

Proactive by Design

AUGUST 2023 POST-INJECTION GROUNDWATER MONITORING REPORT

Former Signore Inc. 55-57 Jefferson Street Ellicottville, New York 14731

April 12, 2024 File No. 21.0056367.68

PREPARED FOR:

Iskalo Ellicottville Holdings LLC Williamsville, New York

GZA GeoEnvironmental of New York

300 Pearl Street, Suite 700 | Buffalo, New York 14202 716-685-2300

32 Offices Nationwide www.gza.com

Copyright© 2024 GZA GeoEnvironmental, Inc.

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 300 Pearl Street Suite 700 Buffalo, NY 14202 T: 716.685.2300 F: 716.248.1472

www.gza.com

VIA EMAIL

April 12, 2024 File No. 21.0056367.68

Mr. David Chiazza Iskalo Ellicottville Holdings LLC Harbinger Square 5166 Main Street Williamsville, New York 14221 dchiazza@iskalo.com

Re: August 2023 Post-Injection Groundwater Monitoring Report

Former Signore, Inc. 55-57 Jefferson Street

Ellicottville, New York 14731 (Site)

NYSDEC Site No. C905034

Mr. Chiazza:

GZA GeoEnvironmental of New York (GZA) submits this post-injection groundwater monitoring report to Iskalo Ellicottville Holdings LLC (Client). The report presents the analytical results of sampling conducted at the above referenced Site on August 7, 2023. The monitoring is required by the New York State Department of Environmental Conservation (NYSDEC) as specified in the Decision Document for Brownfield Cleanup Program (BCP) Site Number C905034 (July 2015) and in accordance with the approved revised Site Management Plan (SMP) dated November 2023.

The remedial injection program and first round of post-injection monitoring (August 2015) were described in the Final Engineering Report for the Site remedy (October 2015). Per the SMP, semi-annual post-injection groundwater monitoring was conducted until July 2017. Considering the established rate of chlorinated volatile organic compound (cVOC) reduction observed, NYSDEC approved modification of the SMP for annual post-injection monitoring in Fall 2017.

The August 2023 sampling event was the 10th round of post-injection monitoring conducted. This data report provides Site figures, well development forms, an analytical data summary table, graphs of pre- and post- injection concentrations of cVOCs in groundwater, and the laboratory data report for the seven wells sampled.

The body of data collected since remedial injections indicates reductive dichlorination has effectively decreased groundwater cVOC concentrations as intended; and that a slow and steady overall trend of cVOC reduction has been established. However, recent data indicates Site groundwater has returned to an oxidizing environment characteristic of that prior to treatment. Additionally, trichloroethene (TCE) concentrations in monitoring well SP-32 and both tetrachloroethene (PCE) and TCE concentrations in SP-43 have increased above their respective Class GA Criteria over the last two annual sampling events.

The analytical results provide data for documentation of concentrations of cVOCs present in the on-Site groundwater. Groundwater cVOC concentrations measured at 99 months post-Organic Carbon Electron Donor Substrate (OCEDS) injection (August 2023) indicate the groundwater in the sampled monitoring wells/treatment area has returned to pre-treatment oxidizing conditions. While natural attenuation can occur in these conditions, it is most effective at low concentrations and for compounds having relatively few chlorines. Biotic degradation of the more chlorinated compounds, including PCE and TCE, is very slow and particularly ineffective at higher concentrations. In situations where reductive dechlorination has removed the parent compounds PCE and TCE, a change to oxidizing conditions can be beneficial for remediation of the daughter products cis-1,2-dichloroethene (DCE) and vinyl chloride (VC). However, if undissolved PCE and TCE remain, oxidative degradation may not be able to keep pace with their rate of dissolution.

Parent PCE and TCE concentrations had increased in monitoring well SP-45 in the two sampling events conducted since June 2019 (PCE at 17 μg/L, TCE at 4.6 μg/L). Concentrations increased in September 2021 (PCE at 130 μg/L, TCE at 26 µg/L) and September 2022 (PCE at 260 µg/L, TCE at 55 µg/L). In August 2023, parent PCE and TCE concentrations have decreased (PCE at 8 μg/L, TCE at 11 μg/L). SP-45 is located on the western portion of the OCEDS injection area (Figure 3).

One important exception to the trend of returning to an oxidizing environment is noted: results from the downgradient well EW-1.25R (Figure 2) show that reductive dichlorination is continuing to keep cVOC concentrations low. This well is located proximate to the southern BCP Site boundary and downgradient of the injection area.

Post-injection sampling will continue annually in accordance with the SMP.

Should you have any questions or require additional information following your review, please contact Thomas Bohlen at 716-570-5983.

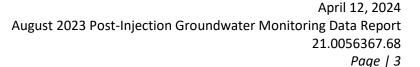
Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

romas Bohlen

Thomas Bohlen, P.G.

Senior Project Manager


Bart A. Klettke, P.E.

Principal

Jeremiah Duncan, Ph.D. Senior Chemist

- Juil Par

cc: Megan Kuczka, NYSDEC; Angela Martin, New York State Department of Health (NYSDOH)

