

Proactive by Design

REVISED SEPTEMBER 2021 POST-INJECTION GROUNDWATER MONITORING DATA REPORT

Former Signore Inc. 55-57 Jefferson Street Ellicottville, New York 14731

January 26, 2022 File No. 21.0056367.66

PREPARED FOR:

Iskalo Ellicottville Holdings LLC Williamsville, New York

GZA GeoEnvironmental of New York

300 Pearl Street, Suite 700 | Buffalo, New York 14202 716-685-2300

31 Offices Nationwide www.gza.com

Copyright© 2022 GZA GeoEnvironmental, Inc.

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 300 Pearl Street Suite 700 Buffalo, NY 14202 T: 716.685.2300

www.gza.com

VIA EMAIL

January 26, 2022 File No. 21.0056367.66

Mr. David Chiazza Iskalo Ellicottville Holdings LLC Harbinger Square 5166 Main Street Williamsville, New York 14221 dchiazza@iskalo.com

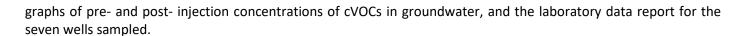
Re: Revised September 2021 Post-Injection Groundwater Monitoring Data Report Former Signore, Inc. 55-57 Jefferson Street

Ellicottville, New York 14731 (Site)

NYSDEC Site No. C905034

Mr. Chiazza:

GZA GeoEnvironmental of New York (GZA) submits this post-injection groundwater monitoring data report to Iskalo Ellicottville Holdings LLC (Client). The report presents the analytical results of sampling conducted on September 16 and 17, 2021 at the above referenced Site. The monitoring is required by the New York State Department of Environmental Conservation (NYSDEC) as specified in the Decision Document for Brownfield Cleanup Program (BCP) Site No. C905034 (July 2015).


The remedial injection program and first round of post-injection monitoring (August 2015) were described in the Final Engineering Report for the Site remedy (October 2015). Per the Site Management Plan (SMP), semi-annual post-injection groundwater monitoring was conducted until July 2017. Considering the established rate of chlorinated volatile organic compound (cVOC) reduction observed, NYSDEC approved modification of the SMP for annual post-injection monitoring in fall 2017.

The body of data collected since remedial injections indicates reductive dechlorination continues to decrease the cVOC concentrations as intended, and that a slow and steady overall trend of cVOC reduction has been established. GZA proposed cessation of post-injection monitoring in 2018 and 2019 in our submitted monitoring reports. GZA proposed modification of the post-injection monitoring frequency from annual to biennial in 2020 under draft SMP revisions. GZA notes revisions are still underway and Client's counsel is engaged with NYSDEC to reconcile the Superfund and BCP site boundaries (to be managed as one site under the BCP program). Proposed SMP revisions to the post-injection monitoring will include cessation of sampling and analysis for monitored natural attenuation (MNA) parameters; and biennial monitoring for VOCs (concurrent and consistent with the current Superfund site wells).

The September 2021 sampling event was the eighth round of post-injection monitoring conducted. This data report provides Site figures, well development forms, an analytical data summary table,

Page | 2

The analytical results of the groundwater sampling provide data for documentation of concentrations of cVOCs present in the on-Site groundwater. Groundwater cVOC concentrations measured at 74 months post-OCEDS injection (September 2021) follow trends typical for this stage of enhanced reductive dechlorination. As cVOC concentrations decline, biodegradation typically slows down due to less contact between cVOCs and dechlorination bacteria. Also, as PCE and TCE concentrations approach class GA criteria (i.e., PCE and TCE concentrations become a few micrograms per liter (µg/L)), concentrations of their degradation products DCE and VC are likely to be below laboratory detection limits. At this time, over six years after the Organic Carbon Electron Donor Substrate (OCEDS) injections, groundwater biogeochemical conditions at the Site are generally less conducive to reductive dichlorination. However, DCE is above laboratory detection limits in monitoring wells that still contain PCE and/or TCE above the class GA groundwater criteria of 5 µg/L. With the exception of EW-1.25R, located downgradient of the OCEDC injection area, TOC concentrations in groundwater are low. This is expected, as the OCEDS additive, by design, provides organic carbon for indigenous bacteria to consume while reducing electron acceptors that compete with cVOCs. Biomass generated by bacterial growth cycles provides a sustainable source of organic carbon, helping to maintain reductive dechlorination at the soil-porewater interface as the injected OCEDS is consumed. In GZA's opinion, groundwater concentrations of cVOCs will continue to decline over time. Monitoring will continue to document the dechlorination process.

GZA recommended cessation of the post-injection groundwater monitoring in our 2018 and 2019 reporting to NYSDEC. As detailed above, proposed SMP revisions to the post-injection monitoring will include cessation of sampling and analysis for MNA parameters and biennial monitoring for VOCs. Post-injection sampling will continue annually pending NYSDEC approval of the revised SMP.

Should you have any questions or require additional information following your review, please contact Thomas Bohlen at 716-844-7050.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Thomas Bohlen, P.G.

Project Manager

for Karen Kinsella, Ph.D.

Senior Technical Specialist (retired)

Bart A. Klettke, P.E.

Principal

cc: Megan Kuczka, NYSDEC

Jaspal Walia, P.E., NYSDEC

January 26, 2022 Revised September 2021 Post-Injection Groundwater Monitoring Data Report 21.0056367.66

Page | 3

ATTACHMENTS

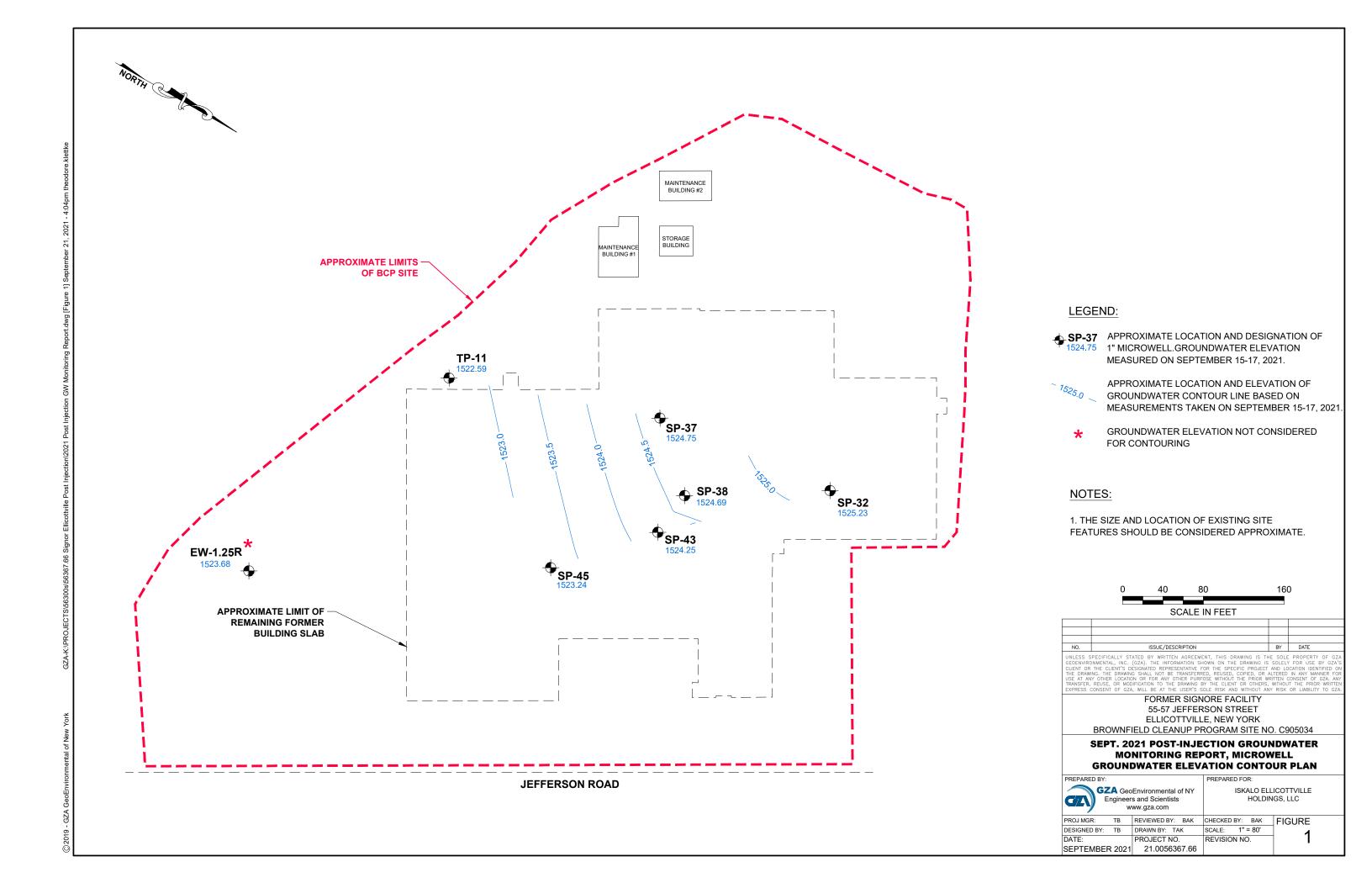
FIGURE 1 MICROWELL GROUNDWATER ELEVATION CONTOUR PLAN

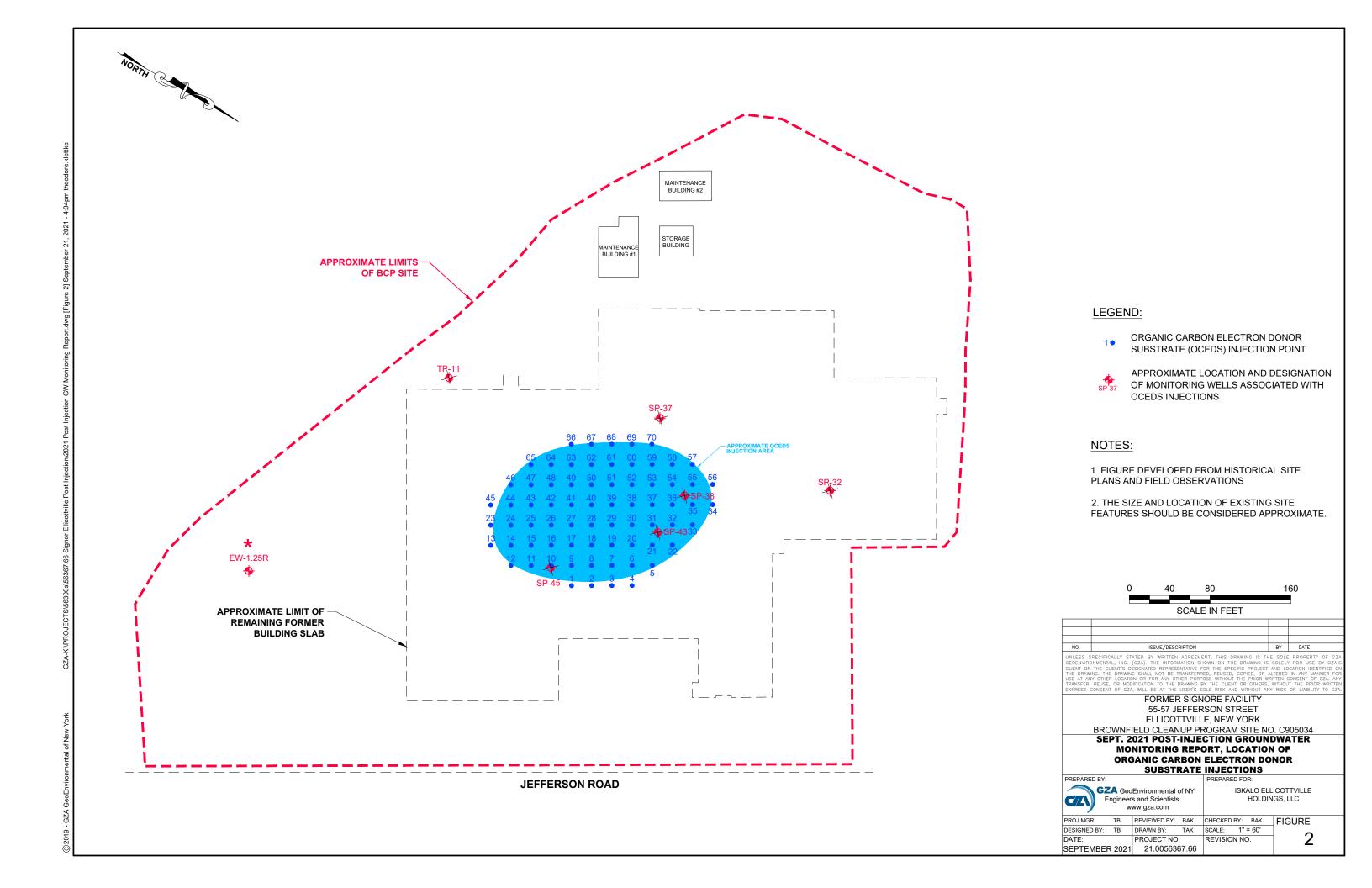
FIGURE 2 LOCATION OF ORGANIC CARBON ELECTRON DONOR SUBSTRATE INJECTIONS

ATTACHMENT A LIMITATIONS

ATTACHMENT B WELL DEVELOPMENT FORMS

ATTACHMENT C GROUNDWATER ANALYTICAL RESULTS SUMMARY


ATTACHMENT D CONCENTRATIONS OF CVOC PARENT MATERIAL AND DAUGHTER PRODUCTS


MEASURED IN GROUNDWATER

ATTACHMENT E LABORATORY REPORT

FIGURES

ATTACHMENT A

LIMITATIONS

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

21.0056367.66 Page | 2 October 2021

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

ATTACHMENT B

WELL DEVELOPMENT FORMS

File: 21.0056491.81

						Historic Info	rmation								
Boring Log A	vailable (y	es/no/attac	hed):												
Installation Le	og Availab	le (yes /no/a	attached)												
						Summa	ary								
Monitoring W		EW-1.25R		Ground Sur	face Elevation				een Materia						
Installation D	ate:	5/2019			Casing Elevation				creen Depth						
Installed By:		EDI			Point Elevation	: 1534.04 ft.		Bottom o	f Screen De	pth: 25 ft.					
				Elevation D	atum:										
Previous Fiel	ld measur	ement Inforr	mation Availal	ole (yes/ no /											
						of Previous Fi									
Depth to	Water	F	Н	Specific C	Conductance	Tempera	iture		bidity		Color				
(ft)			ard Units)		nos/cm)	(°C)			ITU)						
9.5	1	6	.77	(0.65	14.7		1:	3.13		Clear				
Notes:	otes:														
			Fi∈	eld Observa				Sampling Information							
Exterior Obs	ervations:	(1000)				pН	+/- 0.1	Sample ID: EW-1.25 12 . 091721							
									Conductivi		Sample Time: 1220				
Interior Obse	ervations	G000									# of Sample Containers: 8				
									Turbidity ORP		Duplicate Sample ID: Sample Analysis: VOCs 8260				
0:	/T	1)							DO	+/- 10mv +/- 10%					
Signs of Dan Locked ((p (ves/no)	C ,f.	ace Seal Intact	(King Ing)	PID Measi	urement:	150	Odors: 🔥	MNA Parameters TOC, DISS- ONE OLVED GAS (RSK175)				
Locked (yes/no)	I well ca	b (Aesuro)	Suria	de Sear IIIdu	Well Quali		urement.	0.000	Od013. 7()	ora (Asilon II)				
						vveii Quali	ty Data								
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes				
Date	1 11116	Water	Volume	(Standard		(°C)	(NTU)	55.51	Oxygen	Reduction					
		ft bgs	Purged	Units)	(uMhos/cm)	(0)	(,		-1.7,90	Potential					
9-17-21	17 05	10.38	O	6.37	0.660	19.8	13.16	NONE	20.9	-95.6	Depth of Water: /o,36				
	1710	10.38	0.3	6.28	0.650	14,4	8.44	NONE	17.6	-95.7	Length of Water Column:				
	1215	10.38	0.6	6.28	0.645	14.2	9.112	None	17.9	-98-6	Depth of Well:				
	1220	10.38	0.9	6,28	0.641	1971	7, 32	None	17.1	-98.9	Sheen Observed: Y				
											DNAPL Observed: Y 9N				
											Did Well Go Dry: Y 'N'				
											Other:				

