotoluene	86	82	40-	140 5	30	
4-Chlorophenyl phenyl ether	75	71	40-	140 5	30	
4-Bromophenyl phenyl ether	76	74	40-	140 3	30	
Bis(2-chloroisopropyl)ether	80	81	40-	140 1	30	
Bis(2-chloroethoxy)methane	76	77	40-	140 1	30	
Hexachlorocyclopentadiene	61	60	40-	140 2	30	
Isophorone	78	75	40-	140 4	30	
Nitrobenzene	76	76	40-	140 0	30	
NDPA/DPA	81	76	40-	140 6	30	
n-Nitrosodi-n-propylamine	78	78	29-	132 0	30	
Bis(2-ethylhexyl)phthalate	90	86	40-	140 5	30	
Butyl benzyl phthalate	95	87	40-	140 9	30	
Di-n-butylphthalate	95	88	40-	140 8	30	
Di-n-octylphthalate	92	87	40-	140 6	30	
Diethyl phthalate	82	79	40-	140 4	30	
Dimethyl phthalate	82	80	40-	140 2	30	
Biphenyl	66	66	40-	140 0	30	
4-Chloroaniline	64	55	40-	140 15	30	
2-Nitroaniline	83	82	52-	143 1	30	
3-Nitroaniline	83	80	25-	145 4	30	

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01,04 Batch:	WG1957564-2 WG19575	64-3		
4-Nitroaniline	82		77	51-143	6		30
Dibenzofuran	76		74	40-140	3		30
1,2,4,5-Tetrachlorobenzene	62		63	2-134	2		30
Acetophenone	73		74	39-129	1		30
2,4,6-Trichlorophenol	50		76	30-130	41	Q	30
p-Chloro-m-cresol	81		80	23-97	1		30
2-Chlorophenol	52		74	27-123	35	Q	30
2,4-Dichlorophenol	58		78	30-130	29		30
2,4-Dimethylphenol	76		74	30-130	3		30
2-Nitrophenol	57		84	30-130	38	Q	30
4-Nitrophenol	33		52	10-80	45	Q	30
2,4-Dinitrophenol	49		94	20-130	63	Q	30
4,6-Dinitro-o-cresol	54		86	20-164	46	Q	30
Phenol	32		38	12-110	17		30
2-Methylphenol	68		72	30-130	6		30
3-Methylphenol/4-Methylphenol	68		72	30-130	6		30
2,4,5-Trichlorophenol	58		83	30-130	35	Q	30
Carbazole	87		83	55-144	5		30
Atrazine	80		76	40-140	5		30
Benzaldehyde	65		66	40-140	2		30
Caprolactam	47		48	10-130	2		30
2,3,4,6-Tetrachlorophenol	49		86	40-140	55	Q	30

Project Name: SOLEAN WEST 2024 GWM

Lab Number:

L2444516

Project Number: 4387.0001B000

Report Date:

08/21/24

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,04 Batch: WG1957564-2 WG1957564-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	33	56	21-120
Phenol-d6	32	40	10-120
Nitrobenzene-d5	77	79	23-120
2-Fluorobiphenyl	72	71	15-120
2,4,6-Tribromophenol	52	75	10-120
4-Terphenyl-d14	85	81	41-149

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

rameter	LCS %Recovery		.CSD ecovery	Qua	%Recove al Limits	ery RPD	Qual	RPD Limits
emivolatile Organics by GC/MS-SIM -	· Westborough Lab A	associated sample(s):	01,04	Batch:	WG1957565-2	WG1957565-3		
Acenaphthene	78		78		40-140	0		40
2-Chloronaphthalene	63		64		40-140	2		40
Fluoranthene	84		82		40-140	2		40
Hexachlorobutadiene	54		54		40-140	0		40
Naphthalene	66		67		40-140	2		40
Benzo(a)anthracene	79		76		40-140	4		40
Benzo(a)pyrene	96		92		40-140	4		40
Benzo(b)fluoranthene	91		82		40-140	10		40
Benzo(k)fluoranthene	88		90		40-140	2		40
Chrysene	85		81		40-140	5		40
Acenaphthylene	70		70		40-140	0		40
Anthracene	90		87		40-140	3		40
Benzo(ghi)perylene	88		84		40-140	5		40
Fluorene	78		77		40-140	1		40
Phenanthrene	82		80		40-140	2		40
Dibenzo(a,h)anthracene	96		92		40-140	4		40
Indeno(1,2,3-cd)pyrene	97		93		40-140	4		40
Pyrene	83		81		40-140	2		40
2-Methylnaphthalene	69		70		40-140	1		40
Pentachlorophenol	44		81		40-140	59	Q	40
Hexachlorobenzene	71		69		40-140	3		40
Hexachloroethane	65		66		40-140	2		40