ATTACHMENTS

FIGURE 1 MICROWELL GROUNDWATER ELEVATION CONTOUR PLAN

FIGURE 2 CHLORINATED VOLATILE ORGANIC COMPOUND CONCENTRATIONS – JUNE 2019 THROUGH

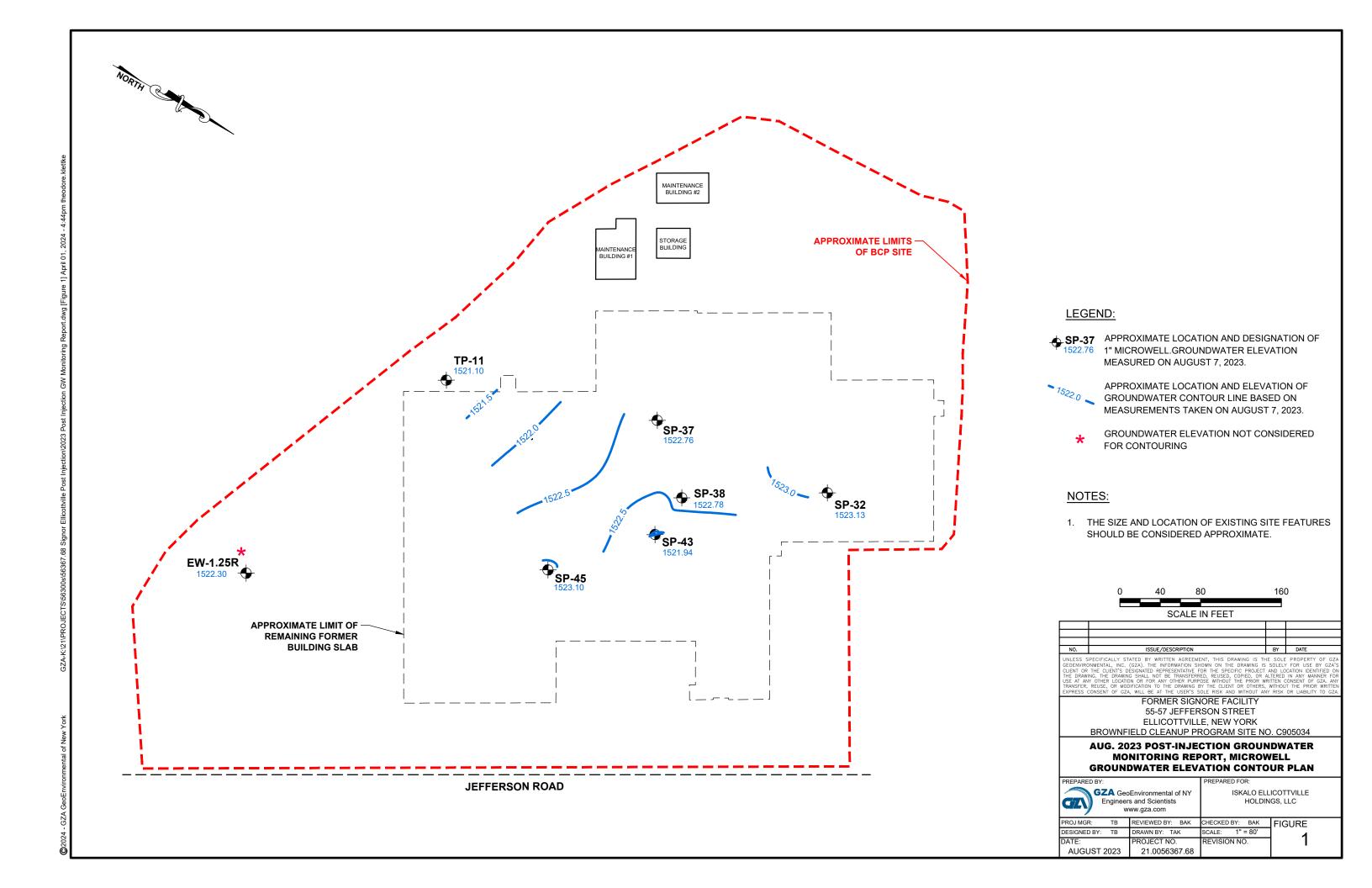
AUGUST 2023

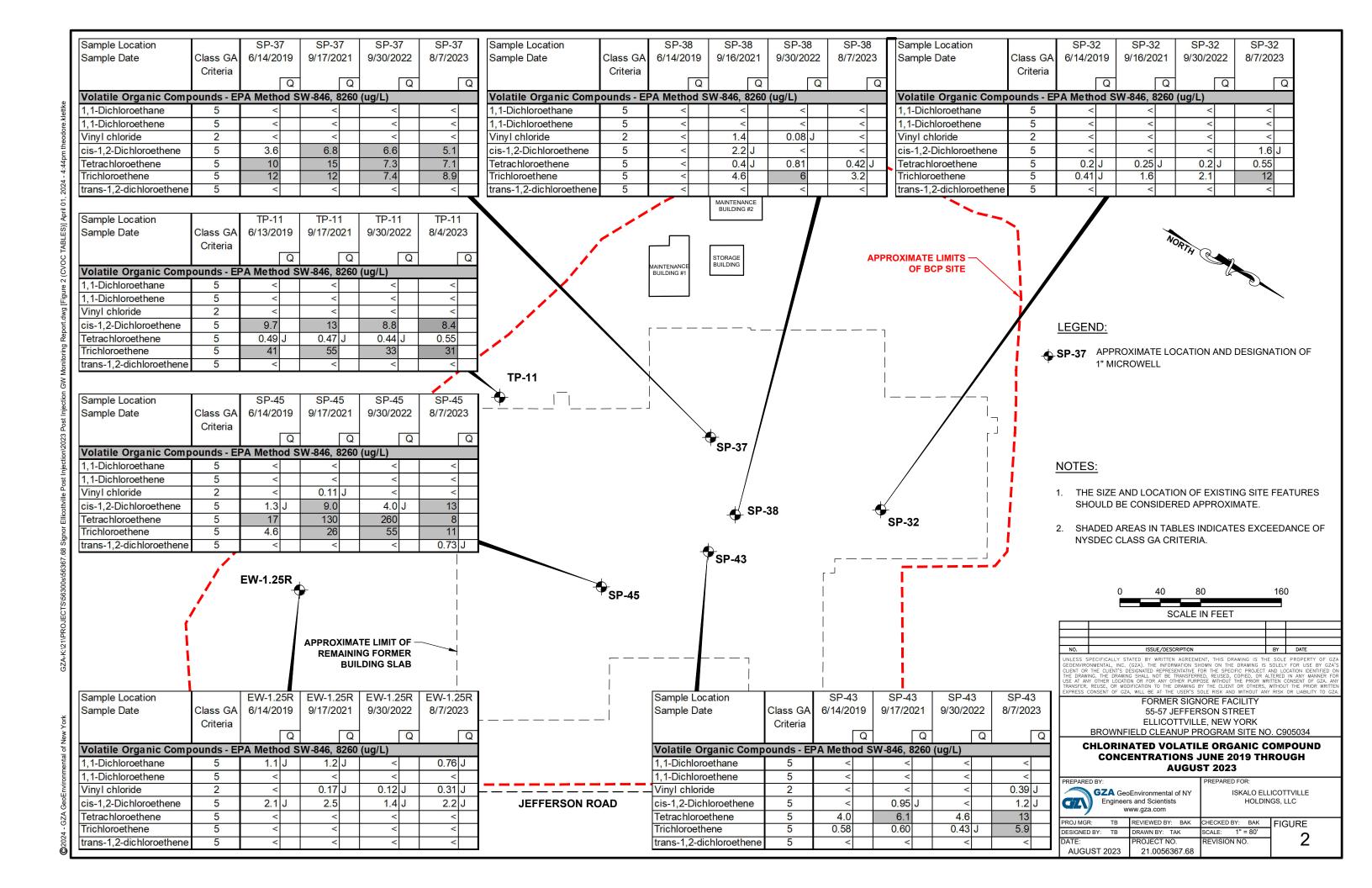
FIGURE 3 LOCATION OF ORGANIC CARBON ELECTRON DONOR SUBSTRATE INJECTIONS

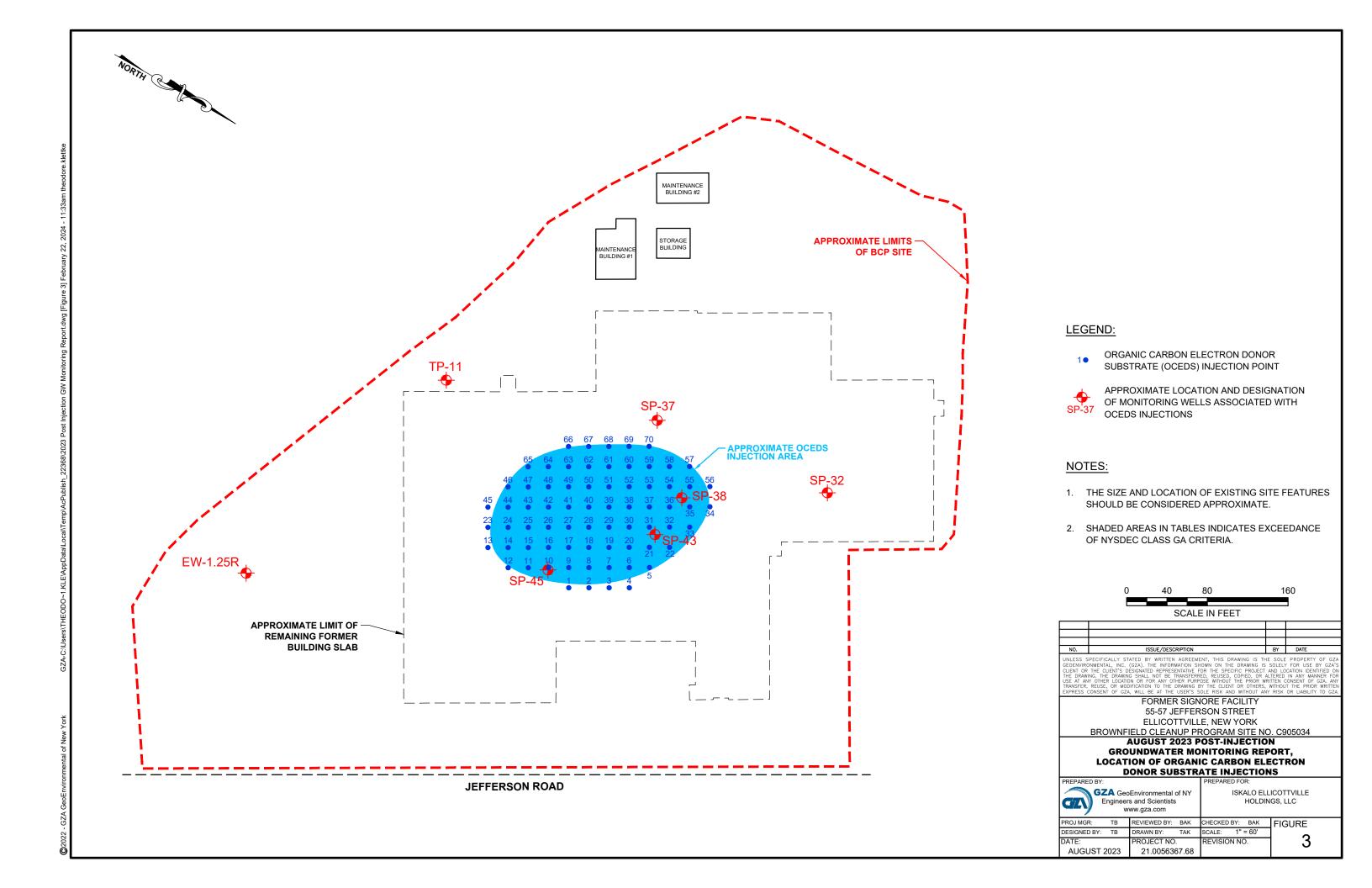
ATTACHMENT A LIMITATIONS

ATTACHMENT B WELL DEVELOPMENT FORMS

ATTACHMENT C GROUNDWATER ANALYTICAL RESULTS SUMMARY


ATTACHMENT D CONCENTRATIONS OF CVOC PARENT MATERIAL AND DAUGHTER PRODUCTS


MEASURED IN GROUNDWATER


ATTACHMENT E LABORATORY REPORT

FIGURES

ATTACHMENT A

LIMITATIONS

October 2021

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

21.0056367.68 Page | 2 October 2021

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

ATTACHMENT B

WELL DEVELOPMENT FORMS

	17.				1 (2) (2)	Historic Info	rmation								
Boring Log A	vailable (y	es/no/attac	hed):												
Installation Lo	og Availab	le (yes/no/a	attached)												
						Summ									
Monitoring W		EW-1.25 ፕ			face Elevation						inless Steel				
Installation D		7/90			Casing Elevation				creen Depth						
Installed By:		Empire Soi	ls		Point Elevation	: 1531.96 ft.		Bottom o	f Screen De	pth: 25 ft.					
				Elevation D											
Previous Fiel	vious Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water pH Specific Conductance Temperature Turbidity Color														
Danilla ta	Depth to Water pH Specific Conductance Temperature Turbidity Color														
	(ft) (Standard Units) (uMhos/cm) (°C) (NTU)														
									Clear						
	9.51 6.77 0.65 14.7 13.19 Clear														
notes;	9.51 6.77 0.65 14.7 13.19 Clear tes:														
		-	Fie	eld Observa	tions		V V		Parame	eters +/-	Sampling Information				
Exterior Obs	ervations:	Good							рН	+/- 0.1	Sample ID: EW-1.25 - 080723				
		المحمد							Conductivit	y +/- 3%	Sample Time: 🕬 🖒				
Interior Obse	ervations (5,000							Temperatu		# of Sample Containers: 3				
	(6								Turbidity		Duplicate Sample ID:				
	2								ORP		Sample Analysis: VOCs 8260				
Signs of Dan			tone						DO		MNA PARAMETERS				
Locked ((es/tho)	Well Ca	p (ves/no)	Surfa	ace Seal Intact		PID Measu	urement:	G,6	Odors: 🗸	IDNE				
		1000				Well Quali	ty Data								
Doto	Time	Donth to	Cumulative	pН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes				
Date	rime	Depth to Water	Volume	(Standard	Conductance	(°C)	(NTU)	COIOI	Oxygen	Reduction	Notes				
					(uMhos/cm)	(C)	(1410)		Oxygen	Potential					
08 tz/23	>C28	ft bgs	Purged	Units)	0.613	14.5	-3.67	neve	1.76	-73.5	Depth of Water: \\.74				
40 LEG 25	0925	11-77	0-1	6.37	0.60	14.2	-2.73	10.0	0.97	-76.1	Length of Water Column: 17 90				
	0930	11.77	0.2	6.34	0.609	15.9	2.98		E.54	-79.0	Depth of Well: 23 64				
	0935	11.77	0.3	6.33	0.605	14.8	5.76		0.76	<i>51.8</i>	Sheen Observed: Y A				
	0940	11.77	0.9	6.34	A.607	15.0	10.62		0.74	-84-4	DNAPL Observed: Y 🙀				
	0950	11.77	8.5	6.35	0-601	14.6	19.68		0.70		Did Well Go Dry: Y (A)				
	0955	11.77	06	6.37	0.598	15.0	19-15		0-68		Other:				
	OX BICU	11.77	0.7	6.37	0.595	15.0	70.06		0.68	-90.3					
						· ·									
						1									

						Historic Inforr	nation				
oring Log Ava	ilable (ves	/no/attache	ed):								
stallation Log	Available	(yes/no/atta	ached)			Summar	7/				
					- Flavotion:	Summa	R	iser/Scre	en Material:	PVC	
onitoring We	10.57	P-32	G	round Suna	ce Elevation: sing Elevation		—_т	on of Scr	een Depth:	9 ft.	
stallation Dat	e: 9/	27/2012	PI	rotective Ca	oint Elevation	1533.52	В	ottom of	Screen Dep	th: 19 ft.	
stalled By:	<u></u>	REC	K	levation Dat	tum:						
		- Leform	ation Available	ves/no/at	tachad)						
revious Field	measuren	nent inionii	ation Available	(yourners)	Ranges	of Previous Fie	ld Measure	ements			Color
	1-1	pł	7	Specific Co		Temperat	ure	Ture	oidity		33.3
Depth to V	vater	(Standar			os/cm)	(°C)		(N	02		Clear
(ft) 7.14		5.9	93		33	18.6		5.	02		
		0.0									
lotes:									Parame	ters +/-	Sampling Information
	THE P. LEWIS CO., LANSING	14, 30	Field	d Observation	ons				На	+/- 0.1	Sample ID: 57-32-080773
xterior Obse	rvations:	6000							Conductivity	/ +/- 3%	Sample Time: 1055
_Attender Good									Temperatur	e +/- 10%	# of Sample Containers: 3
nterior Obse	vations 🗍	6000						11	Turbidity	+/- 10%	Duplicate Sample ID:
	(2)								ORP	+/- 10mV	Sample Analysis: VOCs 8260 MNA PARAMETERS
		. 16-4	10						DO		
Signs of Dam	age/Tamp	ering: 100	(Kiesino)	Surfa	ce Seal Intact		PID Measu	rement:			IONE
Signs of Dam Locked	nage/Tamp es/no)	ering: Nor Well Car	p (yes)no)	Surfa	ce Seal Intacto	(yes/no) Well Quali		irement:			
Signs of Dam Locked	nage/Tamp es/no)	ering: Nor Well Car	p (ves)no)	Surfa		Well Quali	ty Data		0.0	Odors: 🖍	
Locked	es/no)	Well Car	p (ves/no) Cumulative	рН	Specific	Well Quali Temperature	ty Data Turbidity	Color	Ø-D Dissolved		Notes
Signs of Dam Locked	es/no) Time	Depth to	p (yes)no)	# 12 VOC	Specific Conductance	Well Quali	ty Data		0.0	Odors: A Oxygen Reduction	Notes
Locked	es/no)	Depth to Water	Cumulative	pH (Standard Units)	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Odors: A	Notes Notes
Locked Date	es/no) Time	Depth to	Cumulative Volume Purged	pH (Standard Units)	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Odors: A Oxygen Reduction Potential	Notes Depth of Water: 10-39
Locked	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units)	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes Depth of Water: 1039 Length of Water Column: 8 22
Locked Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) 6.20 6.65	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Odors: A Oxygen Reduction Potential	Depth of Water: 10-39 Length of Water Column: 8-22 Depth of Well: 8-64 Sheen Observed: Y
Locked Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units)	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes Depth of Water: 10-39 Length of Water Column: 8-25 Depth of Well: 15-45 Sheen Observed: Y Notes
Locked Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) 6.20 6.65	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes Depth of Water: 1039 Length of Water Column: 8 22 Depth of Well: 15 15 15 15 15 15 15 15 15 15 15 15 15
Locked Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) 6.20 6.65	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes Depth of Water: 10-39 Length of Water Column: 8-25 Depth of Well: 15-45 Sheen Observed: Y Notes
Locked Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) 6.20 6.65	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes Depth of Water: 1039 Length of Water Column: 8 22 Depth of Well: 15 15 15 15 15 15 15 15 15 15 15 15 15
Locked Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) 6.20 6.65	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes Depth of Water: 1039 Length of Water Column: 8 22 Depth of Well: 15 15 15 15 15 15 15 15 15 15 15 15 15
Locked Date	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) 6.20 6.65	Specific Conductance (uMhos/cm)	Well Quali Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	Oxygen Reduction Potential	Notes Depth of Water: 1039 Length of Water Column: 8 22 Depth of Well: 15 15 15 15 15 15 15 15 15 15 15 15 15

Boring Lo	g Available	(yes /no/att	achod).			Historic I	nformation	10.55			
nstallatio	n Log Avail	able (yes/n	o/attached)								
			P 1			Sum	mary				
Monitoring		SP-37		Ground S	Surface Elevation	on:	illialy	Discott	Name		
Installation Installed E		9/27/201:	2	Protective	e Casing Eleva	tion		- Top of	Screen Mate Screen Der	erial: PVC	
installed E	sy:	TREC		Monitorin	g Point Elevation	or 1533.3	6	_ Rottom	of Seroon	otn: 9 ft. Depth: 19 ft.	
Previous F	iold mass.			Flounting	D-1		<u> </u>	_ Dollon	i or screen;	Deptn: 19 ft.	
10010031	reiu meast	irement into	ormation Avai	lable (yes/n	o/attached)						
Depth	to Water				Range	es of Previous	Field Meas	urement	s		
	(ft)	(Cton	pH		Conductance	Tempe	rature		urbidity		Color
6	.49		dard Units) 6.08	(ul	Mhos/cm)	(°	C)		(NTU)		Color
Votes:			0.08		0.19	18	.4		10.32		Clear
											Clear
100 500		17.72	E	ield Observ	ations						
xterior Ob	servations	: G000		CIU CUSUIV	audits		L. B. V.		Paran	neters +/-	Sampling Information
									pН	+/- 0.1	Sample ID: \$ 2-37-08-723
nterior Obs	servations	6000							Conductiv	ity +/- 3%	ISample Time: u.c.o.
									Temperat	ure +/- 10%	# of Sample Containers: >
								-	Turbidity	+/- 10%	Duplicate Sample ID: —
igns of Da	mage/Tam		Ione						ORP DO	+/- 10m\	Sample Analysis: VOCs 8260
Locked	(ves/no)	Well Ca	p (yes/no)	Surf	ace Seal Intact	(Ves/no)	PID Meas	urement.	0 - D	+/- 10%	
	100000000	AB - 0				Well Qua	ity Data	dicinent.	0.0	Odors:	rie
Date	Time	Depth to	Cumulative								
	1	Water	Volume	pH	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		ft bgs			Conductance	(°C)	(NTU)		Oxygen	Reduction	Notes
8-7-23	1125	10,62	Purged	Units)	(uMhos/cm)				,,,,,,,	Potential	
	1130	10.63	0.1	6.15	0-188	18'.7	-6.20	none	2:35	O.PI	Depth of Water: 10.60
	1135	10.63	0.1	6.12	0.187	17.6	-6.75	1	2-21	123.2	Depth of Water: 10.60 Length of Water Column: 9.56
		10.63	0.4	6.11	0.187	16.9	-7-18		2.03	126.7	Depth of Well: 20-16
	1140		0.5	6.12	0.188	16.9	-130		2.00	177.8	Sheen Observed: Y
	1145	10.63	1/10		0.171	16.9	- 7.30	. - -	1.98	128.6	DNAPL Observed: Y W
		10.63	0.3								DUING B
		10.63	0.5								Did Well Go Dry: Y 🖘
		10.63	7.3								Other:
		10.63	7.5								Other:
		10.63	0.3								Other:

						Historic Inf	ormation			125-1	
Boring Log A	vailable (y	yes/no/atta	ched):								
Installation Le	og Availat	ole (yes /no/	attached)								
						Sumn	nary				
Monitoring W	/ell :	SP-38		Ground Su	rface Elevation	1:		Riser/Sc	reen Materi	al: PVC	
Installation D	ate:	9/27/2012		Protective	Casing Elevation	on:		Top of S	creen Depti	h: 9 ft.	
Installed By:		TREC		Monitoring	Point Elevation	1533.52		Bottom o	of Screen De	epth: 19 ft.	
				Elevation D	Datum:						
Previous Fiel	ld measur	ement Infor	mation Availa	ble (yes/ no /	/attached)						
					Range	s of Previous F	ield Measu	rements			
Depth to	Water		pН	Specific (Conductance	Tempera	ature	Tu	rbidity		Color
(ft)		(Stand	ard Units)	(uM	hos/cm)	(°c)	1)	NTU)		
7.2		(6.85	C	0.416	16.7			5.88		Clear
Notes:				-				0			
12.1											
			Fie	eld Observa	tions				Param	eters +/-	Sampling Information
Exterior Obse	ervations	1000							pН	+/- 0.1	Sample ID: 5P-38-080723
									Conductivi		Sample Time: \320
Interior Obse	ervations (Good							Temperatu	re +/- 10%	# of Sample Containers: 3
		>= ************************************							Turbidity		Duplicate Sample ID:
	-3								ORP	+/- 10mV	Sample Analysis: VOCs 8260
		pering: 🗥 o	ne			~			ORP DO	+/- 10mV +/- 10%	Sample Analysis: VOCs 8260 MNA PARAMETERS
Signs of Dam Locked ரூ		pering: 🗥 o	∧e_ ap((ye₃/no)	Surfa	ace Seal Intact		PID Meas	urement:	ORP DO	+/- 10mV	Sample Analysis: VOCs 8260 MNA PARAMETERS
		pering: 🗥 o	me ap((yes/no)	Surfa	ace Seal Intact	((e)/no) Well Qual		urement:	ORP DO	+/- 10mV +/- 10%	Sample Analysis: VOCs 8260 MNA PARAMETERS
Locked (y	res/no)	Well Ca	ap((ye)/no)			Well Qual	ity Data		ORP DO	+/- 10mV +/- 10% Odors: ೧ ೪	Sample Analysis: VOCs 8260 MNA PARAMETERS
		Well Ca	Cumulative	рН	Specific	Well Qual Temperature	ity Data Turbidity	urement:	Dissolved	+/- 10mV +/- 10% Odors: ∩ ₽	Sample Analysis: VOCs 8260 MNA PARAMETERS
Locked (v	res/no)	Well Ca	Cumulative Volume	pH (Standard	Specific Conductance	Well Qual	ity Data		ORP DO	+/- 10mV +/- 10% Odors: ne Oxygen Reduction	Sample Analysis: VOCs 8260 MNA PARAMETERS
Locked (v	res∤no) Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units)	Specific Conductance (uMhos/cm)	Well Qual Temperature (°C)	ity Data Turbidity (NTU)	Color	Dissolved Oxygen	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential	Sample Analysis: VOCs 8260 MNA PARAMETERS AC Notes
Locked (v	Time	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units)	Specific Conductance (uMhos/cm) 3.433	Well Qual Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential	Sample Analysis: VOCs 8260 MNA PARAMETERS Notes Depth of Water: 10-74
Locked (y	Time (2.55	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) しんごろ	Specific Conductance (uMhos/cm) 5.433	Well Qual Temperature (°C)	Turbidity (NTU)	Color	Dissolved Oxygen	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential	Sample Analysis: VOCs 8260 MNA PARAMETERS Notes Depth of Water: 10-74 Length of Water Column: 8.28
Locked (v	Time (2.55)	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) 6-63	Specific Conductance (uMhos/cm) 3.433 0.433	Well Qual Temperature (°C)	Turbidity (NTU) 41.43 5243 34.51	Color	Dissolved Oxygen 4.07 3.76	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential LOS.L	Sample Analysis: VOCs 8260 MNA PARAMETERS Notes Depth of Water: 10-74 Length of Water Column: 8-28 Depth of Well: 19-02
Locked (v	Time (255) 1305) 1305)	Depth to Water ft bgs	Cumulative Volume Purged O.1 O.2	pH (Standard Units) 6-63 6-61	Specific Conductance (uMhos/cm) 3.433 0.433	Well Qual Temperature (°C) 16.5 15.5 16.3	Turbidity (NTU) 41.43 5243 34.51 30.88	Color	Dissolved Oxygen 4.07 3.76 3.64	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential LOS.L III.9	Notes Depth of Water: 10-74 Length of Water Column: 28 Depth of Well: 19-02 Sheen Observed: Y
Locked (v	Time (2.55)	Depth to Water ft bgs	Cumulative Volume Purged	pH (Standard Units) 6-63	Specific Conductance (uMhos/cm) 3.433 0.433	Well Qual Temperature (°C)	Turbidity (NTU) 41.43 5243 34.51	Color	Dissolved Oxygen 4.07 3.76	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential LOS.L	Notes Depth of Water: 0.74 Length of Water Column: 2.8 Depth of Well: 19.02 Sheen Observed: Y MODAPL Obse
Locked (v	Time (255) 1305) 1305)	Depth to Water ft bgs	Cumulative Volume Purged O.1 O.2	pH (Standard Units) 6-63 6-61	Specific Conductance (uMhos/cm) 3.433 0.433	Well Qual Temperature (°C) 16.5 15.5 16.3	Turbidity (NTU) 41.43 5243 34.51 30.88	Color	Dissolved Oxygen 4.07 3.76 3.64	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential LOS.L III.9	Notes Depth of Water: 10-74 Length of Water Column: 28 Depth of Well: 19-02 Sheen Observed: Y DNAPL Observed: Y Did Well Go Dry: Y W
Date	Time (255) 1305) 1305)	Depth to Water ft bgs	Cumulative Volume Purged O.1 O.2	pH (Standard Units) 6-63 6-61	Specific Conductance (uMhos/cm) 3.433 0.433	Well Qual Temperature (°C) 16.5 15.5 16.3	Turbidity (NTU) 41.43 5243 34.51 30.88	Color	Dissolved Oxygen 4.07 3.76 3.64	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential LOS.L III.9	Notes Depth of Water: 0.74 Length of Water Column: 2.8 Depth of Well: 19.02 Sheen Observed: Y MODAPL Obse
Locked (y	Time (255) 1305) 1305)	Depth to Water ft bgs	Cumulative Volume Purged O.1 O.2	pH (Standard Units) 6-63 6-61	Specific Conductance (uMhos/cm) 3.433 0.433	Well Qual Temperature (°C) 16.5 15.5 16.3	Turbidity (NTU) 41.43 5243 34.51 30.88	Color	Dissolved Oxygen 4.07 3.76 3.64	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential LOS.L III.9	Notes Depth of Water: 10-74 Length of Water Column: Pepth of Well: 19-02 Sheen Observed: Y DNAPL Observed: Y Did Well Go Dry: Y DID MINISTER STATES NOTES NOTE
Locked (y	Time (255) 1305) 1305)	Depth to Water ft bgs	Cumulative Volume Purged O.1 O.2	pH (Standard Units) 6-63 6-61	Specific Conductance (uMhos/cm) 3.433 0.433	Well Qual Temperature (°C) 16.5 15.5 16.3	Turbidity (NTU) 41.43 5243 34.51 30.88	Color	Dissolved Oxygen 4.07 3.76 3.64	+/- 10mV +/- 10% Odors: ne Oxygen Reduction Potential LOS.L III.9	Notes Depth of Water: 10-74 Length of Water Column: Pepth of Well: 19-02 Sheen Observed: Y DNAPL Observed: Y Did Well Go Dry: Y DID MINISTER STATES NOTES NOTE

						I lintavia laf-	venetion.		77 6		
Edward State						Historic Info	ormation				
Boring Log A											
nstallation Le	og Availab	le (yes /no/a	attached)								
	9					Summ					
Monitoring W		SP-45			rface Elevation				reen Materia		
nstallation D		10/1/2012			Casing Elevation				creen Depth		
Installed By:		TREC			Point Elevation	1533.43		Bottom o	f Screen De	pth: 19.2 ft.	
				Elevation D	atum:						
Previous Fiel	d measure	ement Infori	mation Availal	ole (yes/ <mark>no</mark> /	attached)						
					Ranges	of Previous F	ield Measu	rements			
Depth to	Water		pН	Specific (Conductance	Tempera	ature	Tur	bidity		Color
(ft)			ard Units)	66 6965	nos/cm)	(°C)	·	(N	ITU)		
9.05			5.84		0.37	17.5			5.27		Clear
Notes:			-								
10,65.											
	2 5 5		Fie	eld Observa	tions			2,51111	Parame	eters +/-	Sampling Information
Exterior Obs	onvations:	Q-al	110	ila Obboliva	10110				рН		Sample ID: 89-45-080723
LAGIOI ODS	civations.	Close							Conductivit	v +/- 3%	Sample Time: \510
Interior Obse	ryations 7	Grand									# of Sample Containers: 3
intenor Obse	i valions y	21000							Turbidity		Duplicate Sample ID:
									ORP		Sample Analysis: VOCs 8260
Signs of Dan	nane/Tamr	pering: Ma	200-						DO		MNA PARAMETERS
Locked (ap (yes/no)	Surfa	ace Seal Intact	(Vesino)	PID Meas	urement:	20	Odors: 1	
LOCKED ()	CSP110)	TTOII OC	D () copio)		acc Court miles.	Well Qual					
				,							
Date	Time	Depth to	Cumulative	pН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
Date	111110	Water	Volume		Conductance	(°C)	(NTU)		Oxygen	Reduction	
		ft bgs	Purged	Units)	(uMhos/cm)	(0)	(11.0)			Potential	
67 22	1445	10-34		6-67	0.390	19.9	5,1)	none	1.84		Depth of Water: 10.33
8-7-23	H50			6-64		10.2	2.25	1	1.34		Length of Water Column: 7.09
	1455	10.34	0.2	6.64	0.369	20.1	-3-41		1.15	138.9	Depth of Well: 17.42
	1500	10.34	0.3	6-64	0.866	20.0	-5.39		1.09	126.9	Sheen Observed: Y
	1505	10.35	0.4	6.64	0.364	20.0	-6.4		1.07	175.3	DNAPL Observed: Y N
	1003	10.00	0.9	10°10	0001	20.0	2-41	14-	1.0	1000	Did Well Go Dry: YN
								 			Other:
					1						

						Historic Inf	ormation				
Boring Log A	vailable (yes/no/attac	ched):								
Installation L	,-										
		1.5				Summ	nary				
Monitoring V	Vell:	SP-43		Ground Su	rface Elevation			Riser/Sc	reen Materi	al: PVC	
Installation E		10/1/2012			Casing Elevation			Top of S	creen Depti	n: 10 ft.	
Installed By:		TREC		Monitoring	Point Elevation	1533.42		Bottom o	of Screen De	epth: 20 ft.	
				Elevation D		-				41	
Previous Fie	ld measur	ement Infor	mation Availa	ble (yes/ no .							
						s of Previous F	ield Measu	urements			
Depth to	Water		pН	Specific (Conductance	Tempera	ature	Tu	rbidity		Color
(ft)			ard Units)		hos/cm)	(°C			NTU)		-
7.8	9	(6.12	C).183	20.5	5		1.72		Clear
Notes:								411			
				3							2
Anna de la	4 , 40		Fi∈	eld Observa	tions	CONTRACTOR OF THE PARTY OF THE				eters +/-	Sampling Information
Exterior Obs	ervations:	Geod							pН	+/- 0.1	Sample ID: 57-43-280123
									Conductivi		Sample Time: 1475
Interior Obse	ervations	Good									# of Sample Containers: 3
									Turbidity		Duplicate Sample ID:
									ORP		Sample Analysis: VOCs 8260
Signs of Dar	nage/ i am	pering: 1/2	11/2	C4	0! !	rel\	DID Mass		DO		MNA PARAMETERS
Locked (§	(esino)	vveii Ca	ap (yes/no)	Suna	ace Seal Intact	Well Qual	PID Meas	urement:	0.0	Odors: M	me.
	144-2					vveli Quai	lly Dala				
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
24,0		Water	Volume		Conductance		(NTU)		Oxygen	Reduction	140163
		ft bgs	Purged	Units)	(uMhos/cm)	()	(1110)		Chygeii	Potential	
8-7-23	1400	13-55	i diged	5,99	0.226	16.1	-1,31	nanz	1.65		Depth of Water: il =48
0 1 00	1405	Miss	0.1	6.20	0.262	15.8	-1.23	1	1.15		Length of Water Column: 8.55
	1910	11.55	0.2	6.36	0.302	15.6	-5.00		0.84		Depth of Well: 20-03
	1415	11.54	0.3	6-39	0.309	15.6			0.81	141.4	Sheen Observed: Y
	1420	11.55	0.5	6.38	8-311	15.5	-6.07	1	0.79	140.4	DNAPL Observed: Y (N)
											Did Well Go Dry: Y (N)
											Other:

						Historic Inf	formation	5		77.0	
Boring Log						Cho (o) (o) (i)	Officialion				
Installation	Log Availa	ole (yes /no	/attached)								
						Sumn	narv				
Monitoring \		TP-11		Ground St	ırface Elevatior	า:		Riser/Sc	creen Mater	ial: PVC	
Installation				Protective	Casing Elevati	on:			Screen Dept		
Installed By	:	Trec Envir	onmental	Monitoring	Point Elevation	n: 1532.98 ft.			of Screen D		
				Elevation [Datum:				01 0010011 0	орин.	
Previous Fie	eld measur	ement Infor	mation Availa	ble (yes/no	/attached)						
						s of Previous F	ield Measu	rements			
Depth to			рН	Specific	Conductance	Tempera			rbidity		Color
(ft		(Stand	ard Units)	(uM	hos/cm)	(°C			NTU)	1	Color
9.4	2	6	6.69		0.393	16.7			4.97		Olass
Notes:									1.01		Clear
			Fie	eld Observa	tions				Param	eters +/-	
Exterior Obs	ervations:	Good							pH	+/- 0.1	Sampling Information
									Conductivi		Sample ID: TP-11 - 086423
Interior Obse	ervations	Good							Temperatu		Sample Time: 1530
									Turbidity		# of Sample Containers: 3
Class of D	describer in sp ree n represe								ORP		Duplicate Sample ID: Sample Analysis: VOCs 8260
Signs of Dar	nage/ I am								DO	+/- 10%	dample Arialysis. VOCS 8260
Locked (yes/no)	Well Ca	p (Ves/no)	Surfa	ace Seal Intact	(Ves/no)	PID Measi	urement:	0.0	Odors:	rore
			a dela			Well Qual	ity Data			000.0.	
Date	Time	Depth to	Cumulative	pН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance		(NTU)		Oxygen	Reduction	110.03
		ft bgs	Purged	Units)	(uMhos/cm)	()	(, -)		Oxygon	Potential	
8-4-23	1525	11.88	6	6.88	0.513	13.9	25,25	none	3.57		Depth of Water: ()_85
1	120	11.88	0.1	6.80	0.514	14.3	-2:10	- (3.36		Length of Water Column: 8.34
	1515	11.88	0.2	6.85	0-517	14.2	-6.27		3.35		Depth of Well: 19.59
	1520	11-88	0.4	6.85	0.518	14.3	-6.76		3-34		Sheen Observed: Y W
	1525	11.88	0.5	6.45	0.519	14.4	-1-12		3.35		DNAPL Observed: Y 🐠
						.01	, i				Did Well Go Dry: Y
											Other:
GZA CocEs	i dramma t	Laf Naw V	le								
GZA GeoEn	vironmenta	II OT INEW YO	OFK.								Page: 1 of 1

ATTACHMENT C

GROUNDWATER ANALYTICAL RESULTS SUMMARY

BCP Site No. C905034

		·	ı	Т				T	T	1	1			T	
Sample Location		EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25R	EW-1.25R	EW-1.25R	EW-1.25R
Sample Date	Class GA	6/25/2013	10/16/2013	6/10/2014	6/4/2015	8/21/2015	10/21/2015	6/15/2016	10/25/2016	7/13/2017	6/21/2018	6/14/2019	9/17/2021	9/30/2022	8/7/2023
	Criteria	0/20/2010	10/10/2010	0, 10, 20 1 1	0, 1,20.0	0/2 1/20 10	. 0, 2 ., 20 . 0	0, 10, 20 10	. 6, 26, 26 . 6	.,,	0/2 1/20 10	o,, <u>_</u>	0,,202.	0,00,2022	0/1/2020
		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	A Method SW-8	46, 8260C (ug/L)													
Acetone	50	<	<	<	<	<	3.8 J	2.3 J	<	<	<	6.8	<	1.5 J	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	0.18 J	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	1.8	<	<	<	<	<
Chloromethane	NV	0.77 J	<	<	<	<	<	<	<	<	<	0.88 J	<	<	<
1,1-Dichloroethane	5	4.1	4.1	2.9	3	2.6	4.2	2.9	3.9	3.0	<	1.1 J	1.2 J	<	0.76 J
1,1-Dichloroethene	5	<	<	<	0.25 J	0.19 J	0.36 J	0.24 J	0.48 J	0.39 J	<	<	<	<	<
Vinyl chloride	2	4.6	5	2.4	2.6	<	3.3	3.2	6.6	<	<	<	0.17 J	0.12 J	0.31 J
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	31	32	23	29	28	44	28	98	57	<	2.1 J	2.5	1.4 J	2.2 J
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	0.82 J	<	<	0.7 J	<	<	<	<	<	<
Tetrachloroethene	5	3.3	3.8	3.6	<	1.4	1.8	3.1	<	<	<	<	<	<	<
Trichloroethene	5	51	59	41	47	42	58	47	0.27 J	35	<	<	<	<	<
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	0.79 J	<	<	<	<	<	<
Total VOCs		94.77	103.9	72.9	81.85	75.01	115.46	86.74	110.74	97.19		11.06	3.87	3.02	3.27
Field Parameters															
Temperature (Deg. C)	NV	13	13.5	10.4	9.1	13.1	13.4	12.4	13	14.9	12.1	9.8	14.1	13.4	15
Specific Conductance (mS/cm)	NV	0.7	0.68	0.7	0.757	0.67	0.68	0.653	0.612	0.65	0.629	0.633	0.641	0.564	0.595
Dissolved Oxygen (mg/L)	NV	0.05	0.18	0.06	0.17	0.12	0.22	0.29	0.23	0.13	0.65	0.18	17.1	3.1	0.68
Oxygen Reduction Potential (mv)	NV	-88.5	-99.3	-91.2	-130.5	-86.2	-91.6	161.4	-125.1	-169.9	-54.1	-140.1	-98.9	-96	-90.3
pH (std. units)	NV	7.35	6.85	6.78	6.73	6.77	6.89	6.79	6.87	6.77	6.12	6.91	6.28	6.78	6.37
Turbidity (NTUs)	NV	9.12	3.31	11.71	7.7	14.2	10.7	20.1	11.87	13.13	21.5	69.11	9.82	8.14	20.06
Inorganics (ug/L)	000	NO	4 000	44.000	44.000	44.500	44.000	07.000	40.500		07.000 144	0.000 144	00.400	NO	NO
Iron	300 300	NS NS	1,000 1,300	14,000 1,600	14,000 1,482	11,500 1,265	11,900 1,465	27,300 1,453	10,500 1,354	1,256	27,000 M1 3,060	6,600 M1 1,392	28,400 2,460	NS NS	NS NS
Manganese Miscellaneous Water Quality Para		INO	1,300	1,000	1,402	1,200	1,405	1,455	1,354	1,230	3,000	1,392	2,400	INO	INO
Methane (ug/L)	NV	NS	1,000	170	237	218	190	244	130	130	NT	1,110	1,620	NS	NS
(0 /	NV NV	NS NS	1,000	1/0	231	210	190	244	130	130	NT	6.85	1,020	NS NS	NS NS
Ethane (ug/L) Ethene (ug/L)	NV	NS NS	1.7		- 	0.535		0.558	0.55	0.55	NT	2.82		NS	NS
Total Organic Carbon (mg/L)	NV	NS NS	1.1		2.07	2.47	1.92	2.26	1.56	1.84	21.0	7.97	11.60	NS	NS
Chloride (mg/L)	250	NS NS	66 B	69	62	57	56	49	45	47	48.2 M1	14.1	16.0	NS	NS
Nitrate (mg/L)	10	NS NS	<	<	0.015 J	0.020 J	<	<	0.029 J		70.2 IVI I		0.12	NS	NS
Nitrite (mg/L)	1	NS NS			NS NS	NS NS	NS	NS	NS NS	NS	<u> </u>	NS	NS NS	NS	NS
Sulfate (mg/L)	250	NS NS	7.6	7.4 B	12.8	10.3	10.5	10.2	11.7	8.86	 	10.3	4	NS	NS
(····3· –/		Notes:		2		. 3.0	. 0.0	. 4.2		5.00		. 0.0	1	. , .	

Notes:

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled; NT = Not tested.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

BCP Site No. C905034

	1		_					·						_						
Sample Location		SP-32	SP-32	SP-3	2	SP-32	SP-32	SP-32	SP-32	,	SP-32		SP-32	SP-32	2	SP-32	SP-32	SP-32		SP-32
Sample Date	Class GA	10/3/2012	10/17/20			6/4/2015	8/21/2015	10/22/2015	6/15/20		10/25/201		7/12/2017	6/21/20		6/14/2019	9/16/2021	9/30/2022	,	8/7/2023
Campic Date	Criteria	10/0/2012	10/11/20	0/10/20		0/4/2010	0/21/2010	10/22/2013	0/13/20	'	10/20/201	'	1712/2011	0/21/20	,10	0/14/2013	3/10/2021	3/30/2022	'	0/1/2020
	- Critoria	Q	⊣ г	Q	Q	Q	Q	Q		Q	Г	Q	Q	1	Q	Q	Q	l —	Q	Q
Volatile Organic Compounds - EF	PA Method SW-8		<u> </u>																	
Acetone	50	<	240	D <		<	<	<	2.8	J	<		<	<		4.8 J	<	<		<
Benzene	1	<	<	<	:	<	<	<	<		<		<	<	:	<	<	<		<
Carbon disulfide	NV	<	<	<	:	<	<	<	<		<		<	<	:	<	<	<		<
Chloromethane	NV	<	<	<	:	<	<	<	<		<		<	<	:	<	<	<		<
1,1-Dichloroethane	5	<	<	<	:	<	<	<	<		<		<	<	:	<	<	<		<
1,1-Dichloroethene	5	<	<	<	:	<	<	<	<		<		<	<	:	<	<	<		<
Vinyl chloride	2	<	<	<	:	0.18 J	0.23 J	<	<		<		<	<		<	<	<		<
2-Butanone	50	<	45	<	:	<	<	<	<		<		<	<		<	<	<		<
cis-1,2-Dichloroethene	5	<	26	11		4.5	4.7	2.7	3.3		<		<	<		<	<	<		1.6 J
Toluene	5	<	<	<	:	<	<	<	<		<		<	<	:	<	<	<		<
1,1,1-Trichloroethane	5	<	<	<		<	<	<	<		<		<	<		<	<	<		<
Tetrachloroethene	5	2.1	<	<		0.25 J	0.46 J	0.62	0.44	J	0.42	J	0.32 J	<		0.2 J	0.25 J	0.2 J		0.55
Trichloroethene	5	120	3.4	6.4	1	5.8	6.5	6.7	14		1.2		0.85	4.4		0.41 J	1.6	2.1		12
trans-1,2-dichloroethene	5	<	<	<	:	<	<	<	<		<		<	<	:	<	<	<		<
Total VOCs		122.1	314.4	17.4	ļ.	10.73	11.89	10.02	20.54		1.62		1.17	4.4		0.43	1.85	2.3		14.15
Field Parameters																				
Temperature (Deg. C)	NV	13.2	16.5	13.1		11.0	17.7	16.6	15.8		15.1		18.6	13.2	2	12.2	19.9	18.3		17.2
Specific Conductance (mS/cm)	NV	0.418	0.65	0.392		0.326	0.272	0.223	0.232		0.181		0.133	0.144		0.122	0.167	0.167		0.265
Dissolved Oxygen (mg/L)	NV	4.92	0.18	0.12		0.15	0.16	0.48	0.53		1.67		2.29	0.76		5.59	42.8	48.4		0.96
Oxygen Reduction Potential (mv)	NV	50.3	-95.3	-21.9		104.4	57.7	169.9	236.7		153		41.9	181.2		150.8	215.3	93.1		57.7
pH (std. units)	NV	7.23	6.45	6.48		6.28	6.34	6.25	6.22		6.0		5.9	5.96		6.30	6.05	6.40		6.68
Turbidity (NTUs)	NV	35	6.76	4.95	5	0.6	7.15	4.42	7.6		4.96		5.02	2.8	3	17.51	5.36	7.52		-6.52
Inorganics (ug/L)																				
Iron	300	NS	3,480	16,000		339	246	206	541		66		<	<	:	NS	NS	NS		NS
Manganese	300	NS	24,600	19,000		6,468	8,331	2,897	2,668		1,144		12	<		NS	NS	NS		NS
Miscellaneous Water Quality Para	ameters																			
Methane (ug/L)	NV	NS	120	660		725	932	208	205		3.31		0.55	J <	:	NS	NS	NS		NS
Ethane (ug/L)	NV	NS	<	<		0.659	0.841	<	<		<		<	<	:	NS	NS	NS		NS
Ethene (ug/L)	NV	NS	1.7	<		<	<	<	<		<		<	<	:	NS	NS	NS		NS
Total Organic Carbon (mg/L)	NV	NS	51	<		1.35	1.7	1.02	1.45		0.87		1.08	<	:	NS	NS	NS		NS
Chloride (mg/L)	250	NS	5	B 3.1		3.46	3.12	2.83	2.72		1.59		0.861	<		NS	NS	NS		NS
Nitrate (mg/L)	10	NS	<	<		1.92	0.93	4.2	3.9		4.8		1.4	1		NS	NS	NS		NS
Nitrite (mg/L)	1	NS	<	<		NS	NS	NS	NS		NS		NS	<		NS	NS	NS		NS
Sulfate (mg/L)	250	NS NS	4.9	J 14	B	14.6	16.8	16.1	16.3		14.4		13.8	15.9		NS	NS	NS		NS

