CRS

TURNKEY

www.turnkeylic.com

Strong Advocates, Effective Solutions, Integrated Implementation

October 7, 2011

Mr. Chad Staniszewski, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

RECEIVED NYSDEC - REGION 9 OCT 1 1 2011 FOIL REL UNREL

Re: Scott Rotary Seals Site (Site No. C905036) Alternatives Analysis Report

Dear Mr. Staniszewski:

Please find attached one hard copy of Alternatives Analysis Report for the Scott Rotary Seals Site. An electronic copy of these documents was previously provided to you.

Please contact me if you have any questions regarding this submittal.

Sincerely, TurnKey Environmental Restoration, LLC

Michael Lesakowski Project Manager

cc: Crystal Wiech (Scott Rotary Seals)

File: 189-001-105

Alternatives Analysis Report

Scott Rotary Seals Site Olean, New York BCP Site No. 905036

October 2011

0189-001-105

Prepared For:

DST Properties NY, LLC Scott Rotary Seals

2558 Hamburg Turnpike, Buffalo, New York | phone: (716) 856-0599 | fax: (716) 856-0583

ALTERNATIVES ANALYSIS REPORT

SCOTT ROTARY SEALS SITE OLEAN, NEW YORK

October 2011

0189-001-105

Prepared for:

DST Properties NY, LLC and

Prepared by:

In Association With:

ALTERNATIVES ANALYSIS REPORT

Scott Rotary Seals Site

Olean, New York

Table of Contents

1.0	INT	RODUCTION	1
	1.1	Site Background	1
	1.2	Environmental History	
		1.2.1 September 2008–Phase I Environmental Site Assessment	
		1.2.2 November 2008 – Limited Phase II Site Investigation	
		1.2.3 July 2009 – Phase II Site Investigation	
		1.2.4 March 2010 Remedial Action Work Plan	2
		1.2.5 Pre-Design Investigation	
		1.2.5.1 August 2010 - Initial Pre-Design Investigation	3
		1.2.5.2 October 2010 - Supplemental Pre-Design Investigation	
		1.2.5.3 December 2010 NYSDEC meeting	4
		1.2.5.4 January 2011 - Off-Site Investigation	
		1.2.6 Interim Remedial Measures	5
		1.2.7 Summary of Environmental Conditions	5
	1.3	Primary Constituents of Concern (COCs)	3
2.0	ANA	ALYSIS OF ALTERNATIVES)
	2.1	Remedial Action Objectives	
	2.2	Future Land Use Evaluation	
	2.2		L
3.0	REN	15 IEDIAL ALTERNATIVES EVALUATION	5
	3.1	Alternative 1 – No Further Action/IRM	5
	3.2	Alternative 2 - Commercial Use Cleanup	
	3.3	Alternative 3 – Residential Use Cleanup	
	3.4	Alternative 4 - Unrestricted Use Cleanup	
	3. 4 3.5	Recommended Remedial Measure	
	5.5	Kecommended Kemediai Measure2.)
4.0	Ref	ERENCES	1

ALTERNATIVES ANALYSIS REPORT

Scott Rotary Seals Site Olean, New York

Table of Contents

LIST OF TABLES

Table 1	Cost Estimate for Commercial Use Cleanup
Table 2	Cost Estimate for Residential Use Cleanup
Table 3	Cost Estimate for Unrestricted Use Cleanup
Table 4	Summary of Remedial Cost Estimates

LIST OF APPENDICES

Appendix A Pre-Design Investigation Report – Tables and Figures

1.0 INTRODUCTION

DST Properties NY, LLC (DST), has elected to pursue cleanup and redevelopment of the property, located at 301 Franklin Street, Olean, New York (see Figures 1 and 2), under the New York State Brownfield Cleanup Program (BCP or Program) and executed a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in March 2010.

This document presents the remedial alternatives analysis for the Scott Rotary Seals Site.

1.1 Site Background

The subject property (hereinafter, the "Project Site" or the "Site") is an approximate 2-acre parcel of vacant land located in a historic heavy industrial area of the City of Olean, New York. The parcel is not currently improved with any buildings and is bound by railroad tracks to the south and east and former industrial properties to the north and west. Several debris piles containing brick, concrete, metal, and piping apparently associated with former aboveground storage tanks (ASTs) are currently located on-site.

The Site was historically a portion of a larger petroleum refinery and petroleum bulk storage facility commonly known as the former Socony-Vacuum facility. The Site and surrounding area were historically developed as a petroleum refinery with numerous ASTs and heavy industrial operations.

