

Proactive by Design

SEPTEMBER 2022 POST-INJECTION GROUNDWATER MONITORING REPORT Former Signore Inc. 55-57 Jefferson Street Ellicottville, New York 14731

November 18, 2022 File No. 21.0056367.67

PREPARED FOR: Iskalo Ellicottville Holdings LLC Williamsville, New York

GZA GeoEnvironmental of New York

300 Pearl Street, Suite 700 | Buffalo, New York 14202 716-685-2300

30 Offices Nationwide www.gza.com

Copyright© 2022 GZA GeoEnvironmental, Inc.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 300 Pearl Street Suite 700 Buffalo, NY 14202 T: 716.685.2300 F: 716.248.1472 www.gza.com

VIA EMAIL

November 18, 2022 File No. 21.0056367.67

Mr. David Chiazza Iskalo Ellicottville Holdings LLC Harbinger Square 5166 Main Street Williamsville, New York 14221 dchiazza@iskalo.com

 Re: September 2022 Post-Injection Groundwater Monitoring Report Former Signore, Inc.
 55-57 Jefferson Street Ellicottville, New York 14731 (Site) NYSDEC Site No. C905034

Mr. Chiazza:

GZA GeoEnvironmental of New York (GZA) submits this post-injection groundwater monitoring report to Iskalo Ellicottville Holdings LLC (Client). The report presents the analytical results of sampling conducted at the above referenced Site on September 30, 2022. The monitoring is required by the New York State Department of Environmental Conservation (NYSDEC) as specified in the Decision Document for Brownfield Cleanup Program (BCP) Site Number C905034 (July 2015) and in accordance with the draft revised Site Management Plan (SMP) currently under review by NYSDEC. SMP revisions are anticipated to include annual monitoring for VOCs and cessation of sampling and analysis for monitored natural attenuation (MNA) parameters. This sampling event was conducted in accordance with the draft revised SMP.

The remedial injection program and first round of post-injection monitoring (August 2015) were described in the Final Engineering Report for the Site remedy (October 2015). Per the SMP, semiannual post-injection groundwater monitoring was conducted until July 2017. Considering the established rate of chlorinated volatile organic compound (cVOC) reduction observed, NYSDEC approved modification of the SMP for annual post-injection monitoring in Fall 2017.

The September 2022 sampling event was the ninth round of post-injection monitoring conducted. This data report provides Site figures, well development forms, an analytical data summary table, graphs of pre- and post- injection concentrations of cVOCs in groundwater, and the laboratory data report for the seven wells sampled.

The body of data collected since remedial injections indicates reductive dichlorination has effectively decreased groundwater cVOC concentrations as intended; and that a slow and steady overall trend of cVOC reduction has been established. However, recent data indicates Site groundwater has returned to an oxidizing environment characteristic of that prior to treatment. Additionally, tetrachloroethene (PCE) and trichloroethene (TCE) concentrations in monitoring well SP-45 have increased over the last two annual sampling events.

November 18, 2022 September 2022 Post-Injection Groundwater Monitoring Data Report 21.0056367.67 Page | 2

The analytical results provide data for documentation of concentrations of cVOCs present in the on-Site groundwater. Groundwater cVOC concentrations measured at 86 months post-Organic Carbon Electron Donor Substrate (OCEDS) injection (September 2022) indicate the groundwater in the sampled monitoring wells/treatment area has returned to pre-treatment oxidizing conditions. While natural attenuation can occur in these conditions, it is most effective at low concentrations and for compounds having relatively few chlorines. Biotic degradation of the more chlorinated compounds, including PCE and TCE, is very slow and particularly ineffective at higher concentrations. In situations where reductive dechlorination has removed the parent compounds PCE and TCE, a change to oxidizing conditions can be beneficial for remediation of the daughter products cis-1,2-dichloroethene (DCE) and vinyl chloride (VC). However, if undissolved PCE and TCE remain, oxidative degradation may not be able to keep pace with their rate of dissolution.

Parent PCE and trichloroethene TCE concentrations have increased in monitoring well SP-45 in the two sampling events conducted since June 2019 (PCE at 17 μ g/L, TCE at 4.6 μ g/L). Concentrations increased in September 2021 (PCE at 130 μ g/L, TCE at 26 μ g/L) and September 2022 (PCE at 260 μ g/L, TCE at 55 μ g/L). SP-45 is located on the western portion of the OCEDS injection area (**Figure 3**).

One important exception to the trend of returning to an oxidizing environment is noted: results from the downgradient well EW-1.25R (Figure 2) show that reductive dichlorination is continuing to keep cVOC concentrations low. This well is located proximate to the southern BCP Site boundary.

As detailed above, proposed SMP revisions to the post-injection monitoring are anticipated to include cessation of sampling and analysis for MNA parameters and annual monitoring for VOCs. Post-injection sampling will continue annually pending NYSDEC approval of the revised SMP.

Should you have any questions or require additional information following your review, please contact Thomas Bohlen at 716-570-5983.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

romas Bohlen

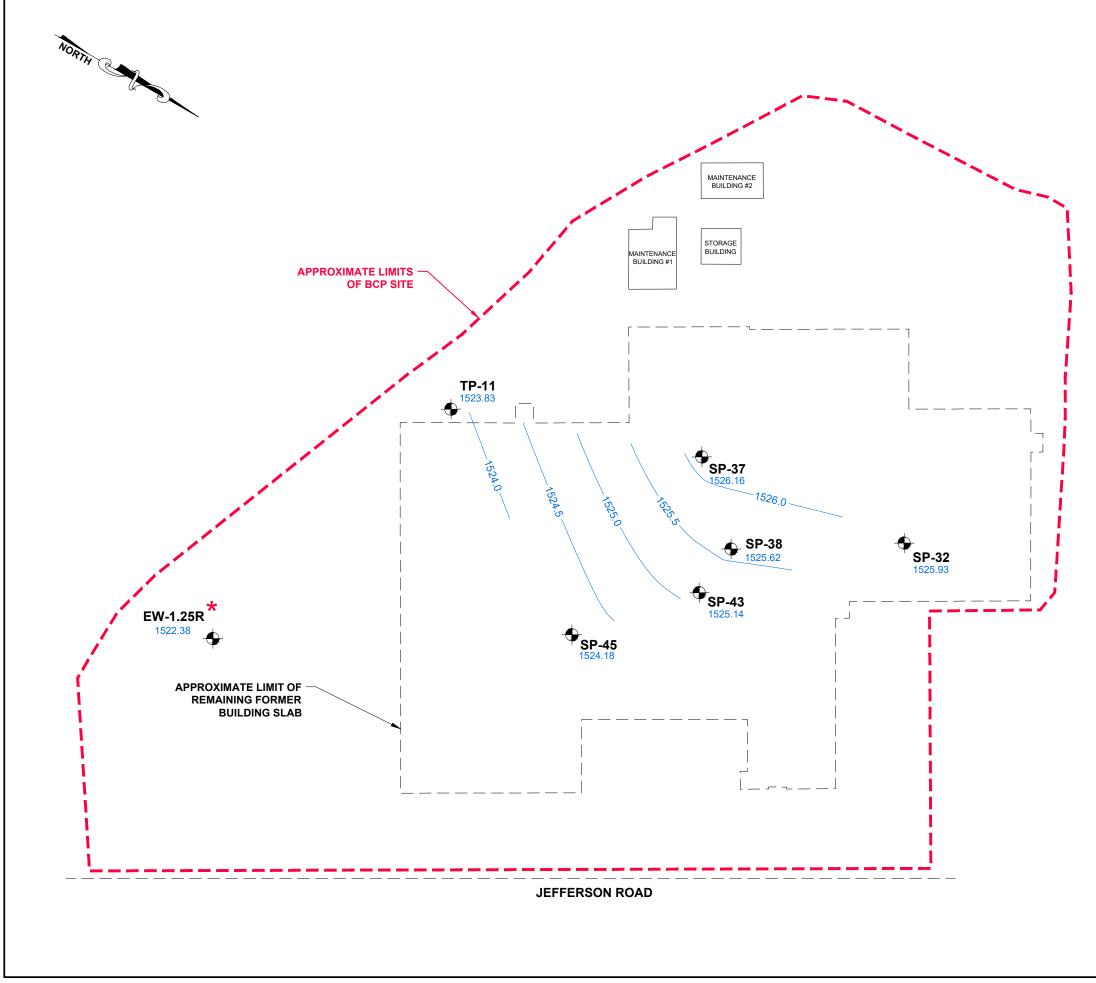
Thomas Bohlen, P.G. Project Manager

Bart A. Klettke, P.E. Principal

- Juil Pro

Jeremiah Duncan, Ph.D. Senior Chemist

cc: Megan Kuczka, NYSDEC



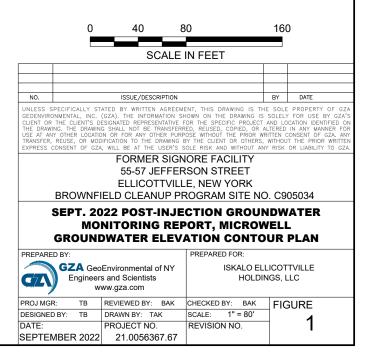
ATTACHMENTS

FIGURE 1	MICROWELL GROUNDWATER ELEVATION CONTOUR PLAN
FIGURE 2	CHLORINATED VOLATILE ORGANIC COMPOUND CONCENTRATIONS – JUNE 2019 THROUGH SEPTEMBER 2022
FIGURE 3	LOCATION OF ORGANIC CARBON ELECTRON DONOR SUBSTRATE INJECTIONS
ATTACHMENT A	LIMITATIONS
ATTACHMENT B	WELL DEVELOPMENT FORMS
ATTACHMENT C	GROUNDWATER ANALYTICAL RESULTS SUMMARY
ATTACHMENT D	CONCENTRATIONS OF CVOC PARENT MATERIAL AND DAUGHTER PRODUCTS
	MEASURED IN GROUNDWATER
ATTACHMENT E	LABORATORY REPORT

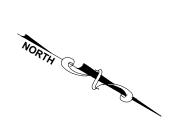
FIGURES

LEGEND:

SP-37 APPROXIMATE LOCATION AND DESIGNATION OF 1526.16 1" MICROWELL.GROUNDWATER ELEVATION 1" MICROWELL.GROUNDWATER ELEVATION MEASURED ON SEPTEMBER 30, 2022.

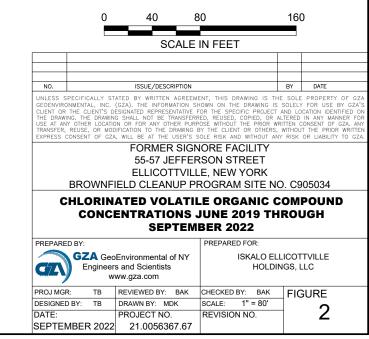

*

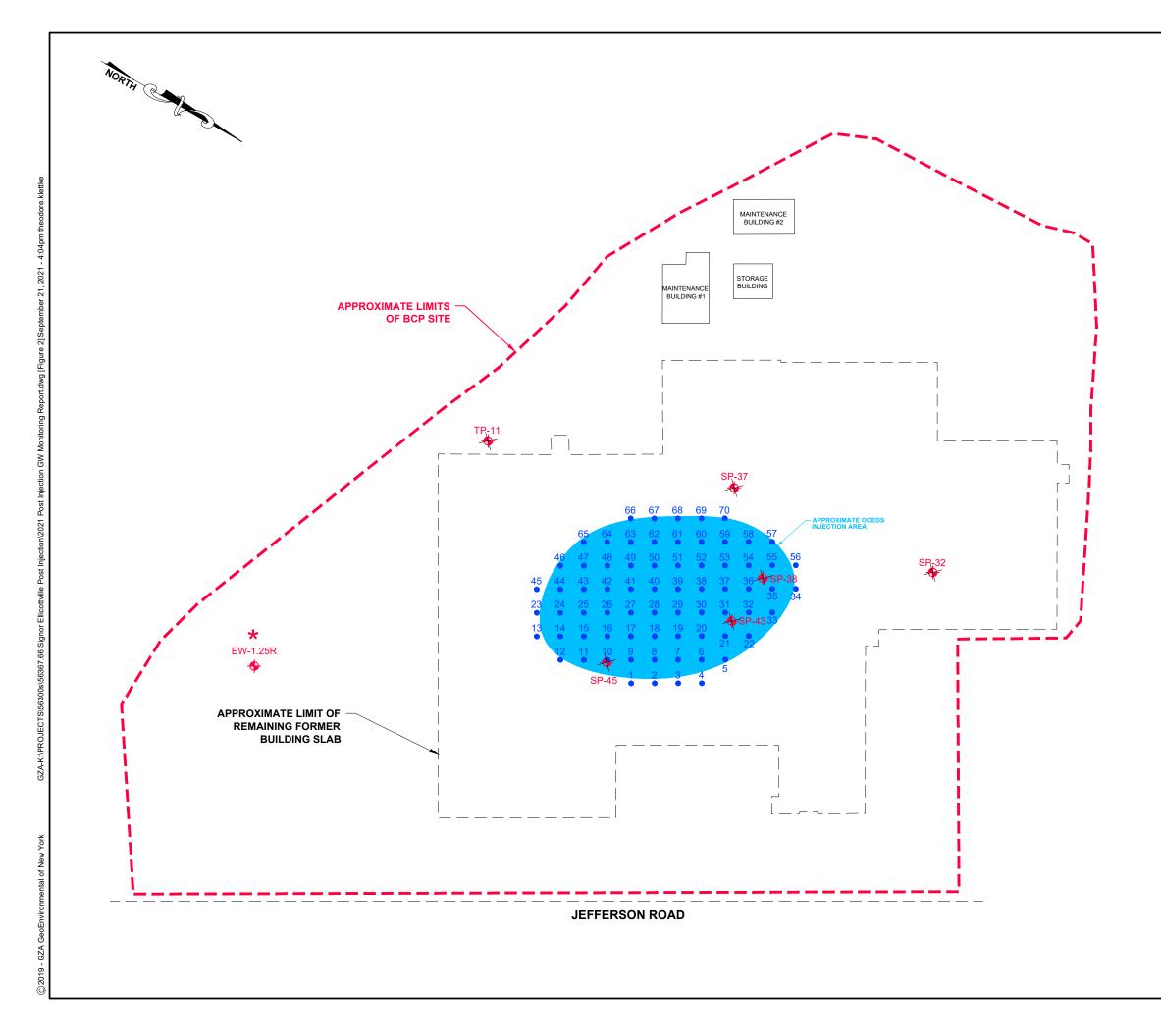
APPROXIMATE LOCATION AND ELEVATION OF GROUNDWATER CONTOUR LINE BASED ON MEASUREMENTS TAKEN ON SEPTEMBER 30, 2022


GROUNDWATER ELEVATION NOT CONSIDERED FOR CONTOURING

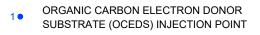
NOTES:

1. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.


