

Period Review Report

Olean Redevelopment Parcel 3 NYSDEC BCP #C905033

1404-1406R Buffalo Street, and 1420 Buffalo Street Olean, New York

Reporting Period October 9, 2023 to October 9, 2024

Prepared for:

Solean LLC 400 Market Industrial Park, Suite 32 Wappingers Falls, NY 12590

Prepared by:

Roux Environmental Engineering and Geology, D.P.C. 2558 Hamburg Turnpike, Suite 300 Buffalo, New York 4218

Environmental Consulting & Management +1.800.322.ROUX rouxinc.com

Table of Contents

1.	Introduction	1
	1.1 Site Background	1
	1.2 Purpose/Scope	2
2	Site Overview	3
	2.1 Interim Remedial Measures (IRMs)	
	2.2 Remedial Actions	
	2.3 Site Redevelopment Activities	
3.	Site Management Plan	6
	3.1 IC/EC Plan	6
	3.1.1 Institutional Controls	6
	3.1.2 Engineering Controls	6
	3.1.3 Site Inspection & IC/EC Compliance	6
	3.2 Monitoring and Sampling Plan	6
	3.2.1 LNAPL Monitoring/Recovery System	7
	3.2.2 Groundwater Sampling and Analysis	
	3.2.2.1 Groundwater Elevations	7
	3.2.2.2 Analytical Data	8
	3.2.3 SVE System and Monitoring	
	3.2.3.1 Results	
	3.2.4 Site-Wide Inspection – Cover System Monitoring	
	3.2.5 Discussion of Monitoring Results	
	3.3 Operation & Maintenance Plan	
	3.3.1 SVE System	
	3.3.1.1 Routine System Operation and Maintenance	
	3.3.1.2 System Monitoring Devices and Alarms	12
4.	Conclusions and Recommendations	13
5.	Declaration/Limitation	14
Re	oferences	15

Periodic Review Report Olean Redevelopment Parcel 3

Figures

- 1. Site Location and Vicinity Map
- 2. Site Plan Pre-Remediation
- 3. Site Plan Post-Remediation
- 4. Survey / Tax Parcel Map
- 5. Site Cover System Map
- 6. Groundwater Isopotential Map (July 2024)
- 7. Soil Vapor Extraction System Map

Tables

- 1. LNAPL Monitoring and Collection Log
- 2. Groundwater Monitoring Well Water Levels
- 3. 2008 2024 Groundwater Analytical Summary Organics
- 4. 2008 2024 Groundwater Analytical Summary Metals

Appendices

- A. Site Inspection Forms
- B. Site Inspection Photo Log
- C. Groundwater Field Forms & Analytical Data
- D. SVE System Mass Removal Tracking Tables and Charts

1. Introduction

Roux Environmental Engineering and Geology, D.P.C¹ has prepared this Periodic Review Report (PRR), on behalf of Solean LLC (Solean) to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C905033, located in Olean, Cattaraugus County, New York (Site; see Figures 1-3).

This PRR has been prepared for the Site in accordance with NYSDEC DER-10/Technical Guidance for Site Investigation and Remediation (Ref. 1). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A).

This PRR and the associated IC/EC Certification Form have been completed for post-remedial activities at the Site during the reporting period of October 9, 2023 to October 9, 2024.

1.1 Site Background

Olean Gateway LLC entered into a Brownfield Cleanup Agreement (BCA) (BCP Site No. C905033; Index No. C905033-08-12) with the NYSDEC in October 2012 to investigate and remediate the approximate 24-acre property comprised of two tax parcels identified as 1420 Buffalo Street (SBL#94.048-1-1.1; 12.925 acres) and 1404-1406R Buffalo Street (SBL# 94.048-1-1.2; 10.563 acres), in the City of Olean, Cattaraugus County, New York and referred to as Olean Redevelopment Parcel 3 (ORP3 or Site) (see Figures 1 and 4). The Site was remediated to NYSDEC Part 375 Track 4 commercial soil cleanup objectives (CSCOs) and is used as a commercial solar farm.

ORP3 is a portion of the larger former refinery operation that operated in the Olean area for the mid-1800s through the 1950s. Separate refineries operated on the property were merged in 1902 into the Vacuum Oil Company and in 1931 became the Socony-Vacuum Oil Company until 1954 when the refinery closed. The property was divided into multiple parcels in the 1960s. Felmont Oil Company (Felmont) constructed an anhydrous ammonia plant on the northern parcels where they manufactured ammonia from natural gas. Felmont sold the ammonia to Agway for use in manufacturing fertilizer at Agway's plant located on what is now referred to as Olean Redevelopment Parcel 1 (ORP1). In 1983, Agway purchased the portion of the Felmont property that included the ammonia production plant. Agway dismantled and sold both the ammonia and fertilizer plants in 1984.

The owner of ORP3 at the time of issuance of the Site Management Plan (SMP; Ref. 2) was Olean Gateway LLC. Olean Gateway, LLC conveyed ownership and transferred the Certification of Completion (COC) to Solean LLC in March 2016. In June 2016, the COC was transferred to leaseholders 1406RB PV LLC and 1470B PV LLC.

The properties adjoining and surrounding the Site primarily include commercial and industrial properties; Dresser-Rand Company property to the south; the Southern Tier Rail line north and east of the Site; and

¹ Formerly Benchmark Civil/Environmental Engineering & Geology, PLLC and TurnKey Environmental Restoration, LLC (Benchmark-TurnKey)

ORP2 west of the Site remediated under the BCP and operating as a commercial solar farm. Figure 3 is an aerial view of the Site following remediation and redevelopment activities.

The Site has been redeveloped as a photovoltaic solar system consisting of nominally 1,000 solar arrays to in-feed the nearby National Grid commercial electrical system (grid) as described in the July 2017 PRR (Ref. 3). During 2016 reconstruction activities, the cover system became rutted, and vegetation was disturbed. The damaged cover system was repaired in the summer and fall 2017 in accordance with the July 2017 Work Plan for Soil Cover Restoration Activities. Figure 3 is an aerial view of the Site following redevelopment.

1.2 Purpose/Scope

The SMP requires, among other things, periodic inspection, and certification that the IC/ECs implemented at the Site remain in place and are functioning as designed. This PRR serves that purpose as well as documenting post-remedial actions, if any, taken during this reporting period.

2. Site Overview

Interim remedial measures (IRM) activities were performed per the IRM Work Plan prepared by ExxonMobil (Ref. 4). The IRM Report for the Buffalo Street Properties (Olean Redevelopment Parcels 1, 2 & 3) was prepared in March 2011 (Ref. 5). A Remedial Action Work Plan (RAWP) was submitted by Olean Gateway, LLC in March 2014 (Ref. 6) to address the residual soil and groundwater remediation and was approved by the NYSDEC on April 11, 2014. The remedial program was successful in achieving the remedial objectives for the Site. The October 2015 SMP (Ref. 2) and Final Engineering Report (FER; Ref. 7) were approved by the Department. The COC was issued to Olean Gateway LLC and recorded on December 24, 2015.

Prior to remedial activities described below occurred between 2010 and 2015 and were performed under an approved IRM Work Plan and the approved RAWP.

2.1 Interim Remedial Measures (IRMs)

IRMs were performed in 2010 (prior to purchase of the property by Olean Gateway) by ExxonMobil in accordance with the IRM Work Plan. The IRM Report for the Buffalo Street Properties (Olean Redevelopment Parcels 1, 2, & 3) was prepared in March 2011. The IRM activities associated with ORP3 consisted of the following:

- Removal of one 2,000-gallon and two 500-gallon steel underground storage tanks (USTs) associated with former Building 2. The purpose and original contents of these tanks was not provided by Woodward & Curran (W&C). Upon excavation, the 2,000-gallon UST was filled with water and minor amounts of sediment. The water sample from the tank contained minor detections of petroleum constituents. The two 500-gallon USTs were reportedly empty except for the presence of nominally 2-inches of rust-colored material in the bottom of one of the tanks. The tanks and their contents were disposed off-site per the IRM report.
- Closure/removal of several suspected septic tanks:
 - Building 1: One vertical concrete tank (36" diameter) of unreported length had its liquid and solid contents removed. The tank and its contents were disposed off-site.
 - Pump House Tank: One 500-gallon steel tank had its liquid and solid contents removed and was closed in-place.
 - o Trench 8: One steel tank filled with soil/fill of unknown size removed.
- Targeted removal of soil/fill in the vicinity of former soil boring SB28 to remove elevated levels of arsenic and lead in shallow soil (0 to 2 feet below grade).
- Targeted removal of soil/fill in the vicinity of former soil boring SB48 to remove elevated levels of chromium, copper, selenium, zinc, and lead.
- Recovery of measurable light non-aqueous phase liquid (LNAPL) from groundwater monitoring wells via sorbent socks.

2.2 Remedial Actions

The following is a summary of the remedial actions completed by Olean Gateway at ORP 3:

- Approximately 425 tons of arsenic-contaminated soil/fill was excavated, loaded, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY
- Approximately 235 tons of grossly contaminated petroleum soil (GCPS) was excavated, loaded, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY.
- Approximately 7,592 tons of lead-contaminated soil/fill were stabilized in-place using a mixture of Portland cement to treat the soil and render it non-hazardous.
- Approximately 50,667 linear feet of subsurface metallic product piping (steel, cast iron, lead and copper) was exposed, tapped, evacuated of contents, removed, cleaned, and recycled or disposed. An additional 232 linear feet of wood pipe was also exposed, tapped, evacuated of contents, removed, cleaned, and disposed off-site. Piping that extended beyond the property boundary was capped and/or grouted at the apparent property line. Approximately 2,552 cubic yards of GCPS was excavated during piping removal activities and treated on the on-site forced-vented biopiles (FVBPs) and reused as backfill below the cover system.
- Approximately 33, 55-gallon drums were generated from the removal of the abandoned subsurface piping. The contents of the piping included LNAPL, residual pipe scale, and product sludge. The 33 drums (21 non-hazardous and 12 hazardous) were disposed at CWM Chemical Services, LLC, located in Model City, NY. In addition to the drums, approximately 4.9 tons of tank contents that were placed into roll-off containers and solidified with Portland cement due to liquid content were disposed at Waste Management's Chaffee Landfill, located in Chaffee, NY. Water extracted from excavations during piping removal was pumped into holding tanks, treated with bag filters and granular activated carbon (GAC) on-site, pumped into a secondary on-site temporary holding tank, sampled, and discharged to the City of the Olean sanitary sewer with approval under an Industrial Pretreatment Program permit. Approximately 6 drums of wash water generated during holding tank cleaning were disposed at CWM Chemical Services, LLC, located in Model City, NY.
- A soil vapor extraction (SVE) system was installed to address GCPS remaining in-place in the deeper soil/fill from approximately 2 to 15 feet below ground surface (fbgs). The SVE system included the installation of 58 SVE wells, associated conveyance piping, and placement of three trailer mounted SVE blowers. Emissions from the SVE system are controlled using biofilters contained within an approximate 20-foot by 8-foot steel roll-off box outfitted with perforated pipe. The biofilters contain an approximate 1-foot-thick gravel layer at the base of the box overlain by approximately 3 feet of wood chip and compost filter medium, which allows the naturally occurring microbes to bioremediate the air stream and control the nuisance odors from the SVE systems.
- LNAPL recovery was completed using hydrocarbon absorbent socks at groundwater monitoring
 wells W22 and W24. LNAPL thickness at these locations varied between approximately 0.01 and
 0.3 feet in 2014-2015. During LNAPL monitoring events, the socks were wrung of product and
 reinstalled. Recovered product was transferred to properly labeled and sealed 55-gallon drums for

future off-site disposal. Socks with obvious LNAPL staining/saturation were removed and replaced with new socks.

- A final cover system consisting of a demarcation layer, minimum 12 inches of clean imported soil, and vegetation was installed at the Site in 2015 (see Figure 5).
- An Environmental Easement was executed in December 2015 between Olean Gateway and the NYSDEC and recorded with the deed in Cattaraugus County to restrict land use to commercial/industrial purposes; restrict the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) or County DOH; and prevent future exposure to any contamination remaining at the Site.

2.3 Site Redevelopment Activities

The Site was sold by Olean Gateway, LLC to Solean LLC on March 17, 2016. The COC was transferred on June 21, 2016 to the following new leaseholders: 1406RB PV LLC and 1470B PV LLC. The Site was redeveloped as a photovoltaic solar system consisting of nominally 1,000 solar arrays to in-feed the nearby National Grid commercial electrical system (grid) in accordance with an August 31, 2016 Work Plan for Redevelopment Activities (Ref. 8) approved by the NYSDEC. Redevelopment construction began in October 2016 and was substantially complete in July 2017. Solar facility construction activities included installation of a new access road, concrete pads, above ground equipment, power poles, fence gates and support poles, and conduits. Three power poles, four equipment support poles, 10 gate posts, fence posts, and approximately 80 linear feet of conduit (for Verizon/National Grid communications) penetrated through the cover system; all other construction activities occurred on the ground surface or above the demarcation layer.

Cover system repairs were needed in areas where the redevelopment activities caused rutting to the cover and damage to the vegetation as documented in the July 2017 Work Plan for Soil Cover Restoration Activities (Ref. 9). The damaged cover system was repaired during the summer and fall 2017. Benchmark was on-site to observe and document that all imported material was placed and graded to meet prepositioned grade stakes set to assure at least 12 inches of cover over the original subgrade elevations measured prior to redevelopment activities.

No redevelopment activities occurred during this reporting period.

3. Site Management Plan

An SMP was approved by the Department on October 23, 2015. The SMP includes an IC/EC Plan, a Monitoring and Sampling Plan, an Operation & Maintenance (O&M) Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

3.1 IC/EC Plan

As detailed in the Environmental Easement, several IC/ECs need to be maintained as a requirement of the BCA.

3.1.1 Institutional Controls

- Groundwater-Use Restriction: The use of groundwater for potable and non-potable purposes is prohibited.
- Land-Use Restriction: the controlled property may be used for commercial and/or industrial use.
- Implementation of the SMP: the OM&M Plan (including groundwater monitoring) and EWP must be followed.

3.1.2 Engineering Controls

- Vapor Mitigation: There are no buildings on-site and, as such, no sub-slab depressurization system exists
- SVE System: Implemented to remove VOCs and SVOCs from the subsurface.
- LNAPL Recovery/Monitoring
- Cover System: Site-wide inspection.

3.1.3 Site Inspection & IC/EC Compliance

On May 3, 2024, Roux's Certifying Professional Engineer performed a Site visit and assessment. During the visit, the Site covered by this PRR was found to be compliant with the IC/EC requirements. At the time of the May 3, 2024, Site inspection, no observable indication of intrusive activities, cover failure, or use of groundwater were noted. Appendix A includes the completed and P.E.-certified IC/EC Form for the Site. Appendix B includes the site photo log.

3.2 Monitoring and Sampling Plan

The Monitoring and Sampling Plan specifies the methods used for:

- LNAPL monitoring and collection
- Sampling and analysis of groundwater
- Remedial SVE system monitoring

- Site-wide inspection
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

3.2.1 LNAPL Monitoring/Recovery System

LNAPL has historically been detected in Site monitoring wells W22 and W24. Table 1 presents a summary of the monthly LNAPL measurements for the period July 17, 2014 through September 26, 2024. During the reporting period, the LNAPL thickness was not detectable in wells W22 and W24.

LNAPL is recovered using hydrocarbon socks installed in the well at the LNAPL/water interface. During monthly inspections, socks that have obvious LNAPL staining/saturation are removed and replaced with new socks. As indicated on Table 1, there were no sock change-outs at wells W22 and W24 during the reporting period. The socks will be changed out in February 2025 and going forward they will be changed per the manufacturer instructions.

3.2.2 Groundwater Sampling and Analysis

The SMP states that groundwater monitoring is to be performed semi-annually for the first two years (2016 and 2017) and annually thereafter. Since the last reporting period, groundwater monitoring was completed July 30 and 31, 2024 using the procedures in the approved SMP. Well WCMW9 was purged dry on July 30 and remained dry through the end of July 31, 2024; therefore, no sample was obtained for analysis. No product was detected at wells W22 and W24; therefore, the wells were sampled. Groundwater samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) and tentatively identified compounds (TICs) using United States Environmental Protection Agency (USEPA) Method 8260; semi-VOCs (SVOCs) and TICs via USEPA method 8270; and total arsenic, chromium, and lead using USEPA Method 6010. Table 2 summarizes groundwater elevations from 2012 through 2024. Tables 3 and 4 summarize the analytical results as well as historic groundwater quality data. Appendix C (electronic version) includes the laboratory analytical data packages and field notes from the groundwater sampling event.

3.2.2.1 Groundwater Elevations

Figure 6 is the groundwater isopotential map for the elevations measured during the July 2024 sampling event (refer to Table 2). Overall groundwater flow direction in the uppermost sand and gravel aquifer is toward the southeast for the western portion of the property and to the southwest for the eastern portion of the property, which is relatively consistent with the prior groundwater contour maps. This indicates that wells MW5 and W18 are upgradient and wells W29, MWSW and MW4 are downgradient. A perched water condition exists at well WCMW9; therefore, the elevation measured in July 2024 (1414.1) referenced per NAVD 88) was not used to prepare the isopotential map. Well W29 is downgradient of SVE System 3-SVE-1, and wells MWSW, MW4 and WCMW9 are downgradient of SVE Systems 3-SVE-2 and 3-SVE-3 (refer to Figure 7).

3.2.2.2 Analytical Data

Analytical results for the July 2024 sampling event are incorporated into Table 3 (VOCs and SVOCs) and Table 4 (metals) and discussed below.

VOCs

Benzene and 1.2.4-trimethylbenzene concentrations remain above GWQSs at well MWSW and MW-4. Benzene concentrations at well MWSW was either non-detect or less than GWQS (1 ug/L) from 2019 through 2022 and exceeded GWQS in June 2023 (10 ug/L) and July 2024 (5 ug/L). Benzene concentrations at well MW-4 has shown a consistent decrease in concentration since the start of post-remedial monitoring event in August 2016; the June 2023 and July 2024 results have both been less than 3 ug/L. The 1,2,4trimethylbenzene concentration at well MW-4 decreased over the first four years with a non-detection in July 2019. Since then, the concentrations have fluctuated and generally increased; however, the July 2024 result (120 ug/L) is of the same order of magnitude as what has been measured historically and the lowest result since June 2021. Isopropylbenzene was detected above its GWQS at well MW-4, Isopropylbenzene was non-detect in 2023 but exceeded in both 2021 and 2022. Isopropylbenzene detections at MW-4 have been either non-detect or less than or equal to 10 ug/L since 2017. There were no VOC concentrations above GWQSs in wells MW-5, W-18, and W-29, which is consistent with results obtained over the last five years. There were no VOC concentrations above GWQSs in well W22, which is consistent with July 2023. The only VOC above GWQS in well W24 was 1,2,4-trimethylbenzene; which was above the GWQS in 2018 but not detected in 2023. VOC TIC concentrations decreased or remained consistent with historic results at all wells between the June 2023 and July 2024 sampling events. VOC-TICs at MW-4 decreased but remain above 100 ug/L.

SVOCs

No SVOCs were detected at concentrations above GWQS/GVs at any well. SVOC-TIC concentrations decreased, but are the same order of magnitude, at wells MWSW, MW-4, MW-5, W-18, and W22 between the 2023 and 2024 sampling events. SVOC-TIC concentrations at well W-29 decreased from 242 ug/L (July 2023) to 21 ug/L, and decreased at well W24 from 272 ug/L (July 2023) to 41 ug/L. In general, SVOC-TIC detections were consistent with fluctuating historical results.

Metals

Groundwater samples were analyzed for total arsenic, chromium, and lead. There were no GWQS exceedances across the seven wells sampled. The arsenic concentration at W24 in July 2024 (2.05 ug/L) was an order of magnitude decrease over the June 2023 concentration (25.85 ug/L). During the July 2024 sampling event, WCMW-9 was purged to dryness and did not recharge during the sampling event; therefore, no sample was collected. If well WCMW-9 produces enough water for sampling during future events, groundwater will be analyzed for arsenic, chromium, and lead. Since this well has not been sampled since 2019, it would be sampled for both filtered and unfiltered metals to differentiate between what is in the groundwater versus what is adhered to solids within the groundwater.

3.2.3 SVE System and Monitoring

The three SVE systems at ORP3 had been operating nearly continuously since 2015. System 3-SVE-1 was shut down in 2021. The SVE systems are comprised of two main components:

- 1. The collection system is constructed of a series of vertical extraction wells and extraction well manifold piping.
- 2. The trailer-mounted mechanical SVE systems consist of blowers, motors and ancillary equipment that generate the vacuum and move the extracted vapor to the biofilter treatment vessel. There are three SVE blowers, denoted 3-SVE-1, 3-SVE-2, and 3-SVE-3, connected to a series of wells (refer to Figure 7). There are 58 wells connected to the three blowers as follows: wells SVE3-1 to 3-19 are connected to 3-SVE-1 blower; wells SVE3-20 to SVE3-38 are connected to 3-SVE-3 blower; and wells SVE3-39 to SVE3-58 are connected to 3-SVE-2 blower. The extracted air is conveyed through 6" PVC piping installed below grade from the wells to the blower. The approximate piping network is shown on Figure 7. The extracted air is treated in a biofilter prior to discharge to the atmosphere. The biofilter treatment medium consists of a mixture of compost and mulch (approx. 50% each by weight). The natural bacteria in the biofilter use the organics in the waste stream as a source of energy. The biofilter medium needs to be maintained in a slightly wet state and needs to be periodically mixed (fluffed-up). Biofilter media requires mixing when nuisance odors become an issue or when a thick cake layer forms on top preventing proper venting. The top 4-6" of the biofilter media is mixed/raked periodically to keep the media broken up and loose. This was last completed in September 2019 and has not been required due to low effluent PID readings. The tables in Appendix D include dates when the biofilter material was raked.

SVE wells were inspected on August 13, 2018 after the grass had been cut by maintenance workers for the owners of the solar farm (i.e., 1406RB PV LLC and 1470 PV LLC). The inspection included aboveground visual (e.g., broken or cracked casing) and audible (e.g., whistling) observations at several SVE wells. Ten SVE wells on Solean were noted to be damaged. On August 16, 2018, the NYSDEC requested that a Corrective Measures Work Plan (CMWP) be prepared for the damaged SVE wells. On August 20, 2018, the CMWP was submitted to the NYSDEC and approved the next day (Ref. 10). Repairs were completed on September 7-13, 2018 and are further discussed in the Corrective Measures Report for SVE Well Repair (Ref. 11)

On March 8, 2021, Solean submitted a *Verification Soil Sampling (VSS) Work Plan* to the Department. The Department approved the VSS Work Plan on March 9, 2021. On March 30 and 31, 2021, Benchmark collected 12 post-treatment verification soil samples within the upper 16 feet using a direct-push drill rig to evaluate remediation of in-place soil/fill. Soil samples were analyzed using USEPA Method 8260 for TCL VOCs plus TICs.

On July 20, 2021, Solean submitted a VSS Results for SVE Systems letter report. All concentrations were well below NYSDEC Part 375 CSCOs and the letter concluded that the SVE systems achieved the soil/fill remedial action objectives in Section 1.7 of the RAWP and system shutdown criteria outlined in Section 3.3.5.2 of the SMP. The report recommended discontinuing operations of all three SVE systems as they had fulfilled the goal of remediating the upper 15 feet of soil/fill. On August 23, 2021, NYSDEC requested

that SVE Systems 3-SVE-2 and 3-SVE-3 continue to be operated and further optimized to address remaining areas of concern. SVE System 3-SVE-1 was shut down on August 23, 2021. On September 20, 2021, Benchmark re-submitted the VSS Results for SVE Systems letter report with an addendum describing optimization attempts made on SVE Systems 3-SVE-2 and 3-SVE-3. The Department approved this addendum discussion on October 18, 2021, and requested periodic updates regarding the optimization of the operating systems at the Site. Benchmark attempted to optimize the systems and successfully shut off some of the 3-SVE-3 System perimeter wells. However, as of October 21, none of 3-SVE-2 System wells could be turned off since the area was too wet. If the number of operational wells is reduced, the system vacuum takes on too much water causing the system to continually shut-off.

The 2021-2022 PRR recommended installing dilution valves on the operating SVE wells so the vacuum could be manually controlled. On July 11 and 19, 2023, Benchmark fitted dilution valves to the operating SVE wells in system 3-SVE-2 (wells 40 through 43, and 52 through 54) and system 3-SVE-3 (wells 20, 22, 23, 25, 26, and 29) as shown on Figure 7. The dilution valves allow air into the system to help maintain vacuum and prevent overloading/tripping of the blower.

Benchmark recommended in the 2021-2022 PRR that SVE systems 3-2 and 3-3 be operated July through October to optimize removal of residual subsurface contamination. The Department approved the recommendation on February 21, 2023. During the 2023-2024 reporting period, SVE systems 3-2 and 3-3 operated through November 9, 2023 when the systems were shut-down for the winter. System 3-2 and 3-3 were started back up on July 28, 2024. Roux attempted to start the system on July 2, 2024, but due to wet site conditions the system continually shut down due to high condensate tank levels. Field Notes are included at the end of Appendix D. System 3-SVE-2 motor required a bearing replacement before official start-up in July 2024.

3.2.3.1 Results

The Department approved the shut-down of SVE System 3-SVE-1 in August 2021; however, while it was operating, the system removed a total of 17,996 lb of organic petroleum hydrocarbons. SVE Systems 3-SVE-2 and 3-SVE-3 continue to run and have been successful in removing VOCs from the subsurface soil/fill during this reporting period. As shown on Tables D-1 and D-2, the estimated mass of organic petroleum hydrocarbons removed with each system through September 26, 2024 is 93,720 lb from 3-SVE-2 and 30,902 lb from 3-SVE-3. Appendix D also includes a chart for each system showing VOC mass removal over time. The rate of removal for 3-SVE-2 has been below 100 lb/day since January 2017, dropped below 10 lb/day in March 2018, and has decreased from 0.6 to 0.0 lb/day during this reporting period. The rate of removal for 3-SVE-3 dropped below 50 lb/day in 2016, below 10 lb/day in February 2017, and decreased from 0.1 to 0.0 lb/day during this reporting period.

Over the 9.5 years of operation, the SVE systems have been effective in reducing VOC concentrations within the vadose zone based on influent PID readings. SVE System 3-SVE-1 had an initial maximum influent PID concentration of 715 ppm and dropped to 0.0 ppm on August 12, 2021; the system was shut down on August 23, 2021. SVE Systems 3-SVE-2 and 3-SVE-3 have had similar reductions: >99.9%²

² Due to the accuracy of the PID meter reading to the nearest tenth, estimated >99.9% reduction.

reduction at 3-SVE-2 (initial maximum concentration of 765 ppm and current concentration of 0.0 ppm) and >99.9%² reduction at 3-SVE-3 (initial maximum concentration of 635 ppm and current concentration of 0.0 ppm) during system monitoring on September 26, 2024.

3.2.4 Site-Wide Inspection – Cover System Monitoring

As shown on Figure 5, the existing cover system is comprised of a minimum of 12 inches of clean soil (vegetated to prevent erosion) and 12 inches of gravel/stone for the access roads. A demarcation layer, consisting of orange plastic mesh material, provides a visual reference to the top of the remaining contamination zone, which is the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this SMP.

In accordance with the SMP, the cover system must be maintained and replaced in the event it is breached as described in the EWP (SMP Appendix B). The cover will be inspected on an annual basis and following severe storm events. If frequent areas of distress are noted, they will be repaired based on the following conditions:

- Vegetative Soil Cover Monitoring: The key maintenance concerns and the respective corrective actions include:
 - Areas where erosion problems (i.e., rills or gullies) are observed will be repaired by regrading the localized area, adding the required fill material and/or topsoil, and reseeding/replanting.
 - If burrowing animals are observed breaching the soil cover, as evidenced by exposed fill
 material, they will be eradicated by a licensed exterminator.
- Gravel/Stone Cover Monitoring: The key maintenance concerns and the respective corrective actions include:
 - Ruts or erosion along the access roads will be repaired by re-grading the localized area and adding additional material.

At the time of the Site inspection, the cover systems were intact and functioning as intended. Appendix B provides photographic documentation of Site conditions at the time of the May 3, 2024 Site inspection.

3.2.5 Discussion of Monitoring Results

During the 2023-2024 reporting period, LNAPL was not detected in wells W22 and W24.

Groundwater quality has improved or stayed the same at all upgradient and downgradient wells except for downgradient well MWSW where 1,2,4-trimethylbenzene was detected at a concentration (5.4 ug/L) slightly above its GWQS/GV (5.0 ug/L). GWQS/GV exceedances persist at downgradient well MW-4 for two VOCs: benzene, which is showing an overall decreasing trend and is only slightly above its GWQS/GV. The 1,2,4-trimethylbenzene concentration in July 2024 is the lowest since June 2021 but of the same order of magnitude. Isopropylbenzene was also above its GWQS/GV during the July 2024 event. Isopropylbenzene at MW-4 has fluctuated from exceeding its GWQS/GV to non-detect. Since the first post-remedial

groundwater sampling event in August 2016, total VOCs plus TICs have remained low in well MW-4, at less than 1 mg/L. It is not uncommon to observe minor fluctuations in individual VOC concentrations.

During this reporting period, there were no exceedances of GWQS/GVs for SVOCs.

The SVE systems have been very effective in removing organic vapors from the vadose zone. The remaining operating SVE systems (3-SVE-2 and 3-SVE-3) show a diminished and asymptotic organic removal rate. Over the reporting period, the rates of organic vapor removal decreased from 0.6 lb/day (3-SVE-2 System) and 0.1 lb/day (3-SVE-3 System) to 0.0 lb/day, effectively half of what was reported last year. Influent PID readings for both systems also decreased to 0.0 ppm during the reporting period.

3.3 Operation & Maintenance Plan

The operation and maintenance (O&M) addresses operation and maintenance for the SVE systems.

3.3.1 SVE System

3.3.1.1 Routine System Operation and Maintenance

The SVE system is designed to require little maintenance over the expected duration of use at the ORP3 site. The blower bearing housing is oil-filled and is checked once per month, if the level is below the overflow, SAE 40 weight oil is added through the top fill port on the housing. Grease fittings for the blower shaft are topped-off periodically (i.e., every 2 months).

3.3.1.2 System Monitoring Devices and Alarms

Monitored system operating conditions, which trigger a local (red panel light) and remote (common autodialer channel) alarm condition include low air vacuum, high air pressure, moisture separator tank high level, condensate tank high level, and heater/exhaust fan failure. Except for heater/exhaust fan failure, these alarm conditions automatically shut down the SVE system. A trailer entry (security) relay also triggers a local and remote alarm but does not cause system shutdown. Blower and condensate pump failure (e.g., due to thermal overload, power loss, or manual shut down) also triggers the autodialer. If the SVE system alarm is activated, the autodialer will contact Roux. Based on the alarm fault, Roux will respond and/or contact the appropriate repair vendor (e.g., electrician, mechanical repair service).

There were no alarms during the reporting period for SVE Systems 3-SVE-2 and 3-SVE-3, except for required maintenance (emptying the equalizer tank during times of high groundwater).

4. Conclusions and Recommendations

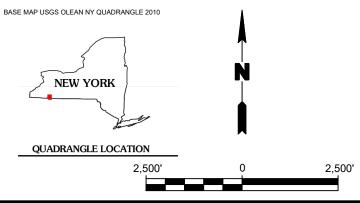
Conclusions

- At the time of the Site inspection, the Site complied with the SMP. Specifically, the Site is fully
 compliant with the Institutional Controls including land-use restrictions, groundwater-use
 restrictions, and the soil/fill management plan component; and fully compliant with the Engineering
 Controls (operation of the SVE system and monthly LNAPL monitoring).
- Long-term groundwater monitoring indicates that there has been sustained improvement to groundwater quality across the Site with limited exceedances of GWQS/GVs including no SVOC or metal concentrations above GWQS/GVs in any wells. No LNAPL was present in any well during the reporting period.
- Roux continued to seasonally operate SVE Systems 3-SVE-2 and 3-SVE-3 over the 2023-2024 reporting period with no significant removal of VOCs or SVOCs from the subsurface. System 3-SVE-2 has been removing less than 1 lb VOC/day since November 2022. System 3-SVE-3 has been removing 0.2 lb VOC/day or less since December 2020. At the time of the system's shutdown, 3-SVE-2 PID reading was 0.0 ppm and 3-SVE-3 documented four consecutive months of PID readings of 0.0 ppm.
- The addition of dilution valves to select wells helped improve system operation, with no overloading or tripping of each system's blower.

Recommendations

- Roux requests NYSDEC approval for permanent shut-down of the two remaining SVE systems.
- Roux requests reducing the sampling frequency from annually to once every two years. Roux requests completing the next sampling event in summer 2026.
- The next annual groundwater sampling event is planned for summer 2026. This event will include sampling of wells W22 and W24 if LNAPL is not detected per the SMP. If less than 0.1 feet of LNAPL is detected, Roux will remove this thin layer using a bailer or absorbent sock; purge three well volumes using a bailer; and, if LNAPL has been removed, collect a groundwater sample using a bailer. If downgradient well WCMW-9 produces enough water for sampling, the sample will be analyzed for VOCs, SVOCs, and total and dissolved arsenic, chromium, and lead.

5. Declaration/Limitation


Roux Environmental Engineering and Geology, D.P.C. personnel conducted the annual site inspection for Brownfield Cleanup Program Site No. C905033, Olean, New York, according to generally accepted practices. This report complied with the scope of work provided to Solean LLC by Roux Environmental Engineering and Geology, D.P.C.

This report has been prepared for the exclusive use of Solean LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of Solean LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Roux Environmental Engineering and Geology, D.P.C.

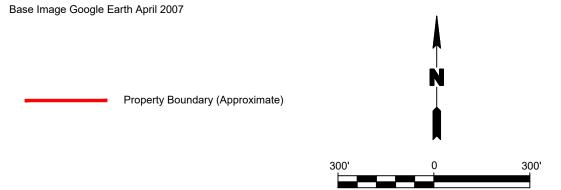
References

- 1. New York State Department of Environmental Conservation. *DER-10/Technical Guidance for Site Investigation and Remediation*. May 2010.
- 2. Benchmark Environmental Engineering & Science, PLLC. Site Management Plan, Olean Redevelopment Parcel 3, Olean, New York, BCP Site No. C905033. October 2015.
- 3. Benchmark Environmental Engineering & Science, PLLC. *Periodic Review Report, Olean* Redevelopment *Parcel 3, Olean New York, BCP Site No. C905033*. May 2017; revised July 2017.
- 4. Woodward & Curran. *Interim Remedial Measures Work Plan, ExxonMobil, Buffalo Street* Properties, *Olean New York*. September 31, 2009.
- 5. Woodward & Curran, Interim Remedial Measure Report, Olean Redevelopment Parcels 1, 2, and 3, Olean New York. March 2011.
- 6. TurnKey Environmental Restoration, LLC. Remedial Action Work Plan, Olean Redevelopment Property, Olean, New York, BCP Site Nos. 905031, 905032, 905033. March 2014.
- 7. Benchmark Environmental Engineering & Science, PLLC. Final Engineering Report, Olean Redevelopment Parcel 3, Olean, New York, BCP Site No. C905033. October 2015.
- 8. Benchmark Environmental Engineering & Science, PLLC. Work Plan for Redevelopment Activities, Solean West (Olean Redevelopment Parcel 2) Site No. C905032 and Solean (Olean Redevelopment Parcel 3) Site No. C905033. August 31, 2016.
- 9. Benchmark Environmental Engineering & Science, PLLC, in association with TurnKey Environmental Restoration, LLC. Work Plan for Soil Cover Restoration Activities, Solean West (Olean Redevelopment Parcel 2) Site No. C905032, Solean (Olean Redevelopment Parcel 3) Site No. C905033. July 19, 2017.
- 10. Benchmark Environmental Engineering & Science, PLLC, in association with TurnKey Environmental Restoration, LLC. *Corrective Measures Work Plan for SVE Well Repair, Solean (Redevelopment Parcel 3) Site No. C905033*. August 20, 2018.
- 11. TurnKey Environmental Restoration, LLC. Corrective Measures Report for SVE Well Repair, Solean (Olean Redevelopment Parcel 3) Site No. C905033. October 9, 2018.