NV - E						Historic Info	rmation		0.1 N.					
Boring Log A	vailable (y	es/no/attac	hed):											
Installation L	og Availab	le (yes/no/a	attached)											
						Summ								
Monitoring W		SP-32			face Elevation				reen Materia					
Installation D		9/27/2012			Casing Elevation				creen Depth					
Installed By:		TREC		DATE OF THE PARTY	Point Elevation	1533.52		Bottom o	f Screen De	pth: 19 ft.				
				Elevation D	CONTRACTOR OF THE PARTY OF THE									
Previous Fie	ld measure	ement Infori	mation Availal	ble (yes/ no /										
						of Previous F	ield Measu	rements						
Depth to	Water		Н	Specific C	Conductance	Tempera	ature		rbidity		Color			
(ft)		(Standa	ard Units)	(uMl		NTU)								
7.14	4	5	.93	0	.133	5	5.02		Clear					
Notes:														
Field Observations Parameters +/- Sampling Information														
Exterior Observations: Good pH +/- 0.1 Sample ID: 5P-32-091621														
									Conductivit		Sample Time: /350			
Interior Obse	ervations	6000							Temperatu		# of Sample Containers: 3			
									Turbidity		Duplicate Sample ID:			
									ORP		Sample Analysis: VOCs 8260			
Signs of Dar			ONE			-	DID 14		DO		MNA-PARAMETERS			
Locked (yes/no)	Well Ca	p (yes/no)	Surfa	ace Seal Intact			urement:	O. Oppu	Odors: A)	one			
			10.00	_		Well Qual	ty Data							
Deta	T:	Donath to	Cura datica	الما	Cassifia	Tomporatura	Turbidity	Color	Dissolved	Oxygen	Notes			
Date	Time	Depth to	Cumulative	pH	Specific	Temperature	(NTU)	Color		Reduction	Notes			
		Water	Volume	(Standard Units)	Conductance (uMhos/cm)	(°C)	(1410)		Oxygen	Potential				
9-16-21	100-	ft bgs	Purged O	6.08	O.LGZ	20.5	26.25	NONE	47.5	210.3	Depth of Water: 8,29			
1 16.71	1335	8.66	0.1	6.04	0.163	20.0	5.70	None	44.0	213.0	Length of Water Column: 10 14			
	1345	8.71	0.7	6.03	0,165	19.9	5.25	None	44.6	214.8	Depth of Well: /3 . 69			
	1350	8.71	0.3	6.05	0.167	19.9	5.36	NONT	42.9	215,3	Sheen Observed: Y (N)			
	12,10										DNAPL Observed: Y (N)			
											Did Well Go Dry: Y(N)			
									Other:					

I see a see	E 550 31	-1 he v			8.51	Historic Info	ormation							
Boring Log A														
Installation L	og Availat	ole (yes/no/a	attached)											
						Summ								
Monitoring V		SP-37			rface Elevation				reen Materia					
Installation D		9/27/2012			Casing Elevation				creen Depth					
Installed By:	:	TREC			Point Elevation	1533.36		Bottom o	f Screen De	pth: 19 ft.				
				Elevation D										
Previous Fie	eld measur	ement Infor	mation Availa	ble (yes/ no /										
						of Previous F								
Depth to	Water		Но	Specific (Conductance	Tempera	ature		rbidity		Color			
(ft	.)	(Standa	ard Units)	(uMl	hos/cm)	(°C)			NTU)					
6.4	19	6	.08		0.19	1	0.32		Clear					
Notes:														
Field Observations Parameters +/- Sampling Information Exterior Observations: Good pH +/- 0.1 Sample ID: 5P-37-691721														
Exterior Obs	servations:	Good							рН	+/- 0.1	Sample ID: 5P-37-091721			
									Conductivit		Sample Time: / O Z Ø			
Interior Obs	ervations	G000							Temperatu		# of Sample Containers: 6			
									Turbidity		Duplicate Sample ID:			
									ORP		Sample Analysis: VOCs 8260			
Signs of Da		pering: No	NE						DO		MNA PARAMETERS			
Locked ((yes/no)	Well Ca	p (yes/no)	Surfa	ace Seal Intact		PID Meas	urement:	0.0ppm	Odors:				
				200		Well Qual	ity Data		- 170	20 11				
Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units)	Specific Conductance (uMhos/cm)	Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes			
9-17-21	1005	8.63	0	6.84	0.221	19.3	28.89	Novie	te cs ; 7	183.3	Depth of Water: ጲ.ሬ፤			
	1010	8 63	0:1	5.69	0.216	18.8	8 . Oi	Nance	44.7	208.4	Length of Water Column: 선생기			
	1015	8.63	0.2	5.80	0.210	18.8	8.90	NONE	44,5	211.9	Depth of Well: 19.08			
	1020	8,63	0.3	5,86	0.210	18.8	9,26	NeNt	44.2	213,1	Sheen Observed: Y (N)			
				,							DNAPL Observed: Y (N2			
											Did Well Go Dry: Y(N)			
		ļ									Other:			
		-		_				-						
							-	 	 					
								1		L				

Elevation Datum: Evious Field measurement Information Available (yes/no/stached)	W/ 100			1000	1 2 4 2		Historic Info	ormation		. W., II.		
Summary Summ	Boring Log A	Available (v	es/no/attac	hed):								
Summary				•								
Sp.38 Ground Surface Elevation: Top of Screen Meterial: PVC		9					Summ	ary				
Maintain Date Maintain Dat	Monitorina V	Nell:	SP-38		Ground Su	rface Elevation			Riser/Scr	reen Materia	al: PVC	
TREC									Top of So	creen Depth	n: 9 ft.	
Elevation Datum: Parameter Ph	Installed By:											
Parameters Par	,											
Parameters Par	Previous Fie	eld measur	ement Infor	mation Availa	ble (yes/no/	attached)						
Depth to Water (ft) (Standard Units) Specific Conductance (uMhos/cm) (°C) (NTU) Color (NTU)							of Previous F	ield Measu	rements			
(ft)	Depth to	Water		оН	Specific (rbidity		Color
Time Depth to Cumulative Purged Units) Units Purged Purged Purged Units Purged Purged										-		
Field Observations Parameters +/- Sampling Information Sample ID: 57-38-091621 Conductivity +/-3% Sample ID: 57-38-091621 Conductivity +/-3% Sample Time: 1510 Final Parameters +/- 10% Final Parameters +/-												Clear
Parameters +/- Sampling Information Parameters +/- Sampling Information Ph							10.7					0.000.
PH	NOTES.											
PH				Fie	Id Observe	tions				Param	eters +/-	Sampling Information
erior Observations Conductivity +/-3% Sample Time: 1510	Exterior Obs	convotione:	0 1	110	ilu Obseiva	LIOTIS						
Temperature Food	_xterior Obs	servations.	0000									Sample Time: 1510
Turbidity	Interior Ohs	ervations	-									
ORP	11101101 003	CIVATIONS	U 60 0									
DO												
Date Time Depth to Cumulative PH Specific Conductance (°C) (NTU) (NTU) Dissolved Oxygen Reduction Potential Depth of Water (NTU) Oxygen Potential Depth of Water Oxygen Oxy	Signs of Da	mage/Tam	pering: N	2 /ull								
Date Time Depth to Cumulative pH Specific Conductance (°C) (NTU) Oxygen Reduction Potential Potentia					Surfa	ace Seal Intact	(ves/no)	PID Meas	urement:	O.CODM		
Date Time Depth to Cumulative Volume Fit bgs Purged Units) Conductance (°C) NTU) Color Dissolved Oxygen Reduction Potential Pote												
Water Volume (Standard Conductance (°C) (NTU) Oxygen Reduction Potential -16-21												V
ft bgs	Date	Time	Depth to	Cumulative	pН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
1450 8.96 0.1 0.77 0.445 18.9 57.30 NoNE 19.0 183.4 Depth of Water: 8.83 1455 8.96 0.1 0.71 0.446 18.4 47.12 NoNE 19.3 173.6 Length of Water Column: 10.03 1500 8.96 0.2 0.76 0.446 18.2 45.42 NoNE 19.4 166.9 Depth of Well: 18.86 1505 8.96 0.3 0.77 0.446 17.9 40.67 NoNE 19.4 159.2 Sheen Observed: Y NoNE 19.4 156.6 DNAPL Observed: Y NoNE 19.4			Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
1458 8.96 0.1 6.71 0.446 18.4 47.12 None 19.3 173.6 Length of Water Column: 10.03 1500 8.96 0.2 6.76 0.446 18.2 45.42 None 19.4 166.9 Depth of Well: 18.86 1505 8.96 0.3 6.72 0.446 17.9 40.67 None 19.4 159.2 Sheen Observed: Y			ft bgs	Purged	Units)	(uMhos/cm)					Potential	
1500 8.96 0.2 6.76 0.446 18.2 45.42 None 19.4 166.9 Depth of Well: 18.86 1505 8.96 0.3 6.72 0.446 17.9 40.67 None 19.4 159.2 Sheen Observed: Y	9-16-21	1450	8.96	0	6.77	6.445	18.9	57,30	NONE	19.0	183.4	
1505 8.96 0.3 6.72 0.446 17.9 40.67 NUNE 19.4 159.2 Sheen Observed: Y NO 1516 8.96 0.4 6.70 0.446 17.9 42.28 NONE 19.4 156.6 DNAPL Observed: Y NO Other:				0.1	6.71	0.446	18,4		NUNE			
1516 8.96 0.4 6.70 0.446 17.9 47.28 NONE 19.4 156.6 DNAPL Observed: Y Did Well Go Dry: Y DO Other:		1500	8.96	0,2	6.70			45.42	NONE	19.4		
Did Well Go Dry: Y Did Well Go Dry: Y Other:		1505	8,96	0.3	6172		17,9		NUNE			
Other:		1510	8.96	0,4	6,70	0.446	17.9	42,28	NONE	19.4	156.6	
								ļ				Other:
												11
		-										
	271.0	4,					L					Page

	- 59					Historic Info	rmation	51 T)					
Boring Log A													
Installation L	og Availab	le (yes /no/a	attached)										
						Summ							
Monitoring W		SP-43			face Elevation				reen Materia				
Installation D	ate:	10/1/2012			Casing Elevation				creen Depth				
Installed By:		TREC			Point Elevation	1533.42		Bottom o	f Screen De	pth: 20 ft.			
				Elevation D									
Previous Fie	ld measure	ement Inforr	nation Availal	ole (yes/ no /	AND THE REAL PROPERTY AND THE PARTY AND THE								
						of Previous Fi							
Depth to	Water		oH		Conductance	Tempera (°C)			rbidity		Color		
(ft)			ard Units)	(uMł		NTU)							
7.89	9	6	.12	0	4	.72		Clear					
Notes:													
			Fie		eters +/-	Sampling Information							
Exterior Obs	ervations:	6000							pН	+/- 0.1	Sample ID: 59-43-691721		
									Conductivit		Sample Time: 0825		
Interior Obse	ervations	6000									# of Sample Containers: 3		
									Turbidity		Duplicate Sample ID:		
	_ :								ORP		Sample Analysis: VOCs 8260		
Signs of Dar				0.6	0 11 1	<i>1</i> 00 × 1	DID M		DO		MNA PARAMETERS		
Locked (yes/no)	Well Ca	p (ves/no)	Surfa	ace Seal Intact		PID Meas	urement: ۵	0.0DPM	Odors: N	NE .		
					A N. C. C. C.	Well Quali	ty Data						
Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units)	Specific Conductance (uMhos/cm)	Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes		
9-17-21	0805	9.35	0	6.66	0.157	20.5	7.28	NONE	55.2	170.1	Depth of Water: 1.17		
	0810	9.36	0.1	5.95	0.150	20.9	13.12	NoNE	31.8	190.7	Length of Water Column: 8.58		
	0815	9136	0.2	5.90	0.149	20.9	141.12	NonE	29.3	193.5	Depth of Well: 17.75		
	0820	9.36	0,3	5.90	0.149	20,9	15.27	NONE	28.7	195.9	Sheen Observed: Y (N)		
	0825	9.36	0,4	5.90	0.149	20.9	16.07	NONE	28.1	196.3	DNAPL Observed: Y W		
											Did Well Go Dry: Y (N)		
											Other:		
						J							
									-				

		1 - S - S - S - S - S - S - S - S - S -		T 1 7		Historic Info	rmation	7,35							
Boring Log A	Available (y	es/no/attac	hed):												
Installation L	og Availab	le (yes/no/a	attached)												
						Summ									
Monitoring W		SP-45			face Elevation				reen Materia						
Installation D	Date:	10/1/2012			Casing Elevation				creen Depth		- X				
Installed By:		TREC			Point Elevation	1533.43		Bottom o	f Screen De	epth: 19.2 ft.					
				Elevation D											
Previous Fie	ld measure	ement Infori	mation Availal	ole (yes/ no /											
						of Previous Fi									
Depth to	Water		рН		Conductance	Tempera			rbidity		Color				
(ft)			ard Units)		nos/cm)	(°C) 17.5			NTU)						
9.0	5	6	.84	- (6	5.27		Clear							
Notes:	otes:														
			Fie	eld Observa	7 174			Sampling Information							
Exterior Obs	ervations:	6000				pН	+/- 0.1	Sample ID: SP-45 - 691721							
									Conductivit		Sample Time: 0925				
Interior Obse	ervations	6000									# of Sample Containers: 6				
									Turbidity		Duplicate Sample ID:				
	-								ORP DO		Sample Analysis: VOCs 8260 MNA PARAMETERS				
Signs of Dar				C,	an Coal Inter	Tuodina)	PID Measi	uromor [‡] :		Odors: 🐠					
Locked (yes/no)	i weii Ca	p (yes/no)	Suna	ace Seal Intact	(yes/no) Well Quali		urement:	U U pp	Odols. 70					
	r					well Quali	ty Data								
Date	Time	Depth to	Cumulative	pН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes				
Date	I IIIIe	Water	Volume	(Standard		(°C)	(NTU)		Oxygen	Reduction	110.00				
		ft bgs	Purged	Units)	(uMhos/cm)		(1410)		Oxygon	Potential					
9-17-21	0910	10.22		6-25	0.393	20.8	31.86	None	38.7	195.7	Depth of Water: 10,19				
1-11 4	0915	10.22	0-1	6.59	0,410	2017	7.11	NONE	20.1	179.5	Length of Water Column: 7,41				
	0920	10.23	0.2	6.59	0.410	20.7	n5 69	NONE	19,5	171.2	Depth of Well: 17.60				
	6925	10.22	0.3	6159	0,416	20.7	7.25	NONE	18.4	162.6	Sheen Observed: Y (N)				
											DNAPL Observed: Y (N)				
											Did Well Go Dry: Y (N)				
											Other:				
				L							Page: 1 of 1				