Notes:

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

BCP Site No. C905034

	Г			Т						T					
Sample Location		SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37
Sample Date	Class GA	10/5/2012	10/17/2013	6/10/2014	6/4/2015	8/21/2015	10/23/2015	6/16/2016	10/26/2016	7/12/2017	6/21/2018	6/14/2019	9/17/2021	9/30/2022	8/7/2023
	Criteria														
		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	PA Method SW-84														
Acetone	50	<	<	<	<	<	<	2.6 J	<	<	<	5.5	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	0.21 J	0.42 J	<	<	<	<	<	<	<
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	1.8	7.3	0.99 J	3.4	9.9	9.4	6.7	12	2.7	1.9	3.6	6.8	6.6	5.1
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	0.82 J	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	9.6	24	13	18	15	26	14	17	12	13.2	10	15	7.3	7.1
Trichloroethene	5	13	20	7.2	10	11	19	13	14	7.8	10.9	12	12	7.4	8.9
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		24.4	51.3	27.2	31.4	36.72	54.61	36.72	43	22.5	26	31.1	33.8	21.3	21.1
Field Parameters															
Temperature (Deg. C)	NV	13.5	17	11.9	10	17	15.3	13.3	14.2	18.4	12.1	11.9	18.8	18.9	16.9
Specific Conductance (mS/cm)	NV	0.452	0.535	0.305	0.449	0.432	0.396	0.291	0.246	0.19	0.184	0.166	0.210	0.195	0.191
Dissolved Oxygen (mg/L)	NV	0.28	0.2	0.58	0.68	0.07	0.13	0.29	0.55	0.86	2.53	3.05	44.2	26	1.98
Oxygen Reduction Potential (mv)	NV	-122.4	74.8	107.7	117.6	16.1	82.8	306.5	130.2	6.7	180.1	151.5	213.1	143.7	128.6
pH (std. units)	NV	6.6	6.39	6.28	6.12	6.28	6.3	6.03	5.99	6.08	5.94	6.25	5.86	6.21	6.12
Turbidity (NTUs)	NV	2.5	9.35	12.5	1.4	5.27	2.3	5.93	5.02	10.37	0.9	6.12	9.26	6.82	-7.3
Inorganics (ug/L)															
Iron	300	NS	61.7 B	900	81.4	409	66	85	56	<	<	NS	NS	NS	NS
Manganese	300	NS	336	150	1,021	6,015	2,035	1,137	1,445	73	<	NS	NS	NS	NS
Miscellaneous Water Quality Para															
Methane (ug/L)	NV	NS	26	2.5	28	108	67.4	47.2	<	<	<	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	<	<	<	<	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	<	<	<	<	<	<	<	<	<	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	4 J	2.8 J	2.51	4.75	2.62	2.47	2.21	1.93	1.5 M1		1.14	NS	NS
Chloride (mg/L)	250	NS	12 B	3.8	28.8	16.4	14.7	7.11	5.79	2.64	2.4	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	4.8	5.2	2.98	0.04	0.27	1.40	3.20	1.30	0.79	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS	NS	NS
Sulfate (mg/L)	250	NS	36	24 B	23.3	18	21.1	18.3	21	14.3	13.9	9.78	10.6	NS	NS
		Notes:													

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range. M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

BCP Site No. C905034

			 					1						T	
Sample Location		SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SF	P-38	SP-38	SP-38	SP-38	SP-38	SP-38
Sample Date	Class GA	10/4/2012	10/17/2013	6/10/2014	8/21/2015	10/23/2015	6/15/2016	10/26/201		2/2017	6/21/2018	6/14/2019	9/16/2021	9/30/2022	8/7/2023
January David	Criteria	. 0, ., _ 0	10/11/2010	0, 10, 20 1 1	5/2 1/20 10	10/20/2010	0, 10, 20 10	10,20,20			0/2 1/20 10	0, 1 1, 20 10	0, 10, 2021	5/55/2522	0///2020
		Q	Q	Q	Q	Q	Q	⊣ г	Q	Q	Q		Q	Q	Q
Volatile Organic Compounds - EP	A Method SW-8														
Acetone	50	<	<	<	<	<	1.6 J	<		<	<	<	<	<	<
Benzene	1	<	<	<	<	<	<	<		<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	1.8 J	1.9	<	<		<	<	<	<	<	<
Chloromethane	NV	~	<	<	<	<	<	<		<	<	v	<	<	<
1,1-Dichloroethane	5	v	<	<	2 J	1.9 J	<	<		<	<	«	<	<	<
1,1-Dichloroethene	5	v	<	<	<	<	<	<		<	<	v	<	<	<
Vinyl chloride	2	v	<	<	<	22	0.39 J	4.0		4.2	<	v	1.4	0.08 J	<
2-Butanone	50	<	<	<	26	2.1 J	<	<		<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	1.5	1.2	46	0.82 J	<	<		<	<	<	2.2 J	<	<
Toluene	5	<	<	<	<	1 J	<	<		<	<	<	<	<	<
1,1,1-Trichloroethane	5	2.4	<	<	0.86 J	<	<	<		<	<	<	<	<	<
Tetrachloroethene	5	5	<	5.2	0.22 J	0.37 J	0.28 J	0.48	J	0.2 J	<	<	0.4 J	0.81	0.42 J
Trichloroethene	5	17	7.8	19	0.45 J	0.29 J	5.5 J	8.2		6.5	5.8	<	4.6	6	3.2
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<		<	<	<	<	<	<
Total VOCs		24.4	9.3	25.4	77.33	30.38	7.77	12.68	1	0.9	5.8		8.6	6.89	3.62
Field Parameters															
Temperature (Deg. C)	NV	13.1	15.2	11.6	15.2	15.1	16.1	14.8	1	6.7	11.7	11.3	17.9	16.1	16.3
Specific Conductance (mS/cm)	NV	0.437	0.412	0.437	1.03	0.69	0.419	0.443	0.4	416	0.404	0.398	0.446	0.397	0.432
Dissolved Oxygen (mg/L)	NV	3.25	2.88	4.65	0.07	0.11	1.32	0.23	0	.72	2.11	2.32	19.4	27.4	3.58
Oxygen Reduction Potential (mv)	NV	31.7	103.5	136	-124.2	-172.7	241.8	-22.5		9.6	150.8	125.2	156.6	106.7	120.2
pH (std. units)	NV	6.81	6.72	6.72	7.1	7.39	6.59	6.75		5.85	6.56	6.89	6.7	6.79	6.6
Turbidity (NTUs)	NV	27.4	2.12	19.2	12.3	2.12	6.39	7.69	5.	5.88	21.5	180.22	42.28	7.35	20.12
Inorganics (ug/L)															
Iron	300	<	<	1,500	5,660	3,040	352	811		<	<	NS	NS	NS	NS
Manganese	300	5,100	41.1 B	180	24,820	12,680	2762	9031	1,8	827	23	NS	NS	NS	NS
Miscellaneous Water Quality Para	meters														
Methane (ug/L)	NV	<	20	1.1	807.0	636.0	3.9	13.7	1	0.1	4.4	NS	NS	NS	NS
Ethane (ug/L)	NV	NM	<	<	<	2.57	<	0.633		<	<	NS	NS	NS	NS
Ethene (ug/L)	NV	NM	<	<	3.45	4.56	<	2.04	0.6		<	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	<	<	<	86.9	2.22	1.21	1.32		.05	<	NS	NS	NS	NS
Chloride (mg/L)	250	31	40 B	34	29	27.1	36.1	27.7		2.6	32	NS	NS	NS	NS
Nitrate (mg/L)	10	4.7	1.4	3.3	0.0 J	<	0.6	0.24		.24	0.37	NS	NS	NS	NS
Nitrite (mg/L)	1			<	<	NS	NS	NS		NS	<	NS	NS	NS	NS
Sulfate (mg/L)	250	23	11	13 B	0.063 J	5.99	11.5	16.1	1	3.8	11.7	NS	NS	NS	NS
		Notes:													

Notes:

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

BCP Site No. C905034

	1		I								I					
Sample Location		SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43		SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43
Sample Date	Class GA	10/4/2012	10/17/2013	6/10/2014	6/4/2015	8/21/2015	10/23/2015	6/16/2016	6	10/26/2016	7/12/2017	6/21/2018	6/14/2019	9/17/2021	9/30/2022	8/7/2023
	Criteria			51.151.251.1	5, ,,_5,,	5.2	13,23,23	5, 75, 25 7	`			0.2200	5, 1 = 5 . 5	0, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00,00	
		Q	Q	Q		Q	T [<u> </u>	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	PA Method SW-8															
Acetone	50	<	53	<	<	<	<	1.9 J	J	<	<	<	5.4	<	<	<
Benzene	1	<	<	<	<	<	<	<		<	<		<	<	<	<
Carbon disulfide	NV	<	1.3	<	<	<	<	<		<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<		<	<	<	0.92 J	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<		<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<		<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	0.48 J	6.6	<		<	<	<	<	<	<	0.39 J
2-Butanone	50	<	84	<	<	21	<	<		<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	5.4	3.9	1.1 J	9.4	9.2	4.6		2.1 J	<	<	<	0.95 J	<	1.2 J
Toluene	5	<	<	<	<	<	84.0	<		<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<		<	<	<	<	<	<	<
Tetrachloroethene	5	93	24	14	14	10	17	7.7		11.0	6.9	7.4 CH	4.0	6.1	4.6	13
Trichloroethene	5	5.2	2.6	<	0.72	2.20	8.30	0.71		0.70	0.24 J	<	0.58	0.60	0.43 J	5.9
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<		<	<	<	<	<	<	<
Total VOCs		98.2	170.3	17.9	15.82	43.08	125.10	14.91		13.80	7.14	7.40	9.40	7.65	5.03	20.49
Field Parameters																
Temperature (Deg. C)	NV	14.1	18.4	13	12.2	16.6	15.9	14.6		14.2	20.5	15.6	13.8	20.9	19.5	15.5
Specific Conductance (mS/cm)	NV	0.445	0.513	0.304	0.773	0.66	0.68	0.237		0.224	0.183	0.151	0.127	0.149	0.146	0.311
Dissolved Oxygen (mg/L)	NV	1.48	0.22	0.23	1.1	0.12	0.12	1.23		1.96	1.96	1.73	3.52	28.1	31.5	0.79
Oxygen Reduction Potential (mv)	NV	44.2	-39.3	149	175.8	-15.1	-88.2	310.9		184.3	12.4	156.6	153.9	196.3	132.5	140.4
pH (std. units)	NV	6.55	5.88	6.13	5.82	6.31	6.83	5.87		6.02	6.12	6.11	6.32	5.9	6.29	6.38
Turbidity (NTUs)	NV	39.8	4.04	18	0.2	31.7	4.26	6.7		3.12	4.72	1.8	16.25	16.07	7.45	-5.89
Inorganics (ug/L)																
Iron	300	NS	6,150	7,100	54	5,780	6,220	127		114	<	<	NS	NS	NS	NS
Manganese	300	NS	5,510	1,600	1,254	8,919	10,240	171.8		190.4	5.4	10.4	NS	NS	NS	NS
Miscellaneous Water Quality Para	ameters															
Methane (ug/L)	NV	NS	16	12	0.756	J 2,490.000	6,520.000	0.612		<	0.619 J	<	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	2.4	<	<	<	<	<		<	<	<	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	3.7	<	<	<	2.13	<		<	<	<	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	80	<	1.84	28.8	3.62	2.09		1.91	1.58	1.1	NS	NS	NS	NS
Chloride (mg/L)	250	NS	6.3 B	2.2	136.0	62.2	40.0	12.2		9.6	4.1	2.6	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	0.36	8.30	8.65	0.59	0.21	2.10		4.10	3.70	1.60	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	<	0.042 J	NS	NS	NS	NS		NS	NS	<	NS	NS	NS	NS
Sulfate (mg/L)	250	NS	12	25 B	19.8	18.3	13.3	22		21.4	14.7	14.1	NS	NS	NS	NS
		Notes:	•						-	<u> </u>						

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * - LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range. M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value: NS = Not sampled.
- 9. Shaded concentrations exceed Class GA criteria.