Sample Location		SP-37	SP-37	SP-37	Sample Location	SP-38			Sample Locati			SP-32	SP-32	SP-32
Sample Date	Class GA	6/14/2019 9	0/17/2021	9/30/2022	Sample Date	Class GA 6/14/20	19 9/16/2021	9/30/2022	Sample Date			14/2019	9/16/2021	9/30/202
	Criteria					Criteria				C	riteria			
		Q	Q				Q Q					Q		
/olatile Organic Com		EPA Method	SW-846,	8260C (ug/L)	Volatile Organic Com		nod SW-846, 8		Volatile Organ			A Metho	d SW-846	, 8260C (u
1,1-Dichloroethane	5	<	<	<	1,1-Dichloroethane	5 <	<		1,1-Dichloroet		5	<	<	<
,1-Dichloroethene	5	<	<	<	1,1-Dichloroethene	5 <	<		1,1-Dichloroet	nene	5	<	<	<
/inyl chloride	2	<	<	<	Vinyl chloride	2 <	1.4		Vinyl chloride		2	<	<	<
is-1,2-Dichloroethene	5	3.6	6.8	6.6	cis-1,2-Dichloroethene		2.2 J		cis-1,2-Dichlor		5	<	<	<
etrachloroethene	5	10	15	7.3	Tetrachloroethene	5 <	0.4 J	0.81	Tetrachloroeth		5 5	0.2 J	0.25 J 1.6	0.2 J 2.1
richloroethene	5	12	12	7.4	Trichloroethene	5 <	4.6	6	Trichloroethen	e	5	0.41 J	1.0	Z. 1
						and the second sec						•		
Sample Location		TP-11	TP-1	1 TP-11				1				!		
Sample Date	Class G	A 6/13/2019			2		STORAGE		APPROX		-	!		
Sumple Bate	Criteria		0,11,20			MAINTENANCE BUILDING #1	BUILDING	1		OF BCP SITE				
	oncorna	Q	2	Q										
Volatile Organic Cor	npounds -											N		
1,1-Dichloroethane	5	<	<	<	\neg \checkmark \land			1				!		
1,1-Dichloroethene	5	<	<	<		-			— — — т			! /	7	LEGEN
Vinyl chloride	2	<	<	<				1						
cis-1,2-Dichloroethene	e 5	9.7	13	8.8				1				\mathbf{V}	-(€ SP-37
Tetrachloroethene	5	0.49 J	0.47	J 0.44 J				/				1		1
Trichloroethene	5	41	55	33	TP-11			/				L		
								/	l		-/	1		
Sample Location		SP-45	SP-45	5 SP-45			I					1		
Sample Date	Class G	A 6/14/2019	9/17/202	21 9/30/202	2							1		NOTE
	Criteria						SP-37				1	Í -		
		Q		Q			/							1. THE S
Volatile Organic Cor	-	EPA Metho	d SW-846	6, 8260C (ug/L	_)		/							FEATUR
1,1-Dichloroethane	5	<	<	<			/							2. SHAD
1,1-Dichloroethene	5	<	<	<			SP-	29			i			EXCEE
Vinyl chloride	2	<	0.11					-50	SP-	-32	- i			
cis-1,2-Dichloroethene		1.3 J	9.0	4.0 J							- i i			
Tetrachloroethene	5	17	130	260			♣				, j			
Trichloroethene	5	4.6	26	55			SP-43				/			
								Γ						
E	EW-1.25R-	€.				SP-45			1					
									1					
le de la companya de									1					
			$\overline{}$						1					
		ATE LIMIT OF							i i					
							- — — _–							N0.
	BU	UILDING SLAB	•					· ·	i i					UNLESS SPEC GEOENVIRONME
								I	i					CLIENT OR THE THE DRAWING. USE AT ANY OT TRANSFER, REU EXPRESS CONS
Sample Location		EW-1.25R	EW-1.25	5R EW-1.25R	Ĩ			· · · ·						TRANSFER, REU EXPRESS CONS
Sample Date	Class GA			21 9/30/2022		I		le Location		SP-43	SP-43		2-43	
	Criteria						Samp	le Date		6/14/2019	9/17/20	21 9/30	/2022	
		Q	(QQ]				Criteria	~				BF
olatile Organic Con	pounds -	EPA Metho	d SW-846	6, 8260C (ug/L)					Q DA Mathad		Q	Q	СН
,1-Dichloroethane	5	1.1 J	1.2]				ompounds - E		SVV-846,	8260C (I	ug/L)	
,1-Dichloroethene	5	<	<	<				ichloroethane	5	<	<		<	PREPARED E
inyl chloride	2	<	0.17	J 0.12 J] JEFI	FERSON ROAD		ichloroethene	5	<	<		<	
a second second second second	5	2.1 J	2.5	1.4 J]			chloride	2	<	<	.	<	GZN)
cis-1,2-Dichloroethene					1		cis-1	2-Dichloroethe	ene 5	<	0.95	J	<	
,	5	<	<	<			,						10	PROJ MGR:
cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene		<	<	<	-		Tetrac	chloroethene proethene	5	4.0 0.58	6.1 0.60	2	4.6 .43 J	PROJ MGR: DESIGNED BY DATE:



PROXIMATE LOCATION AND DESIGNATION OF ICROWELL.


AND LOCATION OF EXISTING SITE SHOULD BE CONSIDERED APPROXIMATE.

AREAS IN TABLES INDICATES CE OF NYSDEC CLASS GA CRITERIA.

LEGEND:

APPROXIMATE LOCATION AND DESIGNATION OF MONITORING WELLS ASSOCIATED WITH OCEDS INJECTIONS

NOTES:

1. FIGURE DEVELOPED FROM HISTORICAL SITE PLANS AND FIELD OBSERVATIONS

2. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

ATTACHMENT A

LIMITATIONS

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

ATTACHMENT B

WELL DEVELOPMENT FORMS

											1
File	21 00563	67.66			W	MER SIGNORI ELL DEVELO 55-57 JEFFERS LICOTTVILL	PMENT FO	ORM ET			
						Historic Inf	ormation				
Boring Log A	vailable (yes/no/atta	ched):				onnon		1		
Installation L											
			<u>in</u> 25,505			Sumn	nary				
Monitoring W	Vell :	EW-1.25		Ground Su	Inface Elevation			Riser/Sc	reen Materi	al: Steel/Sta	ainless Steel
Installation D	ate:	7/90			Casing Elevation				creen Dept		
Installed By:		Empire So	oils		Point Elevation	n: 1531.96 ft.		Bottom c	of Screen De	epth: 25 ft.	
				Elevation D							
Previous Fiel	ld measu	rement Infor	rmation Availa	ble (yes/no							
						s of Previous F					
Depth to			pH		Conductance	Tempera		1	rbidity		Color
(ft)			lard Units)	· · ·	hos/cm)	0°)			NTU)		
9 5 1	1	6	6.77		0.65	14.7	7	1	3.19		Clear
Notes:											
				eld Observa	itions					eters +/-	Sampling Information
Exterior Obse	ervations:	Gout (Condition						pH	+/- 0.1	Sample ID: EW-1.25 - 095022
Interior Ohee		7-1-	C L						Conductivi		Sample Time: 1150
Interior Obse	rvations	Good	Condition						Turbidity	re +/- 10%	# of Sample Containers: 3
									ORP	+/- 10%	Duplicate Sample ID —— Sample Analysis: VOCs 8260
Signs of Dam	age/Tam	nering							DO	+/- 10%	MNA PARAMETERS
Locked (ap (ves/no)	Surf	ace Seal Intact	(ves/no)	PID Meas	urement			M
)			- Ourie		Well Qual		di cittoriti.			- ~
							Joura				
Date	Time	Depth to	Cumulative	pH	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
		ft bgs	Purged	Units)	(uMhos/cm)		, ,		,0	Potential	
9-30-22	1130	9.58	0	6.63	0.593	13.8	(0.35	Clew	29	-93.2	Depth of Water: 9.58
	(135	9.58	6.0	6.72	0.578	13.2	9.14	Cler	3.0	-93.8	Length of Water Column: 19.03
	1140	9.58	0.4	6.75	0.565	13.1	8.37	(11	3.0	-95.0	Depth of Well: 23.61
	1145	9.58	06	6.78		13.5		Clis	3.1	-95.9	Sheen Observed: Y
	(150	9.55	0.8	G.78	0.564	13.1	8.14	Clar	3.	-96.0	DNAPL Observed: Y
											Did Well Go Dry: Y
											Other:
0.51.0											

File:	21.00563	67,96 C7			W	MER SIGNORI ELL DEVELO 55-57 JEFFERS LICOTTVILL	PMENT FO	DRM ET			
						Historic Inf	ormation				
Boring Log A	Available (ves/no/attac	ched).								
Installation L											
Installation	Log Availa		attaoried)			Sumn	narv				
Monitoring V	Noll ·	SP-32		Ground Si	urface Elevation			Riser/Sc	reen Materi	al: PVC	
Installation E		9/27/2012	2		Casing Elevati				creen Dept		
Installed By:		TREC			Point Elevation			Bottom o	of Screen D	epth: 19 ft.	
inotano a 2 j				Elevation I							
Previous Fie	ld measur	rement Infor	mation Availa	ble (ves/no	(attached)						
					Range	s of Previous F	ield Measu	urements			
Depth to	Water		pН	Specific	Conductance	Tempera			rbidity		Color
(ft)		1	ard Units)		lhos/cm)	(°C)	()	NTU)		
7.1			5.93	(0.133	18.6		5	5.02		Clear
Notes				L							
Hotes											
			. Fi	eld Observa	ations	1	متعام الأردي بدره	14	Param	eters +/-	Sampling Information
Exterior Obs	ervations	Good	Condition						pН	+/- 0.1	Sample ID: 51-32 - 043022
									Conductivi		Sample Time: 1235
Interior Obse	ervations	God	Condition	\ \							# of Sample Containers: 3
									Turbidity		Duplicate Sample ID:
1									ORP		Sample Analysis: VOCs 8260
Signs of Dar			0			X			DO	+/- 10%	MNA PARAMETERS
Locked (es/no)	Well Ca	p (ves/no)	Surf	ace Seal Intact		PID Meas	urement		Odors: No.	NC
		1				Well Qual	ity Data	I	1	2.0.1	
Date	Time	Depth to Water	Cumulative Volume	pH (Standard	Specific Conductance	Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction	Notes
		ft bas	Purged	Units)	(uMhos/cm)	(0)	(Potential	
4-30-22	1215	7.59		6.33	0,177	18.3	11.25	Cled	41.5	90.9	Depth of Water: 7-51
1	1220	7.59	0.1	6.35	0.175	18.5	9.24	Cled	48.9	91.7	Length of Water Column: 11.06
	1225	7.60	0.2	6.37	6.169	(8.6	8.15	Cled	48.9	92.1	Depth of Well: 8.65
	1230	7.60	0.3	6.39	0.168	18.0	212	Cleu	47.9	92.5	Sheen Observed: Y
5	1235	7-60	0.4	6.40	0.167	98.9	7.52	dar	48.4	93.1	DNAPL Observed: Y
											Did Well Go Dry: Y
											Other:

and a second sec

Page: 1 of 1

File. 21.00563	67 66 67			WF 5	IER SIGNORE CLL DEVELOP 5-57 JEFFERS LICOTTVILLE	MENT FO	RM T				
					Historic Info	ormation					
Boring Log Available (yes/no/attac	hed):				a					
Installation Log Availa	ble (yes/no/a	attached)									
					Summ	ary	Dia				
Monitoring Well	SP-37			face Elevation				reen Materia creen Depth			
Installation Date:	9/27/2012			Casing Elevation				f Screen Depu			
Installed By:	TREC			Point Elevation	1555.30		Dottom	- Scicen De			
	romont lof-	motion Augila	Elevation D	Statistics of the local division of the Company of the local division of the local divis	and the second second						
Previous Field measu	rement infor	mation Availa	ble (yes/no/	Range	s of Previous Fi	eld Measu	rements				
Death to Mater	1	nH	Specific	Conductance	Tempera		Tu	rbidity		Color	
Depth to Water		pH ard Units)		hos/cm)	(°C)			NTU)			
(ft) 6.49			1	0.19	18.4	and the second division in the second division division in the second division di division division division division divis		0.32		Clear	
5.49 0.00 0.10 10											
Notes											
		Fie	ld Observa	tions					eters +/-	Sampling Information	
Exterior Observations	COUN	CUNTIN						рН	+/- 0.1	Sample ID: 5P-37-09302	
1			-					Conductivit	y +/- 3%	Sample Time: 1040	
Interior Observations	GOUD	CUNJATIN							re +/- 10%	# of Sample Containers: 3	
1999 - 1999 - 1997 - 19								Turbidity ORP		Sample Analysis: VOCs 8260	
								DO		MNA-PARAMETERS	
Signs of Damage/Tan	npering:		C	ace Seal Intact,	(magno)	PID Meas	urement		Odors: No		
Locked (vestino)	Well Ca	p (yes/no)	Suna	ace Seal middly	Well Qual						
					TTOIL CELICIT	1 Daila					
Data	Depth to	Cumulative	pН	Specific	Temperature	Turbidity	Color	Dissolved		Notes	
Date Time	Water	Volume	(Standard		(°C)	(NTU)		Oxygen	Reduction		
	ft bgs	Purged	Units)	(uMhos/cm)					Potential		
9-20.22 1025	7.20		6.37	0.199	18.7	10.24	cles	25.3	138.7	Depth of Water: 7.20	
1030	7.21	0.1	6.25	0,195	18.8	8.13	Clar	25.6	1921	Length of Water Column: Depth of Well: 19,10	
1035	7.21	0.2	6.22	0.94	18.8	7.45	Clear	26.0	142.5	Sheen Observed: Y	
1 1040	7.21	0.3	6.21	0.195	18.9	6.82	der	10.0	1.1.1	DNAPL Observed: Y	
										Did Well Go Dry: Y	
										Other:	
	+										
										Page: 1 of 1	