9,28,0					N	Historic Info	rmation			V-11-1				
Boring Log A														
Installation Lo	og Availab	le (yes /no/a	attached)											
						Summ	ary							
Monitoring W		TP-11			face Elevation				een Materia					
Installation D	ate:				Casing Elevation				creen Depth					
Installed By:		Trec Enviro			Point Elevation	: 1532.98 ft.		Bottom o	f Screen De	pth:				
				Elevation D										
Previous Fiel	d measure	ement Inforr	mation Availa	ble (yes/n o/										
						of Previous Fi								
Depth to	Water		Н	•	Conductance	Tempera			bidity		Color			
(ft)			ard Units)		nos/cm)	(°C)			ITU)					
9.42	2	6	.69	0	.393	16.7		4	.97		Clear			
Notes:	otes:													
			Fi€	eld Observa			Sampling Information							
Exterior Obs	ervations:	Good			pН		Sample ID: TP-11 - 091721							
									Conductivit		Sample Time: (120			
Interior Obse	ervations	_C000									# of Sample Containers: 3			
									Turbidity		Duplicate Sample ID:			
	_								ORP		Sample Analysis: VOCs 8260			
Signs of Dan				C f	CI I-44	(G)=0\	DID Maga	uram anti	DO	+/- 10%				
Locked (es/no)	well Ca	p (yes/ho)	Suna	ace Seal Intact	(yes/no) Well Quali	PID Meas	urement.	O.Oppm	Odors: 🗸 .				
						well Quali	ty Data							
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes			
		Water ft bgs	Volume Purged	(Standard Units)	Conductance (uMhos/cm)	(°C)	(NTU)		Oxygen	Reduction Potential				
9-17-21	1100	10.41	D C	6.31	0.525	17.1	40.50	NOVE	56.0	213	Depth of Water: 10,39			
11.20	1105	10.44	0.1	6.95	0.553	16.0	9.48	NONE	35,8	201.5	Length of Water Column: 7, 1			
	1110	10:44	0.2	6.45	0.557	16,2	4.87	NONE	33.7	204.3	Depth of Well: 19.49			
	1115	10.44	0.3	10.45	0.550	16.2	4.86	NONE	33.5	2016	Sheen Observed: Y N			
	1120	10,44	0.4	6.45	0.558	16.3	4.97	NONE	33.2	200,2	DNAPL Observed: Y			
	17th										Did Well Go Dry: Y(N)			
											Other:			
				-										
									1					

ATTACHMENT C

GROUNDWATER ANALYTICAL RESULTS SUMMARY

BCP Site No. C905034

Sample Location		EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25R	EW-1.25R
Sample Date	Class GA	6/25/2013	10/16/2013	6/10/2014	6/4/2015	8/21/2015	10/21/2015	6/15/2016	10/25/2016	7/13/2017	6/21/2018	6/14/2019	9/17/2021
	Criteria	0			Q		Q	Q	- I	Q	Q	Q	Q
Volatile Organic Compounds - EPA	Method SW-84		Ι	J Q	Q	J Q	J Q	ų.		ų ,	<u> </u>	Q	ď
Acetone	50	o, 02000 (ug/2)					3.8 J	2.3 J				6.8	
Benzene	1						6.00	2.00		-	-	0.18 J	
Carbon disulfide	NV	-		-	-	-	-	-		1.8	-	6.100	-
Chloromethane	NV	0.77 J		-	-	-	-	-			-	0.88 J	1
1.1-Dichloroethane	5	4.1	4.1	2.9	3	2.6	4.2	2.9	3.9	3.0	<	1.1 J	1.2 J
1,1-Dichloroethene	5	<	<	<	0.25 J	0.19 J	0.36 J	0.24 J	0.48 J	0.39 J	<	<	<
Vinvl chloride	2	4.6	5	2.4	2.6	<	3.3	3.2	6.6	<	<	<	0.17 J
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	31	32	23	29	28	44	28	98	57	<	2.1 J	2.5
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	0.82 J	<	<	0.7 J	<	<	<	<
Tetrachloroethene	5	3.3	3.8	3.6	<	1.4	1.8	3.1	<	<	<	<	<
Trichloroethene	5	51	59	41	47	42	58	47	0.27 J	35	<	<	<
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	0.79 J	<	<	<	<
Total VOCs		94.77	103.9	72.9	81.85	75.01	115.46	86.74	110.74	97.19		11.06	3.87
Field Parameters													
Temperature (Deg. C)	NV	13	13.5	10.4	9.1	13.1	13.4	12.4	13	14.9	12.1	9.8	14.1
Specific Conductance (mS/cm)	NV	0.7	0.68	0.7	0.757	0.67	0.68	0.653	0.612	0.65	0.629	0.633	0.641
Dissolved Oxygen (mg/L)	NV	0.05	0.18	0.06	0.17	0.12	0.22	0.29	0.23	0.13	0.65	0.18	17.1
Oxygen Reduction Potential (mv)	NV	-88.5	-99.3	-91.2	-130.5	-86.2	-91.6	161.4	-125.1	-169.9	-54.1	-140.1	-98.9
pH (std. units)	NV	7.35	6.85	6.78	6.73	6.77	6.89	6.79	6.87	6.77	6.12	6.91	6.28
Turbidity (NTUs)	NV	9.12	3.31	11.71	7.7	14.2	10.7	20.1	11.87	13.13	21.5	69.11	9.82
Inorganics (ug/L)													
Iron	300	NS	1,000	14,000	14,000	11,500	11,900	27,300	10,500	<	27,000 M1	6,600 M1	28,400
Manganese	300	NS	1,300	1,600	1,482	1,265	1,465	1,453	1,354	1,256	3,060	1,392	2,460
Miscellaneous Water Quality Paran													
Methane (ug/L)	NV	NS	1,000	170	237	218	190	244	130	130	NT	1,110	1,620
Ethane (ug/L)	NV	NS	<	<	<	<	<	<	<	<	NT	6.85	<
Ethene (ug/L)	NV	NS	1.7	<	<	0.535	<	0.558	0.55	0.55	NT	2.82	<
Total Organic Carbon (mg/L)	NV	NS	<	<	2.07	2.47	1.92	2.26	1.56	1.84	21.0	7.97	11.60
Chloride (mg/L)	250	NS	66 B	69	62	57	56	49	45	47	48.2 M1	14.1	16.0
Nitrate (mg/L)	10	NS	<	<	0.015 J	0.020 J	<	<	0.029 J	<	<	<	0.12
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS
Sulfate (mg/L)	250	NS Notes:	7.6	7.4 B	12.8	10.3	10.5	10.2	11.7	8.86	<	10.3	4

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range. M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

Sample Location		SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32
Sample Date	Class GA	10/3/2012	10/17/2013	6/10/2014	6/4/2015	8/21/2015	10/22/2015	6/15/2016	10/25/2016	7/12/2017	6/21/2018	6/14/2019	9/16/2021
	Criteria												
		Q	Q	Q	Q	Q	Q	(Q Q	Q	Q	Q	Q
Volatile Organic Compounds - EPA													
Acetone	50	<	240 D	<	<	<	<	2.8 J	<	<	<	4.8 J	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	0.18 J	0.23 J	<	<	<	<	<	<	<
2-Butanone	50	<	45	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	26	11	4.5	4.7	2.7	3.3	<	<	<	<	<
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	2.1	<	<	0.25 J	0.46 J	0.62	0.44 J	0.42 J	0.32 J	<	0.2 J	0.25 J
Trichloroethene	5	120	3.4	6.4	5.8	6.5	6.7	14	1.2	0.85	4.4	0.41 J	1.6
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		122.1	314.4	17.4	10.73	11.89	10.02	20.54	1.62	1.17	4.4	0.43	1.85
Field Parameters													
Temperature (Deg. C)	NV	13.2	16.5	13.1	11.0	17.7	16.6	15.8	15.1	18.6	13.2	12.2	19.9
Specific Conductance (mS/cm)	NV	0.418	0.65	0.392	0.326	0.272	0.223	0.232	0.181	0.133	0.144	0.122	0.167
Dissolved Oxygen (mg/L)	NV	4.92	0.18	0.12	0.15	0.16	0.48	0.53	1.67	2.29	0.76	5.59	42.8
Oxygen Reduction Potential (mv)	NV	50.3	-95.3	-21.9	104.4	57.7	169.9	236.7	153	41.9	181.2	150.8	215.3
pH (std. units)	NV	7.23	6.45	6.48	6.28	6.34	6.25	6.22	6.0	5.9	5.96	6.30	6.05
Turbidity (NTUs)	NV	35	6.76	4.95	0.6	7.15	4.42	7.6	4.96	5.02	2.8	17.51	5.36
Inorganics (ug/L)													
Iron	300	NS	3,480	16,000	339	246	206	541	66	<	<	NS	NS
Manganese	300	NS	24,600	19,000	6,468	8,331	2,897	2,668	1,144	12	<	NS	NS
Miscellaneous Water Quality Paran	neters												
Methane (ug/L)	NV	NS	120	660	725	932	208	205	3.31	0.55 J	<	NS	NS
Ethane (ug/L)	NV	NS	<	<	0.659	0.841	<	<	<	<	<	NS	NS
Ethene (ug/L)	NV	NS	1.7	<	<	<	<	<	<	<	<	NS	NS
Total Organic Carbon (mg/L)	NV	NS	51	<	1.35	1.7	1.02	1.45	0.87	1.08	<	NS	NS
Chloride (mg/L)	250	NS	5 B	3.1	3.46	3.12	2.83	2.72	1.59	0.861	<	NS	NS
Nitrate (mg/L)	10	NS	<	<	1.92	0.93	4.2	3.9	4.8	1.4	1	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS
Sulfate (mg/L)	250	NS	4.9 J	14 B	14.6	16.8	16.1	16.3	14.4	13.8	15.9	NS	NS

Notes:

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; *-LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

Sample Location Sample Date	Class GA	SP-37 10/5/2012	SP-37 10/17/2013	SP-37 6/10/2014	SP-37 6/4/2015	SP-37 8/21/2015	SP-37 10/23/2015	SP-37 6/16/2016	SP-37 10/26/2016	SP-37 7/12/2017	SP-37 6/21/2018	SP-37 6/14/2019	SP-37 9/17/2021
Campic Bate	Criteria	10/0/2012	10/11/2010	0/10/2014	0/4/2010	0/21/2010	10/20/2010	0/10/2010	10/20/2010	771222017	0/21/2010	0/14/2013	3/11/2021
		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP/	A Method SW-84												
Acetone	50	<	<	<	<	<	<	2.6 J	<	<	<	5.5	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	0.21 J	0.42 J	<	<	<	<	<
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	1.8	7.3	0.99 J	3.4	9.9	9.4	6.7	12	2.7	1.9	3.6	6.8
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	0.82 J	<	<	<	<	<	<	<
Tetrachloroethene	5	9.6	24	13	18	15	26	14	17	12	13.2	10	15
Trichloroethene	5	13	20	7.2	10	11	19	13	14	7.8	10.9	12	12
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		24.4	51.3	27.2	31.4	36.72	54.61	36.72	43	22.5	26	31.1	33.8
Field Parameters													
Temperature (Deg. C)	NV	13.5	17	11.9	10	17	15.3	13.3	14.2	18.4	12.1	11.9	18.8
Specific Conductance (mS/cm)	NV	0.452	0.535	0.305	0.449	0.432	0.396	0.291	0.246	0.19	0.184	0.166	0.210
Dissolved Oxygen (mg/L)	NV	0.28	0.2	0.58	0.68	0.07	0.13	0.29	0.55	0.86	2.53	3.05	44.2
Oxygen Reduction Potential (mv)	NV	-122.4	74.8	107.7	117.6	16.1	82.8	306.5	130.2	6.7	180.1	151.5	213.1
pH (std. units)	NV	6.6	6.39	6.28	6.12	6.28	6.3	6.03	5.99	6.08	5.94	6.25	5.86
Turbidity (NTUs)	NV	2.5	9.35	12.5	1.4	5.27	2.3	5.93	5.02	10.37	0.9	6.12	9.26
Inorganics (ug/L)													
Iron	300	NS	61.7 B	900	81.4	409	66	85	56	<	<	NS	NS
Manganese	300	NS	336	150	1,021	6,015	2,035	1,137	1,445	73	<	NS	NS
Miscellaneous Water Quality Parar	neters												
Methane (ug/L)	NV	NS	26	2.5	28	108	67.4	47.2	<	<	<	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	<	<	<	<	NS	NS
Ethene (ug/L)	NV	NS	<	<	<	<	<	<	<	<	<	NS	NS
Total Organic Carbon (mg/L)	NV	NS	4 J	2.8 J	2.51	4.75	2.62	2.47	2.21	1.93	1.5 M1	NT	1.14
Chloride (mg/L)	250	NS	12 B	3.8	28.8	16.4	14.7	7.11	5.79	2.64	2.4	NS	NS
Nitrate (mg/L)	10	NS	4.8	5.2	2.98	0.04	0.27	1.40	3.20	1.30	0.79	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS
Sulfate (mg/L)	250	NS	36	24 B	23.3	18	21.1	18.3	21	14.3	13.9	9.78	10.6

Notes:

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; *-LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