1.2 Environmental History

1.2.1 September 2008– Phase I Environmental Site Assessment

Neeson-Clark Associates, Inc. (Neeson) conducted a Phase I Environmental Site Assessment (ESA) of the subject property in September 2008. Neeson indicated that the Site was utilized for industrial purposes since approximately 1880 and was historically utilized as a bulk petroleum storage and refining facility. Neeson recommended a subsurface investigation due to historic use of the Site.

1.2.2 November 2008 – Limited Phase II Site Investigation

A Limited Subsurface Investigation Letter Report was completed by Neeson-Clark Associates, Inc. on November 11, 2008. The area of the subsurface investigation was

limited to the suspected areas of former ASTs. The investigation included excavation of six test pits to approximately 10 feet below grade and collection of soil samples from 5 of the 6 test pits for analysis of VOCs and SVOCs. The subsurface investigation revealed fill materials consisting of bricks, stone, concrete, and metal piping. Soil discoloration and odors of petroleum products were also noted during the test pit excavations. The report concluded that the discoloration and odors would be consistent with degraded petroleum products.

1.2.3 July 2009 – Phase II Site Investigation

TurnKey conducted a Phase II Environmental Investigation at the Site in June 2009. The investigation included the excavation of 12 test pits, completion of 3 soil borings, and installation of 3 groundwater monitoring wells on-site. Soil and groundwater samples were collected and analyzed via USEPA SW-846 methods, with Category B deliverable packages, for Target Compound List (TCL) plus NYSDEC Spill Technology and Remediation Series (STARS) list VOCs, STARS List SVOCs, Resource Conservation and Recovery Act (RCRA) metals and polychlorinated biphenyls (PCBs) during the investigation.

During the investigation, grossly contaminated soils, stained soils and petroleum-like odors were observed Site-wide. Most locations exhibited strong petroleum odors and photoionization detector (PID) readings were over 1,000 ppm at several locations. The Phase II Investigation identified the presence of elevated benzo(a)anthracene, chrysene, mercury, VOC tentatively identified compounds (TICs) and SVOC TICs in soil, and acetone, sec-butylbenzene, phenanthrene, in groundwater above NYSDEC GWQS, as well as the presence of VOC TICs and SVOC TICs. Elevated concentrations of VOC TICs (up to 183,600 ug/kg) and SVOC TICs (up to 320,100 ug/kg) were detected in each of the soil samples analyzed. Elevated concentrations of VOC TICs (up to 8,640 ug/L) were detected in each of the groundwater samples. It was concluded that, based on visual/olfactory observations, PID measurements, and analytical results, significant site-wide petroleum-VOC and -SVOC impacts are evident, with grossly contaminated soils (GCS) present in some areas, and that site remediation appears warranted.

1.2.4 March 2010 Remedial Action Work Plan

DST submitted a Remedial Action Work Plan to the Department (revised March 2010) that included provisions for a Pre-Design Investigation to further delineate impacts

on-Site. In addition to the Pre-Design Investigation, the proposed remedy included: excavation and off-Site disposal of contaminated soil in the area of the planned building, utilities and "hot-spots"; installation of a vapor barrier and sub-slab depressurization system within the planned building; and, implementation of a Site Management Plan. In a July 2010 letter, the Department approved the investigation activities and requested that DST consider in-situ remedial measures other than large-scale excavation given the potential high volume of impacted soil, the nature of impacts (predominantly petroleum VOCs with high PID readings) and the coarse –grained nature of soil at the Site.

1.2.5 Pre-Design Investigation

A Pre-Design Investigation was completed to characterize the Site in accordance with BCP requirements. The investigation was completed in three phases as follows:

1.2.5.1 August 2010 - Initial Pre-Design Investigation

DST submitted a draft Remedial Action Work Plan (RAWP) dated December 2009, which included Pre-Design Investigation activities, including additional surface samples, test pits and soil borings to further characterize the Site per BCP requirements. NYSDEC approved the investigation activities described in that work plan in July 2010 and fieldwork was completed in August 2010.

Four surface soil/fill samples, identified as SS-1 through SS-4 were collected across the Site and analyzed for TCL plus STARS VOCs, TCL SVOCs, RCRA metals, PCBs, herbicides and pesticides. Arsenic was detected above its Part 375 Commercial Soil Cleanup Objective (SCO) at all four sample locations at concentrations ranging from 18.5 milligrams per kilogram (mg/kg) to 42.4 mg/kg. Sample locations SS-2 and SS-4 slightly exceeded the Commercial SCO for benzo(a)pyrene with a concentration of 1.5 mg/kg observed in each of those samples and sample location SS-4 slightly exceeded the Commercial SCO for dibenz(a,h)anthracene with a concentration of 1.5 mg/kg. No other analytes were detected above Commercial SCOs.