۱ ب

1

File. Z	21.005636	\$7~66 (7			WE 5	IER SIGNORE ELL DEVELOP 5-57 JEFFERS LICOTTVILLE	MENT FO	RM T			
						Historic Info	ormation				1993 - S.
Boring Log Av											
nstallation Lo	og Availat	ble (yes /ho/a	attached)			Summ	any				
Ionitoring W		SP-38		Ground Sur	face Elevation			Riser/Scr	reen Materia	I PVC	
istallation Da		9/27/2012			Casing Elevation				creen Depth		
istalled By.	alc.	TREC			Point Elevatior				f Screen De		
.c.aea by				Elevation D					-		
revious Field	d measur	ement Infor	mation Availal								
					Ranges	s of Previous F	ield Measu	rements			
Depth to V	Water		pН	Specific (Conductance	Tempera	ature		bidity		Color
(ft)		· · · ·	ard Units)	(uMł	nos/cm)	(°C)			ITU)		
7.2			5.85	0	.416	16.7		5	5.88		Clear
otes:											
				eld Observat	tions	· ~ ~ ~ · ·				eters +/-	Sampling Information
xterior Obse	ervations:	Focd	Cordin"	2					pH	+/- 0.1	Sample ID: 57-38-043022
									Conductivit		Sample Time: /3/5 # of Sample Containers: 3
nterior Obse	rvations	bood	Cordin	(^					Turbidity	+/ 10%	Duplicate Sample ID:
									ORP		Sample Analysis: VOCs 8260
	-								DO		
igns of Dam		pering:	p Kyes/no)	Surf	ace Seal Intact	Met (no)	PID Measu	Irement:		Odors: A	
Locked	eş/no)	vveil Ca	р (уев/по)	Suite	ace Sear Intact	Well Qual					
Date	Time	Depth to	Cumulative	pН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
Date	TIME	Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
1		ft bas	Purged	Units)	(uMhos/cm)	, - <i>i</i>				Potential	
9-72-22	1255	7.90	0	6,69	0.412	16.8	21.42	Clur	29.9	113.7	Depth of Water: 7.90
	1500	7.40	0.1	6.70	0.407	16.6	11.31	Clear	295	112.4	Length of Water Column 1.03
	1305	7.91	0.2	6.76	0.398	16.5	8.25	Cleur	27.1	110.5	Depth of Well: 18,93
	1310	7.91	0.3,	6.77	0.399 0.397	16.3	7.96	Clear	0115	108.3	Sheen Observed: Y
	ZKI	7.91	0.0	6.79	0.397	16.7	7.35	derl	27.4	106.7	DNAPL Observed: Y
											Other:
				l							

ž

File: 2	21.005636	7,86 67			WEI 55	ER SIGNORE, LL DEVELOPN i-57 JEFFERSO ICOTTVILLE,	MENT FOR IN STREET NEW YOR	M			
					a	Historic Infor	mation	· · · · ·			
Boring Log Av	vailable (es/no/attach	ned):	1983			1				
Boring Log Av Installation Lo	Da Availab	le (ves/no/at	ttached)						-		
Installation L(vy Avallad					Summa	ary	licor/C	een Material	PVC	
Monitoring W	lell ·	SP-43	(Ground Sur	face Elevation:		F	iser/Scr	creen Material	10 ft.	
Monitoring VV Installation Da		10/1/2012	F	Protective C	Casing Elevation	n:	c	Bottom of	f Screen Deptin.	oth: 20 ft.	
Installed By:		TREC	N	Monitoring F	Point Elevatior	1533.42	Ľ				
-				Elevation Da							
Previous Field	ld measure	ement Inforn	mation Availab	le (yes/no/a	attached)	of Previous Fie	ald Measure	ements			
					Ranges	Temperat		Tur	bidity		Color
Depth to V	Water		рН		Conductance		ure		ITU)		
(ft)			ard Units)	1-	nos/cm)	(°C) 20.5			.72		Clear
7.89		6	.12	0	.183	20.5			<u> </u>		
Notes:											
					Hone				Parame	ters +/-	Sampling Information
				ld Observat	uons	1			pН	+/- 0.1	Sample ID: 5P-43-043022
Exterior Obse	ervations:	Good	Curdot	1					Conductivit		Sample Time: 1900
		-Cart	Conditiv						Temperatur	re +/- 10%	# of Sample Containers: 3
Interior Obse	ervations	Goco	Lowhi	2					Turbidity	+/- 10%	
									ORP	+/- 10mV	Sample Analysis: VOCs 8260
Signs of Dan	mage/Tam	perina.							DO		UNC
Locked	ves/no)	Well Ca	ap (res/no)	Surfa	ace Seal Intact		PID Measu	irement:	-	Odors: A	
Looked						Well Quali	ity Data		11		
Date	Time	Depth to Water	Cumulative Volume	pH (Standard Units)	Specific Conductance (uMhos/cm)	Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	
7 3 1 31	112110	ft bgs	Purged	6.37	0.139	19.0	8.79	aur	30.7	120.3	Depth of Water: 8.20
9-30-22	1340	8.28	0	6.34	0.140	19.3	8.65	Cler	30.1	126.4	Length of Water Column: 9-65
├ ─┼──	1345	8.30	0.2	6.30	0.145	(1.3	8.12	Clear	31.3	128.5	Depth of Well: 7,93
	1355	8.30	0.3	6.30	0-145	10.9	7.58	Clew	31.5	131.7	Sheen Observed: Y
	1400	8.30	0.4	6.29	0.146	19.5	7.45	(m)	31.5	132.5	DNAPL Observed: Y
			(<u> </u>			Did Well Go Dry: Y
								<u> </u>	+	+	
								 		+	
						9			+	+	
		+			+			1			
			1		1			CONTRACTOR OFFICE			Page: 1 g

6

f 1

C. HATTERES

File: 21.	00563	67.66									
		67			W	MER SIGNOR /ELL DEVELC 55-57 JEFFER LLICOTTVILI	PMENT F SON STRE	ORM EET			
					1.0.00	Historic In	formation		-		
Boring Log Avai	ilable ()	es/no/atta	ched):							and the second	
Installation Log	Availat	ole (yes /no/	(attached)								
Manitaring Maril						Sumi	mary				
Monitoring Well Installation Date		SP-45			urface Elevation				creen Mater		
Installed By:	2.	10/1/2012 TREC			Casing Elevati			_ Top of S	Screen Dep	th: 9.2 ft.	
motalied by.		IKEU			Point Elevatio	r 1533.43	3	Bottom	of Screen D	epth: 19.2 ft	t.
Previous Field n	neasur	ement Infor	mation Availa	Elevation	Datum:						
	leasur	ement initio	mation Avalla	ible (yes/no							
Depth to Wa	ater		pН	Specific	Conductance	s of Previous I			1.1.19	T	
(ft)		1	ard Units)			Temper		- P	rbidity		Color
9.05			5.84		lhos/cm) 0.37	(°C			NTU)		
Notes:			0.04		0.37	17.	0		5.27		Clear
			Fi	eld Observa	ations		14		Baram	eters +/-	
Exterior Observa	ations:	Goul	Curdifie			,	S. Sugara	1 1 AL	pH	+/- 0.1	Sampling Information Sample ID: SP-45-093022
									11	ity +/- 3%	Sample Time: (140
Interior Observa	tions	Good	Conditi	5							# of Sample Containers: 3
									Turbidity	+/- 10%	Duplicate Sample ID:
0. (5									ORP	+/- 10mV	Sample Analysis: VOCs 8260
Signs of Damag	e/lamp					6	T		DO	+/- 10%	MNA PARAMETERS
LOCKED	no)	vveli Ca	p (ves/no)	Surf	ace Seal Intact		PID Meas	urement:	-	Odors: A	are
					1	Well Qual	ity Data				
	Time	Depth to Water ft bgs	Cumulative Volume Purged	Units)	Specific Conductance (uMhos/cm)		(NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes
9-30-2214	all 1	9.25	<u> </u>	6.59	0.382	18.9	11.25	Clear	5.9		Depth of Water: 9.25
14	51	9.25	0.1	6.65	0.364	(9,3	9.38	Cleur	6.0		Length of Water Column: ¥-37
	35	9.25	0.2	6.70	0.358	19.4	8.12	((e.1	6.0	133.5	Depth of Well: 17.62
1 19	42	9.28	0.5	6.72	0.357	19.5	7.54 7.25	olar	GI	132.1	Sheen Observed: Y N
· · · · · · · · · · · · · · · · · · ·	10		0/1	6.70	0.511	11.0	1.00	Qieu	6.1	129.9	DNAPL Observed: Y N Did Well Go Dry: Y N
											Other:
		Lof Nous Vo									

Page: 1 of 1

reader - reader

File: 21.0056367.67 FORMER SIGNORE, INC. FACILITY WELL DEVELOPMENT FORM 55-57 JEFFERSON STREET ELLICOTTVILLE, NEW YORK Historic Information Boring Log Available (yes/no/attached): Installation Log Available (yes/no/attached) Summary Monitoring Well : TP-11 Ground Surface Elevation: Protective Casing Elevation: Installed By: Riser/Screen Material: PVC Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Elevation Datue: Bottom of Screen Depth: Elevation Datue: Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Ranges of Previous Field Measurements Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) 9.42 6.69 0.393 16.7 4.97 Clear
S5-57 JEFFERSON STREET ELLICOTTVILLE, NEW YORK Historic Information Boring Log Available (yes/no/attached): Installation Log Available (yes/no/attached) Summary Monitoring Well : TP-11 Installation Date: Protective Casing Elevation: Installed By: Trec Environmental Monitoring Point Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: Elevation Datum: Previous Field measurement Information Available (yes/no/attached) Elevation Datum: Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
ELLICOTTVILLE, NEW YORK Historic Information Boring Log Available (yes/no/attached): Installation Log Available (yes/no/attached): Installation Log Available (yes/no/attached) Summary Monitoring Well : TP-11 Ground Surface Elevation: Riser/Screen Material: PVC Installation Date: Protective Casing Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Bottom of Screen Depth: Elevation Datum: Elevation Datum: Previous Field measurement Information Available (yes/no/attached) Elevation Elevation: Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Historic Information Boring Log Available (yes/no/attached): Installation Log Available (yes/no/attached): Summary Monitoring Well : TP-11 Ground Surface Elevation: Riser/Screen Material: PVC Installation Date: Protective Casing Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Bottom of Screen Depth: Elevation Datum: Elevation Datum: Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Boring Log Available (yes/no/attached): Installation Log Available (yes/no/attached) Monitoring Well : TP-11 Installation Date: Frective Casing Elevation: Installed By: Trec Environmental Monitoring Vell : Trec Environmental Monitoring Point Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Elevation Datum: Elevation Datum: Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Installation Log Available (yes/no/attached) Summary Monitoring Well : TP-11 Ground Surface Elevation: Riser/Screen Material: PVC Installation Date: Protective Casing Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Bottom of Screen Depth: Previous Field measurement Information Available (yes/no/attached) Elevation Datum: Elevation Streen Depth: Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Summary Monitoring Well : TP-11 Ground Surface Elevation: Riser/Screen Material: PVC Installation Date: Protective Casing Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Bottom of Screen Depth: Previous Field measurement Information Available (yes/no/attached) Elevation Datum: Elevation Color Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Monitoring Well : TP-11 Ground Surface Elevation: Riser/Screen Material: PVC Installation Date: Protective Casing Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Bottom of Screen Depth: Previous Field measurement Information Available (yes/no/attached) Elevation Datum: Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Installation Date: Protective Casing Elevation: Top of Screen Depth: Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Bottom of Screen Depth: Elevation Datum: Elevation Datum: Elevation Datum: Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Installed By: Trec Environmental Monitoring Point Elevation: 1532.98 ft. Elevation Datum: Previous Field measurement Information Available (yes /no/attached) Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU)
Elevation Datum: Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
Depth to Water pH Specific Conductance Temperature Turbidity Color (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Color
(ft) (Standard Units) (uMhos/cm) (°C) (NTU)
9.42 6.69 0.393 16.7 4.97 Clear
Notes:
Field Observations Parameters +/- Sampling Information
Exterior Observations: 609) Condition
Conductivity +/- 3% Sample Time: 1120
Interior Observations G-00/Condition Temperature +/- 10% # of Sample Containers: 3 Turbidity +/- 10% Duplicate Sample ID:
ORP +/- 10% Duplicate Sample ID:
Signs of Damage/Tampering: Norg
Locked (Jeskno) Well Car (yes/no) Surface Seal Intact (yes/no) PID Measurement Odors: Non
Well Quality Data
Date Time Depth to Cumulative pH Specific Temperature Turbidity Color Dissolved Oxygen Notes
Water Volume (Standard Conductance (°C) (NTU) Oxygen Reduction
ft bgs Purged Units) (uMhos/cm) Potential
9-30-22 1100 9,15 0 6.84 0.514 15. 17.12 Clear 20.5 80.3 Depth of Water: 9.15
105 9.2 0. 6.40 0.510 19.9 15.13 Clau 21.3 84.5 Length of Water Column 10.36
110 9.2 0.2 6.94 0.517 14.8 13.85 (1ed 25.5 85.7 Depth of Well: 19.51
115 9.2 0.3 6.44 0.517 (4.8 13.91 Cliv 2.5.5 85.9 Sheen Observed: Y N
1120 9.21 0.4 6.94 0.518 14.8 13.93 Clear 2.56 86.1 DNAPL Observed: Y D Did Well Go Dry: Y N
Other:

ATTACHMENT C

GROUNDWATER ANALYTICAL RESULTS SUMMARY

Sample Location Sample Date	Class GA Criteria	EW-1.25 6/25/2013	EW-1.25 10/16/2013	EW-1.25 6/10/2014	EW-1.25 6/4/2015	EW-1.25 8/21/2015	EW-1.25 10/21/2015	EW-1.25 6/15/2016	EW-1.25 10/25/2016	EW-1.25 7/13/2017	EW-1.25 6/21/2018	EW-1.25R 6/14/2019	EW-1.25R 9/17/2021	EW-1.25R 9/30/2022
		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q		Q Q
Volatile Organic Compounds - EP	PA Method SW-8	46, 8260C (ug/L)												
Acetone	50	<	<	<	<	<	3.8 J	2.3 J	<	<	<	6.8	<	1.5 J
Benzene	1	<	<	<	<	<	<	<	<	<	<	0.18 J	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	1.8	<	<	<	<
Chloromethane	NV	0.77 J	<	<	<	<	<	<	<	<	<	0.88 J	<	<
1,1-Dichloroethane	5	4.1	4.1	2.9	3	2.6	4.2	2.9	3.9	3.0	<	1.1 J	1.2 J	<
1,1-Dichloroethene	5	<	<	<	0.25 J	0.19 J	0.36 J	0.24 J	0.48 J	0.39 J	<	<	<	<
Vinyl chloride	2	4.6	5	2.4	2.6	<	3.3	3.2	6.6	<	<	<	0.17 J	0.12 J
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	31	32	23	29	28	44	28	98	57	<	2.1 J	2.5	1.4 J
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	0.82 J	<	<	0.7 J	<	<	<	<	<
Tetrachloroethene	5	3.3	3.8	3.6	<	1.4	1.8	3.1	<	<	<	<	<	<
Trichloroethene	5	51	59	41	47	42	58	47	0.27 J	35	<	<	<	<
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	0.79 J	<	<	<	<	<
Total VOCs		94.77	103.9	72.9	81.85	75.01	115.46	86.74	110.74	97.19		11.06	3.87	3.02
Field Parameters														
Temperature (Deg. C)	NV	13	13.5	10.4	9.1	13.1	13.4	12.4	13	14.9	12.1	9.8	14.1	13.4
Specific Conductance (mS/cm)	NV	0.7	0.68	0.7	0.757	0.67	0.68	0.653	0.612	0.65	0.629	0.633	0.641	0.564
Dissolved Oxygen (mg/L)	NV	0.05	0.18	0.06	0.17	0.12	0.22	0.29	0.23	0.13	0.65	0.18	17.1	3.1
Oxygen Reduction Potential (mv)	NV	-88.5	-99.3	-91.2	-130.5	-86.2	-91.6	161.4	-125.1	-169.9	-54.1	-140.1	-98.9	-96
pH (std. units)	NV	7.35	6.85	6.78	6.73	6.77	6.89	6.79	6.87	6.77	6.12	6.91	6.28	6.78
Turbidity (NTUs)	NV	9.12	3.31	11.71	7.7	14.2	10.7	20.1	11.87	13.13	21.5	69.11	9.82	8.14
Inorganics (ug/L)														
Iron	300	NS	1,000	14,000	14,000	11,500	11,900	27,300	10,500	<	27,000 M1	6,600 M1	28,400	NS
Manganese	300	NS	1,300	1,600	1,482	1,265	1,465	1,453	1,354	1,256	3,060	1,392	2,460	NS
Miscellaneous Water Quality Para														
Methane (ug/L)	NV	NS	1,000	170	237	218	190	244	130	130	NT	1,110	1,620	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	<	<	<	NT	6.85	<	NS
Ethene (ug/L)	NV	NS	1.7	<	<	0.535	<	0.558	0.55	0.55	NT	2.82	<	NS
Total Organic Carbon (mg/L)	NV	NS	<	<	2.07	2.47	1.92	2.26	1.56	1.84	21.0	7.97	11.60	NS
Chloride (mg/L)	250	NS	66 B	69	62	57	56	49	45	47	48.2 M1	14.1	16.0	NS
Nitrate (mg/L)	10	NS	<	<	0.015 J	0.020 J	<	<	0.029 J	<	<	<	0.12	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS	NS
Sulfate (mg/L)	250	NS Notes:	7.6	7.4 B	12.8	10.3	10.5	10.2	11.7	8.86	<	10.3	4	NS

Notes:

1. Only compounds detected in one or more of the groundwater samples are presented in this table.

2. "<" indicates compound was not detected above the method detection limit.

3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.

4. Criteria is a guidance value.

Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.

6. mg/L = parts per million; ug/L = parts per billion

7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.

8. NV = no value; NS = Not sampled; NT = Not tested.

9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)

Value Organic Compounds. FPA Method SWG C	Sample Location Sample Date	Class GA	SP-32 10/3/2012	SP-32 10/17/2013	SP-32 6/10/2014	SP-32 6/4/2015	SP-32 8/21/2015	SP-32 10/22/2015	SP-32 6/15/2016	SP-32 10/25/2016	SP-32 7/12/2017	SP-32 6/21/2018	SP-32 6/14/2019	SP-32 9/16/2021	SP-32 9/30/2022
Value Value <th< th=""><th></th><th>Criteria</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		Criteria			_										
Autom 60 240 D <				Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Bandame 1 c </td <td>U</td> <td>-</td> <td></td> <td>240 D</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.0 1</td> <td></td> <td></td>	U	-		240 D									4.0 1		
		50	<	240 D	<	<	<	<	2.8 J	<	<	<	4.8 J	<	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	<	<	<	<	<	<	<	<	<	<	<	<	-
11-Dichlosophane 5 <t< td=""><td></td><td></td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td></td></t<>			<	<	<	<	<	<	<	<	<	<	<	<	
1.10-Ditrogenene 5			<	<	<	<	<	<	<	<	<	<	<	<	-
Viny cliands 2 s <th< td=""><td>1</td><td></td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td><td><</td></th<>	1		<	<	<	<	<	<	<	<	<	<	<	<	<
2-bitanone 50 < 48 < < < < < < < < </td <td>/</td> <td>-</td> <td><</td>	/	-	<	<	<	<	<	<	<	<	<	<	<	<	<
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,		<	<	<	0.18 J	0.23 J	<	<	<	<	<	<	<	
Tolune 5			<		<	<	<	<	<	<	<	<	<	<	-
1.1.1 Trichloroethane 5 -	· · · · · · · · · · · · · · · · · · ·	ů	<	26	11	4.5	4.7	2.7	3.3	<	<	<	<	<	
Tetrachicorebrene 5 2.1 0.2 0.4 0.4 0.4.2 0.32 J 0.2 0.25 <th0.25< th=""> 0.25 0.25</th0.25<>		v	<	<	<	<	<	<	<	<	<	<	<	<	-
Trichtorethene 5 120 3.4 6.4 5.8 6.5 6.7 14 1.2 0.85 4.4 0.41 J 1.6 2.1 trans-1.2-dichloroethene 5 <			>	<	<	<	>	<	<	<	<	<	<	`	`
Trans-12-dictoroethene 5 C		÷		<	<							<			
Total VOCs 1221 314.4 17.4 10.73 11.89 10.02 20.54 1.62 1.17 4.4 0.43 1.85 2.3 Field Parametes		v	120	3.4	6.4	5.8	6.5	6.7	14	1.2	0.85	4.4	0.41 J	1.6	
Field Parameters Image: Conductance (mS/cm) NV 13.2 16.5 13.1 11.0 17.7 16.6 15.8 15.1 18.6 13.2 12.2 19.9 18.3 Specific Conductance (mS/cm) NV 0.418 0.655 0.392 0.326 0.272 0.223 0.181 0.133 0.144 0.122 0.167 0.167 Dissolved Oxygen (mg/L) NV 4.92 0.18 0.12 0.16 0.48 0.53 1.67 2.29 0.76 5.59 42.8 48.4 Oxygen Reduction Potential (my) NV 4.92 0.18 0.12 0.16 0.48 0.53 1.67 2.29 0.76 5.59 42.8 48.4 pH (st1 units) NV 7.23 6.45 6.48 6.28 6.34 6.25 6.22 6.0 5.9 5.96 6.30 6.05 6.40 Iorganics (ug/L) NV 7.23 6.46 6.28 6.34 6.25 6.22 6.0 5		5	<	<	<	<	<	<	<	<	<	<	<	<	
Temperature (Deg. C) NV 13.2 16.5 13.1 11.0 17.7 16.6 15.8 15.1 18.6 13.2 12.2 19.9 18.3 Specific Conductance (mS/cm) NV 0.418 0.65 0.392 0.326 0.272 0.223 0.232 0.181 0.133 0.144 0.122 0.167 0.167 Disolved Oxygen (mg/L) NV 4.92 0.18 0.12 0.15 0.16 0.48 0.53 1.67 2.29 0.76 5.59 4.8.4 Oxygen (mg/L) NV 50.3 -95.3 -21.9 104.4 57.7 169.9 236.7 153 41.9 181.2 15.0 215.3 93.1 pH (did. units) NV 7.23 6.45 6.34 6.25 6.22 6.0 5.9 5.96 6.30 6.36 6.75 Inbidity for the interminic (mg/L) Turbidity (NTUs) NV 7.6 4.96 5.02 2.8 17.1 5.8 NS NS </td <td></td> <td></td> <td>122.1</td> <td>314.4</td> <td>17.4</td> <td>10.73</td> <td>11.89</td> <td>10.02</td> <td>20.54</td> <td>1.62</td> <td>1.17</td> <td>4.4</td> <td>0.43</td> <td>1.85</td> <td>2.3</td>			122.1	314.4	17.4	10.73	11.89	10.02	20.54	1.62	1.17	4.4	0.43	1.85	2.3
Specific Conductance (mS/cm) NV 0.418 0.66 0.392 0.326 0.272 0.232 0.181 0.133 0.144 0.122 0.167 0.167 0.167 Dissolved Dxgen (mg/L) NV 4.92 0.18 0.12 0.15 0.16 0.48 0.53 1.67 2.29 0.76 5.59 4.28 484 Oxygen Reduction Potential (mV) NV 7.23 6.45 6.48 6.28 6.34 6.25 6.22 6.0 5.9 5.96 4.63 6.05 6.40 Introduction Potential (mV) NV 7.23 6.67 4.95 0.6 7.15 4.42 7.6 4.96 5.02 2.8 1.53 4.75 Inorganics (ug/L) V 300 NS 3.480 16.000 3.39 2.46 2.66 5.41 6.6 <<		N1V /	10.0	40.5	40.4	44.0	47.7	40.0	45.0	45.4	40.0	40.0	40.0	10.0	40.0
Dissolved Oxygen (mg/L) NV 4.92 0.18 0.12 0.15 0.16 0.48 0.53 1.67 2.29 0.76 5.59 42.8 48.4 Oxygen Reduction Potential (my) NV 50.3 -95.3 -21.9 104.4 57.7 169.9 26.7 153 41.9 181.2 150.8 21.53 93.1 PH (std. inits) NV 7.23 6.45 6.48 6.28 6.34 6.25 6.22 6.0 5.96 6.80 21.53 93.1 Turbidity (NTUs) NV 35 6.76 4.95 0.6 7.15 4.42 7.6 4.96 5.02 2.8 17.51 5.36 7.52 Inorganics (ug/L) V 33.480 16.00 339 246 206 541 66 < < NS NS<	1 ()														
Oxygen Reduction Potential (mv) NV 50.3 -95.3 -21.9 104.4 57.7 169.9 236.7 153 41.9 181.2 150.8 215.3 93.1 pH (std. units) NV 7.23 6.45 6.48 6.28 6.34 6.25 6.22 6.0 5.9 5.96 6.30 6.05 6.40 Turbidity (NTUs) NV 35 6.76 4.95 0.6 7.15 4.42 7.6 4.96 5.02 2.86 6.30 6.05 6.40 Inorganics (ug/L) U 33.00 NS 3.460 16,000 339 246 206 541 66 < < NS NS NS Magenese 300 NS 24,600 19,000 6,488 8,331 2,897 2,668 1,144 12 < NS NS NS Miscellaneous Miscellaneous V NS 120 660 725 932 208 205												-			
pH (std. units) NV 7.23 6.45 6.48 6.28 6.34 6.25 6.22 6.0 5.9 5.96 6.30 6.05 6.40 Turbidity (NTUs) NV 35 6.76 4.95 0.6 7.15 4.42 7.6 4.96 5.02 2.8 1.71 5.36 6.40 Inorganics (ug/L) V 330 NS 3.480 16,000 339 2.46 2.06 5.41 6.6 < < NS NS NS Iron 300 NS 3.480 16,000 339 2.46 2.06 5.41 6.6 <										-				-	-
Turbidity (NTUs) NV 35 6.76 4.95 0.6 7.15 4.42 7.6 4.96 5.02 2.8 17.51 5.36 7.52 Inorganics (ug/L) V 300 NS 3.480 16,000 339 246 206 541 66 < < NS NS </td <td></td>															
Inorganics (ug/L) Image of the system of the s	,														
Iron 300 NS 3,480 16,000 339 246 206 541 66 < < < NS		INV	30	0.70	4.95	0.6	7.15	4.42	7.0	4.90	5.02	2.0	17.51	5.30	7.32
Marganese 300 NS 24,600 19,000 6,468 8,331 2,897 2,668 1,144 12 < NS		200	NC	2 490	16.000	220	246	206	E 41	66	-		NC	NC	NC
Miscellaneous Water Quality Parameters NV NS 120 660 725 932 208 205 3.31 0.55 J NS	-										12	<		-	
Methane (ug/L) NV NS 120 660 725 932 208 205 3.31 0.55 J < NS NS<	0		110	24,000	19,000	0,400	0,001	2,037	2,000	1,144	12		NO	110	NO
Ethane (ug/L) NV NS < < 0.659 0.841 < < < < < NS			NS	120	660	725	932	208	205	3 31	0.55		NS	NS	NS
Ethene (ug/L) NV NS 1.7 < < < < < < < < < < < NS				120	000	-		200	200	0.01	0.00 0				
Total Organic Carbon (mg/L) NV NS 51 < 1.35 1.7 1.02 1.45 0.87 1.08 < NS NS NS Chloride (mg/L) 250 NS 5 B 3.1 3.46 3.12 2.83 2.72 1.59 0.861 <			-	17		0.000	0.041							-	
Chloride (mg/L) 250 NS 5 B 3.1 3.46 3.12 2.83 2.72 1.59 0.861 < NS NS NS Nitrate (mg/L) 10 NS <						1 35	17	1 02	1 45	0.87	1.08				
Nitrate (mg/L) 10 NS < < 1.92 0.93 4.2 3.9 4.8 1.4 1 NS NS NS Nitrite (mg/L) 1 NS <	3		-		31										
Nitrite (mg/L) 1 NS < < NS NS NS NS < NS			-										-	-	
		1			~										
Sulfate (mg/L) 250 NS 4.9 J 14 16.8 16.1 16.3 14.4 13.8 15.9 NS NS NS		250	-	4.9.1	14 B		-	-			-	15.9		-	

Notes:

1. Only compounds detected in one or more of the groundwater samples are presented in this table.

2. "<" indicates compound was not detected above the method detection limit.

3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.

4. Criteria is a guidance value.

Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.

6. mg/L = parts per million; ug/L = parts per billion

7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.