			1	ı	1				-	1		1
Sample Location		SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38
Sample Date	Class GA	10/4/2012	10/17/2013	6/10/2014	8/21/2015	10/23/2015	6/15/2016	10/26/2016	7/12/2017	6/21/2018	6/14/2019	9/16/2021
Campic Date	Criteria	10/4/2012	10/11/2010	0/10/2014	0/21/2010	10/20/2010	0/10/2010	10/20/2010	1712/2011	0/21/2010	0/14/2013	3/10/2021
	Ontona	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	A Method SW-84											
Acetone	50	<	<	<	<	<	1.6 J	<	<	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	1.8 J	1.9	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	2 J	1.9 J	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	22	0.39 J	4.0	4.2	<	<	1.4
2-Butanone	50	<	<	<	26	2.1 J	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	1.5	1.2	46	0.82 J	<	<	<	<	<	2.2 J
Toluene	5	<	<	<	<	1 J	<	<	<	<	<	<
1,1,1-Trichloroethane	5	2.4	<	<	0.86 J	<	<	<	<	<	<	<
Tetrachloroethene	5	5	<	5.2	0.22 J	0.37 J	0.28 J	0.48 J	0.2 J	<	<	0.4 J
Trichloroethene	5	17	7.8	19	0.45 J	0.29 J	5.5 J	8.2	6.5	5.8	<	4.6
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		24.4	9.3	25.4	77.33	30.38	7.77	12.68	10.9	5.8		8.6
Field Parameters												
Temperature (Deg. C)	NV	13.1	15.2	11.6	15.2	15.1	16.1	14.8	16.7	11.7	11.3	17.9
Specific Conductance (mS/cm)	NV	0.437	0.412	0.437	1.03	0.69	0.419	0.443	0.416	0.404	0.398	0.446
Dissolved Oxygen (mg/L)	NV	3.25	2.88	4.65	0.07	0.11	1.32	0.23	0.72	2.11	2.32	19.4
Oxygen Reduction Potential (mv)	NV	31.7	103.5	136	-124.2	-172.7	241.8	-22.5	-79.6	150.8	125.2	156.6
pH (std. units)	NV	6.81	6.72	6.72	7.1	7.39	6.59	6.75	6.85	6.56	6.89	6.7
Turbidity (NTUs)	NV	27.4	2.12	19.2	12.3	2.12	6.39	7.69	5.88	21.5	180.22	42.28
Inorganics (ug/L)												
Iron	300	<	<	1,500	5,660	3,040	352	811	<	<	NS	NS
Manganese	300	5,100	41.1 B	180	24,820	12,680	2762	9031	1,827	23	NS	NS
Miscellaneous Water Quality Parar												
Methane (ug/L)	NV	<	20	1.1	807.0	636.0	3.9	13.7	10.1	4.4	NS	NS
Ethane (ug/L)	NV	NM	<	<	<	2.57	<	0.633	<	<	NS	NS
Ethene (ug/L)	NV	NM	<	<	3.45	4.56	<	2.04	0.652	<	NS	NS
Total Organic Carbon (mg/L)	NV	<	<	<	86.9	2.22	1.21	1.32	1.05	<	NS	NS
Chloride (mg/L)	250	31	40 B	34	29	27.1	36.1	27.7	22.6	32	NS	NS
Nitrate (mg/L)	10	4.7	1.4	3.3	0.0 J	<	0.6	0.24	0.24	0.37	NS	NS
Nitrite (mg/L)	1			<	<	NS	NS	NS	NS	<	NS	NS
Sulfate (mg/L)	250	23	11	13 B	0.063 J	5.99	11.5	16.1	13.8	11.7	NS	NS

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range. M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

Sample Location Sample Date	Class GA Criteria	SP-43 10/4/2012	SP-43 10/17/2013	SP-43 6/10/2014	SP-43 6/4/2015	SP-43 8/21/2015	SP-43 10/23/2015	SP-43 6/16/2016	SP-43 10/26/2016	SP-43 7/12/2017	SP-43 6/21/2018	SP-43 6/14/2019	SP-43 9/17/2021
	Cinteria	Q	Q	Q	Q	Q	Q		Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	A Method SW-84												
Acetone	50	<	53	<	<	<	<	1.9 J	<	<	<	5.4	<
Benzene	1	<	<	<	<	<	<	<	<	<		<	<
Carbon disulfide	NV	<	1.3	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	0.92 J	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	0.48 J	6.6	<	<	<	<	<	<
2-Butanone	50	<	84	<	<	21	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	5.4	3.9	1.1 J	9.4	9.2	4.6	2.1 J	<	<	<	0.95 J
Toluene	5	<	<	<	<	<	84.0	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	93	24	14	14	10	17	7.7	11.0	6.9	7.4 CH	4.0	6.1
Trichloroethene	5	5.2	2.6	<	0.72	2.20	8.30	0.71	0.70	0.24 J	<	0.58	0.60
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		98.2	170.3	17.9	15.82	43.08	125.10	14.91	13.80	7.14	7.40	9.40	7.65
Field Parameters													
Temperature (Deg. C)	NV	14.1	18.4	13	12.2	16.6	15.9	14.6	14.2	20.5	15.6	13.8	20.9
Specific Conductance (mS/cm)	NV	0.445	0.513	0.304	0.773	0.66	0.68	0.237	0.224	0.183	0.151	0.127	0.149
Dissolved Oxygen (mg/L)	NV	1.48	0.22	0.23	1.1	0.12	0.12	1.23	1.96	1.96	1.73	3.52	28.1
Oxygen Reduction Potential (mv)	NV	44.2	-39.3	149	175.8	-15.1	-88.2	310.9	184.3	12.4	156.6	153.9	196.3
pH (std. units)	NV	6.55	5.88	6.13	5.82	6.31	6.83	5.87	6.02	6.12	6.11	6.32	5.9
Turbidity (NTUs)	NV	39.8	4.04	18	0.2	31.7	4.26	6.7	3.12	4.72	1.8	16.25	16.07
Inorganics (ug/L)													
Iron	300	NS	6,150	7,100	54	5,780	6,220	127	114	<	<	NS	NS
Manganese	300	NS	5,510	1,600	1,254	8,919	10,240	171.8	190.4	5.4	10.4	NS	NS
Miscellaneous Water Quality Parar													
Methane (ug/L)	NV	NS	16	12	0.756 J	2,490.000	6,520.000	0.612	<	0.619 J	<	NS	NS
Ethane (ug/L)	NV	NS	2.4	<	<	<	<	<	<	<	<	NS	NS
Ethene (ug/L)	NV	NS	3.7	<	<	<	2.13	<	<	<	<	NS	NS
Total Organic Carbon (mg/L)	NV	NS	80	<	1.84	28.8	3.62	2.09	1.91	1.58	1.1	NS	NS
Chloride (mg/L)	250	NS	6.3 B	2.2	136.0	62.2	40.0	12.2	9.6	4.1	2.6	NS	NS
Nitrate (mg/L)	10	NS	0.36	8.30	8.65	0.59	0.21	2.10	4.10	3.70	1.60	NS	NS
Nitrite (mg/L)	1	NS	<	0.042 J	NS	NS	NS	NS	NS	NS	<	NS	NS
Sulfate (mg/L)	250	NS	12	25 B	19.8	18.3	13.3	22	21.4	14.7	14.1	NS	NS

Notes

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; *-LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Shaded concentrations exceed Class GA criteria.

Sample Location	1	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45
Sample Date	Class GA	10/4/2012	10/17/2013	6/10/2014	6/4/2015	8/21/2015	10/23/2015	6/16/2016	10/26/2016	7/13/2017	6/21/2018	6/14/2019	9/17/2021
	Criteria												
		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EPA Method SW-84													
Acetone	50	<	<	<	<	<	<	1.5 J	<	<	<	4.1	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	v
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	6.3	5.5	7.5	1.7	<	<	0.11 J
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	6.8	1.1	1.9	2.9	1.4 J	5.7	3.7	13	2.0 J	1.4	1.3 J	9.0
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	v
Tetrachloroethene	5	260 D	69	130	160	16	45	16	170	45	18.7	17	130
Trichloroethene	5	13	3.6	6.4	8.5	1.5	7.5	7.2	53	10	5.4	4.6	26
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		283.0	73.7	138.3	171.4	18.9	171.4	33.9	243.5	58.7	25.5	27.0	165.1
	Field Parameters												
Temperature (Deg. C)	NV	14.6	17.8	16.5	14	19.1	15.8	15.2	15.8	15.8	13.3	14	20.7
Specific Conductance (mS/cm)	NV	0.543	0.363	0.391	0.584	0.6	0.62	0.503	0.442	0.442	0.391	0.336	0.410
Dissolved Oxygen (mg/L)	NV	1.07	5.21	3.02	3.58	0.09	0.07	0.5	0.06	0.06	2.72	3.85	18.4
Oxygen Reduction Potential (mv)	NV	-29.5	88.3	143.1	73.3	-62.7	-61.7	250.7	-8.7	-8.7	88.2	128.4	162.6
pH (std. units)	NV	6.48	6.83	6.71	6.71	7.05	7.05	6.91	6.66	6.66	6.89	7.23	6.59
Turbidity (NTUs)	NV	3.95	2.3	3.17	0.5	14.91	5.06	11.25	17.2	17.2	5.5	12.48	7.25
Inorganics (ug/L)													
Iron	300	NS	32.1 B	170 J	27.2 J	45 J	1,260	197	386	<	<	NS	NS
Manganese	300	NS	<	<	1.93	296.4	3,510	1447	1,340	240	332	NS	NS
Miscellaneous Water Quality Parar													
Methane (ug/L)	NV	NS	14	1.1	0.762 J	96.9	958	1500	3610	1760	8.1	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	1.18	2.47	1.0	<	NS	NS
Ethene (ug/L)	NV	NS	<	<	<	<	1.08	2.59	3.36	0.77	<	NS	NS
Total Organic Carbon (mg/L)	NV	NS	<	<	1.64	3.93	1.86	1.69	1.49	1.23	<	1.06	0.945
Chloride (mg/L)	250	NS	5.1 B	4.2	35.0	9.4	17.3	15.4	12.6	3.2	6.8	NS	NS
Nitrate (mg/L)	10	NS	6	5.2	2.68	1.2	1.9	0.39	0.72	0.79	0.35	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS
Sulfate (mg/L)	250	NS	39	33 B	32.7	43.4	22.4	24	23.8	19.1	16.8	12.1	9.82

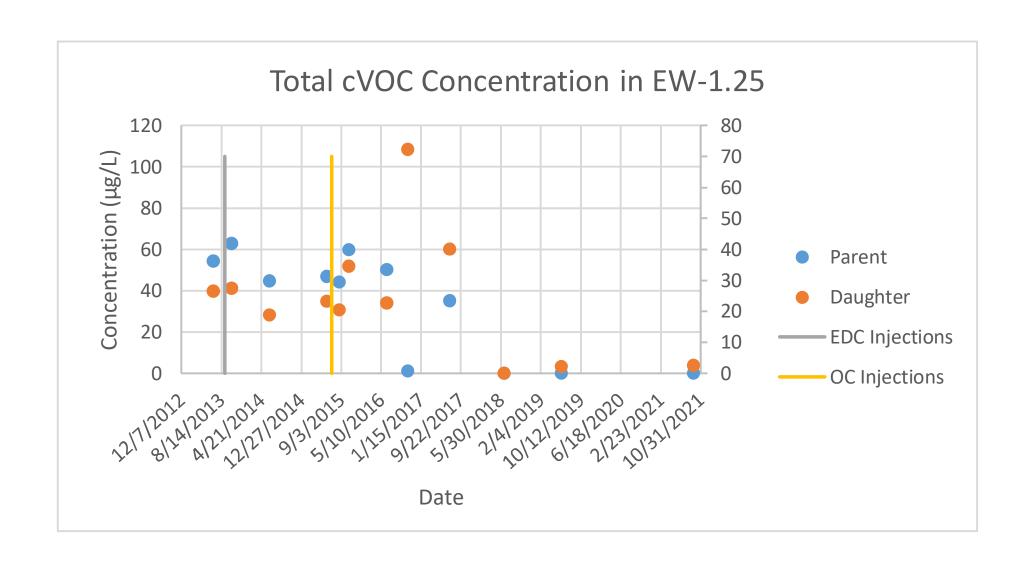
Notes:

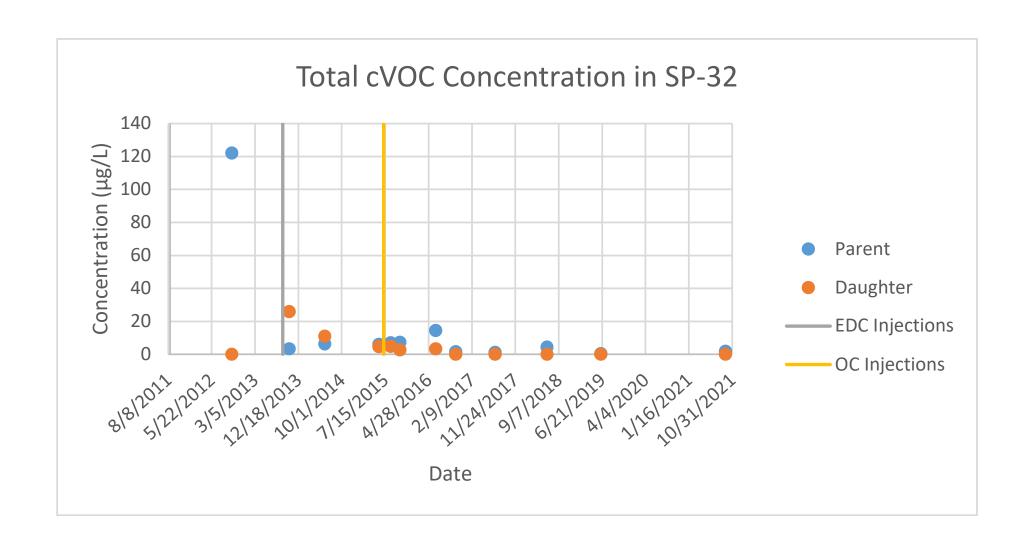
- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; *-LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

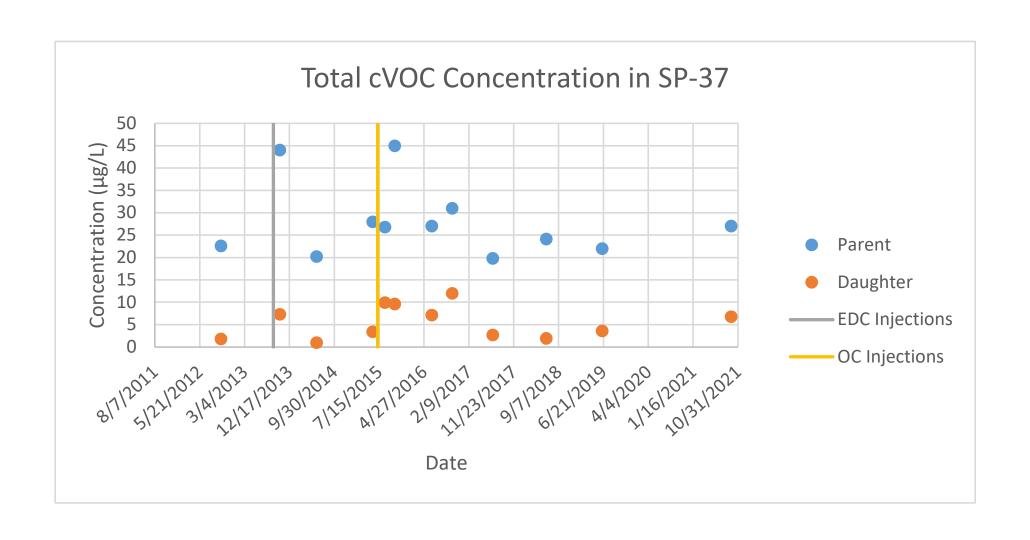
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