Project Name: SOLEAN WEST 2024 GWM

Lab Number:

L2444516

Project Number: 4387.0001B000

Report Date:

08/21/24

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01,04 Batch: WG1957565-2 WG1957565-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	36	59	21-120
Phenol-d6	36	45	10-120
Nitrobenzene-d5	94	94	23-120
2-Fluorobiphenyl	66	64	15-120
2,4,6-Tribromophenol	50	74	10-120
4-Terphenyl-d14	81	79	41-149

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	iated sample(s):	02-03,05-07	Batch:	WG1958098-2	WG1958098-3	
Bis(2-chloroethyl)ether	66		61		40-140	8	30
3,3'-Dichlorobenzidine	70		67		40-140	4	30
2,4-Dinitrotoluene	74		70		48-143	6	30
2,6-Dinitrotoluene	71		73		40-140	3	30
4-Chlorophenyl phenyl ether	62		65		40-140	5	30
4-Bromophenyl phenyl ether	66		68		40-140	3	30
Bis(2-chloroisopropyl)ether	37	Q	38	Q	40-140	3	30
Bis(2-chloroethoxy)methane	64		62		40-140	3	30
Hexachlorocyclopentadiene	37	Q	45		40-140	20	30
Isophorone	64		64		40-140	0	30
Nitrobenzene	61		64		40-140	5	30
NDPA/DPA	66		70		40-140	6	30
n-Nitrosodi-n-propylamine	63		61		29-132	3	30
Bis(2-ethylhexyl)phthalate	62		65		40-140	5	30
Butyl benzyl phthalate	77		78		40-140	1	30
Di-n-butylphthalate	70		72		40-140	3	30
Di-n-octylphthalate	70		70		40-140	0	30
Diethyl phthalate	64		70		40-140	9	30
Dimethyl phthalate	68		68		40-140	0	30
Biphenyl	58		61		40-140	5	30
4-Chloroaniline	44		50		40-140	13	30
2-Nitroaniline	87		87		52-143	0	30
3-Nitroaniline	76		84		25-145	10	30

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
mivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	02-03,05-07	Batch:	WG1958098-2	WG1958098-3		
4-Nitroaniline	78		83		51-143	6		30
Dibenzofuran	66		66		40-140	0		30
1,2,4,5-Tetrachlorobenzene	54		54		2-134	0		30
Acetophenone	67		61		39-129	9		30
2,4,6-Trichlorophenol	74		69		30-130	7		30
p-Chloro-m-cresol	74		72		23-97	3		30
2-Chlorophenol	73		77		27-123	5		30
2,4-Dichlorophenol	76		74		30-130	3		30
2,4-Dimethylphenol	60		65		30-130	8		30
2-Nitrophenol	72		73		30-130	1		30
4-Nitrophenol	46		49		10-80	6		30
2,4-Dinitrophenol	70		75		20-130	7		30
4,6-Dinitro-o-cresol	76		79		20-164	4		30
Phenol	39		39		12-110	0		30
2-Methylphenol	66		67		30-130	2		30
3-Methylphenol/4-Methylphenol	71		71		30-130	0		30
2,4,5-Trichlorophenol	73		71		30-130	3		30
Carbazole	74		74		55-144	0		30
Atrazine	60		62		40-140	3		30
Benzaldehyde	64		61		40-140	5		30
Caprolactam	16		18		10-130	12		30
2,3,4,6-Tetrachlorophenol	75		79		40-140	5		30

Project Name: SOLEAN WEST 2024 GWM

Lab Number:

L2444516

Project Number: 4387.0001B000

Report Date:

08/21/24

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-03,05-07 Batch: WG1958098-2 WG1958098-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	57	55	21-120
Phenol-d6	41	38	10-120
Nitrobenzene-d5	64	62	23-120
2-Fluorobiphenyl	67	63	15-120
2,4,6-Tribromophenol	85	86	10-120
4-Terphenyl-d14	72	70	41-149

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

ameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
mivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	ssociated sample(s	3): 02-03,05-0)7 Batch:	WG1958099-2	WG1958099-	3
Acenaphthene	73		69		40-140	6	40
2-Chloronaphthalene	62		60		40-140	3	40
Fluoranthene	78		72		40-140	8	40
Hexachlorobutadiene	43		44		40-140	2	40
Naphthalene	62		60		40-140	3	40
Benzo(a)anthracene	70		64		40-140	9	40
Benzo(a)pyrene	82		76		40-140	8	40
Benzo(b)fluoranthene	77		71		40-140	8	40
Benzo(k)fluoranthene	75		70		40-140	7	40
Chrysene	73		68		40-140	7	40
Acenaphthylene	72		68		40-140	6	40
Anthracene	80		74		40-140	8	40
Benzo(ghi)perylene	80		73		40-140	9	40
Fluorene	74		69		40-140	7	40
Phenanthrene	75		70		40-140	7	40
Dibenzo(a,h)anthracene	86		79		40-140	8	40
Indeno(1,2,3-cd)pyrene	89		81		40-140	9	40
Pyrene	77		72		40-140	7	40
2-Methylnaphthalene	67		65		40-140	3	40
Pentachlorophenol	74		71		40-140	4	40
Hexachlorobenzene	63		59		40-140	7	40
Hexachloroethane	52		52		40-140	0	40

Project Name: SOLEAN WEST 2024 GWM

Lab Number:

L2444516

Project Number: 4387.0001B000

Report Date:

08/21/24

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 02-03,05-07 Batch: WG1958099-2 WG1958099-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	, and the second	707100070.y quai	
2-Fluorophenol	60	56	21-120
Phenol-d6	48	44	10-120
Nitrobenzene-d5	90	84	23-120
2-Fluorobiphenyl	70	66	15-120
2,4,6-Tribromophenol	77	72	10-120
4-Terphenyl-d14	80	74	41-149

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number:

L2444516

	Native	MS	MS	MS		MSD	MSD		Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Limits
Semivolatile Organics by G0 Client ID: W28	C/MS - Westbor	ough Lab	Associated sa	ample(s): 02-03,0	05-07	QC Batch ID	: WG1958098	-4 WG1	958098-5	QC San	nple: L2444516-03
Bis(2-chloroethyl)ether	ND	20	12	60		12	60		40-140	0	30
3,3'-Dichlorobenzidine	ND	20	2.4J	12	Q	2.6J	13	Q	40-140	8	30
2,4-Dinitrotoluene	ND	20	14	70		15	75		48-143	7	30
2,6-Dinitrotoluene	ND	20	14	70		15	75		40-140	7	30
I-Chlorophenyl phenyl ether	ND	20	12	60		12	60		40-140	0	30
1-Bromophenyl phenyl ether	ND	20	12	60		12	60		40-140	0	30
Bis(2-chloroisopropyl)ether	ND	20	6.8	34	Q	7.1	36	Q	40-140	4	30
Bis(2-chloroethoxy)methane	ND	20	12	60		12	60		40-140	0	30
Hexachlorocyclopentadiene	ND	20	11.J	55		11.J	55		40-140	0	30
sophorone	ND	20	12	60		12	60		40-140	0	30
Nitrobenzene	ND	20	13	65		12	60		40-140	8	30
NDPA/DPA	ND	20	14	70		13	65		40-140	7	30
n-Nitrosodi-n-propylamine	ND	20	11	55		12	60		29-132	9	30
Bis(2-ethylhexyl)phthalate	ND	20	15	75		15	75		40-140	0	30
Butyl benzyl phthalate	ND	20	15	75		16	80		40-140	6	30
Di-n-butylphthalate	ND	20	14	70		14	70		40-140	0	30
Di-n-octylphthalate	ND	20	15	75		15	75		40-140	0	30
Diethyl phthalate	ND	20	12	60		12	60		40-140	0	30
Dimethyl phthalate	ND	20	12	60		12	60		40-140	0	30
Biphenyl	ND	20	11	55		11	55		40-140	0	30
1-Chloroaniline	ND	20	9.0	45		9.1	46		40-140	1	30
2-Nitroaniline	ND	20	16	80		16	80		52-143	0	30
3-Nitroaniline	ND	20	14	70		15	75		25-145	7	30