8. NV = no value; NS = Not sampled.

9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)

Sample Location Sample Date	Class GA	SP-37 10/5/2012	SP-37 10/17/2013	SP-37 6/10/2014	SP-37 6/4/2015	SP-37 8/21/2015	SP-37 10/23/2015	SP-37 6/16/2016	SP-37 10/26/2016	SP-37 7/12/2017	SP-37 6/21/2018	SP-37 6/14/2019	SP-37 9/17/2021	SP-37 9/30/2022
	Criteria	Q	Q	Q	Q	Q	Q	Q	Q			Q	Q	
Volatile Organic Compounds - EP	A Method SW-8	~	~	~	~	~	~	~				~		
Acetone	50	<	<	<	<	<	<	2.6 J	<	<	<	5.5	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	0.21 J	0.42 J	<	<	<	<	<	<
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	1.8	7.3	0.99 J	3.4	9.9	9.4	6.7	12	2.7	1.9	3.6	6.8	6.6
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	0.82 J	<	<	<	<	<	<	<	<
Tetrachloroethene	5	9.6	24	13	18	15	26	14	17	12	13.2	10	15	7.3
Trichloroethene	5	13	20	7.2	10	11	19	13	14	7.8	10.9	12	12	7.4
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		24.4	51.3	27.2	31.4	36.72	54.61	36.72	43	22.5	26	31.1	33.8	21.3
Field Parameters														
Temperature (Deg. C)	NV	13.5	17	11.9	10	17	15.3	13.3	14.2	18.4	12.1	11.9	18.8	18.9
Specific Conductance (mS/cm)	NV	0.452	0.535	0.305	0.449	0.432	0.396	0.291	0.246	0.19	0.184	0.166	0.210	0.195
Dissolved Oxygen (mg/L)	NV	0.28	0.2	0.58	0.68	0.07	0.13	0.29	0.55	0.86	2.53	3.05	44.2	26
Oxygen Reduction Potential (mv)	NV	-122.4	74.8	107.7	117.6	16.1	82.8	306.5	130.2	6.7	180.1	151.5	213.1	143.7
pH (std. units)	NV	6.6	6.39	6.28	6.12	6.28	6.3	6.03	5.99	6.08	5.94	6.25	5.86	6.21
Turbidity (NTUs)	NV	2.5	9.35	12.5	1.4	5.27	2.3	5.93	5.02	10.37	0.9	6.12	9.26	6.82
Inorganics (ug/L)														
Iron	300	NS	61.7 B	900	81.4	409	66	85	56	<	<	NS	NS	NS
Manganese	300	NS	336	150	1,021	6,015	2,035	1,137	1,445	73	<	NS	NS	NS
Miscellaneous Water Quality Para	ameters													
Methane (ug/L)	NV	NS	26	2.5	28	108	67.4	47.2	<	<	<	NS	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	<	<	<	<	NS	NS	NS
Ethene (ug/L)	NV	NS	<	<	<	<	<	<	<	<	<	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	4 J	2.8 J	2.51	4.75	2.62	2.47	2.21	1.93	1.5 M1	NT	1.14	NS
Chloride (mg/L)	250	NS	12 B	3.8	28.8	16.4	14.7	7.11	5.79	2.64	2.4	NS	NS	NS
Nitrate (mg/L)	10	NS	4.8	5.2	2.98	0.04	0.27	1.40	3.20	1.30	0.79	NS	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS	NS
Sulfate (mg/L)	250	NS	36	24 B	23.3	18	21.1	18.3	21	14.3	13.9	9.78	10.6	NS

Notes:

1. Only compounds detected in one or more of the groundwater samples are presented in this table.

2. "<" indicates compound was not detected above the method detection limit.

3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.

4. Criteria is a guidance value.

Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.

6. mg/L = parts per million; ug/L = parts per billion

7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.

8. NV = no value; NS = Not sampled.

9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)

Sample Location Sample Date	Class GA Criteria	SP-38 10/4/2012	SP-38 10/17/2013	SP-38 6/10/2014	SP-38 8/21/2015	SP-38 10/23/2015	SP-38 6/15/2016	SP-38 10/26/2016	SP-38 7/12/2017	SP-38 6/21/2018	SP-38 6/14/2019	SP-38 9/16/2021	SP-38 9/30/2022
	C ilicila	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	A Method SW-8												
Acetone	50	<	<	<	<	<	1.6 J	<	<	<	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	1.8 J	1.9	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	2 J	1.9 J	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	22	0.39 J	4.0	4.2	<	<	1.4	0.08 J
2-Butanone	50	<	<	<	26	2.1 J	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	1.5	1.2	46	0.82 J	<	<	<	<	<	2.2 J	<
Toluene	5	<	<	<	<	1 J	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	2.4	<	<	0.86 J	<	<	<	<	<	<	<	<
Tetrachloroethene	5	5	<	5.2	0.22 J	0.37 J	0.28 J	0.48 J	0.2 J	<	<	0.4 J	0.81
Trichloroethene	5	17	7.8	19	0.45 J	0.29 J	5.5 J	8.2	6.5	5.8	<	4.6	6
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		24.4	9.3	25.4	77.33	30.38	7.77	12.68	10.9	5.8		8.6	6.89
Field Parameters													
Temperature (Deg. C)	NV	13.1	15.2	11.6	15.2	15.1	16.1	14.8	16.7	11.7	11.3	17.9	16.1
Specific Conductance (mS/cm)	NV	0.437	0.412	0.437	1.03	0.69	0.419	0.443	0.416	0.404	0.398	0.446	0.397
Dissolved Oxygen (mg/L)	NV	3.25	2.88	4.65	0.07	0.11	1.32	0.23	0.72	2.11	2.32	19.4	27.4
Oxygen Reduction Potential (mv)	NV	31.7	103.5	136	-124.2	-172.7	241.8	-22.5	-79.6	150.8	125.2	156.6	106.7
pH (std. units)	NV	6.81	6.72	6.72	7.1	7.39	6.59	6.75	6.85	6.56	6.89	6.7	6.79
Turbidity (NTUs)	NV	27.4	2.12	19.2	12.3	2.12	6.39	7.69	5.88	21.5	180.22	42.28	7.35
Inorganics (ug/L)													
Iron	300	<	<	1,500	5,660	3,040	352	811	<	<	NS	NS	NS
Manganese	300	5,100	41.1 B	180	24,820	12,680	2762	9031	1,827	23	NS	NS	NS
Miscellaneous Water Quality Para	ameters												
Methane (ug/L)	NV	<	20	1.1	807.0	636.0	3.9	13.7	10.1	4.4	NS	NS	NS
Ethane (ug/L)	NV	NM	<	<	<	2.57	<	0.633	<	<	NS	NS	NS
Ethene (ug/L)	NV	NM	<	<	3.45	4.56	<	2.04	0.652	<	NS	NS	NS
Total Organic Carbon (mg/L)	NV	<	<	<	86.9	2.22	1.21	1.32	1.05	<	NS	NS	NS
Chloride (mg/L)	250	31	40 B	34	29	27.1	36.1	27.7	22.6	32	NS	NS	NS
Nitrate (mg/L)	10	4.7	1.4	3.3	0.0 J	<	0.6	0.24	0.24	0.37	NS	NS	NS
Nitrite (mg/L)	1			<	<	NS	NS	NS	NS	<	NS	NS	NS
Sulfate (mg/L)	250	23	11	13 B	0.063 J	5.99	11.5	16.1	13.8	11.7	NS	NS	NS

Notes:

1. Only compounds detected in one or more of the groundwater samples are presented in this table.

2. "<" indicates compound was not detected above the method detection limit.

3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.

4. Criteria is a guidance value.

Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.

6. mg/L = parts per million; ug/L = parts per billion

7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.

8. NV = no value; NS = Not sampled.

9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)

Sample Location		SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43
Sample Date	Class GA	10/4/2012	10/17/2013	6/10/2014	6/4/2015	8/21/2015	10/23/2015	6/16/2016	10/26/2016	7/12/2017	6/21/2018	6/14/2019	9/17/2021	9/30/2022
	Criteria			0, 10, 2011	0, 1/2010	0/21/2010	10/20/2010	0, 10, 2010		.,	0/2 1/2010	0/11/2010	0,, 2021	0,00,2022
		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - El	PA Method SW-8													
Acetone	50	<	53	<	<	<	<	1.9 J	<	<	<	5.4	<	<
Benzene	1	<	<	<	<	<	<	<	<	<		<	<	<
Carbon disulfide	NV	<	1.3	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	0.92 J	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	0.48 J	6.6	<	<	<	<	<	<	<
2-Butanone	50	<	84	<	<	21	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	5.4	3.9	1.1 J	9.4	9.2	4.6	2.1 J	<	<	<	0.95 J	<
Toluene	5	<	<	<	<	<	84.0	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	93	24	14	14	10	17	7.7	11.0	6.9	7.4 CH	4.0	6.1	4.6
Trichloroethene	5	5.2	2.6	<	0.72	2.20	8.30	0.71	0.70	0.24 J	<	0.58	0.60	0.43 J
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		98.2	170.3	17.9	15.82	43.08	125.10	14.91	13.80	7.14	7.40	9.40	7.65	5.03
Field Parameters						· · · · · ·								
Temperature (Deg. C)	NV	14.1	18.4	13	12.2	16.6	15.9	14.6	14.2	20.5	15.6	13.8	20.9	19.5
Specific Conductance (mS/cm)	NV	0.445	0.513	0.304	0.773	0.66	0.68	0.237	0.224	0.183	0.151	0.127	0.149	0.146
Dissolved Oxygen (mg/L)	NV	1.48	0.22	0.23	1.1	0.12	0.12	1.23	1.96	1.96	1.73	3.52	28.1	31.5
Oxygen Reduction Potential (mv)	NV	44.2	-39.3	149	175.8	-15.1	-88.2	310.9	184.3	12.4	156.6	153.9	196.3	132.5
pH (std. units)	NV	6.55	5.88	6.13	5.82	6.31	6.83	5.87	6.02	6.12	6.11	6.32	5.9	6.29
Turbidity (NTUs)	NV	39.8	4.04	18	0.2	31.7	4.26	6.7	3.12	4.72	1.8	16.25	16.07	7.45
Inorganics (ug/L)														
Iron	300	NS	6,150	7,100	54	5,780	6,220	127	114	<	<	NS	NS	NS
Manganese	300	NS	5,510	1,600	1,254	8,919	10,240	171.8	190.4	5.4	10.4	NS	NS	NS
Miscellaneous Water Quality Para	ameters													
Methane (ug/L)	NV	NS	16	12	0.756 J	2,490.000	6,520.000	0.612	<	0.619 J	<	NS	NS	NS
Ethane (ug/L)	NV	NS	2.4	<	<	<	<	<	<	<	<	NS	NS	NS
Ethene (ug/L)	NV	NS	3.7	<	<	<	2.13	<	<	<	<	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	80	<	1.84	28.8	3.62	2.09	1.91	1.58	1.1	NS	NS	NS
Chloride (mg/L)	250	NS	6.3 B	2.2	136.0	62.2	40.0	12.2	9.6	4.1	2.6	NS	NS	NS
Nitrate (mg/L)	10	NS	0.36	8.30	8.65	0.59	0.21	2.10	4.10	3.70	1.60	NS	NS	NS
Nitrite (mg/L)	1	NS	<	0.042 J	NS	NS	NS	NS	NS	NS	<	NS	NS	NS
Sulfate (mg/L)	250	NS Notoo:	12	25 B	19.8	18.3	13.3	22	21.4	14.7	14.1	NS	NS	NS

Notes:

1. Only compounds detected in one or more of the groundwater samples are presented in this table.

2. "<" indicates compound was not detected above the method detection limit.

3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.

4. Criteria is a guidance value.

Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.

6. mg/L = parts per million; ug/L = parts per billion

7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.

8. NV = no value; NS = Not sampled.

Sample Location Sample Date	Class GA Criteria	SP-45 10/4/2012	SP-45 10/17/2013	SP-45 6/10/2014	SP-45 6/4/2015	SP-45 8/21/2015	SP-45 10/23/2015	SP-45 6/16/2016	SP-45 10/26/2016	SP-45 7/13/2017	SP-45 6/21/2018	SP-45 6/14/2019	SP-45 9/17/2021	SP-45 9/30/2022
	Onteria	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EF	PA Method SW-8													
Acetone	50	<	<	<	<	<	<	1.5 J	<	<	<	4.1	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	6.3	5.5	7.5	1.7	<	<	0.11 J	<
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	6.8	1.1	1.9	2.9	1.4 J	5.7	3.7	13	2.0 J	1.4	1.3 J	9.0	4.0 J
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	260 D	69	130	160	16	45	16	170	45	18.7	17	130	260
Trichloroethene	5	13	3.6	6.4	8.5	1.5	7.5	7.2	53	10	5.4	4.6	26	55
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		283.0	73.7	138.3	171.4	18.9	171.4	33.9	243.5	58.7	25.5	27.0	165.1	319.0
Field Parameters														
Temperature (Deg. C)	NV	14.6	17.8	16.5	14	19.1	15.8	15.2	15.8	15.8	13.3	14	20.7	19.6
Specific Conductance (mS/cm)	NV	0.543	0.363	0.391	0.584	0.6	0.62	0.503	0.442	0.442	0.391	0.336	0.410	0.341
Dissolved Oxygen (mg/L)	NV	1.07	5.21	3.02	3.58	0.09	0.07	0.5	0.06	0.06	2.72	3.85	18.4	6.1
Oxygen Reduction Potential (mv)	NV	-29.5	88.3	143.1	73.3	-62.7	-61.7	250.7	-8.7	-8.7	88.2	128.4	162.6	129.9
pH (std. units)	NV	6.48	6.83	6.71	6.71	7.05	7.05	6.91	6.66	6.66	6.89	7.23	6.59	6.7
Turbidity (NTUs)	NV	3.95	2.3	3.17	0.5	14.91	5.06	11.25	17.2	17.2	5.5	12.48	7.25	7.25
Inorganics (ug/L)														
Iron	300	NS	32.1 B	170 J	27.2 J	45 J	1,260	197	386	<	<	NS	NS	NS
Manganese	300	NS	<	<	1.93	296.4	3,510	1447	1,340	240	332	NS	NS	NS
Miscellaneous Water Quality Para								-						
Methane (ug/L)	NV	NS	14	1.1	0.762 J	96.9	958	1500	3610	1760	8.1	NS	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	1.18	2.47	1.0	<	NS	NS	NS
Ethene (ug/L)	NV	NS	<	<	<	<	1.08	2.59	3.36	0.77	<	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	<	<	1.64	3.93	1.86	1.69	1.49	1.23	<	1.06	0.945	NS
Chloride (mg/L)	250	NS	5.1 B	4.2	35.0	9.4	17.3	15.4	12.6	3.2	6.8	NS	NS	NS
Nitrate (mg/L)	10	NS	6	5.2	2.68	1.2	1.9	0.39	0.72	0.79	0.35	NS	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS 42.4	NS	NS	NS	NS	<	NS	NS	NS
Sulfate (mg/L)	250	NS	39	33 B	32.7	43.4	22.4	24	23.8	19.1	16.8	12.1	9.82	NS

Notes:

1. Only compounds detected in one or more of the groundwater samples are presented in this table.

2. "<" indicates compound was not detected above the method detection limit.

3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.

4. Criteria is a guidance value.

Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.

6. mg/L = parts per million; ug/L = parts per billion

7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.