FIGURES

PERIODIC REVIEW REPORT

OLEAN REDEVELOPMENT PARCEL 1 NYSDEC BCP SITE NO. C905033 OLEAN, NEW YORK


Prepared for:

SOLEAN, LLC

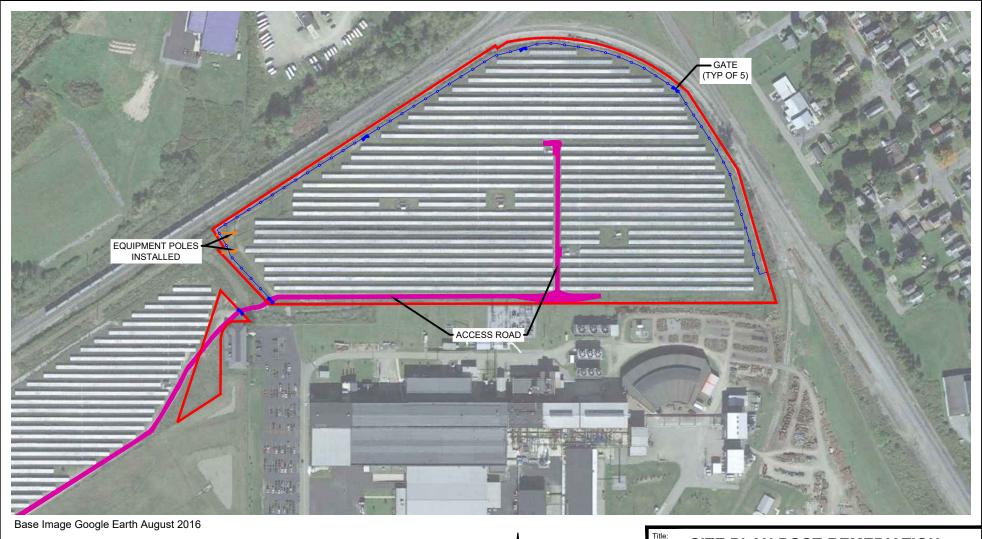
Compiled by:	Date: NOVEMBER 2023	FIGUR
Prepared by: CMC	Scale: AS SHOWN	
Project Mgr: LER	Project: 0334-016-001	1
File: FIGURE 1; SITE L	OCATION AND VICINITYORPS	.DWG

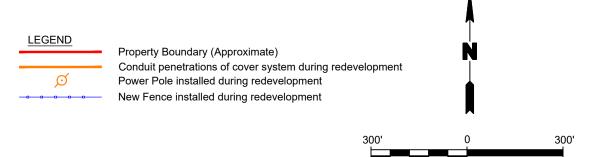
SITE PLAN PRE-REMEDIATION

PERIODIC REVIEW REPORT

OLEAN REDEVELOPMENT PARCEL 3 NYSDEC BCP SITE NO. C905033 OLEAN, NEW YORK

Prepared for:


SOLEAN, LLC


DOLLY	
ILUOV	
	Г

Compiled by:	Date: NOVEMBER 2023
Prepared by: CMC	Scale: AS SHOWN
Project Mgr: LER	Project: 0334-016-001
File: FIGURE 3: SITE F	DI ANI DDE DEMEDIATION DIA

2

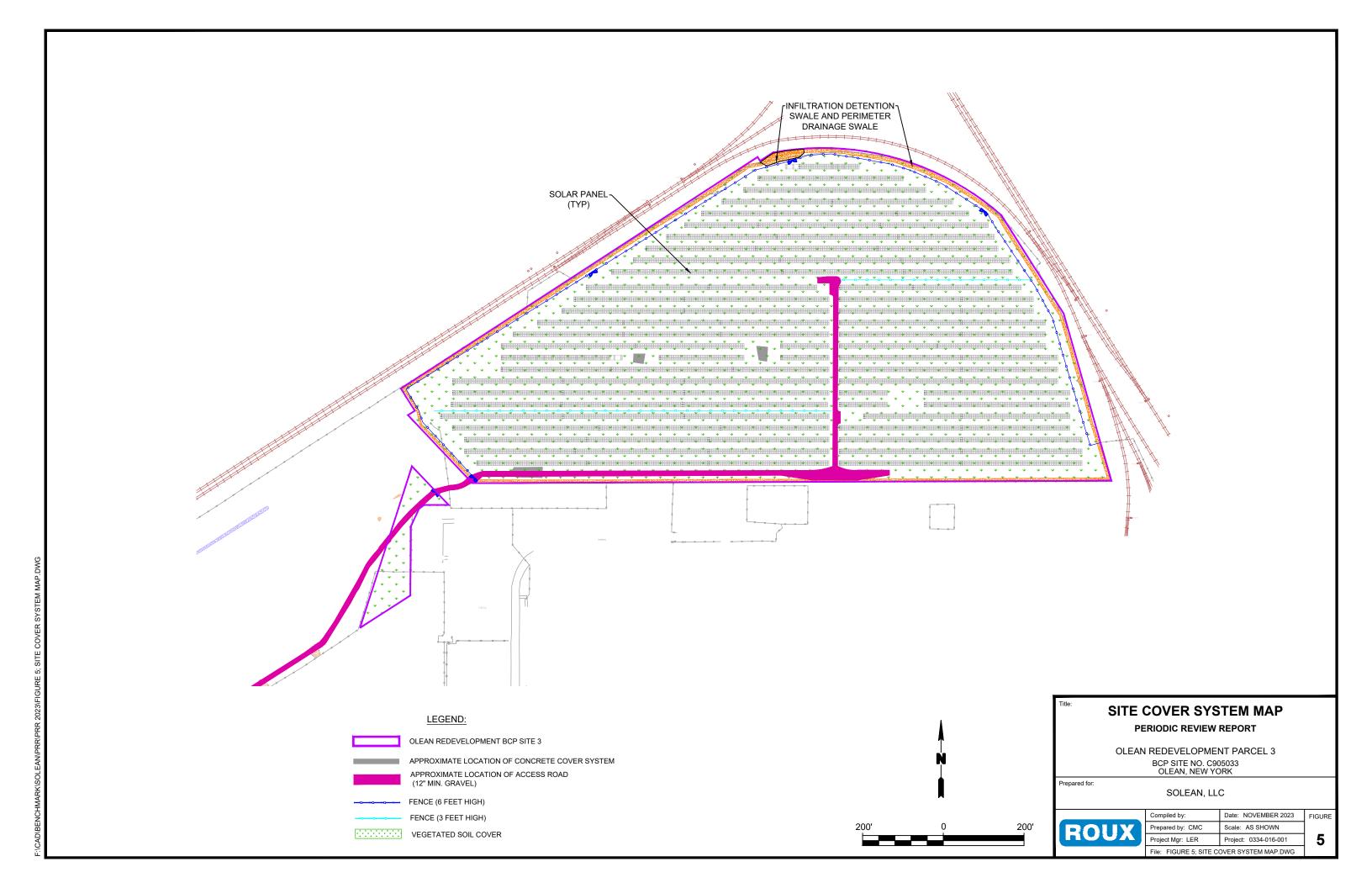
FIGURE

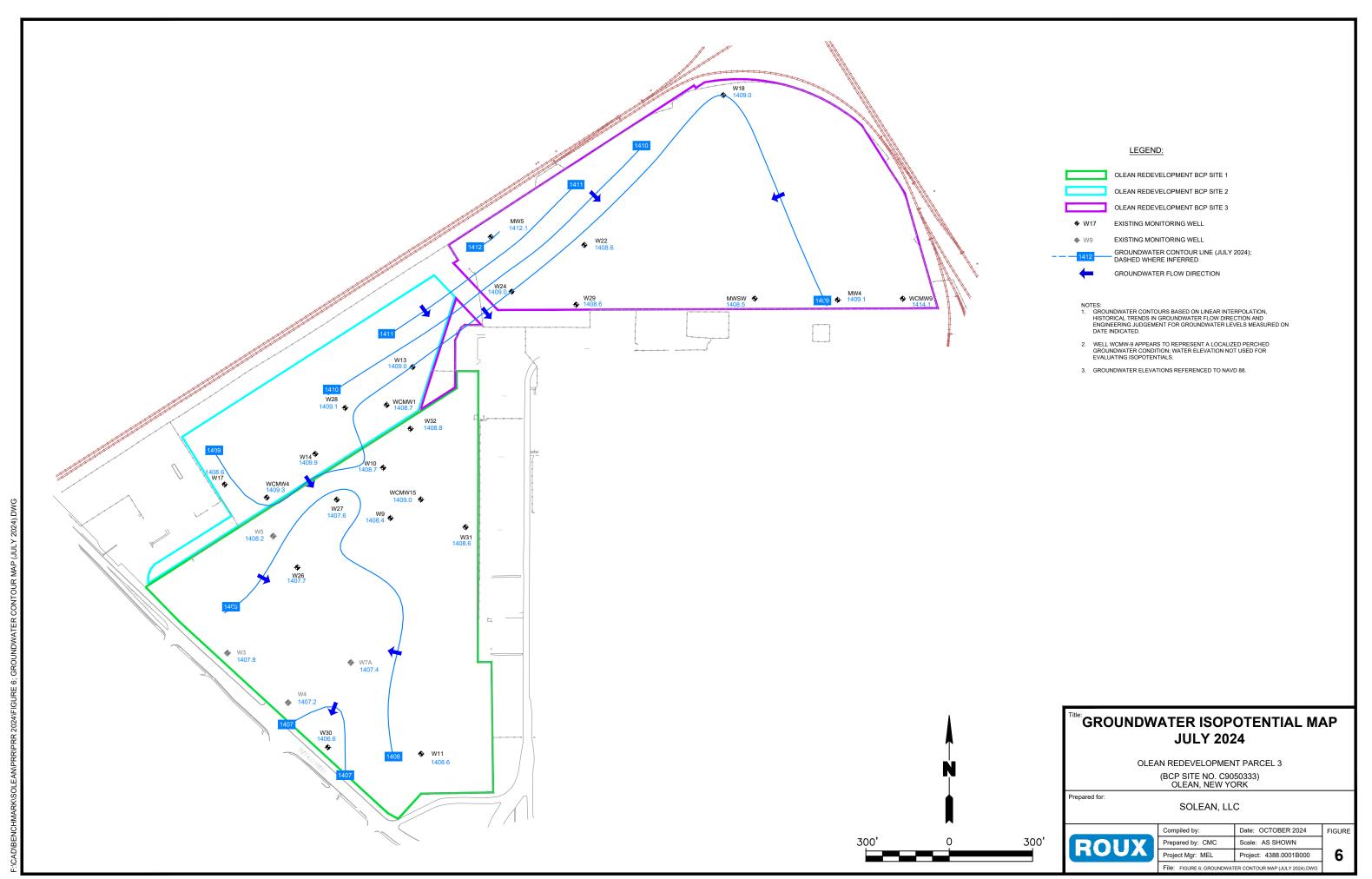
SITE PLAN POST-REMEDIATION

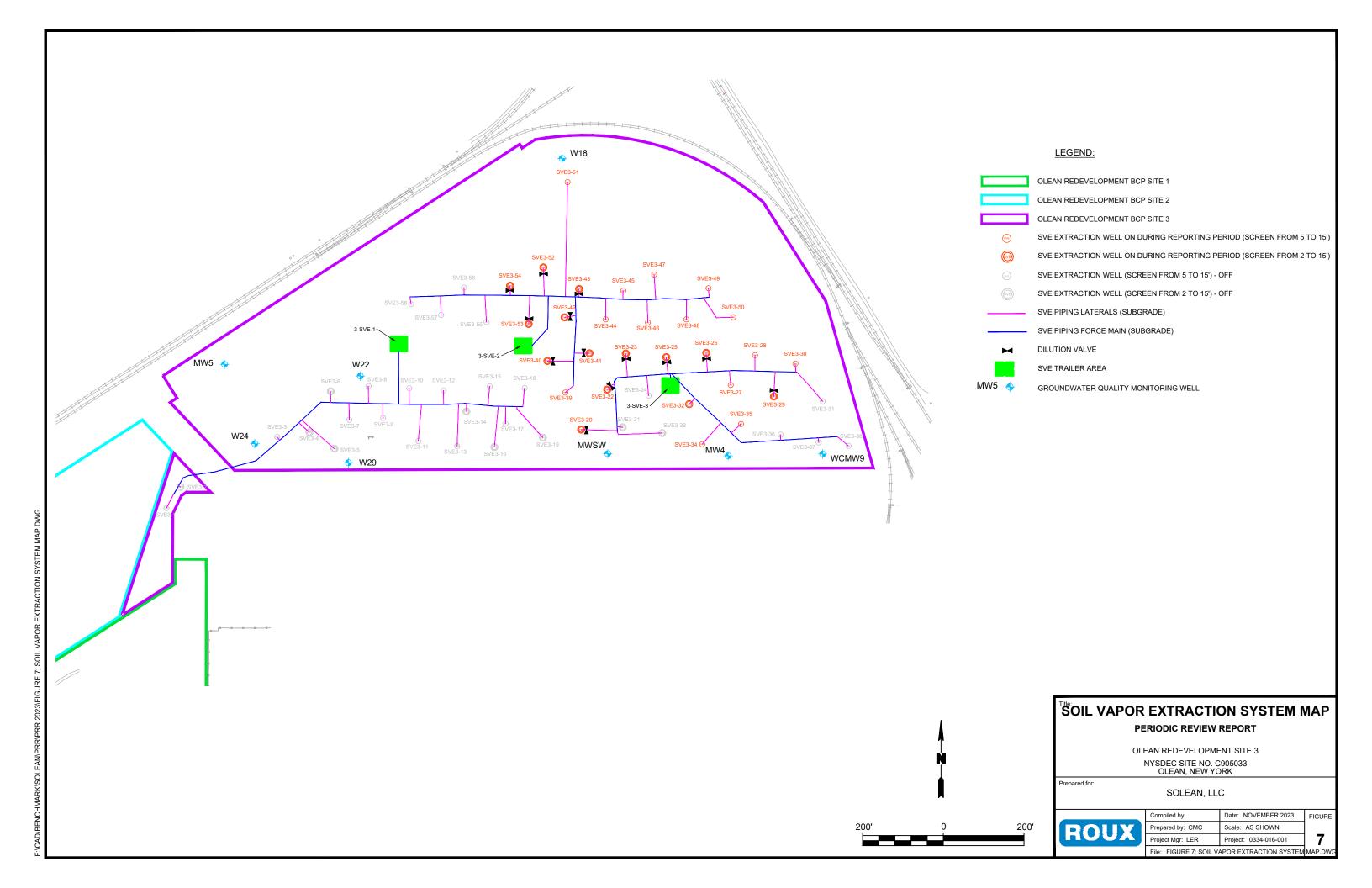
PERIODIC REVIEW REPORT

OLEAN REDEVELOPMENT PARCEL 3 NYSDEC BCP SITE NO. C905033 OLEAN, NEW YORK


Prepared for:


SOLEAN, LLC


DOLLY	
ILUCA	
	Г


Compiled by:	Date: NOVEMBER 2023
Prepared by: CMC	Scale: AS SHOWN
Project Mgr: LER	Project: 0334-016-001
Eilo: signings a girre pi un pog	T DE LE LODMENT A FOLKL. GOT 0000 DIMO

FIGURE

Tables

TABLE 1 LNAPL MONITORING AND COLLECTION LOG

OLEAN REDEVELOPMENT SITE 3 (BCP SITE NO. C905033) OLEAN, NEW YORK

				W	22			W24									
Date	Inspector's Initials	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Change Absorbent Sock? (Y / N)	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Change Absorbent Sock? (Y / N)				
7/17/14	SF	Y	19.73	19.75	0.02	0	N	Y	23.3	23.68	0.38	0	N				
10/29/14	JJR	Y	22.84	22.92	0.08	0	Removed	Y	25.31	25.75	0.44	0	Removed				
11/5/14 11/23/14	JJR JJR	Y	22.66 20.65	22.85 20.71	0.19 0.06	0	N N	Y	24.99 24.84	25.06 25.11	0.07 0.27	0	N N				
12/15/14	JJR	Y	21.88	21.97	0.00	0	N	Y	25.11	25.34	0.27	0	N				
1/15/15	JJR	Y	19.92	20.04	0.12	0	N	Y	23.19	23.39	0.2	0	N				
2/27/15	BMG	Υ	22.62	22.76	0.14	0	Υ	Υ	24.82	24.89	0.07	0	Υ				
4/6/15	BMG	Y	20.02	20.03	0.01	0	Y	Y	22.31	22.35	0.04	0	Y				
7/2/15 9/2/15	BMG PWW	N Y	NA 22.79	20.35 22.8	0.01	0	Y N	Y	22.75 24.98	22.76 25.05	0.01	0	Y N				
9/29/15	PWW	Y	23.3	23.31	0.01	0	N	Y	25.35	25.41	0.06	0	N				
10/14/15	PWW	Y	22.98	23.00	0.02	0	N	Y	24.91	25.00	0.09	0	N				
10/28/15	ML	Υ	23.00	23.02	0.02	0	N	Υ	24.91	25.00	0.09	0	N				
11/11/15	ML	Υ	22.45	22.56	0.11	0	N	N	NA	24.41	0	0	N				
11/24/15	ML	Y	22.06	22.16	0.10	0	N	Y	24.14	24.4	0.26	0	N				
12/9/15 12/22/15	ML ML	N N	NA NA	22.05 21.87	0.00	0	N N	Y	23.84 23.75	23.86 23.78	0.02	0	N N				
1/5/16	ML	N	NA	22.91	0	0	N	Y	22.39	22.41	0.02	0	N				
2/2/16	ML	N	NA	20.86	0	0	N	Y	23.18	23.21	0.03	0	N				
3/1/16	ML	Υ	20.35	20.36	0.01	0	N	Υ	22.33	22.37	0.04	0	N				
4/12/16	BMG	Y	23.31	23.31	0	0	Y	Y	22.97	23.02	0.05	0	Y				
5/4/16	ML	Y	20.55	20.76	0.21	0	N	Y	22.68	23.31	0.63	0	N				
6/2/16 7/6/16	ML BMG	Y	21.55 25.23	21.56 25.31	0.01	<0.1	N Y	Y	23.86 25.18	23.87 25.23	0.01 0.05	<0.1	N Y				
8/1/16	BMG	Y	26.22	26.28	0.06	<0.1	Ϋ́	Y	26.08	26.13	0.05	<0.1	Y				
9/9/16	BMG	Υ	26.85	27.22	0.37	<0.1	Υ	Υ	26.14	26.15	0.01	<0.1	Υ				
10/27/16	BMG	Y	23.71	23.95	0.24	<0.1	Y	Y	23.71	23.72	0.01	<0.1	Y				
11/22/16 12/21/16	BMG BMG	Y N	24.07 NA	24.62 23.82	0.55 0	0.1	Y N	N N	NA NA	24.1 23.48	0	0	N N				
1/5/17	BMG	N	NA NA	22.72	0	0	N	N	NA NA	22.28	0	0	N				
2/14/17	BMG	N	NA	21.11	0	0	N	N	NA	20.76	0	0	N				
3/28/17	BMG	N	NA	22.21	0	0	N	N	NA	22.18	0	0	N				
4/11/17	BMG	N	NA	21.61	0	0	N	N	NA	21.22	0	0	N				
5/30/17 6/28/17	BMG BMG	N N	NA NA	22.26 23.33	0	0	N N	N N	NA NA	22.28 23.40	0	0	N N				
7/24/17	BMG	Y	24.2	24.21	0.01	0.05	Y	N	NA NA	24.12	0	0	N				
8/9/17	CFD	N	NA	23.60	0	0	N	N	NA	24.76	0	0	N				
9/26/17	CFD	N	NA	25.95	0	0	N	N	NA	25.46	0	0	N				
10/26/17	CFD	Y	26.31	26.40	0.09	0.15	Y	N	NA	25.72	0	0	N				
11/28/17 12/26/17	CFD CFD	N N	NA NA	26.53 25.23	0	0	N N	N N	NA NA	25.23 24.27	0	0	N N				
1/25/18	CFD	Y	24.7	24.74	0.04	0.1	Y	N	NA NA	23.89	0	0	N				
2/15/18	CFD	Ϋ́	20.91	20.93	0.02	0.5	Ϋ́	Y	22.39	22.4	0.01	0.2	Y				
3/12/18	CFD	N	NA	19.45	0	0	N	N	NA	20.72	0	0	N				
4/27/18	CFD	Y	22.41	22.45	0	0.2	Y	N	NA	21.06	0	0	N				
5/24/18 6/28/18	CFD CFD	Y N	21.57 NA	21.62 19.92	0	0.2	Y N	N Y	NA 22.18	21.34 22.20	0	0 <0.1	N Y				
7/17/18	CFD	N N	NA NA	21.40	0	0	N N	N N	22.18 NA	24.48	0	0.1	N N				
8/11/18	CFD	N	NA	21.35	0	0	N	N	NA	24.24	0	0	N				
9/24/18	CFD	Υ	21.78	21.82	0.04	0.2	Υ	N	NA	23.50	0	0	N				
10/15/18	CFD	N	NA 04.40	21.14	0	0	N	N	NA NA	22.78	0	0	N				
11/29/18 12/20/18	CFD CFD	Y N	21.46 NA	21.50 23.67	0.04	0.1	Y N	N N	NA NA	23.14 22.84	0	0	N N				
1/21/19	CFD	Y	21.22	21.28	0.06	0.2	Y	N N	NA NA	21.07	0	0	N N				
2/13/19	CFD	N	NA	20.88	0	0	N	N	NA	20.59	0	0	N				
3/21/19	CFD	N	NA	21.15	0	0	N	Υ	20.75	20.81	0.06	0.25	Υ				
4/24/19	CFD	N	NA	20.25	0	0	N	Y	22.49	22.53	0.04	0.30	Y				
5/24/19 6/21/19	CFD CFD	Y Y	20.60 20.48	20.64 20.50	0.04	0.2 0.1	Y	Y	21.26 21.15	21.27 21.18	0.01	0.10	Y				
7/30/19	CFD	N N	20.48 NA	20.50	0.02	0.1	N N	N N	21.15 NA	22.55	0.03	0.10	N N				
8/23/19	CFD	N	NA NA	21.84	0	0	N	N	NA	22.56	0	0	N				
9/30/19	CWE	N	NA	22.65	0	0	N	N	NA	24.71	0	0	N				
10/31/19	CWE	N	NA	23.12	0	0	N	N	NA	24.81	0	0	N				
11/25/19	CWE	N	NA NA	22.55	0	0	N N	N N	NA NA	24.02	0	0	N N				
12/30/19 1/30/20	CWE CWE	N N	NA NA	21.40 20.40	0	0	N N	N N	NA NA	22.85 21.85	0	0	N N				
2/27/20	CWE	N	NA NA	19.40	0	0	N N	N N	NA NA	20.60	0	0	N N				
3/30/20	CWE	N	NA	19.30	0	0	N	N	NA	20.80	0	0	N				
4/27/20	CWE	N	NA	19.15	0	0	N	N	NA	20.90	0	0	N				
				40.00	0	0	N	N	NA	22.15	0	0	N				
5/28/20	CWE	N	NA	19.99	0												
6/29/20	CWE	N	NA	21.12	0	0	N	N	NA	23.01	0	0	N				

TABLE 1 LNAPL MONITORING AND COLLECTION LOG

OLEAN REDEVELOPMENT SITE 3 (BCP SITE NO. C905033) OLEAN, NEW YORK

				W	22					W24							
Date	Inspector's Initials	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Change Absorbent Sock? (Y / N)	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Change Absorbent Sock? (Y / N)				
10/29/20	CWE	Υ	24.3	24.60	0.30	0	N	N	NA	25.81	0	0	N				
11/25/20	CWE	Υ	24	24.10	0.10	0	N	N	NA	25.56	0	0	N				
12/17/20	CWE	Ν	NA	24.98	0	0	N	N	NA	25.11	0	0	N				
1/21/21	CWE	Ν	NA	23.55	0	0	N	N	NA	24.19	0	0	N				
2/22/21	CWE	Ν	NA	22.45	0	0	N	N	NA	24.54	0	0	N				
3/25/21	CWE	N	NA	21.64	0	0	N	N	NA	23.80	0	0	N				
4/12/21	CWE	N	NA	21.25	0	0	N	N	NA	23.55	0	0	N				
5/20/21	CWE	N	NA	20.79	0	0	N	N	NA	22.92	0	0	N				
6/25/21	CMS	N	20.55	21.05	0.50	0	N	N	22.95	23.40	0.45	0	N				
7/29/21	CWE	N	NA	19.15	0	0	N	N	NA	21.00	0	0	N				
8/30/21	CWE	N	NA	20.35	0	0	N	N	NA	22.85	0	0	N				
9/30/21	CWE	N	NA	21.01	0	0	N	N	NA	23.61	0	0	N				
10/28/21	CWE	N	NA	22.19	0	0	N	N	NA	22.85	0	0	N				
11/29/21	CWE	N	NA	20.65	0	0	N	N	NA	23.15	0	0	N				
12/29/21	CWE	N	NA	20.33	0	0	N	N	NA	22.60	0	0	N				
1/24/22	CWE	N	NA	20.55	0	0	N	N	NA	22.81	0	0	N				
2/14/22	CWE	N	NA	21.00	0	0	N	N	NA	23.15	0	0	N				
3/21/22	CWE	N	NA	18.54	0	0	N	N	NA	19.83	0	0	N				
4/26/22	CWE	N	NA	19.22	0	0	N	N	NA	21.60	0	0	N				
5/31/22	CWE	N	NA	19.95	0	0	N	N	NA	22.31	0	0	N				
6/30/22	CMS	N	NA	20.99	0	0	N	N	NA	23.31	0	0	N				
7/28/22	CWE	N	NA	22.41	0	0	N	N	NA	24.46	0	0	N				
8/3/22	CEH	Υ	24.56	24.60	0.04	0	N	Y	24.40	24.41	0.01	0	N				
9/29/22	CWE	N	NA	23.15	0	0	N	N	NA	24.71	0	0	N				
10/21/22	CWE	N	NA	23.92	0	0	N	N	NA	25.45	0	0	N				
11/28/22	CWE	N	NA	22.52	0	0	N	N	NA	24.59	0	0	N				
12/29/22	CWE	N	NA	21.29	0	0	N	N	NA	23.45	0	0	N				
1/23/23	CWE	N	NA	19.73	0	0	N	N	NA	21.69	0	0	N				
2/9/23	CWE	N	NA	19.95	0	0	N	N	NA	22.41	0	0	N				
3/21/23	CWE	N	NA NA	19.10	0	0	N	N	NA	21.29	0	0	N				
4/24/23	CWE	N	NA	19.59	0		N	N	NA NA	22.25		0	N				
5/30/23	CWE	N N	NA	20.99	0	0	N N	N		23.98	0	0	N				
6/26/23	CWE	Y	NA OF 45	22.32			Y	N	NA NA	25.39		0	N				
7/31/23 8/15/23	BMG MTF	N N	25.15 NA	25.30	0.15 0	0.2	N N	N Y	NA 25.98	25.72 25.99	0.01	0	N N				
9/28/23	MTF	Y Y	24.86	23.57 24.93	0.07	0	N N	N N	25.98 NA	26.35	0.01	0	N N				
10/24/23	MTF	N	24.00 NA	25.03	0.07	0	N N	N	NA NA	26.33	0	0	N				
11/16/23	MTF	N	NA NA	24.98	0	0	N N	N N	NA NA	26.77	0	0	N N				
12/19/23	MTF	N N	NA NA	22.07	0	0	N N	N N	NA NA	25.69	0	0	N N				
1/9/24	MTF	N	NA NA	22.55	0	0	N N	N N	NA NA	25.69	0	0	N N				
2/1/24	MTF	N	NA NA	19.89	0	0	N	N	NA NA	22.99	0	0	N				
3/14/24	MTF	N	NA NA	20.58	0	0	N	N	NA NA	23.32	0	0	N				
4/11/24	MTF	N	NA NA	20.34	0	0	N	N	NA NA	23.97	0	0	N				
5/16/24	MTF	N	NA NA	18.62	0	0	N	N	NA	22.71	0	0	N				
6/25/24	MTF	N	NA NA	18.57	0	0	N	N	NA NA	23.50	0	0	N				
7/30/24	MTF	N	NA NA	19.51	0	0	N	N	NA	23.94	0	0	N				
8/29/24	MTF	N	NA	20.32	0	0	N	N	NA	24.39	0	0	N				
9/26/24	MTF	N	NA	20.54	0	0	N	N	NA	24.76	0	0	N				
JIEGIE-F	19111		101	20.01		2.3 gallons	.,	- 11	101	27.70		0.9 gallons	- 1,				
Total Quan	tity of LNAPL	Recovered (1	10/9/23-10/9/2	24)		0.0 gallons						0.0 gallons					

Notes:

Y = YES N = NO

NA = NOT APPLICABLE

Data collected pre-remediation; all other data collected post-remediation. PRR reporting period.

TABLE 2

GROUNDWATER MONITORING WELL WATER LEVELS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT SITE 3 OLEAN, NEW YORK

Well	Purpose of Well	Top of Casing (TOC) Elevation (ft)	Depth to Water (ft)	(ft)	Liquid Elevation (ft)	` ,	(ft)	Liquid Elevation (ft)	. ,	(ft)	Liquid Elevation (ft)	Depth to Water (ft)	(it)	Liquid Elevation (ft)	` '	(II)	Liquid Elevation (ft)
		Lievation (it)		8/25/2012			7/17 & 18/2014	1	12/	15 & 17 & 18/2	2014		4/14/2015		9/2	2/2015 & 9/3/2	2015
MW-4	GWQM	1431.76	23.89	0	1407.87	21.00	0	1410.76	22.34	0	1409.42	19.23	0	1412.53	23.45	0	1408.31
MW-5	GWQM	1432.3	22.50	0	1409.80							18.30	0	1414.00	21.77	0	1410.53
MWSW	GWQM	1430.30	24.37	0	1407.76	21.44	0	1410.69	22.52	0	1409.61	20.20	0	1411.93	24.94	0	1407.19
WCMW-9	GWQM	1431.85	17.71	0	1414.14	14.35	0	1417.50	10.69	0	1421.16	11.94	0	1419.91	Dry	0	< 1412.74
W18	GWQM	1434.49	25.21	0	1407.87							20.97	0	1412.11	25.72	0	1407.36
W22	LNAPL	1433.04	23.43	0.11	1408.31	19.75	0.02	1411.91	21.97	0.09	1409.75				23.80	0.01	1407.85
W24	LNAPL	1433.09	24.52	0	1408.57	23.68	0.38	1409.74	25.34	0.23	1407.95				25.05	0.07	1408.10
W29	GWQM	1429.91	24.37	0	1407.57	21.41	0	1410.53	22.91	0	1409.03	20.20	0	1411.74	23.91	0	1408.03

Notes:

- 1) Depth to water from top of well riserr.
- 2) W18 well riser was increased by 1.41 feet in October 2015. Revised well top of riser elevation is 1434.49'. Historic top of riser elevation was 1433.08'.
- 3) W22 well riser was increased by 1.40 feet (based on TOC delta) in October 2015. Revised well top of riser elevation is 1433.04'. Historic top of riser was 1431.64'.
- 4) MWSW was damaged for the August 9, 2016 sampling event. MWSW well riser was decreased by 1.83 feet (based on DTB delta) in October 2016. Revised well top of riser elevation is 1430.3'. Historic top of riser elevation was 1432.13'.
- 5) W29 well riser was decreased by 2.03 feet (based on DTB delta) in October 2016. Revised well top of riser elevatio is 1429.91'. Historic top of riser elevation was 1431.94'

Acronyms:

NA = Not available

"--" = Not measured

Shaded cells are data collected pre-remediation. All other data occurred post-remediation.

TABLE 2

GROUNDWATER MONITORING WELL WATER LEVELS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT SITE 3 OLEAN, NEW YORK

Well	Purpose of Well	Top of Casing (TOC) Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Liquid Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Liquid Elevation (ft)												
		Lievation (it)		8/9/2016			12/14/2016		5	/16 to 5/18/1	17	12,	/20 to 12/22/	′17		6/13/2018		12,	/19 to 12/20/	/18
MW-4	GWQM	1431.76	24.80	0	1406.96	22.20	0	1409.56	20.18	0	1411.58	22.60	0	1409.16	21.64	0	1410.12	22.60	0	1409.16
MW-5	GWQM	1432.3	23.48	0	1408.82	20.97	0	1411.33	17.78	0	1414.52	20.77	0	1411.53	19.05	0	1413.25	20.77	0	1411.53
MWSW	GWQM	1430.30	Damaged			21.03	0	1409.27	18.96	0	1411.34	21.44	0	1408.86	22.46	0	1407.84	21.44	0	1408.86
WCMW-9	GWQM	1431.85	Dry	0	< 1412.74	11.82	0	1420.03	12.25	0	1419.60	10.99	0	1420.86	16.40	0	1415.45			
W18	GWQM	1434.49	Dry	0	< 1407.87	24.41	0	1410.08	22.25	0	1412.24	24.86	0	1409.63	23.93	0	1410.56	24.86	0	1409.63
W22	LNAPL	1433.04																		
W24	LNAPL	1433.09									-				23.00	0	1410.09			
W29	GWQM	1429.91	25.08	0	1406.86	20.62	0	1409.29	18.40	0	1411.51	21.04	0	1408.87	20.05	0	1409.86	21.04	0	1408.87

Notes:

- 1) Depth to water from top of well riserr.
- 2) W18 well riser was increased by 1.41 feet in October 2015. Revised well top of riser elevation is 1434.49'. Historic top of riser elevation was 1433.08'.
- 3) W22 well riser was increased by 1.40 feet (based on TOC delta) in October 2015. Revised well top of riser elevation is 1433.04'. Historic top of riser was 1431.64'.
- 4) MWSW was damaged for the August 9, 2016 sampling event. MWSW well riser was decreased by 1.83 feet (based on DTB delta) in October 2016. Revised well top of riser elevation is 1430.3'. Historic top of riser elevation was 1432.13'.
- 5) W29 well riser was decreased by 2.03 feet (based on DTB delta) in October 2016. Revised well top of riser elevatio is 1429.91'. Historic top of riser elevation was 1431.94'

Acronyms:

NA = Not available

"--" = Not measured

Shaded cells are data collected pre-remediation. All other data occurred post-remediation.

TABLE 2

GROUNDWATER MONITORING WELL WATER LEVELS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT SITE 3 OLEAN, NEW YORK

Well	Purpose of Well	Top of Casing (TOC) Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Liquid Elevation (ft)	Depth to Water (ft)	Lhickness	Liquid Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Liquid Elevation (ft)									
		Elevation (it)	7	7/9 to 7/10/1	19	6/16 to 6/18/20		6/24 to 6/25/21		21	8/1/2022				6/12/2023		7/29/2024			
MW-4	GWQM	1431.76	20.72	0	1411.04	21.95	0	1409.81	22.25	0	1409.51	23.45	0	1408.31	23.25	0	1408.51	22.71	0	1409.05
MW-5	GWQM	1432.3	18.21	0	1414.09	19.77	0	1412.53	20.41	0	1411.89	21.35	0	1410.95	20.76	0	1411.54	20.24	0	1412.06
MWSW	GWQM	1430.30	19.54	0	1410.76	20.69	0	1409.61	21.09	0	1409.21	22.40	0	1407.90	22.10	0	1408.20	21.79	0	1408.51
WCMW-9	GWQM	1431.85	12.12	0	1419.73	17.90	0	1413.95	15.58	0	1416.27	17.29	0	1414.56	17.40	0	1414.45	17.77	0	1414.08
W18	GWQM	1434.49	22.99	0	1411.50	24.30	0	1410.19	24.50	0	1409.99	25.73	0	1408.76	25.52	0	1408.97	25.48	0	1409.01
W22	LNAPL	1433.04	21.93	0	1411.11	20.58	0	1412.46	21.05	0.50	1412.43	24.60	0.04	1408.47	24.05	0.02	1409.01	24.46	0	1408.58
W24	LNAPL	1433.09	22.15	0.03	1410.97	23.50	0	1409.59	23.40	0.45	1410.08	24.41	0.01	1408.69	21.46	0.05	1411.67	24.12	0	1408.97
W29	GWQM	1429.91	19.10	0	1410.81	20.30	0	1409.61	20.70	0	1409.21	21.99	0	1407.92	21.67	0	1408.24	21.32	0	1408.59

Notes:

- 1) Depth to water from top of well riserr.
- 2) W18 well riser was increased by 1.41 feet in October 2015. Revised well top of riser elevation is 1434.49'. Historic top of riser elevation was 1433.08'.
- 3) W22 well riser was increased by 1.40 feet (based on TOC delta) in October 2015. Revised well top of riser elevation is 1433.04'. Historic top of riser was 1431.64'.
- 4) MWSW was damaged for the August 9, 2016 sampling event. MWSW well riser was decreased by 1.83 feet (based on DTB delta) in October 2016. Revised well top of riser elevation is 1430.3'. Historic top of riser elevation was 1432.13'.
- 5) W29 well riser was decreased by 2.03 feet (based on DTB delta) in October 2016. Revised well top of riser elevatio is 1429.91'. Historic top of riser elevation was 1431.94'

Acronyms:

NA = Not available

"--" = Not measured

Shaded cells are data collected pre-remediation. All other data occurred post-remediation.

