

Proactive by Design

JULY 2024 POST-INJECTION GROUNDWATER MONITORING REPORT

Former Signore Inc. 55-57 Jefferson Street Ellicottville, New York 14731

August 16, 2024 File No. 21.0056367.69

PREPARED FOR:

Iskalo Ellicottville Holdings LLC Williamsville, New York

GZA GeoEnvironmental of New York

300 Pearl Street, Suite 700 | Buffalo, New York 14202 716-685-2300

32 Offices Nationwide www.gza.com

Copyright© 2024 GZA GeoEnvironmental, Inc.

GEOTECHNICAL

ENVIRONMENTA

F----

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 300 Pearl Street Suite 700 Buffalo, NY 14202 T: 716.685.2300 F: 716.248.1472

www.gza.com

VIA EMAIL

August 16, 2024 File No. 21.0056367.69

Mr. David Chiazza Iskalo Ellicottville Holdings LLC Harbinger Square 5166 Main Street Williamsville, New York 14221 dchiazza@iskalo.com

Re: July 2024 Post-Injection Groundwater Monitoring Report Former Signore, Inc.

55-57 Jefferson Street

Ellicottville, New York 14731 (Site)

NYSDEC Site No. C905034

Mr. Chiazza:

GZA GeoEnvironmental of New York (GZA) submits this post-injection groundwater monitoring report to Iskalo Ellicottville Holdings LLC (Client). The report presents the analytical results of sampling conducted at the above referenced Site on July 12, 2024. The monitoring is required by the New York State Department of Environmental Conservation (NYSDEC) as specified in the Decision Document for Brownfield Cleanup Program (BCP) Site Number C905034 (July 2015) and in accordance with the approved revised Site Management Plan (SMP) dated November 2023.

The remedial injection program and first round of post-injection monitoring (August 2015) were described in the Final Engineering Report for the Site remedy (October 2015). Per the SMP, semi-annual post-injection groundwater monitoring was conducted until July 2017. Considering the established rate of chlorinated volatile organic compound (cVOC) reduction observed, NYSDEC approved modification of the SMP for annual post-injection monitoring in Fall 2017.

The July 2024 sampling event was the 11th round of post-injection monitoring conducted. This data report provides Site figures, well development forms, an analytical data summary table, graphs of pre- and post- injection concentrations of cVOCs in groundwater, and the laboratory data report for the seven wells sampled.

The body of data collected since remedial injections indicates reductive dichlorination has effectively decreased groundwater cVOC concentrations as intended; and that a slow and steady overall trend of cVOC reduction has been established. VOC concentrations have now been below GA criteria for at least two annual sampling rounds in EW-1.25R, SP-38, and TP-11. The concentration of trichloroethene (TCE) in SP-32 decreased from 12 μ g/L in August 2023 to 7.4 μ g/L in the recent sampling round, although it had been below GA criteria for several sampling rounds prior to 2023. Similarly, the concentration of tetrachloroethene (PCE) decreased in SP-43 from 13 to 5.5 μ g/L, while that of TCE decreased from 5.9 μ g/L to below GA criteria, between August 2023 and July 2024. SP-32 is upgradient, and SP-43 is on the southwestern edge, of the injection area.

August 16, 2024
July 2024 Post-Injection Groundwater Monitoring Data Report
21.0056367.69
Page | 2

SP-37 and SP-45 continue to have levels of three VOCs (PCE, TCE, and 1,2-cis-dichloroethene) above GA criteria, with concentrations between 7.4 and 18 μ g/L in the recent sampling round. In the past few years, concentrations of these compounds have not shown a strong trend, except for PCE in SP-45, which is down to 9 μ g/L, from a high of 260 μ g/L in September 2022.

Although groundwater cVOC concentrations have decreased overall since the remedial injections, recent data indicates Site groundwater has returned to an oxidizing environment characteristic of that prior to treatment. Such an oxidizing environment is likely not supportive of ongoing reductive degradation of PCE or TCE. While natural attenuation can occur in these conditions, it is most effective at low concentrations and for compounds having relatively few chlorines ("daughter" compounds). Biotic degradation of the more chlorinated compounds, including PCE and TCE, is very slow and particularly ineffective at higher concentrations. In situations where reductive dechlorination has removed the parent compounds PCE and TCE, a change to oxidizing conditions can be beneficial for remediation of the daughter products cis-1,2-dichloroethene (DCE) and vinyl chloride (VC). However, if undissolved PCE and TCE remain, oxidative degradation may not be able to keep pace with their rate of dissolution.

One important exception to the trend of returning to an oxidizing environment is noted: results from the downgradient well EW-1.25R (**Figure 2**) show that reductive dichlorination is continuing to keep cVOC concentrations low. This well is located proximate to the southern BCP Site boundary and downgradient of the injection area.

Post-injection sampling will continue annually in accordance with the SMP.

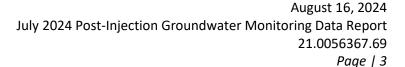
Should you have any questions or require additional information following your review, please contact Thomas Bohlen at 716-570-5983.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

romas Bohlen

Thomas Bohlen, P.G.


Senior Project Manager

Bart A. Klettke, P.E.

Principal

Jeremiah Duncan, Ph.D. Senior Chemist

cc: Megan Kuczka, NYSDEC; Angela Martin, New York State Department of Health (NYSDOH)