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number:

L2444516

Report Date:

08/21/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	, RPD	Qual	RPD Limits
Semivolatile Organics by GC Client ID: W28	C/MS - Westbor	ough Lab	Associated sa	mple(s): 02-03,0	5-07	QC Batch ID	: WG1958098	-4 WG	1958098-5	QC Sar	nple: L2	444516-03
4-Nitroaniline	ND	20	16	80		18	90		51-143	12		30
Dibenzofuran	ND	20	12	60		12	60		40-140	0		30
1,2,4,5-Tetrachlorobenzene	ND	20	10	50		11	55		2-134	10		30
Acetophenone	ND	20	12	60		12	60		39-129	0		30
2,4,6-Trichlorophenol	ND	20	4.3J	22	Q	3.9J	20	Q	30-130	10		30
p-Chloro-m-cresol	ND	20	10	50		11	55		23-97	10		30
2-Chlorophenol	ND	20	5.5	28		5.2	26	Q	27-123	6		30
2,4-Dichlorophenol	ND	20	5.5	28	Q	5.3	27	Q	30-130	4		30
2,4-Dimethylphenol	ND	20	8.8	44		9.8	49		30-130	11		30
2-Nitrophenol	ND	20	6.4J	32		5.3J	27	Q	30-130	19		30
4-Nitrophenol	ND	20	ND	0	Q	ND	0	Q	10-80	NC		30
2,4-Dinitrophenol	ND	20	ND	0	Q	ND	0	Q	20-130	NC		30
4,6-Dinitro-o-cresol	ND	20	4.6J	23		ND	0	Q	20-164	NC		30
Phenol	ND	20	4.6J	23		4.0J	20		12-110	14		30
2-Methylphenol	ND	20	8.4	42		8.9	45		30-130	6		30
3-Methylphenol/4-Methylphenol	ND	20	8.0	40		8.7	44		30-130	8		30
2,4,5-Trichlorophenol	ND	20	4.5J	23	Q	5.0	25	Q	30-130	11		30
Carbazole	ND	20	14	70		14	70		55-144	0		30
Atrazine	ND	20	12	60		12	60		40-140	0		30
Benzaldehyde	ND	20	11	55		11	55		40-140	0		30
Caprolactam	ND	20	ND	0	Q	ND	0	Q	10-130	NC		30
2,3,4,6-Tetrachlorophenol	ND	20	4.3J	22	Q	3.9J	20	Q	40-140	10		30

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number:

L2444516

Report Date:

08/21/24

	Native	MS	MS	MS		MSD	MSD		Recovery	•		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-03,05-07 QC Batch ID: WG1958098-4 WG1958098-5 QC Sample: L2444516-03 Client ID: W28

	MS	3	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	30		30		10-120	
2-Fluorobiphenyl	58		60		15-120	
2-Fluorophenol	15	Q	14	Q	21-120	
4-Terphenyl-d14	64		66		41-149	
Nitrobenzene-d5	64		63		23-120	
Phenol-d6	18		17		10-120	

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number:

L2444516

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by 03 Client ID: W28	GC/MS-SIM - We	stborough Lab	Associate	ed sample(s): 02	-03,05-07	QC Bate	ch ID: WG195	8099-4	WG1958099	9-5 QC	Sample	e: L2444516-
Acenaphthene	ND	20	14	70		14	70		40-140	0		40
2-Chloronaphthalene	ND	20	12	60		12	60		40-140	0		40
Fluoranthene	0.09J	20	13	65		14	70		40-140	7		40
Hexachlorobutadiene	ND	20	9.9	50		10	50		40-140	1		40
Naphthalene	0.06J	20	12	60		12	60		40-140	0		40
Benzo(a)anthracene	0.08J	20	12	60		13	65		40-140	8		40
Benzo(a)pyrene	0.08J	20	14	70		15	75		40-140	7		40
Benzo(b)fluoranthene	0.04J	20	12	60		13	65		40-140	8		40
Benzo(k)fluoranthene	ND	20	13	65		13	65		40-140	0		40
Chrysene	0.30	20	13	64		13	64		40-140	0		40
Acenaphthylene	ND	20	13	65		14	70		40-140	7		40
Anthracene	ND	20	14	70		14	70		40-140	0		40
Benzo(ghi)perylene	0.04J	20	16	80		17	85		40-140	6		40
Fluorene	0.63	20	14	67		14	67		40-140	0		40
Phenanthrene	ND	20	13	65		13	65		40-140	0		40
Dibenzo(a,h)anthracene	ND	20	16	80		18	90		40-140	12		40
ndeno(1,2,3-cd)pyrene	ND	20	17	85		18	90		40-140	6		40
Pyrene	0.23	20	14	69		14	69		40-140	0		40
2-Methylnaphthalene	ND	20	14	70		14	70		40-140	0		40
Pentachlorophenol	ND	20	4.9	25	Q	5.2	26	Q	40-140	6		40
Hexachlorobenzene	ND	20	12	60		12	60		40-140	0		40
Hexachloroethane	ND	20	14	70		14	70		40-140	0		40

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000 Lab Number:

L2444516

Report Date:

08/21/24

	Native	MS	MS	MS		MSD	MSD		Recovery	•		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 02-03,05-07 QC Batch ID: WG1958099-4 WG1958099-5 QC Sample: L2444516-03 Client ID: W28

	MS	;	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	28		28		10-120	
2-Fluorobiphenyl	65		67		15-120	
2-Fluorophenol	16	Q	16	Q	21-120	
4-Terphenyl-d14	72		74		41-149	
Nitrobenzene-d5	84		88		23-120	
Phenol-d6	19		20		10-120	

METALS

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

SAMPLE RESULTS

Lab ID: L2444516-01 Date Collected: 08/05/24 13:18

Client ID: W13 Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	ansfield Lab										
Arsenic, Total	0.00328		mg/l	0.00050	0.00016	5 1	08/13/24 10:14	4 08/13/24 21:14	EPA 3005A	1,6020B	EJF
Lead, Total	ND		mg/l	0.00100	0.00034	1	08/13/24 10:14	4 08/13/24 21:14	EPA 3005A	1,6020B	EJF

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

SAMPLE RESULTS

Lab ID: L2444516-02 Date Collected: 08/06/24 12:15

Client ID: W17 Date Received: 08/07/24 Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00149		mg/l	0.00050	0.00016	5 1	08/13/24 10:14	4 08/13/24 21:46	EPA 3005A	1,6020B	EJF
Lead, Total	0.00088	J	mg/l	0.00100	0.00034	1	08/13/24 10:14	4 08/13/24 21:46	EPA 3005A	1,6020B	EJF

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

SAMPLE RESULTS

Lab ID: L2444516-03 Date Collected: 08/06/24 15:04

Client ID: W28 Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	· Mansfield	Lab									
Arsenic, Dissolved	0.00231		mg/l	0.00050	0.00016	5 1	08/14/24 13:1	7 08/14/24 16:46	EPA 3005A	1,6020B	EJF
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	08/14/24 13:1	7 08/14/24 16:46	EPA 3005A	1,6020B	EJF

08/05/24 12:08

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

SAMPLE RESULTS

Lab ID: L2444516-04 Date Collected:

Client ID: W14 Date Received: 08/07/24
Sample Location: OLEAN NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	ansfield Lab										
Arsenic, Total	0.00115		mg/l	0.00050	0.00016	5 1	08/13/24 10:14	4 08/13/24 22:00	EPA 3005A	1,6020B	EJF
Lead, Total	ND		mg/l	0.00100	0.00034	1	08/13/24 10:14	4 08/13/24 22:00	EPA 3005A	1,6020B	EJF

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

SAMPLE RESULTS

Lab ID:L2444516-05Date Collected:08/06/24 11:15Client ID:WCMW1Date Received:08/07/24Sample Location:OLEAN NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	- Mansfield	Lab									
Arsenic, Dissolved	0.00189		mg/l	0.00050	0.00016	5 1	08/13/24 12:2	7 08/14/24 11:34	EPA 3005A	1,6020B	EJF
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	08/13/24 12:2	7 08/14/24 11:34	EPA 3005A	1,6020B	EJF