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS

OLEAN REDEVELOPMENT SITE 3

TABLE 3

		OLEAN, NEW YORK Sample Location													
Parameter ¹	GWQS/GV ²							MW	/SW						
		07/18/14	12/18/14	04/14/15	09/02/15	12/15/16	05/18/17	12/21/17	06/11/18	07/09/19	06/23/20	06/24/21	08/03/22	06/12/23	07/30/24
Volatile Organic Compounds				ı		1	ı	ı	ı	1	1	ı	I	I	1
1,2,4-Trimethylbenzene	5	29.1	229	12.2	21	33.6	45.4	218	294	ND	ND	ND	ND	ND	5.4
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	-	NA	1.38	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	2.19	ND	ND	1.39	1.29	4.13	17.2	ND	ND	ND	ND	ND	ND
Acetone	50	72	ND	ND	ND	77.9	ND	ND	ND	ND	ND	2.9 J	4.5 J	ND	ND
Benzene	1	48.9	156	6.78	73.1	48.7	34.2	47.7	90.1	ND	ND	ND	0.62	10	5
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J	ND	ND	ND
Cyclohexane	-	38.7	NA	16.5	20.2	55.6	87.6	190	208	7.20	ND	ND	ND	ND	2.4 J
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	8.47	14	1.01	4.74	6.29	5.24	18.5	23.1	ND	ND	ND	ND	ND	2.3 J
m&p-Xylene	-	ND	4.52	ND	ND	2.63	2.28	5.2	12.7	ND	ND	ND	ND	ND	ND
Methylcyclohexane	-	44.4	NA	5.77	ND	25.9	43.1	104	180	5.50	ND	ND	ND	ND	1.20 J
Methyl ethyl ketone (2- butanone)	50	ND	ND	ND	ND	126	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	1.28	2.39	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	5.34	ND	2.06	4.84	4.44	14.5	24.1	ND	ND	ND	ND	ND	1.30 J
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	-	2.71	3.46	ND	1.25	1.41	1.34	3.31	4.25	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	1.57	1.59	ND	ND	1.32	1.24	3.25	6.27	ND	ND	ND	ND	ND	0.78 J
tert-Butylbenzene	5	1.37	1.86	ND	ND	ND	ND	1.52	2.2	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22 J	ND	ND
Toluene	5	1.62	3.78	ND	ND	1.53	1.01	2.7	5.75	ND	ND	ND	ND	ND	ND
Total xylenes	5	2.71	7.98	ND	1.25	4.04	3.62	8.51	17.0	ND	ND	ND	ND	ND	ND
Total VOCs	-	252	431	42	124	391	231	623	887	13	ND	4.5	5.3	10	18
Total TICs	-	550	ND	62	111	251	238	381	696	ND	ND	ND	11 J	ND ND	31 J
Semi-Volatile Organic Comp		333	.,,5	02	***					,,,,,		112	1		0.0
Acenaphthene	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzaldehyde		24.5	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoroanthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND
Dibenzofuran Dibenzo(a,h)anthracene		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.17	ND ND
	50	ND ND	ND ND	ND ND	ND ND	34.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Diethyl phthalate Fluorene	50	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04 J	ND ND	ND ND	ND ND
											-				
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	0.15 ND	ND ND
3 & 4 Methylphenol	1	ND	ND 4.5	ND NA	ND	ND	ND	ND		ND	ND	ND	ND		
1-Methylnaphthalene	-	NA ND	4.5	NA ND	NA ND	4.33 ⁶	NA ND	6.97 F1 ⁶	NA ND	NA ND	NA ND	NA ND	ND	ND	ND
2-Methylnaphthalene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.00	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.28	ND	ND
Pentachlorophenol (note 7)	1	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05 J	ND	ND	ND
Phenol (note 7)	1	ND	ND	ND	ND	27.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total SVOCs	-	25	4.5	ND	ND	61	ND	ND	ND	ND	ND	0.090	0.31 J	0.49	ND
Total TICs	-	8.0	ND	468	458	53	41	384	66	308	29	475	521 J	391 J	185 J

BOLD = Concentration exceeds GWQS/GV. = Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

TABLE 3 2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS

OLEAN REDEVELOPMENT SITE 3

		OLEAN REDEVELOPMENT SITE 3 OLEAN, NEW YORK																							
												•	Sample	Location											
Parameter ¹	GWQS/GV ²													N-4											
		08/28/08	11/06/09	08/11/10	11/11/10	02/15/11	05/17/11	08/16/11	11/15/11	02/22/12	07/18/14	12/18/14	04/14/15	09/02/15	08/10/16	12/14/16	05/18/17	12/21/17	06/11/18	07/09/19	06/23/20	06/24/21	08/02/22	06/12/23	07/30/24
Volatile Organic Compounds					1	1		1	1		T	T	1	1	1		T		1	T					1
1,2,4-Trimethylbenzene	5	671	635	614	577	313	113	361	498	248	257	398	226	377	210	174	26.7	99.3	94.6	ND	54	180	260 D	170	120
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	182	180	133	132	41.1	23	80.5	95.5	53.8	44	94.2	29.6	43.1	35.1	18.7	ND	6.74	2.99	ND	ND	12	11 D	ND	3.5
Acetone	50	ND	ND	ND	5.8	ND	13.8	ND	ND	9.8	44.1	ND	52.4	ND	ND	ND	ND	ND	ND	42 J	ND	6.8	ND	ND	ND
Benzene	1	47.8	35.3	56.7	32.8	48.5	16.3	47.1	44.9	31.4	28	45.7	37.5	38.3	40.2	20.7	7.31	15.6	9.99	6.9 J	6.5 J	7.9	6.5 D	2.8	2.9
Chlorobenzene	5	ND	0.95	0.7	1.1	ND	ND	0.56	ND	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	177	NA	171	247	101	91.9	18.4	72.2	60.1	51	37	130	140 D	63	65
Ethylbenzene	5	0.97	0.73	0.85	0.71	ND	ND	0.56	0.64	0.43	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.8	18.3	12.1	17.3	13	12.2	3.78	9.11	6.82	ND	ND	10	9.8 D	ND	10
m&p-Xylene	-	33.9	21.5	20.8	14.5	8.3	4.8	9.4	9.4	ND	6.06	17.7	2.61	3.49	ND	2.25	ND	ND	ND	ND	ND	1.3 J	ND	ND	ND
Methylcyclohexane	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	253	NA	137	189	82	55.9	7.95	21.7	18.2	15	9.1 J	52	71 D	ND	41
Methyl ethyl ketone (2- butanone)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	0.91	0.7	0.58	ND	ND	1.69	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	10.3	7.6	10.1	7.8	6.9	2.3	6.5	6.1	4.1	4.15	6.28	4.62	4.12	ND	3.92	1.05	2.19	1.93	ND	ND	2.6	2.5 J D	ND	2.2 J
p-Isopropyltoluene	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	1.99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	-	4.8	4.1	4.7	4.4	2.6	1.3	3.3	3.3	ND	2.44	4.17	2.52	3.01	ND	2.57	ND	1.8	ND	ND	ND	1.3 J	ND	ND	0.70 J
sec-Butylbenzene	5	6	4.7	5.2	5.1	3.7	1.3	3.6	3.2	2.1	2.77	3.39	3.39	4.29	ND	2.59	ND	2.29	2.47	ND	ND	3.1	3.0 J D	ND	2.8
tert-Butylbenzene	5	ND	1.9	2.1	2	1.3	ND	1.3	1.2	0.91	1.18	1.56	1.22	1.6	ND	1.08	ND	ND	ND	ND	ND	1.6 J	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	6.4	5	6.1	4.4	2.8	3.3	5.3	5.0	4.3	3.59	5.65	2.3	2.68	ND	1.37	ND	1.03	ND	ND	ND	0.74 J	ND	ND	ND
Total xylenes	5	38.7	25.5	25.6	18.8	10.9	6.1	12.7	26.9	23.4	8.5	21.8	5.13	6.50	ND	4.82	ND	1.8	ND	ND	ND	2.6	ND	ND	ND
Total VOCs		1,002	922	880	806	439	185	533	695	379	843	617	691	937	481	392	65	234	197	115	107	412	504	236	238
Total TICs		911	1,861	920	2,044	1,670	270	986	967	419	1,661	ND	312	479	231	199	100	113	181	80	63	154	131 J	127 J	119 J
Semi-Volatile Organic Comp	ounds (ug/L)																								
Acenaphthene	20	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	0.14							
Anthracene	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzaldehyde	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06 J	ND	ND							
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoroanthene	0.002	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND							
Benzo(g,h,i)perylene	-	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND							
Bis(2-ethylhexyl)phthalate	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Chrysene	0.002	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04 J	ND	ND							
Dibenzofuran		ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Dibenzo(a,h)anthracene	-	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Diethyl phthalate	50	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Fluorene	50	0.48	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.25	0.51	0.6	0.14							
Indeno(1,2,3-cd)pyrene	0.002	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND							
3 & 4 Methylphenol	1	ND	NA	ND	ND	14.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1-Methylnaphthalene		NL	NL	NL	NL	NL	NL	NL	NL	NL	NA	5.57	NA	NA	3.7 ⁶	NA	ND	ND	ND						
2-Methylnaphthalene	-	NL	NL	NL	NL	NL	NL	NL	NL	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05 J	ND	ND	ND
Naphthalene	10	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	ND	0.08 J							
Pentachlorophenol (note 7)	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	ND	ND	ND	0.18 J	ND	ND
Phenanthrene	50	0.96	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	ND							
Phenol (note 7)	1	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Pyrene	50	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.09 J	ND	0.18	0.05 J							
Total SVOCs		1.4	NA	ND	5.6	14	ND	ND	ND	ND	ND	ND	ND	ND	0.55	0.63	1	ND							
Total TICs		1,343	NA	241	ND	153	262	350	100	109	115	104	656	561	331	391 J	889 J	122 J							
			l	<u> </u>	·	ı		1	1		1	L		<u> </u>	ı		<u> </u>		1	<u> </u>	1	1	·		

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

 3. Isopropyl alcohol detected in field blank; result not used in VOC TIC totals.

 4. Well WCMW9 did not recharge; therefore, sample was not collected in June 2018, June 2021, August 2022, June 2023, and July 2024.

 5. Wells W24 and W22 not sampled in June 2020 due to the presence of LNAPL.

 6. 1-Methylnaphtalene is not included in the total SVOC sum but is included in the total TICs

 7. Total phenolic compounds (total phenols) GA groundwater quality limit of 1 ug/L

 Definitions:

 ND = Parameter not detected above laboratory detection limit.

 NA = Not analyzed.

 --- = Sample not analyzed for parameter or no SCO available for the parameter.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 F1 = MS and/or MSD Recovery is outside acceptance limits.

 NL = Analytical data package not located

 D = Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

BOLD = Concentration exceeds GWQS/GV. = Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS

OLEAN REDEVELOPMENT SITE 3

TABLE 3

									OLEAN, NEW	YORK										
,										Sa	mple Locati	on								
Parameter ¹	GWQS/GV ²	11/09/09	08/12/10	44/44/40	02/15/11	05/17/11	08/16/11	44/44/44	02/21/12	00/44/40	MW-5	05/47/47	40/04/47	00/44/40	07/00/40	06/23/20	06/25/21	08/03/22	00/40/00	07/04/04
Volatile Organic Compounds (ug/L)		11/09/09	00/12/10	11/11/10	02/15/11	05/17/11	06/16/11	11/14/11	02/21/12	08/11/16	12/15/16	05/17/17	12/21/17	06/11/18	07/09/19	06/23/20	06/25/21	00/03/22	06/13/23	07/31/24
1,2,4-Trimethylbenzene	5 (49/2)	224	548	77.8	353	413	412	370	580	ND	116	14.5	83.3	24.6	ND	ND	ND	ND	ND	1.7 J
1,2-Dichlorobenzene	3	0.4	ND	ND	ND	0.79	0.63	ND	0.73	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	-	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	2	ND	2.2	56.1	13.3	2.6	9	ND	ND	ND	ND	1.94	ND	ND	0.93 J	ND	ND	2.7
Acetone	50	14.8	ND	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.6	4.4 J	ND	2.7 J
Benzene	1	0.55	ND	ND	ND	0.58	0.95	1.4	0.39	ND	2.18	ND	1.34	ND	ND	ND	0.34 J	0.20 J	ND	0.52
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Cyclohexane		NA	ND	144	13.7	55.5	16.5	3.7 J	ND	3.1 J	0.89 J	ND	2.8 J							
Ethylbenzene	5	ND	0.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Isopropylbenzene	5	NA	2.06	3.48	ND	3.95	1.71	ND	ND	1.0 J	ND	ND	1.2 J							
m&p-Xylene	_	1.3	ND	ND	2.1	46.1	12.4	12.4	ND	ND	ND	ND	ND	ND	ND	ND	1.4 J	ND	ND	0.86 J
Methylcyclohexane	_	NA	ND	121	11	15.4	ND	2.1 J	ND	0.6 J	2.6 J	ND	2.1 J							
Methyl ethyl ketone (2-	50	ND	ND	84.6	ND															
butanone) n-Butylbenzene	5	1.1	ND	ND	1.6	ND	0.68	0.92	0.64	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND
*	5	9	19.4	2.2	14.2	3.9	9.6	12.7	16	1.68	2.12	ND ND	2.58	1.39	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Propylbenzene	5	NA NA	NA	NA	NA	NA	NA	NA	NA	ND	1.02	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND
p-Isopropyltoluene		1.9	1.9	0.54	1.6	7.1	4.6	4.6	ND ND	ND ND	1.39	ND ND	1.71	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-Xylene sec-Butylbenzene	5	3.5	7.1	1.9	5.4	2.2	3.7	4.0	5	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	5	0.75	ND	0.58	ND	ND	1.1	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND
tert-Butylbenzene Trichloroethene	5	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	0.4 J
Toluene	5	ND	ND	ND ND	ND	0.42	0.2	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND
Total xylenes	5	3.2	1.9	0.54	3.7	53.2	17.1	7.70	5	ND	1.39	ND	1.71	ND	ND	ND ND	1.4 J	ND	ND	ND
Total VOCs		261	580	91	384	583	476	416	617	3.7	477	39	165	46	5.8	ND	15	8.1	ND	14
Total TICs		450	1,181		1,694	1,678		1,292		231	173	72	283	99	ND	ND	20	25 J	15 J	37 J
emi-Volatile Organic Compounds (ug/L) cenaphthene 20 NA NO															ND					
Anthracene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Benzaldehyde		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Benzo(a)anthracene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	0.13 J D	ND	ND							
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoroanthene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Benzo(g,h,i)perylene	-	NA	ND	ND	ND	ND	ND	ND	ND	ND	0.07 J D	ND	ND							
Bis(2-ethylhexyl)phthalate	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND							
Chrysene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	0.09 J D	ND	ND							
Dibenzofuran	-	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Dibenzo(a,h)anthracene	-	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Diethyl phthalate	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Fluorene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	0.14 J D	ND	ND							
Indeno(1,2,3-cd)pyrene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
3 & 4 Methylphenol	1	NA	ND	47.4	65.5	ND														
1-Methylnaphthalene	-	NA	NA	20.7 ⁶	NA	NA	NA	NA	NA	NA	ND	ND	ND							
2-Methylnaphthalene	-	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Naphthalene	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Pentachlorophenol (note 7)	1	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Phenanthrene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Phenol (note 7)	1	NA	ND	ND	10	ND														
Pyrene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	0.12 J D	ND	ND							
Total SVOCs	-	NA	ND	47	76	ND	ND	ND	ND	0	0.55	ND	ND							
Total TICs	-	NA	447	1,692	60	21	132	2,802	743	1,900	567 J	367 J	278 J							

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

 3. Isopropyl alcohol detected in field blank; result not used in VOC TIC totals.

 4. Well WCMW9 did not recharge; therefore, sample was not collected in June 2018, June 2021, August 2022, June 2023, and July 2024.

 5. Wells W24 and W22 not sampled in June 2020 due to the presence of LNAPL.

 6. 1-Methylnaphthalene is not included in the total SVOC sum but is included in the total TICs.

 7. Total phenolic compounds (total phenols) GA groundwater quality limit of 1 ug/L

 Definitions:

 ND = Parameter not detected above laboratory detection limit.

 NA = Not analyzed.

 *--" = Sample not analyzed for parameter or no SCO available for the parameter.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 F1 = MS and/or MSD Recovery is outside acceptance limits.

 NL = Analytical data package not located

 D = Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentration of the analyte.

= Concentration exceeds GWQS/GV.
= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS

OLEAN REDEVELOPMENT SITE 3

TABLE 3

						,	OLEAN REDE OLEAN	I, NEW YORI									
									Sample	Location							
Parameter ¹	Parameter ¹ GWQS/GV ²		W-18														
Volatile Organic Compounds (ug/L)		08/26/08	11/06/09	08/10/10	11/09/10	02/16/11	05/17/2011	12/14/16	05/17/17	12/21/17	06/11/18	07/10/19	06/22/20	06/24/21	08/03/22	06/13/23	07/31/24
1,2,4-Trimethylbenzene	5 (ug/L)	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichlorobenzene	3	ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
1,3,5-Trimethylbenzene	5	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
Acetone	50	8.6	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND ND	ND	ND ND	ND ND	ND ND	2.0 J	1.5 J	ND ND	ND ND
Benzene	1	ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Chloroform	7	0.48	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	<u>'</u>	NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND
m&p-Xylene		ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-																	
butanone)	50	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	-	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	1.3	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	1.9	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.53	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total xylenes	5	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs	-	13	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	2.0	1.5 J	ND	ND
Total TICs		ND	NA	NA	NA	NA	NA	5.6	8.1	ND	ND	ND	ND	6.9	ND	ND	ND
Semi-Volatile Organic Comp			1	1	1	1	1		1	1	1	1	T	1	1	1	
Acenaphthene	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	50	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	0.12	0.08 J	ND	ND
Benzaldehyde		NA	NA 	NA 	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.04 J	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoroanthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.15	0.01 J	ND	ND
Benzo(g,h,i)perylene	-	0.75	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.37	0.01 J	ND	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.25	0.02 J	ND	ND
Dibenzofuran	-	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	50	ND	ND	ND 0.45	ND 0.50	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.40	ND	ND	ND
Fluorene	50	1.9	ND	0.45	0.59	ND	ND	ND	ND	ND	ND	ND	ND	0.12	0.13	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	ND	ND	ND
3 & 4 Methylphenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene	-	NL NI	NL NI	NL NI	NL NI	NL 	NL NII	NA	NA NB	NA NB	NA	NA NB	NA NB	NA	ND	ND	ND
2-Methylnaphthalene		NL	NL	NL	NL	NL	NL	ND	ND	ND	ND	ND	ND	0.04 J	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06 J	ND	ND
Pentachlorophenol (note 7)	1	NA 	NA 	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	4.4	ND	0.67	0.7	ND	ND	ND	ND	ND	ND	ND	ND	0.07 J	0.06 J	ND	ND
Phenol (note 7)	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 J
Pyrene	50	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38	0.06 J	ND	ND
Total SVOCs	-	14	ND	1.1	1.3	ND	ND	ND	ND	ND	ND	ND	ND	1.7	0.3	ND	0.5
Total TICs	-	ND	156	40.0	219	74	234	ND	ND	39	ND	303	26	89	41 J	49 J	17 J

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

 3. Isopropyl alcohol detected in field blank; result not used in VOC TIC totals.

 4. Well WCMW9 did not recharge; therefore, sample was not collected in June 2018, June 2021, August 2022, June 2023, and July 2024.

 5. Wells W24 and W22 not sampled in June 2020 due to the presence of LNAPL.

 6. 1-Methylnaphtalene is not included in the total SVOC sum but is included in the total TICs

 7. Total phenolic compounds (total phenols) GA groundwater quality limit of 1 ug/L

 Definitions:

 ND = Parameter not detected above laboratory detection limit.

 NA = Not analyzed.

 *--" = Sample not analyzed for parameter or no SCO available for the parameter.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 F1 = MS and/or MSD Recovery is outside acceptance limits.

 NL = Analytical data package not located

 D = Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

BOLD = Concentration exceeds GWQS/GV. = Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS

OLEAN REDEVELOPMENT SITE 3

TABLE 3

							OLEAN	I, NEW YOR									
n 1	0140010142									Location							
Parameter ¹	GWQS/GV ²	08/30/12	07/18/14	12/18/14	04/13/15	09/02/15	08/10/16	12/15/16	05/17/17	-29 12/21/17	06/11/18	07/09/19	06/23/20	06/25/21	08/03/22	06/12/23	07/30/24
Volatile Organic Compounds	(ug/L)	00,00,12	01110111		0 1010	00,02,10	30, 10, 10		00/11/11		00.10	0.1.00.10	00.20.20	00/20/21	00.00.22	00/12/20	07700721
1,2,4-Trimethylbenzene	5	600	168	135	16.3	5.6	11.4	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	-	NA	NA	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	84	ND	12.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	4.8	5.16	1.72	ND	2.09	1.3	ND	ND	ND	1.25	ND	ND	0.82	0.29 J	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		ND	39.7	NA	7.96	ND	12.5	ND	ND	ND	ND	ND	ND	ND	1.1 J	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	14	5.49	4.98	1.30	3.64	5.44	ND	ND	ND	ND	ND	ND	ND	1.5 J	ND	ND
m&p-Xylene	-	ND	4.34	3.13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	-	ND	49.5	NA	8.51	ND	21.5	ND	ND	ND	ND	ND	ND	ND	11	ND	0.79 J
Methyl ethyl ketone (2- butanone)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	1.13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	-	ND	4.38	2.6	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	10	2.65	3.6	1.17	1.91	3.37	ND	ND	ND	ND	ND	ND	ND	1.8 J	ND	ND
tert-Butylbenzene	5	3.3	1.89	2.08	ND	1.11	1.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	2.19	1.99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total xylenes	5	ND	8.72	5.73	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs		718	292	174	35	18	57	1.1	ND	ND	1.3	ND	ND	0.82	15.70	ND	0.79 J
Total TICs	-	1,625	624	ND	173	222	352	18	16	9	4	ND	ND	ND	80 J	ND	3.5 J
Semi-Volatile Organic Comp	ounds (ug/L)		•		<u>'</u>					<u>'</u>	<u>'</u>	•	<u>'</u>				,
Acenaphthene	20	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzaldehyde		NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoroanthene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	-	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	-	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	-	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	0.13	ND
Indeno(1,2,3-cd)pyrene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3 & 4 Methylphenol	1	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene	-	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND
2-Methylnaphthalene	-	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol (note 7)	1	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol (note 7)	1	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total SVOCs		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	0.13	ND
Total TICs	-	NA	62	ND	734	363	339	54	3.1	19	ND	333	343	55	103 J	242 J	21 J

- Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

 3. Isopropyl alcohol detected in field blank; result not used in VOC TIC totals.

 4. Well WCMW9 did not recharge; therefore, sample was not collected in June 2018, June 2021, August 2022, June 2023, and July 2024.

 5. Wells W24 and W22 not sampled in June 2020 due to the presence of LNAPL.

 6. 1-Methylnaphtalene is not included in the total SVOC sum but is included in the total TICs

 7. Total phenolic compounds (total phenols) GA groundwater quality limit of 1 ug/L

 Definitions:

 ND = Parameter not detected above laboratory detection limit.

 NA = Not analyzed.

 --- = Sample not analyzed for parameter or no SCO available for the parameter.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 F1 = MS and/or MSD Recovery is outside acceptance limits.

 NL = Analytical data package not located

 D = Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

BOLD = Concentration exceeds GWQS/GV. = Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS

OLEAN REDEVELOPMENT SITE 3

					C	LEAN, NEW	YORK							
- 1							Sa	mple Locatio	n	1410.4			14/00	
Parameter ¹	GWQS/GV ²	07/18/14	12/18/14	04/14/15	WCMW-9 3,4 12/14/16	05/17/17	12/21/17	07/10/19	06/12/18	W24 06/13/23	07/30/24	07/10/19	W22 06/13/23	07/31/24
Volatile Organic Compounds	(ua/L)	01710714	12/10/14	0-7/1-7/10	12/14/10	00/11/11	12/2 1/11	01710710	00/12/10	00/10/20	01700/24	01710710	00/10/20	07/01/24
1,2,4-Trimethylbenzene	5	12.2	ND	ND	ND	ND	ND	ND	10.5	ND	23	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	-	NA	ND	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2 J	ND	ND	ND
Acetone	50	51.3	ND	ND	ND	ND	ND	11	ND	ND	ND	89 J	ND	3.30 J
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	-	ND	NA	ND	ND	ND	ND	ND	34.7	ND	70	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.40 J	ND	ND	ND
m&p-Xylene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	-	ND	NA	ND	ND	ND	ND	ND	11.1	ND	22	93	ND	6.1 J
Methyl ethyl ketone (2- butanone)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5 J	ND	ND	0.75 J
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs	-	64	ND	ND	ND	ND	ND	11	56	ND	50 J	182	ND	12 J
Total TICs	-	34	ND	5.7	1.6	4.1	ND	ND	200	132 J	185 J	9,350	58 J	80 J
Semi-Volatile Organic Comp	ounds (ug/L)													
Acenaphthene	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzaldehyde	-	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	ND
Benzo(b)fluoroanthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.24	ND
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	0.62	ND	ND	0.28	ND
Dibenzofuran	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	50	ND	ND	ND	ND	ND	ND	0.37 J	ND	ND	ND	ND	ND	ND
Fluorene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3 & 4 Methylphenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene	-	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA	ND	ND
2-Methylnaphthalene	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol (note 7)	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	1.6 JB	ND	ND	ND	ND	ND	ND
Phenol (note 7)	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	0.31	ND	7.3 J	0.61	ND
Total SVOCs		ND	ND	ND	ND	ND	ND	1.97	ND	1	ND	7.3	1.3	0
Total TICs	-	ND	ND	ND	7.0	18	79	216	42	272 J	41 J	3,064	193 J	169 J

TABLE 4

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - METALS

OLEAN REDEVELOPMENT SITE 3 OLEAN, NEW YORK

																		Sample L	Location																
Parameter ¹	GWQS/GV ²					MV	/sw										MV	I-4											MV	N-5					
		12/14/16	05/18/17	12/21/17	06/11/18	07/09/19	06/23/20	06/24/21	08/03/22	06/12/23	07/30/24	08/28/08	08/10/16	12/14/16	05/18/17	12/21/17	06/11/18	07/09/19	06/23/20	06/24/21	08/02/22	06/12/23	07/30/24	08/27/08	08/11/16	12/14/16	05/17/17	12/21/17	06/11/18	07/09/19	06/23/20	06/25/21	08/03/22	06/13/23	07/31/24
Metals (ug/L)																																			
Arsenic	25	36.9	10.3	35.3	0.0147	ND	ND	1.9	11	11.14	7.13	17.3	14.4	10.7	ND	ND	ND	6.9 J	5.6 J	7.1	7	7.79	4.7	ND	12.4	ND	17.1	14.1	ND	8.7 J	5.8 J	14.1	15.0	3.81	0.96
Chromium	50	ND	5.2	ND	ND	ND	1.2 J	ND	ND	4.74	0.33 J	ND	0.3	ND	4.09	0.4 J	ND	1.5 J	1.1	6 J	ND	0.63 J													
Lead	25	19.9	6.6	19.2	ND	ND	ND	ND	ND	11.02	1.33	ND	6.2	ND	ND	ND	ND	ND	ND	0.4	ND	5.95	ND	ND	17.8	ND	ND	ND	ND	4.5 J	5.4 J	4.9	12.0	ND	1.63

- Notes:
 1. Only compounds of concern (Arsenic, chromium, and lead) are presented in this table.
 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.
 3. Sample results not considered representative of actual groundwater concentrations since turbidity of sample was >1,000 NTU; no filtered sample was collected.
 4. Well WCMW9 did not recharge; therefore, sample was not collected in June 2018, June 2021, June 2021, August 2022, June 2023, and July 2024.
 5. Wells W24 and W22 not sampled in June 2020, June 2021, and August 2022 due to the presence of LNAPL.

ND = Parameter not detected above laboratory detection limit.
NS = Not sampled since well went dry.

= Concentration exceeds GWQS/GV.
= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

TABLE 4

2008-2024 GROUNDWATER ANALYTICAL SUMMARY - METALS

OLEAN REDEVELOPMENT SITE 3 OLEAN, NEW YORK

																	Sample Loca	ition													
Parameter ¹	GWQS/GV ²					W	-18										W-29							WCMW-9			W24			W22	
		12/14/16	05/17/17	12/21/17	06/11/18	07/09/19	06/22/20	06/24/21	08/03/22	06/13/23	07/31/24	08/10/16	12/14/16	05/17/17	12/21/17	06/11/18	07/09/19	06/23/20	06/25/21	08/03/22	06/12/23	07/30/24	05/17/17	12/21/19	7/10/2019 ³	06/12/18	06/13/23	07/30/24	07/09/19	06/13/23	07/31/24
Metals (ug/L)																															
Arsenic	25	ND	ND	ND	ND	ND	ND	12.7	9	5.54	3.88	ND	ND	ND	27.5	ND	ND	ND	2.81	5 J	12.16	18.89	NS	ND	910	0.01	25.85	2.05	24	2.83	0.66
Chromium	50	ND	ND	ND	ND	2 J	2.2 J	11.9	ND	ND	0.26 J	ND	ND	ND	ND	0.0058	5.4	ND	0.19 J	ND	1.21	0.30 J	NS	ND	22	ND	4.25	0.6 J	11	1.29	0.29 J
Lead	25	ND	ND	ND	ND	ND	7.7 J	49.0	ND	ND	0.69 J	5	30	9	ND	ND	ND	3.9 J	3.09	ND	3.62	0.92 J	NS	ND	210	0.0108	9.02	0.86 J	61	5.53	0.58 J

- Notes:
 1. Only compounds of concern (Arsenic, chromium, and lead) are presented in this table.
 2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.
 3. Sample results not considered representative of actual groundwater concentrations since turbidity of sample was >1,000 NTU; no filtered sample was collected.
 4. Well WCMV9 did not recharge; therefore, sample was not collected in June 2018, June 2020, June 2021, August 2022, June 2023, and July 2024.
 5. Wells W24 and W22 not sampled in June 2020, June 2021, and August 2022 due to the presence of LNAPL.

- ND = Parameter not detected above laboratory detection limit.
 NS = Not sampled since well went dry.

= Concentration exceeds GWQS/GV.
= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C905033	Site Det	ails		Box 1	
Sit	e Name Olea	ın Redevelopment Parce	el 3				
City Co	e Address: 14 y/Town: Olea unty: Cattarau e Acreage: 24	gus	Street	Zip Code: 1470	60		
Re	porting Period	: October 09, 2023 to Oc	tober 09,	2024			
1.	Is the inform	ation above correct?				YES	NO
		e handwritten above or on	ı a separa	te sheet.		V	
2.		all of the site property beendment during this Repor			ged, or undergone a		\checkmark
3.		en any change of use at t R 375-1.11(d))?	he site du	ıring this Report	ing Period		\checkmark
4.	•	deral, state, and/or local po property during this Repor	•		charge) been issued		\checkmark
		ered YES to questions 2 entation has been previo					
5.	Is the site cu	rrently undergoing develo	pment?				\checkmark
						Box 2	
						YES	NO
6.		t site use consistent with t and Industrial	he use(s)	listed below?		\checkmark	
7.	Are all ICs in	place and functioning as	designed	?	\checkmark		
		E ANSWER TO EITHER QU OO NOT COMPLETE THE				and	
AC	Corrective Mea	asures Work Plan must be	e submitte	ed along with th	nis form to address t	hese iss	ues.
 Sig	nature of Own	er, Remedial Party or Desig	gnated Re	presentative	 Date		

		Box 2	A
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?	YES	NO 🗹
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	\checkmark	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	E NO. C905033	Во	x 3
ı	Description of Institutional Controls		

Parcel	<u>Owner</u>	Institutional Control
94.048-1-1.1	Solean LLC	
		Ground Water Use Restriction
		Soil Management Plan
		Landuse Restriction
		Monitoring Plan
		Site Management Plan
		O&M Plan
		IC/EC Plan

- -All engineering controls (ECs) must be operated and maintained as specified in the Site Management Plan (SMP);
- -All ECs must be inspected at a frequency and in a manner defined in the SMP.
- -The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Cattaraugus County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- -Groundwater and other environmental or public health monitoring must be performed as defined in the SMP:
- -Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP:
- -All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- -Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP:
- -Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP; and
- -Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.

94.048-1-1.2 Solean LLC

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Monitoring Plan
Site Management Plan
O&M Plan
IC/EC Plan

- -All engineering controls (ECs) must be operated and maintained as specified in the Site Management Plan (SMP);
- -All ECs must be inspected at a frequency and in a manner defined in the SMP.
- -The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Cattaraugus County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- -Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- -Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP:
- -All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP:
- -Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- -Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP; and
- -Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

94.048-1-1.1

Vapor Mitigation Cover System

Air Sparging/Soil Vapor Extraction

-a site cover that will allow for commercial use, that will consist either of structures such as buildings, pavement, sidewalks comprising the site development or a soil cover in areas where the upper one foot of exposed surface soil will exceed the applicable SCOs;

- -removal of LNAPL from monitoring wells using the methods outlined in the SMP and RAWP;
- -a soil vapor extraction (SVE) system to mitigate residual contamination in subsurface soil; and
- -a vapor mitigation system for any future building(s) developed on-site.

94.048-1-1.2

Vapor Mitigation Cover System

Air Sparging/Soil Vapor Extraction

- -a site cover that will allow for commercial use, that will consist either of structures such as buildings, pavement, sidewalks comprising the site development or a soil cover in areas where the upper one foot of exposed surface soil will exceed the applicable SCOs;
- -removal of LNAPL from monitoring wells using the methods outlined in the SMP and RAWP;
- -a soil vapor extraction (SVE) system to mitigate residual contamination in subsurface soil; and
- -a vapor mitigation system for any future building(s) developed on-site.

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C905033

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false

statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. 2558 Hamburg Turnpike, Suite 300 at _ Buffalo, New York 14218 Michael A. Lesakowski print name print business address Designated Representative of Owner am certifying as (Owner or Remedial Party) for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	Roux Environmental Engineering and Geology D.P.C. 2558 Hamburg Turnpike, Buffalo, NY, 14218
print name	print business address
am certifying as a Professional Engineer for	he
Signature of Professional Engineer for the C	OF NEW OF RESSIONALE Date
Signature of Professional Engineer, for the C	owner or Stamp Date

(Required for PE)

Remedial Party, Rendering Certification

APPENDIX B

SITE INSPECTION PHOTOGRAPHIC LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 3:

Photo 4:

May 3, 2024

- Photo 1: BCP Site 3, 1408 Buffalo Street parcel, conditions (looking south).
- Photo 2: BCP Site 3, 1404-06R Buffalo Street parcel, conditions along the western boundary of the property (looking northwest)
- Photo 3: BCP Site 3, 1404-06R Buffalo Street parcel, roadway along the southern boundary (looking east)
- Photo 4: BCP Site 3, 1404-06R Buffalo Street parcel, conditions along the southern boundary at the end of gravel access road (looking east)

SITE PHOTOGRAPHS

Photo 5:

Photo 6:

Photo 7:

Photo 8:

May 3, 2024

Photo 5: BCP Site 3, boundary between 1404-06R/1420 Buffalo Street parcels, roadway conditions (looking north)

Photo 6: BCP Site 3, greenspace between solar panel row conditions (looking east).

Photo 7: BCP Site 3, eastern boundary (looking north).

Photo 8: BCP Site 3, northern boundary SVE-3-25, diluting valve (looking east).

SITE PHOTOGRAPHS

Photo 9:

Photo 11:

Photo 10:

Photo 12:

May 3, 2024

- Photo 9: BCP Site 3, conditions, SVE-2 trailer with surrounding greenspace in the western portion of the site (looking west).
- Photo 10: BCP Site 3, greenspace between solar panel row conditions from the western boundary (looking east).
- Photo 11: BCP Site 3, infiltration detention swale and perimeter swale on the northern boundary (looking northeast)
- Photo 12: BCP Site 3, greenspace between solar panel row conditions from the northern boundary (looking east).