ATTACHMENTS

FIGURE 1 MICROWELL GROUNDWATER ELEVATION CONTOUR PLAN

FIGURE 2 CHLORINATED VOLATILE ORGANIC COMPOUND CONCENTRATIONS – JUNE 2019 THROUGH

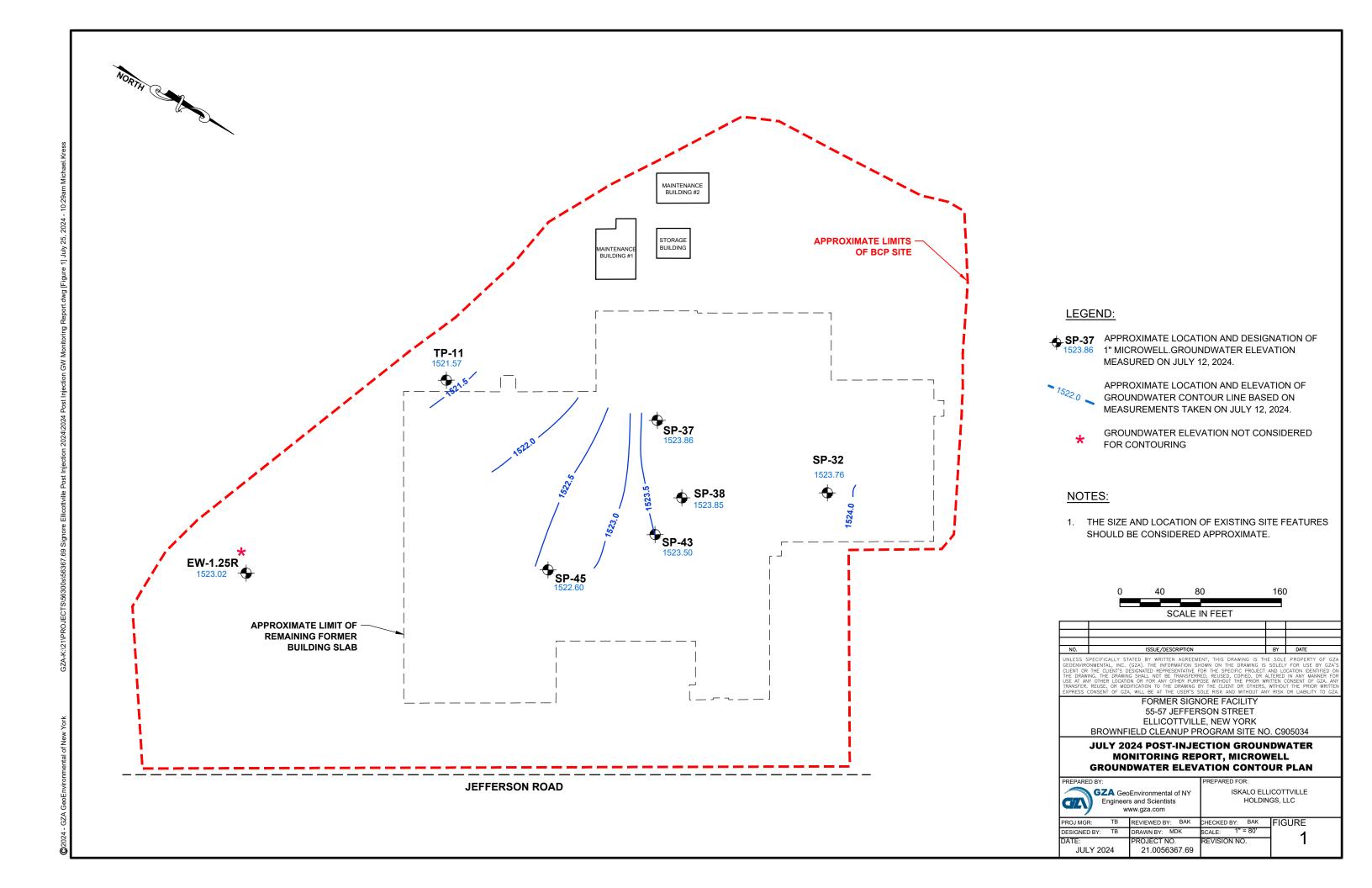
JULY 2024

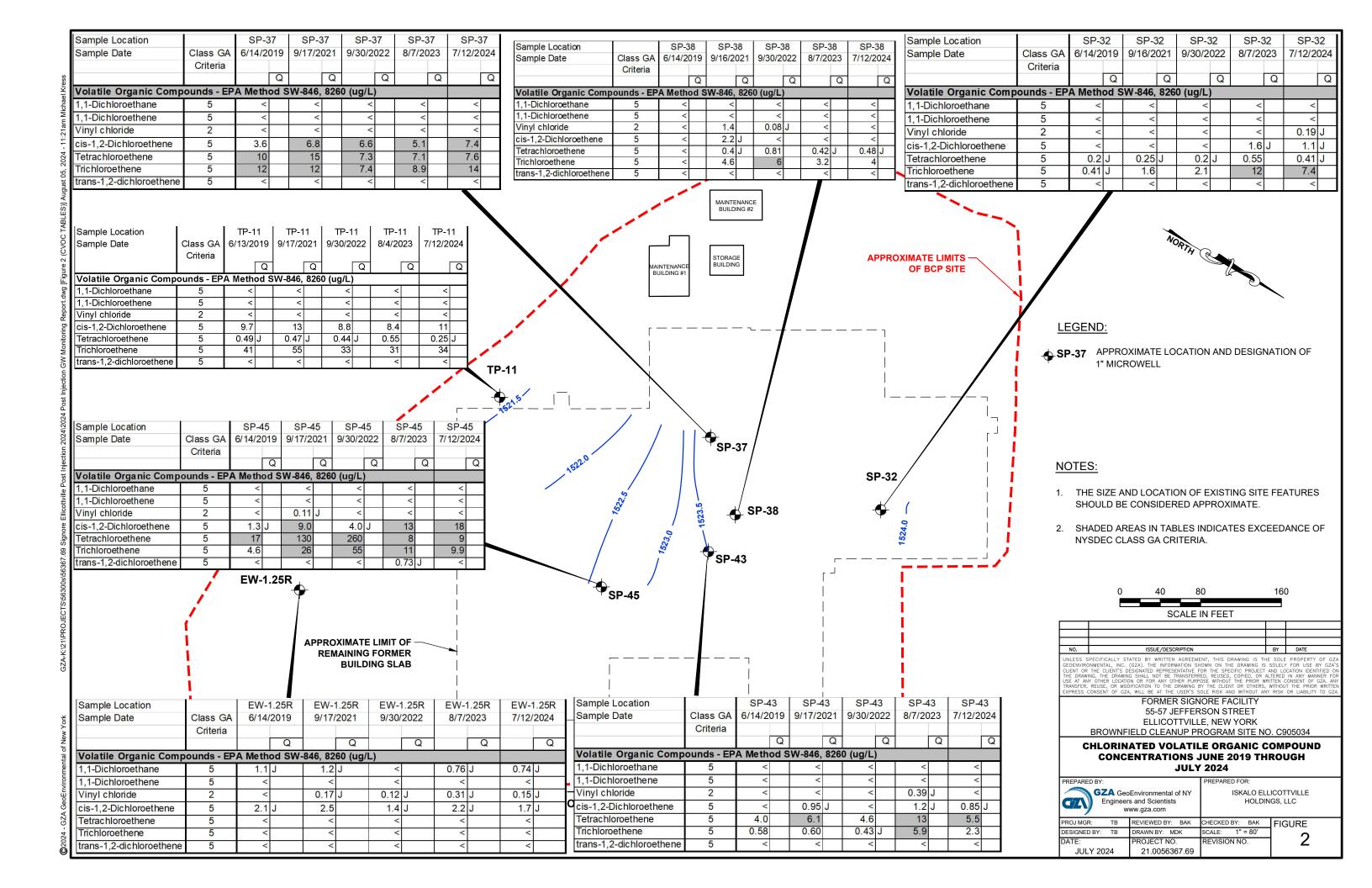
FIGURE 3 LOCATION OF ORGANIC CARBON ELECTRON DONOR SUBSTRATE INJECTIONS

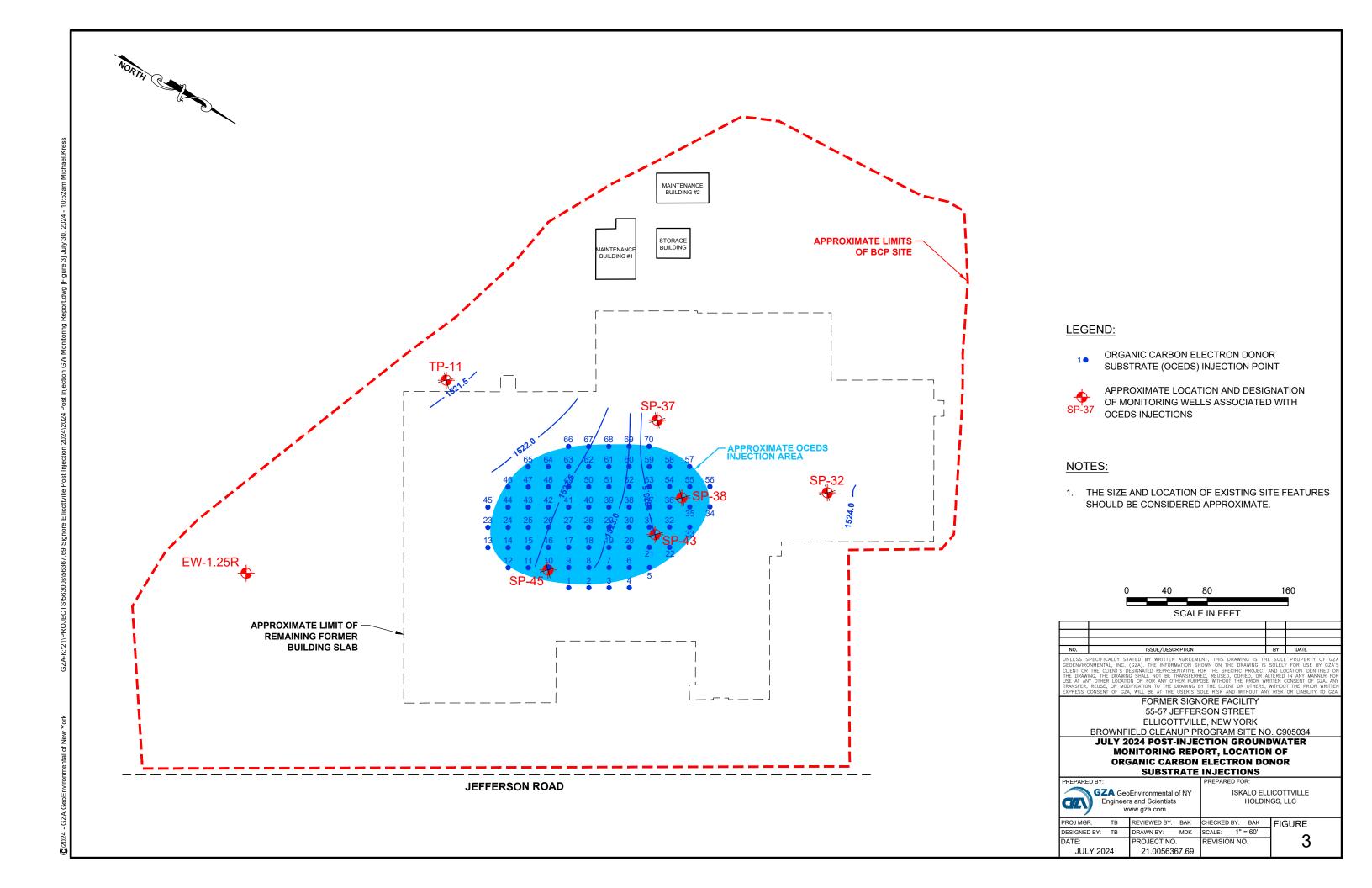
ATTACHMENT A LIMITATIONS

ATTACHMENT B GROUNDWATER ELEVATION SUMMARY TABLE AND WELL DEVELOPMENT FORMS

ATTACHMENT C GROUNDWATER ANALYTICAL RESULTS SUMMARY


ATTACHMENT D CONCENTRATIONS OF CVOC PARENT MATERIAL AND DAUGHTER PRODUCTS


MEASURED IN GROUNDWATER


ATTACHMENT E LABORATORY REPORT

FIGURES

ATTACHMENT A

LIMITATIONS

October 2021

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

21.0056367.68 Page | 2 October 2021

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

ATTACHMENT B

GROUNDWATER ELEVATION SUMMARY TABLE AND

WELL DEVELOPMENT FORMS

Attachment B

July 2024 Post-Injection Groundwater Elevation Summary

Former Signore Facility Ellicottville, New York BCP Site No. C905034

Sample Location Sample Date	EW-1.25R 7/12/2024	SP-37 7/12/2024	SP-32 7/12/2024	SP-38 7/12/2024	SP-43 7/12/2024	SP-45 7/12/2024	TP-11 7/12/2024
Top of casing (ft)	1534.04	1533.36	1533.52	1533.52	1533.42	1533.43	1532.98
Measured water level (ft btoc)	11.02	9.50	9.76	9.67	9.92	10.83	11.41
Groundwater elevation	1523.02	1523.86	1523.76	1523.85	1523.50	1522.60	1521.57

Notes:

ft btoc - feet below top of casing

File: 21 0056367.69

FORMER SIGNORE, INC. FACILITY WELL DEVELOPMENT FORM 55-57 JEFFERSON STREET ELLICOTTVILLE, NEW YORK

						Historic Info	ormation				
Bonng Log	Available (ves/no/atta	ched)								
Installation											
		.,				Summ	ary				
Monitoring '	Well	EW-1.25R		Ground Su	rface Elevation	1:		Riser/Sci	reen Materia	al PVC	
Installation	Date	5/20/2019			Casing Elevation				creen Depth		
Installed By	1.	Earth Dime	ensions	Monitoring	Point Elevation	1534	.04	Bottom o	of Screen De	pth 25 ft	
				Elevation [
Previous Fi	eld measu	rement Infor	mation Availa	able (yes/no							
					Range	s of Previous F	ield Measu	rements			
Depth to	o Water		pН	Specific (Conductance	Tempera	ature	Tur	rbidity		Color
(f	,	(Stand	ard Units)	(uM	hos/cm)	(°C)		(N	ITU)		
11.	77	(37		595	15		20	0 06		Clear
Notes											
			Fi	eld Observa	itions					eters +/-	Sampling Information
Exterior Ob	servations	0000							рН	+/- 0 1	Sample ID EW-1 25 -07 1224
									Conductivit		Sample Time: 1035
Interior Obs	ervations	good									# of Sample Containers 3
		<u>U</u>							Turbidity	+/- 10%	Duplicate Sample ID
C (D-		110	10 D						DO		Sample Analysis VOCs 8260
Signs of Da		pering NU	p (ves no)	Cuefe	ace Seal Intact	Cooleal	PID Meas	u ornost	טטן	+/- 10%	MNA PARAMETERS
Locked (yesmon	1 vveir Ca	ip (ves/10)	Suna	ace Seal Intact	Well Qual		urement		Odors No	
			1			vveii Quali	ly Dala				1
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
Date	Tille	Water	Volume	(Standard	Conductance	(°C)	(NTU)	Color	Oxygen	Reduction	Notes
		ft bgs	Purged	Units)	(uMhos/cm)	(0)	(1110)		3.36	Potential	
07/224	0046	11.02	O	6.37	6.565	13.0	72.56	MANL	== 1V	85.6	Depth of Water: 11.02
U11224	1001	11.02	11	10 34	0.565	12.51	39.46		2.02	37.7	Length of Water Column 12.59
7	1006	11.02	2.5L	634	0.559	12.8	26,7 73	nune	160	3_1	Depth of Well. 23.69
	1011	11.02	3.5 L	641	0 550	12.8	19.46	None	139	-15.1	Sheen Observed: Y (N)
	1016	11.02	5 L	6.44	0.546	12.0	29.52	N	1.7.7	-26.6	DNAPL Observed: Y (N
	10.21	11.02	46	6A8	0.542	12.8	22,43 39.97	N	1.16	-37.7	Did Well Go Dry: Y (N)
	10.26	11.02	3-6	12.50	0.534	12.8	39.97	N	1.09	-44.8	Other
	1031	11.02	86	6.52	0.532	11.9	13.77	N	1.05	- 50.0	

File: 21 0056367 69

FORMER SIGNORE, INC. FACILITY WELL DEVELOPMENT FORM 55-57 JEFFERSON STREET FILICOTTVILLE, NEW YORK

						Historic Inf	ormation				
Boring Log	Available (yes/no/atta	ched).								
nstallation	Log Availa	ble (yes /no/	attached)								
						Summ	nary				
Monitoring		TP-11			ırface Elevatior				reen Materia		
nstallation					Casing Elevation				creen Depth		
nstalled By	<i>1</i> .	Trec Envir	onmental		Point Elevation	n. 1532 98 ft.		Bottom c	of Screen De	eptn	
)-a> F	atdaa		- stice Avele	Elevation (
revious Fi	ela measul	rement infor	mation Availa	ible (yes/no		s of Previous F	ield Measu	rements			
Denth to	o Water	1	pH	Coordia	Conductance	Tempera			rbidity		Color
(f			ard Units)	1 '	hos/cni)	(°C	ature	1	NTU)		Corol
11.8		-	8.85).519	1 14.4			3.72		Clear
Votes	,0	1	7.0.1	1	0.515	1 17.7			J, / C		Cical
10103											
			Fie	eld Observa	lions				Parame	eters +/-	Sampling Information
xterior Ob	servations	ann							рH	+/- 0 1	Sample ID TP-11-071224
		Just							Conductivit	ty +/- 3%	Sample Time 1140
nterior Obs	servations	CIODA								re +/- 10%	# of Sample Containers. D 6
		7							Turbidity	+/- 1G%	Duplicate Sample ID DUP-0717
									IDG		Sample Analysis VOCs 8260
	mage/Tam		me	2	and Cool intent	(Street	DID Mass		IDC	+/- 10%	7
Locked	vestro	I vveii Ca	p (ves/no)	Sun	ace Seal Intact	Well Qual	PID Meas	urement		Odors No	<u>ee</u>
						VVEI: Qual	ly Data				
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
00.0		Water	Volume	(Standard	Conductance	(°C)	(NTU)	00.01	Oxygen	Reduction	1,0,00
		ft bgs	Purged	Units)	(uMhos/cm)	,			7,3	Potential	
71228	1100	MAI	0	(0.58	0.506	13.0	1745.75	tan	6.45	158.3	Depth of Water: 11,41
	1115	11.41	<u> </u>	6.50	0.504	13.7	70.07	tun	5.68 1.41	156.7	Length of Water Column: 809
	1120	1141	3,56	6.54	0.804	13.4	33.62	Clens	1.41_	155.4	Depth of Well 9.50
	1125	1141	5 L	4.54	(1,511	13.2	36.00	_نبَــ	5.31	155.2	Sheen Observed: Y (N)
	1130	11.41	106	6.60	0,518	13.6	10.57	cl.	5.23		DNAPL Observed Y (N)
	1135	IL A	<u> </u>	6.62	0.531	13.5	37.49	Cl.	5.17		Did Well Go Dry: Y (N) Other:
	1140	11.41	9.56	4.62	N. 227	13.3	5 r.49	61.	5 11	156.8	Otilei.
	1,,										
	, .										