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

SAMPLE RESULTS

Lab ID:L2444516-06Date Collected:08/06/24 15:41Client ID:WCMW4Date Received:08/07/24Sample Location:OLEAN NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.01464		mg/l	0.00050	0.00016	1	08/13/24 10:14	1 08/13/24 22:05	EPA 3005A	1,6020B	EJF
Lead, Total	0.04092		mg/l	0.00100	0.00034	. 1	08/13/24 10:14	1 08/13/24 22:05	EPA 3005A	1,6020B	EJF

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

SAMPLE RESULTS

Lab ID:L2444516-07Date Collected:08/06/24 08:00Client ID:BLIND DUPDate Received:08/07/24Sample Location:OLEAN NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00152		mg/l	0.00050	0.00016	5 1	08/13/24 10:14	1 08/13/24 22:10	EPA 3005A	1,6020B	EJF
Lead, Total	0.00095	J	mg/l	0.00100	0.00034	1	08/13/24 10:14	1 08/13/24 22:10	EPA 3005A	1,6020B	EJF

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number:

L2444516

Report Date: 08/21/24

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-02,04	,06-07 E	Batch: V	VG1958273	3-1			
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	08/13/24 10:14	08/13/24 21:04	1,6020B	EJF
Lead, Total	ND	mg/l	0.00100	0.00034	1 1	08/13/24 10:14	08/13/24 21:04	1,6020B	EJF

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - M	lansfield Lab for sample	e(s): 05	Batch: V	VG1958	284-1				
Arsenic, Dissolved	ND	mg/l	0.00050	0.00016	S 1	08/13/24 12:27	08/14/24 11:01	1,6020B	EJF
Lead, Dissolved	ND	mg/l	0.00100	0.00034	1 1	08/13/24 12:27	08/14/24 11:01	1,6020B	EJF

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - M	lansfield Lab	for sample	e(s): 03	Batch: V	VG1959	311-1				
Arsenic, Dissolved	0.00023	J	mg/l	0.00050	0.00016	5 1	08/14/24 13:17	08/14/24 16:37	1,6020B	EJF
Lead, Dissolved	ND		mg/l	0.00100	0.00034	. 1	08/14/24 13:17	08/14/24 16:37	1,6020B	EJF

Prep Information

Digestion Method: EPA 3005A

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	LCS %Recovery Qu	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associate	ed sample(s): 01-02,04,06-07	Batch: WG1958273-2					
Arsenic, Total	105	-		80-120	-		
Lead, Total	111	-		80-120	-		
Dissolved Metals - Mansfield Lab Asso	ciated sample(s): 05 Batch: V	VG1958284-2					
Arsenic, Dissolved	104	-		80-120	-		
Lead, Dissolved	100	-		80-120	-		
Dissolved Metals - Mansfield Lab Asso	ciated sample(s): 03 Batch: V	VG1959311-2					
Arsenic, Dissolved	103	-		80-120	-		
Lead, Dissolved	97	-		80-120	-		

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number: L2444516

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	o Associated sam	nple(s): 01-0	02,04,06-07	QC Batch ID): WG1958	3273-3	QC Sample: L	244451	6-01 Clie	nt ID:	W13	
Arsenic, Total	0.00328	0.12	0.1293	105		-	-		75-125	-		20
Lead, Total	ND	0.53	0.5580	105		-	-		75-125	-		20
Dissolved Metals - Mansfiel	d Lab Associated	l sample(s):	05 QC Ba	atch ID: WG19	58284-3	QC Sa	mple: L2409778	3-126	Client ID:	MS Sa	mple	
Arsenic, Dissolved	0.0019	0.12	0.1253	103		-	-		75-125	-		20
Lead, Dissolved	ND	0.53	0.5207	98		-	-		75-125	-		20
Dissolved Metals - Mansfiel	d Lab Associated	l sample(s):	03 QC Ba	atch ID: WG19	59311-3 \	WG1959	9311-4 QC Sar	nple: L2	2444516-03	Clie	nt ID: \	W28
Arsenic, Dissolved	0.00231	0.12	0.1158	94		0.1248	102		75-125	7		20
Lead, Dissolved	ND	0.53	0.4939	93		0.5299	100		75-125	7		20