8. NV = no value; NS = Not sampled.

9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)

Sample Location		TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11
Sample Date	Class GA	6/3/2015	10/22/2015	6/16/2016	10/25/2016	7/12/2017	6/20/2018	6/13/2019
	Criteria							
Volatile Organic Compounds - El	PA Mothod SW-9	Q	Q	Q	Q	Q	Q	Q
Acetone	50			2 J	<	<		2.5 J
Benzene		<<	<	2 J	<	<	۲	2.3 J
Carbon disulfide	NV		<	<		<		<
Chloromethane	NV		<			<		<
1.1-Dichloroethane	5		<		~	<		<
1,1-Dichloroethene	5		<		~ ~	<		<
Vinyl chloride	2	<	<	~ ~	<	<		<
2-Butanone	50	~	<	~	<	<	~	<
cis-1,2-Dichloroethene	5	19	12	18	13	8.1	12.4	9.7
Toluene	5	10	12	10	10	<	12.4	0.1
1,1,1-Trichloroethane	5	<	<			<		<
Tetrachloroethene	5	0.58	1.5	0.53	1.2	0.25 J		0.49 J
Trichloroethene	5	88	74	77	58	40	66.7	41
trans-1.2-dichloroethene	5	60			50	40	00.1	
Total VOCs	<u> </u>	107.58	87.50	97.53	72.20	48.35	79.10	53.69
Field Parameters								
Temperature (Deg. C)	NV	17.5	14.4	12.4	13.4	16.9	9.5	8.8
Specific Conductance (mS/cm)	NV	0.37	0.535	0.493	0.504	0.393	0.464	0.447
Dissolved Oxygen (mg/L)	NV	0.11	1.57	2.84	2.24	2.06	4.83	4.12
Oxygen Reduction Potential (mv)	NV	-23.6	90.7	267.4	77.7	6.6	101.7	122
pH (std. units)	NV	6.84	7.04	6.9	6.8	6.69	6.81	7.06
Turbidity (NTUs)	NV	6.27	1.87	7.69	9.67	4.97	0.3	1.84
Inorganics (ug/L)								
Iron	300	NS	NS	NS	NS	NS	NS	NS
Manganese	300	NS	NS	NS	NS	NS	NS	NS
Miscellaneous Water Quality Par								
Methane (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	NS	NS	NS	NS	NS	NS
Chloride (mg/L)	250	NS	NS	NS	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	NS	NS	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	NS	NS	NS	NS	NS	NS
Sulfate (mg/L)	250	NS Notes:	NS	NS	NS	NS	NS	NS

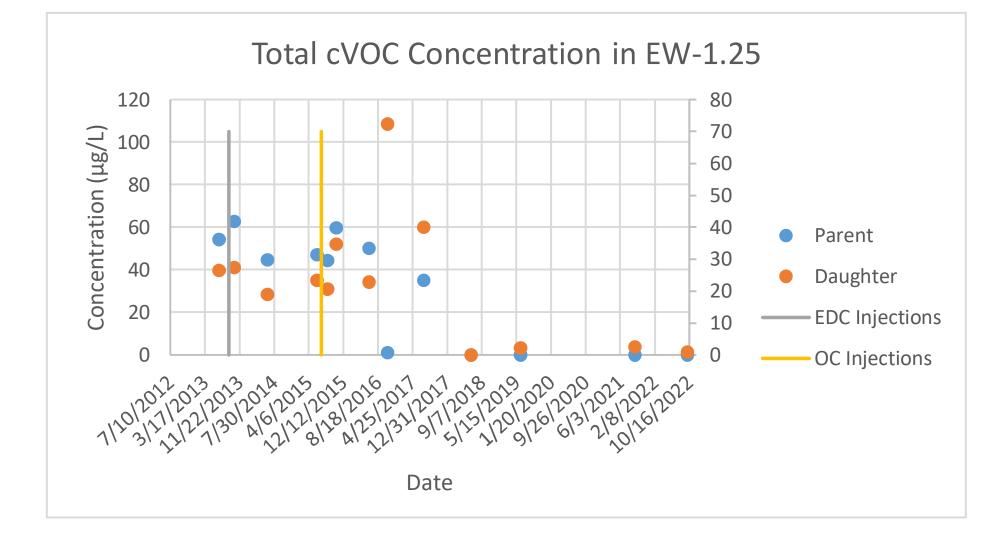
Notes:

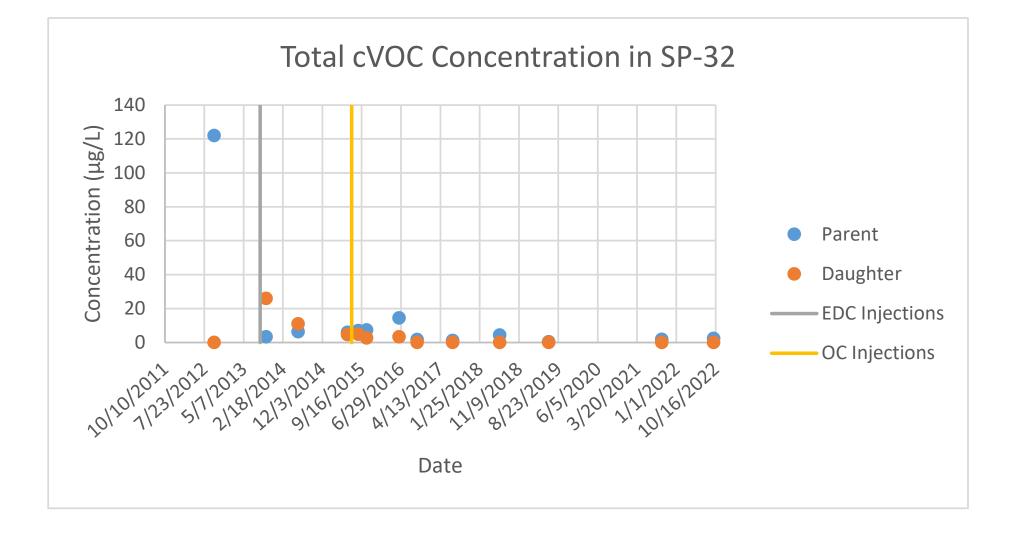
1. Only compounds detected in one or more of the groundwater samples are presented in this table.

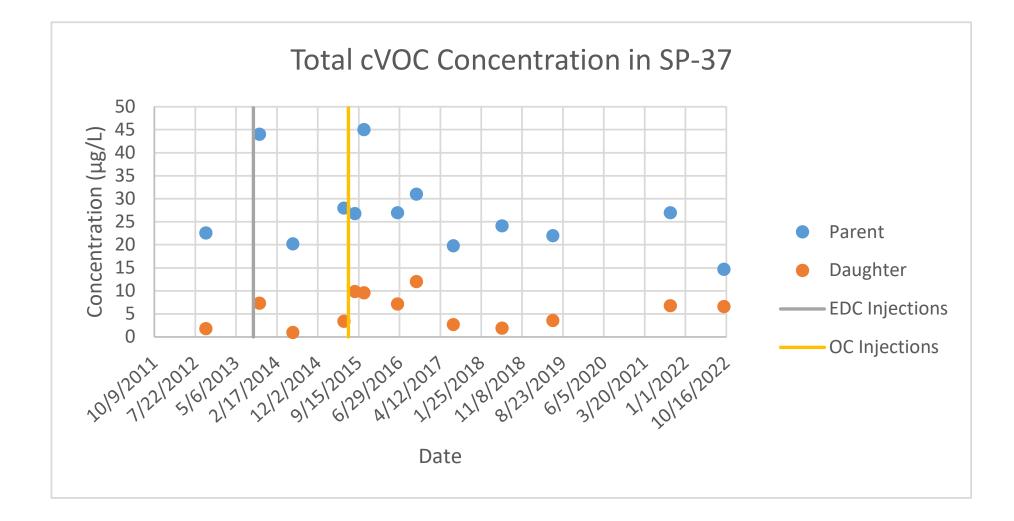
2. "<" indicates compound was not detected above the method detection limit.

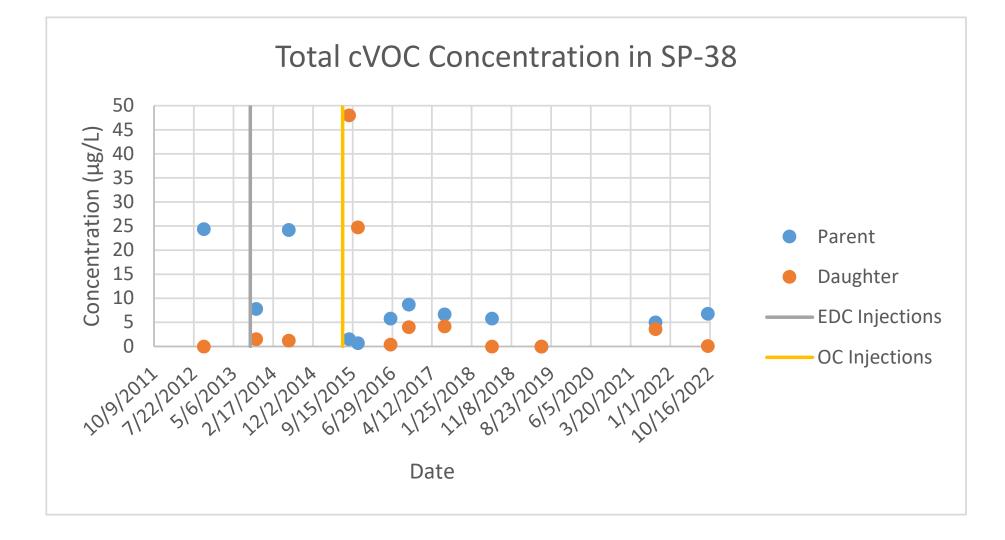
3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.

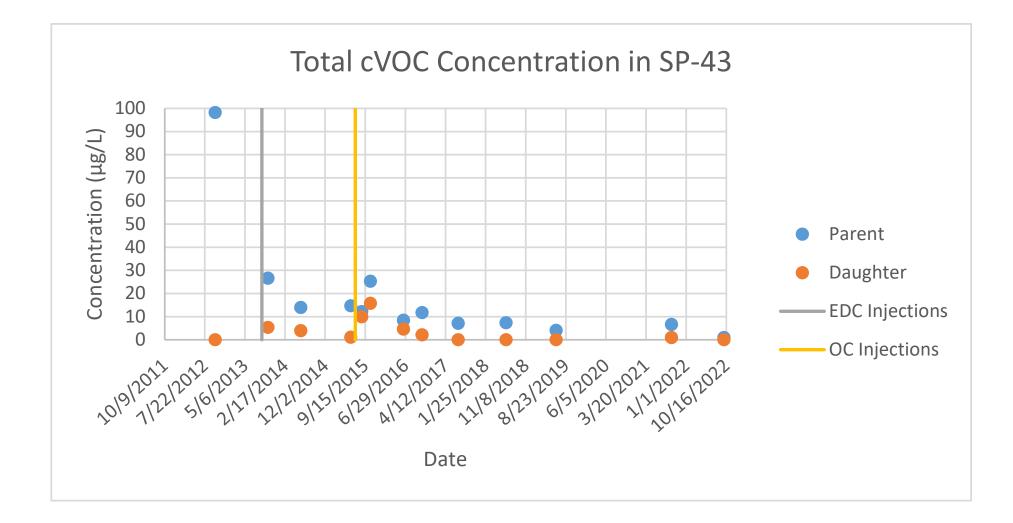
4. Criteria is a guidance value.

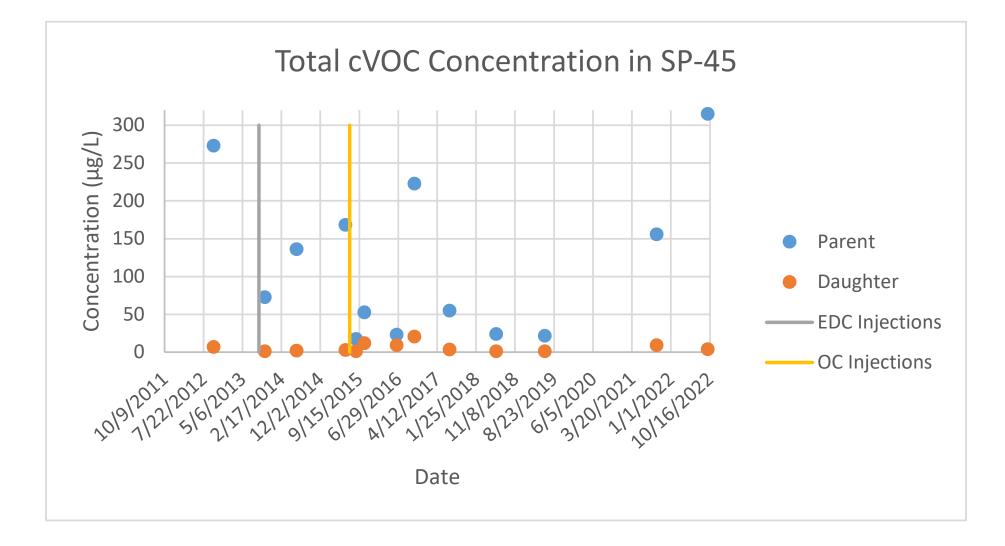

- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range. M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)

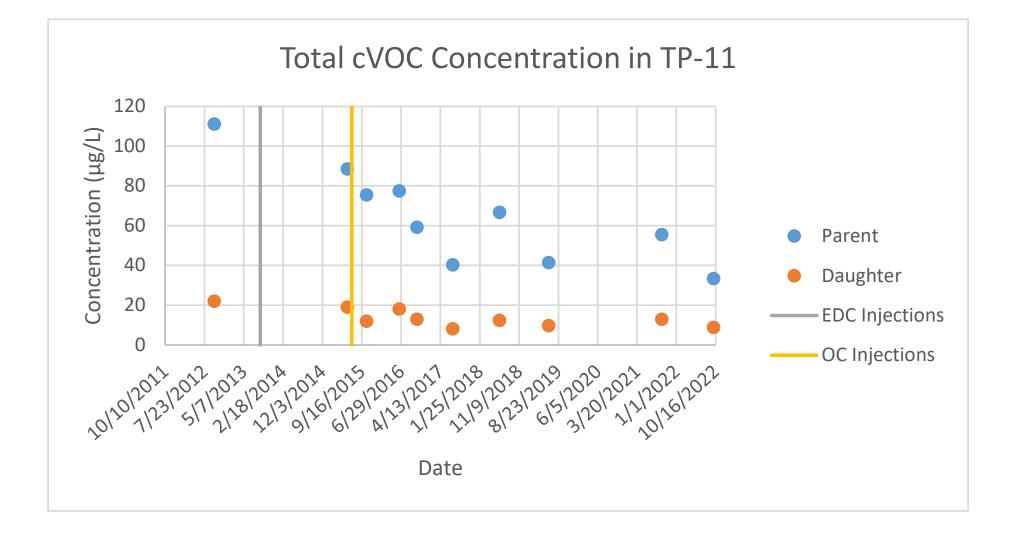

TP-11 9/17/202	21	TP-11 9/30/202	
	Q		Q
<		<	
<		<	
<		<	
<		<	
<		<	
<		<	
<		<	
<		<	
13		8.8	
<		~	
<		<	
0.47	J	0.44	J
55		33	
<		<	
68.47		42.24	
16.2		14.8	
0.558		0.518	
33.2		25.6	
200.2		86.1	
6.45		5.18	
4.91		13.93	
NS		NS	
NS		NS	
NS		NS	