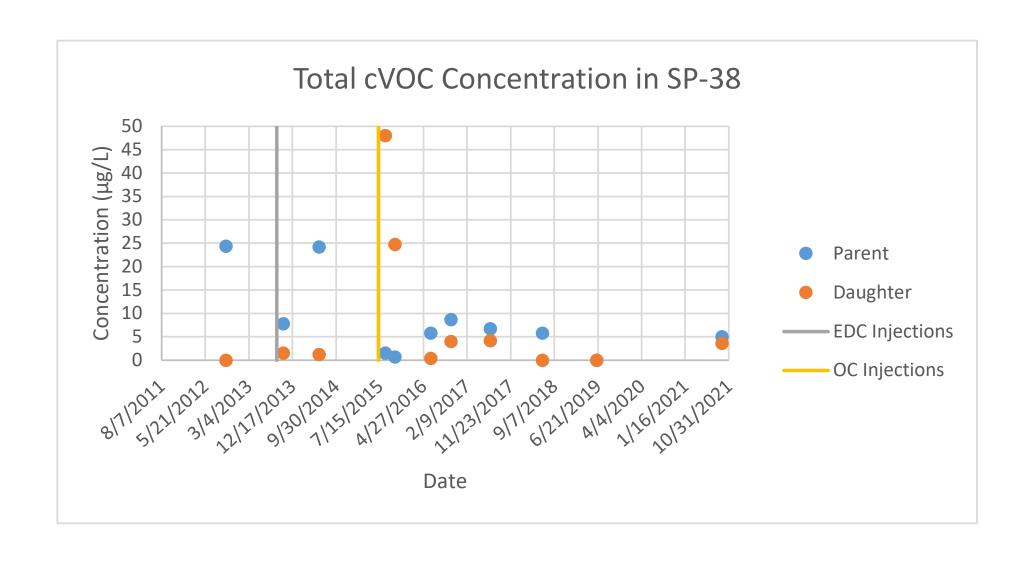
Attachment C

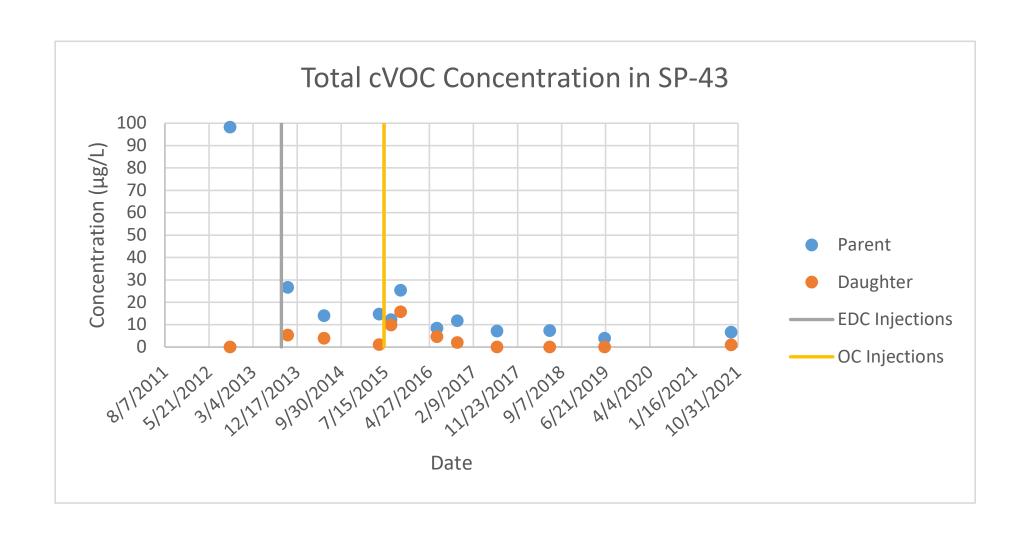
September 2021 Post-Injection Groundwater Analytical Results Summary Former Signore Facility Ellicottville, New York BCP Site No. C905034

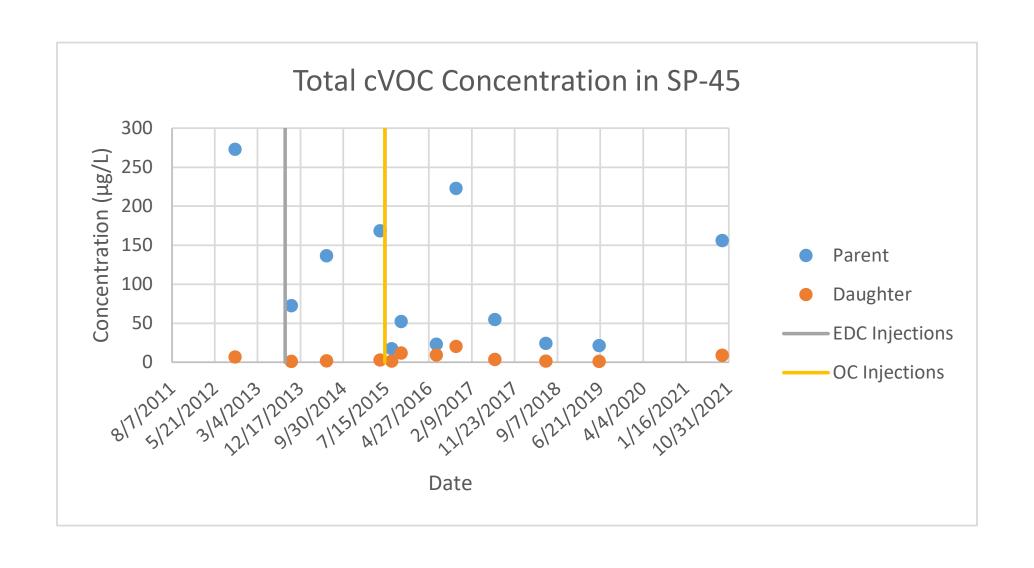

Sample Location Sample Date	Class GA Criteria	TP-11 6/3/2015	TP-11 10/22/2015	TP-11 6/16/2016	TP-11 10/25/2016	TP-11 7/12/2017	TP-11 6/20/2018	TP-11 6/13/2019	TP-11 9/17/2021	
		Q	Q	Q	Q	Q	Q	Q	Q	
Volatile Organic Compounds - EP										
Acetone	50	<	<	2 J	<	<	<	2.5 J	<	
Benzene	1	<	<	<	<	<	<	<	<	
Carbon disulfide	NV	<	<	<	<	<	<	<	<	
Chloromethane	NV	<	<	<	<	<	<	<	<	
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	
Vinyl chloride	2	<	<	<	<	<	<	<	<	
2-Butanone	50	<	<	<	<	<	<	<	<	
cis-1,2-Dichloroethene	5	19	12	18	13	8.1	12.4	9.7	13	
Toluene	5	<	<	<	<	<	<	<	<	
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	
Tetrachloroethene	5	0.58	1.5	0.53	1.2	0.25 J	<	0.49 J	0.47 J	
Trichloroethene	5	88	74	77	58	40	66.7	41	55	
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	
Total VOCs		107.58	87.50	97.53	72.20	48.35	79.10	53.69	68.47	
Field Parameters										
Temperature (Deg. C)	NV	17.5	14.4	12.4	13.4	16.9	9.5	8.8	16.2	
Specific Conductance (mS/cm)	NV	0.37	0.535	0.493	0.504	0.393	0.464	0.447	0.558	
Dissolved Oxygen (mg/L)	NV	0.11	1.57	2.84	2.24	2.06	4.83	4.12	33.2	
Oxygen Reduction Potential (mv)	NV	-23.6	90.7	267.4	77.7	6.6	101.7	122	200.2	
pH (std. units)	NV	6.84	7.04	6.9	6.8	6.69	6.81	7.06	6.45	
Turbidity (NTUs)	NV	6.27	1.87	7.69	9.67	4.97	0.3	1.84	4.91	
Inorganics (ug/L)										
Iron	300	NS	NS	NS	NS	NS	NS	NS	NS	
Manganese	300	NS	NS	NS	NS	NS	NS	NS	NS	
Miscellaneous Water Quality Parar										
Methane (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	
Ethane (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	
Ethene (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	
Total Organic Carbon (mg/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	
Chloride (mg/L)	250	NS	NS	NS	NS	NS	NS	NS	NS	
Nitrate (mg/L)	10	NS	NS	NS	NS	NS	NS	NS	NS	
Nitrite (mg/L)	1	NS	NS	NS	NS	NS	NS	NS	NS	
Sulfate (mg/L)	250	Notes:	NS	NS	NS	NS	NS	NS	NS	

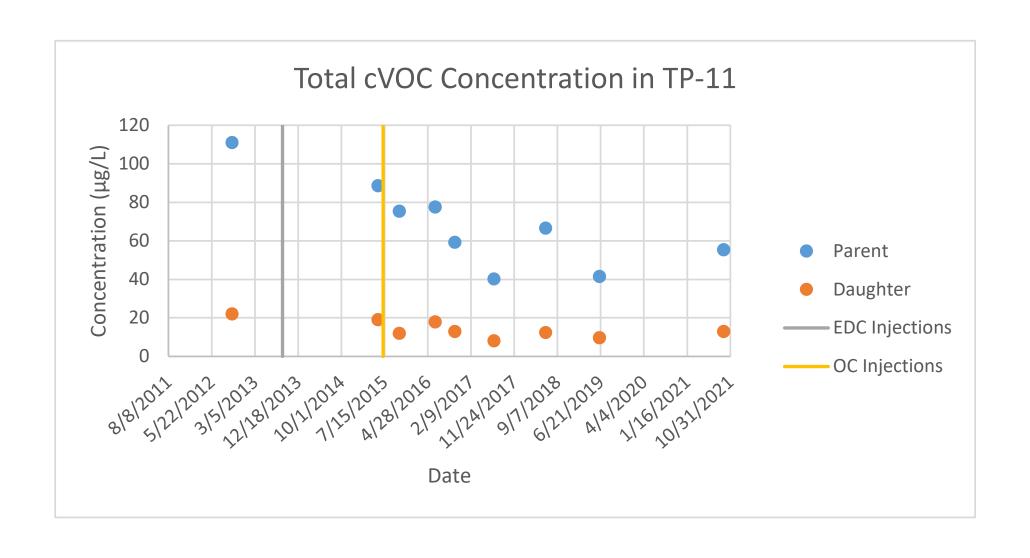

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range. M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.




ATTACHMENT D


CONCENTRATIONS OF CVOC PARENT MATERIAL AND DAUGHTER PRODUCTS IN GROUNDWATER





ATTACHMENT E

LABORATORY REPORT

ANALYTICAL REPORT

Lab Number: L2150447

Client: GZA GeoEnvironmental of New York

300 Pearl Street

Suite 700

Buffalo, NY 14202

ATTN: Thomas Bohlen Phone: (716) 844-7050

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Report Date: 09/24/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150447

Report Date:

09/24/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
I 2150447-01	FW-1 25R-091721	WATER	ELLICOTVILLE, NY	09/17/21 12:20	09/17/21

Project Name: SIGNORE POST INJECTION Lab Number: L2150447

Project Number: 21.0056367.66 Report Date: 09/24/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:SIGNORE POST INJECTIONLab Number:L2150447Project Number:21.0056367.66Report Date:09/24/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The project number was specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/24/21

Custen Walker Cristin Walker

09/17/21 12:20

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

SAMPLE RESULTS

Lab Number: L2150447

Report Date: 09/24/21

Date Collected:

Lab ID: L2150447-01
Client ID: EW-1.25R-091721
Sample Location: ELLICOTVILLE, NY

Date Received: 09/17/21
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 15:18

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	1.2	J	ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.17	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

ORGANICS

VOLATILES

Project Name: Lab Number: SIGNORE POST INJECTION L2150447

Project Number: Report Date: 21.0056367.66 09/24/21

SAMPLE RESULTS

Lab ID: L2150447-01 Date Collected: 09/17/21 12:20

Client ID: Date Received: 09/17/21 EW-1.25R-091721 Field Prep: Sample Location: Not Specified ELLICOTVILLE, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Volatile Organics by GC/MS - Westborough Lab											
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1					
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1					
p/m-Xylene	ND		ug/l	2.5	0.70	1					
o-Xylene	ND		ug/l	2.5	0.70	1					
cis-1,2-Dichloroethene	2.5		ug/l	2.5	0.70	1					
Styrene	ND		ug/l	2.5	0.70	1					
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1					
Acetone	ND		ug/l	5.0	1.5	1					
Carbon disulfide	ND		ug/l	5.0	1.0	1					
2-Butanone	ND		ug/l	5.0	1.9	1					
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1					
2-Hexanone	ND		ug/l	5.0	1.0	1					
Bromochloromethane	ND		ug/l	2.5	0.70	1					
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1					
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1					
Isopropylbenzene	ND		ug/l	2.5	0.70	1					
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1					
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1					
Methyl Acetate	ND		ug/l	2.0	0.23	1					
Cyclohexane	ND		ug/l	10	0.27	1					
1,4-Dioxane	ND		ug/l	250	61.	1					
Freon-113	ND		ug/l	2.5	0.70	1					
Methyl cyclohexane	ND		ug/l	10	0.40	1					

I entatively	Identified	Compounds	
--------------	------------	-----------	--

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	104		70-130	

L2150447

Project Name: SIGNORE POST INJECTION Lab Number:

Project Number: 21.0056367.66 **Report Date:** 09/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 09:33

Analyst: NLK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01 Batch:	WG1549680-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2150447

Lab Number:

Project Name: SIGNORE POST INJECTION

Project Number: Report Date: 21.0056367.66 09/24/21

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 09:33

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sampl	e(s): 01	Batch:	WG1549680-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

Project Name: SIGNORE POST INJECTION Lab Number: L2150447

Project Number: 21.0056367.66 **Report Date:** 09/24/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 09:33

Analyst: NLK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1549680-5

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	109	70-130
Dibromofluoromethane	102	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150447

Report Date: 09/24/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0	1 Batch: WG1	549680-3	WG1549680-4			
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	120		120		70-130	0		20
Chloroform	100		100		70-130	0		20
Carbon tetrachloride	96		92		63-132	4		20
1,2-Dichloropropane	120		110		70-130	9		20
Dibromochloromethane	91		88		63-130	3		20
1,1,2-Trichloroethane	100		100		70-130	0		20
Tetrachloroethene	98		95		70-130	3		20
Chlorobenzene	100		99		75-130	1		20
Trichlorofluoromethane	100		95		62-150	5		20
1,2-Dichloroethane	100		100		70-130	0		20
1,1,1-Trichloroethane	100		99		67-130	1		20
Bromodichloromethane	98		96		67-130	2		20
trans-1,3-Dichloropropene	100		98		70-130	2		20
cis-1,3-Dichloropropene	100		100		70-130	0		20
Bromoform	87		86		54-136	1		20
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20
Benzene	100		110		70-130	10		20
Toluene	110		100		70-130	10		20
Ethylbenzene	110		100		70-130	10		20
Chloromethane	160	Q	150	Q	64-130	6		20
Bromomethane	84		81		39-139	4		20
Vinyl chloride	100		89		55-140	12		20

Lab Control Sample Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150447

Report Date: 09/24/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	549680-3	WG1549680-4			
Chloroethane	66		65		55-138	2	20	
1,1-Dichloroethene	110		100		61-145	10	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	98		96		70-130	2	20	
1,2-Dichlorobenzene	100		97		70-130	3	20	
1,3-Dichlorobenzene	100		96		70-130	4	20	
1,4-Dichlorobenzene	100		96		70-130	4	20	
Methyl tert butyl ether	92		91		63-130	1	20	
p/m-Xylene	100		100		70-130	0	20	
o-Xylene	100		100		70-130	0	20	
cis-1,2-Dichloroethene	110		100		70-130	10	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	100		100		36-147	0	20	
Acetone	100		85		58-148	16	20	
Carbon disulfide	110		110		51-130	0	20	
2-Butanone	110		98		63-138	12	20	
4-Methyl-2-pentanone	97		96		59-130	1	20	
2-Hexanone	110		97		57-130	13	20	
Bromochloromethane	96		96		70-130	0	20	
1,2-Dibromoethane	93		90		70-130	3	20	
1,2-Dibromo-3-chloropropane	91		80		41-144	13	20	
Isopropylbenzene	100		100		70-130	0	20	
1,2,3-Trichlorobenzene	110		100		70-130	10	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150447