The subsurface investigation included the excavation of 12 test-pits and the advancement of 12 on-Site soil borings. Selected subsurface soil/fill samples were analyzed for TCL plus STARS VOCs including TICs and TCL SVOCs including TICs. Subsurface soil/fill samples TP-15 (3-4'), TP-16 (15-17'), and TP-20 (16-18') were also analyzed for TAL metals, PCBs, herbicides and pesticides for BCP site characterization purposes. The

qualitative field results were consistent with the findings of the 2009 Phase II Investigation; stained soils and petroleum-like odors were observed Site-wide with many sample locations exhibiting strong petroleum odors and elevated PID readings. Furthermore, subsurface piping was encountered in numerous test pits at depths of approximately four to six feet below ground surface (fbgs). Subsurface soil analytical results indicated that elevated concentrations of VOCs (up to 472 mg/kg total VOCs), and to a lesser extent, SVOCs (up to 270 mg/kg) were present in subsurface soils.

Groundwater samples were collected from existing monitoring wells MW-1, MW-2 and MW-3 and analyzed for TCL plus STARS list VOCs including TICs, TCL SVOCs including TICs, TAL metals, PCBs, herbicides, and pesticides. VOCs including TICs were detected in groundwater at concentrations ranging from non-detect (MW-3) to 1,060 ug/L (MW-2).

1.2.5.2 October 2010 - Supplemental Pre-Design Investigation

Based on the sampling results of the initial Pre-Design Investigation fieldwork and discussions with NYSDEC, DST submitted a Supplemental Investigation Work Plan to further evaluate groundwater conditions at the Site. Additional monitoring wells MW-4 through MW-6 were installed, developed and sampled for VOCs in October 2010. Total VOCs were detected in groundwater at concentrations ranging from non-detect (MW-3) to 1,042 ug/L in MW-4, which is the farthest up-gradient monitoring well on-Site. No individual VOC analytes were detected above their respective GWQS; VOC TICs concentrations accounted for the vast majority of total VOCs detected in groundwater. During this phase of the investigation LNAPL was observed in MW-2 (@ 0.01 ft. thick), MW-4 (@ 0.01 ft. thick) and MW-6 (@ 0.88 ft. thick).

1.2.5.3 December 2010 NYSDEC meeting

Subsequent to completing the Pre-Design Investigation and Supplemental Pre-Design Investigation, DST met with NYSDEC in December 2010 to discuss the scope of the planned off-Site investigation, interim remedial measures (IRMs) and the final remedy. The off-Site investigation was completed as discussed in Section 1.2.5.4 below and the IRM was implemented as discussed in Section 1.2.6 below. The scope of the final remedy was also discussed in the context of NYSDEC recommending that DST consider in-situ remedial alternatives other than large-scale of excavation as mentioned above. It was agreed

by both DST and the Department that large-scale excavation it is not a practicable alternative for the Site. The remedy discussed with Department during that meeting is the selected final remedy that has been evaluated against the other remedial alternatives for the Site.

1.2.5.4 January 2011 - Off-Site Investigation

Upon completion of the initial and supplemental Pre-Design Investigation fieldwork, DST and TurnKey met with the NYSDEC to discuss the results and plan future investigation and remedial work (see Section 1.2.5 above). Based on the previous sampling results and discussions with NYSDEC personnel, DST submitted an Off-Site Investigation Work Plan to further evaluate potential off-Site LNAPL in the area of MW-6. Additional monitoring wells MW-7 and MW-8 were installed, developed and sampled for VOCs in January 2011. VOCs including TICs were detected in groundwater at concentrations of 308 ug/L in MW-7 and 355 ug/L in MW-8. However, no individual VOCs exceeded their respective GWQS. Of note, VOCs in off-Site wells MW-7 and MW-8 were detected at slightly higher concentrations than on-Site well MW-6. LNAPL was not observed in any wells on-Site, including MW-6, where 0.88 ft. of LNAPL was previously observed in October 2010.

1.2.6 Interim Remedial Measures

DST submitted an interim remedial measures (IRM) work plan in February 2011 to immediately address certain environmental concerns at the Site. The IRM included the following activities:

- Stockpiled soil/fill piles were sampled for potential re-use. Due to elevated concentrations of arsenic, copper, lead, and mercury at levels exceeding Part 375 Commercial SCOs, the soil piles were loaded and transported to Waste Management of New York Chaffee Landfill (Waste Management). Approximately 1,982 tons of soil/fill was excavated and disposed off-Site.
- Approximately 5,761 linear feet of subsurface product piping ranging in size from two-inch to twelve-inch diameter was tapped, evacuated of contents, removed, cleaned and recycled. Piping which extended beyond the property boundary was capped and/or grouted at the apparent property line.