File: 21.0056367 69

FORMER SIGNORE, INC. FACILITY WELL DEVELOPMENT FORM 55-57 JEFFERSON STREET ELLICOTTVILLE, NEW YORK

						Historic Inf	ormation				
Boring Log A	Available (y	es/no/attac	ched):								
nstallation L	og Availat	ole (yes/no/	attached)								
						Summ	nary	5 10	11-1	-I DV(C	
Monitoring V	Vell:	SP-37		Ground Su	rface Elevation				reen Materia		
nstallation [Date	9/27/2012			Casing Elevation				creen Depth		
nstalled By:		TREC			Point Elevation	1533.36		- Bottom (of Screen De	eptri 191t.	
				Elevation D							
Previous Fie	eld measur	ement Infor	mation Availa	ble (yes/no	/attached)						
						s of Previous F					0.1
Depth to	Water		рН	Specific (Conductance	Tempera		1	rbidity		Color
(ft))	(Standa	ard Units)	(uM	hos/cm)	(°C		-	NTU)		
10.6	33	6	3 12	0	191	16 9)		7.3		Clear
Notes:											
									_		
			Fie	eld Observa	tions					eters +/-	Sampling Information
Exterior Obs	ervations	9000							рН	+/- 0.1	Sample ID -0712 59-37-0717
		J .							Conductivit		Sample Time 1240
Interior Obse	ervations	0000							Temperatu		# of Sample Containers: 3
		J							Turbidity	+/- 10%	Duplicate Sample ID
									DO	+/- 10mv +/- 10%	Sample Analysis. VOCs 8260
Signs of Dar	mage/Tam	pering: No	ne	0.7	0 11 1	0	DIO Mass				MNA PARAMETERS
Locked (yeskno	Well Ca	p (yes)no)	Surfa	ace Seal Intact		PID Meas	urement		Odors: \(\)	ione
						Well Qual	ity Data		1		
5 .	T.	Double to	Completive	الم	Specific	Teniperature	Turbidity	Color	Dissolved	Oxygen	Notes
Date	Time	Depth to	Cumulative	pH	,		(NTU)	COIOI		Reduction	Notes
		Water	Volume	10.00	Conductance	(°C)	(1410)		Oxygen	Potential	
00110	10.00	ft bgs	Purged	Units)	(uMhos/cm)	16.5	65,01	none	5.68	190.4	Depth of Water: 9.5
07122	1205	9.50	0 2L	50.02	0.200	16.0	6.39			188 3	Length of Water Column: 10.60
	1215	9.50	4L	6.02	0.204	16.0	39.19	none		186.8	Depth of Well: 20,10
	1213	9.50	5L	6.03	0.207	15.7	4.70	hore	3 9/0	186.2	Sheen Observed: Y
	17.25	9.51	CoL	6.04	0.213	15 6	27.15	nere	3.96		DNAPL Observed: Y N
	1236	9.50	4.36	6.06	0.217	15.6	26.69	nene	3.77		Did Well Go Dry: Y
	1235	9.50	96	6.08	0.219	15.3	22.92	non	3.74	186.7	Other:
	1240	9.50	10.51	6.09	6.222	15.1	34.38			187.0	
	1210	1.0-	10.06	-			- 10	1	- 18		
									1		
		l								and the state of t	

File. 21 0056367 69

FORMER SIGNORE, INC. FACILITY WELL DEVELOPMENT FORM 55-57 JEFFERSON STREET ELLICOTIVILLE, NEW YORK

						Historic In	formation				
Bonng Log /	Available (yes/no/attac	ched)								
Installation L	og Availat	ole (yes/no/	attached)								
						Sumr	nary	Dinas/C	creen Materi	al DMC	
Monitonng V	Vell	SP-45			irface Elevation						
Installation (Date	10/1/2012			Casing Elevati				Screen Dept of Screen D		
Installed By		TREC		_	Point Elevation	1533 43	3	Bottom	or Screen D	eptn 1921t	
				Elevation [
Previous Fie	eld measur	ement Infor	mation Availa	able (yes/no	/attached)						
						s of Previous F					
Depth to	Water		рН	Specific	Conductance	Temper		1	rbidity		Color
(ft		(Stand	ard Units)	(uM	hos/cm)	(°C			VTU)		
	.35		5.64	(364	20			-5.41		Clear
Notes:	SMSI										
	-1										
			Fi	elo Observa	tions				Param	eters +/-	Sampling Information
Exterior Obs	ervations	UND							pH	+/- 0 1	Sample ID 5P-45-031224
		0							Conductivi		Sample Time (320
Interior Obs	ervations	2000									# of Sample Containers 9
		<u></u>							Turbidity	+/- 10%	Duplicate Sample ID
C/ D-	(T								ORP	+/- 10mV	Sample Analysis VOCs 8260
Signs of Da			- (5/20)	0 /	0 - 11 - 1 - 1		In.a		DO	÷i- 10%	MNA PARAMETERS
Locked (yestid)	I vven Ca	p (v)./no)	Suna	ace Seal Intact		PID Meas	urement		Odors No	Ne_
						Wall Qua	ity Data				
Date	Time	Depth to	Cumulative	На	Specific	Temperature	Turbidity	Coior	D		
		Water	Volume	(Standard	Conductance			Color	Dissolved	Oxygen	Notes
		ft bgs	Purged	Units)	(uMhos/cm)	(C)	(NTU)		Oxygen	Reduction	
071224	1300	10.8		(0.58	0.399	22.2	20.16	.22		Potential	
	1305	10.83	16	6.65	0.40!	21.7	29.16	runc	4.09	193.7	Depth of Water: 10.85
	1310	10.83	21	6.68	0.401	21.8	23.46	none	2.71	194.7	Length of Water Column 6.55
	1313	0.33	2 L 3 L	6.76	5.201	21.7	17 71	MATA	201	195.9	Depth of Well: 17.38.
	1320	10.83	46	6.71	0,401	21.7	12.21	TOUR	202	197.5	Sheen Observed: Y
				1		Le1 _ 1	1-1-2	TWY.	1.1.5	170.8	DNAPL Observed: Y
									-		Did Well Go Dry: Y (1)
											Other:

File. 21 0056367 69

FORMER SIGNORE, INC. FACILITY WELL DEVELOPMENT FORM 55-57 JEFFERSON STREET ELLICOTTVILLE, NEW YORK

					e	Historic Info	rmation				
oring Log Av	/ailable (y	es/no/attach	ned)								
stallation Lo	g Availab	le (yes/no/a	ittached)								
						Summa				1 51/0	
Ionitoring W		SP-43			face Elevation				een Materia		
nstallation Da		10/1/2012			Casing Elevation				creen Depth		
nstalled By		TREC			Point Elevation	1533.42		Bottom o	f Screen De	ptri 201t.	
				Elevation D							
revious Field	d measure	ement Inform	mation Availat	ole (yes/no/	attached)		-1-1-1-1				
						of Previous Fi					Color
Depth to \	Vater		H		Conductance	Tempera			bidity		Coloi
(ft)			ard Units)		nos/cm)	(°C)			ITU)		Class
11 5	5	6	.38	0	.311	15.5		5	89		Clear
Notes:											
									Dorom	eters +/-	Compliant Information
			Fie	d Observa	tions				pH	+/- 0 1	Sampling Information Sample ID SP-43-071224
Exterior Obse	ervations	gova							Conductivit		Sample Time 1400
- t - d Ob		nod							Temperatu		# of Sample Containers 3
nterior Obse	rvations	- July							Turbidity		Duplicate Sample ID
		U							ORP		Sample Analysis VOCs 8260
Signs of Dan	nage/Tam	perina Ald	me						DO	+/- 10%	MNA PARAMETERS
Locked (y		Well Ca	io (. eg/no)	Surfa	ace Seal Intact	(vesno)	PID Meas	urement.		Odors.	
V						Well Qual	ty Data				
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	(Standard	Conductance	(°C)	(NTU)		Oxygen	Reduction	
	~	ft bgs	Purged	Units)	(uMhos/cm)		0-11		7.0	Potential	
071224	1340	9.92	0	6.26	0.137	20.1	98.16	nar	4.18		Depth of Water 992
	1343	9.92	16	3.96	0.134	20.3	80.44	rance	2.55	232.3	Length of Water Column: 7.05 Depth of Well 17.97
	1350	9.92	2.56	5.95	0.134	20.0	44.07	12000	2.17	231.5	Depth of Well 14.97 Sheen Observed: Y (1)
	1355	9.92	2.00	5.94	0.135	20.1	16.79	nane	2.10	229.9	DNAPL Observed: Y
	1400	4.90	50	1:15	0.150	20.1	14.41	rure	2	661.1	Did Well Go Dry: Y (N)
		 				 		 	<u> </u>		Other:
		1									

File: 21 0056367.69

FORMER SIGNORE, INC. FACILITY WELL DEVELOPMENT FORM 55-57 JEFFERSON STREET ELLICOTTVILLE, NEW YORK

					CLI	LICOTIVILLE	, NEW 10	, KK			
						Historic Info	rmation				
Boring Log A											
nstallation Lo	og Availab	le (yes/no/a	attached)								
						Summ	ary	D:(0		1 01/0	
Monitoring W		SP-38		-	face Elevation				reen Materia		
nstallation D	-	9/27/2012			asing Elevation				creen Depth of Screen De		
nstalled By		TREC			Point Elevation	1533 52		_ BOLLOIN O	1 Screen De	рит. 19 п.	
				Elevation D	The second secon						
revious Fiel	d measure	ement Inforr	mation Availal	ole (yes/no/		-f Danisana F	ald Mass				
						of Previous F			1 : 1:4		Onland
Depth to			pΗ	500 M	conductance	Tempera		1	rbidity		Color
(ft)			ard Units)		nos/cm)	(°C)		-	NTU)		01
10.8	3	(5.6	0.	432	16.3		20	0.12		Clear
Notes											
									-		
			Fie	eld Observat	ions					eters +/-	Sampling Information
Exterior Obs	ervations	9000							рН	+/- 0.1	Sample ID 58-38-071224
		U							Conductivi	re +/- 10%	Sample Time: 1440
Interior Obse	ervations	300 g							Turbidity		# of Sample Containers 3
		0							ORP		Duplicate Sample ID. Sample Analysis: VOCs 8260
Signs of Dar	nage/Tam	norma: A M	111						DO	+/- 10%	MNA PARAMETERS
Locked (Well Ca	ap (e)/no)	Surfa	ice Seal Intact	(ves)no)	PID Meas	urement	150	Odors ne	
Locked	yes(110)	VVCII OC	ir (Como)	Odific	ice ocai intact	Well Qual		dicinent		000.0	
						Frem dadi	ity Duta	T	1	T	
Date	Time	Depth to	Cumulative	На	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume	1000000			(NTU)		Oxygen	Reduction	
		ft bas	Purged	Units)	(uMhos/cm)	,			, , ,	Potential	
071774	1470	9.67	0	6.51	0.409	14.7	303.61	grey	6.41	244.8	Depth of Water: 9.67
4,110.	1425	9.67	BIL	6.53	0.410	14.7	111.25	ans	5.20	239.9	Length of Water Column 9, 6
071124	1430	9.67	24	6.53	0.411	14.8	68.01	030	5.14	238.7	Depth of Well: 18 83
	1435	267	3 L	6.54	0.411	14.8	77.45	Ogr.	5.16	238.3	Sheen Observed: Y
	1440	9.67	4L	6.54	0.410	14.8	78.11	Er.	5.14	238.4	DNAPL Observed: Y
								0			Did Well Go Dry: Y (N)
											Other:
		ļ				-					
							-	-			
			 	 		 					
-		al of New Y	'arli			1 - 10					Page

File 21.0056367 69

FORMER SIGNORE, INC. FACILITY WELL DEVELOPMENT FORM 55-57 JEFFERSON STREET ELLICOTIVILLE, NEW YORK

						Historic Info	ormation				
Boring Log A	Available (es/no/attac	ched)								
nstallation L	∟og Availal	ole (yes /no/	attached)								
						Summ	ary				
Monitoring V		SP-32			rface Elevation				reen Materi		
nstallation [9/27/2012			Casing Elevation				creen Depth		
nstalled By:		TREC			Point Elevation	1533 52		Bottom o	of Screen De	epth. 19 ft.	
				Elevation D)atum:						
revious Fie	eld measur	ement Infor	mation Availa	ble (yes/ no /							
						s of Previous F		rements			
Depth to		1	pН	Specific (Conductance	Tempera	ature	Tu	rbidity		Color
(ft		(Standa	ard Units)	(uMl	hos/cm)	(°C)		1)	4TU)		
10	4	6	68	0	265	17 2		6	5 52		Clear
lotes											
		1	Fie	eld Observa	tions				Param	eters +/-	Sampling Information
xterior Obs	servations	gran							рН	+/- 0 1	Sample ID 45 SP - 32 - 0717
									Conductivi		Sample Time: 1525
terior Obs	ervations	2000								re +/- 10%	# of Sample Containers 3
	6	/							Turbidity	+/- 10%	Duplicate Sample ID
ians of Dai	mage/Tam	nonna W.	ne						ORP DO	+/- 10mV	Sample Analysis VOCs 8260
Locked (p (xes)no)	Surf	ace Seal Intact	(2)-2)	PID Meas	usamaat	IDO	+/- 10% Odors No	MNA PARAMETERS
Locked	yesilloy	1 VVCII Ca	p (es/10)	Suria	ace Seal intact	Weil Quali		u: ement.		Odors No.	nt
						Well Quali	ly Dala				T
Date	Time	Depth to	Cumulative	рН	Specific	Temperature	Turbidity	Color	Dissolved	Oxygen	Notes
		Water	Volume		Conductance	(°C)	(NTU)	00.0	Oxygen	Reduction	Notes
		ft bgs	Purged	Units)	(uMhos/cm)	(0,	(1110)		Oxygen	Potential	
171224	1455	9.76	0	6.51	0.175	16.5	294.64	clear	5.87	237.7	Depth of Water Q 3G
11-21	1500	976	14	6.35	0.208	16.2	46.67	CI.	3.75	243.3	Depth of Water: 9.76 Length of Water Column: 8.89
	1503	976	2 4	6.44	0.227	15.9	95.96	CI.	3.14	241.3	Depth of Well: 18.65
	1310	9.76	3 L	6.48	0.240	15.8	60.84	ci.		240. Z	Sheen Observed: Y
	1515	9.76	4L	6.53	0.250	15.6	77.89	CI.	2.57	239.3	DNAPL Observed: Y
	1520	9.76	SL	6.54	0.253	16.0	24.25	cl.	2.46	239.0	Did Well Go Dry: Y
	1325	9.76	6L	6.16	0.247	16.9	494.03	CI.	2.35	240.8	Other:
								-			
									ļ		
Later of White		at of New Yo						-	i		