BCP Site No. C905034

			1		I	T	ı		I	Ī	<u> </u>				
Sample Location		SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45
Sample Date	Class GA	10/4/2012	10/17/201			8/21/2015	10/23/2015	6/16/2016	10/26/2016	7/13/2017	6/21/2018	6/14/2019	9/17/2021	9/30/2022	8/7/2023
eample Bate	Criteria	10/ 1/2012	10/11/201	3, 13, 23 1	0, 1,2010	0/21/2010	10/20/2010	0/10/2010	10/20/2010	771072011	0/21/2010	0/11/2010	0/11/2021	0/00/2022	0/1/2020
		Q	⊤ г	Q	QQ	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EF	PA Method SW-8														
Acetone	50	<	<	<	<	<	<	1.5 J	<	<	<	4.1	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	6.3	5.5	7.5	1.7	<	<	0.11 J	<	<
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	6.8	1.1	1.9	2.9	1.4 J	5.7	3.7	13	2.0 J	1.4	1.3 J	9.0	4.0 J	13
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	260 D	69	130	160	16	45	16	170	45	18.7	17	130	260	8
Trichloroethene	5	13	3.6	6.4	8.5	1.5	7.5	7.2	53	10	5.4	4.6	26	55	11
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	0.73 J
Total VOCs	1	283.0	73.7	138.3	171.4	18.9	171.4	33.9	243.5	58.7	25.5	27.0	165.1	319.0	32.7
Field Parameters															
Temperature (Deg. C)	NV	14.6	17.8	16.5	14	19.1	15.8	15.2	15.8	15.8	13.3	14	20.7	19.6	20
Specific Conductance (mS/cm)	NV	0.543	0.363	0.391	0.584	0.6	0.62	0.503	0.442	0.442	0.391	0.336	0.410	0.341	0.364
Dissolved Oxygen (mg/L)	NV	1.07	5.21	3.02	3.58	0.09	0.07	0.5	0.06	0.06	2.72	3.85	18.4	6.1	1.07
Oxygen Reduction Potential (mv)	NV	-29.5	88.3	143.1	73.3	-62.7	-61.7	250.7	-8.7	-8.7	88.2	128.4	162.6	129.9	125.3
pH (std. units)	NV	6.48	6.83	6.71	6.71	7.05	7.05	6.91	6.66	6.66	6.89	7.23	6.59	6.7	6.64
Turbidity (NTUs)	NV	3.95	2.3	3.17	0.5	14.91	5.06	11.25	17.2	17.2	5.5	12.48	7.25	7.25	-5.41
Inorganics (ug/L)															
Iron	300	NS	32.1	B 170	J 27.2 J	45 J	1,260	197	386	<	<	NS	NS	NS	NS
Manganese	300	NS	<	<	1.93	296.4	3,510	1447	1,340	240	332	NS	NS	NS	NS
Miscellaneous Water Quality Para	ameters														
Methane (ug/L)	NV	NS	14	1.1	0.762 J	96.9	958	1500	3610	1760	8.1	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	1.18	2.47	1.0	<	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	<	<	<	<	1.08	2.59	3.36	0.77	<	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	<	<	1.64	3.93	1.86	1.69	1.49	1.23	<	1.06	0.945	NS	NS
Chloride (mg/L)	250	NS	5.1	B 4.2	35.0	9.4	17.3	15.4	12.6	3.2	6.8	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	6	5.2	2.68	1.2	1.9	0.39	0.72	0.79	0.35	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS	NS	NS
Sulfate (mg/Ĺ)	250	NS	39	33	В 32.7	43.4	22.4	24	23.8	19.1	16.8	12.1	9.82	NS	NS

Notes:

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

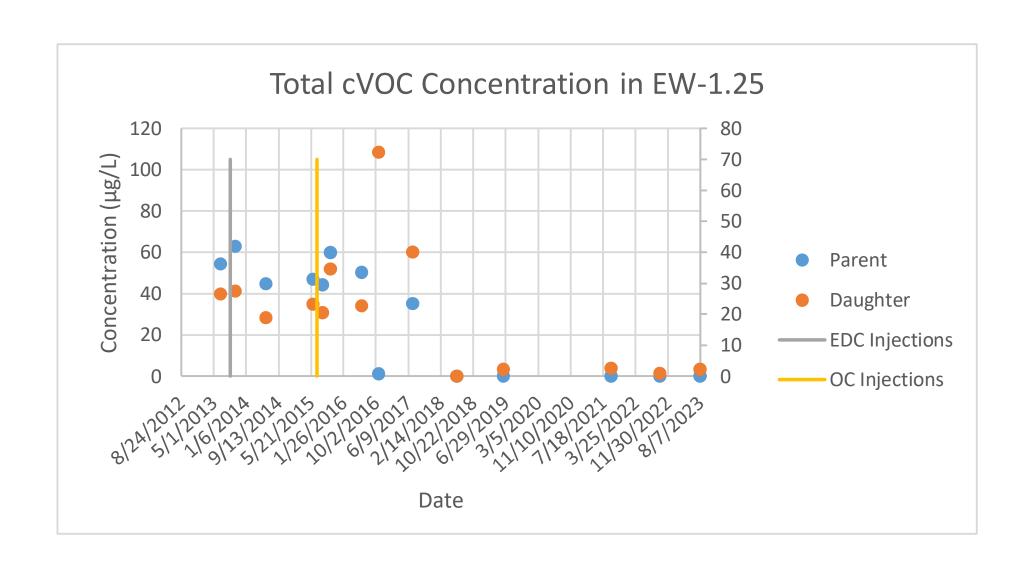
Attachment C

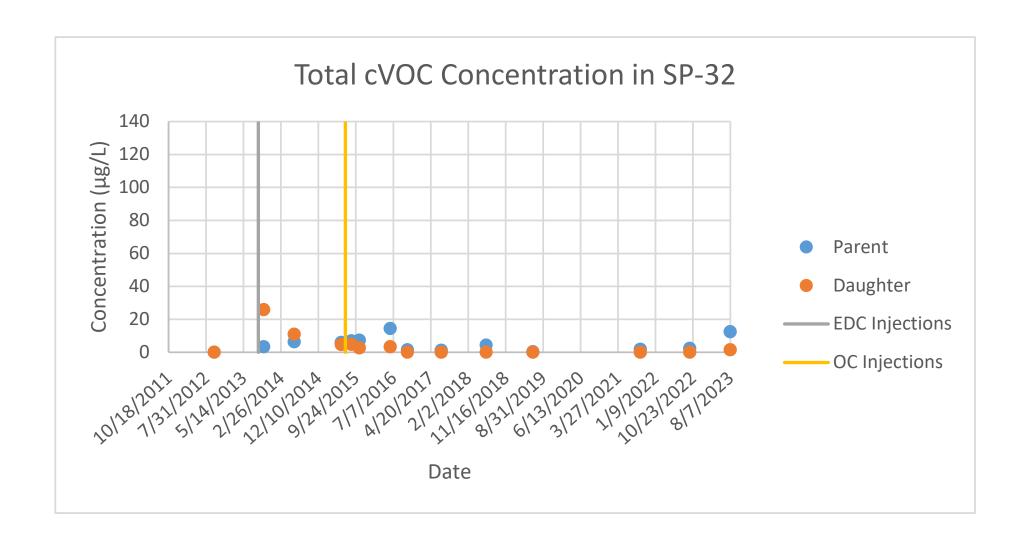
August 2023 Post-Injection Groundwater Analytical Results Summary

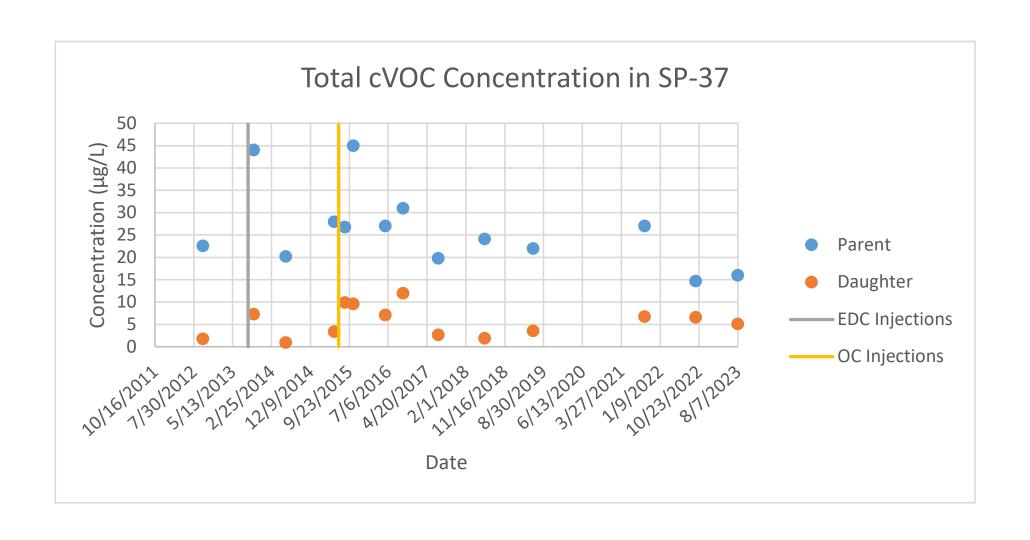
Former Signore Facility Ellicottville, New York BCP Site No. C905034

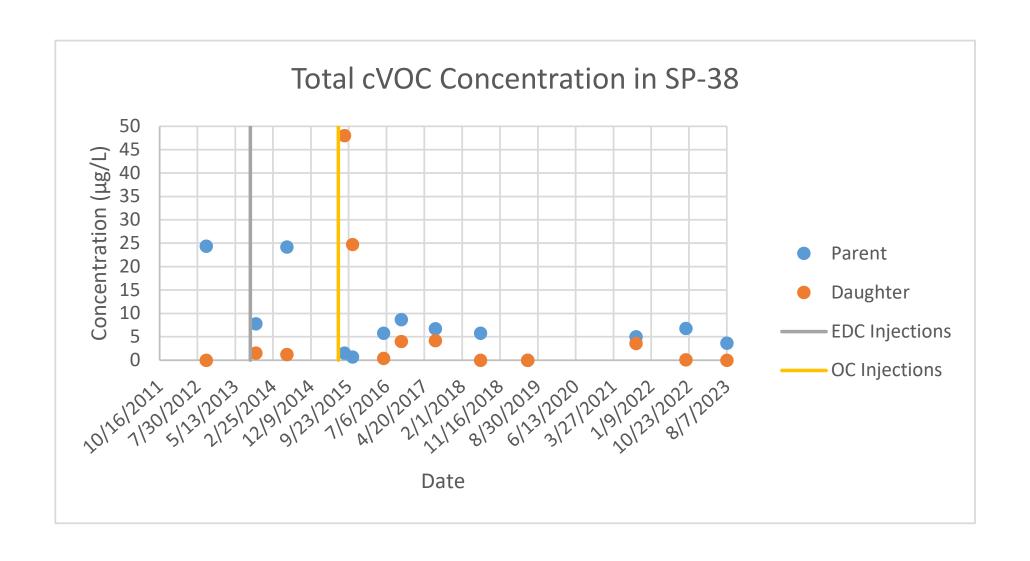
Serzene												
Class CA G/J2015 10/22/2015 6/16/2016 10/25/2016 7/12/2017 6/20/2018 6/13/2019 9/17/2021 9/30/2022 8/4/20/33	Sample Location		TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11
Criteria	•	Class GA										
Volatile Organic Compounds - EPA Method SW-8		1										1
Acestone SO C C C C C C C C C			Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Service	Volatile Organic Compounds - EF	PA Method SW-8										
Carbon distillate NV	Acetone	50	<	<	2 J	<	<	<	2.5 J	<	<	<
Chloromethane	Benzene	1	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	Chloromethane	NV	<	<	<	<	<	<	<	<	<	<
Virty chloride	1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<
Company Comp	1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<
13s-1_2_Dichloroethene 5 19 12 18 13 8.1 12.4 9.7 13 8.8 8.4	Vinyl chloride	2	<	<	<	<	<	<	<	<	<	<
Toluen	2-Butanone	50	<	<	<	<	<	<	<	<	<	<
1,1,1-Tichloroethane	cis-1,2-Dichloroethene	5	19	12	18	13	8.1	12.4	9.7	13	8.8	8.4
Terrachiorethene	Toluene	5	<	<	<	<	<	<	<	<	<	<
Trichlorosthene	1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<
Trichlorosthene	Tetrachloroethene	5	0.58	1.5	0.53	1.2	0.25 J	<	0.49 J	0.47 J	0.44 J	0.55
Total VOCs 107.58 87.50 97.53 72.20 48.35 79.10 53.69 68.47 42.24 39.95	Trichloroethene	5	88	74		58		66.7				
Field Parameters	trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<
Temperature (Deg. C) NV 17.5 14.4 12.4 13.4 16.9 9.5 8.8 16.2 14.8 14.4 Specific Conductance (mS/cm) NV 0.37 0.535 0.493 0.504 0.393 0.464 0.447 0.558 0.518 0.519 0.50solved Oxygen (mg/L) NV 0.11 1.57 2.84 2.24 2.06 4.83 4.12 33.2 2.56 33.5 0.535 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.5	Total VOCs		107.58	87.50	97.53	72.20	48.35	79.10	53.69	68.47	42.24	39.95
Specific Conductance (mS/cm) NV 0.37 0.535 0.493 0.504 0.393 0.464 0.447 0.558 0.518 0.519	Field Parameters											
Dissolved Oxygen (mg/L)	Temperature (Deg. C)	NV	17.5	14.4	12.4	13.4	16.9	9.5	8.8	16.2	14.8	14.4
Daygen Reduction Potential (mv) NV -23.6 90.7 267.4 77.7 6.6 101.7 122 200.2 86.1 103.9	Specific Conductance (mS/cm)	NV	0.37	0.535	0.493	0.504	0.393	0.464	0.447	0.558	0.518	0.519
Daygen Reduction Potential (mv) NV -23.6 90.7 267.4 77.7 6.6 101.7 122 200.2 86.1 103.9	Dissolved Oxygen (mg/L)	NV	0.11	1.57	2.84	2.24	2.06	4.83	4.12	33.2	25.6	3.35
Turbidity (NTUs) NV 6.27 1.87 7.69 9.67 4.97 0.3 1.84 4.91 13.93 -6.72 1.87	Oxygen Reduction Potential (mv)	NV	-23.6	90.7	267.4	77.7	6.6	101.7	122	200.2	86.1	103.9
Informatics (ug/L)	pH (std. units)	NV	6.84	7.04		6.8	6.69	6.81	7.06	6.45	5.18	6.85
NS	Turbidity (NTUs)	NV	6.27	1.87	7.69	9.67	4.97	0.3	1.84	4.91	13.93	-6.72
Manganese 300 NS	Inorganics (ug/L)											
Miscellaneous Water Quality Parameters Methane (ug/L) NV NS	Iron	300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Methane (ug/L) NV NS	Manganese		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethane (ug/L) NV NS	Miscellaneous Water Quality Para	ameters										
Ethene (ug/L) NV NS	Methane (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Total Organic Carbon (mg/L) NV NS NS <t< td=""><td>Ethane (ug/L)</td><td>NV</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></t<>	Ethane (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride (mg/L) 250 NS	Ethene (ug/L)		NS	NS						NS	NS	
Nitrate (mg/L) 10 NS	Total Organic Carbon (mg/L)		NS									NS
Nitrite (mg/L) 1 NS	Chloride (mg/L)	250	NS	NS					NS	NS	NS	NS
	Nitrate (mg/L)	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Sulfate (mg/L) 250 NS	Nitrite (mg/L)	· '										
	Sulfate (mg/L)	250	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