• Approximately 1,489-gallons of oil/water mixture was pumped into an on-Site temporary holding tank and ultimately disposed off-Site. Eight 55-gallon drums of product/oil and 17 55-gallon drums of pipe scale were generated and are awaiting disposal at Waste Management.

Upon completion of the pipe removal, additional exploratory trenching was completed to search for additional abandoned piping. No additional piping was encountered during the exploratory trenching.

1.2.7 Summary of Environmental Conditions

Based on the data and analyses of the Pre-Design Investigation and historic investigations, the following environmental conditions exist at the Site:

Geology/Hydrogeology

• Soil at the site consists of fill materials consisting of varying amounts of gravel, brick, ash and concrete that is up to 6 feet thick. Native soil consists of medium/coarse sand and gravel to depths of at least 30 fbgs.

The uppermost water bearing unit is within an unconfined sand and gravel layer. The depth to groundwater from ground surface ranges between about 13 to 26 feet. Groundwater in the uppermost water bearing unit generally flows toward the southeast, which is consistent with regional groundwater flow based on our knowledge of hydrogeology at other nearby BCP sites.

Contamination

• Surface Soil - Arsenic was detected above its Commercial SCO at all four sample locations. Two sample locations (SS-2 and SS-4) slightly exceeded the Commercial SCO for benzo(a)pyrene and SS-4 slightly exceeded the Commercial SCO for dibenz(a,h)anthracene. Samples collected from stockpiled soil/fill during the IRM contained concentrations of arsenic, lead, copper and mercury above Commercial SCOs.

• Subsurface Soil - VOCs, SVOCs, inorganics, pesticides, herbicides and PCBs were not detected at concentrations in excess of their respective Commercial SCOs.

Grossly contaminated soils, stained soils and/or petroleum-like odors were observed Site-wide. Many sample locations exhibited strong petroleum odors and PID readings over 1,000 ppm. PID screening results show that elevated concentrations of VOCs exist in the subsurface soils. The northwestern portion of the Site contains VOCs in subsurface soils in shallower locations relative to existing grades when compared to other areas of the Site. The highest VOCs concentrations are generally found directly above the water table in the smear zone.

Total VOC and SVOCs concentrations, including TICs, correlate with the elevated PID screening results and with the presence of odors and discolored soils.

• **Groundwater** - There were no exceedances of GWQS for VOCs, SVOCs, PCBs or herbicides in Site groundwater. Total VOCs were detected in groundwater at concentrations up to 1,042 ug/L (MW-4) during the most recent groundwater sampling event (October 2010), with VOC TICs concentrations accounting for the vast majority of total VOCs detected in groundwater.

Three inorganics (iron, magnesium, and manganese) and one pesticide did exceed GWQS. However, these exceedances are likely due to ambient groundwater conditions.

LNAPL was observed present in wells MW-2, MW-4 and MW-6 in October 2010, with the greatest thickness of LNAPL (0.88 ft.) measured in well MW-6. LNAPL was not observed during well gauging events in January and March 2011.

The distribution of total VOCs in groundwater shows the highest concentration was located in the farthest upgradient well on-Site (MW-4) proximate to the northern property line. The concentration contours show a decreasing trend in the direction of groundwater flow toward the southeast. Off-Site VOC contamination is apparent in wells MW-7 and MW-8; however, VOCs in off-Site wells MW-7 and MW-8 were detected at slightly higher concentrations than in nearby on-Site well MW-6.

The source of the groundwater contamination found on the Site is likely a combination of the upgradient groundwater and contributions from the former refinery operations on the Site (e.g., leaking pipelines, spillage, etc).

Figures 1 through 7 and Tables 1 through 8, taken from the Pre-Design Investigation report summarize the environmental conditions and are included in Appendix A for reference.

1.3 Primary Constituents of Concern (COCs)

Based on the investigation data, the primary Constituents of Concern (COCs) are:

- Metals in surface soils;
- Petroleum-related VOCs, primarily TICs, in unsaturated soils; and,
- Light non-aqueous phase liquid (LNAPL) in groundwater.

2.0 ANALYSIS OF ALTERNATIVES

2.1 Remedial Action Objectives

The remedial actions for the Scott Rotary Seals Site must satisfy Remedial Action Objectives (RAOs). Remedial Action Objectives are site-specific statements that convey the goals for minimizing substantial risks to public health and the environment. For the Scott Rotary Seals Site, appropriate RAOs have been defined as:

Soil RAOs

- Remove or mitigate Grossly Contaminated Soils (GCS) to the degree possible to protect human health and the environment and to prevent further degradation of on and off-Site groundwater quality.
- Prevent ingestion/direct contact with contaminated soil/fill.
- Prevent migration of contaminants that further result in groundwater or surface water contamination.
- Prevent inhalation of or exposure to contaminants volatilizing from contaminated soil/fill.