* Turbidity erratic despite char water

ATTACHMENT C

GROUNDWATER ANALYTICAL RESULTS SUMMARY

	ı															
Sample Location		EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25	EW-1.25R	EW-1.25R	EW-1.25R	EW-1.25R	EW-1.25R
Sample Date	Class GA	6/25/2013	10/16/2013	6/10/2014	6/4/2015	8/21/2015	10/21/2015	6/15/2016	_	7/13/2017	6/21/2018	6/14/2019	9/17/2021	9/30/2022	8/7/2023	7/12/2024
Campio Date	Criteria	0/20/2010	10/10/2010	0/10/2011	0, 1,2010	0/2 1/20 10	10/21/2010	0, 10, 20 1	10,20,2010	1,10,2011	0/2 1/2010	0/1 1/2010	0,1172021	0/00/2022	0/1/2020	.,
		Q	Q	Q	Q	Q	Q	Γ	QQ	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	PA Method SW-8	346, 8260C (ug/L)														
Acetone	50	<	<	<	<	<	3.8 J	2.3	J <	<	<	6.8	<	1.5 J	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	0.18 J	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	1.8	<	<	<	<	<	<
Chloromethane	NV	0.77 J	<	<	<	<	<	<	<	<	<	0.88 J	<	<	<	<
1,1-Dichloroethane	5	4.1	4.1	2.9	3	2.6	4.2	2.9		3.0	<	1.1 J	1.2 J	<	0.76 J	0.74 J
1,1-Dichloroethene	5	<	<	<	0.25 J	0.19 J	0.36 J	0.24		0.39 J	<	<	<	<	<	<
Vinyl chloride	2	4.6	5	2.4	2.6	<	3.3	3.2	6.6	<	<	<	0.17 J	0.12 J	0.31 J	0.15 J
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	31	32	23	29	28	44	28	98	57	<	2.1 J	2.5	1.4 J	2.2 J	1.7 J
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	0.82 J	<	<	0.7 J	<	<	<	<	<	<	<
Tetrachloroethene	5	3.3	3.8	3.6	<	1.4	1.8	3.1	<	<	<	<	<	<	<	<
Trichloroethene	5	51	59	41	47	42	58	47	0.27 J	35	<	<	<	<	<	<
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	0.79 J	<	<	<	<	<	<	<
Total VOCs		94.77	103.9	72.9	81.85	75.01	115.46	86.74	110.74	97.19		11.06	3.87	3.02	3.27	2.59
Field Parameters																
Temperature (Deg. C)	NV	13	13.5	10.4	9.1	13.1	13.4	12.4	13	14.9	12.1	9.8	14.1	13.4	15	12.9
Specific Conductance (mS/cm)	NV	0.7	0.68	0.7	0.757	0.67	0.68	0.653	0.612	0.65	0.629	0.633	0.641	0.564	0.595	0.532
Dissolved Oxygen (mg/L)	NV	0.05	0.18	0.06	0.17	0.12	0.22	0.29	0.23	0.13	0.65	0.18	17.1	3.1	0.68	1.05
Oxygen Reduction Potential (mv)	NV	-88.5	-99.3	-91.2	-130.5	-86.2	-91.6	161.4	-125.1	-169.9	-54.1	-140.1	-98.9	-96	-90.3	-50
pH (std. units)	NV	7.35	6.85	6.78	6.73	6.77	6.89	6.79	6.87	6.77	6.12	6.91	6.28	6.78	6.37	6.52
Turbidity (NTUs)	NV	9.12	3.31	11.71	7.7	14.2	10.7	20.1	11.87	13.13	21.5	69.11	9.82	8.14	20.06	13.77
Inorganics (ug/L)																
Iron	300	NS	1,000	14,000	14,000	11,500	11,900	27,300	10,500	<	27,000 M1	6,600 M1	28,400	NS	NS	NS
Manganese	300	NS	1,300	1,600	1,482	1,265	1,465	1,453	1,354	1,256	3,060	1,392	2,460	NS	NS	NS
Miscellaneous Water Quality Para																
Methane (ug/L)	NV	NS	1,000	170	237	218	190	244	130	130	NT	1,110	1,620	NS	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	<	<	<	NT	6.85	<	NS	NS	NS
Ethene (ug/L)	NV	NS	1.7	<	<	0.535	<	0.558	0.55	0.55	NT	2.82	<	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	<	<	2.07	2.47	1.92	2.26	1.56	1.84	21.0	7.97	11.60	NS	NS	NS
Chloride (mg/L)	250	NS NS	66 B	69	62	57	56	49	45	47	48.2 M1	14.1	16.0	NS	NS	NS
Nitrate (mg/L)	10	NS	<	<	0.015 J	0.020 J	<	<	0.029 J	<	<	<	0.12	NS	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS	NS	NS	NS
Sulfate (mg/L)	250	NS	7.6	7.4 B	12.8	10.3	10.5	10.2	11.7	8.86	<	10.3	4	NS	NS	NS

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled; NT = Not tested.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.
- 11. Results shown for parent wells and their respective duplicates are the highest detected concentrations.

			ı								l			1		
Sample Location		SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32	SP-32
	Class GA	10/3/2012	10/17/2013	6/10/2014	6/4/2015	8/21/2015	10/22/2015	6/15/201		7/12/2017	6/21/2018	6/14/2019	9/16/2021	9/30/2022	8/7/2023	7/12/2024
Campie Date	Criteria							G/ 10/20 1							<u> </u>	
		Q	Q	Q	Q	Q	Q		Q Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EPA					1											
Acetone	50	<	240 D	<	<	<	<	2.8	J <	<	<	4.8 J	<	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	0.18 J	0.23 J	<	<	<	<	<	<	<	<	<	0.19 J
2-Butanone	50	<	45	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	26	11	4.5	4.7	2.7	3.3	<	<	<	<	<	<	1.6 J	1.1 J
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	2.1	<	<	0.25 J	0.46 J	0.62	0.44	J 0.42 J	0.32 J	<	0.2 J	0.25 J	0.2 J	0.55	0.41 J
Trichloroethene	5	120	3.4	6.4	5.8	6.5	6.7	14	1.2	0.85	4.4	0.41 J	1.6	2.1	12	7.4
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		122.1	314.4	17.4	10.73	11.89	10.02	20.54	1.62	1.17	4.4	0.43	1.85	2.3	14.15	9.1
Field Parameters																
Temperature (Deg. C)	NV	13.2	16.5	13.1	11.0	17.7	16.6	15.8	15.1	18.6	13.2	12.2	19.9	18.3	17.2	16.9
Specific Conductance (mS/cm)	NV	0.418	0.65	0.392	0.326	0.272	0.223	0.232	0.181	0.133	0.144	0.122	0.167	0.167	0.265	0.247
Dissolved Oxygen (mg/L)	NV	4.92	0.18	0.12	0.15	0.16	0.48	0.53	1.67	2.29	0.76	5.59	42.8	48.4	0.96	2.35
Oxygen Reduction Potential (mv)	NV	50.3	-95.3	-21.9	104.4	57.7	169.9	236.7	153	41.9	181.2	150.8	215.3	93.1	57.7	240.8
pH (std. units)	NV	7.23	6.45	6.48	6.28	6.34	6.25	6.22	6.0	5.9	5.96	6.30	6.05	6.40	6.68	6.46
Turbidity (NTUs)	NV	35	6.76	4.95	0.6	7.15	4.42	7.6	4.96	5.02	2.8	17.51	5.36	7.52	-6.52	494.03
Inorganics (ug/L)																
Iron	300	NS	3,480	16,000	339	246	206	541	66	<	<	NS	NS	NS	NS	NS
Manganese	300	NS	24,600	19,000	6,468	8,331	2,897	2,668	1,144	12	<	NS	NS	NS	NS	NS
Miscellaneous Water Quality Parame	eters															
Methane (ug/L)	NV	NS	120	660	725	932	208	205	3.31	0.55 J	<	NS	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	<	<	0.659	0.841	<	<	<	<	<	NS	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	1.7	<	<	<	<	<	<	<	<	NS	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	51	<	1.35	1.7	1.02	1.45	0.87	1.08	<	NS	NS	NS	NS	NS
Chloride (mg/L)	250	NS	5 B	3.1	3.46	3.12	2.83	2.72	1.59	0.861	<	NS	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	<	<	1.92	0.93	4.2	3.9	4.8	1.4	1	NS	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS	NS	NS	NS
Sulfate (mg/L)	250	NS	4.9 J	14 B	14.6	16.8	16.1	16.3	14.4	13.8	15.9	NS	NS	NS	NS	NS

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value
- Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.
- 11. Results shown for parent wells and their respective duplicates are the highest detected concentrations.

Sample Location		SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37	SP-37
Sample Date	Class GA	10/5/2012	10/17/2013	6/10/2014	6/4/2015	8/21/2015	10/23/2015	6/16/2016	10/26/2016	7/12/2017	6/21/2018	6/14/2019	9/17/2021	9/30/2022	8/7/2023	7/12/2024
Campio Dato	Criteria	10/0/2012	10/11/2010	0/10/2011	G/ 1/2010	0/21/2010	10/20/2010	0/10/2010	10/20/2010	.,,_	0/21/2010	0, 1, 1, 2010	0,11,2021	0,00,2022	0///2020	17.2/2021
		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	A Method SW-8	,			_											
Acetone	50	<	<	<	<	<	<	2.6 J	<	<	<	5.5	<	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	0.21 J	0.42 J	<	<	<	<	<	<	<	<
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	1.8	7.3	0.99 J	3.4	9.9	9.4	6.7	12	2.7	1.9	3.6	6.8	6.6	5.1	7.4
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	0.82 J	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	9.6	24	13	18	15	26	14	17	12	13.2	10	15	7.3	7.1	7.6
Trichloroethene	5	13	20	7.2	10	11	19	13	14	7.8	10.9	12	12	7.4	8.9	14
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		24.4	51.3	27.2	31.4	36.72	54.61	36.72	43	22.5	26	31.1	33.8	21.3	21.1	29
Field Parameters																
Temperature (Deg. C)	NV	13.5	17	11.9	10	17	15.3	13.3	14.2	18.4	12.1	11.9	18.8	18.9	16.9	15.1
Specific Conductance (mS/cm)	NV	0.452	0.535	0.305	0.449	0.432	0.396	0.291	0.246	0.19	0.184	0.166	0.210	0.195	0.191	0.222
Dissolved Oxygen (mg/L)	NV	0.28	0.2	0.58	0.68	0.07	0.13	0.29	0.55	0.86	2.53	3.05	44.2	26	1.98	3.72
Oxygen Reduction Potential (mv)	NV	-122.4	74.8	107.7	117.6	16.1	82.8	306.5	130.2	6.7	180.1	151.5	213.1	143.7	128.6	187
pH (std. units)	NV	6.6	6.39	6.28	6.12	6.28	6.3	6.03	5.99	6.08	5.94	6.25	5.86	6.21	6.12	6.09
Turbidity (NTUs)	NV	2.5	9.35	12.5	1.4	5.27	2.3	5.93	5.02	10.37	0.9	6.12	9.26	6.82	-7.3	36.38
Inorganics (ug/L)																
Iron	300	NS	61.7 B	900	81.4	409	66	85	56	<	<	NS	NS	NS	NS	NS
Manganese	300	NS	336	150	1,021	6,015	2,035	1,137	1,445	73	<	NS	NS	NS	NS	NS
Miscellaneous Water Quality Para																
Methane (ug/L)	NV	NS	26	2.5	28	108	67.4	47.2	<	<	<	NS	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	<	<	<	<	NS	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	<	<	<	<	<	<	<	<	<	NS	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	4 J	2.8 J	2.51	4.75	2.62	2.47	2.21	1.93	1.5 M ²		1.14	NS	NS	NS
Chloride (mg/L)	250	NS	12 B	3.8	28.8	16.4	14.7	7.11	5.79	2.64	2.4	NS	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	4.8	5.2	2.98	0.04	0.27	1.40	3.20	1.30	0.79	NS	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS	NS	NS	NS
Sulfate (mg/L)	250	NS	36	24 B	23.3	18	21.1	18.3	21	14.3	13.9	9.78	10.6	NS	NS	NS

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.
- 11. Results shown for parent wells and their respective duplicates are the highest detected concentrations.