Report Date: 09/24/21

Beremeter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Parameter	76Necovery	Quai	7011CCOVERY	Quai	Lililis	KPU	Quai	LIIIIII	
Volatile Organics by GC/MS - Westborough	Lab Associated s	sample(s): 01	Batch: WG	1549680-3	WG1549680-4				
1,2,4-Trichlorobenzene	110		98		70-130	12		20	
Methyl Acetate	130		120		70-130	8		20	
Cyclohexane	130		130		70-130	0		20	
1,4-Dioxane	100		102		56-162	2		20	
Freon-113	110		100		70-130	10		20	
Methyl cyclohexane	99		94		70-130	5		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	96	70-130
Toluene-d8	103	104	70-130
4-Bromofluorobenzene	109	112	70-130
Dibromofluoromethane	91	93	70-130

Lab Number: L2150447

Report Date: 09/24/21

Project Name: SIGNORE POST INJECTION

Project Number: 94.0055957.55

Project Number: 21.0056367.66

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

B Absent

Container Info	ormation		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pH deg C		Pres	Seal	Date/Time	Analysis(*)	
L2150447-01A	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)	
L2150447-01B	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)	
L2150447-01C	Vial HCI preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)	

Project Name:SIGNORE POST INJECTIONLab Number:L2150447Project Number:21.0056367.66Report Date:09/24/21

GLOSSARY

Acronyms

EDL

LOD

MDI

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:SIGNORE POST INJECTIONLab Number:L2150447Project Number:21.0056367.66Report Date:09/24/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:SIGNORE POST INJECTIONLab Number:L2150447Project Number:21.0056367.66Report Date:09/24/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: SIGNORE POST INJECTION Lab Number: L2150447
Project Number: 21.0056367.66 Report Date: 09/24/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co Project Information Project Name: Signo Project Location: El	Way poper Ave, Suite 10 Post	- Injec	Page	-	Deliv	Date F in L erables ASP-A			×	ASP-			ALPHA Job # (2) 50 4 4 7 Billing Information Same as Client Info
Client Information	THE PARTY OF	Project #		,,,,			ī	Other	se intere			N		*	NEW CO.
Client: G-2A		(Use Project name as P	roject #)				Requ	latory F	Require	ement	1 1		-	DE	Disposal Site Information
Address: 300 Pearl	St. Suite 700	Project Manager: T. Bowley ALPHAQuote #:			1000000	NY TOGS NY Part 375 AWQ Standards NY CP-51					Please identify below location of applicable disposal facilities.				
Phone: 716 - 844	-7050	Turn-Around Time	SERVING.	ASS 2010	III SOURIS	CONTRACTOR OF	H	NY Res			=	Other	-51	- 1	Disposal Facility:
Fax:		Standar Rush (only if pre approved		Due Date # of Days		0.110		NY Unr	estricte	d Use	_	Other			NJ NY Other:
These samples have be	C-			ii oi baja			_	LYSIS			_	_		\dashv	Sample Filtration
Other project specific Please specify Metals		ents:					17CC								□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	26								
(Lab Use Only)	-	mpio ib	Date	Time	Matrix	Initials	8								Sample Specific Comments
50447-01	EW-1.25 R	-091721	9-17-21	1220	GW	PN	x								
									_						
											_				
									_		_		_		
							_		_	_	_				
					-		_		\rightarrow	-	_		\perp		
									_	_					
								\vdash	-	+	-		-		
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				ntainer Type									Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will no
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₂	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	By:	Date/ 9-17-21 9/17/21		(M	Receiv	jed By:	Ad De		91	17/	Time 21 00°C	3/0	

ANALYTICAL REPORT

Lab Number: L2150433

Client: GZA GeoEnvironmental of New York

300 Pearl Street

Suite 700

Buffalo, NY 14202

ATTN: Thomas Bohlen Phone: (716) 844-7050

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Report Date: 10/01/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433 **Report Date:** 10/01/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2150433-01	SP-32-091621	WATER	ELLICOTVILLE, NY	09/16/21 13:50	09/17/21
L2150433-02	SP-38-091621	WATER	ELLICOTVILLE, NY	09/16/21 15:10	09/17/21
L2150433-03	SP-43-091721	WATER	ELLICOTVILLE, NY	09/17/21 08:25	09/17/21
L2150433-04	SP-45-091721	WATER	ELLICOTVILLE, NY	09/17/21 09:25	09/17/21
L2150433-05	SP-37-091721	WATER	ELLICOTVILLE, NY	09/17/21 10:20	09/17/21
L2150433-06	TP-11-091721	WATER	ELLICOTVILLE, NY	09/17/21 11:20	09/17/21
L2150433-07	EW-1.25R-091721	WATER	ELLICOTVILLE, NY	09/17/21 12:20	09/17/21
L2150433-08	TRIP BLANK	WATER	ELLICOTVILLE, NY	09/17/21 00:00	09/17/21

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2150433

SIGNORE POST INJECTION **Project Name:**

Lab Number:

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 10/01/21

ORGANICS

VOLATILES

L2150433

09/16/21 13:50

Project Name: SIGNORE POST INJECTION

ELLICOTVILLE, NY

Project Number: 21.0056367.66

SAMPLE RESULTS

Report Date: 10/01/21

Lab Number:

Lab ID: L2150433-01 Date Collected: Client ID: SP-32-091621

Date Received: 09/17/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/28/21 15:44

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.25	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/16/21 13:50

Client ID: SP-32-091621 Date Received: 09/17/21 Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	107	70-130	

L2150433

10/01/21

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2150433-02 Date Collected: 09/16/21 15:10

Client ID: SP-38-091621 Date Received: 09/17/21 Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/28/21 22:48

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.40	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.4		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	4.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

SAMPLE RESULTS

Lab ID: L2150433-02 Date Collected: 09/16/21 15:10

Client ID: SP-38-091621 Date Received: 09/17/21 Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	2.2	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	105	70-130	

L2150433

09/17/21 08:25

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

SAMPLE RESULTS

Report Date: 10/01/21

Lab Number:

Date Collected:

Lab ID: L2150433-03

Lab ID: L2150433-03
Client ID: SP-43-091721
Sample Location: ELLICOTVILLE, NY

Date Received: 09/17/21
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/29/21 20:26

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	6.1		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.60		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

SAMPLE RESULTS

Lab ID: L2150433-03 Date Collected: 09/17/21 08:25

Client ID: SP-43-091721 Date Received: 09/17/21 Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.95	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	105	70-130	

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

SAMPLE RESULTS

Lab Number: L2150433

Report Date: 10/01/21

Lab ID: L2150433-04 Date Collected: 09/17/21 09:25

Client ID: Date Received: 09/17/21 SP-45-091721 Field Prep: Sample Location: Not Specified ELLICOTVILLE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/01/21 09:23

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	130		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.11	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	26		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

SAMPLE RESULTS

Lab ID: L2150433-04 Date Collected: 09/17/21 09:25

Client ID: SP-45-091721 Date Received: 09/17/21 Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	9.0		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	95	70-130	

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

SAMPLE RESULTS

Lab Number: L2150433

Report Date: 10/01/21

Lab ID: L2150433-05

Client ID: SP-37-091721 Sample Location:

Field Prep:

Date Collected:

09/17/21 10:20

ELLICOTVILLE, NY

Date Received: 09/17/21 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/29/21 20:51

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	15		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	12		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SIGNORE POST INJECTION L2150433

Project Number: Report Date: 21.0056367.66 10/01/21

SAMPLE RESULTS

Lab ID: L2150433-05 Date Collected: 09/17/21 10:20

Client ID: Date Received: 09/17/21 SP-37-091721 Sample Location: Field Prep: ELLICOTVILLE, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	6.8		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	101	70-130	

L2150433

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

SAMPLE RESULTS

Report Date: 10/01/21

Lab Number:

Lab ID: L2150433-06 Date Collected: 09/17/21 11:20

Client ID: TP-11-091721 Date Received: 09/17/21 Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/29/21 20:30

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.47	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	55		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

SAMPLE RESULTS

Lab ID: L2150433-06 Date Collected: 09/17/21 11:20

Client ID: TP-11-091721 Date Received: 09/17/21 Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	13		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	101		70-130	

Project Name: Lab Number: SIGNORE POST INJECTION L2150433

Project Number: Report Date: 21.0056367.66 10/01/21

SAMPLE RESULTS

Lab ID: L2150433-07 Date Collected: 09/17/21 12:20

Client ID: Date Received: 09/17/21 EW-1.25R-091721 Sample Location: Field Prep: Not Specified ELLICOTVILLE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 09/23/21 14:51

Analyst: AR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	1620		ug/l	2.00	2.00	1	Α
Ethene	ND		ug/l	0.500	0.500	1	Α
Ethane	ND		ug/l	0.500	0.500	1	Α

L2150433

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

SAMPLE RESULTS

Lab Number:

Report Date: 10/01/21

Lab ID: Date Collected: 09/17/21 00:00 L2150433-08

Client ID: Date Received: 09/17/21 TRIP BLANK Sample Location: Field Prep: Not Specified ELLICOTVILLE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/29/21 20:10

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SIGNORE POST INJECTION L2150433

Project Number: Report Date: 21.0056367.66 10/01/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/17/21 00:00 L2150433-08

Client ID: Date Received: 09/17/21 TRIP BLANK Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	102		70-130	

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 09/23/21 10:02

Analyst: AR

Parameter	Result	Qualifier	Units	RL	MDL	
Dissolved Gases by GC - Mansfield	Lab for san	nple(s): 0	7 Batch:	WG1549917-3		
Methane	ND		ug/l	2.00	2.00	А
Ethene	ND		ug/l	0.500	0.500	Α
Ethane	ND		ug/l	0.500	0.500	Α

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/28/21 08:25

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01 Batch:	WG1552013-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/28/21 08:25

Analyst: PD

Olatile Organics by GC/MS - Westborn 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene	esult	Qualifier	Units	RL	MDL
Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene	ough Lab	for sample	e(s): 01	Batch:	WG1552013-5
p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene	ND		ug/l	2.5	0.70
o-Xylene cis-1,2-Dichloroethene Styrene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene Styrene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
•	ND		ug/l	2.5	0.70
D: 11 199 4	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		3		
Freon-113	ND		ug/l	250	61.
Methyl cyclohexane	ND			250 2.5	61. 0.70

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/28/21 08:25

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1552013-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	111		70-130		
Toluene-d8	98		70-130		
4-Bromofluorobenzene	104		70-130		
Dibromofluoromethane	107		70-130		

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/28/21 20:08

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	o for sample(s):	02 Batch:	WG1552225-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/28/21 20:08

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westb	orough Lab	for sample	e(s): 02	Batch:	WG1552225-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/28/21 20:08

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1552225-5

		Acceptance
	%Recovery Qu	ualifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	105	70-130
Dibromofluoromethane	105	70-130

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/21 12:03

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	03 Batch:	WG1552905-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/21 12:03

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 03	Batch:	WG1552905-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/21 12:03

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 03 Batch: WG1552905-5

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
			_	
1,2-Dichloroethane-d4	106	70-130		
Toluene-d8	104	70-130		
4-Bromofluorobenzene	111	70-130		
Dibromofluoromethane	108	70-130		

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/21 19:50

Analyst: TMS

arameter	Result	Qualifier Units	RL.	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	05-06,08 E	Batch: WG1553055-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/21 19:50

Analyst: TMS

Parameter	Result	Qualifier Unit	s RL	-	MDL	
olatile Organics by GC/MS - Wes	tborough Lab	for sample(s):	05-06,08	Batch:	WG1553055-5	
1,4-Dichlorobenzene	ND	ug	Ί 2.5	5	0.70	
Methyl tert butyl ether	ND	ug	1 2.5	5	0.70	
p/m-Xylene	ND	ug	1 2.5	5	0.70	
o-Xylene	ND	ug	l 2.5	5	0.70	
cis-1,2-Dichloroethene	ND	ug	l 2.5	5	0.70	
Styrene	ND	ug	l 2.5	5	0.70	
Dichlorodifluoromethane	ND	ug	Í 5.0)	1.0	
Acetone	ND	ug	Í 5.0)	1.5	
Carbon disulfide	ND	ug	Í 5.0)	1.0	
2-Butanone	ND	ug	Í 5.0)	1.9	
4-Methyl-2-pentanone	ND	ug	Í 5.0)	1.0	
2-Hexanone	ND	ug	['] l 5.0)	1.0	
Bromochloromethane	ND	ug	1 2.5	5	0.70	
1,2-Dibromoethane	ND	ug	l 2.0)	0.65	
1,2-Dibromo-3-chloropropane	ND	ug	l 2.5	5	0.70	
Isopropylbenzene	ND	ug	l 2.5	5	0.70	
1,2,3-Trichlorobenzene	ND	ug	1 2.5	5	0.70	
1,2,4-Trichlorobenzene	ND	ug	l 2.5	5	0.70	
Methyl Acetate	ND	ug	íl 2.0)	0.23	
Cyclohexane	ND	ug	[′] I 10		0.27	
1,4-Dioxane	ND	ug	Í 250)	61.	
Freon-113	ND	ug	l 2.5	5	0.70	
Methyl cyclohexane	ND	ug	Í 10		0.40	

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/29/21 19:50

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 05-06,08 Batch: WG1553055-5

		Acceptance
Surrogate	%Recovery 0	Qualifier Criteria
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	100	70-130

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/01/21 08:30

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	04 Batch:	WG1553414-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/01/21 08:30

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	estborough Lab	for sample(s): 04	Batch:	WG1553414-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/01/21 08:30

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 04 Batch: WG1553414-5

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	99	70-130

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150433

Report Date:

10/01/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - Mansfield Lab A	associated sample(s	s): 07 Bat	ch: WG1549917-	2					
Methane	99		-		80-120	-		25	Α
Ethene	93		-		80-120	-		25	Α
Ethane	94		-		80-120	-		25	Α

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s): 0	1 Batch: WG1	552013-3	WG1552013-4		
Methylene chloride	98		100		70-130	2	20
1,1-Dichloroethane	98		100		70-130	2	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	100		110		63-132	10	20
1,2-Dichloropropane	95		95		70-130	0	20
Dibromochloromethane	100		100		63-130	0	20
1,1,2-Trichloroethane	93		97		70-130	4	20
Tetrachloroethene	100		110		70-130	10	20
Chlorobenzene	96		99		75-130	3	20
Trichlorofluoromethane	100		110		62-150	10	20
1,2-Dichloroethane	98		100		70-130	2	20
1,1,1-Trichloroethane	110		110		67-130	0	20
Bromodichloromethane	99		99		67-130	0	20
trans-1,3-Dichloropropene	96		99		70-130	3	20
cis-1,3-Dichloropropene	95		94		70-130	1	20
Bromoform	99		100		54-136	1	20
1,1,2,2-Tetrachloroethane	94		97		67-130	3	20
Benzene	96		99		70-130	3	20
Toluene	93		96		70-130	3	20
Ethylbenzene	98		100		70-130	2	20
Chloromethane	94		94		64-130	0	20
Bromomethane	100		110		39-139	10	20
Vinyl chloride	97		99		55-140	2	20