Groundwater RAOs

- Prevent ingestion of groundwater containing contaminant levels exceeding NYSDEC Class GA groundwater quality standards and guidance values or with evidence of LNAPL.
- Prevent contact with or inhalation of volatile compounds emanating from contaminated groundwater.
- Prevent degradation of off-Site water quality.

In addition to achieving RAOs, NYSDEC's Brownfield Cleanup Program calls for remedy evaluation in accordance with DER-10 Technical Guidance for Site Investigation and Remediation. Specifically, the guidance states "When proposing an appropriate remedy, the person responsible for conducting the investigation and/or remediation should identify and develop a remedial action that is based on the following criteria..."

• Overall Protection of Public Health and the Environment. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure

are eliminated, reduced, or controlled through removal, treatment, engineering controls, or institutional controls.

- **Compliance with Standards, Criteria, and Guidance (SCGs)**. Compliance with SCGs addresses whether a remedy will meet applicable environmental laws, regulations, standards, and guidance.
- Long-Term Effectiveness and Permanence. This criterion evaluates the longterm effectiveness of the remedy after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: (i) the magnitude of the remaining risks (i.e., will there be any significant threats, exposure pathways, or risks to the community and environment from the remaining wastes or treated residuals), (ii) the adequacy of the engineering and institutional controls intended to limit the risk, (iii) the reliability of these controls, and (iv) the ability of the remedy to continue to meet RAOs in the future.
- **Reduction of Toxicity, Mobility or Volume with Treatment**. This criterion evaluates the remedy's ability to reduce the toxicity, mobility, or volume of Site contamination. Preference is given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the Site.
- Short-Term Effectiveness. Short-term effectiveness is an evaluation of the potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during construction and/or implementation. This includes a discussion of how the identified adverse impacts and health risks to the community or workers at the Site will be controlled, and the effectiveness of the controls. This criterion also includes a discussion of engineering controls that will be used to mitigate short term impacts (i.e., dust control measures), and an estimate of the length of time needed to achieve the remedial objectives.
- **Implementability**. The implementability criterion evaluates the technical and administrative feasibility of implementing the remedy. Technical feasibility includes the difficulties associated with the construction and the ability to monitor the effectiveness of the remedy. For administrative feasibility, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc.
- **Cost**. Capital, operation, maintenance, and monitoring costs are estimated for the remedy and presented on a present worth basis.
- **Community Acceptance**. This criterion evaluates the public's comments, concerns, and overall perception of the remedy.

2.2 Future Land Use Evaluation

In developing and screening remedial alternatives, NYSDEC's Part 375 regulations require that the reasonableness of the anticipated future land be factored into the evaluation of remedial alternatives. The regulations identify 16 criteria that must be considered. These criteria and the resultant outcome for the Scott Rotary Seals Site are presented below.

1. Current use and historical and/or recent development patterns: The Scott Rotary Seals Site was historically a portion of a larger petroleum refinery and petroleum bulk storage facility commonly known as the former Socony-Vacuum facility. The Site and surrounding area were historically developed as a petroleum refinery with numerous ASTs and heavy industrial operations; and current surrounding land use is a mixed commercial and residential area in the City of Olean. The Site is presently being redeveloped as a new commercial operation (Scott Rotary Seals). Accordingly, commercial site redevelopment would be consistent with historic site use.

2. Applicable zoning laws and maps: The Site is located in an area of the City zoned for Commercial (Com 1) Business (B-2) use. Continued use in a commercial capacity is therefore consistent with current zoning.

3. Brownfield opportunity areas as designated set forth in GML 970-r: The Brownfield Opportunity Area (BOA) Program provides municipalities and community based organizations with assistance to complete revitalization plans and implementation strategies for areas or communities affected by the presence of brownfield sites, and site assessments for strategic sites. The subject property lies with the proposed Northwest Olean Brownfield Opportunity Area. The Olean BOA is currently in "Step 1 – BOA Application" phase.

4. Applicable comprehensive community master plans, local waterfront revitalization plans as provided for in EL article 42, or any other applicable land use plan formally adopted by a municipality: The Scott Rotary Seals Site lies within the boundaries of the City of Olean Comprehensive Development Plan 2005-2025. Site remediation and redevelopment is consistent with the redevelopment plan.