Lab Duplicate Analysis Batch Quality Control

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Lab Number:

L2444516

Report Date:

08/21/24

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Lim	nits
Total Metals - Mansfield Lab Associated sample(s):	01-02,04,06-07 QC Batch	ID: WG1958273-4	QC Sample: L	2444516-01	Client ID: W13	
Arsenic, Total	0.00328	0.00336	mg/l	2	20	
Lead, Total	ND	ND	mg/l	NC	20	
Dissolved Metals - Mansfield Lab Associated sample	e(s): 05 QC Batch ID: WG	G1958284-4 QC Sam	nple: L2409778	3-126 Client	ID: DUP Sample	
Lead, Dissolved	ND	ND	mg/l	NC	20	

Project Name: **SOLEAN WEST 2024 GWM**

Project Number: 4387.0001B000

Lab Number: L2444516 **Report Date:** 08/21/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2444516-01A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-01B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-01C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-01D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM- RVT(7)
L2444516-01E	Amber 100ml unpreserved	Α	7	7	3.6	Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-01F	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		PB-6020T(180),AS-6020T(180)
L2444516-02A	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-02B	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-02C	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-02D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-02E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-02F	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		PB-6020T(180),AS-6020T(180)
L2444516-03A	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-03A1	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-03A2	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-03B	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-03B1	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-03B2	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-03C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-03C1	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-03C2	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2444516

Report Date: 08/21/24

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2444516-03D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM- RVT(7)
L2444516-03D1	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-03D2	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-03E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-03E1	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-03E2	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-03F	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		HOLD-METAL-TOTAL(180)
L2444516-03F1	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		HOLD-METAL-TOTAL(180)
L2444516-03F2	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		HOLD-METAL-TOTAL(180)
L2444516-03G	Plastic 500ml unpreserved	Α	7	7	3.6	Υ	Absent		-
L2444516-03G1	Plastic 500ml unpreserved	Α	7	7	3.6	Υ	Absent		-
L2444516-03G2	Plastic 500ml unpreserved	Α	7	7	3.6	Υ	Absent		-
L2444516-03X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		3.6	Υ	Absent		PB-6020S(180),AS-6020S(180)
L2444516-03X1	Plastic 120ml HNO3 preserved Filtrates	Α	NA		3.6	Υ	Absent		PB-6020S(180),AS-6020S(180)
L2444516-03X2	Plastic 120ml HNO3 preserved Filtrates	Α	NA		3.6	Υ	Absent		PB-6020S(180),AS-6020S(180)
L2444516-04A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-04B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-04C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-04D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-04E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-04F	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		PB-6020T(180),AS-6020T(180)
L2444516-05A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-05B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-05C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-05D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)

Lab Number: L2444516

Report Date: 08/21/24

Project Name: SOLEAN WEST 2024 GWM

Project Number: 4387.0001B000

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L2444516-05E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-05F	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		HOLD-METAL-TOTAL(180)
L2444516-05G	Plastic 500ml unpreserved	Α	7	7	3.6	Υ	Absent		-
L2444516-05X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		3.6	Υ	Absent		PB-6020S(180),AS-6020S(180)
L2444516-06A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-06B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-06C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-06D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-06E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-06F	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		PB-6020T(180),AS-6020T(180)
L2444516-07A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-07B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-07C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-07D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-07E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2444516-07F	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		PB-6020T(180),AS-6020T(180)
L2444516-08A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)
L2444516-08B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: SOLEAN WEST 2024 GWM L2444516 4387.0001B000 **Report Date: Project Number:** 08/21/24

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:SOLEAN WEST 2024 GWMLab Number:L2444516Project Number:4387.0001B000Report Date:08/21/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: SOLEAN WEST 2024 GWM Lab Number: L2444516
Project Number: 4387.0001B000 Report Date: 08/21/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Published Date: 04/17/2024