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	552013-3	WG1552013-4			
Chloroethane	100		100		55-138	0		20
1,1-Dichloroethene	99		98		61-145	1		20
trans-1,2-Dichloroethene	97		99		70-130	2		20
Trichloroethene	98		100		70-130	2		20
1,2-Dichlorobenzene	97		98		70-130	1		20
1,3-Dichlorobenzene	98		99		70-130	1		20
1,4-Dichlorobenzene	97		98		70-130	1		20
Methyl tert butyl ether	85		87		63-130	2		20
p/m-Xylene	95		100		70-130	5		20
o-Xylene	100		100		70-130	0		20
cis-1,2-Dichloroethene	99		100		70-130	1		20
Styrene	95		100		70-130	5		20
Dichlorodifluoromethane	92		94		36-147	2		20
Acetone	150	Q	120		58-148	22	Q	20
Carbon disulfide	90		92		51-130	2		20
2-Butanone	110		100		63-138	10		20
4-Methyl-2-pentanone	87		91		59-130	4		20
2-Hexanone	95		95		57-130	0		20
Bromochloromethane	100		110		70-130	10		20
1,2-Dibromoethane	99		100		70-130	1		20
1,2-Dibromo-3-chloropropane	92		100		41-144	8		20
Isopropylbenzene	100		100		70-130	0		20
1,2,3-Trichlorobenzene	78		85		70-130	9		20

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 01	Batch: WG	1552013-3	WG1552013-4				
1,2,4-Trichlorobenzene	88		94		70-130	7		20	
Methyl Acetate	93		95		70-130	2		20	
Cyclohexane	98		99		70-130	1		20	
1,4-Dioxane	140		142		56-162	1		20	
Freon-113	98		99		70-130	1		20	
Methyl cyclohexane	92		95		70-130	3		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	109	109	70-130
Toluene-d8	98	101	70-130
4-Bromofluorobenzene	105	103	70-130
Dibromofluoromethane	106	106	70-130

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	_ab Associated	sample(s): 0	2 Batch: WG	1552225-3	WG1552225-4				
Methylene chloride	94		90		70-130	4		20	
1,1-Dichloroethane	96		91		70-130	5		20	
Chloroform	99		94		70-130	5		20	
Carbon tetrachloride	100		99		63-132	1		20	
1,2-Dichloropropane	90		87		70-130	3		20	
Dibromochloromethane	94		90		63-130	4		20	
1,1,2-Trichloroethane	89		86		70-130	3		20	
Tetrachloroethene	100		96		70-130	4		20	
Chlorobenzene	93		88		75-130	6		20	
Trichlorofluoromethane	110		100		62-150	10		20	
1,2-Dichloroethane	97		93		70-130	4		20	
1,1,1-Trichloroethane	110		100		67-130	10		20	
Bromodichloromethane	96		92		67-130	4		20	
trans-1,3-Dichloropropene	91		87		70-130	4		20	
cis-1,3-Dichloropropene	90		87		70-130	3		20	
Bromoform	96		89		54-136	8		20	
1,1,2,2-Tetrachloroethane	90		86		67-130	5		20	
Benzene	94		89		70-130	5		20	
Toluene	90		85		70-130	6		20	
Ethylbenzene	95		90		70-130	5		20	
Chloromethane	91		87		64-130	4		20	
Bromomethane	100		96		39-139	4		20	
Vinyl chloride	95		89		55-140	7		20	

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

arameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - We	estborough Lab Associated	sample(s): 02	2 Batch: \	NG1552225-3	WG1552225-4				
Chloroethane	100		95		55-138	5		20	
1,1-Dichloroethene	99		91		61-145	8		20	
trans-1,2-Dichloroethene	96		90		70-130	6		20	
Trichloroethene	98		92		70-130	6		20	
1,2-Dichlorobenzene	93		88		70-130	6		20	
1,3-Dichlorobenzene	93		89		70-130	4		20	
1,4-Dichlorobenzene	93		88		70-130	6		20	
Methyl tert butyl ether	82		80		63-130	2		20	
p/m-Xylene	95		90		70-130	5		20	
o-Xylene	95		90		70-130	5		20	
cis-1,2-Dichloroethene	97		93		70-130	4		20	
Styrene	95		90		70-130	5		20	
Dichlorodifluoromethane	93		88		36-147	6		20	
Acetone	100		100		58-148	0		20	
Carbon disulfide	89		83		51-130	7		20	
2-Butanone	86		87		63-138	1		20	
4-Methyl-2-pentanone	84		81		59-130	4		20	
2-Hexanone	86		83		57-130	4		20	
Bromochloromethane	100		98		70-130	2		20	
1,2-Dibromoethane	94		89		70-130	5		20	
1,2-Dibromo-3-chloropropane	94		97		41-144	3		20	
Isopropylbenzene	98		93		70-130	5		20	
1,2,3-Trichlorobenzene	81		79		70-130	3		20	

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	_ab Associated	sample(s): 02	Batch: WG	1552225-3	WG1552225-4			
1,2,4-Trichlorobenzene	86		86		70-130	0		20
Methyl Acetate	88		89		70-130	1		20
Cyclohexane	99		94		70-130	5		20
1,4-Dioxane	150		152		56-162	1		20
Freon-113	99		94		70-130	5		20
Methyl cyclohexane	92		88		70-130	4		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	110	110	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	104	102	70-130
Dibromofluoromethane	108	107	70-130

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s): 0	3 Batch: WG	1552905-3	WG1552905-4		
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	130		130		70-130	0	20
Chloroform	110		110		70-130	0	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	110		110		70-130	0	20
Dibromochloromethane	85		80		63-130	6	20
1,1,2-Trichloroethane	88		86		70-130	2	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	100		99		75-130	1	20
Trichlorofluoromethane	120		120		62-150	0	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	110		110		67-130	0	20
Bromodichloromethane	96		96		67-130	0	20
trans-1,3-Dichloropropene	92		86		70-130	7	20
cis-1,3-Dichloropropene	91		90		70-130	1	20
Bromoform	85		81		54-136	5	20
1,1,2,2-Tetrachloroethane	98		91		67-130	7	20
Benzene	100		100		70-130	0	20
Toluene	110		110		70-130	0	20
Ethylbenzene	110		110		70-130	0	20
Chloromethane	160	Q	160	Q	64-130	0	20
Bromomethane	57		59		39-139	3	20
Vinyl chloride	93		94		55-140	1	20

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

arameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s): 03	Batch: V	VG1552905-3	WG1552905-4			
Chloroethane	66		66		55-138	0	20	
1,1-Dichloroethene	120		120		61-145	0	20	
trans-1,2-Dichloroethene	120		110		70-130	9	20	
Trichloroethene	96		94		70-130	2	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	76		72		63-130	5	20	
p/m-Xylene	105		100		70-130	5	20	
o-Xylene	105		100		70-130	5	20	
cis-1,2-Dichloroethene	110		110		70-130	0	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	110		110		36-147	0	20	
Acetone	90		82		58-148	9	20	
Carbon disulfide	120		120		51-130	0	20	
2-Butanone	83		78		63-138	6	20	
4-Methyl-2-pentanone	81		77		59-130	5	20	
2-Hexanone	89		82		57-130	8	20	
Bromochloromethane	97		96		70-130	1	20	
1,2-Dibromoethane	87		81		70-130	7	20	
1,2-Dibromo-3-chloropropane	76		72		41-144	5	20	
Isopropylbenzene	110		110		70-130	0	20	
1,2,3-Trichlorobenzene	100		96		70-130	4	20	

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0	3 Batch: WG	1552905-3	WG1552905-4			
1,2,4-Trichlorobenzene	100		100		70-130	0		20
Methyl Acetate	110		110		70-130	0		20
Cyclohexane	150	Q	140	Q	70-130	7		20
1,4-Dioxane	80		70		56-162	13		20
Freon-113	120		110		70-130	9		20
Methyl cyclohexane	97		97		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	99	70-130
Toluene-d8	107	105	70-130
4-Bromofluorobenzene	111	109	70-130
Dibromofluoromethane	100	100	70-130

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS -	Westborough Lab Associated	d sample(s):	05-06,08 Batch:	WG1553055-3 WG1553055	5-4	
Methylene chloride	97		97	70-130	0	20
1,1-Dichloroethane	100		100	70-130	0	20
Chloroform	100		99	70-130	1	20
Carbon tetrachloride	88		92	63-132	4	20
1,2-Dichloropropane	97		95	70-130	2	20
Dibromochloromethane	79		87	63-130	10	20
1,1,2-Trichloroethane	91		97	70-130	6	20
Tetrachloroethene	100		100	70-130	0	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	110		110	62-150	0	20
1,2-Dichloroethane	94		94	70-130	0	20
1,1,1-Trichloroethane	97		98	67-130	1	20
Bromodichloromethane	91		92	67-130	1	20
trans-1,3-Dichloropropene	78		83	70-130	6	20
cis-1,3-Dichloropropene	83		85	70-130	2	20
Bromoform	74		85	54-136	14	20
1,1,2,2-Tetrachloroethane	93		95	67-130	2	20
Benzene	100		100	70-130	0	20
Toluene	100		100	70-130	0	20
Ethylbenzene	110		100	70-130	10	20
Chloromethane	100		97	64-130	3	20
Bromomethane	96		92	39-139	4	20
Vinyl chloride	100		99	55-140	1	20

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	05-06,08 Batch:	WG1553055-3 WG1553055	5-4		
Chloroethane	140	Q	130	55-138	7		20
1,1-Dichloroethene	100		100	61-145	0		20
trans-1,2-Dichloroethene	110		100	70-130	10		20
Trichloroethene	100		100	70-130	0		20
1,2-Dichlorobenzene	100		99	70-130	1		20
1,3-Dichlorobenzene	100		100	70-130	0		20
1,4-Dichlorobenzene	100		98	70-130	2		20
Methyl tert butyl ether	88		90	63-130	2		20
p/m-Xylene	105		105	70-130	0		20
o-Xylene	110		105	70-130	5		20
cis-1,2-Dichloroethene	100		99	70-130	1		20
Styrene	110		110	70-130	0		20
Dichlorodifluoromethane	98		94	36-147	4		20
Acetone	63		100	58-148	45	Q	20
Carbon disulfide	99		98	51-130	1		20
2-Butanone	66		92	63-138	33	Q	20
4-Methyl-2-pentanone	75		86	59-130	14		20
2-Hexanone	66		87	57-130	27	Q	20
Bromochloromethane	98		99	70-130	1		20
1,2-Dibromoethane	87		90	70-130	3		20
1,2-Dibromo-3-chloropropane	71		79	41-144	11		20
Isopropylbenzene	110		100	70-130	10		20
1,2,3-Trichlorobenzene	94		95	70-130	1		20

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated s	sample(s):	05-06,08 E	Batch: V	VG1553055	-3 WG1553055	-4			
1,2,4-Trichlorobenzene	98		97			70-130	1		20	
Methyl Acetate	80		85			70-130	6		20	
Cyclohexane	100		100			70-130	0		20	
1,4-Dioxane	86		90			56-162	5		20	
Freon-113	110		100			70-130	10		20	
Methyl cyclohexane	100		98			70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	97	70-130
Toluene-d8	101	98	70-130
4-Bromofluorobenzene	99	97	70-130
Dibromofluoromethane	101	98	70-130

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s): 0	4 Batch: WG1	553414-3	WG1553414-4				
Methylene chloride	91		92		70-130	1		20	
1,1-Dichloroethane	96		97		70-130	1		20	
Chloroform	96		96		70-130	0		20	
Carbon tetrachloride	90		92		63-132	2		20	
1,2-Dichloropropane	92		93		70-130	1		20	
Dibromochloromethane	78		84		63-130	7		20	
1,1,2-Trichloroethane	85		86		70-130	1		20	
Tetrachloroethene	98		100		70-130	2		20	
Chlorobenzene	96		98		75-130	2		20	
Trichlorofluoromethane	100		100		62-150	0		20	
1,2-Dichloroethane	88		87		70-130	1		20	
1,1,1-Trichloroethane	95		96		67-130	1		20	
Bromodichloromethane	87		88		67-130	1		20	
trans-1,3-Dichloropropene	79		80		70-130	1		20	
cis-1,3-Dichloropropene	80		84		70-130	5		20	
Bromoform	79		77		54-136	3		20	
1,1,2,2-Tetrachloroethane	90		89		67-130	1		20	
Benzene	100		98		70-130	2		20	
Toluene	98		97		70-130	1		20	
Ethylbenzene	100		100		70-130	0		20	
Chloromethane	100		100		64-130	0		20	
Bromomethane	110		100		39-139	10		20	
Vinyl chloride	99		97		55-140	2		20	

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number: L2150433

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	04 Batch: WG18	553414-3	WG1553414-4			
Chloroethane	130		120		55-138	8		20
1,1-Dichloroethene	100		99		61-145	1		20
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	93		92		70-130	1		20
1,2-Dichlorobenzene	96		95		70-130	1		20
1,3-Dichlorobenzene	100		95		70-130	5		20
1,4-Dichlorobenzene	96		95		70-130	1		20
Methyl tert butyl ether	79		81		63-130	3		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	100		100		70-130	0		20
cis-1,2-Dichloroethene	98		95		70-130	3		20
Styrene	105		105		70-130	0		20
Dichlorodifluoromethane	89		88		36-147	1		20
Acetone	70		61		58-148	14		20
Carbon disulfide	97		95		51-130	2		20
2-Butanone	65		67		63-138	3		20
4-Methyl-2-pentanone	75		76		59-130	1		20
2-Hexanone	68		67		57-130	1		20
Bromochloromethane	91		91		70-130	0		20
1,2-Dibromoethane	82		84		70-130	2		20
1,2-Dibromo-3-chloropropane	70		73		41-144	4		20
Isopropylbenzene	100		100		70-130	0		20
1,2,3-Trichlorobenzene	91		88		70-130	3		20

Lab Control Sample Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150433

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 04	Batch: WG	1553414-3	WG1553414-4				
1,2,4-Trichlorobenzene	94		94		70-130	0		20	
Methyl Acetate	73		74		70-130	1		20	
Cyclohexane	100		100		70-130	0		20	
1,4-Dioxane	74		76		56-162	3		20	
Freon-113	100		100		70-130	0		20	
Methyl cyclohexane	99		96		70-130	3		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	92	98	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	102	101	70-130
Dibromofluoromethane	97	95	70-130

METALS

Project Name: Lab Number: SIGNORE POST INJECTION L2150433 **Report Date:** 10/01/21

Project Number: 21.0056367.66

SAMPLE RESULTS

Lab ID: L2150433-07 Date Collected: 09/17/21 12:20 09/17/21 Client ID: EW-1.25R-091721 Date Received: Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Iron, Dissolved	28.4		mg/l	0.0500	0.0191	1	09/24/21 09:1	3 09/24/21 13:1	D EPA 3005A	1,6020B	CD
Manganese, Dissolved	2.460		mg/l	0.00100	0.00044	1	09/24/21 09:1	3 09/24/21 13:1	D EPA 3005A	1,6020B	CD