APPENDIX C

GROUNDWATER SAMPLING FIELD FORMS AND ANALYTICAL DATA

EQUIPMENT CALIBRATION LOG

SETTINGS

POST CAL. READING

STANDARD

CAL. BY

SERIAL NUMBER

4.01

4.00

10.00

10.01

10 NTU verification

7.08

7.00

カナガ

6213516 6243084 6212375

6243003 6223973

Rental

BM

X

Instrument Source:

45/05/L

Date:

PROJECT INFORMATION: Project Name: Project No.: Client: METER TYPE UNITS TIME MAKE/MODEL UNITS TIME MAKE/MODEL Myron L Company US Myron L Company US Turbidimeter US Wyron L Company US Ultra Meter 6P Ultra Meter 6P Ultra Meter 6P Ultra Meter 6P

						10 N I U verification		
4		/.	ō	06120C020523 (P)		<0.4	0	
Turbidity meter	NTC	14	2100Q		2110	20	22	
		O,	Turbidimeter	17110C062619 (Q)		100	76	
		,				800	820	
Sp. Cond. meter	Sm		Myron L Company Ultra Meter 6P	6213516		mS @ 25 °C		
			40	6243003				
	200		MinDAE 2000			open air zero		MIBK response
-	1		IMILITY ZOOO			ppm Iso. Gas		factor = 1.0
Poisson Control of the Control of th	55.65	C	700001 107 00 1 1 0 VII	171932597009			•	
Dissolved Oxygen	Eldd d	h (0	HACH Model HUSOG	100500041867	MrE	100% Satuartion	1000	510 Pt
		2/		22293299821				1, 50%
☐ Particulate meter	mg/m ₃					zero air		
☐ Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS:	ļ.,							
PREPARED BY:				DATE:				

Project Name: Solean (Olean Gateway Parcel 3)

Date: 7/30/24

Location:

Olean, NY

Project No.: 4388.0001B000

Field Team:

MTF & TSB

Well No	. WCM	v 9	Diameter (in		şi.	Sample Date	e / Time: No	SAMP	LE
	oth (fbTOR):		Water Colur	nn (ft):	20	DTW when			
DTW (statio) (fbTOR):	7.89	One Well Vo	olume (gal):	.03	Purpose:	Development	☐ Sample	Purge & Sample
Total Depth	(fbTOR):	8.09	Total Volum	e Purged (gal):	OSAB MID	Purge Metho	od: Bailer	ſ	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
10:47	₀ Initial	0.0	7.19	19,4	728.4	457	2.26	-10	Tubid uo od
10:58	1 027								
10:30	2 Dri								
	3								
	4								-
	5								
	6								
	7								
	В								
	9								
	10								
Sample I	nformation		V.						
	S1								
	S2								

Well No	. Mw - L	1	Diameter (in	ches):	2"	Sample Dat	e / Time: 7/3	0/24	912:59
Product Dep	oth (fbTOR):		Water Colur	nn (ft):	6.83	DTW when		23.81	
DTW (static)	(fbTOR): 7	2.97	One Well Volume (gal):			Purpose: Development Sample Purge & Sample			
Total Depth	(fbTOR): 7	9.81	Total Volume Purged (gal): 5000			Purge Metho	od: Low	Flow	Pump
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
12.29	o Initial	0,0	8.17	18.1	1575	340	1.05	- 58	Pubid/ SUlar
12.32	1 TOP	1 - 25	7.50	15.1	1486	94	1.79	-68	Clear / no oder
12.35	2 top	2.25	7.31	15.6	1508	83	2.19	-82	Chear Ino oder
12:40	3 23.24	3.00	7.56	14.3	1548	40	1.78	-71	n 11
12:43	4 23.24	4.25	7.55	14.0	1573	33	2.81	-83	1. 11
12:46	5 23.21	4.75	7.36	13.9	1979	45	1.78	-86	/ 11
12:49	6 23.24	5.25	7.37	16.0	1582	25	2.02	-89	10 11
12:54	723.83	6.00	7.35	14.3	1563	24	1.83	L91	71 5
	8								
	9								
	10								
Sample II	Sample Information:					,			in .
	S1 23.81	7.06	7.25	13.4	1574	11	1.72	-94	11
	S2 22.96	8.00	7.27	13.9	1547	22	1.54	-94	11 302

REMARKS:

M5/M905 Dore MW-4

Volume Calculation

Diam. Vol. (g/ft)

1" 0.041

2" 0.163

4" 0.653

6" 1.469

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

Stabilization Criteria

Note: All water level measurements are in feet, distance from top of riser.

NCMc 9 -> not onough

water to sampt

Project Name: Solean (Olean Gateway Parcel 3)

Date:

Location: Olean, NY Project No.: 4388.0001B000

Field Team:

MTF & TSB

Well No	o. W 2 c	1	Diameter (in	nches): 2"		Sample Dat	e/Time: 7/	30/24	9 1:59	
Product De	epth (fbTOR):		Water Colu	mn (ft):	2.55	DTW when	DTW when sampled: 21, 39			
DTW (stati		21.321	One Well V	olume (gal):	1.39	Purpose: Development Sample Purge & Sample				
Total Dept	n (fbTOR): 2	9.87'	Total Volume Purged (gal): 5,50			Purge Metho	od: Low	Flow	Pump	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1:40	o Initial	0.0	8,25	16.9	1649	71000	1.51	-54	NIGIJ/NO ONU	
1:45	1 21,39	1.25	7.25	15.2	1756	83	1.74	-79	Cheat for oder	
1:49	2 21.39	2.25	7.13	14.3	1705	30	1. 56	-77	Clear / no ode	
1:51	3 21.39	3.25	7.13	15,6	1671	24	1.40	-82	Clear I no on	
1: 55	4 21.39	4.00	7.15	19.6	1670	29	1.12	-88	Clear Inv od	
	5									
	6									
	7									
	В									
	9									
	10									
Sample	Information:									
1:57	S1 21.39	4,50	7.19	15.6	1625	27	1.11	-84	Clear no oc	
2:04	S2 21,79	5, 50	7.18	19.3	1678	27	.98	-96	(kg//nd od	

Well No	Vell No. Mwsw Diameter (inches): 2"					Sample Dat	e / Time: 7/30	7/24 3	2:52
Product Deg	oth (fbTOR):		Water Colur	mn (ft): 2	.68	DTW when	sampled:	OP 1	Pump 1
DTW (static) (fbTOR): 2	1.79	One Well Vo		.43	Purpose: Development Sample Purge & Sample			
Total Depth	(fbTOR): 2	4,471	Total Volum	Total Volume Purged (gal): 5 , 0 0			od: Lew	Flow	pump
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
2:36	o Initial	0,0	7.93	18.5	1244	33	1.88	-61	(lear / no odo
2:39	1 10 P	1.00	7.62	14.6	1235	17	2.06	- 88	Clear I no oder
2:44	2 FOP	2.00	7.26	14,0	1231	23	7.06	-84	Mens Invode
2:47	3 10P	3.00	7.25	14.4	1226	19	1. 56	-84	Clear / no od
	4								_
	5								
	6								
	7								
	В								
	9								
	10								
Sample I	nformation:								
2:49	81 (0) 0	3:75	7.24	14.9	1242	24	1.50	-84	(lew/no oder
2159	S2 10 P	5.00	7.24	14.0	1238	24	1.71	-80	Clear Ino ode

MUSW 70P= 21.80 **REMARKS:** 60 done MWSDU Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation Diam. Vol. (g/ft) 0.041 2" 0.163 4" 0.653 1.469

Stabilization Criteria Parameter Criteria ± 0,1 unit ρН SC ± 3% Turbidity ± 10% DO ± 0.3 mg/L ORP ± 10 mV

PREPARED BY:

Project Name: Solean (Olean Gateway Parcel 3)

Date:

Location:

Olean, NY

Project No.: 4388.0001B000

Field Team:

MTF & TSB

Well No	. W24	1	Diameter (ir	nches): 2		Sample Dat	e / Time: 7/	30/24 6	3:45 pm
Product Dep	oth (fbTOR):	N/A	Water Colui	mn (ft):	7.33	DTW when sampled			
DTW (static	c) (fbTOR): 2	4,28	One Well V	olume (gal):	1.52 6.00	Purpose: Development Sample Purge & Sample			
Total Depth	(fbTOR): 3	DR): 33.61 Total Volume Purged (gal): 5.25			Purge Meth	od: Pur	ND		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
3:27	₀ Initial	0.0	7.79	18.8	1397	71000	.63	-115	rubid Joily
3:29	155/63	1.00	7.49	16.8	1404	143	1.83	-113	St hubid lac or
3:32	2 25.63	2.00	7.60	16.1	1412	135	1.65	-107	Clear Inc ode
3:36	3 25.63	2.50	7.30	14,9	1409	92	1.93	-105	(kar Ino ode
3:39	4 29.63	3.29	7:31	14.4	1427	68	1.76	-104	Chear Ino oder
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:								
3:42	s1 29.63	4.00	7,27	14.7	1406	60	1,57	-104	(leas/no oder
3:47	82 25.63	5.00	7.28	14.9	1402	52	1.61	-102	(lear/no oder

MA/all At	- 10:10					Sample Date / Time: 7/31/24 9 11:14 am				
well N	o. W18		Diameter (in	ches): 4"		Sample Dat	e / Time: 7/	31/24 6	r lilly an	^
Product De	epth (fbTOR):		Water Colun	nn (ft): 4.4	7	DTW when	sampled: 2	5.94		
DTW (stati	c) (fbTOR): 2 9	.48	One Well Vo	olume (gal): 2	.92	Purpose: Development Sample vurge & Sample				
Total Depti	(fbTOR): 29	.95	Total Volume	e Purged (gal):	5.50	Purge Meth	Purge Method: Low Flow Pump			
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO .(mg/L)	ORP (mV)	Appearance Odor	e &
10:55	o Initial	00	8,50	19.5	994,1	103	1.75	-24	Mear Ino	oder
10:59	124.78	1.25	7.14	15.2	991.7	45	2.10	-21	learino	oden
11:01	2 25.89	2.00	6.95	13.9	989.2	34	1.71	-25	Clear Ino	oda
11:04	3 25.94	3.00	6.96	15.0	988.8	33	1.60	-10	(lear/no	ock
11:08	425.90	3.50	6.95	14.2	998.4	31	1.45	-14	clear Inc	ade
	5		, , , ,						Creat JACO	-
	6									
	7									
	8									
	9								_	
	10									
Sample	Information:		,	***						
11:10	\$125.91	4.00	6.73	14.2	1007	32	1.40	-31	Mear / n	12 000
11:18	S2 25,971	5,00	689	B.31	1014	21	1.42	-31	rlearino	
									ilization Criteria	

REMARKS:			
Note: All water level measu	rements are in feet,	distance from t	op of riser.

Volume Calculation

Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1.469

 Stabilization Criteria

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

PREPARED BY:

Groundwater Field Form-Roux xls

GWFF - 8M

Project Name: Solean (Olean Gateway Parcel 3)

Date:

Location:

Olean, NY

Project No.: 4388.0001B000

Field Team:

MTF & TSB

Well No	o. MW5		Diameter (ir	nches): Z	0	Sample Dat	Sample Date / Time: 7/31/24 (3) 12:14 pm			
Product De	pth (fbTOR):	N/A	Water Colu	mn (ft):	11	DTW when sampled: TOP PUMP				
DTW (statio	c) (fbTOR): 20	5,59	One Well V	olume (gal):	- 99	Purpose: Development Sample Purge & Sample				
Total Depth	(fbTOR): 24	.70	Total Volume Purged (gal): 6.25			Purge Metho	od: Low	Flow Pa	unp	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
11:44	o Initial	0.0	7.86	16.8	1458	7/000	, 58	-168	Publid/Sulter	
11:49	1 22.42	1.00	7.18	15.1	1412	60	. 56	-190	St hubid Ino od	
11:53	2 22.45	1.25	7,25	15.3	1470	38	. 51	4177	lleav/ no och	
11:57	3 23.63	2.25	6.90	14.8	1495	40	.60	-189	Clear Ino och	
1210)	423.02	3.00	7.08	14.2	1455	44	•61	-168	Clear I no odes	
12:05	522.25	4.00	6.87	14.9	1451	46	.78	-172	Clear 100 odd	
12:08	6 24.76	4,75	6.88	14.1	1477	48	. 58	-160	Char / no ode	
	B									
	9									
	10									
Sample	Information:									
12:11	S1 TOP	5.25	6.88	14.2	1476	41	,59	-164	(har Ino odd	
12:17	S2 70 10	6.25	6.87	14.5	1460	39	.75	-157	Mearlno odel	

Well No). W 22		Diameter (ir	nches): 4	(Sample Dat	e / Time: 7/	3/24 B	1:07 pm
Product De	pth (fbTOR):		Water Colu	mn (ft): 7,	26	DTW when		28.11	
DTW (statio		1.46	One Well V	olume (gal):	1.74	Purpose: Development Sample Purge & Sample			
Total Depth	(fbTOR): 3	1.77	Total Volum	e Purged (gal):	21.00	Purge Meth	od: 🔥 sc	ler	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
12:48	o Initial	0.0	7.68	16.2	1269	188	1.82	-128	SI toobid/no on
12:52	1 27.81	5.00	7.45	15.1	1255	179	1.35	-123	36 Kibid/40 a
12: 56	2 28.01	10.00	6.96	14.0	1263	78	1,49	-105	Char Ino oder
12:59	3 28 3	15.00	6.95	14.3	1783	49	1.59	-76	(lear / no odo
	4								1
	5								
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:								
1:02	51 28, 11	20.00	6.78	14,2	1284	38	1.25	-79	Clear luo od
1:09	52 29 , 17	21.00	6.76	13.1	1248	25	1.60	-76	Charles of
				011 111				Stab	ilization Criteria

REMARKS: TOP PUMP 25.64 - MWS

Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation

Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1.469

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

PREPARED BY:

ANALYTICAL REPORT

Lab Number: L2443419

Client: Roux

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Lori Riker

Phone: (716) 856-0599

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Report Date: 08/12/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419 **Report Date:** 08/12/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2443419-01	MW-4	WATER	OLEAN,NY	07/30/24 12:59	08/02/24
L2443419-02	W29	WATER	OLEAN,NY	07/30/24 13:59	08/02/24
L2443419-03	MWSW	WATER	OLEAN,NY	07/30/24 14:52	08/02/24
L2443419-04	W24	WATER	OLEAN,NY	07/30/24 15:45	08/02/24
L2443419-05	W18	WATER	OLEAN,NY	07/31/24 11:14	08/01/24
L2443419-06	MW5	WATER	OLEAN,NY	07/31/24 12:14	08/01/24
L2443419-07	W22	WATER	OLEAN,NY	07/31/24 13:07	08/01/24
L2443419-08	BLIND DUP	WATER	OLEAN,NY	07/30/24 08:00	08/02/24
L2443419-09	TRIP BLANK	WATER	OLEAN,NY	07/30/24 08:01	08/02/24

L2443419

Lab Number:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

r icase contact i roje	ot management at 000 of	24 0220 Willi ally questi	3113.	

Please contact Project Management at 800-624-9220 with any questions

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2443419-01 through -04, -08, and -09: The sample was listed on the Chain of Custody, but was not received 01-AUG-24 14:20. The sample was received 02-AUG-24 16:37. All requested analyses were performed.

Volatile Organics

The WG1955995-6/-7 MS/MSD recoveries, performed on L2443419-01, are outside the acceptance criteria for 1,2,4-trimethylbenzene and cyclohexane (all at 0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

Semivolatile Organics

L2443419-01: The surrogate recoveries were outside the acceptance criteria for 2-fluorophenol (0%), phenold6 (6%) and 2,4,6-tribromophenol (0%); however, the recoveries were confirmed by the QC performed on this sample; therefore, re-extraction was not required.

L2443419-02: The surrogate recoveries were outside the acceptance criteria for 2-fluorophenol (0%), phenol-d6 (7%), and 2,4,6-tribromophenol (0%); however, the criteria were achieved upon re-extraction outside of holding time. The results of both extractions are reported.

The WG1956053-2 LCS recovery, associated with L2443419-01, -03, -04, and -08, is below the acceptance criteria for 2,4-dinitrophenol (0%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

The WG1956053-4/-5 MS/MSD recoveries, performed on L2443419-01, are below the acceptance criteria for 2,4,6-trichlorophenol (0%/0%), 2-chlorophenol (0%/8%), 2,4-dichlorophenol (0%/0%), 2-nitrophenol (0%/0%), 4-nitrophenol (0%/0%), 2,4-dinitrophenol (0%/0%), 2,4-5-trichlorophenol

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419
Project Number: 4388.0001B000 Report Date: 08/12/24

Case Narrative (continued)

(0%/0%), and 2,3,4,6-tetrachlorophenol (0%/0%) due to the concentrations of these compounds in the MS/MSD falling below the reported detection limits.

The WG1956053-4/-5 MS/MSD recoveries, performed on L2443419-01, are below the acceptance criteria for phenol (5%/9%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

The surrogate recoveries for the WG1956053-4/-5 MS/MSD, performed on L2443419-01, are outside the acceptance criteria for 2,4,6-tribromophenol (0%), 2-fluorophenol (0%), and phenol-d6 (4%/7%).

Semivolatile Organics by SIM

L2443419-01: The surrogate recoveries were outside the acceptance criteria for 2-fluorophenol (2%), phenold6 (8%), and 2,4,6-tribromophenol (3%); however, the recoveries were confirmed by the QC performed on this sample; therefore, re-extraction was not required.

L2443419-02: The surrogate recoveries were outside the acceptance criteria for 2-fluorophenol (4%), phenol-d6 (9%), and 2,4,6-tribromophenol (9%); however, the criteria were achieved upon re-extraction outside of holding time. The results of both extractions are reported.

The WG1956059-4/-5 MS/MSD recoveries, performed on L2443419-01, are below the acceptance criteria for pentachlorophenol (2%/4%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

The surrogate recoveries for the WG1956059-4/-5 MS/MSD, performed on L2443419-01, are outside the acceptance criteria for 2,4,6-tribromophenol (1%/5%), 2-fluorophenol (1%/3%), and phenol-d6 (6%/9%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/12/24

Custen Walker Cristin Walker

ALPHA

ORGANICS

VOLATILES

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-01

OLEAN,NY

MW-4

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 12:59

Lab Number:

Report Date:

Date Received: 08/02/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/05/24 21:48

Analyst: MJV

Parameter	Result	Qualifier Un	nits RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab				
Methylene chloride	ND	ug	g/l 2.5	0.70	1
1,1-Dichloroethane	ND	ug	g/l 2.5	0.70	1
Chloroform	ND	uç	g/l 2.5	0.70	1
Carbon tetrachloride	ND	ug	g/l 0.50	0.13	1
1,2-Dichloropropane	ND	ug	g/l 1.0	0.14	1
Dibromochloromethane	ND	uç	g/l 0.50	0.15	1
1,1,2-Trichloroethane	ND	ug	g/l 1.5	0.50	1
Tetrachloroethene	ND	uç	g/l 0.50	0.18	1
Chlorobenzene	ND	uç	g/l 2.5	0.70	1
Trichlorofluoromethane	ND	uç	g/l 2.5	0.70	1
1,2-Dichloroethane	ND	uç	g/l 0.50	0.13	1
1,1,1-Trichloroethane	ND	uç	g/l 2.5	0.70	1
Bromodichloromethane	ND	uç	g/l 0.50	0.19	1
trans-1,3-Dichloropropene	ND	uç	g/l 0.50	0.16	1
cis-1,3-Dichloropropene	ND	uç	g/l 0.50	0.14	1
Bromoform	ND	uç	g/l 2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	uç	g/l 0.50	0.17	1
Benzene	2.9	uç	g/l 0.50	0.16	1
Toluene	ND	uç	g/l 2.5	0.70	1
Ethylbenzene	ND	ug	g/l 2.5	0.70	1
Chloromethane	ND	ug	g/l 2.5	0.70	1
Bromomethane	ND	ug	g/l 2.5	0.70	1
Vinyl chloride	ND	ug	g/l 1.0	0.07	1
Chloroethane	ND	ug	g/l 2.5	0.70	1
1,1-Dichloroethene	ND	ug	g/l 0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug	g/l 2.5	0.70	1
Trichloroethene	ND	ug	g/l 0.50	0.18	1
1,2-Dichlorobenzene	ND	ug	g/l 2.5	0.70	1

L2443419

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

L2443419-01

OLEAN,NY

MW-4

SAMPLE RESULTS

Date Collected: 07/30/24 12:59

Report Date:

Date Received: 08/02/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	0.70	J	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	2.8		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	10		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	2.2	J	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	3.5		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	120		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	65		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	41		ug/l	10	0.40	1	

08/12/24

Report Date:

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab ID: Date Collected: 07/30/24 12:59 L2443419-01

Date Received: Client ID: 08/02/24 MW-4 Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	119	J	ug/l	1
Cyclopentane, Methyl-	13.8	NJ	ug/l	1
Pentane, 2,3-dimethyl-	9.08	NJ	ug/l	1
Unknown Cyclohexane	7.92	J	ug/l	1
Unknown	8.58	J	ug/l	1
Unknown Cycloalkane	12.5	J	ug/l	1
Unknown	8.53	J	ug/l	1
Butane, 2,3-Dimethyl-	11.8	NJ	ug/l	1
Unknown Aromatic	10.7	J	ug/l	1
Cyclohexane, 1,1-dimethyl-	10.0	NJ	ug/l	1
Unknown Benzene	26.0	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	101	70-130	
4-Bromofluorobenzene	93	70-130	

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-02

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Lab Number:

Report Date:

Client ID: W29 Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/05/24 22:10

Analyst: MJV

Volatile Organics by GC/MS - Westborough					
	ND				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Report Date:

Lab ID: L2443419-02 Client ID: Date Received: 08/02/24 W29

Field Prep: Not Specified Sample Location: OLEAN,NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.79	J	ug/l	10	0.40	1

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Report Date:

Date Received: Client ID: 08/02/24 W29

Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

L2443419-02

Tentatively Identified Compounds				
Total TIC Compounds	3.53	J	ug/l	1
Unknown	1.18	J	ug/l	1
Unknown	1.32	J	ug/l	1
Unknown	1.03	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	102	70-130	

L2443419

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Report Date: 08/12/24

Lab Number:

Lab ID: L2443419-03 Date Collected: 07/30/24 14:52 Client ID: Date Received: 08/02/24 **MWSW** Field Prep: Sample Location: Not Specified OLEAN,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/05/24 22:33

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	5.0		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

L2443419-03

OLEAN,NY

MWSW

SAMPLE RESULTS

Date Collected: 07/30/24 14:52

Date Received: 08/02/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	0.78	J	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	2.3	J	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	1.3	J	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	5.4		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	2.4	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1

J

ug/l

10

0.40

1.2

1

Methyl cyclohexane

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 14:52

Report Date:

Client ID: MWSW Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

L2443419-03

Total TIC Compounds 31.2 J ug/l Unknown Naphthalene 2.21 J ug/l Unknown Aromatic 3.62 J ug/l Butane, 2-Methyl- 2.12 NJ ug/l Cyclohexane, 1,1-dimethyl- 2.07 NJ ug/l Unknown Aromatic 3.99 J ug/l Benzene, (2-methyl-1-butenyl)- 2.99 NJ ug/l Unknown 2.38 J ug/l Pentane, 3-methyl- 5.57 NJ ug/l	
Unknown Aromatic 3.62 J ug/l Butane, 2-Methyl- 2.12 NJ ug/l Cyclohexane, 1,1-dimethyl- 2.07 NJ ug/l Unknown Aromatic 3.99 J ug/l Benzene, (2-methyl-1-butenyl)- 2.99 NJ ug/l Unknown 2.38 J ug/l	1
Butane, 2-Methyl- 2.12 NJ ug/l Cyclohexane, 1,1-dimethyl- 2.07 NJ ug/l Unknown Aromatic 3.99 J ug/l Benzene, (2-methyl-1-butenyl)- 2.99 NJ ug/l Unknown 2.38 J ug/l Unknown 2.38 J ug/l Unknown 2.38 J ug/l Unknown 2.38 J ug/l Unknown 2.38 Unknow	1
Cyclohexane, 1,1-dimethyl- 2.07 NJ ug/l Unknown Aromatic 3.99 J ug/l Benzene, (2-methyl-1-butenyl)- 2.99 NJ ug/l Unknown 2.38 J ug/l	1
Unknown Aromatic 3.99 J ug/l Benzene, (2-methyl-1-butenyl)- 2.99 NJ ug/l Unknown 2.38 J ug/l	1
Benzene, (2-methyl-1-butenyl)- 2.99 NJ ug/l Unknown 2.38 J ug/l	1
Unknown 2.38 J ug/l	1
	1
Pentane, 3-methyl- 5.57 NJ ug/l	1
	1
Unknown Benzene 2.46 J ug/l	1
Unknown 3.77 J ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	102	70-130	

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-04

OLEAN,NY

W24

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 15:45

Lab Number:

Report Date:

Date Received: 08/02/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/07/24 18:10

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

L2443419-04

SAMPLE RESULTS

Date Collected: 07/30/24 15:45

Report Date:

Client ID: W24 Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	1.5	J	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	1.4	J	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	2.2	J	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	23		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	70		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	22		ug/l	10	0.40	1

08/12/24

Report Date:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab ID: L2443419-04 Date Collected: 07/30/24 15:45

Client ID: W24 Date Received: 08/02/24

Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	185	J	ug/l	1
Unknown Cycloalkane	7.38	J	ug/l	1
Butane, 2,3-Dimethyl-	19.9	NJ	ug/l	1
Butane, 2-Methyl-	77.0	NJ	ug/l	1
Unknown Benzene	10.3	J	ug/l	1
Unknown	9.28	J	ug/l	1
Unknown Alkane	5.97	J	ug/l	1
Unknown Benzene	5.63	J	ug/l	1
Cyclopentane, Methyl-	32.0	NJ	ug/l	1
Butane, 2,2-dimethyl-	8.86	NJ	ug/l	1
Pentane, 2,3-dimethyl-	8.18	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	97	70-130	

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-05

OLEAN,NY

W18

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 11:14

Lab Number:

Report Date:

Date Received: 08/01/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/05/24 23:18

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-05

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 11:14

Lab Number:

Report Date:

Date Received: 08/01/24

W18 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Client ID:

Volatile Organics by GC/MS - Westborough L 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone			RL	MDL	Dilution Factor
1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide	.ab				
Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide	ND	ug/l	2.5	0.70	1
p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide	ND	ug/l	2.5	0.70	1
o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide	ND	ug/l	2.5	0.17	1
cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide	ND	ug/l	2.5	0.70	1
Styrene Dichlorodifluoromethane Acetone Carbon disulfide	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane Acetone Carbon disulfide	ND	ug/l	2.5	0.70	1
Acetone Carbon disulfide	ND	ug/l	2.5	0.70	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
	ND	ug/l	5.0	1.5	1
2-Butanone	ND	ug/l	5.0	1.0	1
2 Batariorio	ND	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
n-Propylbenzene	ND	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1
Methyl Acetate	ND	ug/l	2.0	0.23	1
Cyclohexane	ND	ug/l	10	0.27	1
1,4-Dioxane	ND	ug/l	250	61.	1
Freon-113	ND	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	ug/l	10	0.40	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

08/12/24

07/31/24 11:14

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

L2443419-05

SAMPLE RESULTS

Report Date:

Date Collected:

SAMIFEE RESULT

Client ID: W18 Date Received: 08/01/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	103	70-130	

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-06

OLEAN,NY

MW5

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 12:14

Lab Number:

Report Date:

Date Received: 08/01/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/05/24 23:40

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	0.52		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	0.40	J	ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

Project Number: 4388.0001B000

L2443419-06

OLEAN,NY

MW5

SAMPLE RESULTS

Date Collected: 07/31/24 12:14

Date Received: 08/01/24 Field Prep: Not Specified

Report Date:

250

2.5

10

ug/l

ug/l

ug/l

J

61.

0.70

0.40

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Qualifier MDL Result Units RL **Dilution Factor Parameter** Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND 2.5 0.70 1 ug/l 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.17 1 p/m-Xylene 0.86 J 2.5 0.70 1 ug/l o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 J Acetone 2.7 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 ND 2-Butanone ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND 1.0 1 ug/l 5.0 ND 2-Hexanone 5.0 1.0 1 ug/l ND 0.70 Bromochloromethane ug/l 2.5 1 ND 2.0 0.65 1,2-Dibromoethane 1 ug/l n-Butylbenzene ND 2.5 0.70 1 ug/l sec-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND 2.5 0.70 1 ug/l Isopropylbenzene 1.2 J 2.5 0.70 1 ug/l p-Isopropyltoluene ND 2.5 0.70 1 ug/l n-Propylbenzene ND 2.5 0.70 1 ug/l 1 1,2,3-Trichlorobenzene ND 2.5 0.70 ug/l ND 2.5 1 1,2,4-Trichlorobenzene 0.70 ug/l 1,3,5-Trimethylbenzene 2.7 ug/l 2.5 0.70 1 J 0.70 1,2,4-Trimethylbenzene 1.7 ug/l 2.5 1 ND Methyl Acetate 2.0 1 0.23 ug/l Cyclohexane 2.8 J 10 0.27 1 ug/l

ND

ND

2.1

1

1

1

1,4-Dioxane

Methyl cyclohexane

Freon-113

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 12:14

Report Date:

Lab ID: L2443419-06 Date Received: Client ID: 08/01/24 MW5 Not Specified

Sample Location: Field Prep: OLEAN,NY

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	37.4	J	ug/l	1
Unknown Benzene	4.88	J	ug/l	1
Unknown Cycloalkane	3.32	J	ug/l	1
Unknown Benzene	3.17	J	ug/l	1
Unknown	3.54	J	ug/l	1
Unknown	2.53	J	ug/l	1
Unknown	2.63	J	ug/l	1
Unknown	2.69	J	ug/l	1
Unknown	4.04	J	ug/l	1
Unknown	3.78	J	ug/l	1
Butane, 2-Methyl-	6.83	NJ	ug/l	1

% Recovery	Acceptance Qualifier Criteria	
90	70-130	
94	70-130	
95	70-130	
104	70-130	
	90 94 95	% Recovery Qualifier Criteria 90 70-130 94 70-130 95 70-130

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 13:07

Report Date: 08/12/24

Lab ID: L2443419-07

Client ID: W22

Sample Location: OLEAN,NY Date Received: Field Prep:

Lab Number:

08/01/24 Not Specified

L2443419

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/06/24 00:03

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	2.0	J	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

L2443419-07

OLEAN,NY

W22

SAMPLE RESULTS

Date Collected: 07/31/24 13:07

Date Received: 08/01/24 Field Prep: Not Specified

Lab Number:

Report Date:

10

250

2.5

10

ug/l

ug/l

ug/l

ug/l

J

0.27

61.

0.70

0.40

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Qualifier MDL Result Units RL **Dilution Factor Parameter** Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND 2.5 0.70 1 ug/l 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.17 1 p/m-Xylene ND 2.5 0.70 1 ug/l o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 J Acetone 3.3 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 ND 2-Butanone ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND 1.0 1 ug/l 5.0 ND 2-Hexanone 5.0 1.0 1 ug/l ND 0.70 Bromochloromethane ug/l 2.5 1 ND 2.0 0.65 1,2-Dibromoethane 1 ug/l n-Butylbenzene ND 2.5 0.70 1 ug/l sec-Butylbenzene 0.75 J ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND 2.5 0.70 1 ug/l Isopropylbenzene ND 2.5 0.70 1 ug/l p-Isopropyltoluene ND 2.5 0.70 1 ug/l n-Propylbenzene ND 2.5 0.70 1 ug/l 1 1,2,3-Trichlorobenzene ND 2.5 0.70 ug/l ND 2.5 1 1,2,4-Trichlorobenzene 0.70 ug/l 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 ND 0.70 1,2,4-Trimethylbenzene ug/l 2.5 1 ND Methyl Acetate 2.0 1 0.23 ug/l

ND

ND

ND

6.1

1

1

1

1

Cyclohexane

1,4-Dioxane

Methyl cyclohexane

Freon-113

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Report Date:

Lab ID: Date Collected: 07/31/24 13:07

Client ID: W22 Date Received: 08/01/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	80.1	J	ug/l	1
Unknown Aromatic	4.56	J	ug/l	1
Benzene, (2-methyl-1-butenyl)-	7.97	NJ	ug/l	1
Unknown	4.70	J	ug/l	1
Unknown Benzene	4.46	J	ug/l	1
Unknown Naphthalene	5.34	J	ug/l	1
Butane, 2-Methyl-	5.03	NJ	ug/l	1
Unknown Aromatic	7.45	J	ug/l	1
Indane	19.1	NJ	ug/l	1
Unknown Aromatic	10.2	J	ug/l	1
Unknown Cyclohexane	11.3	J	ug/l	1

% Recovery	Acceptance Qualifier Criteria
88	70-130
96	70-130
97	70-130
99	70-130
	88 96 97

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID:L2443419-08Date Collected:07/30/24 08:00Client ID:BLIND DUPDate Received:08/02/24Sample Location:OLEAN,NYField Prep:Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/06/24 00:25

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

L2443419-08

SAMPLE RESULTS

Date Collected: 07/30/24 08:00

Report Date:

Date Received: **BLIND DUP** 08/02/24 Field Prep: Sample Location: OLEAN,NY Not Specified

Sample Depth:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.71	J	ug/l	10	0.40	1

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 08:00

Report Date:

L2443419-08 Date Received: Client ID: 08/02/24 **BLIND DUP** Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	3.89	J	ug/l	1
Unknown	1.74	J	ug/l	1
Unknown	1.05	J	ug/l	1
Indane	1.10	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	102	70-130	

L2443419

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Report Date:

Lab Number:

08/12/24

Lab ID: L2443419-09 Client ID: TRIP BLANK

Sample Location: OLEAN,NY Date Collected: 07/30/24 08:01 Date Received: 08/02/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/06/24 00:48

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

08/12/24

Report Date:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

L2443419-09 Date Collected: 07/30/24 08:01

Client ID: TRIP BLANK Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Report Date:

Lab ID: L2443419-09 Date Collected: 07/30/24 08:01

Client ID: TRIP BLANK Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	93	70-130
Dibromofluoromethane	103	70-130

L2443419

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/05/24 19:09

Analyst: MAG

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03,05-09	Batch: WG1955995-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/05/24 19:09

Analyst: MAG

arameter	Result	Qualifier Unit	s RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	o for sample(s):	01-03,05-09	Batch: WG1955995-5
1,4-Dichlorobenzene	ND	ug	/I 2.5	0.70
Methyl tert butyl ether	ND	ug	/I 2.5	0.17
p/m-Xylene	ND	ug	/I 2.5	0.70
o-Xylene	ND	ug	/I 2.5	0.70
cis-1,2-Dichloroethene	ND	ug	/I 2.5	0.70
Styrene	ND	ug	/I 2.5	0.70
Dichlorodifluoromethane	ND	ug	/I 5.0	1.0
Acetone	ND	ug	/I 5.0	1.5
Carbon disulfide	ND	ug	/I 5.0	1.0
2-Butanone	ND	ug	/I 5.0	1.9
4-Methyl-2-pentanone	ND	ug	/I 5.0	1.0
2-Hexanone	ND	ug	/I 5.0	1.0
Bromochloromethane	ND	ug	/I 2.5	0.70
1,2-Dibromoethane	ND	ug	/I 2.0	0.65
n-Butylbenzene	ND	ug	/I 2.5	0.70
sec-Butylbenzene	ND	ug	/l 2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug	/I 2.5	0.70
Isopropylbenzene	ND	ug	/I 2.5	0.70
p-Isopropyltoluene	ND	ug	/I 2.5	0.70
n-Propylbenzene	ND	ug	/I 2.5	0.70
1,2,3-Trichlorobenzene	ND	ug	/I 2.5	0.70
1,2,4-Trichlorobenzene	ND	ug	/I 2.5	0.70
1,3,5-Trimethylbenzene	ND	ug	/I 2.5	0.70
1,2,4-Trimethylbenzene	ND	ug	/I 2.5	0.70
Methyl Acetate	ND	ug	/I 2.0	0.23
Cyclohexane	ND	ug	/I 10	0.27
1,4-Dioxane	ND	ug	/I 250	61.
Freon-113	ND	ug	/I 2.5	0.70
Methyl cyclohexane	ND	ug	/I 10	0.40

L2443419

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/05/24 19:09

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	ľ	MDL
Volatile Organics by GC/MS -	Westborough La	b for sample	e(s):	01-03,05-09	Batch:	WG1955995-5
Tentatively Identified Compounds						

No Tentatively Identified Compounds $\,$ ND $\,$ ug/l $\,$

	Acceptano						
Surrogate	%Recovery Qualifi	-					
1,2-Dichloroethane-d4	92	70-130					
Toluene-d8	95	70-130					
4-Bromofluorobenzene	93	70-130					
Dibromofluoromethane	103	70-130					

L2443419

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/07/24 08:37

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	04 Batch:	WG1956420-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/07/24 08:37

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 0	4 Batch:	WG1956420-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2443419

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000 **Report Date:** 08/12/24

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 1,8260D Analytical Date: 08/07/24 08:37

Analyst: PID

> Result Qualifier Units RL MDL **Parameter** Volatile Organics by GC/MS - Westborough Lab for sample(s): 04 Batch: WG1956420-5 Tentatively Identified Compounds

ND No Tentatively Identified Compounds ug/l

		Acceptance
Surrogate	%Recovery Qual	fier Criteria
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	101	70-130

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03,05-09 Bate	ch: WG19	55995-3 WG1955	5995-4	
Methylene chloride	94		93		70-130	1	20
1,1-Dichloroethane	94		94		70-130	0	20
Chloroform	98		98		70-130	0	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	91		91		70-130	0	20
Dibromochloromethane	93		95		63-130	2	20
1,1,2-Trichloroethane	90		91		70-130	1	20
Tetrachloroethene	110		110		70-130	0	20
Chlorobenzene	97		98		75-130	1	20
Trichlorofluoromethane	130		120		62-150	8	20
1,2-Dichloroethane	93		93		70-130	0	20
1,1,1-Trichloroethane	100		100		67-130	0	20
Bromodichloromethane	94		94		67-130	0	20
trans-1,3-Dichloropropene	83		83		70-130	0	20
cis-1,3-Dichloropropene	90		90		70-130	0	20
Bromoform	87		86		54-136	1	20
1,1,2,2-Tetrachloroethane	94		93		67-130	1	20
Benzene	98		97		70-130	1	20
Toluene	95		94		70-130	1	20
Ethylbenzene	94		93		70-130	1	20
Chloromethane	62	Q	61	Q	64-130	2	20
Bromomethane	44		46		39-139	4	20
Vinyl chloride	96		94		55-140	2	20