Page 1 of 1

Revision 21

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitner Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co		Page / of	1	D	ate R		8	1812	4			ALPHA Job# L2444616		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		arealing to	1000	1 21	Delive		j.	100				E	Billing Information	
TEL: 508-896-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288		lean	mest	2024	Gwm	=	ASP-A			_	ASP-B			Same as Client Info	
	Mesweren garage	The second liverage and the se	The second secon	yy _				EQuIS	(1 Fil	e)	П,	EQuiS	(4 File)	P	PO#	
Client Information			land.	5000				Other				100	-		Dianosal Site Information	
Client: /(DVX	Management of the Park of the	(Use Project name as P		61			Regul	1000		ement		IV Para	225		Disposal Site Information	
Address: 2557			harlotk	Clay	K			NY TOO			=	NY Part NY CP-			Please identify below location of applicable disposal facilities.	
BUFFALO	NY 14518	ALPHAQuote #:	-	-	-	_	-	AWQ S			=		01		Disposal Facility:	
Phone: 1/6-85	6-0599	Turn-Around Time						NY Res				Other				
Fax:		Standar		Due Date:			land.	NY Unn						ŀ		
Email: Charlotte	CLAYK	Rush (only if pee approved	0) [# of Days:			ANAL		swer D	ischarg	0			+	Other: Sample Filtration	TO
		previously analyzed by Alpha Line and the second se										-		+i		0
Other project specific	requirements/comm	nents:						20						- 1	Done Lab to do	1 a
	CAT B						+ ~	-2			45				Preservation	1
Disease secult. (Setul	01.	A 6					- De	+00		8	4	20		- 1	Lab to do	В
Please specify Metals	or IAL. VD	95					00	7 7	5	0	2	0		- 1	(Diago Specify holow)	0
			1 0 "	**		1	int-	000		+	Dissolved	32	-	ľ	(Please Specify below)	1
ALPHA Lab ID	Sa	ample ID 8/5	/P-4	ection	Sample Matrix	Sampler's Initials	75	SEL	2	2	ñ	2		ŀ	Sample Specific Comments	T.
(Lab Use Only)		antiques 1945	Date	Time	_		-	-	-	1	_	-	,	-		E
44516-61	WI	5	2	13:18	w	240	X	X	X		*	-	- 4	1850	Filterad(wi3)	7
-02	W1	7	8/6/7	12:15		-	X	X	X	٨		-	-	-	III I I The	9
-03		28	8/6/2	15:04				X	^	N	X	K	\rightarrow	-	hold tot., Lub Filter	7
-04	W		8/5/24	12:08			٨	X	X	X			-	_	11114	6
-05	WCr	7W1	8/6/24	11:15			K	X	K	X	×	X	-	-	hold tot., Lab Filter	7
-03 - 06 °)		nn y	8/6/24	15:41			×	×	X	×			-	_	1 1 1 1 1 1 1 1 1 1 1 1 1	9
-03 -	ms		6/6/24	15:04			X	X.	*	X	×	×	-		hold tot., Lab Fitter	7
-06	m.		8/6/24	15:04	-5		1 X	N	X	X	X	×	-	\rightarrow	hold tot. Lab Filter	3
-07	Blu	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I	8/6/24	- S	100	1	X	X	X	X	_		-	-		3
-08	Tris	BLANK	8/2/24	8:01	V	V	X				_		-	\dashv		.3
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification	No: MA935		Co	ntainer Type	. 1	1	0	0	P	D			Please print clearly, legible	
B = HCI	A = Amber Glass	Mansfield: Certification	No: MA015				V	7	r	8	1	,	-	_	and completely. Samples not be logged in and	can
$C = HNO_3$ $D = H_2SO_4$	V = Vial G = Glass					Preservative	13	Δ	-	0	A	A			turnaround time clock will	not
E = NaOH	B = Bacteria Cup						1	7	0					_	start until any ambiguities	
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished	Ву:	Date	/Time	-	Receiv	and the local division in the local division			0	/Date/	Name and Address of the Owner, where		resolved. BY EXECUTING THIS COC, THE CLIENT	
H = Na2S2O3	E = Encore	Mon		16		A S		tee	-		8/	1/24	13	25	HAS READ AND AGREE	
K/E = Zn Ac/NaOH	D = BOD Bottle	San Pace		8/1/CA	1353	UB.	sc'			-11 5	8/	1424	13	55	TO BE BOUND BY ALPH	
O = Other		Rundl B	Richard .	842	420,15	1		1			ta	7-	h		TERMS & CONDITIONS. (See reverse side.)	ł
Form No: 01-25 HC (rev.	30-Sept-2013)	The state of the s							M				102	20	(Oce reverse side.)	