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Parameter	Result 0	Qualifier Uni	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Dissolved Metals - Ma	insfield Lab	for sample(s): (7 Batch: \	NG1550	105-1				
Iron, Dissolved	ND	mg	0.0500	0.0191	1	09/24/21 09:13	09/24/21 12:36	1,6020B	CD
Manganese, Dissolved	ND	mg	0.00100	0.00044	4 1	09/24/21 09:13	09/24/21 12:36	1,6020B	CD

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Lab Number:

L2150433

Project Number: 21.0056367.66 Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Dissolved Metals - Mansfield Lab Associat	ed sample(s): 07 Batch: WG	550105-2						
Iron, Dissolved	99	-		80-120	-			
Manganese, Dissolved	100	-		80-120	-			

Matrix Spike Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150433

Report Date:

Parameter	Native Sampl		MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Qual	RPD Limits
Dissolved Metals -	Mansfield Lab Associ	ated sample(s)	: 07 QC Bat	tch ID: WG15	50105-3	QC Sa	mple: L2150401	-01	Client ID:	MS Sample	
Iron, Dissolved	ND	1	0.942	94		-	-		75-125	-	20
Manganese, Dissolv	ed 0.325	9 0.5	0.8174	98		-	-		75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150433

Report Date: 10/01/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s)	07 QC Batch ID:	WG1550105-4 QC Sample:	L2150401-01	Client ID:	DUP Sample
Iron, Dissolved	ND	0.0203J	mg/l	NC	20
Manganese, Dissolved	0.3259	0.3247	mg/l	0	20

Lab Serial Dilution
Analysis
Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150433 10/01/21

Quality Control Report Date:

ParameterNative SampleSerial DilutionUnits% DQualRPD LimitsDissolved Metals - Mansfield Lab Associated sample(s): 07 QC Batch ID: WG1550105-6 QC Sample: L2150401-01 Client ID: DUP SampleManganese, Dissolved0.32590.3109mg/l520

INORGANICS & MISCELLANEOUS

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

SAMPLE RESULTS

 Lab ID:
 L2150433-04
 Date Collected:
 09/17/21 09:25

 Client ID:
 SP-45-091721
 Date Received:
 09/17/21

Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab								
Total Organic Carbon	0.945	mg/l	0.500	0.114	1	-	09/29/21 12:31	121,5310C	DW
Anions by Ion Chromato	ography - Westb	orough Lab							
Sulfate	9.82	mg/l	1.00	0.454	1	-	09/30/21 20:54	44,300.0	AT

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

SAMPLE RESULTS

Lab ID: L2150433-05 Date Collected: 09/17/21 10:20

Client ID: SP-37-091721 Date Received: 09/17/21 Sample Location: ELLICOTVILLE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab								
Total Organic Carbon	1.14	mg/l	0.500	0.114	1	-	09/29/21 12:47	121,5310C	DW
Anions by Ion Chromato	graphy - Westb	orough Lab							
Sulfate	10.6	mg/l	1.00	0.454	1	-	09/30/21 21:05	44,300.0	AT

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

SAMPLE RESULTS

Lab ID:L2150433-07Date Collected:09/17/21 12:20Client ID:EW-1.25R-091721Date Received:09/17/21Sample Location:ELLICOTVILLE, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
tborough Lab)								
0.12		mg/l	0.10	0.023	1	-	09/18/21 09:00	44,353.2	MR
11.6		mg/l	1.00	0.228	2	-	09/29/21 14:05	121,5310C	DW
raphy - West	borough	Lab							
16.0		mg/l	0.500	0.083	1	-	09/30/21 21:16	44,300.0	AT
4.00		mg/l	1.00	0.454	1	-	09/30/21 21:16	44,300.0	AT
	tborough Lab 0.12 11.6 raphy - West 16.0	tborough Lab 0.12 11.6 raphy - Westborough	tborough Lab 0.12 mg/l 11.6 mg/l traphy - Westborough Lab 16.0 mg/l	tborough Lab 0.12 mg/l 0.10 11.6 mg/l 1.00 traphy - Westborough Lab 16.0 mg/l 0.500	tborough Lab 0.12 mg/l 0.10 0.023 11.6 mg/l 1.00 0.228 traphy - Westborough Lab 16.0 mg/l 0.500 0.083	Result Qualifier Units RL MDL Factor tborough Lab 0.12 mg/l 0.10 0.023 1 11.6 mg/l 1.00 0.228 2 traphy - Westborough Lab mg/l 0.500 0.083 1	Result Qualifier Units RL MDL Factor Prepared tborough Lab 0.12 mg/l 0.10 0.023 1 - 11.6 mg/l 1.00 0.228 2 - traphy - Westborough Lab mg/l 0.500 0.083 1 -	Result Qualifier Units RL MDL Factor Prepared Analyzed tborough Lab 0.12 mg/l 0.10 0.023 1 - 09/18/21 09:00 11.6 mg/l 1.00 0.228 2 - 09/29/21 14:05 traphy - Westborough Lab mg/l 0.500 0.083 1 - 09/30/21 21:16	Result Qualifier Units RL MDL Factor Prepared Analyzed Method tborough Lab 0.12 mg/l 0.10 0.023 1 - 09/18/21 09:00 44,353.2 11.6 mg/l 1.00 0.228 2 - 09/29/21 14:05 121,5310C traphy - Westborough Lab mg/l 0.500 0.083 1 - 09/30/21 21:16 44,300.0

Project Name: SIGNORE POST INJECTION **Lab Number:** L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for	sample(s): 07	Batch:	: WG15	47903-1				
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	09/18/21 06:04	44,353.2	MR
General Chemistry - W	estborough Lab for	sample(s): 04	-05,07	Batch:	WG155210	5-1			
Total Organic Carbon	ND	mg/l	0.500	0.114	1	-	09/29/21 05:35	121,5310C	DW
Anions by Ion Chroma	tography - Westbord	ough Lab for sa	mple(s)	: 04-05,	07 Batch:	WG1553103	3-1		
Chloride	ND	mg/l	0.500	0.083	1	-	09/30/21 17:59	44,300.0	AT
Sulfate	ND	mg/l	1.00	0.454	1	-	09/30/21 17:59	44,300.0	AT

Lab Control Sample Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150433

Report Date:

Parameter	LCS %Recovery Qua	LCSD %Recovery (%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough L	_ab Associated sample(s): 07	Batch: WG1547903-2				
Nitrogen, Nitrate	92	-	90-110	-		
General Chemistry - Westborough L	_ab Associated sample(s): 04-0	5,07 Batch: WG15521	05-2			
Total Organic Carbon	99	-	90-110	-		
Anions by Ion Chromatography - Wo	estborough Lab Associated san	nple(s): 04-05,07 Batc	h: WG1553103-2			
Chloride	100	-	90-110	-		
Sulfate	98	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150433

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD ual Limits
General Chemistry - Westbo	orough Lab Assoc	iated samp	le(s): 07 (QC Batch ID: V	VG1547	903-4	QC Sample: L21	50411-01 Client	t ID: MS Sa	ample
Nitrogen, Nitrate	0.023J	4	4.6	115	Q	-	-	83-113	-	6
General Chemistry - Westbo	orough Lab Assoc	iated samp	le(s): 04-05	,07 QC Batc	h ID: W	G155210	5-4 QC Sampl	e: L2150559-02	Client ID:	MS Sample
Total Organic Carbon	0.736	16	16.7	100		-	-	80-120	-	20
Anions by Ion Chromatograp	phy - Westboroug	h Lab Asso	ciated sam	ole(s): 04-05,0	7 QC	Batch ID:	WG1553103-3	QC Sample: L2	150551-07	Client ID: MS
Chloride	4.10	4	8.04	98		-	-	90-110	-	18
Sulfate	18.2	8	25.7	94		-	-	90-110	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Lab Number:

L2150433

Report Date:

Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
ole(s): 07 QC Batch ID:	WG1547903-3 QC	Sample: L215	0411-01 Clie	ent ID: DUP Sample
0.023J	ND	mg/l	NC	6
ole(s): 04-05,07 QC Bat	ch ID: WG1552105-3	QC Sample:	L2150559-0	2 Client ID: DUP Sample
0.736	1.18	mg/l	46	Q 20
ociated sample(s): 04-05,	07 QC Batch ID: Wo	G1553103-4	QC Sample:	L2150551-07 Client ID:
4.10	4.09	mg/l	0	18
18.2	18.4	mg/l	1	20
	ole(s): 07 QC Batch ID: 0.023J ole(s): 04-05,07 QC Batch 0.736 ociated sample(s): 04-05,07 4.10	ole(s): 07 QC Batch ID: WG1547903-3 QC 0.023J ND ole(s): 04-05,07 QC Batch ID: WG1552105-3 0.736 1.18 ociated sample(s): 04-05,07 QC Batch ID: W0 4.10 4.09	ble(s): 07 QC Batch ID: WG1547903-3 QC Sample: L215 0.023J ND mg/l ble(s): 04-05,07 QC Batch ID: WG1552105-3 QC Sample: 0.736 1.18 mg/l bciated sample(s): 04-05,07 QC Batch ID: WG1553103-4 4.10 4.09 mg/l	Dile(s): 0.023J ND mg/l NC Dile(s): 0.4-05,07 QC Batch ID: WG1552105-3 QC Sample: L2150411-01 Clienth Dile(s): 0.4-05,07 QC Batch ID: WG1552105-3 QC Sample: L2150559-0 Disciplination 0.736 1.18 mg/l 46 Disciplination 0.736 QC Batch ID: WG1553103-4 QC Sample: Disciplination 4.10 4.09 mg/l 0

Project Name: SIGNORE POST INJECTION Lab Number: L2150433

Project Number: 21.0056367.66 **Report Date:** 10/01/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

B Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2150433-01A	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-01B	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-01C	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-02A	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-02B	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-02C	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-03A	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-03B	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-03C	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-04A	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-04B	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-04C	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-04D	Vial H2SO4 preserved	В	NA		3.4	Υ	Absent		TOC-5310(28)
	L2150433-04E	Vial H2SO4 preserved	В	NA		3.4	Υ	Absent		TOC-5310(28)
	L2150433-04F	Plastic 60ml unpreserved	В	7	7	3.4	Υ	Absent		SO4-300(28)
	L2150433-05A	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-05B	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-05C	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-05D	Vial H2SO4 preserved	В	NA		3.4	Υ	Absent		TOC-5310(28)
	L2150433-05E	Vial H2SO4 preserved	В	NA		3.4	Υ	Absent		TOC-5310(28)
	L2150433-05F	Plastic 60ml unpreserved	В	7	7	3.4	Υ	Absent		SO4-300(28)
	L2150433-06A	Vial HCI preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
	L2150433-06B	Vial HCI preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2150433

Report Date: 10/01/21

Project Name: SIGNORE POST INJECTION

Project Number: 21.0056367.66

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2150433-06C	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2150433-07A	Vial H2SO4 preserved	В	NA		3.4	Υ	Absent		TOC-5310(28)
L2150433-07B	Vial H2SO4 preserved	В	NA		3.4	Υ	Absent		TOC-5310(28)
L2150433-07C	20ml Vial HCl preserved	В	NA		3.4	Υ	Absent		DISSGAS(14)
L2150433-07D	20ml Vial HCl preserved	В	NA		3.4	Υ	Absent		DISSGAS(14)
L2150433-07E	Plastic 250ml unpreserved	В	7	7	3.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2150433-07F	Plastic 250ml unpreserved	В	7	7	3.4	Υ	Absent		
L2150433-07X	Plastic 120ml HNO3 preserved Filtrates	В	NA		3.4	Υ	Absent		MN-6020S(180),FE-6020S(180)
L2150433-08A	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2150433-08B	Vial HCl preserved	В	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: SIGNORE POST INJECTION L2150433 **Report Date: Project Number:** 21.0056367.66 10/01/21

GLOSSARY

Acronyms

LOQ

MS

RPD

STLP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:SIGNORE POST INJECTIONLab Number:L2150433Project Number:21.0056367.66Report Date:10/01/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:SIGNORE POST INJECTIONLab Number:L2150433Project Number:21.0056367.66Report Date:10/01/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:SIGNORE POST INJECTIONLab Number:L2150433Project Number:21.0056367.66Report Date:10/01/21

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, EPA-NE, Revision 1, February 21, 2002 and Sample Preparation & Calculations for Dissolved Gas Analysis in Water Samples using a GC Headspace Equilibration Technique, EPA RSKSOP-175, Revision 2, May 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr.	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blyd	Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 Project Information	Maria de	Pag / o		De	Date Rec'd 9/18/21 Deliverables							ALPHA Job# L2150433 Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	FAX: 508-822-9300 Project Name: Signor Post Injection					I	ASP-	A		5	ASP-	В		Same as Client Info	
PAA: 506-696-9193	FAX: 506-822-3288	Project Location:	Hicottuill	4 NY				EQui	S (1 F	ile)	-	EQuI:	S (4 Fil	e)	PO#
Client Information Project # 21.00 5636				,	□ Other Ny					-					
Client: GZA	Project #)		R					ireme			Disposal Site Information				
Address: 300 Pearl	Project Manager: T	Bonles	NY TOGS NY Part 375						\neg	Please identify below location of					
BUTTELO N	7 14202	ALPHAQuote #:						AWQ Standards NY CP-51							applicable disposal facilities.
Phone: 716 - 849	1-7050	Turn-Around Time	BURLE	A PERSON	RIP OUT			NY Restricted Use Other							Disposal Facility:
Fax:		Standa	ard 🔁	Due Date	:		7	NY Unrestricted Use NJ NY							□ NJ □ NY
Email: + homes, b	ohjen@GZA.com	Rush (only if pre approv	ed) 🗌	# of Days				NYC Sewer Discharge							Other:
These samples have t	een previously analyze	ed by Alpha					AN	ALYSIS						\neg	Sample Filtration
Other project specific requirements/comments: Please specify Metals or TAL.								10 4	300 504 No 3	300 SOY	Bisselved Iron	LAB FILLEN			□ Done t a □ Lab to do a Preservation □ Lab to do B (Please Specify below) t
ALPHA Lab ID	Sa	Coll	Collection		Sample Sampler			X1	4	Mong	17*1	78		t t	
(Lab Use Only)	- Ca	mple ID	Date	Time	Matrix	Initials	6	25 AS	EP	EPA	è	7	-		Sample Specific Comments e
50433-01	SP-32 -091	621	9-16-21	1350	GW	PN	×							\neg	
02	5P-38-0916		+	1510	1	1	×								
03	SP-43-0917		9-17-21	0825			×								
04	5P-45 -0917	21		0925			×			X			X		
05	SP-37-0917			1020			X			×			×	\neg	
06	TP-11 -0717			1120			×			-63					
07	EW-1,252	-091721	*	1220	-	V		×	×		×		×		
08	TRIP BLAN	K				-	-							=	
														\neg	
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification	Container Type Preservative			+								Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are	
E = NaOH		Relinquishe	d By:	Date/Time 9-17-21/1318 An 9/17/21 1318		Cr Ju	Rec	Received By:		7	Date/Time 9/17/2) 13/0 9/18/04 00/50				
Form No: U1-25 HC (rev. 3	u-aept-2013)					/			_						No. STORESTON STORY

GZA GeoEnvironmental, Inc.