5. Proximity to real property currently used for residential use, and to urban, commercial, industrial, agricultural and recreational areas: The surrounding land is mixed use, including commercial and industrial. Residential land use is located within approximately 1.0 miles of the Site. Maintaining the use of the Site in a commercial capacity is consistent with surrounding property.

6. Any written and oral comments submitted by members of the public on the proposed use as part of the activities performed pursuant to the citizen participation plan: No comments have been received from the public relevant to Site use concerns.

7. Environmental justice concerns, which include the extent to which the proposed use may reasonably be expected to cause or increase a disproportionate burden on the community in which the site is located, including low-income minority communities, or to result in a disproportionate concentration of commercial or industrial uses in what has historically been a mixed use or residential community: Nearby and adjacent property is actively used in a commercial and industrial capacity. Maintaining use of the site in a commercial capacity does not pose environmental justice issues.

8. Federal or State land use designations: The property is designated Commercial Land Use (COM 1) by the City of Olean (Real Property GIS). Reuse in a restricted capacity (commercial) is consistent with the current land use designation.

9. Population growth patterns and projections: The City of Olean, encompassing 6.2 square miles, has a population of 14,054 (2009 US Census Bureau), a decrease of 8.4% from the 2000 U.S. Census, and as such, the redevelopment of the site is not expected to have a significant impact on the housing market. Reuse of the Site in a non-residential capacity does not materially affect opportunities for residential growth.

10. Accessibility to existing infrastructure: Access to the Site is from Franklin Street. Utilities (sewer, water, electric) are present along Franklin Street. **Existing infrastructure supports reuse in a commercial capacity**.

11. Proximity of the site to important cultural resources, including federal or State historic or heritage sites or Native American religious sites: No such resources or sites are known to be present on or adjacent to the Site.

12. Natural resources, including proximity of the site to important federal, State or local natural resources, including waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species: The Cattaraugus County Internet Mapping System shows that State or Federal wetlands do not exist on the subject property. The Allegheny River, and several tributaries, including Olean Creek are located approximately 0.75-miles from the Site. The absence of significant ecological resources on or adjacent to the Site indicates that cleanup to restricted use conditions will not pose an ecological threat.

13. Potential vulnerability of groundwater to contamination that might emanate from the site, including proximity to wellhead protection and groundwater recharge areas and other areas identified by the Department and the State's comprehensive groundwater remediation and protection program established set forth in ECL article 15 title 31: Currently, there are no known deed restrictions on the use of groundwater at the Site. Municipal water is available to the Site and all properties in the area. The municipal water supply is derived from the following sources:

- Ischua Creek (a tributary of Olean Creek) at the City of Olean's Water Filtration Plan, 1332 River Street, approximately 2,300 feet northeast (cross-gradient) of the Site.
- Groundwater supply wells:
 - Well Site M18: 104 Richmond Ave., approximately 3 miles southeast of the Site.
 - Well Sites M37/38: 1900 East River Rd., approximately 3.7 miles southeast of the Site.

Potable water service is provided off-site and on-site by the local municipal water authority. The cleanup to restricted use conditions will not pose a drinking water threat.

14. Proximity to flood plains: The Cattaraugus County Internet Mapping System indicates that the Two Mile Creek Corridor located approximately 1000-ft west of the Site is

designated floodplains. No flood zones are present on the property; there is no risk of significant soil erosion due to flooding. As such, cleanup to commercial standards does not pose a threat to surface water.

15. Geography and geology: The Site is located within the Allegheny River valley, with the primary bedrock type that forms the bedrock surface in the Olean area consists predominantly of Upper Devonian shale, siltstone, and sandstone of the Conewango and Conneaut Groups. Surface soils within the vicinity of the Site are describes Chenango gravelly silt loam, 0 to 3 percent slopes (ChA), as nearly level, very deep, and well drained. Former development cycles of the Site have impacted both the surface and subsurface geology. Geography and geology are consistent with a commercial re-use.

16. *Current institutional controls applicable to the site:* No institutional controls are currently present that would affect redevelopment options.

Based on the above analysis, reuse of the Site in a commercial capacity is consistent with past and current development and zoning on and around the Site, and does not pose additional environmental or human health risk.

3.0 **REMEDIAL ALTERNATIVES EVALUATION**

In addition to the evaluation of alternatives to remediate to the likely end use of the Site, NYSDEC regulation and policy calls for evaluation of more restrictive end-use scenarios. These include an unrestricted use scenario (considered under 6NYCRR Part 375 to be representative of cleanup to pre-disposal conditions), and a scenario less restrictive than the reasonably anticipated future use, which is residential use. Per NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, evaluation of a "no action/ no further action" alternative is also required to provide a baseline for comparison against other alternatives.