	1			T T				Ī	T	ı	1	1		I	
Sample Location		SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38	SP-38
Sample Date	Class GA	10/4/2012	10/17/2013		8/21/2015	10/23/2015	6/15/2016	10/26/2016	7/12/2017	6/21/2018	6/14/2019	9/16/202		8/7/2023	
Campio Bato	Criteria	10/1/2012	10/11/2010	0,10,2011	0/21/2010	10/20/2010	0/10/2010	10/20/2010	1712/2011	0/21/2010	0/11/2010	0,10,20	0/00/2022	0,7,2020	1712/2021
	o mona	Q		QQ	Q	Q	Q	Q	Q		QQ	1	QQ		Q Q
Volatile Organic Compounds - EP	A Method SW-8														
Acetone	50	<	<	<	<	<	1.6 J	<	<	<	<	<	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	1.8 J	1.9	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	2 J	1.9 J	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	22	0.39 J	4.0	4.2	<	<	1.4	0.08 J	<	<
2-Butanone	50	<	<	<	26	2.1 J	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	1.5	1.2	46	0.82 J	<	<	<	<	<	2.2	J <	<	<
Toluene	5	<	<	<	<	1 J	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	2.4	<	<	0.86 J	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	5	<	5.2	0.22 J	0.37 J	0.28 J	0.48 J	0.2 J	<	<	0.4	J 0.81	0.42 J	0.48 J
Trichloroethene	5	17	7.8	19	0.45 J	0.29 J	5.5 J	8.2	6.5	5.8	<	4.6	6	3.2	4
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		24.4	9.3	25.4	77.33	30.38	7.77	12.68	10.9	5.8		8.6	6.89	3.62	4.48
Field Parameters															
Temperature (Deg. C)	NV	13.1	15.2	11.6	15.2	15.1	16.1	14.8	16.7	11.7	11.3	17.9	16.1	16.3	14.8
Specific Conductance (mS/cm)	NV	0.437	0.412	0.437	1.03	0.69	0.419	0.443	0.416	0.404	0.398	0.446		0.432	0.41
Dissolved Oxygen (mg/L)	NV	3.25	2.88	4.65	0.07	0.11	1.32	0.23	0.72	2.11	2.32	19.4		3.58	5.14
Oxygen Reduction Potential (mv)	NV	31.7	103.5	136	-124.2	-172.7	241.8	-22.5	-79.6	150.8	125.2	156.6		120.2	238.4
pH (std. units)	NV	6.81	6.72	6.72	7.1	7.39	6.59	6.75	6.85	6.56	6.89	6.7	6.79	6.6	6.54
Turbidity (NTUs)	NV	27.4	2.12	19.2	12.3	2.12	6.39	7.69	5.88	21.5	180.22	42.28	7.35	20.12	78.11
Inorganics (ug/L)															
Iron	300	<	<	1,500	5,660	3,040	352	811	<	<	NS	NS		NS	NS
Manganese	300	5,100	41.1	B 180	24,820	12,680	2762	9031	1,827	23	NS	NS	NS	NS	NS
Miscellaneous Water Quality Para	ameters														
Methane (ug/L)	NV	<	20	1.1	807.0	636.0	3.9	13.7	10.1	4.4	NS	NS		NS	NS
Ethane (ug/L)	NV	NM	<	<	<	2.57	<	0.633	<	<	NS	NS		NS	NS
Ethene (ug/L)	NV	NM	<	<	3.45	4.56	<	2.04	0.652	<	NS	NS		NS	NS
Total Organic Carbon (mg/L)	NV	<	<	<	86.9	2.22	1.21	1.32	1.05	<	NS	NS		NS	NS
Chloride (mg/L)	250	31	40	B 34	29	27.1	36.1	27.7	22.6	32	NS	NS		NS	NS
Nitrate (mg/L)	10	4.7	1.4	3.3	0.0 J	<	0.6	0.24	0.24	0.37	NS	NS		NS	NS
Nitrite (mg/L)	1			<	<	NS	NS	NS	NS	<	NS	NS		NS	NS
Sulfate (mg/L)	250	23	11	13 B	0.063 J	5.99	11.5	16.1	13.8	11.7	NS	NS	NS	NS	NS

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.
- 11. Results shown for parent wells and their respective duplicates are the highest detected concentrations.

			1	1	1		1		Г		Г	1	1			
Sample Location		SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43	SP-43
Sample Date	Class GA	10/4/2012	10/17/2013	6/10/2014	6/4/2015	8/21/2015	10/23/2015	6/16/2016	10/26/2010		6/21/2018	6/14/2019	9/17/2021	9/30/2022	8/7/2023	7/12/2024
Campie Bate	Criteria	10/4/2012	10/11/2010	0/10/2014	0/4/2010	0/21/2010	10/20/2010	0/10/2010	10/20/2010	1712/2017	0/21/2010	0/14/2013	3/11/2021	3/30/2022	0/1/2020	1712/2024
	Ontona	Q	Q	Q	Q	Q	Q	Q		QQ	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	A Method SW-8															
Acetone	50	<	53	<	<	<	<	1.9 J	<	<	<	5.4	<	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<		<	<	<	<	<
Carbon disulfide	NV	<	1.3	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	0.92 J	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	0.48 J	6.6	<	<	<	<	<	<	<	0.39 J	<
2-Butanone	50	<	84	<	<	21	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	<	5.4	3.9	1.1 J	9.4	9.2	4.6	2.1 J	<	<	<	0.95 J	<	1.2 J	0.85 J
Toluene	5	<	<	<	<	<	84.0	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	93	24	14	14	10	17	7.7	11.0	6.9	7.4 CH	4.0	6.1	4.6	13	5.5
Trichloroethene	5	5.2	2.6	<	0.72	2.20	8.30	0.71	0.70	0.24 J	<	0.58	0.60	0.43 J	5.9	2.3
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		98.2	170.3	17.9	15.82	43.08	125.10	14.91	13.80	7.14	7.40	9.40	7.65	5.03	20.49	8.7
Field Parameters																
Temperature (Deg. C)	NV	14.1	18.4	13	12.2	16.6	15.9	14.6	14.2	20.5	15.6	13.8	20.9	19.5	15.5	20.1
Specific Conductance (mS/cm)	NV	0.445	0.513	0.304	0.773	0.66	0.68	0.237	0.224	0.183	0.151	0.127	0.149		0.311	0.135
Dissolved Oxygen (mg/L)	NV	1.48	0.22	0.23	1.1	0.12	0.12	1.23	1.96	1.96	1.73	3.52	28.1		0.79	2.1
Oxygen Reduction Potential (mv)	NV	44.2	-39.3	149	175.8	-15.1	-88.2	310.9	184.3	12.4	156.6	153.9	196.3		140.4	229.9
pH (std. units)	NV	6.55	5.88	6.13	5.82	6.31	6.83	5.87	6.02	6.12	6.11	6.32	5.9	6.29	6.38	5.95
Turbidity (NTUs)	NV	39.8	4.04	18	0.2	31.7	4.26	6.7	3.12	4.72	1.8	16.25	16.07	7.45	-5.89	16.79
Inorganics (ug/L)																
Iron	300	NS	6,150	7,100	54	5,780	6,220	127	114	<	<	NS	NS	NS	NS	NS
Manganese	300	NS	5,510	1,600	1,254	8,919	10,240	171.8	190.4	5.4	10.4	NS	NS	NS	NS	NS
Miscellaneous Water Quality Para																
Methane (ug/L)	NV	NS	16	12	0.756	2,490.000	6,520.000	0.612	<	0.619 J	<	NS	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	2.4	<	<	<	<	<	<	<	<	NS	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	3.7	<	<	<	2.13	<	<	<	<	NS	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	80	<	1.84	28.8	3.62	2.09	1.91	1.58	1.1	NS	NS	NS	NS	NS
Chloride (mg/L)	250	NS	6.3 B	2.2	136.0	62.2	40.0	12.2	9.6	4.1	2.6	NS	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	0.36	8.30	8.65	0.59	0.21	2.10	4.10	3.70	1.60	NS	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	<	0.042 J	NS	NS	NS	NS	NS	NS	<	NS	NS	NS	NS	NS
Sulfate (mg/L)	250	NS	12	25 B	19.8	18.3	13.3	22	21.4	14.7	14.1	NS	NS	NS	NS	NS

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

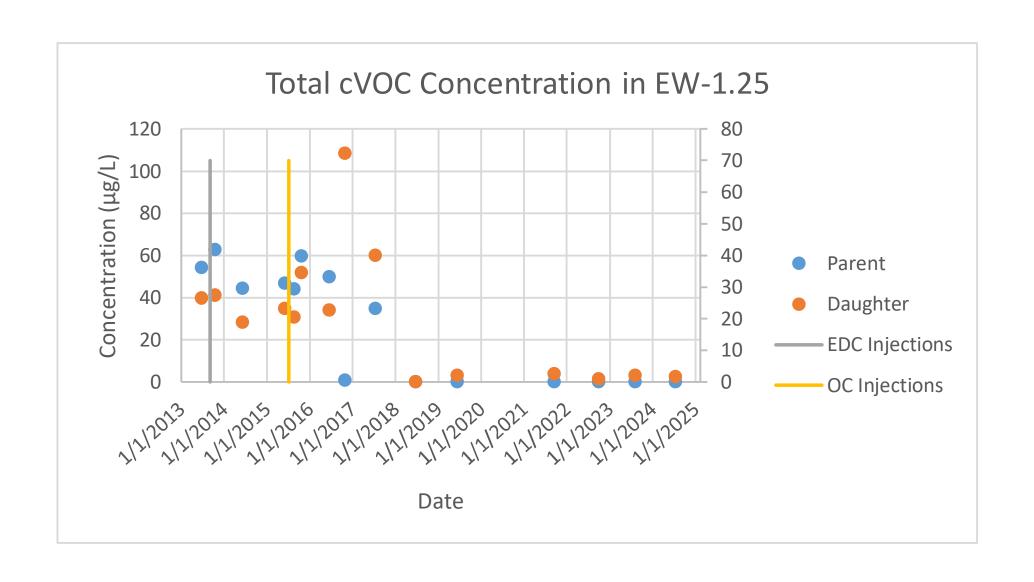
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.
- 11. Results shown for parent wells and their respective duplicates are the highest detected concentrations.