ATTACHMENT D


CONCENTRATIONS OF CVOC PARENT MATERIAL AND DAUGHTER PRODUCTS IN GROUNDWATER





ATTACHMENT E

LABORATORY REPORT

ANALYTICAL REPORT

Lab Number:	L2254396
Client:	GZA GeoEnvironmental of New York
	300 Pearl Street
	Suite 700
	Buffalo, NY 14202
ATTN:	Thomas Bohlen
Phone:	(716) 844-7050
Project Name:	FORMER SIGNORE INC, FACILITY
Project Number:	21.0056367.67
Report Date:	10/14/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:FORMER SIGNORE INC, FACILITYProject Number:21.0056367.67

Lab Number:	L2254396
Report Date:	10/14/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2254396-01	SP-37-093022	WATER	ELLICOTTVILLE, NY	09/30/22 10:40	10/03/22
L2254396-02	TP-11-093022	WATER	ELLICOTTVILLE, NY	09/30/22 11:20	10/03/22
L2254396-03	EW-125-093022	WATER	ELLICOTTVILLE, NY	09/30/22 11:50	10/03/22
L2254396-04	SP-32-093022	WATER	ELLICOTTVILLE, NY	09/30/22 12:35	10/03/22
L2254396-05	SP-38-093022	WATER	ELLICOTTVILLE, NY	09/30/22 13:15	10/03/22
L2254396-06	SP-43-093022	WATER	ELLICOTTVILLE, NY	09/30/22 14:00	10/03/22
L2254396-07	SP-45-093022	WATER	ELLICOTTVILLE, NY	09/30/22 14:40	10/03/22
L2254396-08	TRIP BLANK	WATER	ELLICOTTVILLE, NY	09/30/22 00:00	10/03/22

Project Name: FORMER SIGNORE INC, FACILITY Project Number: 21.0056367.67

 Lab Number:
 L2254396

 Report Date:
 10/14/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: FORMER SIGNORE INC, FACILITY Project Number: 21.0056367.67

 Lab Number:
 L2254396

 Report Date:
 10/14/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 10/14/22

ORGANICS

VOLATILES

		Serial_No	0:10142220:29
Project Name:	FORMER SIGNORE INC, FACILITY	Lab Number:	L2254396
Project Number:	21.0056367.67	Report Date:	10/14/22
	SAMPLE RESULTS		
Lab ID:	L2254396-01	Date Collected:	09/30/22 10:40
Client ID:	SP-37-093022	Date Received:	10/03/22
Sample Location:	ELLICOTTVILLE, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/10/22 17:20		
Analyst:	PID		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	7.3		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	7.4		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: FORMER SIGNORE INC, FACILITY Lab Number: L2254396 Project Number: 21.0056367.67 Report Date: 10/14/22 Lab ID: L2254396-01 Date Collected: 09/30/22 10:40 Client ID: SP-37-093022 Date Received: 10/03/22 Sample Location: ELLICOTTVILLE, NY Not Specified Sample Depth: Parameter Result Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab ND AD Date Ofference	
SAMPLE RESULTS Lab ID: L2254396-01 Date Collected: 09/30/22 10:40 Client ID: SP-37-093022 Date Received: 10/03/22 Sample Location: ELLICOTTVILLE, NY Field Prep: Not Specified Sample Depth: Parameter Result Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab Volatile Volatile Volatile Volatile Volatile Volatile	
SAMPLE RESULTS Lab ID: L2254396-01 Date Collected: 09/30/22 10:40 Client ID: SP-37-093022 Date Received: 10/03/22 Sample Location: ELLICOTTVILLE, NY Field Prep: Not Specified Sample Depth: Parameter Result Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab Volatile Volatile Volatile Volatile Volatile Volatile	
Client ID: Sample Location: SP-37-093022 ELLICOTTVILLE, NY Date Received: Field Prep: 10/03/22 Not Specified Sample Depth:	
Parameter Result Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab Volatile Volatile <td< td=""><td></td></td<>	
Volatile Organics by GC/MS - Westborough Lab	
1,3-Dichlorobenzene ND ug/l 2.5 0.70 1	
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1	
Methyl tert butyl ether ND ug/l 2.5 0.70 1	
p/m-Xylene ND ug/l 2.5 0.70 1	
o-Xylene ND ug/l 2.5 0.70 1	
cis-1,2-Dichloroethene 6.6 ug/l 2.5 0.70 1	
Styrene ND ug/l 2.5 0.70 1	
Dichlorodifluoromethane ND ug/l 5.0 1.0 1	
Acetone ND ug/l 5.0 1.5 1	
Carbon disulfide ND ug/l 5.0 1.0 1	
2-Butanone ND ug/l 5.0 1.9 1	
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1	
2-Hexanone ND ug/l 5.0 1.0 1	
Bromochloromethane ND ug/l 2.5 0.70 1	
1,2-Dibromoethane ND ug/l 2.0 0.65 1	
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1	
Isopropylbenzene ND ug/l 2.5 0.70 1	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1	
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1	
Methyl Acetate ND ug/l 2.0 0.23 1	
Cyclohexane ND ug/l 10 0.27 1	
1,4-Dioxane ND ug/l 250 61. 1	
Freon-113 ND ug/l 2.5 0.70 1	
Methyl cyclohexane ND ug/l 10 0.40 1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	95		70-130	

		Serial_No:10142220:29
Project Name:	FORMER SIGNORE INC, FACILITY	Lab Number: L2254396
Project Number:	21.0056367.67	Report Date: 10/14/22
	SAMPLE RESULTS	
Lab ID:	L2254396-02	Date Collected: 09/30/22 11:20
Client ID:	TP-11-093022	Date Received: 10/03/22
Sample Location:	ELLICOTTVILLE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	10/10/22 17:44	
Analyst:	PID	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	0.44	J	ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	33		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

	Serial_No:10142220:29					o:10142220:29	
Project Name:	FORMER SIGNORE INC, FACILITY			Lab Nu	mber:	L2254396	
Project Number:	21.0056367.67				Report	Date:	10/14/22
		SAMP		6			
Lab ID: Client ID:	L2254396-02 TP-11-093022			Date Collected: Date Received:		09/30/22 11:20 10/03/22	
Sample Location:	ELLICOTTVILLE, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough I	_ab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		8.8		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	100	70-130
Dibromofluoromethane	96	70-130

ug/l

10

0.40

ND

1

Methyl cyclohexane

		Serial_No	p:10142220:29
Project Name:	FORMER SIGNORE INC, FACILITY	Lab Number:	L2254396
Project Number:	21.0056367.67	Report Date:	10/14/22
	SAMPLE RESULTS		
Lab ID:	L2254396-03	Date Collected:	09/30/22 11:50
Client ID:	EW-125-093022	Date Received:	10/03/22
Sample Location:	ELLICOTTVILLE, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/10/22 18:07		
Analyst:	PID		
Analysi.	ГIU		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	0.12	J	ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

					:	Serial_No	:10142220:29	
Project Name:	FORMER SIGNORE INC	C, FACILIT	Y		Lab Nu	mber:	L2254396	
Project Number:	21.0056367.67				Report	Date:	10/14/22	
-		SAMP	LE RESULTS	6	-			
Lab ID: Client ID: Sample Location:	L2254396-03 EW-125-093022 ELLICOTTVILLE, NY				Date Col Date Ree Field Pre	ceived:	09/30/22 11:50 10/03/22 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough L	_ab						
	, .							
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		1.4	J	ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		1.5	J	ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
Methyl cyclohexane		ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	96		70-130	

		Serial_No:10142220:29
Project Name:	FORMER SIGNORE INC, FACILITY	Lab Number: L2254396
Project Number:	21.0056367.67	Report Date: 10/14/22
	SAMPLE RESULTS	
Lab ID:	L2254396-04	Date Collected: 09/30/22 12:35
Client ID:	SP-32-093022	Date Received: 10/03/22
Sample Location:	ELLICOTTVILLE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	10/10/22 18:31	
Analyst:	PID	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	0.20	J	ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	2.1		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

					Serial_No:10142220:29		
Project Name:	FORMER SIGNORE INC	C, FACILIT	Y		Lab Nu	mber:	L2254396
Project Number:	21.0056367.67				Report	Date:	10/14/22
-		SAMPI		6	•		
Lab ID: Client ID: Sample Location:	L2254396-04 SP-32-093022 ELLICOTTVILLE, NY				Date Col Date Ree Field Pre	ceived:	09/30/22 12:35 10/03/22 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough L	ab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	96		70-130	

		Serial_No:10142220:29
Project Name:	FORMER SIGNORE INC, FACILITY	Lab Number: L2254396
Project Number:	21.0056367.67	Report Date: 10/14/22
	SAMPLE RESULTS	
Lab ID:	L2254396-05	Date Collected: 09/30/22 13:15
Client ID:	SP-38-093022	Date Received: 10/03/22
Sample Location:	ELLICOTTVILLE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	10/10/22 22:15	
Analyst:	MJV	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	0.81		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	0.08	J	ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	6.0		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

					Serial_No:10142220:29		
Project Name:	FORMER SIGNORE IN	C, FACILIT	Y		Lab Nu	mber:	L2254396
Project Number:	21.0056367.67				Report	Date:	10/14/22
-		SAMP	LE RESULT	5	-		
Lab ID: Client ID: Sample Location:	L2254396-05 SP-38-093022 ELLICOTTVILLE, NY				Date Col Date Ree Field Pre	ceived:	09/30/22 13:15 10/03/22 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics I	oy GC/MS - Westborough I	_ab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	101		70-130	

ug/l

10

0.40

ND

1

Methyl cyclohexane

		Serial_N	p:10142220:29
Project Name:	FORMER SIGNORE INC, FACILITY	Lab Number:	L2254396
Project Number:	21.0056367.67	Report Date:	10/14/22
	SAMPLE RESULTS		
Lab ID:	L2254396-06	Date Collected:	09/30/22 14:00
Client ID:	SP-43-093022	Date Received:	10/03/22
Sample Location:	ELLICOTTVILLE, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/10/22 22:36		
Analyst:	MJV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	4.6		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.43	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					:	Serial_No	:10142220:29
Project Name:	FORMER SIGNORE INC	C, FACILIT	Y		Lab Nu	mber:	L2254396
Project Number:	21.0056367.67				Report	Date:	10/14/22
-		SAMPI		6			
Lab ID: Client ID: Sample Location:	L2254396-06 SP-43-093022 ELLICOTTVILLE, NY				Date Col Date Ree Field Pre	ceived:	09/30/22 14:00 10/03/22 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough L	ab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	102		70-130	

			Serial_No	p:10142220:29
Project Name:	FORMER SIGNORE INC,	FACILITY	Lab Number:	L2254396
Project Number:	21.0056367.67		Report Date:	10/14/22
		SAMPLE RESULTS		
Lab ID:	L2254396-07 D		Date Collected:	09/30/22 14:40
Client ID:	SP-45-093022		Date Received:	10/03/22
Sample Location:	ELLICOTTVILLE, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	10/10/22 22:57			
Analyst:	MJV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	6.2	1.8	2.5			
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5			
Chloroform	ND		ug/l	6.2	1.8	2.5			
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5			
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5			
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5			
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5			
Tetrachloroethene	260		ug/l	1.2	0.45	2.5			
Chlorobenzene	ND		ug/l	6.2	1.8	2.5			
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5			
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5			
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5			
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5			
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5			
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5			
Bromoform	ND		ug/l	5.0	1.6	2.5			
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5			
Benzene	ND		ug/l	1.2	0.40	2.5			
Toluene	ND		ug/l	6.2	1.8	2.5			
Ethylbenzene	ND		ug/l	6.2	1.8	2.5			
Chloromethane	ND		ug/l	6.2	1.8	2.5			
Bromomethane	ND		ug/l	6.2	1.8	2.5			
Vinyl chloride	ND		ug/l	2.5	0.18	2.5			
Chloroethane	ND		ug/l	6.2	1.8	2.5			
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5			
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5			
Trichloroethene	55		ug/l	1.2	0.44	2.5			
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5			

					Serial_No:10142220:29			
Project Name:	FORMER SIGNORE	NC, FACILIT	Y		Lab Nu	mber:	L2254396	
Project Number:	21.0056367.67				Report	Date:	10/14/22	
		SAMP		S				
Lab ID: Client ID: Sample Location:	L2254396-07 SP-45-093022 ELLICOTTVILLE, NY	D			Date Co Date Re Field Pre	ceived:	09/30/22 14:40 10/03/22 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	h Lab						
					0.0	1.0	0.5	
1,3-Dichlorobenzene		ND		ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene		ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether		ND		ug/l	6.2	1.8	2.5	
p/m-Xylene		ND		ug/l	6.2	1.8	2.5	
o-Xylene		ND		ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene		4.0	J	ug/l	6.2	1.8	2.5	
Styrene		ND		ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane		ND		ug/l	12	2.5	2.5	
Acetone		ND		ug/l	12	3.6	2.5	
Carbon disulfide		ND		ug/l	12	2.5	2.5	
2-Butanone		ND		ug/l	12	4.8	2.5	
4-Methyl-2-pentanone		ND		ug/l	12	2.5	2.5	
2-Hexanone		ND		ug/l	12	2.5	2.5	
Bromochloromethane		ND		ug/l	6.2	1.8	2.5	
1,2-Dibromoethane		ND		ug/l	5.0	1.6	2.5	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene		ND		ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene		ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene		ND		ug/l	6.2	1.8	2.5	
Methyl Acetate		ND		ug/l	5.0	0.58	2.5	
Cyclohexane		ND		ug/l	25	0.68	2.5	
1,4-Dioxane		ND		ug/l	620	150	2.5	
Freon-113		ND		ug/l	6.2	1.8	2.5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	111		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	94		70-130	

25

ug/l

0.99

ND

2.5

Methyl cyclohexane

		Serial_No	0:10142220:29
Project Name:	FORMER SIGNORE INC, FACILITY	Lab Number:	L2254396
Project Number:	21.0056367.67	Report Date:	10/14/22
	SAMPLE RESULTS		
Lab ID:	L2254396-08	Date Collected:	09/30/22 00:00
Client ID:	TRIP BLANK	Date Received:	10/03/22
Sample Location:	ELLICOTTVILLE, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/10/22 16:56		
Analyst:	PID		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
/olatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	ND		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	ND		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1			
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Trichloroethene	ND		ug/l	0.50	0.18	1			
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1			

					ç	Serial_No	:10142220:29	
Project Name:	FORMER SIGNORE INC	C, FACILIT	Y		Lab Nu	mber:	L2254396	
Project Number:	21.0056367.67				Report	Date:	10/14/22	
-		SAMP		6	-			
Lab ID: Client ID: Sample Location:	L2254396-08 TRIP BLANK ELLICOTTVILLE, NY				Date Col Date Rec Field Pre	ceived:	09/30/22 00:00 10/03/22 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough L	ab						
	,							
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
Methyl cyclohexane		ND		ug/l	10	0.40	1	