The alternatives evaluated below in greater detail include:

- No Further Action/IRM;
- Commercial Use Cleanup;
- Residential Use Cleanup; and,
- Unrestricted Use Cleanup

3.1 Alternative 1 – No Further Action/IRM

Under this alternative, the Site would remain in its current state, with no additional controls in-place beyond the IRMs completed (i.e., process piping and residual product removal and disposal, and surface soil/debris pile removal).

Overall Protection of Public Health and the Environment – The Site is not protective of human health and the environment, due to the presence of contamination remaining on-Site, and the absence of institutional controls to prevent more restrictive forms of future site use (e.g., unrestricted, residential, and restricted residential) or the export of Site soils to uncontrolled off-Site locations. Accordingly, no further action is not protective of public health and does not satisfy the RAOs.

Compliance with SCGs – Under the current and reasonably anticipated future use scenario (commercial), the remaining contamination on-Site detected in the soil/fill and groundwater do not comply with applicable SCGs.

Long-Term Effectiveness and Permanence – The no further action alternative involves no additional remedial activities, equipment, institutional controls or facilities subject to maintenance, and provides no long-term effectiveness or permanence toward achieving the RAOs.

Reduction of Toxicity, Mobility, or Volume with Treatment – The IRMs completed at the Site have reduced the toxicity, mobility and volume of COPCs. However, remaining contamination on-Site will need to be removed to comply with RAOs, and therefore, no further action is not protective of public health and does not satisfy the RAOs.

Short-Term Effectiveness – The completed IRMs were effective in initially reducing short-term adverse impacts to the community; however the remaining contamination on-Site does pose short-term risks to workers and the environment. Therefore, implementation of the no further action alternative does not satisfy the RAOs.

Implementability – No technical or administrative implementability issues are associated with the no further action alternative.

Cost – The capital cost of the IRMs completed was approximately \$250,000. There would be no capital or long-term operation, maintenance, or monitoring costs associated with the no further action alternative.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to Fact Sheets and other planned Citizen Participation activities.

3.2 Alternative 2 - Commercial Use Cleanup

Under this alternative, in addition to the IRMs which have been completed, the Site would be cleaned up in accordance with the submitted Remedial Action Work Plan, which will include:

• limited excavation and off-Site disposal of shallow contaminated soil in the northwest portion of the Site;

- installation of soil vapor extraction (SVE) system to treat deeper VOCimpacted soil;
- removal of LNAPL from monitoring wells as necessary;
- installation of an active sub-slab depressurization system within the planned building;
- placement of a soil cover system in areas without building or hardscape (i.e., asphalt, concrete); and,
- implementation of a Site Management Plan (SMP).

Overall Protection of Public Health and the Environment – This alternative would be fully protective of human health and the environment, based on the completion of IRMs, and the planned extent of remedial activities, including removal and off-site disposal of certain shallow soils, in-situ treatment of deeper VOC-contaminated soil; and the use of engineering and institutional controls to prevent potential future exposure, and limit the future site use to commercial/industrial uses. Accordingly, the Commercial Use Cleanup alternative is protective of public health and fully satisfies the RAOs.

Compliance with SCGs – The completed remedial activities will be performed in accordance with applicable, relevant, and appropriate standards, guidance, and criteria. The IRM and planned remedial actions are fully protective of human health and the environment, and achieves all RAOs for the Site. The Site Management Plan will include: an Operation and Maintenance (O&M) plan to confirm that engineering controls, including the SVE system, ASD system and soil cover are operating and being maintained in accordance with the SMP; an Excavation Work Plan to address any impacted soil/fill encountered during post-development maintenance activities; and, a Site-wide Inspection program to assure that the engineering and institutional controls placed on the Site have not been altered and remain effective.

Long-Term Effectiveness and Permanence – The IRM removed approximately 5,761 linear feet of subsurface product piping, approximately 1,489 gallons of oil/water mixture from the product piping, 25 drums of product/pipe scale and approximately 1,982 tons of impacted soil., and planned remedial activities include additional removal/treatment

of impacted soil/fill, LNAPL removal, installation of engineering controls including the ASD system, SVE system, and soil cover system, and use of institutional controls. A Site Management Plan will address any impacted soil/fill encountered during post-development maintenance activities, and assure that the Engineering and Institutional controls placed on the Site have not been altered and remain effective. Furthermore, an Environmental Easement for the Site will be filed with Cattauraugus County, which will limit future site use to industrial/commercial uses, restrict groundwater use and reference the Department-approved Site Management Plan. As such, this alternative will provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume with Treatment – The IRM removed approximately 5,761 linear feet of subsurface product piping, approximately 1,489 gallons of oil/water mixture from the product piping, 25 drums of product/pipe scale and approximately 1,982 tons of impacted soil. This alternative will further reduce the toxicity, mobility and volume of COPCs by: additional removal of contaminated soil via excavation and off-site disposal; in-situ treatment of VOCs via SVE; and, removal of LNAPL. The Site Management Plan will include an Excavation Work Plan to address any impacted soil/fill encountered during post-development maintenance activities and a Site-wide Inspection program to assure that the Engineering and Institutional Controls placed on the Site have not been altered and remain effective. Accordingly, this alternative satisfies this criterion.