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03,05-09 Bato	h: WG1955995-3 WG195	5995-4	
Chloroethane	120		120	55-138	0	20
1,1-Dichloroethene	86		98	61-145	13	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	96		94	70-130	2	20
1,2-Dichlorobenzene	100		97	70-130	3	20
1,3-Dichlorobenzene	100		99	70-130	1	20
1,4-Dichlorobenzene	100		98	70-130	2	20
Methyl tert butyl ether	87		88	63-130	1	20
p/m-Xylene	95		95	70-130	0	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	100		99	70-130	1	20
Styrene	95		90	70-130	5	20
Dichlorodifluoromethane	95		92	36-147	3	20
Acetone	72		77	58-148	7	20
Carbon disulfide	89		91	51-130	2	20
2-Butanone	72		76	63-138	5	20
4-Methyl-2-pentanone	72		72	59-130	0	20
2-Hexanone	61		61	57-130	0	20
Bromochloromethane	110		100	70-130	10	20
1,2-Dibromoethane	91		93	70-130	2	20
n-Butylbenzene	99		94	53-136	5	20
sec-Butylbenzene	98		95	70-130	3	20
1,2-Dibromo-3-chloropropane	87		89	41-144	2	20

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	11-03,05-09 Bat	ch: WG195	55995-3 WG195	5995-4		
Isopropylbenzene	98		92		70-130	6		20
p-Isopropyltoluene	99		94		70-130	5		20
n-Propylbenzene	95		90		69-130	5		20
1,2,3-Trichlorobenzene	100		98		70-130	2		20
1,2,4-Trichlorobenzene	100		100		70-130	0		20
1,3,5-Trimethylbenzene	96		92		64-130	4		20
1,2,4-Trimethylbenzene	95		92		70-130	3		20
Methyl Acetate	80		84		70-130	5		20
Cyclohexane	93		91		70-130	2		20
1,4-Dioxane	108		110		56-162	2		20
Freon-113	100		100		70-130	0		20
Methyl cyclohexane	97		97		70-130	0		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	98	94	70-130
Toluene-d8	95	97	70-130
4-Bromofluorobenzene	93	92	70-130
Dibromofluoromethane	104	104	70-130

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

Methylene chloride 100 70-130 0 20 1,1-Dichloroethane 100 70-130 0 20 1,1-Dichloroethane 100 100 70-130 0 20 Chloroform 100 110 70-130 10 20 Carbon tetrachloride 120 1120 63-132 0 20 Carbon tetrachloride 120 1120 63-132 0 20 Carbon tetrachloride 198 99 63-130 1 20 Dibromochloromethane 98 99 63-130 1 20 1,12-Trichloroethane 120 70-130 0 20 Chlorobenzere 1100 120 70-130 0 20 Trichloroethane 1110 120 62-150 9 20 1,2-Dichloroethane 110 110 67-130 0 20 1,1-Trichloroethane 98 100 70-130 2 20 Bromodichl	arameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits
1,1-Dichloroethane 100 100 70-130 0 20 Chloroform 100 110 70-130 10 20 Carbon tetrachloride 120 120 63-132 0 20 1,2-Dichloropropane 100 110 70-130 10 20 Dibromochloromethane 98 99 63-130 1 20 1,1-2-Trichloroethane 96 98 70-130 2 20 Tetrachloroethane 120 120 70-130 0 20 Chlorobenzene 100 100 70-130 0 20 Chlorobenzene 110 120 62-150 9 20 1,1-1-Trichloroethane 96 100 70-130 4 20 1,1-1-Trichloroethane 96 100 70-130 4 20 1,1-1-Trichloroethane 98 100 67-130 2 20 Isrondochloromethane 98 100 70-130 10	olatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 04	4 Batch:	WG1956420-3	WG1956420-4			
Chloroform 100 110 70-130 10 20 Carbon tetrachloride 120 120 63-132 0 20 1,2-Dichloropropane 100 110 70-130 10 20 Dibromochloromethane 98 99 63-130 1 20 1,1,2-Trichloroethane 96 98 70-130 2 20 Tetrachloroethane 120 120 70-130 0 20 Chlorobenzene 100 100 75-130 0 20 Chlorobenzene 100 100 75-130 0 20 Chlorobenzene 110 120 62-150 9 20 1,1-1-Trichloroethane 96 100 70-130 4 20 1,1-1-Trichloroethane 98 100 67-130 2 20 Bromodichloromethane 98 100 70-130 2 20 Bromodichloropropene 98 100 70-130 1	Methylene chloride	100		100		70-130	0		20
Carbon tetrachloride 120 120 63-132 0 20 1,2-Dichloropropane 100 110 70-130 10 20 Dibromochloromethane 98 99 63-130 1 20 1,1,2-Trichloroethane 96 98 70-130 2 20 Tetrachloroethane 120 120 70-130 0 20 Chlorobenzene 100 100 75-130 0 20 Chlorobenzene 1100 120 62-150 9 20 1,2-Dichloroethane 96 100 70-130 4 20 1,1,1-Trichloroethane 96 100 70-130 4 20 Bromodichloromethane 98 100 67-130 2 20 trans-1,3-Dichloropropene 98 100 70-130 2 20 st-1,3-Dichloropropene 98 100 70-130 10 20 Bromoform 94 98 54-136 4 <td>1,1-Dichloroethane</td> <td>100</td> <td></td> <td>100</td> <td></td> <td>70-130</td> <td>0</td> <td></td> <td>20</td>	1,1-Dichloroethane	100		100		70-130	0		20
1,2-Dichloropropane 100 110 70-130 10 20 Dibromochloromethane 98 99 63-130 1 20 1,1,2-Trichloroethane 96 98 70-130 2 20 Tetrachloroethane 120 120 70-130 0 20 Chlorobenzene 100 100 75-130 0 20 Trichlorofluoromethane 110 120 62-150 9 20 1,2-Dichloroethane 96 100 70-130 4 20 1,1-Trichloroethane 96 100 70-130 0 20 Bromodichloromethane 98 100 67-130 0 20 Bromodichloropropene 98 100 70-130 2 20 cis-1,3-Dichloropropene 98 100 70-130 10 20 cis-1,3-Dichloropropene 94 98 54-136 4 20 Bromodicm 94 99 67-130 5<	Chloroform	100		110		70-130	10		20
Dibromochloromethane 98 99 63-130 1 20 1,1,2-Trichloroethane 96 98 70-130 2 20 Tetrachloroethane 120 120 70-130 0 20 Chlorobenzene 100 100 75-130 0 20 Trichlorofluoromethane 110 120 62-150 9 20 1,2-Dichloroethane 96 100 70-130 4 20 1,1-Trichloroethane 96 100 67-130 0 20 Bromofichloromethane 98 100 67-130 2 20 Bromofichloropropene 98 100 70-130 2 20 Est-1,3-Dichloropropene 98 100 70-130 2 20 Bromoform 94 98 54-136 4 20 Bromoform 94 99 67-130 5 20 Benzene 110 110 70-130 0 20	Carbon tetrachloride	120		120		63-132	0		20
1,1,2-Trichloroethane 96 98 70-130 2 20	1,2-Dichloropropane	100		110		70-130	10		20
Tetrachloroethene 120 120 70-130 0 20 Chlorobenzene 100 100 75-130 0 20 Trichlorofluoromethane 110 120 62-150 9 20 1,2-Dichloroethane 96 100 70-130 4 20 1,1,1-Trichloroethane 110 110 67-130 0 20 Bromodichloromethane 98 100 67-130 2 20 trans-1,3-Dichloropropene 98 100 70-130 2 20 cis-1,3-Dichloropropene 98 100 70-130 10 20 Bromoform 94 98 54-136 4 20 Benzene 110 110 70-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 100 70-130 0 20	Dibromochloromethane	98		99		63-130	1		20
Chlorobenzene 100 100 75-130 0 20 Trichlorofluoromethane 110 120 62-150 9 20 1,2-Dichloroethane 96 100 70-130 4 20 1,1,1-Trichloroethane 110 110 67-130 0 20 Bromodichloromethane 98 100 67-130 2 20 trans-1,3-Dichloropropene 98 100 70-130 2 20 cis-1,3-Dichloropropene 98 100 70-130 10 20 Bromoform 94 98 54-136 4 20 1,1,2,2-Tetrachloroethane 94 99 67-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 100 70-130 10 20 Chloromethane 96 97 64-130 1 20	1,1,2-Trichloroethane	96		98		70-130	2		20
Trichlorofluoromethane 110 120 62-150 9 20 1,2-Dichloroethane 96 100 70-130 4 20 1,1,1-Trichloroethane 110 110 67-130 0 20 Bromodichloromethane 98 100 67-130 2 20 trans-1,3-Dichloropropene 98 100 70-130 2 20 cis-1,3-Dichloropropene 100 110 70-130 10 20 Bromoform 94 98 54-136 4 20 1,1,2,2-Tetrachloroethane 94 99 67-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	Tetrachloroethene	120		120		70-130	0		20
1,2-Dichloroethane 96 100 70-130 4 20 20 20 20 20 20 20	Chlorobenzene	100		100		75-130	0		20
1,1,1-Trichloroethane 110 110 67-130 0 20 Bromodichloromethane 98 100 67-130 2 20 trans-1,3-Dichloropropene 98 100 70-130 2 20 cis-1,3-Dichloropropene 100 110 70-130 10 20 Bromoform 94 98 54-136 4 20 1,1,2,2-Tetrachloroethane 94 99 67-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 0 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	Trichlorofluoromethane	110		120		62-150	9		20
Bromodichloromethane 98 100 67-130 2 20 trans-1,3-Dichloropropene 98 100 70-130 2 20 cis-1,3-Dichloropropene 100 110 70-130 10 20 Bromoform 94 98 54-136 4 20 1,1,2,2-Tetrachloroethane 94 99 67-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	1,2-Dichloroethane	96		100		70-130	4		20
trans-1,3-Dichloropropene 98 100 70-130 2 20 cis-1,3-Dichloropropene 100 110 70-130 10 20 Bromoform 94 98 54-136 4 20 1,1,2,2-Tetrachloroethane 94 99 67-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	1,1,1-Trichloroethane	110		110		67-130	0		20
cis-1,3-Dichloropropene 100 110 70-130 10 20 Bromoform 94 98 54-136 4 20 1,1,2,2-Tetrachloroethane 94 99 67-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	Bromodichloromethane	98		100		67-130	2		20
Bromoform 94 98 54-136 4 20 1,1,2,2-Tetrachloroethane 94 99 67-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	trans-1,3-Dichloropropene	98		100		70-130	2		20
1,1,2,2-Tetrachloroethane 94 99 67-130 5 20 Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	cis-1,3-Dichloropropene	100		110		70-130	10		20
Benzene 110 110 70-130 0 20 Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	Bromoform	94		98		54-136	4		20
Toluene 100 100 70-130 0 20 Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	1,1,2,2-Tetrachloroethane	94		99		67-130	5		20
Ethylbenzene 100 110 70-130 10 20 Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	Benzene	110		110		70-130	0		20
Chloromethane 96 97 64-130 1 20 Bromomethane 95 110 39-139 15 20	Toluene	100		100		70-130	0		20
Bromomethane 95 110 39-139 15 20	Ethylbenzene	100		110		70-130	10		20
	Chloromethane	96		97		64-130	1		20
Vinyl chloride 110 110 55-140 0 20	Bromomethane	95		110		39-139	15		20
	Vinyl chloride	110		110		55-140	0		20

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 04	4 Batch: Wo	G1956420-3	WG1956420-4			
Chloroethane	100		100		55-138	0	20	
1,1-Dichloroethene	120		120		61-145	0	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	110		110		70-130	0	20	
1,2-Dichlorobenzene	99		100		70-130	1	20	
1,3-Dichlorobenzene	100		110		70-130	10	20	
1,4-Dichlorobenzene	95		100		70-130	5	20	
Methyl tert butyl ether	100		100		63-130	0	20	
p/m-Xylene	110		110		70-130	0	20	
o-Xylene	105		110		70-130	5	20	
cis-1,2-Dichloroethene	100		110		70-130	10	20	
Styrene	95		100		70-130	5	20	
Dichlorodifluoromethane	100		100		36-147	0	20	
Acetone	86		87		58-148	1	20	
Carbon disulfide	120		110		51-130	9	20	
2-Butanone	85		81		63-138	5	20	
4-Methyl-2-pentanone	87		87		59-130	0	20	
2-Hexanone	81		82		57-130	1	20	
Bromochloromethane	110		110		70-130	0	20	
1,2-Dibromoethane	96		99		70-130	3	20	
n-Butylbenzene	98		100		53-136	2	20	
sec-Butylbenzene	110		110		70-130	0	20	
1,2-Dibromo-3-chloropropane	85		91		41-144	7	20	

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Lab Number: L2443419

Project Number: 4388.0001B000

Report Date: 08/12/24

arameter	LCS %Recovery	Qual	LC: %Rec		Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	04 Batch	n: WG	1956420-3	WG1956420-4			
Isopropylbenzene	110		1	10		70-130	0		20
p-Isopropyltoluene	99		10	00		70-130	1		20
n-Propylbenzene	110		1	10		69-130	0		20
1,2,3-Trichlorobenzene	92		10	00		70-130	8		20
1,2,4-Trichlorobenzene	95		10	00		70-130	5		20
1,3,5-Trimethylbenzene	100		1	10		64-130	10		20
1,2,4-Trimethylbenzene	100		1	10		70-130	10		20
Methyl Acetate	93		9	4		70-130	1		20
Cyclohexane	110		1	10		70-130	0		20
1,4-Dioxane	102		1	14		56-162	11		20
Freon-113	140	Q	12	20		70-130	15		20
Methyl cyclohexane	110		1	10		70-130	0		20

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	94	93	70-130
Toluene-d8	95	96	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	99	100	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number:

L2443419

Report Date:

08/12/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPL Qual Limi	
Volatile Organics by GC/MS - ID: MW-4	· Westborough	Lab Asso	ciated sample((s): 01-03,05-09	QC Ba	itch ID: WG	31955995-6 W	/G1955	995-7 QC S	Sample:	L2443419-01	Client
Methylene chloride	ND	10	9.3	93		9.5	95		70-130	2	20	
1,1-Dichloroethane	ND	10	9.7	97		9.9	99		70-130	2	20	
Chloroform	ND	10	10	100		10	100		70-130	0	20	
Carbon tetrachloride	ND	10	11	110		11	110		63-132	0	20	
1,2-Dichloropropane	ND	10	9.6	96		9.8	98		70-130	2	20	
Dibromochloromethane	ND	10	9.3	93		9.5	95		63-130	2	20	
1,1,2-Trichloroethane	ND	10	15	150	Q	16	160	Q	70-130	6	20	
Tetrachloroethene	ND	10	11	110		11	110		70-130	0	20	
Chlorobenzene	ND	10	10	100		10	100		75-130	0	20	
Trichlorofluoromethane	ND	10	12	120		12	120		62-150	0	20	
1,2-Dichloroethane	ND	10	9.1	91		9.2	92		70-130	1	20	
1,1,1-Trichloroethane	ND	10	10	100		10	100		67-130	0	20	
Bromodichloromethane	ND	10	9.5	95		9.5	95		67-130	0	20	
trans-1,3-Dichloropropene	ND	10	8.2	82		8.3	83		70-130	1	20	
cis-1,3-Dichloropropene	ND	10	8.7	87		8.8	88		70-130	1	20	
Bromoform	ND	10	8.5	85		8.9	89		54-136	5	20	
1,1,2,2-Tetrachloroethane	ND	10	9.8	98		10	100		67-130	2	20	
Benzene	2.9	10	13	101		13	101		70-130	0	20	
Toluene	ND	10	10	100		10	100		70-130	0	20	
Ethylbenzene	ND	10	9.7	97		9.8	98		70-130	1	20	
Chloromethane	ND	10	6.0	60	Q	6.1	61	Q	64-130	2	20	
Bromomethane	ND	10	3.2	32	Q	3.6	36	Q	39-139	12	20	
Vinyl chloride	ND	10	9.7	97		9.7	97		55-140	0	20	

Matrix Spike Analysis Batch Quality Control

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number:

L2443419

Report Date:

08/12/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS ID: MW-4	S - Westborough	Lab Assoc	ciated sample	(s): 01-03,05-09	QC Batch ID: WG	G1955995-6 V	VG1955995-7 QC S	Sample	L2443419-01 Client
Chloroethane	ND	10	12	120	11	110	55-138	9	20
1,1-Dichloroethene	ND	10	8.7	87	8.8	88	61-145	1	20
trans-1,2-Dichloroethene	ND	10	10	100	10	100	70-130	0	20
Trichloroethene	ND	10	10	100	10	100	70-130	0	20
1,2-Dichlorobenzene	ND	10	9.9	99	10	100	70-130	1	20
1,3-Dichlorobenzene	ND	10	10	100	10	100	70-130	0	20
1,4-Dichlorobenzene	ND	10	9.7	97	10	100	70-130	3	20
Methyl tert butyl ether	ND	10	8.6	86	8.9	89	63-130	3	20
o/m-Xylene	ND	20	20	100	20	100	70-130	0	20
o-Xylene	0.70J	20	20	100	20	100	70-130	0	20
cis-1,2-Dichloroethene	ND	10	10	100	10	100	70-130	0	20
Styrene	ND	20	18	90	19	95	70-130	5	20
Dichlorodifluoromethane	ND	10	8.1	81	8.2	82	36-147	1	20
Acetone	ND	10	9.0	90	8.2	82	58-148	9	20
Carbon disulfide	ND	10	9.0	90	9.1	91	51-130	1	20
2-Butanone	ND	10	7.1	71	7.7	77	63-138	8	20
4-Methyl-2-pentanone	ND	10	7.8	78	8.2	82	59-130	5	20
2-Hexanone	ND	10	7.2	72	7.1	71	57-130	1	20
Bromochloromethane	ND	10	11	110	11	110	70-130	0	20
1,2-Dibromoethane	ND	10	9.5	95	9.7	97	70-130	2	20
n-Butylbenzene	ND	10	9.2	92	9.6	96	53-136	4	20
sec-Butylbenzene	2.8	10	12	92	12	92	70-130	0	20
1,2-Dibromo-3-chloropropane	ND	10	10	100	11	110	41-144	10	20

Matrix Spike Analysis Batch Quality Control

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number:

L2443419

Report Date:

08/12/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS ID: MW-4	- Westborough	Lab Assoc	ciated sample(s): 01-03,05-09	QC Ba	atch ID: WO	91955995-6 W	/G19559	995-7 QC	Sample:	L244341	19-01	Client
Isopropylbenzene	10	10	19	90		20	100		70-130	5		20	
p-Isopropyltoluene	ND	10	10	100		10	100		70-130	0		20	
n-Propylbenzene	2.2J	10	11	110		12	120		69-130	9		20	
1,2,3-Trichlorobenzene	ND	10	10	100		11	110		70-130	10		20	
1,2,4-Trichlorobenzene	ND	10	10	100		11	110		70-130	10		20	
1,3,5-Trimethylbenzene	3.5	10	13	95		13	95		64-130	0		20	
1,2,4-Trimethylbenzene	120	10	120	0	Q	120	0	Q	70-130	0		20	
Methyl Acetate	ND	10	6.8	68	Q	7.1	71		70-130	4		20	
Cyclohexane	65	10	63	0	Q	64	0	Q	70-130	2		20	
1,4-Dioxane	ND	500	500	100		510	102		56-162	2		20	
Freon-113	ND	10	9.1	91		9.4	94		70-130	3		20	
Methyl cyclohexane	41	10	43	20	Q	45	40	Q	70-130	5		20	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	90	90	70-130
4-Bromofluorobenzene	97	98	70-130
Dibromofluoromethane	101	102	70-130
Toluene-d8	99	100	70-130

SEMIVOLATILES

L2443419

08/12/24

08/06/24 16:33

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-01

OLEAN,NY

MW-4

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 12:59

Date Received: 08/02/24

Lab Number:

Report Date:

Extraction Date:

Field Prep: Not Specified

Extraction Method: EPA 3510C

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270E

Analytical Date: 08/07/24 14:34

Analyst: ΕK

Semivolatile Organics by GC/MS - Westborough Bis(2-chloroethyl)ether 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether	ND ND ND ND ND ND	ug/l ug/l	2.0 5.0	0.39 1.8	1
3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether	ND ND ND	ug/l			1
2,4-Dinitrotoluene 2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether	ND ND		5.0	1 0	
2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether	ND	,		1.0	1
4-Chlorophenyl phenyl ether		ug/l	5.0	0.54	1
	ND	ug/l	5.0	0.84	1
	ND	ug/l	2.0	0.39	1
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.24	1
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.40	1
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.84	1
Hexachlorocyclopentadiene	ND	ug/l	20	1.2	1
Isophorone	ND	ug/l	5.0	0.86	1
Nitrobenzene	ND	ug/l	2.0	0.20	1
NDPA/DPA	ND	ug/l	2.0	0.92	1
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.91	1
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.4	1
Butyl benzyl phthalate	ND	ug/l	5.0	2.6	1
Di-n-butylphthalate	ND	ug/l	5.0	0.96	1
Di-n-octylphthalate	ND	ug/l	5.0	2.3	1
Diethyl phthalate	ND	ug/l	5.0	0.76	1
Dimethyl phthalate	ND	ug/l	5.0	0.92	1
Biphenyl	ND	ug/l	2.0	0.20	1
4-Chloroaniline	ND	ug/l	5.0	0.47	1
2-Nitroaniline	ND	ug/l	5.0	1.0	1
3-Nitroaniline	ND	ug/l	5.0	1.2	1
4-Nitroaniline	ND	ug/l	5.0	1.4	1
Dibenzofuran	ND	ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.24	1
Acetophenone	ND	ug/l	5.0	0.92	1
2,4,6-Trichlorophenol	ND	ug/l	5.0	2.1	1

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

L2443419-01

SAMPLE RESULTS

Date Collected: 07/30/24 12:59

Report Date:

Client ID: MW-4 Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Semivolatile Organics by GC/MS - Westborough Lab p-Chloro-m-cresol ND ug/l 2.0 0.61 1 2-Chlorophenol ND ug/l 2.0 0.65 1 2,4-Dichlorophenol ND ug/l 5.0 1.7 1 2,4-Dimethylphenol ND ug/l 5.0 2.0 1 2-Nitrophenol ND ug/l 10 2.0 1 4-Nitrophenol ND ug/l 10 1.4 1 2,4-Dinitrophenol ND ug/l 20 5.4 1 4,6-Dinitro-o-cresol ND ug/l 5.0 2.3 1 Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 2.1 1 4,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 2,4,5-Trichlorophenol ND	meter	Result	Qualifier	Units	RL	MDL	Dilution Factor
2-Chlorophenol ND ug/l 2.0 0.65 1 2,4-Dichlorophenol ND ug/l 5.0 1.7 1 2,4-Dimethylphenol ND ug/l 5.0 2.0 1 2-Nitrophenol ND ug/l 10 2.0 1 4-Nitrophenol ND ug/l 10 1.4 1 2,4-Dinitrophenol ND ug/l 20 5.4 1 4,6-Dinitro-o-cresol ND ug/l 20 5.4 1 4,6-Dinitro-o-cresol ND ug/l 10 2.3 1 Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 1.4 1 3-Methylphenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1	nivolatile Organics by GC/MS - Wes	stborough Lab					
2-Chlorophenol ND ug/l 2.0 0.65 1 2,4-Dichlorophenol ND ug/l 5.0 1.7 1 2,4-Dimethylphenol ND ug/l 5.0 2.0 1 2-Nitrophenol ND ug/l 10 2.0 1 4-Nitrophenol ND ug/l 10 1.4 1 2,4-Dinitrophenol ND ug/l 20 5.4 1 4,6-Dinitro-o-cresol ND ug/l 10 2.3 1 Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 2.1 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 2.0 0.31 1	oro-m-cresol	ND		ug/l	2.0	0.61	1
2,4-Dichlorophenol ND ug/l 5.0 1.7 1 2,4-Dimethylphenol ND ug/l 5.0 2.0 1 2-Nitrophenol ND ug/l 10 2.0 1 4-Nitrophenol ND ug/l 10 1.4 1 2,4-Dinitrophenol ND ug/l 20 5.4 1 4,6-Dinitro-o-cresol ND ug/l 10 2.3 1 Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 2.1 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 2.0 0.31 1	orophenol	ND			2.0	0.65	1
2-Nitrophenol ND ug/l 10 2.0 1 4-Nitrophenol ND ug/l 10 1.4 1 2,4-Dinitrophenol ND ug/l 20 5.4 1 4,6-Dinitro-o-cresol ND ug/l 10 2.3 1 Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 5.0 2.1 1	ichlorophenol	ND			5.0	1.7	1
4-Nitrophenol ND ug/l 10 1.4 1 2,4-Dinitrophenol ND ug/l 20 5.4 1 4,6-Dinitro-o-cresol ND ug/l 10 2.3 1 Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 5.0 2.1 1	imethylphenol	ND		ug/l	5.0	2.0	1
2,4-Dinitrophenol ND ug/l 20 5.4 1 4,6-Dinitro-o-cresol ND ug/l 10 2.3 1 Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 2.0 0.31 1	ophenol	ND		ug/l	10	2.0	1
4,6-Dinitro-o-cresol ND ug/l 10 2.3 1 Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 2.0 0.31 1	ophenol	ND		ug/l	10	1.4	1
Phenol ND ug/l 5.0 0.35 1 2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 2.0 0.31 1	initrophenol	ND		ug/l	20	5.4	1
2-Methylphenol ND ug/l 5.0 2.3 1 3-Methylphenol/4-Methylphenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 2.0 0.31 1	initro-o-cresol	ND		ug/l	10	2.3	1
3-Methylphenol/4-Methylphenol ND ug/l 5.0 1.4 1 2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 2.0 0.31 1	ol	ND		ug/l	5.0	0.35	1
2,4,5-Trichlorophenol ND ug/l 5.0 2.1 1 Carbazole ND ug/l 2.0 0.31 1	thylphenol	ND		ug/l	5.0	2.3	1
Carbazole ND ug/l 2.0 0.31 1	thylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
49.	Trichlorophenol	ND		ug/l	5.0	2.1	1
Atrazine ND ug/l 10 1.0 1	azole	ND		ug/l	2.0	0.31	1
	ine	ND		ug/l	10	1.0	1
Benzaldehyde ND ug/l 5.0 1.1 1	aldehyde	ND		ug/l	5.0	1.1	1
Caprolactam ND ug/l 10 1.2 1	olactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol ND ug/l 5.0 2.2 1	6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

08/12/24

Report Date:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab ID: Date Collected: 07/30/24 12:59

Client ID: MW-4 Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	122	J	ug/l	1
Unknown Ketone	8.60	J	ug/l	1
Unknown	6.20	J	ug/l	1
Unknown Benzene	16.6	J	ug/l	1
Unknown Ketone	5.20	J	ug/l	1
Unknown	9.30	J	ug/l	1
Unknown Alkane	4.70	J	ug/l	1
Unknown	7.50	J	ug/l	1
Unknown	4.80	J	ug/l	1
Unknown	12.8	J	ug/l	1
Unknown Ketone	5.90	J	ug/l	1
Unknown	6.00	J	ug/l	1
Unknown	9.10	J	ug/l	1
Unknown Alkane	7.30	J	ug/l	1
Unknown Benzene	8.30	J	ug/l	1
Unknown Ketone	9.60	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	0	Q	21-120	
Phenol-d6	6	Q	10-120	
Nitrobenzene-d5	64		23-120	
2-Fluorobiphenyl	57		15-120	
2,4,6-Tribromophenol	0	Q	10-120	
4-Terphenyl-d14	59		41-149	

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

07/30/24 12:59

Lab Number:

Report Date:

Lab ID: L2443419-01 Date Collected:

Date Received: Client ID: MW-4 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/06/24 16:33 Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 19:46

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	0.10		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	0.08	J	ug/l	0.10	0.02	1
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	0.14		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	0.05	J	ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Report Date:

Lab ID: Date Collected: 07/30/24 12:59 L2443419-01

Date Received: Client ID: 08/02/24 MW-4 Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	2	Q	21-120
Phenol-d6	8	Q	10-120
Nitrobenzene-d5	58		23-120
2-Fluorobiphenyl	72		15-120
2,4,6-Tribromophenol	3	Q	10-120
4-Terphenyl-d14	65		41-149

L2443419

08/12/24

08/06/24 16:33

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-02

OLEAN,NY

W29

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Lab Number:

Report Date:

Extraction Date:

Date Received: 08/02/24

Extraction Method: EPA 3510C

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270E

Analytical Date: 08/07/24 13:18

Analyst: ΕK

3,3 -Dichlorobenzidine ND ug/l 5.0 1.8 1 2,4 -Dinitrotoluene ND ug/l 5.0 0.54 1 2,6 -Dinitrotoluene ND ug/l 5.0 0.84 1 4 -Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4 -Chlorophenyl phenyl ether ND ug/l 2.0 0.40 1 Bis(2-chlorostrospropylether ND ug/l 2.0 0.40 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 n-Nitrobenzene ND ug/l 5.0 0.92 1 n-Nitrobenzene ND ug/l 5.0 0.92 1 n-Nitrobenzene ND ug/l 5.0	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3.3-Dichlorobenzidine ND ug/l 5.0 1.8 1 2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,4-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.39 1 8-Bis(2-chlorosphroylphenyl ether ND ug/l 2.0 0.40 1 8-Bis(2-chlorosphroylphenyl ether ND ug/l 5.0 0.84 1 8-Bis(2-chlorosphroylphenyl ether ND ug/l 5.0 0.84 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.84 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.84 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.86 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.90 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.47 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.47 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.47 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.40 1 8-Bis(2-chlorosphroylphenyl ND ug/l 5.0 0.	Semivolatile Organics by GC/MS - We	stborough Lab					
2.4-Dinitrotoluene ND ug/l 5.0 0.54 1 2.6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chlorosporyl)ether ND ug/l 2.0 0.40 1 Hexachlorocyclopethadene ND ug/l 2.0 0.84 1 Hexachlorocyclopethadene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.86 1 NDPADPA ND ug/l 5.0 0.92 1 Districtoristina ND ug/l 5.0	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
2.6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chlorosisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorosisopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 ND ug/l 5.0 0.86 1 NIstrobenzene ND ug/l 5.0 0.86 1 ND ug/l 5.0 0.96 1 NDPA/DPA ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 N-Nitrobenzene ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-cyclyphthalate ND ug/l 5.0 0.92 1 Diethyl phthalate ND ug/l 5.0 0.47 1 Diethyl phthalate ND ug/l 5.0 0.40 1	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 ND ug/l 5.0 0.86 1 NIIrobenzene ND ug/l 5.0 0.86 1 NIIrobenzene ND ug/l 5.0 0.92 1 NDPA/DPA ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.96 1 Di-n-butyl phthalate ND ug/l 5.0 0.96 1 Di-n-butyl phthalate ND ug/l 5.0 0.96 1 Di-n-butyl phthalate ND ug/l 5.0 0.96 1 Di-n-totyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.92 1 A-Chloroaniline ND ug/l 5.0 0.92 1 A-Chloroaniline ND ug/l 5.0 0.92 1 A-Chloroaniline ND ug/l 5.0 0.47 1 A-Chloroaniline ND ug/l 5.0 1.2 1 A-Ketophenone ND ug/l 5.0 0.40 1 1,24,5-Tetrachlorobenzene ND ug/l 5.0 0.92 1	2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 Nitrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 NDPA/DPA ND ug/l 5.0 0.92 1 NDPA/DPA ND ug/l 5.0 0.91 1 Bis(2-ethlylexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-ethlylexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-ethlylexyl)phthalate ND ug/l 5.0 0.91 1 Bib(2-ethlylexyl)phthalate ND ug/l 5.0 0.91 1 Bib(3-ethlylexyl)phthalate ND ug/l 5.0 0.96 1 Din-butyl phthalate ND ug/l 5.0 0.96 1 Bib(4-chloroaniline ND ug/l 5.0 0.92 1 Bib(4-chloroaniline ND ug/l 5.0 0.92 1 A-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 0.47 1 3-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 0.47 1 4-Nitroaniline ND ug/l 5.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.92 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 NDPA/DPA ND ug/l 5.0 0.91 1 NDPA/DPA ND ug/l 5.0 0.92 1 NDPA/DPA	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.84 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Hexachlorocyclopentadiene ND ug/l 20 1.2 1 Isophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Buyl benzyl phthalate ND ug/l 5.0 0.91 1 Buyl benzyl phthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
Suphorone ND ug/l 5.0 0.86 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
Nitrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 0.76 1 Di-n-octylphthalate ND ug/l 5.0 0.76 <td>Hexachlorocyclopentadiene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>20</td> <td>1.2</td> <td>1</td>	Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
NDPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.76 1 Biphenyl ND ug/l 5.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.2	Isophorone	ND		ug/l	5.0	0.86	1
n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 0.47 1 3-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.0 1 4-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 A-Nitroaniline ND ug/l 5.0 1.4 1 A-Nitroaniline ND ug/l 5.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.92 1	Nitrobenzene	ND		ug/l	2.0	0.20	1
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1	NDPA/DPA	ND		ug/l	2.0	0.92	1
Butyl benzyl phthalate ND ug/l 5.0 2.6 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-cytylphthalate ND ug/l 5.0 2.3 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Di-n-octylphthalate ND ug/l 5.0 2.3 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.2 1 Dibenzofuran ND ug/l 5.0 1.4 1 Acetophenone ND ug/l 5.0 1.4 1 Acetophenone ND ug/l 5.0 0.49 1	Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
Biphenyl ND ug/l 2.0 0.20 1	Diethyl phthalate	ND		ug/l	5.0	0.76	1
4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.2 1 5.0 1.2 1	Dimethyl phthalate	ND		ug/l	5.0	0.92	1
2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	Biphenyl	ND		ug/l	2.0	0.20	1
3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	4-Chloroaniline	ND		ug/l	5.0	0.47	1
4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	2-Nitroaniline	ND		ug/l	5.0	1.0	1
Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	3-Nitroaniline	ND		ug/l	5.0	1.2	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	4-Nitroaniline	ND		ug/l	5.0	1.4	1
Acetophenone ND ug/l 5.0 0.92 1	Dibenzofuran	ND		ug/l	2.0	0.40	1
<u> </u>	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
2.4.6-Trichlorophenol ND ug/l 5.0 2.1 1	Acetophenone	ND		ug/l	5.0	0.92	1
-, ,,	2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Report Date:

Lab ID: L2443419-02 Client ID: Date Received: W29

08/02/24 Field Prep: Not Specified Sample Location: OLEAN,NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Tentatively Identified Compounds				
Total TIC Compounds	20.5	J	ug/l	1
Unknown	10.8	J	ug/l	1
Unknown Alkane	5.10	J	ug/l	1
Unknown	4.60	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	0	Q	21-120
Phenol-d6	7	Q	10-120
Nitrobenzene-d5	61		23-120
2-Fluorobiphenyl	59		15-120
2,4,6-Tribromophenol	0	Q	10-120
4-Terphenyl-d14	65		41-149

L2443419

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Report Date:

Lab ID: L2443419-02 Date Received: Client ID: W29 08/02/24

Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/06/24 16:33 Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 20:02

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	b				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	ND		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Report Date:

Lab ID: L2443419-02 Date Received: Client ID: 08/02/24 W29

Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	4	Q	21-120
Phenol-d6	9	Q	10-120
Nitrobenzene-d5	60		23-120
2-Fluorobiphenyl	76		15-120
2,4,6-Tribromophenol	9	Q	10-120
4-Terphenyl-d14	66		41-149

L2443419

08/12/24

08/07/24 19:51

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3

RE

Project Number: 4388.0001B000

L2443419-02

OLEAN,NY

W29

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Report Date:

Extraction Date:

Date Received: 08/02/24 Field Prep: Not Specified

Extraction Method: EPA 3510C

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270E

Analytical Date: 08/08/24 12:03

Analyst: LJG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	

08/12/24

Report Date:

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab ID: L2443419-02 RΕ Date Collected: 07/30/24 13:59

Client ID: W29

Date Received: 08/02/24 Field Prep: Not Specified Sample Location: OLEAN,NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
emivolatile Organics by GC/MS - Westborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	2.4	J	ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

Tentatively Identified Compounds				
Total TIC Compounds	46.6	J	ug/l	1
Cyclic Octaatomic Sulfur	32.5	NJ	ug/l	1
Unknown	4.20	J	ug/l	1
Unknown Organic Acid	4.20	J	ug/l	1
Unknown	5.70	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	11	Q	21-120
Phenol-d6	17		10-120
Nitrobenzene-d5	77		23-120
2-Fluorobiphenyl	79		15-120
2,4,6-Tribromophenol	16		10-120
4-Terphenyl-d14	81		41-149

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: Report Date: 4388.0001B000 08/12/24

SAMPLE RESULTS

Lab ID: RE Date Collected: 07/30/24 13:59 L2443419-02

Date Received: Client ID: W29 08/02/24

Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/07/24 19:48 Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 12:09

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM -	Westborough La	nb					
Acenaphthene	ND		ug/l	0.10	0.02	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	ND		ug/l	0.10	0.03	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1	
Naphthalene	0.04	J	ug/l	0.10	0.02	1	
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.03	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1	
Chrysene	ND		ug/l	0.10	0.03	1	
Acenaphthylene	ND		ug/l	0.10	0.02	1	
Anthracene	ND		ug/l	0.10	0.02	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1	
Fluorene	0.04	J	ug/l	0.10	0.03	1	
Phenanthrene	ND		ug/l	0.10	0.04	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1	
Pyrene	ND		ug/l	0.10	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1	
Pentachlorophenol	ND		ug/l	0.80	0.06	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	
Hexachloroethane	ND		ug/l	0.80	0.02	1	

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 13:59

Report Date:

L2443419-02 Date Received: Client ID: 08/02/24 W29

Sample Location: Field Prep: OLEAN,NY Not Specified

RE

Sample Depth:

Lab ID:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	14	Q	21-120
Phenol-d6	20		10-120
Nitrobenzene-d5	92		23-120
2-Fluorobiphenyl	84		15-120
2,4,6-Tribromophenol	28		10-120
4-Terphenyl-d14	86		41-149

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

JG

SAMPLE RESULTS

Oato Collected: 07/20/24 14:53

Lab Number:

Report Date:

L2443419-03 Date Collected: 07/30/24 14:52 MWSW Date Received: 08/02/24

Client ID: MWSW Date Received: 08/02/24
Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Analyst:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 08/06/24 16:33

Analytical Date: 08/08/24 04:12

Qualifier Units RL MDL **Dilution Factor Parameter** Result Semivolatile Organics by GC/MS - Westborough Lab Bis(2-chloroethyl)ether ND 2.0 0.39 1 ug/l 3,3'-Dichlorobenzidine ND 5.0 1.8 ug/l 2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 ND 2.0 Bis(2-chloroisopropyl)ether ug/l 0.40 1 Bis(2-chloroethoxy)methane ND 5.0 0.84 1 ug/l ND Hexachlorocyclopentadiene ug/l 20 1.2 1 Isophorone ND 5.0 0.86 1 ug/l Nitrobenzene ND 2.0 0.20 1 ug/l NDPA/DPA 2.0 ND 0.92 ug/l 1 n-Nitrosodi-n-propylamine ND 5.0 0.91 1 ug/l Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND 5.0 2.6 1 ug/l Di-n-butylphthalate ND 5.0 0.96 1 ug/l Di-n-octylphthalate ND ug/l 5.0 2.3 1 ND Diethyl phthalate 5.0 0.76 1 ug/l Dimethyl phthalate ND 5.0 0.92 1 ug/l ND 2.0 0.20 1 Biphenyl ug/l 4-Chloroaniline ND 5.0 0.47 1 ug/l 2-Nitroaniline ND ug/l 5.0 1.0 1 ND 3-Nitroaniline 5.0 1.2 1 ug/l 4-Nitroaniline ND 5.0 1.4 1 ug/l Dibenzofuran ND 2.0 0.40 1 ug/l 1,2,4,5-Tetrachlorobenzene ND 0.24 1 ug/l 10 ND 0.92 Acetophenone 5.0 1 ug/l ND 2.1 2,4,6-Trichlorophenol ug/l 5.0 1

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

L2443419-03

SAMPLE RESULTS

Date Collected: 07/30/24 14:52

Report Date:

Client ID: MWSW Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1	
2-Chlorophenol	ND		ug/l	2.0	0.65	1	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1	
2-Nitrophenol	ND		ug/l	10	2.0	1	
4-Nitrophenol	ND		ug/l	10	1.4	1	
2,4-Dinitrophenol	ND		ug/l	20	5.4	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1	
Phenol	ND		ug/l	5.0	0.35	1	
2-Methylphenol	ND		ug/l	5.0	2.3	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1	
Carbazole	ND		ug/l	2.0	0.31	1	
Atrazine	ND		ug/l	10	1.0	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	1.2	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1	

08/12/24

Report Date:

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 14:52 L2443419-03

Date Received: Client ID: **MWSW** 08/02/24 Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Lab ID:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	185	J	ug/l	1
Unknown	4.10	J	ug/l	1
Unknown	30.7	J	ug/l	1
Unknown Benzene	10.7	J	ug/l	1
Unknown Organic Acid	8.40	J	ug/l	1
Unknown	39.7	J	ug/l	1
Unknown	4.60	J	ug/l	1
Unknown	5.80	J	ug/l	1
Unknown	7.90	J	ug/l	1
Unknown Alkane	5.70	J	ug/l	1
Unknown	33.4	J	ug/l	1
Unknown Alkane	8.50	J	ug/l	1
Unknown Organic Acid	9.80	J	ug/l	1
Unknown Alkane	11.0	J	ug/l	1
Unknown	4.30	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	20	Q	21-120
Phenol-d6	20		10-120
Nitrobenzene-d5	76		23-120
2-Fluorobiphenyl	67		15-120
2,4,6-Tribromophenol	38		10-120
4-Terphenyl-d14	85		41-149

L2443419

08/12/24

08/06/24 16:33

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-03

OLEAN,NY

MWSW

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 14:52

Lab Number:

Report Date:

Extraction Date:

Date Received: 08/02/24 Field Prep: Not Specified

Extraction Method: EPA 3510C

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water

Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 20:19

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS	emivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	ND		ug/l	0.10	0.02	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	ND		ug/l	0.10	0.03	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1		
Naphthalene	0.06	J	ug/l	0.10	0.02	1		
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1		
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1		
Chrysene	ND		ug/l	0.10	0.03	1		
Acenaphthylene	ND		ug/l	0.10	0.02	1		
Anthracene	ND		ug/l	0.10	0.02	1		
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1		
Fluorene	0.05	J	ug/l	0.10	0.03	1		
Phenanthrene	ND		ug/l	0.10	0.04	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1		
Pyrene	ND		ug/l	0.10	0.04	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1		
Pentachlorophenol	ND		ug/l	0.80	0.06	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.02	1		
			-					

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 14:52

Report Date:

Lab ID: L2443419-03 Date Received: Client ID: 08/02/24 MWSW

Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	18	Q	21-120
Phenol-d6	17		10-120
Nitrobenzene-d5	62		23-120
2-Fluorobiphenyl	74		15-120
2,4,6-Tribromophenol	45		10-120
4-Terphenyl-d14	63		41-149

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2443419-04 Date Collected: 07/30/24 15:45

Date Received: Client ID: W24 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/06/24 16:33 Analytical Method: 1,8270E

Analytical Date: 08/07/24 13:44

Analyst: ΕK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

Project Number: 4388.0001B000

L2443419-04

OLEAN,NY

W24

SAMPLE RESULTS

Date Collected: 07/30/24 15:45

Date Received: 08/02/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1	
2-Chlorophenol	ND		ug/l	2.0	0.65	1	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1	
2-Nitrophenol	ND		ug/l	10	2.0	1	
4-Nitrophenol	ND		ug/l	10	1.4	1	
2,4-Dinitrophenol	ND		ug/l	20	5.4	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1	
Phenol	ND		ug/l	5.0	0.35	1	
2-Methylphenol	ND		ug/l	5.0	2.3	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1	
Carbazole	ND		ug/l	2.0	0.31	1	
Atrazine	ND		ug/l	10	1.0	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	1.2	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1	

Tentatively Identified Compounds				
Total TIC Compounds	41.0	J	ug/l	1
Unknown	4.30	J	ug/l	1
Unknown	7.80	J	ug/l	1
Unknown	4.20	J	ug/l	1
Unknown	5.60	J	ug/l	1
Unknown	4.20	J	ug/l	1
Unknown Alkane	5.60	J	ug/l	1
Unknown Alkane	4.40	J	ug/l	1
Unknown	4.90	J	ug/l	1

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

W24

SAMPLE RESULTS

Date Collected: 07/30/24 15:45

Date Received: 08/02/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

L2443419-04

OLEAN,NY

2-Fluorophenol 14 Q 21-120 Phenol-d6 13 10-120 Nitrobenzene-d5 58 23-120 2-Fluorobiphenyl 54 15-120
Nitrobenzene-d5 58 23-120 2-Fluorobiphenyl 54 15-120
2-Fluorobiphenyl 54 15-120
2,4,6-Tribromophenol 21 10-120
4-Terphenyl-d14 58 41-149

L2443419

08/12/24

08/06/24 16:33

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

L2443419-04

OLEAN,NY

W24

SAMPLE RESULTS

Date Collected: 07/30/24 15:45

Date Received: 08/02/24

Extraction Method: EPA 3510C

Lab Number:

Report Date:

Extraction Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water

Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 20:35

Analyst: DV

Semivolatile Organics by GC/MS-SIM - Westborbugh Lab Acenaphthene ND ug/l 0.10 0.02 1 2-Chloronaphthalene ND ug/l 0.20 0.02 1 Fluoranthene ND ug/l 0.10 0.03 1 Hexachlorobutadiene ND ug/l 0.50 0.02 1 Naphthalene ND ug/l 0.10 0.02 1 Benzo(a)anthracene ND ug/l 0.10 0.02 1 Benzo(a)pyrene ND ug/l 0.10 0.03 1 Benzo(a)pyrene ND ug/l 0.10 0.03 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Acchaphthylene ND ug/l 0.10 0.02 1 Anthracene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
2-Chloronaphthalene ND ug/l 0.20 0.02 1 Fluoranthene ND ug/l 0.10 0.03 1 Hexachlorobutadiene ND ug/l 0.50 0.02 1 Naphthalene ND ug/l 0.50 0.02 1 Naphthalene ND ug/l 0.10 0.02 1 Benzo(a)anthracene ND ug/l 0.10 0.03 1 Benzo(a)pyrene ND ug/l 0.10 0.02 1 Benzo(b)fluoranthene ND ug/l 0.10 0.02 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Acenaphthylene ND ug/l 0.10 0.03 1 Acenaphthylene ND ug/l 0.10 0.02 1 Benzo(b)iperylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.03 1 Fluorene ND ug/l 0.10 0.04 1 Fluorene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.03 1 Fluorene ND ug/l 0.10 0.04 1 Fluorene ND ug/l 0.10 0.03 1 Fluorene ND ug/l 0.10 0.03 1 Fluorene ND ug/l 0.10 0.04 1 Fluorene ND ug/l 0.10 0.03 1 Fluorene ND ug/l 0.10 0.04 1 Fluorene ND ug/l 0.10 0.03 1 Fluorene ND ug/l 0.10 0.03 1 Fluorene ND ug/l 0.10 0.04 1 Fluorene ND ug/l 0.10 0.03 1 Fluorene ND ug/l 0.10 0.03 1	Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Fluoranthere ND ug/l 0.10 0.03 1 Hexachlorobutadiene ND ug/l 0.50 0.02 1 Naphthalene ND ug/l 0.10 0.02 1 Benzo(a)anthracene ND ug/l 0.10 0.03 1 Benzo(a)pyrene ND ug/l 0.10 0.02 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Benzo(k)fluoranthene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Acenaphthylene ND ug/l 0.10 0.02 1 Anthracene ND ug/l 0.10 0.02 1 Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.03 1 <	Acenaphthene	ND		ug/l	0.10	0.02	1		
Hexachlorobutadiene ND ug/l 0.50 0.02 1 Naphthalene ND ug/l 0.10 0.02 1 Benzo(a)anthracene ND ug/l 0.10 0.03 1 Benzo(a)pyrene ND ug/l 0.10 0.02 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Benzo(k)fluoranthene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Acenaphthylene ND ug/l 0.10 0.02 1 Anthracene ND ug/l 0.10 0.02 1 Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.03 1 Phenanthrene ND ug/l 0.10 0.02 1 <	2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Naphthalene ND ug/l 0.10 0.02 1 Benzo(a)anthracene ND ug/l 0.10 0.03 1 Benzo(a)pyrene ND ug/l 0.10 0.02 1 Benzo(b)fluoranthene ND ug/l 0.10 0.03 1 Benzo(k)fluoranthene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Acenaphthylene ND ug/l 0.10 0.02 1 Anthracene ND ug/l 0.10 0.02 1 Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.02 1 Phenanthrene ND ug/l 0.10 0.02 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1	Fluoranthene	ND		ug/l	0.10	0.03	1		
Benzo(a)anthracene ND ug/l 0.10 0.03 1	Hexachlorobutadiene	ND		ug/l	0.50	0.02	1		
Benzo(a)pyrene ND ug/l 0.10 0.02 1	Naphthalene	ND		ug/l	0.10	0.02	1		
Benzo(h)fluoranthene ND ug/l 0.10 0.03 1 Benzo(k)fluoranthene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Acenaphthylene ND ug/l 0.10 0.02 1 Anthracene ND ug/l 0.10 0.02 1 Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.03 1 Phenanthrene ND ug/l 0.10 0.04 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.80 0.06 1	Benzo(a)anthracene	ND		ug/l	0.10	0.03	1		
Benzo(k)fluoranthene ND ug/l 0.10 0.03 1 Chrysene ND ug/l 0.10 0.03 1 Acenaphthylene ND ug/l 0.10 0.02 1 Anthracene ND ug/l 0.10 0.02 1 Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.02 1 Phenanthrene ND ug/l 0.10 0.03 1 Phenanthrene ND ug/l 0.10 0.04 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1	Benzo(a)pyrene	ND		ug/l	0.10	0.02	1		
Chrysene ND ug/l 0.10 0.03 1 Acenaphthylene ND ug/l 0.10 0.02 1 Anthracene ND ug/l 0.10 0.02 1 Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.03 1 Phenanthrene ND ug/l 0.10 0.04 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1		
Acenaphthylene ND ug/l 0.10 0.02 1 Anthracene ND ug/l 0.10 0.02 1 Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.02 1 Phenanthrene ND ug/l 0.10 0.04 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1		
Anthracene ND ug/l 0.10 0.02 1 Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.03 1 Phenanthrene ND ug/l 0.10 0.04 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.10 0.03 1 Hexachlorobenzene ND ug/l 0.80 0.06 1	Chrysene	ND		ug/l	0.10	0.03	1		
Benzo(ghi)perylene ND ug/l 0.10 0.02 1 Fluorene ND ug/l 0.10 0.03 1 Phenanthrene ND ug/l 0.10 0.04 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Acenaphthylene	ND		ug/l	0.10	0.02	1		
Fluorene ND ug/l 0.10 0.03 1 Phenanthrene ND ug/l 0.10 0.04 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.10 0.03 1 Hexachlorobenzene ND ug/l 0.80 0.06 1	Anthracene	ND		ug/l	0.10	0.02	1		
Phenanthrene ND ug/l 0.10 0.04 1 Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1		
Dibenzo(a,h)anthracene ND ug/l 0.10 0.02 1 Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Fluorene	ND		ug/l	0.10	0.03	1		
Indeno(1,2,3-cd)pyrene ND ug/l 0.10 0.02 1 Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Phenanthrene	ND		ug/l	0.10	0.04	1		
Pyrene ND ug/l 0.10 0.04 1 2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1		
2-Methylnaphthalene ND ug/l 0.10 0.03 1 Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1		
Pentachlorophenol ND ug/l 0.80 0.06 1 Hexachlorobenzene ND ug/l 0.80 0.01 1	Pyrene	ND		ug/l	0.10	0.04	1		
Hexachlorobenzene ND ug/l 0.80 0.01 1	2-Methylnaphthalene	ND		ug/l	0.10	0.03	1		
	Pentachlorophenol	ND		ug/l	0.80	0.06	1		
Hexachloroethane ND ug/l 0.80 0.02 1	Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
	Hexachloroethane	ND		ug/l	0.80	0.02	1		

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 15:45

Report Date:

Date Received: 08/02/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

L2443419-04

OLEAN,NY

W24

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	15	Q	21-120
Phenol-d6	14		10-120
Nitrobenzene-d5	56		23-120
2-Fluorobiphenyl	70		15-120
2,4,6-Tribromophenol	42		10-120
4-Terphenyl-d14	60		41-149

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

08/08/24 09:16

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 11:14

Lab Number:

Report Date:

Lab ID: L2443419-05

Client ID: Date Received: 08/01/24 W18 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/07/24 08:17 Analytical Method: 1,8270E

Analyst: LJG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	

08/12/24

Report Date:

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab ID: L2443419-05 Date Collected: 07/31/24 11:14

Client ID: W18

Date Received: 08/01/24 Field Prep: Sample Location: OLEAN,NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1		
2-Chlorophenol	ND		ug/l	2.0	0.65	1		
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1		
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1		
2-Nitrophenol	ND		ug/l	10	2.0	1		
4-Nitrophenol	ND		ug/l	10	1.4	1		
2,4-Dinitrophenol	ND		ug/l	20	5.4	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1		
Phenol	0.50	J	ug/l	5.0	0.35	1		
2-Methylphenol	ND		ug/l	5.0	2.3	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1		
Carbazole	ND		ug/l	2.0	0.31	1		
Atrazine	ND		ug/l	10	1.0	1		
Benzaldehyde	ND		ug/l	5.0	1.1	1		
Caprolactam	ND		ug/l	10	1.2	1		
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1		

Tentatively Identified Compounds				
Total TIC Compounds	16.5	J	ug/l	1
Unknown Organic Acid	7.60	J	ug/l	1
Unknown	4.70	J	ug/l	1
Unknown Organic Acid	4.20	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	27	21-120	
Phenol-d6	25	10-120	
Nitrobenzene-d5	71	23-120	
2-Fluorobiphenyl	68	15-120	
2,4,6-Tribromophenol	54	10-120	
4-Terphenyl-d14	79	41-149	

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 11:14

Lab Number:

Report Date:

Lab ID: L2443419-05 Date Received: Client ID: W18

08/01/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/07/24 19:48 Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 12:58

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.02	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	ND		ug/l	0.10	0.03	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1		
Naphthalene	ND		ug/l	0.10	0.02	1		
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1		
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1		
Chrysene	ND		ug/l	0.10	0.03	1		
Acenaphthylene	ND		ug/l	0.10	0.02	1		
Anthracene	ND		ug/l	0.10	0.02	1		
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1		
Fluorene	0.03	J	ug/l	0.10	0.03	1		
Phenanthrene	ND		ug/l	0.10	0.04	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1		
Pyrene	ND		ug/l	0.10	0.04	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1		
Pentachlorophenol	ND		ug/l	0.80	0.06	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.02	1		

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 11:14

Report Date:

Lab ID: L2443419-05 Date Received: Client ID: 08/01/24 W18

Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

% Recovery	Acceptance Qualifier Criteria
32	21-120
29	10-120
96	23-120
84	15-120
68	10-120
88	41-149
	32 29 96 84 68

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-06

08/08/24 08:53

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 12:14

Lab Number:

Report Date:

Client ID: MW5 Date Received: 08/01/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Lab ID:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 08/07/24 08:17

Analyst: LJG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

L2443419-06

SAMPLE RESULTS

Date Collected: 07/31/24 12:14

Report Date:

Client ID: Date Received: 08/01/24 MW5

Sample Location: Field Prep: Not Specified OLEAN,NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

08/12/24

Report Date:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab ID: L2443419-06 Date Collected: 07/31/24 12:14

Client ID: MW5 Date Received: 08/01/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	278	J	ug/l	1
Unknown Organic Acid	42.5	J	ug/l	1
Unknown	16.0	J	ug/l	1
Unknown	9.10	J	ug/l	1
Unknown	14.8	J	ug/l	1
Unknown	15.3	J	ug/l	1
Unknown	11.1	J	ug/l	1
Cyclic Octaatomic Sulfur	25.6	NJ	ug/l	1
Unknown	9.30	J	ug/l	1
Unknown	10.0	J	ug/l	1
Unknown	18.3	J	ug/l	1
Unknown	27.5	J	ug/l	1
Unknown Ketone	11.4	J	ug/l	1
Unknown Organic Acid	47.1	J	ug/l	1
Unknown	8.90	J	ug/l	1
Unknown	11.3	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	34	21-120	
Phenol-d6	32	10-120	
Nitrobenzene-d5	81	23-120	
2-Fluorobiphenyl	74	15-120	
2,4,6-Tribromophenol	82	10-120	
4-Terphenyl-d14	89	41-149	

L2443419

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 07/31/24 12:14 L2443419-06

Date Received: Client ID: MW5 08/01/24 Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/07/24 19:48 Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 13:14

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - W	estborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.03	J	ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	ND		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	0.06	J	ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 12:14

Report Date:

Client ID: MW5 Date Received: 08/01/24

Sample Location: OLEAN,NY Field Prep:

Not Specified

08/12/24

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

L2443419-06

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	40	10-120
Nitrobenzene-d5	102	23-120
2-Fluorobiphenyl	87	15-120
2,4,6-Tribromophenol	84	10-120
4-Terphenyl-d14	86	41-149

L2443419

08/12/24

08/01/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 13:07

Lab Number:

Report Date:

Date Received:

Lab ID: L2443419-07

Client ID: W22

Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 08/07/24 08:17

Analytical Date: 08/08/24 07:35

Analyst: LJG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	

08/12/24

Report Date:

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Lab ID: L2443419-07 Date Collected: 07/31/24 13:07

Client ID: W22

Date Received: 08/01/24 Sample Location: Field Prep: Not Specified OLEAN,NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Report Date:

Lab ID: L2443419-07 Date Collected: 07/31/24 13:07

Client ID: W22 Date Received: 08/01/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	169	J	ug/l	1
Unknown	14.8	J	ug/l	1
Unknown	11.4	J	ug/l	1
Unknown	6.10	J	ug/l	1
Unknown	6.50	J	ug/l	1
Unknown	8.80	J	ug/l	1
Unknown	9.00	J	ug/l	1
Unknown	14.5	J	ug/l	1
Unknown	17.1	J	ug/l	1
Unknown Alkane	25.3	J	ug/l	1
Unknown	7.20	J	ug/l	1
Unknown	9.40	J	ug/l	1
Unknown	11.7	J	ug/l	1
Unknown	12.5	J	ug/l	1
Unknown	8.40	J	ug/l	1
Unknown	6.30	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	18	Q	21-120	
Phenol-d6	21		10-120	
Nitrobenzene-d5	86		23-120	
2-Fluorobiphenyl	72		15-120	
2,4,6-Tribromophenol	44		10-120	
4-Terphenyl-d14	91		41-149	

L2443419

08/12/24

08/07/24 19:48

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

L2443419-07

OLEAN,NY

W22

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 13:07

Date Received: 08/01/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 13:31

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - We	stborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.20		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	0.14		ug/l	0.10	0.03	1
Benzo(a)pyrene	0.21		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.11		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	0.04	J	ug/l	0.10	0.03	1
Chrysene	0.50		ug/l	0.10	0.03	1
Acenaphthylene	0.14		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	0.36		ug/l	0.10	0.02	1
Fluorene	0.62		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	0.09	J	ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	0.11		ug/l	0.10	0.02	1
Pyrene	1.2		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

08/12/24

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/31/24 13:07

Date Received: 08/01/24 Field Prep: Not Specified

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

L2443419-07

OLEAN,NY

W22

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	29	21-120
Phenol-d6	28	10-120
Nitrobenzene-d5	105	23-120
2-Fluorobiphenyl	88	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	89	41-149

L2443419

08/12/24

Lab Number:

Report Date:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 08:00

Lab ID: L2443419-08 Date Received: Client ID: **BLIND DUP** 08/02/24 Sample Location: Field Prep: OLEAN,NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/06/24 16:33 Analytical Method: 1,8270E

Analytical Date: 08/07/24 14:09

Analyst: ΕK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

L2443419-08

SAMPLE RESULTS

Date Collected: 07/30/24 08:00

Report Date:

Client ID: BLIND DUP Date Received: 08/02/24
Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1	
2-Chlorophenol	ND		ug/l	2.0	0.65	1	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1	
2-Nitrophenol	ND		ug/l	10	2.0	1	
4-Nitrophenol	ND		ug/l	10	1.4	1	
2,4-Dinitrophenol	ND		ug/l	20	5.4	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1	
Phenol	ND		ug/l	5.0	0.35	1	
2-Methylphenol	ND		ug/l	5.0	2.3	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1	
Carbazole	ND		ug/l	2.0	0.31	1	
Atrazine	ND		ug/l	10	1.0	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	1.2	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1	

Tentatively Identified Compounds				
Total TIC Compounds	20.1	J	ug/l	1
Unknown	4.80	J	ug/l	1
Unknown Alkane	4.90	J	ug/l	1
Unknown	4.80	J	ug/l	1
Unknown Alkane	5.60	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	14	Q	21-120
Phenol-d6	15		10-120
Nitrobenzene-d5	68		23-120
2-Fluorobiphenyl	65		15-120
2,4,6-Tribromophenol	20		10-120
4-Terphenyl-d14	65		41-149

L2443419

08/12/24

Lab Number:

Report Date:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 08:00

Lab ID: L2443419-08 Date Received: Client ID: **BLIND DUP** 08/02/24 Not Specified

Sample Location: Field Prep: OLEAN,NY

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/06/24 16:33 Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 20:51

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	Vestborough La	ıb				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	0.05	J	ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000

SAMPLE RESULTS

Date Collected: 07/30/24 08:00

Report Date:

Client ID: BLIND DUP Date Received: 08/02/24
Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

L2443419-08

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	15	Q	21-120
Phenol-d6	15		10-120
Nitrobenzene-d5	63		23-120
2-Fluorobiphenyl	80		15-120
2,4,6-Tribromophenol	40		10-120
4-Terphenyl-d14	66		41-149

L2443419

Lab Number:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 08/07/24 09:30 Extraction Date: 08/06/24 16:33

Analyst: JG

Parameter	Result	Qualifier	Units	RL	М)L
Semivolatile Organics by GC/M	IS - Westborough	Lab for s	ample(s):	01-04,08	Batch:	WG1956053-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.	39
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1	.8
2,4-Dinitrotoluene	ND		ug/l	5.0	0.	54
2,6-Dinitrotoluene	ND		ug/l	5.0	0.	84
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.	39
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.	24
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.	40
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.	84
Hexachlorocyclopentadiene	ND		ug/l	20	1	.2
Isophorone	ND		ug/l	5.0	0.	86
Nitrobenzene	ND		ug/l	2.0	0.	20
NDPA/DPA	ND		ug/l	2.0	0.	92
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.	91
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1	.4
Butyl benzyl phthalate	ND		ug/l	5.0	2	.6
Di-n-butylphthalate	ND		ug/l	5.0	0.	96
Di-n-octylphthalate	ND		ug/l	5.0	2	.3
Diethyl phthalate	ND		ug/l	5.0	0.	76
Dimethyl phthalate	ND		ug/l	5.0	0.	92
Biphenyl	ND		ug/l	2.0	0.	20
4-Chloroaniline	ND		ug/l	5.0	0.	47
2-Nitroaniline	ND		ug/l	5.0	1	.0
3-Nitroaniline	ND		ug/l	5.0	1	.2
4-Nitroaniline	ND		ug/l	5.0	1	.4
Dibenzofuran	ND		ug/l	2.0	0.	40
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.	24
Acetophenone	ND		ug/l	5.0	0.	92
2,4,6-Trichlorophenol	ND		ug/l	5.0	2	.1
p-Chloro-m-cresol	ND		ug/l	2.0	0.	61

L2443419

Lab Number:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/07/24 09:30

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 08/06/24 16:33

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/M	S - Westborougl	n Lab for s	ample(s):	01-04,08	Batch: WG1956	053-1
2-Chlorophenol	ND		ug/l	2.0	0.65	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	
2-Nitrophenol	ND		ug/l	10	2.0	
4-Nitrophenol	ND		ug/l	10	1.4	
2,4-Dinitrophenol	ND		ug/l	20	5.4	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	
Phenol	ND		ug/l	5.0	0.35	
2-Methylphenol	ND		ug/l	5.0	2.3	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	
Carbazole	ND		ug/l	2.0	0.31	
Atrazine	ND		ug/l	10	1.0	
Benzaldehyde	ND		ug/l	5.0	1.1	
Caprolactam	ND		ug/l	10	1.2	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 08/07/24 09:30 Extraction Date: 08/06/24 16:33

Analyst: JG

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-04,08 Batch: WG1956053-1

		Acceptance	
Surrogate	%Recovery Quality	fier Criteria	
0.51	40	04.400	
2-Fluorophenol	42	21-120	
Phenol-d6	26	10-120	
Nitrobenzene-d5	59	23-120	
2-Fluorobiphenyl	55	15-120	
2,4,6-Tribromophenol	32	10-120	
4-Terphenyl-d14	47	41-149	

L2443419

Lab Number:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/07/24 13:36 Extraction Date: 08/06/24 16:33

Analyst: JJW

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab for sample(s)	: 01-04,08	Batch:	WG1956059-1
Acenaphthene	ND	ug/l	0.10	0.02	
2-Chloronaphthalene	ND	ug/l	0.20	0.02	
Fluoranthene	ND	ug/l	0.10	0.03	
Hexachlorobutadiene	ND	ug/l	0.50	0.02	
Naphthalene	ND	ug/l	0.10	0.02	
Benzo(a)anthracene	ND	ug/l	0.10	0.03	
Benzo(a)pyrene	ND	ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.03	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.03	
Chrysene	ND	ug/l	0.10	0.03	
Acenaphthylene	ND	ug/l	0.10	0.02	
Anthracene	ND	ug/l	0.10	0.02	
Benzo(ghi)perylene	ND	ug/l	0.10	0.02	
Fluorene	ND	ug/l	0.10	0.03	
Phenanthrene	ND	ug/l	0.10	0.04	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.02	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.02	
Pyrene	ND	ug/l	0.10	0.04	
2-Methylnaphthalene	ND	ug/l	0.10	0.03	
Pentachlorophenol	ND	ug/l	0.80	0.06	
Hexachlorobenzene	ND	ug/l	0.80	0.01	
Hexachloroethane	ND	ug/l	0.80	0.02	

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/07/24 13:36 Extraction Date: 08/06/24 16:33

Analyst: JJW

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-04,08 Batch: WG1956059-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	39	21-120
Phenol-d6	27	10-120
Nitrobenzene-d5	55	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	69	10-120
4-Terphenyl-d14	62	41-149

L2443419

Lab Number:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/08/24 00:08

Analyst: LJG

Extraction Method:	EPA 3510C
Extraction Date:	08/07/24 08:17

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC/MS	- Westborough	Lab for sample	(s): 05-07	Batch: WG1956336-	-1
Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.39	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	1.8	
2,4-Dinitrotoluene	ND	ug/l	5.0	0.54	
2,6-Dinitrotoluene	ND	ug/l	5.0	0.84	
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.39	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.24	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.40	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.84	
Hexachlorocyclopentadiene	ND	ug/l	20	1.2	
Isophorone	ND	ug/l	5.0	0.86	
Nitrobenzene	ND	ug/l	2.0	0.20	
NDPA/DPA	ND	ug/l	2.0	0.92	
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.91	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.4	
Butyl benzyl phthalate	ND	ug/l	5.0	2.6	
Di-n-butylphthalate	ND	ug/l	5.0	0.96	
Di-n-octylphthalate	ND	ug/l	5.0	2.3	
Diethyl phthalate	ND	ug/l	5.0	0.76	
Dimethyl phthalate	ND	ug/l	5.0	0.92	
Biphenyl	ND	ug/l	2.0	0.20	
4-Chloroaniline	ND	ug/l	5.0	0.47	
2-Nitroaniline	ND	ug/l	5.0	1.0	
3-Nitroaniline	ND	ug/l	5.0	1.2	
4-Nitroaniline	ND	ug/l	5.0	1.4	
Dibenzofuran	ND	ug/l	2.0	0.40	
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.24	
Acetophenone	ND	ug/l	5.0	0.92	
2,4,6-Trichlorophenol	ND	ug/l	5.0	2.1	
p-Chloro-m-cresol	ND	ug/l	2.0	0.61	

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/08/24 00:08

Analyst: LJG

Extraction Method: EPA 3510C Extraction Date: 08/07/24 08:17

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Westborough	Lab for s	ample(s):	05-07	Batch:	WG1956336-1
2-Chlorophenol	ND		ug/l	2.0		0.65
2,4-Dichlorophenol	ND		ug/l	5.0		1.7
2,4-Dimethylphenol	ND		ug/l	5.0		2.0
2-Nitrophenol	ND		ug/l	10		2.0
4-Nitrophenol	ND		ug/l	10		1.4
2,4-Dinitrophenol	ND		ug/l	20		5.4
4,6-Dinitro-o-cresol	ND		ug/l	10		2.3
Phenol	ND		ug/l	5.0		0.35
2-Methylphenol	ND		ug/l	5.0		2.3
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1.4
2,4,5-Trichlorophenol	ND		ug/l	5.0		2.1
Carbazole	ND		ug/l	2.0		0.31
Atrazine	ND		ug/l	10		1.0
Benzaldehyde	ND		ug/l	5.0		1.1
Caprolactam	ND		ug/l	10		1.2
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0		2.2

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

L2443419

Lab Number:

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C Analytical Date: 08/08/24 00:08 08/07/24 08:17 **Extraction Date:**

Analyst: LJG

> Result Qualifier Units RLMDL **Parameter**

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 05-07 Batch: WG1956336-1

Surrogate	%Recovery Qualifie	Acceptance er Criteria
2-Fluorophenol	40	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	49	10-120
4-Terphenyl-d14	83	41-149

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/08/24 10:47

Analyst: LJG

Extraction Method: EPA 3510C Extraction Date: 08/07/24 19:38

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	02	Batch:	WG1956631-1	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.39	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.8	
2,4-Dinitrotoluene	ND		ug/l		5.0	0.54	
2,6-Dinitrotoluene	ND		ug/l		5.0	0.84	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.39	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.24	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.40	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.84	
Hexachlorocyclopentadiene	ND		ug/l		20	1.2	
Isophorone	ND		ug/l		5.0	0.86	
Nitrobenzene	ND		ug/l		2.0	0.20	
NDPA/DPA	ND		ug/l		2.0	0.92	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.91	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.4	
Butyl benzyl phthalate	ND		ug/l		5.0	2.6	
Di-n-butylphthalate	ND		ug/l		5.0	0.96	
Di-n-octylphthalate	ND		ug/l		5.0	2.3	
Diethyl phthalate	ND		ug/l		5.0	0.76	
Dimethyl phthalate	ND		ug/l		5.0	0.92	
Biphenyl	ND		ug/l		2.0	0.20	
4-Chloroaniline	ND		ug/l		5.0	0.47	
2-Nitroaniline	ND		ug/l		5.0	1.0	
3-Nitroaniline	ND		ug/l		5.0	1.2	
4-Nitroaniline	ND		ug/l		5.0	1.4	
Dibenzofuran	ND		ug/l		2.0	0.40	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.24	
Acetophenone	ND		ug/l		5.0	0.92	
2,4,6-Trichlorophenol	ND		ug/l		5.0	2.1	
p-Chloro-m-cresol	ND		ug/l		2.0	0.61	

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Report Date: 08/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1

1,8270E

Analytical Date:

08/08/24 10:47

Analyst:

LJG

Extraction Method: EPA 3510C Extraction Date: 08/07/24 19:38

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	S - Westborough	Lab for sa	ample(s):	02	Batch:	WG1956631-1	
2-Chlorophenol	ND		ug/l		2.0	0.65	
2,4-Dichlorophenol	ND		ug/l		5.0	1.7	
2,4-Dimethylphenol	ND		ug/l		5.0	2.0	
2-Nitrophenol	ND		ug/l		10	2.0	
4-Nitrophenol	ND		ug/l		10	1.4	
2,4-Dinitrophenol	ND		ug/l		20	5.4	
4,6-Dinitro-o-cresol	ND		ug/l		10	2.3	
Phenol	ND		ug/l		5.0	0.35	
2-Methylphenol	ND		ug/l		5.0	2.3	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	1.4	
2,4,5-Trichlorophenol	ND		ug/l		5.0	2.1	
Carbazole	ND		ug/l		2.0	0.31	
Atrazine	ND		ug/l		10	1.0	
Benzaldehyde	ND		ug/l		5.0	1.1	
Caprolactam	ND		ug/l		10	1.2	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	2.2	

Tentatively Identified Compounds				
Total TIC Compounds	6.60	J	ug/l	
Unknown	6.60	J	ug/l	

L2443419

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

Project Number: 4388.0001B000 **Report Date:** 08/12/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 08/08/24 10:47 Extraction Date: 08/07/24 19:38

Analyst: LJG

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1956631-1

Surrogate	%Recovery Qualifie	Acceptance er Criteria
2-Fluorophenol	35	21-120
Phenol-d6	27	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	26	10-120
4-Terphenyl-d14	66	41-149

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

L2443419 **Report Date:** 08/12/24

Extraction Method: EPA 3510C

08/07/24 19:38

Lab Number:

Extraction Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 08/08/24 11:20

Analyst: JJW

Pyrene

2-Methylnaphthalene

Pentachlorophenol

Hexachlorobenzene

Hexachloroethane

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC	/MS-SIM - Westbo	rough Lab for sar	mple(s): 02,05-	07 Batch:	WG1956632-1
Acenaphthene	ND	ug/l	0.10	0.02	
2-Chloronaphthalene	ND	ug/l	0.20	0.02	
Fluoranthene	ND	ug/l	0.10	0.03	
Hexachlorobutadiene	ND	ug/l	0.50	0.02	
Naphthalene	ND	ug/l	0.10	0.02	
Benzo(a)anthracene	ND	ug/l	0.10	0.03	
Benzo(a)pyrene	ND	ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.03	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.03	
Chrysene	ND	ug/l	0.10	0.03	
Acenaphthylene	ND	ug/l	0.10	0.02	
Anthracene	ND	ug/l	0.10	0.02	
Benzo(ghi)perylene	ND	ug/l	0.10	0.02	
Fluorene	ND	ug/l	0.10	0.03	
Phenanthrene	ND	ug/l	0.10	0.04	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.02	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.02	

ug/l

ug/l

ug/l

ug/l

ug/l

0.10

0.10

0.80

0.80

0.80

0.04

0.03

0.06

0.01

0.02

ND

ND

ND

0.04

ND

J

L2443419

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/08/24 11:20 Extraction Date: 08/07/24 19:38