% Recovery	Qualifier	Acceptance Criteria	
99		70-130	
100		70-130	
99		70-130	
96		70-130	
	99 100 99	99 100 99	% Recovery Qualifier Criteria 99 70-130 100 70-130 99 70-130

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Lab Number: L2254396 **Report Date:** 10/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/10/22 10:36 Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	o for sample(s):	01-04,08 Batc	h: WG1697836-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Lab Number: L2254396 **Report Date:** 10/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/10/22 10:36 Analyst: PID

arameter	Result	Qualifier Units	s RI	-	MDL
olatile Organics by GC/MS - We	estborough Lab	for sample(s):	01-04,08	Batch:	WG1697836-5
1,4-Dichlorobenzene	ND	ug/l	2.5	5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	5	0.70
p/m-Xylene	ND	ug/l	2.5	5	0.70
o-Xylene	ND	ug/l	2.5	5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	5	0.70
Styrene	ND	ug/l	2.5	5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0)	1.0
Acetone	ND	ug/l	5.0)	1.5
Carbon disulfide	ND	ug/l	5.0)	1.0
2-Butanone	ND	ug/l	5.0)	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0)	1.0
2-Hexanone	ND	ug/l	5.0)	1.0
Bromochloromethane	ND	ug/l	2.5	5	0.70
1,2-Dibromoethane	ND	ug/l	2.0)	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	5	0.70
Isopropylbenzene	ND	ug/l	2.5	5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	5	0.70
Methyl Acetate	ND	ug/l	2.0)	0.23
Cyclohexane	ND	ug/l	10)	0.27
1,4-Dioxane	ND	ug/l	25	0	61.
Freon-113	ND	ug/l	2.5	5	0.70
Methyl cyclohexane	ND	ug/l	10)	0.40

Project Name: FORMER SIGNORE INC, FACILITY

 Lab Number:
 L2254396

 Report Date:
 10/14/22

Project Number: 21.0056367.67

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/10/22 10:36Analyst:PID

Parameter	Result	Qualifier	Units	s R	L	MDL
Volatile Organics by GC/MS - West	tborough La	b for sample	e(s):	01-04,08	Batch:	WG1697836-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	98		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	99		70-130		
Dibromofluoromethane	96		70-130		

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Lab Number: L2254396 **Report Date:** 10/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/10/22 19:26 Analyst: KJD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	for sample(s):	05-07 Batch:	WG1697928-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Report Date:

Lab Number: L2254396 10/14/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/10/22 19:26 Analyst: KJD

arameter	Result	Qualifier U	nits	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 05-07	Batch:	WG1697928-5
1,4-Dichlorobenzene	ND	ι	ug/l	2.5	0.70
Methyl tert butyl ether	ND	l	ug/l	2.5	0.70
p/m-Xylene	ND	l	ug/l	2.5	0.70
o-Xylene	ND	ι	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	l	ug/l	2.5	0.70
Styrene	ND	l	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	l	ug/l	5.0	1.0
Acetone	ND	l	ug/l	5.0	1.5
Carbon disulfide	ND	l	ug/l	5.0	1.0
2-Butanone	ND	l	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	l	ug/l	5.0	1.0
2-Hexanone	ND	l	ug/l	5.0	1.0
Bromochloromethane	ND	l	ug/l	2.5	0.70
1,2-Dibromoethane	ND	l	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	l	ug/l	2.5	0.70
Isopropylbenzene	ND	l	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	l	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	l	ug/l	2.5	0.70
Methyl Acetate	ND	l	ug/l	2.0	0.23
Cyclohexane	ND	l	ug/l	10	0.27
1,4-Dioxane	ND	l	ug/l	250	61.
Freon-113	ND	l	ug/l	2.5	0.70
Methyl cyclohexane	ND	l	ug/l	10	0.40

Project Name:FORMER SIGNORE INC, FACILITYProject Number:21.0056367.67

 Lab Number:
 L2254396

 Report Date:
 10/14/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/10/22 19:26Analyst:KJD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - We	stborough La	b for sample	e(s): 05-	07 Batch:	WG1697928-5	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1.2-Dichloroethane-d4	100		70-130		
Toluene-d8	98		70-130		
4-Bromofluorobenzene	105		70-130		
Dibromofluoromethane	99		70-130		

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

arameter	LCS %Recovery 0	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - Westborou	gh Lab Associated sam	nple(s): 01-04,08 Batch	: WG1697836-3 WG1697836	6-4	
Methylene chloride	96	96	70-130	0	20
1,1-Dichloroethane	100	100	70-130	0	20
Chloroform	100	100	70-130	0	20
Carbon tetrachloride	96	98	63-132	2	20
1,2-Dichloropropane	100	100	70-130	0	20
Dibromochloromethane	92	94	63-130	2	20
1,1,2-Trichloroethane	98	100	70-130	2	20
Tetrachloroethene	100	100	70-130	0	20
Chlorobenzene	100	100	75-130	0	20
Trichlorofluoromethane	98	99	62-150	1	20
1,2-Dichloroethane	98	100	70-130	2	20
1,1,1-Trichloroethane	100	100	67-130	0	20
Bromodichloromethane	94	96	67-130	2	20
trans-1,3-Dichloropropene	96	96	70-130	0	20
cis-1,3-Dichloropropene	96	97	70-130	1	20
Bromoform	88	90	54-136	2	20
1,1,2,2-Tetrachloroethane	95	99	67-130	4	20
Benzene	100	100	70-130	0	20
Toluene	100	100	70-130	0	20
Ethylbenzene	100	100	70-130	0	20
Chloromethane	78	81	64-130	4	20
Bromomethane	47	48	39-139	2	20
Vinyl chloride	100	99	55-140	1	20

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

arameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated sam	ole(s): 01-04,08 Batch:	WG1697836-3 WG1697836	6-4	
Chloroethane	110	110	55-138	0	20
1,1-Dichloroethene	98	100	61-145	2	20
trans-1,2-Dichloroethene	100	100	70-130	0	20
Trichloroethene	91	93	70-130	2	20
1,2-Dichlorobenzene	98	100	70-130	2	20
1,3-Dichlorobenzene	100	100	70-130	0	20
1,4-Dichlorobenzene	99	99	70-130	0	20
Methyl tert butyl ether	93	96	63-130	3	20
p/m-Xylene	100	100	70-130	0	20
o-Xylene	100	100	70-130	0	20
cis-1,2-Dichloroethene	100	100	70-130	0	20
Styrene	100	100	70-130	0	20
Dichlorodifluoromethane	88	90	36-147	2	20
Acetone	89	82	58-148	8	20
Carbon disulfide	99	97	51-130	2	20
2-Butanone	84	90	63-138	7	20
4-Methyl-2-pentanone	92	96	59-130	4	20
2-Hexanone	87	93	57-130	7	20
Bromochloromethane	100	110	70-130	10	20
1,2-Dibromoethane	97	98	70-130	1	20
1,2-Dibromo-3-chloropropane	75	81	41-144	8	20
Isopropylbenzene	100	100	70-130	0	20
1,2,3-Trichlorobenzene	80	91	70-130	13	20

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04,08 Batch:	WG169783	36-3 WG1697836	3-4		
1,2,4-Trichlorobenzene	89		95		70-130	7		20
Methyl Acetate	98		100		70-130	2		20
Cyclohexane	110		110		70-130	0		20
1,4-Dioxane	100		104		56-162	4		20
Freon-113	100		100		70-130	0		20
Methyl cyclohexane	100		100		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	95	70-130
Toluene-d8	101	99	70-130
4-Bromofluorobenzene	101	98	70-130
Dibromofluoromethane	97	97	70-130

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated s	ample(s):	05-07 Batch:	WG1697928-3	WG1697928-4			
Methylene chloride	95		92		70-130	3		20
1,1-Dichloroethane	96		94		70-130	2		20
Chloroform	96		96		70-130	0		20
Carbon tetrachloride	100		97		63-132	3		20
1,2-Dichloropropane	93		92		70-130	1		20
Dibromochloromethane	92		91		63-130	1		20
1,1,2-Trichloroethane	96		96		70-130	0		20
Tetrachloroethene	100		99		70-130	1		20
Chlorobenzene	97		97		75-130	0		20
Trichlorofluoromethane	100		98		62-150	2		20
1,2-Dichloroethane	95		94		70-130	1		20
1,1,1-Trichloroethane	100		96		67-130	4		20
Bromodichloromethane	90		89		67-130	1		20
trans-1,3-Dichloropropene	86		85		70-130	1		20
cis-1,3-Dichloropropene	78		76		70-130	3		20
Bromoform	85		86		54-136	1		20
1,1,2,2-Tetrachloroethane	87		89		67-130	2		20
Benzene	94		94		70-130	0		20
Toluene	97		95		70-130	2		20
Ethylbenzene	96		95		70-130	1		20
Chloromethane	98		99		64-130	1		20
Bromomethane	89		91		39-139	2		20
Vinyl chloride	98		96		55-140	2		20

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	r RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbor	ough Lab Associated sample(s):	: 05-07 Batch:	WG1697928-3 WG16979	28-4	
Chloroethane	110	100	55-138	10	20
1,1-Dichloroethene	96	96	61-145	0	20
trans-1,2-Dichloroethene	94	92	70-130	2	20
Trichloroethene	99	97	70-130	2	20
1,2-Dichlorobenzene	96	95	70-130	1	20
1,3-Dichlorobenzene	100	100	70-130	0	20
1,4-Dichlorobenzene	98	97	70-130	1	20
Methyl tert butyl ether	87	90	63-130	3	20
p/m-Xylene	105	105	70-130	0	20
o-Xylene	100	100	70-130	0	20
cis-1,2-Dichloroethene	94	92	70-130	2	20
Styrene	110	110	70-130	0	20
Dichlorodifluoromethane	96	95	36-147	1	20
Acetone	72	67	58-148	7	20
Carbon disulfide	93	92	51-130	1	20
2-Butanone	72	75	63-138	4	20
4-Methyl-2-pentanone	75	80	59-130	6	20
2-Hexanone	79	80	57-130	1	20
Bromochloromethane	92	91	70-130	1	20
1,2-Dibromoethane	94	94	70-130	0	20
1,2-Dibromo-3-chloropropane	82	85	41-144	4	20
Isopropylbenzene	94	95	70-130	1	20
1,2,3-Trichlorobenzene	90	94	70-130	4	20

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPI Qual Limi	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	05-07 Batch:	WG1697928-3	WG1697928-4			
1,2,4-Trichlorobenzene	87		89		70-130	2	20	
Methyl Acetate	84		85		70-130	1	20	
Cyclohexane	98		98		70-130	0	20	
1,4-Dioxane	82		72		56-162	13	20	
Freon-113	100		100		70-130	0	20	
Methyl cyclohexane	95		94		70-130	1	20	

Surrogate	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	97	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	97	96	70-130

Project Name: FORMER SIGNORE INC, FACILITY Project Number: 21.0056367.67

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
Α	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2254396-01A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-01B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-01C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-02A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-02B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-02C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-03A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-03B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-03C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-04A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-04B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-04C	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-05A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-05B	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-05C	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-06A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-06B	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-06C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-07A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-07B	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-07C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-08A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2254396-08B	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)

Container Information

Container ID Container Type

Initial Final Temp Cooler pH pH deg C

Temp deg C Pres Seal Frozen Date/Time

Analysis(*)

Serial_No:10142220:29

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Acronyms

Lab Number: L2254396

Report Date: 10/14/22

GLOSSARY

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration. EPA Environmental Protection Agency. LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD - Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable. NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. Report Format: DU Report with 'J' Qualifiers

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Lab Number:	L2254396
Report Date:	10/14/22

Footnotes

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹

⁻ The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Serial_No:10142220:29

Project Name: FORMER SIGNORE INC, FACILITY

Project Number: 21.0056367.67

Lab Number: L2254396

Report Date: 10/14/22

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:FORMER SIGNORE INC, FACILITYProject Number:21.0056367.67

 Lab Number:
 L2254396

 Report Date:
 10/14/22

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Page Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Albany, NY 12205: 14 Walker Way of Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Image: Cooper Ave, Suite 105				1	Date Rec'd in Lab 10 (4)22					ALPHA JOB # 12254396	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		1000			Delive	rables	Street.		COST CAL	Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: Fulm Project Location: El	licottui	le, NY	Facili	ły		ASP-A EQuIS (1 File)		ASP-E EQuIS	3 5 (4 File)	Same as Client Info	
Client Information Client: GZA Geo	Gautabacabl		5636	1.61			Contraction of the local division of the loc	Other atory Requireme	1897 -	to to control			
Address: 300 Pear	Straat								ent		Disposal Site Information		
		Project Manager: Thomas Bohlen						IY TOGS		375	Please identify below location of applicable disposal facilities.		
Phone: 7/6-844-	Phone: 7/6-844-7037 Turn-Around Time						AWQ Standards NY CP-51					Disposal Facility:	
Fax: 716-248-		Standard		Due Date:			-	IY Unrestricted U				NJ NY	
Email: thomas, bohle	A REAL PROPERTY OF THE OWNER OF T	Rush (only if pre approved		# of Days:				IYC Sewer Disch	arge			Other:	
These samples have be	And the second se						ANAL	rsis				Sample Filtration	
Other project specific Please specify Metals		ents:					160					Done t Lab to do a Preservation l Lab to do B (Please Specify below) t	
ALPHA Lab ID (Lab Use Only)	Sar	nple ID	Colle	ction Time	Sample Matrix	Sampler's Initials	8					Sample Specific Comments	
54396-01	SP-37-0	93022	9/30/22	1040	W	ET	X		+			Sample Specific Comments	
-02		93012	9/20/22	1120	Ŵ	FI	X				-		
-03		13022	9/30/22	1150	Ŵ	ET	X						
-04		3022	9/30/22	1235	W	ET	X		-		-		
-25		3022	9/30/22	1315	Ŵ	ET	×	_	-		-		
60	SP-43-09		9/30/22	1010	W.	ET	X			\vdash	-		
-07	SP-45-09		9/30/22		Ŵ	ET	X		-	\vdash	-		
-08	Trip Blank		4/30/22		W	ET	X						
			1 50/ 51				-(
A = None F B = HCI / / C = HNO ₃ / / D = H ₂ SO ₄ / C E = NaOH E	A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type reservative						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are	
G = NaHSO ₄ C H = Na ₂ S ₂ O ₃ E	C = Cube D = Other E = Encore D = BOD Bottle	Relinquished By: Date/Time 10-3-22 = 1018 10-3-22 good foceoun Filey (AAC) 10/3/22 10=18				foce	n T			Date/Time 10 3/22 10: 18 10/4/27 0010		resolved. BY EXECUTING	
Form No: 01-25 HC (rev. 30-	Sept-2013)								1			(See reverse side.)	