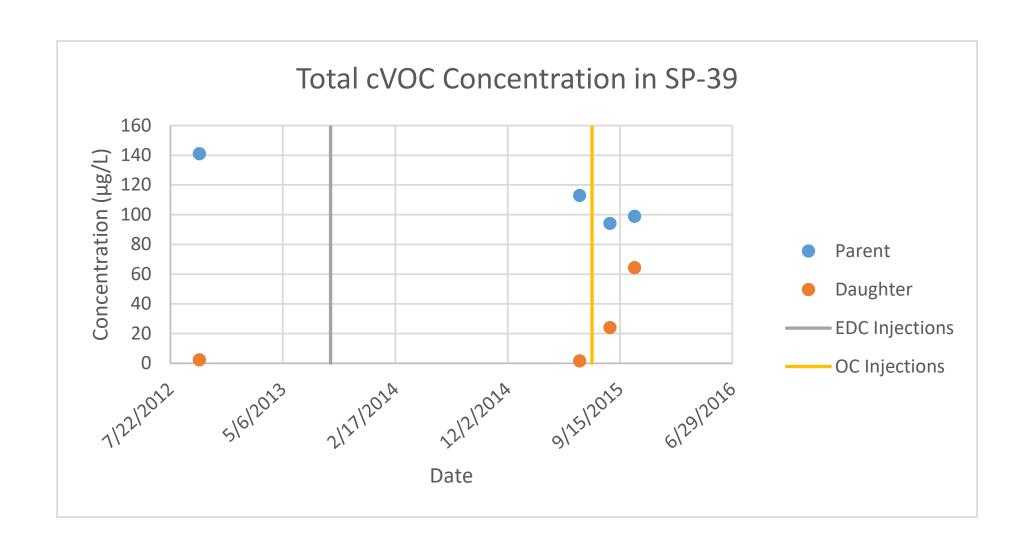
Notes

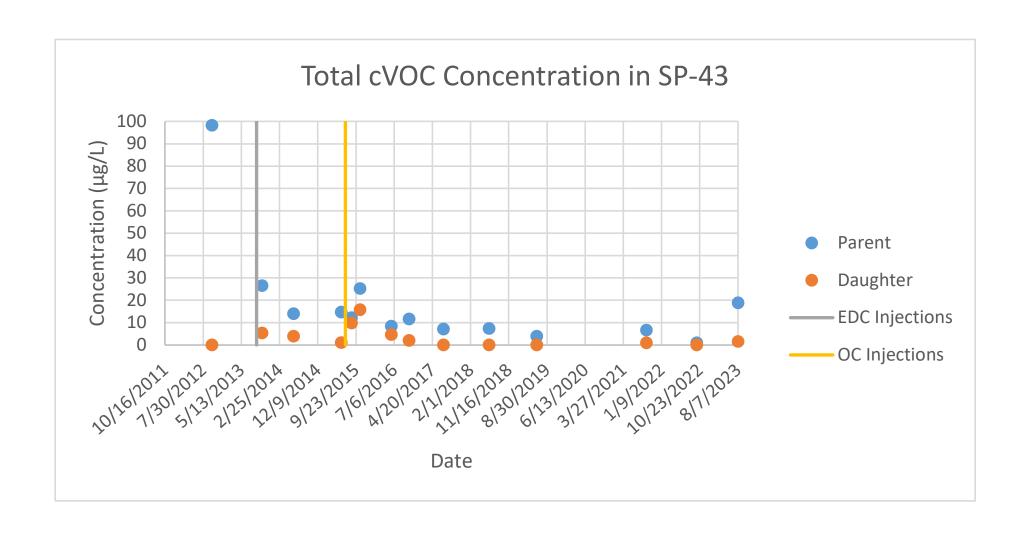

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

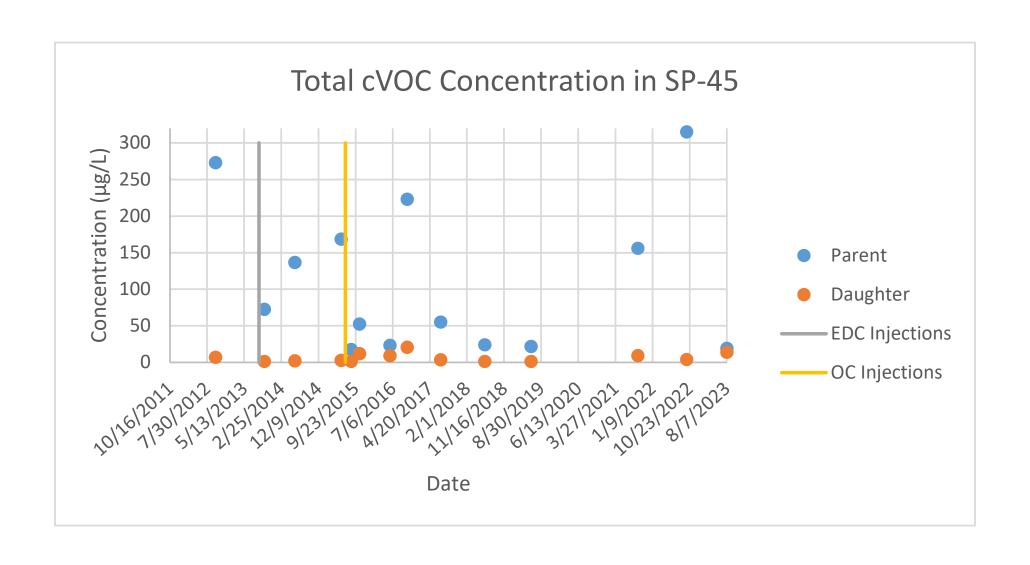

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = No Value; NS = Not Sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.

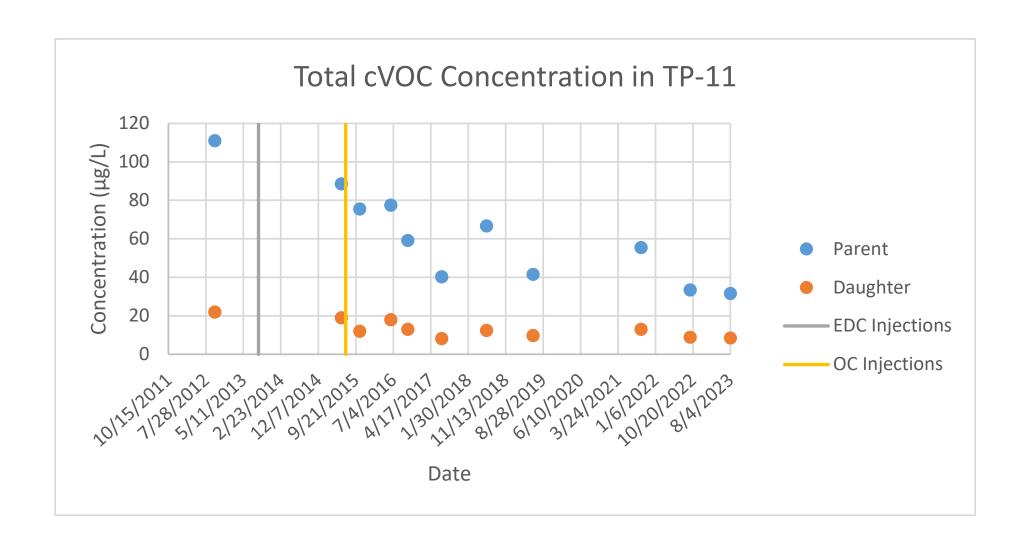



ATTACHMENT D


CONCENTRATIONS OF CVOC PARENT MATERIAL AND DAUGHTER PRODUCTS IN GROUNDWATER







ATTACHMENT E

LABORATORY REPORT

ANALYTICAL REPORT

Lab Number: L2345896

Client: GZA GeoEnvironmental of New York

300 Pearl Street

Suite 700

Buffalo, NY 14202

ATTN: Thomas Bohlen Phone: (716) 844-7050

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

Report Date: 09/07/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

Lab Number: L2345896 **Report Date:** 09/07/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2345896-01	SP-32-080723	WATER	55-57 JEFFERSON STREET	08/07/23 10:55	08/09/23
L2345896-02	SP-37-080723	WATER	55-57 JEFFERSON STREET	08/07/23 11:50	08/09/23
L2345896-03	SP-38-080723	WATER	55-57 JEFFERSON STREET	08/07/23 13:20	08/09/23
L2345896-04	SP-43-080723	WATER	55-57 JEFFERSON STREET	08/07/23 14:25	08/09/23
L2345896-05	SP-45-080723	WATER	55-57 JEFFERSON STREET	08/07/23 15:10	08/09/23

L2345896

Project Name: SIGNORE POST INJECTION GW SAMP Lab Number:

Project Number: 21.0056367.68 **Report Date:** 09/07/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:SIGNORE POST INJECTION GW SAMPLab Number:L2345896Project Number:21.0056367.68Report Date:09/07/23

Case Narrative (continued)

Report Revision

September 07, 2023: The Volatile Organics results have been corrected on L2345896-05. It was determined that trans-1,2-Dichloroethene was incorrectly identified.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/07/23

600, Sew on Kelly Stenstrom

ORGANICS

VOLATILES

L2345896

09/07/23

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

SAMPLE RESULTS

Date Collected: 08/07/23 10:55

Lab Number:

Report Date:

Lab ID: L2345896-01 Client ID:

SP-32-080723

Sample Location: 55-57 JEFFERSON STREET Date Received: 08/09/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/11/23 19:28

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.55		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	12		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

09/07/23

Project Name: Lab Number: SIGNORE POST INJECTION GW SAMP L2345896

Project Number: 21.0056367.68

SAMPLE RESULTS

Date Collected: 08/07/23 10:55

Report Date:

Lab ID: L2345896-01 Date Received: Client ID: 08/09/23 SP-32-080723

Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.6	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	99	70-130	

L2345896

09/07/23

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

SAMPLE RESULTS

Date Collected: 08/07/23 11:50

Lab Number:

Report Date:

Lab ID: L2345896-02 Client ID: SP-37-080723

Sample Location: 55-57 JEFFERSON STREET

Date Received: 08/09/23
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/11/23 19:50

Analyst: MKS

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane Chloroform	ND ND ND ND ND ND	ug/l ug/l	2.5 2.5	0.70	1
1,1-Dichloroethane Chloroform	ND ND				1
Chloroform	ND	ug/l	2.5		
			2.0	0.70	1
	ND	ug/l	2.5	0.70	1
Carbon tetrachloride		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	7.1	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	8.9	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

09/07/23

Project Name: Lab Number: SIGNORE POST INJECTION GW SAMP L2345896

Project Number: 21.0056367.68

SAMPLE RESULTS

Date Collected: 08/07/23 11:50

Report Date:

Lab ID: L2345896-02 Date Received: Client ID: 08/09/23 SP-37-080723

Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	5.1		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	99	70-130	

L2345896

09/07/23

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2345896-03 Date Collected: 08/07/23 13:20

Client ID: SP-38-080723 Date Received: 08/09/23 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/11/23 20:12

Analyst: MKS

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.42	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	3.2		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

09/07/23

Project Name: Lab Number: SIGNORE POST INJECTION GW SAMP L2345896

Project Number: 21.0056367.68

SAMPLE RESULTS

Date Collected: 08/07/23 13:20

Report Date:

Lab ID: L2345896-03 Date Received: Client ID: 08/09/23 SP-38-080723

Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	100		70-130	

L2345896

09/07/23

Not Specified

08/09/23

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

SAMPLE RESULTS

Date Collected: 08/07/23 14:25

Lab Number:

Report Date:

Date Received:

Lab ID: L2345896-04

Client ID: SP-43-080723

Sample Location: 55-57 JEFFERSON STREET

Field Prep:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/11/23 20:35

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	13		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.39	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	5.9		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

09/07/23

Project Name: Lab Number: SIGNORE POST INJECTION GW SAMP L2345896

Project Number: 21.0056367.68

SAMPLE RESULTS

Date Collected: 08/07/23 14:25

Report Date:

L2345896-04 Date Received: Client ID: SP-43-080723 08/09/23

Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.2	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	98	70-130	

L2345896

09/07/23

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

SAMPLE RESULTS

Date Collected: 08/07/23 15:10

Lab ID: L2345896-05

Client ID: SP-45-080723

Sample Location: 55-57 JEFFERSON STREET

Date Received: 08/09/23
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/11/23 20:57

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	8.0		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.73	J	ug/l	2.5	0.70	1
Trichloroethene	11		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

09/07/23

Dilution Factor

Project Name: Lab Number: SIGNORE POST INJECTION GW SAMP L2345896

Project Number: 21.0056367.68

SAMPLE RESULTS

Qualifier

Units

Date Collected: 08/07/23 15:10

MDL

Report Date:

RL

Lab ID: L2345896-05

Date Received: Client ID: SP-45-080723 08/09/23 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Result

Sample Depth:

Parameter

i arameter	resuit	Qualifici	Office			Dilution ruotor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	13		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	101	70-130	

L2345896

Project Name: SIGNORE POST INJECTION GW SAMP Lab Number:

Project Number: 21.0056367.68 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/11/23 19:05

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1816122-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2345896

Project Name: SIGNORE POST INJECTION GW SAMP Lab Number:

Project Number: 21.0056367.68 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/11/23 19:05

Analyst: TMS

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01-04	Batch:	WG1816122-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: SIGNORE POST INJECTION GW SAMP Lab Number: L2345896

Project Number: 21.0056367.68 **Report Date:** 09/07/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/11/23 19:05

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-04 Batch: WG1816122-5

		Acceptance			
Surrogate	%Recovery (Qualifier Criteria			
1,2-Dichloroethane-d4	97	70-130			
Toluene-d8	101	70-130			
4-Bromofluorobenzene	101	70-130			
Dibromofluoromethane	98	70-130			

Project Name: SIGNORE POST INJECTION GW SAMP Lab Number: L2345896

Project Number: 21.0056367.68 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/11/23 19:05

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	05 Batch:	WG1823765-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2345896

Project Name: SIGNORE POST INJECTION GW SAMP Lab Number:

Project Number: 21.0056367.68 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/11/23 19:05

Analyst: TMS

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Westh	orough Lab	for sample(s): 05	Batch:	WG1823765-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: SIGNORE POST INJECTION GW SAMP Lab Number: L2345896

Project Number: 21.0056367.68 **Report Date:** 09/07/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/11/23 19:05

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 05 Batch: WG1823765-5

		Acceptance			
Surrogate	%Recovery C	Qualifier Criteria			
1,2-Dichloroethane-d4	97	70-130			
Toluene-d8	101	70-130			
4-Bromofluorobenzene	101	70-130			
Dibromofluoromethane	98	70-130			

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

Lab Number: L2345896

Report Date: 09/07/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch:	WG1816122-3	WG1816122-4			
Methylene chloride	90		90		70-130	0	20	
1,1-Dichloroethane	94		94		70-130	0	20	
Chloroform	95		95		70-130	0	20	
Carbon tetrachloride	98		99		63-132	1	20	
1,2-Dichloropropane	92		93		70-130	1	20	
Dibromochloromethane	90		93		63-130	3	20	
1,1,2-Trichloroethane	91		93		70-130	2	20	
Tetrachloroethene	94		93		70-130	1	20	
Chlorobenzene	95		93		75-130	2	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	92		94		70-130	2	20	
1,1,1-Trichloroethane	93		95		67-130	2	20	
Bromodichloromethane	91		93		67-130	2	20	
trans-1,3-Dichloropropene	90		91		70-130	1	20	
cis-1,3-Dichloropropene	91		92		70-130	1	20	
Bromoform	86		88		54-136	2	20	
1,1,2,2-Tetrachloroethane	93		94		67-130	1	20	
Benzene	95		95		70-130	0	20	
Toluene	94		93		70-130	1	20	
Ethylbenzene	94		94		70-130	0	20	
Chloromethane	95		91		64-130	4	20	
Bromomethane	73		78		39-139	7	20	
Vinyl chloride	110		110		55-140	0	20	

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

Lab Number: L2345896

Report Date: 09/07/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-04 Batch: W	G1816122-3 WG1816122-4		
Chloroethane	120		110	55-138	9	20
1,1-Dichloroethene	93		92	61-145	1	20
trans-1,2-Dichloroethene	93		92	70-130	1	20
Trichloroethene	90		92	70-130	2	20
1,2-Dichlorobenzene	95		95	70-130	0	20
1,3-Dichlorobenzene	96		95	70-130	1	20
1,4-Dichlorobenzene	96		96	70-130	0	20
Methyl tert butyl ether	87		89	63-130	2	20
p/m-Xylene	95		95	70-130	0	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	95		94	70-130	1	20
Styrene	95		95	70-130	0	20
Dichlorodifluoromethane	100		98	36-147	2	20
Acetone	99		100	58-148	1	20
Carbon disulfide	96		95	51-130	1	20
2-Butanone	92		94	63-138	2	20
4-Methyl-2-pentanone	82		86	59-130	5	20
2-Hexanone	86		89	57-130	3	20
Bromochloromethane	93		93	70-130	0	20
1,2-Dibromoethane	92		93	70-130	1	20
1,2-Dibromo-3-chloropropane	84		86	41-144	2	20
Isopropylbenzene	95		95	70-130	0	20
1,2,3-Trichlorobenzene	88		90	70-130	2	20

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

Lab Number:

L2345896

Report Date:

09/07/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-04 Batch:	WG1816122-3	WG1816122-4		
1,2,4-Trichlorobenzene	91		92		70-130	1	20
Methyl Acetate	86		90		70-130	5	20
Cyclohexane	97		96		70-130	1	20
1,4-Dioxane	92		88		56-162	4	20
Freon-113	100		100		70-130	0	20
Methyl cyclohexane	96		93		70-130	3	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	99	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	96	96	70-130
Dibromofluoromethane	98	100	70-130

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

Lab Number: L2345896

Report Date: 09/07/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 05	5 Batch: WG1	823765-3	WG1823765-4		
Methylene chloride	90		90		70-130	0	20
1,1-Dichloroethane	94		94		70-130	0	20
Chloroform	95		95		70-130	0	20
Carbon tetrachloride	98		99		63-132	1	20
1,2-Dichloropropane	92		93		70-130	1	20
Dibromochloromethane	90		93		63-130	3	20
1,1,2-Trichloroethane	91		93		70-130	2	20
Tetrachloroethene	94		93		70-130	1	20
Chlorobenzene	95		93		75-130	2	20
Trichlorofluoromethane	120		120		62-150	0	20
1,2-Dichloroethane	92		94		70-130	2	20
1,1,1-Trichloroethane	93		95		67-130	2	20
Bromodichloromethane	91		93		67-130	2	20
trans-1,3-Dichloropropene	90		91		70-130	1	20
cis-1,3-Dichloropropene	91		92		70-130	1	20
Bromoform	86		88		54-136	2	20
1,1,2,2-Tetrachloroethane	93		94		67-130	1	20
Benzene	95		95		70-130	0	20
Toluene	94		93		70-130	1	20
Ethylbenzene	94		94		70-130	0	20
Chloromethane	95		91		64-130	4	20
Bromomethane	73		78		39-139	7	20
Vinyl chloride	110		110		55-140	0	20

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

Lab Number: L2345896

Report Date: 09/07/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	.ab Associated	sample(s):	05 Batch: WG18	323765-3	WG1823765-4			
Chloroethane	120		110		55-138	9		20
1,1-Dichloroethene	93		92		61-145	1		20
trans-1,2-Dichloroethene	93		92		70-130	1		20
Trichloroethene	90		92		70-130	2		20
1,2-Dichlorobenzene	95		95		70-130	0		20
1,3-Dichlorobenzene	96		95		70-130	1		20
1,4-Dichlorobenzene	96		96		70-130	0		20
Methyl tert butyl ether	87		89		63-130	2		20
p/m-Xylene	95		95		70-130	0		20
o-Xylene	95		95		70-130	0		20
cis-1,2-Dichloroethene	95		94		70-130	1		20
Styrene	95		95		70-130	0		20
Dichlorodifluoromethane	100		98		36-147	2		20
Acetone	99		100		58-148	1		20
Carbon disulfide	96		95		51-130	1		20
2-Butanone	92		94		63-138	2		20
4-Methyl-2-pentanone	82		86		59-130	5		20
2-Hexanone	86		89		57-130	3		20
Bromochloromethane	93		93		70-130	0		20
1,2-Dibromoethane	92		93		70-130	1		20
1,2-Dibromo-3-chloropropane	84		86		41-144	2		20
Isopropylbenzene	95		95		70-130	0		20
1,2,3-Trichlorobenzene	88		90		70-130	2		20

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68

Lab Number:

L2345896

Report Date:

09/07/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 05	Batch: WG	1823765-3	WG1823765-4			
1,2,4-Trichlorobenzene	91		92		70-130	1		20
Methyl Acetate	86		90		70-130	5		20
Cyclohexane	97		96		70-130	1		20
1,4-Dioxane	92		88		56-162	4		20
Freon-113	100		100		70-130	0		20
Methyl cyclohexane	96		93		70-130	3		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	99	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	96	96	70-130
Dibromofluoromethane	98	100	70-130

Serial_No:09072310:19 *Lab Number:* L2345896

Project Name: SIGNORE POST INJECTION GW SAMP

Project Number: 21.0056367.68 **Report Date:** 09/07/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2345896-01A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-01B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-01C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-02A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-02B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-02C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-03A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-03B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-03C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-04A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-04B	Vial HCI preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-04C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-05A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-05B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-05C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		NYTCL-8260-R2(14)
L2345896-06A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		-
L2345896-06B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		-
L2345896-06C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		-

Project Name: Lab Number: SIGNORE POST INJECTION GW SAMP L2345896 **Report Date: Project Number:** 21.0056367.68 09/07/23

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:SIGNORE POST INJECTION GW SAMPLab Number:L2345896Project Number:21.0056367.68Report Date:09/07/23

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:SIGNORE POST INJECTION GW SAMPLab Number:L2345896Project Number:21.0056367.68Report Date:09/07/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:SIGNORE POST INJECTION GW SAMPLab Number:L2345896Project Number:21.0056367.68Report Date:09/07/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay	05	Pag	e I		Part Control	8/11	0/2	23	ALPHA Job # 2345896
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Information	A.O. I	THE PARTY	411		Delivera	20000		100		Billing Information
FAX: 508-898-9193	FAX: 506-822-3288	Project Name: Signo	megrost	injection	I GW S	ximpling	L AS	P-A	2	ASP-I		Same as Client Info
Client Information	UNE DE LA COLOR		OD DI BEXEETSON DILICET									
Client Information			Project # 21.0056367.68									Discount City Information
Client: G-ZA Address: 800 Peac	1 St. Sude 700	(Use Project name as Pr		> 11			THE REAL PROPERTY.	ry Requirem	ent	NIV Do	4.075	Disposal Site Information
	N 1420 Z	Project Manager: The ALPHAQuote #:	omas 1	Bohlen			-	TOGS Q Standards		NY Pa		Please identify below location of applicable disposal facilities.
Phone: 716 803	5717	Turn-Around Time	Line and		1	The Park	☐ NY	Restricted Use		Other		Disposal Facility:
Fax:		Standard	1 🗆	Due Date:			□ NY	Unrestricted U	se			□ NJ □ NY
Email: Thomas. 60	hlenegracon	Rush (only if pre approved) 🗌	# of Days:			☐ NY	C Sewer Disch	arge			Other:
These samples have b	een previously analyza	ed by Alpha	VIII.				ANALYS	IS				Sample Filtration
Other project specific	requirements/comm	nents:										Done t
	D0-04	. deliverable					097					Lab to do
Please specify Metals	or TAL.						00					B o
							ان					(Please Specify below)
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	3					
(Lab Use Only)			Date	Time	Matrix	Initials	-					Sample Specific Comments e
458910-01	SP-32-09	30723	8-7-23	1055	w	MB	X		0 0			
-02	SP-37-0	50723		1150		1	×					
-03	5P-38-0	60723		1320			X					
40-	SP-43 -0	80723		1425			X					
-05	SP-45-0	50723	上	1510	1	1	×		\Box		\neg	
								1 1				
									\Box			
						-21-02						
= HCI A = Amber Glass Mansfield: Certification No: MA015 = HNO ₃ V = Vial						tainer Type						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH	C = Cube O = Other	Relinquished E	By:	Date/T	ime	F	Received I	By:		Date/1	Time	resolved. BY EXECUTING
- 11001004	E = Encore	Myn Bu		8/8/23/	1950		ium Sti	- Ery	8/8/		1950	THIS COC, THE CLIENT
K/E = Zn Ac/NaOH	D = BOD Bottle	alpha Secure Stu		2/9/23	7:00	MUIN	MC	0	2/4/	_	70	HAS READ AND AGREES TO BE BOUND BY ALPHA'S
O = Other		Mu ML anc			7:00	1	7.10		1		0130	TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 30	-Sept-2013)			-1					1			(See reverse side.)