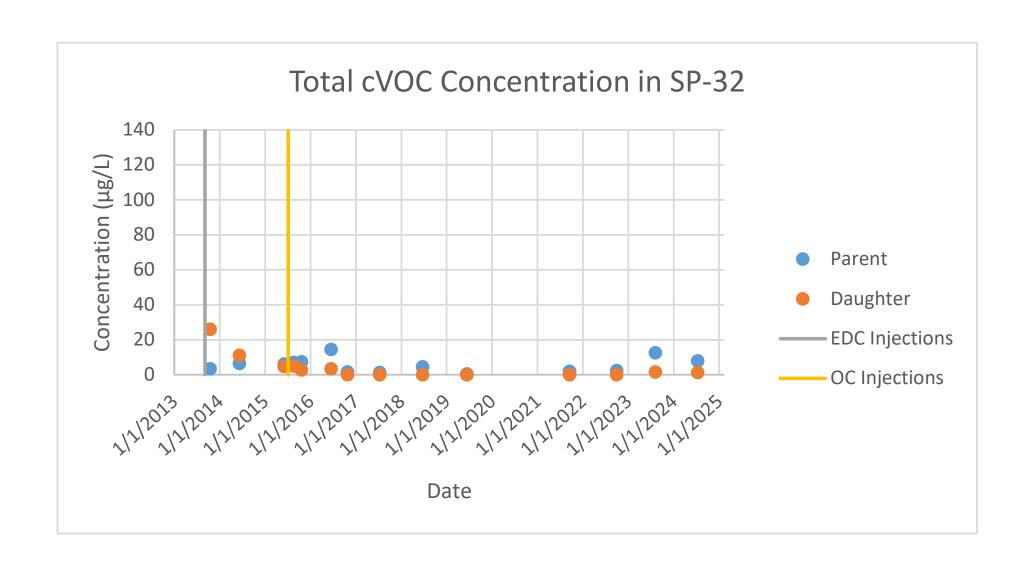
Sample Location		SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45	SP-45
Sample Date	Class GA	10/4/2012		6/10/2014	6/4/2015	8/21/2015	10/23/2015	6/16/2016	10/26/2016	7/13/2017	6/21/2018	6/14/2019	9/17/2021	9/30/2022	8/7/2023	7/12/2024
, , , , , , , , , , , , , , , , , , , ,	Criteria															1
			QQ		QQ	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP	PA Method SW-8			•												
Acetone	50	<	<	<	<	<	<	1.5 J	<	<	<	4.1	<	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	6.3	5.5	7.5	1.7	<	<	0.11 J	<	<	<
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	6.8	1.1	1.9	2.9	1.4 J	5.7	3.7	13	2.0 J	1.4	1.3 J	9.0	4.0 J	13	18
Toluene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	260 D	69	130	160	16	45	16	170	45	18.7	17	130	260	8	9
Trichloroethene	5	13	3.6	6.4	8.5	1.5	7.5	7.2	53	10	5.4	4.6	26	55	11	9.9
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<	<	<	0.73 J	<
Total VOCs		283.0	73.7	138.3	171.4	18.9	171.4	33.9	243.5	58.7	25.5	27.0	165.1	319.0	32.7	36.9
Field Parameters																
Temperature (Deg. C)	NV	14.6	17.8	16.5	14	19.1	15.8	15.2	15.8	15.8	13.3	14	20.7	19.6	20	21.7
Specific Conductance (mS/cm)	NV	0.543	0.363	0.391	0.584	0.6	0.62	0.503	0.442	0.442	0.391	0.336	0.410	0.341	0.364	0.401
Dissolved Oxygen (mg/L)	NV	1.07	5.21	3.02	3.58	0.09	0.07	0.5	0.06	0.06	2.72	3.85	18.4	6.1	1.07	2.23
Oxygen Reduction Potential (mv)	NV	-29.5	88.3	143.1	73.3	-62.7	-61.7	250.7	-8.7	-8.7	88.2	128.4	162.6	129.9	125.3	198.8
pH (std. units)	NV	6.48	6.83	6.71	6.71	7.05	7.05	6.91	6.66	6.66	6.89	7.23	6.59	6.7	6.64	6.71
Turbidity (NTUs)	NV	3.95	2.3	3.17	0.5	14.91	5.06	11.25	17.2	17.2	5.5	12.48	7.25	7.25	-5.41	14.56
Inorganics (ug/L)																
Iron	300	NS	32.1 B	170	J 27.2 J	45	J 1,260	197	386	<	<	NS	NS	NS	NS	NS
Manganese	300	NS	<	<	1.93	296.4	3,510	1447	1,340	240	332	NS	NS	NS	NS	NS
Miscellaneous Water Quality Para																
Methane (ug/L)	NV	NS	14	1.1	0.762 J	96.9	958	1500	3610	1760	8.1	NS	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	<	<	<	<	<	1.18	2.47	1.0	<	NS	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	<	<	<	<	1.08	2.59	3.36	0.77	<	NS	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	<	<	1.64	3.93	1.86	1.69	1.49	1.23	<	1.06	0.945	NS	NS	NS
Chloride (mg/L)	250	NS	5.1 B	4.2	35.0	9.4	17.3	15.4	12.6	3.2	6.8	NS	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	6	5.2	2.68	1.2	1.9	0.39	0.72	0.79	0.35	NS	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	<	<	NS	NS	NS	NS	NS	NS	<	NS	NS	NS	NS	NS
Sulfate (mg/L)	250	NS	39	33	B 32.7	43.4	22.4	24	23.8	19.1	16.8	12.1	9.82	NS	NS	NS

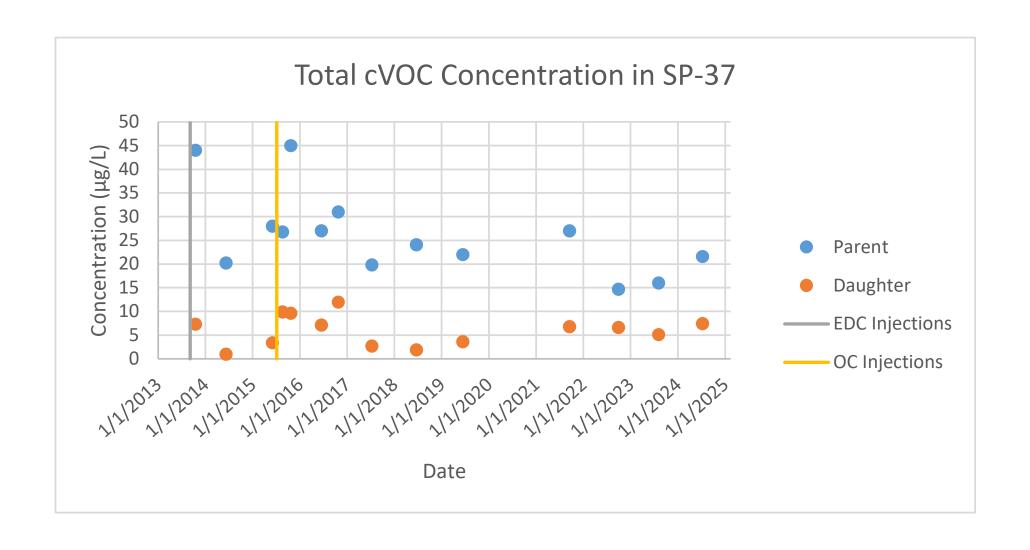
- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

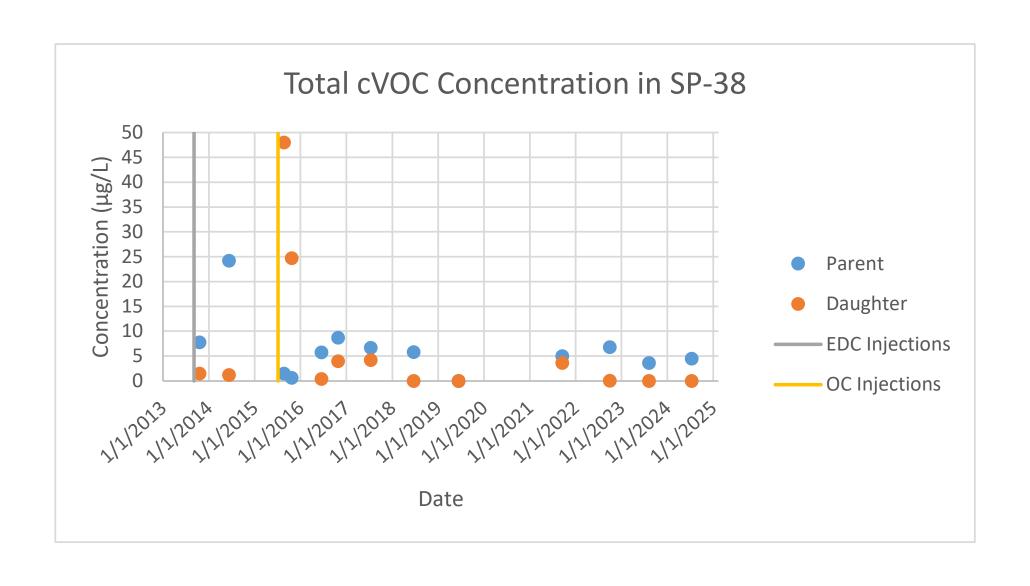
 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.
- 11. Results shown for parent wells and their respective duplicates are the highest detected concentrations.

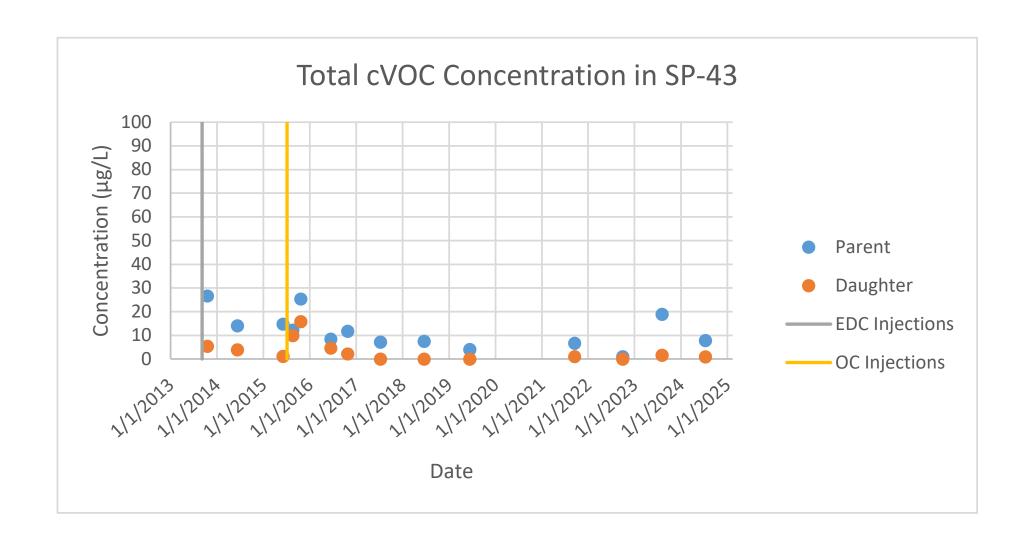
Sample Location		TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11	TP-11
Sample Date	Class GA	6/3/2015	10/22/2015	6/16/2016	10/25/2016	7/12/2017	6/20/2018	6/13/2019	9/17/2021	9/30/2022	8/4/2023	7/12/2024
,	Criteria											
		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organic Compounds - EP												
Acetone	50	<	<	2 J	<	<	<	2.5 J	<	<	<	<
Benzene	1	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	NV	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	5	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<
Vinyl chloride	2	<	<	<	<	<	<	<	<	<	<	<
2-Butanone	50	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	5	19	12	18	13	8.1	12.4	9.7	13	8.8	8.4	11
Toluene	5	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	5	0.58	1.5	0.53	1.2	0.25 J	<	0.49 J	0.47 J	0.44 J	0.55	0.32 J
Trichloroethene	5	88	74	77	58	40	66.7	41	55	33	31	34
trans-1,2-dichloroethene	5	<	<	<	<	<	<	<	<	<	<	<
Total VOCs		107.58	87.50	97.53	72.20	48.35	79.10	53.69	68.47	42.24	39.95	45.32
Field Parameters												
Temperature (Deg. C)	NV	17.5	14.4	12.4	13.4	16.9	9.5	8.8	16.2	14.8	14.4	13.5
Specific Conductance (mS/cm)	NV	0.37	0.535	0.493	0.504	0.393	0.464	0.447	0.558	0.518	0.519	0.531
Dissolved Oxygen (mg/L)	NV	0.11	1.57	2.84	2.24	2.06	4.83	4.12	33.2	25.6	3.35	5.11
Oxygen Reduction Potential (mv)	NV	-23.6	90.7	267.4	77.7	6.6	101.7	122	200.2	86.1	103.9	156.8
pH (std. units)	NV	6.84	7.04	6.9	6.8	6.69	6.81	7.06	6.45	5.18	6.85	6.62
Turbidity (NTUs)	NV	6.27	1.87	7.69	9.67	4.97	0.3	1.84	4.91	13.93	-6.72	37.49
Inorganics (ug/L)												
Iron	300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Manganese	300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Miscellaneous Water Quality Para	meters											
Methane (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethane (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Ethene (ug/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Total Organic Carbon (mg/L)	NV	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloride (mg/L)	250	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Nitrate (mg/L)	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Nitrite (mg/L)	1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Sulfate (mg/L)	250	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

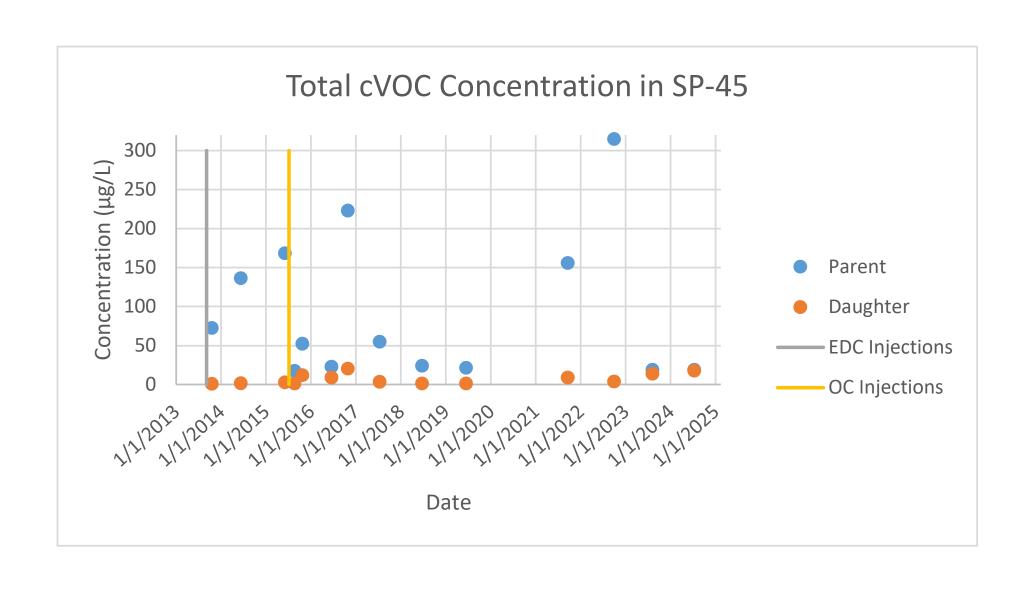

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica, Alpha Analytical and Pace Analytical.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits; D = value shown is result of dilution analysis; E = value above quantitation range.