Analyst: JJW

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 02,05-07 Batch: WG1956632-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
- Currogate	/directorery	Qualifici Officia
2-Fluorophenol	35	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	88	23-120
2-Fluorobiphenyl	80	15-120
2,4,6-Tribromophenol	56	10-120
4-Terphenyl-d14	76	41-149

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Wes	stborough Lab Associ	ated sample(s):	01-04,08 E	Batch: WG1	956053-2 WG1	956053-3	
Bis(2-chloroethyl)ether	72		75		40-140	4	30
3,3'-Dichlorobenzidine	63		61		40-140	3	30
2,4-Dinitrotoluene	62		65		48-143	5	30
2,6-Dinitrotoluene	63		69		40-140	9	30
4-Chlorophenyl phenyl ether	65		65		40-140	0	30
4-Bromophenyl phenyl ether	62		64		40-140	3	30
Bis(2-chloroisopropyl)ether	75		75		40-140	0	30
Bis(2-chloroethoxy)methane	71		78		40-140	9	30
Hexachlorocyclopentadiene	40		38	Q	40-140	5	30
Isophorone	72		76		40-140	5	30
Nitrobenzene	71		75		40-140	5	30
NDPA/DPA	71		73		40-140	3	30
n-Nitrosodi-n-propylamine	74		78		29-132	5	30
Bis(2-ethylhexyl)phthalate	78		79		40-140	1	30
Butyl benzyl phthalate	72		73		40-140	1	30
Di-n-butylphthalate	68		72		40-140	6	30
Di-n-octylphthalate	76		77		40-140	1	30
Diethyl phthalate	74		77		40-140	4	30
Dimethyl phthalate	69		72		40-140	4	30
Biphenyl	58		58		40-140	0	30
4-Chloroaniline	64		68		40-140	6	30
2-Nitroaniline	66		68		52-143	3	30
3-Nitroaniline	67		69		25-145	3	30

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	r RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s)	: 01-04,08 E	Batch: WG1	956053-2 W	G1956053-3		
4-Nitroaniline	65		68		51-143	5		30
Dibenzofuran	65		66		40-140	2		30
1,2,4,5-Tetrachlorobenzene	51		50		2-134	2		30
Acetophenone	66		70		39-129	6		30
2,4,6-Trichlorophenol	24	Q	69		30-130	97	Q	30
p-Chloro-m-cresol	50		72		23-97	36	Q	30
2-Chlorophenol	30		71		27-123	81	Q	30
2,4-Dichlorophenol	32		69		30-130	73	Q	30
2,4-Dimethylphenol	66		76		30-130	14		30
2-Nitrophenol	27	Q	66		30-130	84	Q	30
4-Nitrophenol	12		42		10-80	111	Q	30
2,4-Dinitrophenol	0	Q	76		20-130	NC		30
4,6-Dinitro-o-cresol	36		69		20-164	63	Q	30
Phenol	19		37		12-110	64	Q	30
2-Methylphenol	48		65		30-130	30		30
3-Methylphenol/4-Methylphenol	44		61		30-130	32	Q	30
2,4,5-Trichlorophenol	28	Q	73		30-130	89	Q	30
Carbazole	68		72		55-144	6		30
Atrazine	73		76		40-140	4		30
Benzaldehyde	64		63		40-140	2		30
Caprolactam	45		46		10-130	2		30
2,3,4,6-Tetrachlorophenol	22	Q	71		40-140	105	Q	30

Lab Control Sample Analysis

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

L2443419

Project Number: 4388.0001B000 **Batch Quality Control**

Report Date:

08/12/24

Parameter

LCS %Recovery

LCSD %Recovery

%Recovery Limits

RPD

RPD Qual

Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04,08 Batch: WG1956053-2 WG1956053-3

Qual

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2-Fluorophenol	18	Q	48		21-120	
Phenol-d6	18		33		10-120	
Nitrobenzene-d5	65		68		23-120	
2-Fluorobiphenyl	60		57		15-120	
2,4,6-Tribromophenol	18		49		10-120	
4-Terphenyl-d14	51		53		41-149	

Qual

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab A	ssociated sample	e(s): 01-04,08	Batch:	WG1956059-2	WG1956059-3		
Acenaphthene	74		77		40-140	4		40
2-Chloronaphthalene	65		69		40-140	6		40
Fluoranthene	67		71		40-140	6		40
Hexachlorobutadiene	55		57		40-140	4		40
Naphthalene	62		65		40-140	5		40
Benzo(a)anthracene	80		84		40-140	5		40
Benzo(a)pyrene	69		72		40-140	4		40
Benzo(b)fluoranthene	71		74		40-140	4		40
Benzo(k)fluoranthene	69		74		40-140	7		40
Chrysene	73		77		40-140	5		40
Acenaphthylene	65		69		40-140	6		40
Anthracene	74		78		40-140	5		40
Benzo(ghi)perylene	72		75		40-140	4		40
Fluorene	70		73		40-140	4		40
Phenanthrene	72		77		40-140	7		40
Dibenzo(a,h)anthracene	74		77		40-140	4		40
Indeno(1,2,3-cd)pyrene	78		82		40-140	5		40
Pyrene	65		69		40-140	6		40
2-Methylnaphthalene	64		66		40-140	3		40
Pentachlorophenol	21	Q	90		40-140	124	Q	40
Hexachlorobenzene	84		88		40-140	5		40
Hexachloroethane	51		53		40-140	4		40

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

L2443419

Project Number:

Report Date:

08/12/24

4388.0001B000

LCS **LCSD** %Recovery RPD %Recovery %Recovery **Parameter** Qual Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04,08 Batch: WG1956059-2 WG1956059-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	21	46	21-120
Phenol-d6	19	34	10-120
Nitrobenzene-d5	57	58	23-120
2-Fluorobiphenyl	67	68	15-120
2,4,6-Tribromophenol	36	84	10-120
4-Terphenyl-d14	60	63	41-149

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	05-07	Batch:	WG1956	336-2 WG19563	336-3			
Bis(2-chloroethyl)ether	44		52			40-140	17		30	
3,3'-Dichlorobenzidine	59		58			40-140	2		30	
2,4-Dinitrotoluene	57		62			48-143	8		30	
2,6-Dinitrotoluene	48		60			40-140	22		30	
4-Chlorophenyl phenyl ether	50		55			40-140	10		30	
4-Bromophenyl phenyl ether	52		60			40-140	14		30	
Bis(2-chloroisopropyl)ether	26	Q	31		Q	40-140	18		30	
Bis(2-chloroethoxy)methane	47		49			40-140	4		30	
Hexachlorocyclopentadiene	37	Q	40			40-140	8		30	
Isophorone	44		50			40-140	13		30	
Nitrobenzene	40		48			40-140	18		30	
NDPA/DPA	52		61			40-140	16		30	
n-Nitrosodi-n-propylamine	43		48			29-132	11		30	
Bis(2-ethylhexyl)phthalate	53		56			40-140	6		30	
Butyl benzyl phthalate	43		58			40-140	30		30	
Di-n-butylphthalate	41		57			40-140	33	Q	30	
Di-n-octylphthalate	54		59			40-140	9		30	
Diethyl phthalate	50		56			40-140	11		30	
Dimethyl phthalate	51		56			40-140	9		30	
Biphenyl	42		52			40-140	21		30	
4-Chloroaniline	28	Q	42			40-140	40	Q	30	
2-Nitroaniline	65		66			52-143	2		30	
3-Nitroaniline	55		64			25-145	15		30	

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	05-07 Bat	tch: WG1956336-2 WG19563	36-3			
4-Nitroaniline	57		69	51-143	19		30	
Dibenzofuran	48		57	40-140	17		30	
1,2,4,5-Tetrachlorobenzene	40		48	2-134	18		30	
Acetophenone	45		50	39-129	11		30	
2,4,6-Trichlorophenol	41		57	30-130	33	Q	30	
p-Chloro-m-cresol	54		60	23-97	11		30	
2-Chlorophenol	47		56	27-123	17		30	
2,4-Dichlorophenol	48		58	30-130	19		30	
2,4-Dimethylphenol	48		52	30-130	8		30	
2-Nitrophenol	47		59	30-130	23		30	
4-Nitrophenol	24		33	10-80	32	Q	30	
2,4-Dinitrophenol	29		46	20-130	45	Q	30	
4,6-Dinitro-o-cresol	38		59	20-164	43	Q	30	
Phenol	26		29	12-110	11		30	
2-Methylphenol	50		54	30-130	8		30	
3-Methylphenol/4-Methylphenol	50		50	30-130	0		30	
2,4,5-Trichlorophenol	45		60	30-130	29		30	
Carbazole	54	Q	60	55-144	11		30	
Atrazine	46		56	40-140	20		30	
Benzaldehyde	47		48	40-140	2		30	
Caprolactam	12		18	10-130	40	Q	30	
2,3,4,6-Tetrachlorophenol	39	Q	60	40-140	42	Q	30	

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Lab Number:

L2443419

Project Number: 4388.0001B000

Report Date:

08/12/24

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 05-07 Batch: WG1956336-2 WG1956336-3

Surrogate	LCS %Recovery Q	LCSD Qual %Recovery	Qual	Acceptance Criteria
2-Fluorophenol	34	37		21-120
Phenol-d6	24	29		10-120
Nitrobenzene-d5	41	46		23-120
2-Fluorobiphenyl	42	47		15-120
2,4,6-Tribromophenol	51	66		10-120
4-Terphenyl-d14	38	Q 51		41-149

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS	- Westborough Lab Associ	ated sample(s):	02 Batch:	WG1956631-2	2 WG1956631-3			
Bis(2-chloroethyl)ether	98		78		40-140	23		30
3,3'-Dichlorobenzidine	80		71		40-140	12		30
2,4-Dinitrotoluene	81		78		48-143	4		30
2,6-Dinitrotoluene	88		78		40-140	12		30
4-Chlorophenyl phenyl ether	84		75		40-140	11		30
4-Bromophenyl phenyl ether	80		73		40-140	9		30
Bis(2-chloroisopropyl)ether	98		77		40-140	24		30
Bis(2-chloroethoxy)methane	102		82		40-140	22		30
Hexachlorocyclopentadiene	55		43		40-140	24		30
Isophorone	102		81		40-140	23		30
Nitrobenzene	99		80		40-140	21		30
NDPA/DPA	99		85		40-140	15		30
n-Nitrosodi-n-propylamine	107		83		29-132	25		30
Bis(2-ethylhexyl)phthalate	88		81		40-140	8		30
Butyl benzyl phthalate	88		79		40-140	11		30
Di-n-butylphthalate	95		82		40-140	15		30
Di-n-octylphthalate	78		73		40-140	7		30
Diethyl phthalate	98		90		40-140	9		30
Dimethyl phthalate	95		82		40-140	15		30
Biphenyl	76		62		40-140	20		30
4-Chloroaniline	78		63		40-140	21		30
2-Nitroaniline	91	Ī	79		52-143	14		30
3-Nitroaniline	96		86		25-145	11		30

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s):	02 Batch:	WG1956631-2	WG1956631-3			
4-Nitroaniline	97		84		51-143	14		30
Dibenzofuran	86		75		40-140	14		30
1,2,4,5-Tetrachlorobenzene	66		52		2-134	24		30
Acetophenone	92		75		39-129	20		30
2,4,6-Trichlorophenol	39		78		30-130	67	Q	30
p-Chloro-m-cresol	83		81		23-97	2		30
2-Chlorophenol	49		73		27-123	39	Q	30
2,4-Dichlorophenol	50		74		30-130	39	Q	30
2,4-Dimethylphenol	98		79		30-130	21		30
2-Nitrophenol	42		69		30-130	49	Q	30
4-Nitrophenol	22		53		10-80	83	Q	30
2,4-Dinitrophenol	54		87		20-130	47	Q	30
4,6-Dinitro-o-cresol	44		77		20-164	55	Q	30
Phenol	31		41		12-110	28		30
2-Methylphenol	79		69		30-130	14		30
3-Methylphenol/4-Methylphenol	70		68		30-130	3		30
2,4,5-Trichlorophenol	44		80		30-130	58	Q	30
Carbazole	105		91		55-144	14		30
Atrazine	95		90		40-140	5		30
Benzaldehyde	86		71		40-140	19		30
Caprolactam	52		49		10-130	6		30
2,3,4,6-Tetrachlorophenol	33	Q	87		40-140	90	Q	30

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number:

RPD

L2443419

Project Number:

Parameter

Report Date:

Qual

08/12/24

4388.0001B000

LCS **LCSD** %Recovery %Recovery %Recovery Qual Qual Limits

RPD Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1956631-2 WG1956631-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	28	54	21-120
Phenol-d6	28	38	10-120
Nitrobenzene-d5	93	74	23-120
2-Fluorobiphenyl	82	68	15-120
2,4,6-Tribromophenol	30	58	10-120
4-Terphenyl-d14	72	62	41-149

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419

Parameter	LCS %Recovery		CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM -	Westborough Lab A	Associated sample(s):	02,05-07 E	Batch:	WG1956632-2	WG1956632-3			
Acenaphthene	82		80		40-140	2		40	
2-Chloronaphthalene	72		71		40-140	1		40	
Fluoranthene	96		98		40-140	2		40	
Hexachlorobutadiene	67		62		40-140	8		40	
Naphthalene	72		68		40-140	6		40	
Benzo(a)anthracene	94		95		40-140	1		40	
Benzo(a)pyrene	114		115		40-140	1		40	
Benzo(b)fluoranthene	99		100		40-140	1		40	
Benzo(k)fluoranthene	106		106		40-140	0		40	
Chrysene	92		93		40-140	1		40	
Acenaphthylene	83		85		40-140	2		40	
Anthracene	100		100		40-140	0		40	
Benzo(ghi)perylene	110		110		40-140	0		40	
Fluorene	84		84		40-140	0		40	
Phenanthrene	94		95		40-140	1		40	
Dibenzo(a,h)anthracene	119		120		40-140	1		40	
Indeno(1,2,3-cd)pyrene	116		117		40-140	1		40	
Pyrene	95		97		40-140	2		40	
2-Methylnaphthalene	73		71		40-140	3		40	
Pentachlorophenol	45		112		40-140	85	Q	40	
Hexachlorobenzene	94		95		40-140	1		40	
Hexachloroethane	71		66		40-140	7		40	

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Lab Number: L2443419

Project Number: 4388.0001B000

Report Date:

08/12/24

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 02,05-07 Batch: WG1956632-2 WG1956632-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	26	56	21-120
Phenol-d6	26	41	10-120
Nitrobenzene-d5	87	86	23-120
2-Fluorobiphenyl	76	76	15-120
2,4,6-Tribromophenol	46	96	10-120
4-Terphenyl-d14	79	80	41-149

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number:

L2443419

Report Date:

08/12/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by G Client ID: MW-4	C/MS - Westbor	ough Lab	Associated sa	mple(s): 01-04,0	8 QC Batch ID: W	/G1956053-4	WG1956053-5 QC	Sample	e: L24434	419-01
Bis(2-chloroethyl)ether	ND	20	11	55	13	65	40-140	17		30
3,3'-Dichlorobenzidine	ND	20	10	50	9.6	48	40-140	4		30
2,4-Dinitrotoluene	ND	20	11	55	13	65	48-143	17		30
2,6-Dinitrotoluene	ND	20	12	60	15	75	40-140	22		30
4-Chlorophenyl phenyl ether	ND	20	11	55	13	65	40-140	17		30
4-Bromophenyl phenyl ether	ND	20	12	60	13	65	40-140	8		30
Bis(2-chloroisopropyl)ether	ND	20	12	60	13	65	40-140	8		30
Bis(2-chloroethoxy)methane	ND	20	12	60	14	70	40-140	15		30
Hexachlorocyclopentadiene	ND	20	8.2J	41	9.1J	46	40-140	10		30
sophorone	ND	20	13	65	15	75	40-140	14		30
Nitrobenzene	ND	20	13	65	14	70	40-140	7		30
NDPA/DPA	ND	20	12	60	14	70	40-140	15		30
n-Nitrosodi-n-propylamine	ND	20	14	70	16	80	29-132	13		30
Bis(2-ethylhexyl)phthalate	ND	20	18	90	20	100	40-140	11		30
Butyl benzyl phthalate	ND	20	16	80	18	90	40-140	12		30
Di-n-butylphthalate	ND	20	16	80	17	85	40-140	6		30
Di-n-octylphthalate	ND	20	19	95	20	100	40-140	5		30
Diethyl phthalate	ND	20	14	70	16	80	40-140	13		30
Dimethyl phthalate	ND	20	13	65	15	75	40-140	14		30
Biphenyl	ND	20	10	50	12	60	40-140	18		30
4-Chloroaniline	ND	20	8.2	41	8.7	44	40-140	6		30
2-Nitroaniline	ND	20	12	60	15	75	52-143	22		30
3-Nitroaniline	ND	20	10	50	11	55	25-145	10		30

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number:

L2443419

Report Date:

08/12/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC Client ID: MW-4	C/MS - Westbor	ough Lab	Associated sa	mple(s): 01-04,0	8 QC E	Batch ID: W	/G1956053-4	WG195	6053-5 QC	Sample	e: L2443	3419-01
4-Nitroaniline	ND	20	12	60		14	70		51-143	15		30
Dibenzofuran	ND	20	11	55		13	65		40-140	17		30
1,2,4,5-Tetrachlorobenzene	ND	20	8.8J	44		10	50		2-134	13		30
Acetophenone	ND	20	12	60		14	70		39-129	15		30
2,4,6-Trichlorophenol	ND	20	ND	0	Q	ND	0	Q	30-130	NC		30
o-Chloro-m-cresol	ND	20	6.3	32		8.3	42		23-97	27		30
2-Chlorophenol	ND	20	ND	0	Q	1.6J	8	Q	27-123	NC		30
2,4-Dichlorophenol	ND	20	ND	0	Q	ND	0	Q	30-130	NC		30
2,4-Dimethylphenol	ND	20	9.7	49		12	60		30-130	21		30
2-Nitrophenol	ND	20	ND	0	Q	ND	0	Q	30-130	NC		30
4-Nitrophenol	ND	20	ND	0	Q	ND	0	Q	10-80	NC		30
2,4-Dinitrophenol	ND	20	ND	0	Q	ND	0	Q	20-130	NC		30
4,6-Dinitro-o-cresol	ND	20	ND	0	Q	ND	0	Q	20-164	NC		30
Phenol	ND	20	0.90J	5	Q	1.8J	9	Q	12-110	67	Q	30
2-Methylphenol	ND	20	6.1	31		7.2	36		30-130	17		30
3-Methylphenol/4-Methylphenol	ND	20	4.6J	23	Q	5.7	29	Q	30-130	21		30
2,4,5-Trichlorophenol	ND	20	ND	0	Q	ND	0	Q	30-130	NC		30
Carbazole	ND	20	13	65		15	75		55-144	14		30
Atrazine	ND	20	15	75		17	85		40-140	13		30
Benzaldehyde	ND	20	9.9	50		11	55		40-140	11		30
Caprolactam	ND	20	9.4J	47		9.6J	48		10-130	2		30
2,3,4,6-Tetrachlorophenol	ND	20	ND	0	Q	ND	0	Q	40-140	NC		30

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000 Lab Number:

L2443419

Report Date:

08/12/24

	Native	MS	MS	MS		MSD	MSD		Recovery	,		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04,08 QC Batch ID: WG1956053-4 WG1956053-5 QC Sample: L2443419-01 Client ID: MW-4

	MS	3	M:	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	0	Q	0	Q	10-120	
2-Fluorobiphenyl	50		60		15-120	
2-Fluorophenol	0	Q	0	Q	21-120	
4-Terphenyl-d14	53		60		41-149	
Nitrobenzene-d5	55		64		23-120	
Phenol-d6	4	Q	7	Q	10-120	

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number:

L2443419

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by Client ID: MW-4	GC/MS-SIM - We	stborough Lab	Associate	ed sample(s): 01	-04,08	QC Batch I	D: WG195605	9-4 WG	31956059-5	QC Sa	ample: L	2443419-01
Acenaphthene	0.10	20	15	75		16	80		40-140	6		40
2-Chloronaphthalene	ND	20	13	65		14	70		40-140	7		40
Fluoranthene	ND	20	13	65		14	70		40-140	7		40
Hexachlorobutadiene	ND	20	10	50		11	55		40-140	10		40
Naphthalene	0.08J	20	12	60		13	65		40-140	8		40
Benzo(a)anthracene	ND	20	16	80		17	85		40-140	6		40
Benzo(a)pyrene	ND	20	14	70		15	75		40-140	7		40
Benzo(b)fluoranthene	ND	20	14	70		15	75		40-140	7		40
Benzo(k)fluoranthene	ND	20	14	70		14	70		40-140	0		40
Chrysene	ND	20	15	75		16	80		40-140	6		40
Acenaphthylene	ND	20	13	65		14	70		40-140	7		40
Anthracene	ND	20	15	75		16	80		40-140	6		40
Benzo(ghi)perylene	ND	20	16	80		16	80		40-140	0		40
Fluorene	0.14	20	14	69		15	74		40-140	7		40
Phenanthrene	ND	20	14	70		15	75		40-140	7		40
Dibenzo(a,h)anthracene	ND	20	16	80		16	80		40-140	0		40
ndeno(1,2,3-cd)pyrene	ND	20	17	85		18	90		40-140	6		40
Pyrene	0.05J	20	13	65		13	65		40-140	0		40
2-Methylnaphthalene	ND	20	12	60		14	70		40-140	15		40
Pentachlorophenol	ND	20	0.37J	2	Q	0.76J	4	Q	40-140	69	Q	40
Hexachlorobenzene	ND	20	17	85		18	90		40-140	6		40
Hexachloroethane	ND	20	10	50		12	60		40-140	18		40

58

9

Q

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number:

L2443419

Report Date:

23-120

10-120

08/12/24

	Native	MS	MS	MS		MSD	MSD		Recovery	•		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04,08 QC Batch ID: WG1956059-4 WG1956059-5 QC Sample: L2443419-01 Client ID: MW-4

Q

MS **MSD** Acceptance Criteria % Recovery Qualifier % Recovery Qualifier Surrogate 2,4,6-Tribromophenol Q 5 Q 10-120 1 65 71 2-Fluorobiphenyl 15-120 2-Fluorophenol Q Q 21-120 1 3 4-Terphenyl-d14 63 63 41-149

51

Nitrobenzene-d5

Phenol-d6

METALS

Project Name:S OLEAN/OLEAN GATEWAY PARCEL 3Lab Number:L2443419

Project Number: 4388.0001B000 **Report Date:** 08/12/24

SAMPLE RESULTS

Lab ID: L2443419-01 Date Collected: 07/30/24 12:59

Client ID: MW-4 Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	nsfield Lab										
Arsenic, Total	0.00470		mg/l	0.00050	0.00016	1	08/05/24 11:18	3 08/08/24 07:28	EPA 3005A	1,6020B	EJF
Chromium, Total	0.00040	J	mg/l	0.00100	0.00017	1	08/05/24 11:18	3 08/08/24 07:28	EPA 3005A	1,6020B	EJF
Lead, Total	ND		mg/l	0.00100	0.00034	. 1	08/05/24 11:18	3 08/08/24 07:28	EPA 3005A	1,6020B	EJF

07/30/24 13:59

Date Collected:

Project Name:S OLEAN/OLEAN GATEWAY PARCEL 3Lab Number:L2443419

Project Number: 4388.0001B000 **Report Date:** 08/12/24

SAMPLE RESULTS

Lab ID: L2443419-02

Client ID: W29 Date Received: 08/02/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	0.01889		mg/l	0.00050	0.00016	1	08/05/24 11:18	3 08/08/24 07:50	EPA 3005A	1,6020B	EJF
Chromium, Total	0.00030	J	mg/l	0.00100	0.00017	1	08/05/24 11:18	3 08/08/24 07:50	EPA 3005A	1,6020B	EJF
Lead, Total	0.00092	J	mg/l	0.00100	0.00034	. 1	08/05/24 11:18	8 08/08/24 07:50	EPA 3005A	1,6020B	EJF

Project Name:S OLEAN/OLEAN GATEWAY PARCEL 3Lab Number:L2443419

Project Number: 4388.0001B000 **Report Date:** 08/12/24

SAMPLE RESULTS

 Lab ID:
 L2443419-03
 Date Collected:
 07/30/24 14:52

 Client ID:
 MWSW
 Date Received:
 08/02/24

Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mai	nsfield Lab										
Arsenic, Total	0.00713		mg/l	0.00050	0.00016	1	08/05/24 11:18	3 08/08/24 07:55	EPA 3005A	1,6020B	EJF
Chromium, Total	0.00033	J	mg/l	0.00100	0.00017	1	08/05/24 11:18	3 08/08/24 07:55	EPA 3005A	1,6020B	EJF
Lead, Total	0.00133		mg/l	0.00100	0.00034	. 1	08/05/24 11:18	3 08/08/24 07:55	EPA 3005A	1,6020B	EJF

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: Report Date: 4388.0001B000 08/12/24

SAMPLE RESULTS

Lab ID: L2443419-04

Date Collected: 07/30/24 15:45 Client ID: W24 Date Received: 08/02/24

Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mai	nsfield Lab										
Arsenic, Total	0.00205		mg/l	0.00050	0.00016	1	08/05/24 11:18	3 08/08/24 07:59	EPA 3005A	1,6020B	EJF
Chromium, Total	0.00060	J	mg/l	0.00100	0.00017	1	08/05/24 11:18	3 08/08/24 07:59	EPA 3005A	1,6020B	EJF
Lead, Total	0.00086	J	mg/l	0.00100	0.00034	. 1	08/05/24 11:18	3 08/08/24 07:59	EPA 3005A	1,6020B	EJF

07/31/24 11:14

Date Collected:

Project Name:S OLEAN/OLEAN GATEWAY PARCEL 3Lab Number:L2443419

Project Number: 4388.0001B000 **Report Date:** 08/12/24

SAMPLE RESULTS

Lab ID: L2443419-05

Client ID: W18 Date Received: 08/01/24
Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00388		mg/l	0.00050	0.00016	1	08/05/24 11:18	8 08/08/24 08:13	EPA 3005A	1,6020B	EJF
Chromium, Total	0.00026	J	mg/l	0.00100	0.00017	1	08/05/24 11:18	8 08/08/24 08:13	EPA 3005A	1,6020B	EJF
Lead, Total	0.00069	J	mg/l	0.00100	0.00034	1	08/05/24 11:18	8 08/08/24 08:13	EPA 3005A	1,6020B	EJF

07/31/24 12:14

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: Report Date: 4388.0001B000 08/12/24

SAMPLE RESULTS

Lab ID: L2443419-06

Date Collected: Client ID: MW5 Date Received: 08/01/24 Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00096		mg/l	0.00050	0.00016	1	08/05/24 11:18	8 08/08/24 08:17	EPA 3005A	1,6020B	EJF
Chromium, Total	0.00063	J	mg/l	0.00100	0.00017	1	08/05/24 11:18	8 08/08/24 08:17	EPA 3005A	1,6020B	EJF
Lead, Total	0.00163		mg/l	0.00100	0.00034	1	08/05/24 11:13	8 08/08/24 08:17	EPA 3005A	1,6020B	EJF

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419

Project Number: Report Date: 4388.0001B000 08/12/24

SAMPLE RESULTS

Lab ID: L2443419-07

Date Collected: 07/31/24 13:07 Client ID: W22 Date Received: 08/01/24

Sample Location: OLEAN,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	0.00066		mg/l	0.00050	0.00016	1	08/05/24 11:18	3 08/08/24 08:22	EPA 3005A	1,6020B	EJF
Chromium, Total	0.00029	J	mg/l	0.00100	0.00017	1	08/05/24 11:18	3 08/08/24 08:22	EPA 3005A	1,6020B	EJF
Lead, Total	0.00058	J	mg/l	0.00100	0.00034	1	08/05/24 11:18	3 08/08/24 08:22	EPA 3005A	1,6020B	EJF

Project Name:S OLEAN/OLEAN GATEWAY PARCEL 3Lab Number:L2443419

Project Number: 4388.0001B000 **Report Date:** 08/12/24

SAMPLE RESULTS

Lab ID:L2443419-08Date Collected:07/30/24 08:00Client ID:BLIND DUPDate Received:08/02/24Sample Location:OLEAN,NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.01847		mg/l	0.00050	0.00016	1	08/05/24 11:1	8 08/08/24 08:26	EPA 3005A	1,6020B	EJF
Chromium, Total	0.00034	J	mg/l	0.00100	0.00017	1	08/05/24 11:18	8 08/08/24 08:26	EPA 3005A	1,6020B	EJF
Lead, Total	0.00059	J	mg/l	0.00100	0.00034	. 1	08/05/24 11:18	8 08/08/24 08:26	EPA 3005A	1,6020B	EJF

L2443419

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 **Lab Number:**

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-08 E	Batch: WC	G195533	38-1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	08/05/24 11:18	08/08/24 07:19	1,6020B	EJF
Chromium, Total	ND	mg/l	0.00100	0.00017	1	08/05/24 11:18	08/08/24 07:19	1,6020B	EJF
Lead, Total	ND	mg/l	0.00100	0.00034	1	08/05/24 11:18	08/08/24 07:19	1,6020B	EJF

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Lab Number: L2443419

Project Number: 4388.0001B000

Report Date: 08/12/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01-08 Batc	h: WG195	55338-2					
Arsenic, Total	103		-		80-120	-		
Chromium, Total	98		-		80-120	-		
Lead, Total	91		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number:

L2443419

Report Date:

08/12/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-08	QC Bato	ch ID: WG195	5338-3	WG195533	88-4 QC Sam	ple: L24	43419-01	Client	ID: MW-4
Arsenic, Total	0.00470	0.12	0.1275	102		0.1293	104		75-125	1	20
Chromium, Total	0.00040J	0.2	0.1973	99		0.2064	103		75-125	5	20
Lead, Total	ND	0.53	0.4974	94		0.5265	99		75-125	6	20

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Lab Number: L2443419 **Report Date:** 08/12/24

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2443419-01A	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01A1	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01A2	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01B	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01B1	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01B2	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01C	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01C1	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01C2	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-01D	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-01D1	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-01D2	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-01E	Amber 100ml unpreserved	Α	7	7	4.5	Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-01E1	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-01E2	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-01F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-01F1	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-01F2	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-02A	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-02B	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2443419

Report Date: 08/12/24

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3

Project Number: 4388.0001B000

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2443419-02C	Vial HCI preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-02D	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM- RVT(7)
L2443419-02E	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-02F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-03A	Vial HCI preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-03B	Vial HCI preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-03C	Vial HCI preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-03D	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-03E	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-03F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-04A	Vial HCI preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-04B	Vial HCI preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-04C	Vial HCI preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-04D	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-04E	Amber 100ml unpreserved	Α	7	7	4.5	Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-04F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-05A	Vial HCI preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2443419-05B	Vial HCI preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2443419-05C	Vial HCI preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2443419-05D	Amber 100ml unpreserved	В	7	7	2.4	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-05E	Amber 100ml unpreserved	В	7	7	2.4	Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-05F	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-06A	Vial HCI preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2443419-06B	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2443419-06C	Vial HCI preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2443419

Report Date: 08/12/24

Project Number: 4388.0001B000

S OLEAN/OLEAN GATEWAY PARCEL 3

Project Name:

Container Info	Container Information				Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2443419-06D	Amber 100ml unpreserved	В	7	7	2.4	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-06E	Amber 100ml unpreserved	В	7	7	2.4	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM- RVT(7)
L2443419-06F	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-07A	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2443419-07B	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2443419-07C	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2443419-07D	Amber 100ml unpreserved	В	7	7	2.4	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-07E	Amber 100ml unpreserved	В	7	7	2.4	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-07F	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-08A	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-08B	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-08C	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-08D	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-08E	Amber 100ml unpreserved	Α	7	7	4.5	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2443419-08F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		CR-6020T(180),PB-6020T(180),AS-6020T(180)
L2443419-09A	Vial HCl preserved	Α	NA		4.5	Υ	Absent		NYTCL-8260-R2(14)
L2443419-09B	Vial HCl preserved	Α	NA		4.5	Y	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: S OLEAN/OLEAN GATEWAY PARCEL 3 L2443419 4388.0001B000 **Report Date: Project Number:** 08/12/24

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS. LFB

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419
Project Number: 4388.0001B000 Report Date: 08/12/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:S OLEAN/OLEAN GATEWAY PARCEL 3Lab Number:L2443419Project Number:4388.0001B000Report Date:08/12/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: S OLEAN/OLEAN GATEWAY PARCEL 3 Lab Number: L2443419
Project Number: 4388.0001B000 Report Date: 08/12/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 21

Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Wh Albany, NY 12205: 14 Walk Tonawanda, NY 14150: 27	ker Way	5	Page (of	1	t	ate F	Rec'd	121	24	R	ΟÜ	No:08122412:36 13419 08AU X — BENCH	u
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Project Information		anti-nu	Parcel	1	Delive	rables ASP-/			AS				
FAX: 508-898-9193	FAX: 508-822-3288		olean , NY	yarraaay	PARCI	,) (1 File	1		ulS (4 File	4	PO#	
Clara Information	STREET,		88.0001 B	000			_	Other	/ () r ile	,		010 (41 11	"		
Client Information Client: Roux Env				000		_	NAME OF TAXABLE PARTY.		Require	mont				Disposal Site Information	
Address: 2558 Hai		(Use Project name as	(andace	r			1000	NY TO		HIGHE	NV	Part 375	_		
	ma org . Tomph	-	(anouce	-01	_		hanted person		standard		NY CP-51		- 1	Please identify below location of applicable disposal facilities.	
Boffel., NY Phone: 7/6 - 856	. 0000	ALPHAQuote #:			-		jamen		stricted (3	Oth		- 1	Disposal Facility:	
	- 0317	Turn-Around Time					- Lancard process		restricted		Our	01	-	NJ X NY	
ax:	vi	Rush (only if pre appro	dard 🔀	Due Date:					ewer Dis						
mail: LRiker 01	and the state of t		oved) [# of Days:		_	ANAL	_	ewer Dis	sonarge			-	Other:	
These samples have be							-		_	_	_		\dashv	Sample Filtration	ł
Other project specific	C	AT B					Pb, Chrom	-8270-RVT r TIC	EC.					Lab to do Preservation Lab to do	
lease specify Metals	or TAL.						10	8 +	77			1. 1			
							100	1247	1/5	2				(Please Specify below)	B
ALPHA Lab ID	Sa	ample ID	Colle	ection	Sample	Sampler's	Pota	NYTCL T CPSI	+ (PS/ + TEC			1 1			ı
(Lab Use Only)		ampro se	Date	Time	Matrix	Initials	A	2 +	£+					Sample Specific Comments	
	WEM to	-9	7130124	12:59	640	MIT									
43419- 01	MW - 4		7/30/24	12:59 PM	GW	MTE	X	x	X						1
02	W29		7/30/24	1:59pm	GN	MTF	1	×	×					1	1
03	MWSW		7/30/24	2:52pm	GN	MTF	×	x	X						6
04	W 24		7/30/24	3:45 pm	6 W	MTF	X	X	X						6
05	W 18		7/31/24	11:14 am	6 W	MIF	X	X	X						6
66	MWS			12:14 pm	GW	MTF	X	X	X						1
07	W22		7/31/24	1:07 PM	6W	MIF	X	X	X						(
				1.00										G P O D P	1
Preservative Code: a = None b = HCl C = HNO ₃	Container Code P = Plastic A = Amber Glass	Westboro: Certification Mansfield: Certification	ACCO. 100 COM GEORGE		Cor	ntainer Type	ρ	A	ν					Please print clearly, legible and completely. Samples not be logged in and	
= H ₂ SO ₄ = NaOH	V = Vial G = Glass B = Bacteria Cup			Preservative	· C A B							tumaround time clock will start until any ambiguities	a		
= MeOH = NaHSO ₄	C = Cube O = Other	Relinquished By: Date/					Receiv		11			ate/Time		resolved. BY EXECUTING	
= Na ₂ S ₂ O ₃	E = Encore	Mitchell Fo1685 7/31/24				T.BA	LKI	N	PAC		8.1.		42	THIS COC, THE CLIENT HAS READ AND AGREE	
/E = Zn Ac/NaOH	D = BOD Bottle 7. BACKIN 2				1.2416:10			Revell B. Bishy			87-29 161			TO BE BOUND BY ALPH	IA
) = Other	Ressell B. Bishy 8-1-24			242010 1 DO				SEL-24 2010 TERMS & CONDITION			TERMS & CONDITIONS.				
	(rev. 30-Sept-2013)						_		-			2	15	(See reverse side.)	