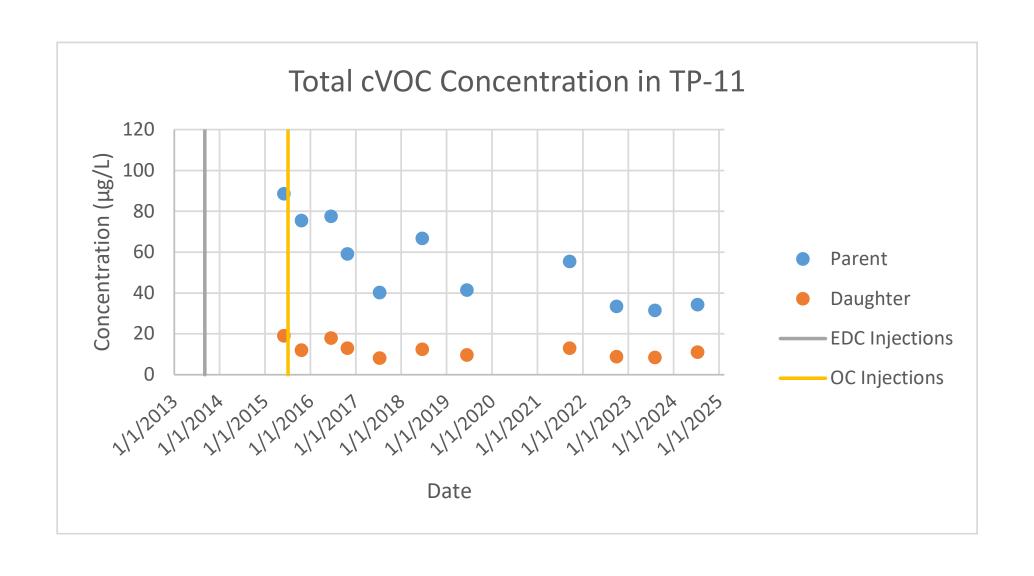

 M1 = Matrix spike recover exceeded QC limits. Batch accepted based on laboratory LCS recovery. CH = continuing calibration for this compount is outside of laboratory acceptance limits; results may be biased high.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value; NS = Not sampled.
- 9. Sum of Nitrate/Nitrite Class GA Criteria = 10 mg/L (no exceedances)
- 10. Shaded concentrations exceed Class GA criteria.
- 11. Results shown for parent wells and their respective duplicates are the highest detected concentrations.




ATTACHMENT D


CONCENTRATIONS OF CVOC PARENT MATERIAL AND DAUGHTER PRODUCTS IN GROUNDWATER





ATTACHMENT E

LABORATORY REPORT

ANALYTICAL REPORT

Lab Number: L2439491

Client: GZA GeoEnvironmental of New York

300 Pearl Street

Suite 700

Buffalo, NY 14202

ATTN: Thomas Bohlen Phone: (716) 844-7050

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

Report Date: 07/22/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

Lab Number: L2439491 **Report Date:** 07/22/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2439491-01	EW-1.25R-071224	WATER	55-57 JEFFERSON STREET	07/12/24 10:31	07/12/24
L2439491-02	TP-11-071224	WATER	55-57 JEFFERSON STREET	07/12/24 11:40	07/12/24
L2439491-03	SP-37-071224	WATER	55-57 JEFFERSON STREET	07/12/24 12:40	07/12/24
L2439491-04	SP-45-071224	WATER	55-57 JEFFERSON STREET	07/12/24 13:20	07/12/24
L2439491-05	SP-43-071224	WATER	55-57 JEFFERSON STREET	07/12/24 14:00	07/12/24
L2439491-06	SP-38-071224	WATER	55-57 JEFFERSON STREET	07/12/24 14:40	07/12/24
L2439491-07	SP-32-071224	WATER	55-57 JEFFERSON STREET	07/12/24 15:25	07/12/24
L2439491-08	DUP-071224	WATER	55-57 JEFFERSON STREET	07/12/24 00:00	07/12/24
L2439491-09	TRIP BLANK	WATER	55-57 JEFFERSON STREET	07/12/24 00:00	07/12/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2439491

Project Name: FORMER SIGNORE, INC.

IC. Lab Number:

Project Number: 21.0056367.69 **Report Date:** 07/22/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2439491-01: The collection date and time on the chain of custody was 12-JUL-24 10:35; however, the collection date/time on the container label was 12-JUL-24 10:31. At the client's request, the collection date/time is reported as 12-JUL-24 10:31.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

(attlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative Date: 07/22/24

ALPHA

ORGANICS

VOLATILES

L2439491

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

SAMPLE RESULTS

Lab Number:

Report Date: 07/22/24

Lab ID: L2439491-01 Date Collected: 07/12/24 10:31

Client ID: Date Received: 07/12/24 EW-1.25R-071224 Sample Location: Field Prep: 55-57 JEFFERSON STREET Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/18/24 02:14

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	0.74	J	ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.15	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: Report Date: 21.0056367.69 07/22/24

SAMPLE RESULTS

Lab ID: L2439491-01 Date Collected: 07/12/24 10:31

Client ID: Date Received: 07/12/24 EW-1.25R-071224

Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.7	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	107	70-130	

L2439491

07/12/24 11:40

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69 Report Date: 07/22/24

SAMPLE RESULTS

Lab ID: L2439491-02

Client ID: TP-11-071224

Sample Location: 55-57 JEFFERSON STREET Date Received: 07/12/24 Field Prep: Not Specified

Lab Number:

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/18/24 02:38

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.25	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	34		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: 21.0056367.69 **Report Date:** 07/22/24

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2439491-02 Date Collected: 07/12/24 11:40

Client ID: TP-11-071224 Date Received: 07/12/24 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Result

Sample Depth:

Parameter

i arameter	resuit	Qualifici	Onito			Dilation ractor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	11		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	104	70-130	

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

SAMPLE RESULTS

Lab Number: L2439491

Report Date: 07/22/24

Lab ID: L2439491-03 Date Collected: 07/12/24 12:40

Client ID: Date Received: 07/12/24 SP-37-071224 Field Prep: Sample Location: 55-57 JEFFERSON STREET Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/18/24 03:03

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	7.6		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	14		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: 21.0056367.69 **Report Date:** 07/22/24

SAMPLE RESULTS

Lab ID: L2439491-03 Date Collected: 07/12/24 12:40

Client ID: SP-37-071224 Date Received: 07/12/24 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	7.4		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	104	70-130	

L2439491

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

SAMPLE RESULTS

Lab Number:

Report Date: 07/22/24

Lab ID: L2439491-04 Date Collected: 07/12/24 13:20

Client ID: Date Received: 07/12/24 SP-45-071224 Field Prep: Sample Location: 55-57 JEFFERSON STREET Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/18/24 03:27

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	9.0		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	9.9		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: 21.0056367.69 **Report Date:** 07/22/24

SAMPLE RESULTS

Lab ID: L2439491-04 Date Collected: 07/12/24 13:20

Client ID: SP-45-071224 Date Received: 07/12/24 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	18		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	104	70-130	

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

SAMPLE RESULTS

Report Date: 07/22/24

Lab ID: L2439491-05 Client ID: SP-43-071224

Sample Location: 55-57 JEFFERSON STREET Field Prep:

Lab Number:

Date Collected:

Date Received:

07/12/24 14:00 07/12/24 Not Specified

L2439491

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/18/24 03:51

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	5.5		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	2.3		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: Report Date: 21.0056367.69 07/22/24

SAMPLE RESULTS

Lab ID: L2439491-05 Date Collected: 07/12/24 14:00

Date Received: 07/12/24 Client ID: SP-43-071224 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.85	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	102	70-130	

L2439491

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

SAMPLE RESULTS

Lab Number:

Report Date: 07/22/24

Lab ID: L2439491-06 Date Collected: 07/12/24 14:40

Client ID: Date Received: 07/12/24 SP-38-071224 Field Prep: Sample Location: 55-57 JEFFERSON STREET Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/18/24 04:15

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.48	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	4.0		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: 21.0056367.69 **Report Date:** 07/22/24

SAMPLE RESULTS

Lab ID: L2439491-06 Date Collected: 07/12/24 14:40

Client ID: SP-38-071224 Date Received: 07/12/24 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	100	70-130	

L2439491

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

SAMPLE RESULTS

Report Date: 07/22/24

Lab Number:

Lab ID: L2439491-07 Date Collected: 07/12/24 15:25

Client ID: Date Received: 07/12/24 SP-32-071224 Field Prep: Sample Location: 55-57 JEFFERSON STREET Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/18/24 04:40

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.41	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.19	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	7.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: Report Date: 21.0056367.69 07/22/24

SAMPLE RESULTS

Lab ID: L2439491-07 Date Collected: 07/12/24 15:25

Date Received: 07/12/24 Client ID: SP-32-071224 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.1	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	101	70-130	

07/12/24 00:00

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

SAMPLE RESULTS

Lab Number: L2439491

Report Date: 07/22/24

Lab ID: L2439491-08

Client ID: DUP-071224

Sample Location: 55-57 JEFFERSON STREET

Date Received: 07/12/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/18/24 05:04

Analyst: MJV

Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.32	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	33		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: Report Date: 21.0056367.69 07/22/24

SAMPLE RESULTS

Lab ID: Date Collected: 07/12/24 00:00 L2439491-08

Date Received: 07/12/24 Client ID: DUP-071224 Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	10		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	ND		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	100	70-130	

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

SAMPLE RESULTS

Lab Number: L2439491

Report Date: 07/22/24

Lab ID: L2439491-09 Date Collected: 07/12/24 00:00

Client ID: Date Received: 07/12/24 TRIP BLANK Field Prep: Sample Location: 55-57 JEFFERSON STREET Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/17/24 21:23

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: 21.0056367.69 **Report Date:** 07/22/24

SAMPLE RESULTS

Lab ID: L2439491-09 Date Collected: 07/12/24 00:00

Client ID: TRIP BLANK Date Received: 07/12/24
Sample Location: 55-57 JEFFERSON STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	ND		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	98	70-130	

Project Name: FORMER SIGNORE, INC. **Lab Number:** L2439491

Project Number: 21.0056367.69 **Report Date:** 07/22/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/17/24 20:58

Analyst: KJD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-09 Batch:	WG1948608-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: FORMER SIGNORE, INC. **Lab Number:** L2439491

Project Number: 21.0056367.69 **Report Date:** 07/22/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/17/24 20:58

Analyst: KJD

Parameter	Result	Qualifier	Units	3	RL	MDL
Volatile Organics by GC/MS - West	oorough Lab	for sample	e(s):	01-09	Batch:	WG1948608-5
1,4-Dichlorobenzene	ND		ug/l		2.5	0.70
Methyl tert butyl ether	ND		ug/l		2.5	0.17
p/m-Xylene	ND		ug/l		2.5	0.70
o-Xylene	ND		ug/l		2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l		2.5	0.70
Styrene	ND		ug/l		2.5	0.70
Dichlorodifluoromethane	ND		ug/l		5.0	1.0
Acetone	ND		ug/l		5.0	1.5
Carbon disulfide	ND		ug/l		5.0	1.0
2-Butanone	ND		ug/l		5.0	1.9
4-Methyl-2-pentanone	ND		ug/l		5.0	1.0
2-Hexanone	ND		ug/l		5.0	1.0
Bromochloromethane	ND		ug/l		2.5	0.70
1,2-Dibromoethane	ND		ug/l		2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l		2.5	0.70
Isopropylbenzene	ND		ug/l		2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l		2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l		2.5	0.70
Methyl Acetate	ND		ug/l		2.0	0.23
Cyclohexane	ND		ug/l		10	0.27
1,4-Dioxane	ND		ug/l		250	61.
Freon-113	ND		ug/l		2.5	0.70
Methyl cyclohexane	ND		ug/l		10	0.40

Project Name: FORMER SIGNORE, INC. Lab Number: L2439491

Project Number: 21.0056367.69 **Report Date:** 07/22/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/17/24 20:58

Analyst: KJD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-09 Batch: WG1948608-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	111		70-130		
Toluene-d8	107		70-130		
4-Bromofluorobenzene	109		70-130		
Dibromofluoromethane	96		70-130		

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER SIGNORE, INC.