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	s	Page 2 of	2		Date F in L		3/2/24			ALPHA JOB# L2443419		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	erables					Billing Information		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288		lolean g	ateway p	9/11/3)		ASP-/	(1 File)		ASP-	B S (4 File)	Same as Client Info		
Client Information		Project # 4388	.0001	B000		N-CO)		Other							
Client: Koux Env.	ormental	(Use Project name as Pro			-		Regu	latory l	Requirem	ent			Disposal Site Information		
Address: 2558 Ha	mburg Pumple	Project Manager: /q/ ALPHAQuote #:	idace 7	Fox				NY TO	GS tandards		NY Pa		Please identify below location applicable disposal facilities.	of	
Phone: 716 - 856	-0509	Turn-Around Time	No. of Concession,				n		stricted Us		Other		Disposal Facility:		
Fax:		Standard		Due Date:				NY Un	estricted L	Jse	00101		□ NJ Ø NY		
Email: LRIKE 0	70	Rush (only if pre approved)		# of Days:					ewer Disch	narge			Other:		
These samples have be							-	LYSIS		_	_		Sample Filtration	- 0	
Other project specific Please specify Metals	(CAT B					Metals.	ž	8260 F 77C				Done Lab to do Preservation Lab to do	t a l	
r lease specify metals	or the.						Sec.	1 15	' -				(Please Specify below)	o t	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ction	Sample Matrix	Sampler's Initials	107	A YER	1 CP 5				Sample Specific Comments	1	
43419 - 01	M5		7/30/24	12:59	6W	MTF	X	X	X	\top	$\overline{}$			6	
0\	MSD		7/30/24	12:59	GW	MIF	X	X	X	1	100			6	
0.8	Blind	DUP	7/30/24	8:00 am	6W	MIP	X	X	X					6	
09	Trip B		7/30/24	8=01	water	MIE	, -		X					2	
					4/	-15-				+				+	
Preservative Code: A = None B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N			Cor	ntainer Type	ρ	A	V				Please print clearly, leg and completely. Sample		
D = H ₂ SO ₄ E = NaOH	V = Vial G = Glass B = Bacteria Cup			ye	_ F	Preservative	C	A	B				not be logged in and turnaround time clock w start until any ambiguiti	ies are	
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	7/31/24 6 3:45 T.BA				Received By				Time 4.741 ((()) 2 d	TO BE BOUND BY ALI	NT EES PHA'S			
Form No: 01-25 HC (rev. 3)	0-Sept-2013)	Remell B Bi		31.20	3 130	1			_	1		1:31			

APPENDIX D

SVE SYSTEM MASS REMOVAL TRACKING TABLES AND CHARTS

Table D-1 Summary of VOC Mass Removal: 3-SVE-2 System

BCP Parcel 3 Olean, New York

Date	SVE Operation Time	Influent (Untreated) PID Reading	Effluent PID Reading Biofilter	Corrected Influent	Vacuum (in of H ₂ O)	Volume of Air Processed Since	Rate of VOC Removal	VOCs Removed Since Last Monitoring	Total VOC Removal to Date	Notes
	(days)	(ppm)	(ppm)	(mg/m³)		Previous Reading (CF)	(lb/day)	Period (lb)	(lb)	
01/05/15	0	0	0	0	28.0	0	0.0			Set-up/start-up between 1/5-3/6/15
03/06/15	0	695	75	3157	28.0	0	0.0	0.0	0	
03/09/15	3	735	120	3339	30.0	2108943	154.6	219.8	220	
03/11/15	5	765	140	3475	30.0	1460038	160.9	310.6	530	
03/13/15	7	750	140	3407	32.0	1483213	157.8	318.7	849	
03/16/15	10	680	160	3089	34.0	2232544	143.0	452.8	1,302	
03/18/15	12	580	100	2635	35.0	1967317	162.7	304.1	1,606	
03/20/15	14	575	100	2612	34.0	1977617	161.3	324.0	1,930	
03/23/15	17	540	90	2453	35.0	2987026	151.5	472.4	2,402	
03/25/15	19	560	70	2544	35.0	2303787	157.1	359.4	2,762	
03/27/15	21	665	75	3021	35.0	1857449	186.5	322.7	3,084	
04/03/15	28	500	105	2271	32.0	7024661	140.2	1160.7	4,245	
04/06/15	31	365	30	1658	32.0	2945825	102.4	361.4	4,607	
04/09/15	34	345	45	1567	33.0	2657423	96.8	267.6	4,874	
04/10/15	35	370	100	1681	33.0	1009409	103.8	102.4	4,977	
04/17/15	42	300	35	1363	31.0	7230662	84.1	687.1	5,664	
04/24/15	49	300	40	1363	31.0	6602357	84.1	561.8	6,225	
05/01/15	56	285	40	1295	30.0	7240962	79.9	600.8	6,826	
05/08/15	63	250	55	1136	30.0	6890759	70.1	522.9	7,349	
05/15/15	70	330	60	1499	30.0	6942260	92.6	571.1	7,920	
05/22/15	77	325	40	1476	30.0	6952560	91.2	645.9	8,566	
05/29/15	84	390	20	1772	32.0	6877026	109.4	697.4	9,263	
06/05/15	91	360	50	1635	32.0	6976593	101.0	742.1	10,005	
06/15/15	101	330	40	1499	36.0	10352877	99.5	976.3	10,982	
06/19/15	105	400	45	1817	36.0	4473329	120.6	463.1	11,445	
06/26/15	112	370	40	1681	34.0	7396494	111.6	807.7	12,253	
07/06/15	122	370	45	1681	36.0	10718272	111.6	1124.9	13,377	
07/10/15	126	295	40	1340	36.0	4185441	88.9	394.7	13,772	
07/23/15	139	350	40	1590	30.0	13552857	105.5	1239.8	15,012	
07/28/15	144	370	50	1681	34.0	5425572	111.6	554.0	15,566	
08/05/15	152	360	40	1635	34.0	8488990	108.5	878.9	16,445	
08/13/15	160	560	30	2544	34.0	8695678	168.8	1134.6	17,580	
08/24/15	171	400	50	1817	32.0	11471209	120.6	1561.8	19,141	
09/23/15	201	350	50	1590	32.0	32188035	105.5	3423.8	22,565	
10/26/15	234	700	50	3180	32.0	35044764	211.1	5218.8	27,784	
11/17/15	256	740	40	3362	33.0	23318886	223.1	4762.4	32,546	
12/23/15	292	390	50	1772	34.0	28461205	87.5	5588.1	38,135	
01/15/16	315	370	36	1681	34.0	18177597	83.0	1959.3	40,094	
02/19/16	350	410	25	1863	34.0	27538317	92.0	3046.4	43,140	
03/28/16	388	390	20	1772	35.0	30158660	87.5	3421.8	46,562	
04/07/16	398	410	20	1863	34.0	7795107	92.0	884.4	47,447	
05/03/16	424	360	25	1635	34.0	27359611	107.3	2594.8	50,041	
06/06/16	457	210	10	954	32.0	37335247	66.3	2912.3	52,954	
06/15/16	467	305	20	1386	40.0	10776468	96.2	787.1	53,741	
07/05/16	487	335	35	1522	40.0	21946914	105.7	1992.1	55,733	
08/04/16	517	250	40	1136	40.0	23681964	56.1	2422.0	58,155	
09/13/16	557	500	18	2271	40.0	31641873	112.2	3365.7	61,521	
10/11/16	585	290	45	1317	41.0	22347073	65.1	2503.8	64,024	
11/16/16	621	460	50	2090	42.0	28411765	103.2	3022.2	67,047	
12/12/16	647	519	40	2358	44.0	20550737	116.5	2853.4	69,900	

Table D-1 Summary of VOC Mass Removal: 3-SVE-2 System

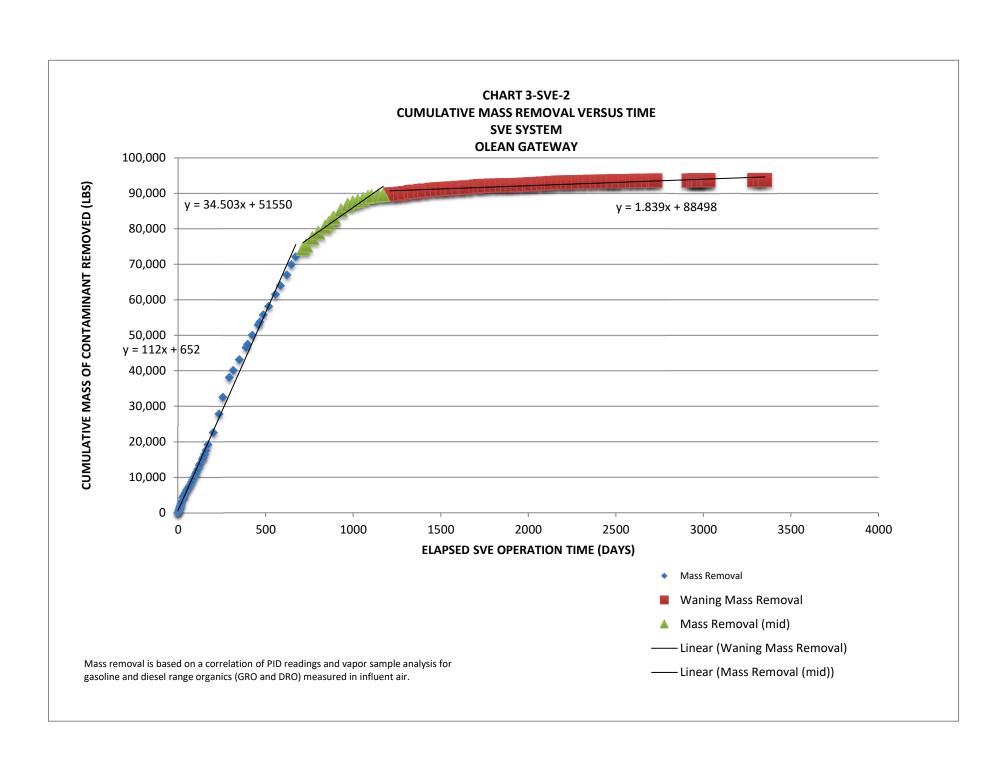
BCP Parcel 3 Olean, New York

	SVE	Influent	Effluent PID	Corrected Influent		Volume of Air Processed	Rate of	VOCs Removed	Total VOC	
Date	Operation Time (days)	(Untreated) PID Reading (ppm)	Reading Biofilter (ppm)	Concentration ¹ (mg/m³)	Vacuum (in of H₂O)	Since Previous Reading (CF)	VOC Removal (lb/day)	Since Last Monitoring Period (lb)	Removal to Date (lb)	Notes
01/06/17	672	270	20	1227	44.0	19825611	60.6	2218.5	72,118	
02/17/17	714	245	15	1113	46.0	28941189	48.1	2272.2	74,391	
03/06/17	731	320	20	1454	46.0	11766821	62.8	942.9	75,334	
04/11/17	767	265	20	1204	50.0	24946815	52.0	2069.8	77,403	
05/15/17	801	200	8	909	50.0	23519223	39.3	1551.1	78,954	
06/23/17	840	230	20	1045	52.0	27138674	45.2	1655.1	80,609	
07/14/17	861	285	15	1295	52.0	14362444	56.0	1049.0	81,659	
08/07/17	885	263	23	1195	52.0	16676874	51.6	1296.1	82,955	
08/11/17	889	268	18	1217	52.0	2768664	52.6	208.5	83,163	
09/21/17	930	242	19	1099	50.0	28590300	47.5	2068.0	85,231	
10/30/17	969	168	12.8	763	60.0	26797398	33.0	1558.2	86,789	
11/28/17	998	68.7	39.4	312	58.0	20087233	13.5	674.3	87,464	
12/26/17	1026	72	68.7	327	58.0	19395067	14.1	387.0	87,851	
01/25/18	1056	111.8	38.4	508	58.0	20786609	22.0	541.9	88,393	
02/23/18	1085	101.7	NA	462	60.0	20065603	20.0	607.6	89,000	
03/15/18	1104	13.8	5.2	63	58.0	13475606	2.7	220.7	89,221	
04/23/18	1143	34.2	2.3	155	64.0	26994473	6.7	183.8	89,405	
05/21/18	1171	22.4	2.7	102	62.0	19380647	4.4	155.6	89,560	
06/28/18	1209	7.4	3	34	64.0	26302307	1.5	111.2	89,671	
07/26/18	1237	4.7	2.1	21	48.0	19380647	0.9	33.3	89,705	
08/27/18	1269	40	11.2	182	48.0	22149311	7.9	140.4	89,845	
09/20/18	1293	45.3	16.7	206	54.0	16611983	8.9	201.0	90,046	
10/26/18	1329	34.8	3.4	158	60.0	24917975	6.8	283.1	90,329	
11/15/18	1349	16.8	2.8	76	58.0	13843319	3.3	101.3	90,430	
12/20/18	1384	38.4	4.7	174	60.0	24225809	7.5	189.7	90,620	
01/11/19	1406	30	2.7	136	54.0	15227651	5.9	147.7	90,768	
02/22/19	1448	18.2	3.6	83	48.0	29070970	3.6	198.7	90,967	
03/26/19	1480	24.3	3	110	46.0	22149311	4.8	133.5	91,100	Raked biofilter March 1, 15, 22
04/24/19	1509	13.9	1.1	63	38.0	20072813	2.7	108.7	91,209	Raked biofilter April 5, 19
05/24/19	1539	17.6	2	80	34.0	20764979	3.5	92.8	91,302	Raked biofilter May 13, 17, 31
06/17/19	1563	15.4	1.3	70	55.0	16611983	3.0	77.7	91,379	Raked biofilter June 14, 28
07/25/19	1601	15.9	1.2	72	53.0	26302307	3.1	116.8	91,496	Raked biofilter July 12, 26
08/27/19	1634	16.4	0.3	75	51.0	22841477	3.2	104.6	91,601	Raked biofilter August 9, 23
09/09/19	1647	23.6	0.3	107	50.0	8998158	4.6	51.0	91,652	Raked biofilter September 9
10/31/19	1699	23.2	0.2	105	68.0	35992630	4.6	238.9	91,891	
11/25/19	1724	17.8	0	81	48.0	17304149	3.5	100.6	91,991	
12/19/19	1748	15.2	0	69	63.0	16611983	3.0	77.7	92,069	
01/27/20	1787	6.1	0	28	52.0	26994473	1.2	81.5	92,151	
02/27/20	1818	6.5	0	30	62.0	21457145	1.3	38.3	92,189	
03/30/20	1850	3.6	0	16	58.0	22149311	0.7	31.7	92,221	
04/27/20	1878	3.9	0	10	50.0	19380647	0.5	16.2	92,237	
05/26/20	1907	6.1	0	16	40.0	20072813	0.7	16.8	92,254	
06/25/20	1937	25.6	0	69	52.0	20764979	3.0	55.2	92,309	
07/31/20	1973	25.7	0	69	49.0	24917975	3.0	107.3	92,416	
08/31/20	2004	25.5	1.5	69	55.0	21457145	3.0	92.2	92,509	
09/14/20	2018	16.6	0.9	45	44.6	9690323	1.9	34.2	92,543	
10/22/20	2056	33.6	1.4	90	61.1	26302307	3.9	110.8	92,654	
11/19/20	2084	16.9	1.1	45	50.0	19380647	2.0	82.1	92,736	
12/17/20	2112	12.7	0.3	34	49.0	19380647	1.5	48.2	92,784	
01/04/21	2130	47.7	0.5	128	59.4	12458987	5.5	63.2	92,847	

Table D-1 Summary of VOC Mass Removal: 3-SVE-2 System

BCP Parcel 3 Olean, New York

Date	SVE Operation Time (days)	Influent (Untreated) PID Reading (ppm)	Effluent PID Reading Biofilter (ppm)	Corrected Influent Concentration ¹ (mg/m ³)	Vacuum (in of H₂O)	Volume of Air Processed Since Previous Reading (CF)	Rate of VOC Removal (Ib/day)	VOCs Removed Since Last Monitoring Period (lb)	Total VOC Removal to Date (Ib)	Notes
02/11/21	2168	17.6	0.4	47	52.5	26302307	2.0	144.2	92,991	
03/17/21	2202	8.9	0.9	24	59.9	23533643	1.0	52.3	93,044	
04/08/21	2224	7.7	0.4	21	58.7	15227651	0.9	21.2	93,065	
05/06/21	2252	7.5	0.2	20	55.6	19380647	0.9	24.7	93,089	
06/08/21	2285	11.1	0.1	30	53.7	22841477	1.3	35.7	93,125	
07/15/21	2322	16.3	0.2	44	62.1	25610141	1.9	58.9	93,184	
08/12/21	2350	6.1	0.2	16	52.7	19380647	0.7	36.4	93,220	
09/23/21	2392	10.9	0	29	69.4	29070970	1.3	41.5	93,262	
10/21/21	2420	10.9	0.2	29	60.2	19477550	1.3	35.6	93,298	
11/22/21	2452	7.7	0.1	21	52.3	22260057	0.9	34.8	93,332	
12/20/21	2480	2.6	0.1	7	66.3	19477550	0.3	16.8	93,349	1/13/22 Shut down for winter
05/16/22	2487	8.5	0	23	40.9	4869388	1.0	4.5	93,354	5/9/22 Restart system
06/15/22	2517	6.5	0	17	40.1	20868804	0.8	26.3	93,380	
07/21/22	2553	9.2	0	25	43.4	25042565	1.1	33.0	93,413	
08/29/22	2592	9.9	0	27	40.9	27129445	1.2	43.5	93,456	
09/22/22	2616	9.7	0	26	44.7	16695043	1.1	27.5	93,484	
10/24/22	2648	8.9	0	24	45.9	22260057	1.0	34.8	93,519	
11/28/22	2683	10.6	0	28	49.5	24346938	1.2	39.8	93,558	
12/28/22	2713	6.6	0	18	36.6	20868804	0.8	30.1	93,589	
01/09/23	2725	0.3	0	1	42.1	8347522	0.0	4.8	93,593	1/9/2023 System shut-down for winter
07/19/23	2916	0.5	0	1	42.0	132864717	0.1	8.9	93,602	7/19/2023 System start up
08/15/23	2943	4.9	0.1	13	36.4	18781923	0.6	8.5	93,611	
08/24/23	2952	0.5	0	1	42.6	6260641	0.1	2.8	93,614	
09/07/23	2966	0.5	0	1	59.9	9738775	0.1	0.8	93,615	
09/14/23	2973	0	0.1	0	38.4	4869388	0.0	0.2	93,615	
10/12/23	3001	5.5	0.5	15	31.4	19477550	0.6	27.3	93,642	
10/31/23	3020	3.5	0.3	9	34.1	13216909	0.4	10.0	93,652	
11/09/23	3029	3.6	0.1	10	30.9	6260641	0.4	3.7	93,656	11/9/2023 System shut-down for winter
07/28/24	3291	0.5	0	1	33.6	182254220	0.1	62.7	93,718	7/28/2024 System start up
08/28/24	3322	0.3	0	1	32.3	21564431	0.0	1.4	93,720	
09/26/24	3351	0	0	0	34.7	20173177	0.0	0.5	93,720	


Notes:

The ratio 4.54 miligram per cubic meter for each 1 parts per million on the PID was used for 1-15-15 through 4-14-21.

 $The \ ratio \ 4.00 \ milligram \ per \ cubic \ meter \ for \ each \ 1 \ parts \ per \ million \ on \ the \ PID \ was \ used \ for \ 4-15-20 \ to \ present.$

Data collected pre-remediation; all other data collected post-remediation PRR reporting period

^{1.} The estimated mass of contamination recovered is based on ratio of the sum of the gasoline and diesel range organics (GRO and DRO) as measured by a vapor sample collected with a summa canister to the contemporaneous PID reading.

Table D-2 Summary of VOC Mass Removal: 3-SVE-3 System

BCP Parcel 3 Olean, New York

Date	SVE Operation Time (days)	Influent (Untreated) PID Reading (ppm)	Effluent PID Reading Biofilter (ppm)	Corrected Influent Concentration ¹ (mg/m³)	Vacuum (in of H₂O)	Volume of Air Processed Since Previous Reading (CF)	Rate of VOC Removal (Ib/day)	VOCs Removed Since Last Monitoring Period (lb)	Total VOC Removal to Date (lb)	Notes
02/04/15	0	600	160	1800	20.0	0	0.0			System set-up/start-up from 2/4-3/20
03/20/15	0.0	470	110	1410	24.0	0	0.0	0.0	0	
03/23/15	2.7	500	80	1500	24.0	2714761	94.6	127.1	127	
03/25/15	5.0	635	80	1905	24.0	2357002	120.1	250.5	378	
04/03/15	13.9	630	100	1890	24.0	9007116	119.2	1066.9	1,444	
04/06/15	17.0	400	30	1200	25.0	3072521	75.7	296.3	1,741	
04/10/15	20.7	450	60	1350	26.0	3745950	85.1	298.1	2,039	
04/17/15	28.0	340	60	1020	26.0	7386677	64.3	546.4	2,585	
04/23/15	33.7	310	50	930	26.0	5734671	58.6	349.0	2,934	
05/01/15	42.0	285	20	855	26.0	8407343	53.9	468.4	3,403	
05/08/15	49.0	245	70	735	26.0	7049962	46.3	349.9	3,753	
05/15/15	56.0	310	30	930	26.0	7081529	58.6	368.0	4,121	
05/22/15	63.0	285	20	855	26.0	7102574	53.9	395.7	4,516	
05/29/15	69.9	350	30	1050	26.0	6979813	66.2	415.0	4,931	
06/05/15	77.0	350	40	1050	26.0	7162200	66.2	469.4	5,401	
06/15/15	86.9	320	20	960	30.0	9436427	57.5	608.3	6,009	
06/19/15	91.0	300	30	900	32.0	3958501	53.9	229.8	6,239	
06/26/15	98.0	220	30	660	32.0	6697464	39.5	326.1	6,565	
07/06/15	108.0	275	30	825	32.0	9656343	49.4	447.6	7,013	
07/10/15	112.0	220	30	660	34.0	3778569	39.5	175.1	7,188	
07/23/15	124.7	300	25	900	30.0	12235367	53.9	595.8	7,784	
07/28/15	129.8	275	3	825	30.0	4898145	49.4	263.7	8,047	
08/05/15	138.0	220	30	660	32.0	7837032	39.5	363.2	8,410	
08/13/15	146.0	400	40	1200	32.0	7677093	71.9	445.7	8,856	
08/24/15	156.8	380	35	1140	32.0	10356078	68.3	756.4	9,613	
09/23/15	187.1	360	30	1080	34.0	29078989	64.7	2014.9	11,627	
10/26/15	220.0	370	45	1110	38.0	31618027	66.5	2161.2	13,789	
11/17/15	242.0	340	45	1020	31.0	21052028	61.1	1399.6	15,188	
12/23/15	277.9	396	20	1188	32.0	21806479	44.9	1907.8	17,096	
01/15/16	300.9	280	20	840	32.0	17989504	41.1	988.1	18,084	
02/19/16	335.8	265	10	795	32.0	27269674	38.9	1391.6	19,476	
03/07/16	352.3	203	10	0	32.0	12949833	0.0			
								321.3	19,797	System down; Replace blower
03/17/16	352.3	200	45	0	20.0	0	0.0 29.3	321.3 169.5	19,797	
	363.9	200	15	600	38.0	9051836			19,967	
04/07/16	373.7	210	20	630	38.0	7714447	30.8	296.2	20,263	
05/03/16	399.8	65	10	195	38.0	21044663	9.8	529.0	20,792	
06/06/16	433.3	160	5	480	40.0	27105525	24.2	571.1	21,363	
07/05/16	462.7	190	35	570	38.0	23788887	28.8	779.6	22,142	
08/05/16	493.8	195	30	585	36.0	25068402	29.5	903.7	23,046	
09/13/16	532.7	250	15	750	40.0	31449144	37.8	1310.4	24,357	
10/11/16	560.9	200	20	600	40.0	22829250	30.3	961.9	25,319	
11/16/16	596.9	250	15	750	42.0	29058470	37.8	1224.4	26,543	
12/12/16	622.8	280	10	840	43.0	20943648	42.4	1039.4	27,582	
01/06/17	647.9	140	15	420	43.0	20303891	21.2	798.5	28,381	
02/17/17	689.7	60	10	180	42.0	21107797	5.7	561.3	28,942	
03/06/17	706.7	70	10	210	44.0	8586222	6.6	104.5	29,047	
04/11/17	742.7	36	5	108	46.0	18193111	3.4	180.6	29,227	
05/15/17	776.7	30	3	90	36.0	17161922	2.8	106.1	29,333	
05/15/17	776.7	50	3	150	50.0	5261	4.7	0.0	29,333	
06/23/17	815.9	49	2	147	50.0	19787244	4.6	183.4	29,517	
07/14/17	836.7	59	4	177	50.0	10490764	5.6	106.1	29,623	

Table D-2 Summary of VOC Mass Removal: 3-SVE-3 System

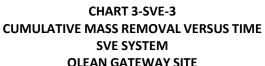
BCP Parcel 3 Olean, New York

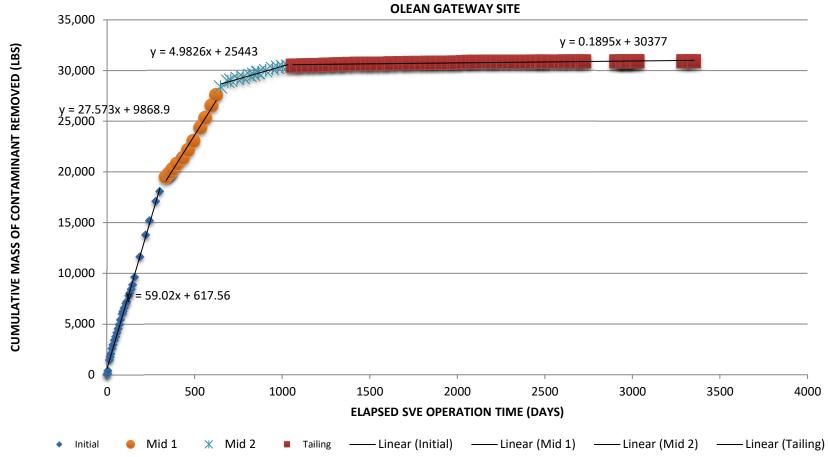
02/23/18 03/15/18 04/23/18 05/21/18 06/28/18 07/26/18	860.7 864.7 906.0 944.7 973.8 1001.8 1031.9 1060.8 1080.3 1119.3 1147.3 1185.3	80 44 53 60 27.2 18.4 17.3 7.3 6.5 5.2 2.9	8.8 7 6.8 14.9 22.7 21.3 15.1 NA 0.7	240 132 159 180 82 55	42.0 43.0 42.0 40.0 45.0 42.0	12142770 2025549 20849999 19550492	7.6 4.2	158.0 23.5	29,781	
09/21/17 10/30/17 11/28/17 12/26/17 01/25/18 02/23/18 03/15/18 04/23/18 05/21/18 06/28/18 07/26/18	906.0 944.7 973.8 1001.8 1031.9 1060.8 1080.3 1119.3 1147.3	53 60 27.2 18.4 17.3 7.3 6.5	6.8 14.9 22.7 21.3 15.1 NA	159 180 82 55	42.0 40.0 45.0	20849999		23.5		
10/30/17 11/28/17 12/26/17 01/25/18 02/23/18 03/15/18 04/23/18 05/21/18 06/28/18 07/26/18	944.7 973.8 1001.8 1031.9 1060.8 1080.3 1119.3 1147.3	60 27.2 18.4 17.3 7.3 6.5 5.2	14.9 22.7 21.3 15.1 NA	180 82 55	40.0 45.0		F 0		29,804	
11/28/17 12/26/17 01/25/18 02/23/18 03/15/18 04/23/18 05/21/18 06/28/18 07/26/18	973.8 1001.8 1031.9 1060.8 1080.3 1119.3 1147.3	27.2 18.4 17.3 7.3 6.5 5.2	22.7 21.3 15.1 NA	82 55	45.0	19550492	5.0	189.4	29,994	
12/26/17 01/25/18 02/23/18 03/15/18 04/23/18 05/21/18 06/28/18 07/26/18	1001.8 1031.9 1060.8 1080.3 1119.3 1147.3	18.4 17.3 7.3 6.5 5.2	21.3 15.1 NA	55			5.7	206.9	30,201	
01/25/18 02/23/18 03/15/18 04/23/18 05/21/18 06/28/18 07/26/18	1031.9 1060.8 1080.3 1119.3 1147.3	17.3 7.3 6.5 5.2	15.1 NA		42 N	14710219	2.6	120.1	30,321	
02/23/18 03/15/18 04/23/18 05/21/18 06/28/18 07/26/18	1060.8 1080.3 1119.3 1147.3	7.3 6.5 5.2	NA	52	42.0	14142013	1.7	60.4	30,381	
03/15/18 04/23/18 05/21/18 06/28/18 07/26/18	1080.3 1119.3 1147.3	6.5 5.2			48.0	15173202	1.6	50.7	30,432	
04/23/18 05/21/18 06/28/18 07/26/18	1119.3 1147.3	5.2	0.7	22	44.0	14606750	0.7	33.6	30,466	
05/21/18 06/28/18 07/26/18	1147.3		ļ	19	44.0	9847148	0.6	12.7	30,478	
06/28/18 07/26/18		2.0	0.5	16	44.0	19697804	0.5	21.6	30,500	
07/26/18	1185.3	2.9	2.3	9	44.0	14142013	0.3	10.7	30,511	
		5.4	1.6	16	44.0	19192732	0.5	14.9	30,525	
08/27/19	1213.3	3.8	1.7	11	44.0	14142013	0.4	12.2	30,538	
JUIZ//10	1245.3	10	3	30	46.0	16174080	0.9	20.9	30,559	
09/20/18	1269.3	6.2	1.7	19	44.0	12130560	0.6	18.4	30,577	
10/26/18	1305.3	4.7	2.1	14	46.0	18195840	0.4	18.6	30,596	
	1325.3	5.8	3	17	46.0	10108800	0.5	9.9	30,605	
12/20/18	1360.3	10.2	2.5	31	44.0	17690400	1.0	26.5	30,632	
01/11/19	1382.3	1	0.1	3	48.0	11119680	0.1	11.7	30,644	
02/22/19	1424.3	2.4	0.3	7	44.0	21228480	0.2	6.8	30,650	
03/26/19	1456.3	1.2	0.1	4	39.0	16174080	0.1	5.5	30,656	Raked biofilter March 1, 15, 22
04/24/19	1485.3	1	0	3	46.0	14657760	0.1	3.0	30,659	Raked biofilter April 5, 19
	1515.3	1.8	0	5	40.0	15163200	0.2	4.0	30,663	Raked biofilter May 13, 17, 31
	1539.3	1.2	0	4	41.0	12130560	0.1	3.4	30,666	Raked biofilter June 14, 28
	1577.3	5.1	0	15	40.0	19206720	0.5	11.3	30,678	Raked biofilter July 12, 26
	1610.3	5.3	0.1	16	41.0	16679520	0.5	16.2	30,694	Raked biofilter August 9, 23
09/09/19	1623.3	4.4	0.1	13	45.0	6570720	0.4	6.0	30,700	Raked biofilter September 9
	1675.3	2.8	0	8	46.0	26282880	0.3	17.7	30,717	
	1700.3	2.5	0	7	44.0	12636000	0.2	6.3	30,724	
	1724.3	1.1	0	3	42.0	12130560	0.1	4.1	30,728	
	1763.3	2.5	0	7	60.0	19712160	0.2	6.6	30,734	
	1794.3	1.1	0	3	49.0	15668640	0.1	5.3	30,740	
	1826.3	1.4	0	4	46.0	16174080	0.1	3.8	30,744	
	1854.3	1.4	0	6	63.0	14152320	0.2	4.3	30,748	
	1883.3	4.2	0	17	46.0	14657760	0.5	10.3	30,758	
	1913.3	0.9	0	4	55.0	15163200	0.1	9.7	30,768	
	1949.3	1 1	0	4	48.0	18195840	0.1	4.3	30,772	
	1980.3	4.5	0	18	56.0	15668640	0.6	10.8	30,783	
	1994.3	4.2	0	17	42.5	7076160	0.5	7.7	30,791	
	2032.3	8	0.5	32	60.1	19206720	1.0	29.3	30,820	
	2060.3	3.9	0.1	16	49.9	14152320	0.5	21.0	30,841	
	2088.3	1.7	0.2	7	45.0	14152320	0.2	9.9	30,851	
	2106.3	0.4	0	2	52.1	9097920	0.1	2.4	30,853	
	2144.3	1	0	4	48.1	19206720	0.1	3.4	30,856	
	2178.3	0	0	0	52.5	17184960	0.0	2.1	30,859	
	2200.3	0.5	0	2	53.5	11119680	0.1	0.7	30,859	
	2228.3	1.1	0	4	49.9	14152320	0.1	2.8	30,862	
	2261.3	0.4	0	2	54.7	16679520	0.1	3.1	30,865	
	2298.3	0.1	0	0	46.7	18701280	0.0	1.2	30,866	
	2326.3 2368.3	0	0	0	37.6 60.1	14152320 21228480	0.0	0.2	30,867 30,867	Turn off 3-SVE-21, 24, 31, 33, 36, 37, and 38

Table D-2 Summary of VOC Mass Removal: 3-SVE-3 System

BCP Parcel 3 Olean, New York

Date	SVE Operation Time (days)	Influent (Untreated) PID Reading (ppm)	Effluent PID Reading Biofilter (ppm)	Corrected Influent Concentration ¹ (mg/m³)	Vacuum (in of H₂O)	Volume of Air Processed Since Previous Reading (CF)	Rate of VOC Removal (lb/day)	VOCs Removed Since Last Monitoring Period (lb)	Total VOC Removal to Date (lb)	Notes
10/21/21	2396.3	0.5	0	2	12.5	14152320	0.1	0.9	30,868	
11/22/21	2428.3	0.6	0	2	48.9	16174080	0.1	2.2	30,870	
12/20/21	2456.3	0.5	0	2	54.3	14152320	0.1	1.9	30,872	
01/13/22	2480.3	0.4	0	2	51.5	12130560	0.1	1.4	30,873	Turned system off for winter
05/16/22	2487.3	0.9	0	4	43.4	3538080	0.1	0.6	30,874	Restart System 5/9/22
06/16/22	2518.3	0.2	0	1	49.3	15668640	0.0	2.2	30,876	
07/21/22	2553.3	1.3	0	5	48.1	17690400	0.2	3.3	30,879	
08/29/22	2592.3	0.8	0	3	40.9	19712160	0.1	5.2	30,884	
09/22/22	2616.3	1.3	0	5	46.9	12130560	0.2	3.2	30,887	
10/24/22	2648.3	0.9	0	4	50.4	16174080	0.1	4.4	30,892	
11/28/22	2683.3	0	0	0	52.4	17690400	0.0	2.0	30,894	
12/29/22	2714.3	0	0	0	52.2	15668640	0.0	0.0	30,894	
01/09/23	2725.3	0	0	0	58.7	5559840	0.0	0.0	30,894	1/9/2023 System shut-down for winter
07/11/23	2908.3	0	0	0	38.0	92495520	0.0	0.0	30,894	7/11/2023 System start-up
07/19/23	2916.3	0.7	0	3	43.4	4043520	0.1	0.4	30,894	
08/15/23	2943.3	1.1	0	4	60.1	13646880	0.1	3.1	30,897	
08/24/23	2952.3	0.1	0	0	38.7	4548960	0.0	0.7	30,898	
09/07/23	2966.3	1.1	0	4	37.3	7076160	0.1	1.1	30,899	
09/14/23	2973.3	0	0	0	36.4	3538080	0.0	0.5	30,900	
10/12/23	3001.3	0.6	0.1	2	38.6	14152320	0.1	1.1	30,901	
10/31/23	3020.3	0.3	0	1	46.0	9603360	0.0	1.1	30,902	
11/09/23	3029.3	0	0	0	46.4	4548960	0.0	0.2	30,902	11/9/2023 System shut-down for winter
07/28/24	3291.3	0	0	0	35.3	132425280	0.0	0.0	30,902	7/28/2024 System start-up
08/28/24	3322.3	0	0	0	33.2	15668640	0.0	0.0	30,902	_
09/26/24	3351.3	0	0	0	37.7	14657760	0.0	0.0	30,902	


Notes:


The ratio 3.00 miligram per cubic meter for each 1 parts per million on the PID was used for 2-4-15 through 4-14-20.

The ratio 4.00 miligram per cubic meter for each 1 parts per million on the PID was used for 4-15-20 to present.

Data collected pre-remediation; all other data collected post-remediation
PRR reporting period.

^{1.} The estimated mass of contamination recovered is based on ratio of the sum of the gasoline and diesel range organics (GRO and DRO) as measured by a vapor sample collected with a summa canister to the contemporaneous PID reading.

Mass removal is based on a correlation of PID readings and vapor sample analysis for gasoline and diesel range organics (GRO and DRO) measured in influent air.

ATP - chewn air stripper * 71/24* - Hand run system - (lean effluent live) Shrs filter sacen a 30,2 Flow 30gpm 30gpm -> Change all BF'S +CBW * Replace Anto Scale drum Hhes > chean RW-19 pump props (1904ing good now) Linde - orm (30 min) a check belt skinners/running ok Pig hrs 7/2/24 Okan P1 - Theck system + tak readings Olean PZ 3 Check belt Shipper running ok Olean P3 -> system restart, SUE 3-2 bett screetching upon Startup, Greased belt, changed Blower motor oil

The 1st -s gh Okan P3 > Talko to brock, dilution volves all need to be open to let Wells Flush out, Londensoke heps filling up rapidly SUB 3-3 -> Greased belt and changed blower motor oil, system running okay but londerSate A115 UP rapidly systems of until rext visit (Going Into Glarm Within 10 mins 7/3/24 & Hand (Learing With josh (need project #