Project Number:

21.0056367.69

Lab Number: L2439491

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-09 Batch: V	VG1948608-3	WG1948608-4		
Methylene chloride	99		98		70-130	1	20
1,1-Dichloroethane	100		110		70-130	10	20
Chloroform	97		100		70-130	3	20
Carbon tetrachloride	96		98		63-132	2	20
1,2-Dichloropropane	100		100		70-130	0	20
Dibromochloromethane	95		93		63-130	2	20
1,1,2-Trichloroethane	110		110		70-130	0	20
Tetrachloroethene	93		93		70-130	0	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	100		110		62-150	10	20
1,2-Dichloroethane	110		110		70-130	0	20
1,1,1-Trichloroethane	97		100		67-130	3	20
Bromodichloromethane	99		100		67-130	1	20
trans-1,3-Dichloropropene	100		100		70-130	0	20
cis-1,3-Dichloropropene	95		94		70-130	1	20
Bromoform	87		85		54-136	2	20
1,1,2,2-Tetrachloroethane	120		120		67-130	0	20
Benzene	100		100		70-130	0	20
Toluene	110		100		70-130	10	20
Ethylbenzene	100		100		70-130	0	20
Chloromethane	92		90		64-130	2	20
Bromomethane	150	Q	150	Q	39-139	0	20
Vinyl chloride	110		110		55-140	0	20

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER SIGNORE, INC.

Project Number:

21.0056367.69

Lab Number: L2439491

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westbord	ough Lab Associated s	ample(s): 01	-09 Batch: W	/G1948608-3	WG1948608-4			
Chloroethane	130		130		55-138	0		20
1,1-Dichloroethene	97		99		61-145	2		20
trans-1,2-Dichloroethene	100		97		70-130	3		20
Trichloroethene	92		97		70-130	5		20
1,2-Dichlorobenzene	100		100		70-130	0		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	93		91		63-130	2		20
p/m-Xylene	100		105		70-130	5		20
o-Xylene	105		100		70-130	5		20
cis-1,2-Dichloroethene	95		96		70-130	1		20
Styrene	105		105		70-130	0		20
Dichlorodifluoromethane	98		100		36-147	2		20
Acetone	77		94		58-148	20		20
Carbon disulfide	100		100		51-130	0		20
2-Butanone	97		84		63-138	14		20
4-Methyl-2-pentanone	100		110		59-130	10		20
2-Hexanone	100		98		57-130	2		20
Bromochloromethane	89		87		70-130	2		20
1,2-Dibromoethane	100		97		70-130	3		20
1,2-Dibromo-3-chloropropane	88		83		41-144	6		20
Isopropylbenzene	110		110		70-130	0		20
1,2,3-Trichlorobenzene	88		90		70-130	2		20

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

Lab Number: L2439491

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-09 Batch:	WG1948608-3	WG1948608-4			
1,2,4-Trichlorobenzene	92		89		70-130	3		20
Methyl Acetate	93		82		70-130	13		20
Cyclohexane	95		100		70-130	5		20
1,4-Dioxane	104		102		56-162	2		20
Freon-113	98		100		70-130	2		20
Methyl cyclohexane	92		98		70-130	6		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	117	111	70-130
Toluene-d8	105	105	70-130
4-Bromofluorobenzene	103	103	70-130
Dibromofluoromethane	98	100	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

Lab Number:

L2439491

Report Date:

07/22/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS SP-45-071224	S - Westborough	Lab Asso	ciated sample	(s): 01-09 QC	Batch ID: WG1948	608-6 WG194	8608-7	QC Sample	∋: L2439	9491-04	Client ID:
Methylene chloride	ND	10	9.8	98	11	110		70-130	12		20
1,1-Dichloroethane	ND	10	11	110	12	120		70-130	9		20
Chloroform	ND	10	10	100	11	110		70-130	10		20
Carbon tetrachloride	ND	10	9.6	96	10	100		63-132	4		20
1,2-Dichloropropane	ND	10	10	100	11	110		70-130	10		20
Dibromochloromethane	ND	10	8.8	88	9.9	99		63-130	12		20
1,1,2-Trichloroethane	ND	10	11	110	11	110		70-130	0		20
Tetrachloroethene	9.0	10	17	80	18	90		70-130	6		20
Chlorobenzene	ND	10	9.7	97	11	110		75-130	13		20
Trichlorofluoromethane	ND	10	10	100	12	120		62-150	18		20
1,2-Dichloroethane	ND	10	11	110	11	110		70-130	0		20
1,1,1-Trichloroethane	ND	10	10	100	11	110		67-130	10		20
Bromodichloromethane	ND	10	9.7	97	11	110		67-130	13		20
trans-1,3-Dichloropropene	ND	10	8.7	87	9.9	99		70-130	13		20
cis-1,3-Dichloropropene	ND	10	8.1	81	9.0	90		70-130	11		20
Bromoform	ND	10	8.1	81	8.6	86		54-136	6		20
1,1,2,2-Tetrachloroethane	ND	10	11	110	12	120		67-130	9		20
Benzene	ND	10	10	100	11	110		70-130	10		20
Toluene	ND	10	10	100	11	110		70-130	10		20
Ethylbenzene	ND	10	10	100	11	110		70-130	10		20
Chloromethane	ND	10	9.9	99	10	100		64-130	1		20
Bromomethane	ND	10	9.7	97	13	130		39-139	29	Q	20
Vinyl chloride	ND	10	11	110	12	120		55-140	9		20

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

Lab Number:

L2439491

Report Date:

07/22/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS SP-45-071224	S - Westborough	Lab Associ	ciated sample((s): 01-09 Q	C Batch ID	: WG19486	608-6 WG1948	3608-7	QC Sample	e: L2439	491-04	Client ID:
Chloroethane	ND	10	14	140	Q	14	140	Q	55-138	0		20
1,1-Dichloroethene	ND	10	9.8	98		11	110		61-145	12		20
trans-1,2-Dichloroethene	ND	10	10	100		11	110		70-130	10		20
Trichloroethene	9.9	10	18	81		19	91		70-130	5		20
1,2-Dichlorobenzene	ND	10	10	100		11	110		70-130	10		20
1,3-Dichlorobenzene	ND	10	10	100		11	110		70-130	10		20
1,4-Dichlorobenzene	ND	10	10	100		11	110		70-130	10		20
Methyl tert butyl ether	ND	10	8.0	80		8.9	89		63-130	11		20
o/m-Xylene	ND	20	20	100		22	110		70-130	10		20
o-Xylene	ND	20	20	100		22	110		70-130	10		20
cis-1,2-Dichloroethene	18	10	27	90		28	100		70-130	4		20
Styrene	ND	20	19	95		21	105		70-130	10		20
Dichlorodifluoromethane	ND	10	9.9	99		11	110		36-147	11		20
Acetone	ND	10	8.4	84		9.7	97		58-148	14		20
Carbon disulfide	ND	10	10	100		11	110		51-130	10		20
2-Butanone	ND	10	8.9	89		12	120		63-138	30	Q	20
4-Methyl-2-pentanone	ND	10	8.7	87		11	110		59-130	23	Q	20
2-Hexanone	ND	10	8.3	83		9.5	95		57-130	13		20
Bromochloromethane	ND	10	8.8	88		9.4	94		70-130	7		20
1,2-Dibromoethane	ND	10	9.6	96		10	100		70-130	4		20
1,2-Dibromo-3-chloropropane	ND	10	7.7	77		8.5	85		41-144	10		20
Isopropylbenzene	ND	10	10	100		11	110		70-130	10		20
1,2,3-Trichlorobenzene	ND	10	8.0	80		9.2	92		70-130	14		20

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

Lab Number:

L2439491

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - SP-45-071224	Westborough	Lab Assoc	iated sample(s	s): 01-09 Q	C Batch ID:	WG19486	608-6 WG1948	3608-7	QC Sample	: L243	9491-04	Client ID:
1,2,4-Trichlorobenzene	ND	10	8.5	85		9.0	90		70-130	6		20
Methyl Acetate	ND	10	7.5	75		7.7	77		70-130	3		20
Cyclohexane	ND	10	9.9J	99		11	110		70-130	11		20
1,4-Dioxane	ND	500	460	92		460	92		56-162	0		20
Freon-113	ND	10	10	100		9.9	99		70-130	1		20
Methyl cyclohexane	ND	10	9.2J	92		9.8J	98		70-130	6		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	117	114	70-130
4-Bromofluorobenzene	103	101	70-130
Dibromofluoromethane	100	99	70-130
Toluene-d8	104	106	70-130

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

Lab Number: L2439491 **Report Date:** 07/22/24

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L2439491-01A	Vial HCI preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-01B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-01C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-02A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-02B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-02C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-03A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-03B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-03C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04A1	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04A2	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04B1	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04B2	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04C1	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-04C2	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-05A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-05B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-05C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-06A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-06B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2439491

Report Date: 07/22/24

Project Name: FORMER SIGNORE, INC.

Project Number: 21.0056367.69

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2439491-06C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-07A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-07B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-07C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-08A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-08B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-08C	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-09A	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)
L2439491-09B	Vial HCl preserved	Α	NA		4.2	Υ	Absent		NYTCL-8260-R2(14)

GLOSSARY

Acronyms

EDL

EMPC

LOQ

MS

RL

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

 Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM
 Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert buts

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER SIGNORE, INC.Lab Number:L2439491Project Number:21.0056367.69Report Date:07/22/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:07222410:58

ID No.:17873 Revision 21

Published Date: 04/17/2024

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

N.o.	NEW YORK	Service Centers Mahwah, NJ 07430: 35 Whitne	ry Rd, Suite 5		Page		Da	e Rec'd	1 .	TP	al_No:07222410:58 39491 19JUL }	
ΔLPHA	CHAIN OF CUSTODY	Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	i	of		75.70		161-			
Westborough, MA 01581	Mansfield, MA 02048	Project Information					Delivera	-			Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: Form	er Signale	TAL			☐ AS	P-A	ПА	SP-B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 56-	57 Jeffre	n street	-		□ EC	ulS (1 File)	≥ E	QuiS (4 File)	PO#	
Client Information		Project # 21.005			Diff. All	=_ulheR	Ot	her	EQuis!	MYSDECT	mt .	
lient: GZA GeoE	invironmental	(Use Project name as F	- proof	32-51	274		Regulate	ry Require	ment	100000	Disposal Site Information	
Address: 300 Pea		Project Manager: Th	and the same of th	lon			□ NY	TOGS	□ N	Y Part 375	Please identify below location of	
wik 700, Buffale,		ALPHAQuote #:			HINGS	the Paracella	☐ AV	Q Standards	_ N	Y CP-51	applicable disposal facilities.	
hone: 716-844		Turn-Around Time					NY NY	Restricted U	se O	ther	Disposal Facility:	
ax:		Standa		□ NY	Unrestricted	Use	□ NJ □ NY					
mail: Thomas. B	· hlen @gza-co	Rush (only if pre approve	ed) [# of Days:			NY NY	C Sewer Dis	charge		Other:	
hese samples have be	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN	princip.					ANALY	SIS			Sample Filtration	
Other project specific	requirements/comn	ients:									Done	
		0		dia i							Lab to do	
		E					જ	1 1			Preservation Lab to do	
Please specify Metals	or TAL.						28	1 1	1 1			
							A				(Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	ample ID		ction	Sample Matrix	Sampler's Initials	ડ્	1 1				
	F.11 1986	021224	Date	Time	Iviatrix	W.	>	+++			Sample Specific Comments	
19491-01	EW-LZ5R-		07/12/24		The same	101	X	-	-	-4	+	
-03	TP-11-07		071224	-	1		X	++	\rightarrow			
-04	SP-37-07		071224		\vdash	-	X		_			
25	SP-45-07 SP-43-07						X		+++		-	
-06			071224		\vdash		X	+++	+			
-07	SP-32-071		071224				×	++	\rightarrow			
-58	DUP-0712		071224	1040			X	+	1			
-04		5P-75-071224-M		1320	1	1	X				10110	
-09	TRIPBLAI		ST-100 O TIEST	1000								
Preservative Code:	Container Code	Westboro: Certification	No: MA935				.,				Please print clearly legibly	
A = None B = HCl	P = Plastic A = Amber Glass	Mansfield: Certification			Co	ntainer Type	V				Please print clearly, legibly and completely. Samples ca	
C = HNO ₃	V = Vial					2 8	0	11	\rightarrow		not be logged in and	
	G = Glass B = Bacteria Cup					Preservative	0	-			turnaround time clock will no start until any ambiguities a	
D = H ₂ SO ₄	C = Cube	Relinguishe	d By:	Date	Time		Received	Bv:		Date/Time	resolved. BY EXECUTING	
D = H ₂ SO ₄ E = NaOH F = MeOH		11111	7	7-12-24	1735	Cha	1	PARE	7/12		THIS COC, THE CLIENT	
E = NaOH E = MeOH G = NaHSO ₄	O = Other E = Encore	14/00	-/			-		and the last of th			TIMO KEAU AND AGREES	
E = NaOH F = MeOH	O = Other	Che V	ACE	7/12/24	17.35	PBU	F SC		7/12	124 17:35	TO BE BOUND BY ALPHA	
E = NaOH F = MeOH G = NaHSO ₄ H = Né ₂ S ₂ O ₃	O = Other E = Encore	BUFF ST	ACE	-			F SC		7-1	124 17:23 5-24/52		

GZA GeoEnvironmental, Inc.