Short-Term Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment during implementation of the IRM were effectively controlled and will be controlled during implementation of the remedy. Installation of the SVE system, ASD system, cover soil placement and LNAPL removal will not cause adverse short term effects. During intrusive remedial activities (e.g., limited excavation), air monitoring will be performed to assure conformance with community air monitoring action levels. The potential for chemical exposures and physical injuries are reduced through safe work practices; proper personal protection equipment; environmental monitoring; establishment of work zones and Site control; and appropriate decontamination procedures. The limited excavation will be completed within approximately two-week timeframe, limiting short-term adverse effects. Planned remedial activities will be performed in accordance with

an approved work plan, including health and safety plan (HASP) and community air monitoring plan (CAMP).. This alternative achieves the RAOs for the Site.

Implementability – No technical or action-specific administrative implementability issues are associated with the Commercial Use Cleanup alternative.

Cost –The capital cost of the IRM was approximately \$250,000, with the remedial activities estimated at approximately \$1,000,000, and long-term monitoring and annual certification is estimated at approximately \$22,000 per year. Based on an assumed 30 years of monitoring and annual certifications, the net present value of this alternative is approximately \$1,564,000 as shown on Table 1. Table 4 is a summary of costs of each of the alternatives.

Community Acceptance – The IRM Work Plan fact sheet to inform the public that IRM activities were to commence was issued on February 22, 2011. Continued community acceptance will be evaluated based on comments to be received from the public in response to Fact Sheets and other planned Citizen Participation activities.

3.3 Alternative 3 – Residential Use Cleanup

Under this alternative, in addition to the IRMs which have been completed, the Site would be cleaned up to achieve Part 375 Residential Use Cleanup (Track 2), which in general will include: excavation and off-Site disposal of contaminated soil to a depth of 15-ft below post-development final grade across the entire site, LNAPL removal, and implementation of a Site Management Plan, and filing of an environmental easement to restrict the use of on-Site groundwater and land-use.

Overall Protection of Public Health and the Environment – Since the IRM and remedial action would achieved removal of impacted soil/fill to below residential SCOs, this alternative is fully protective of human health and the environment, and successfully achieves all RAOs for the Site. An environmental easement would be filed to restrict the use of on-Site groundwater.

Compliance with SCGs – The remedial action, including IRM, would be performed in accordance with applicable, relevant, and appropriate standards, guidance, and criteria. The achievement of residential SCOs is fully protective of human health and the environment, and successfully achieves all RAOs for the Site.

Long-Term Effectiveness and Permanence – The remedial action would effectively remove COPCs to below residential SCOs to a depth of 15 fbgs, and thereby permanently removing them from the Site. A Site Management Plan would be prepared to assure that the Institutional controls placed on the Site have not been altered and remain effective. As such, this alternative will provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal of impacted soil/fill exceeding residential SCOs to 15 fbgs, the remedial action permanently and significantly reduced the toxicity, mobility, and volume of Site contamination. Accordingly, this alternative satisfies this criterion.

Short-Term Effectiveness – The principal advantage of a large-scale excavation to achieve residential standards is reliability of effectiveness in the long-term. In the short-term, there would be significant increase in exposure of VOC-impacted soil to on-site workers and the community under this alternative. Excavation activities would be completed over an approximate two-month period and backfilling would take approximately one month. Commercial construction equipment would be utilized, a health and safety plan would be followed, and community air monitoring would be completed during excavation activities. However, primary disadvantages include increased truck traffic during excavation and backfill, noise, and air emissions, including fugitive dust, odors and VOCs. Therefore, this alternative represents a significant adverse effect in the short-term.

Implementability – Excavations of VOC-impacted soils to depths of 15 fbgs in coarse-grained sand and gravel poses several technical implementability concerns. Sloughing of excavation walls could occur, which would likely require shoring/stabilizing excavation sidewalls. Depending on the time of year and weather conditions, groundwater and/or stormwater handling, treatment and/or discharge/disposal would likely be required. Given the high volume of soil required for removal, a high volume of truck traffic on a relatively

small site would be needed to remove soils from the Site. Administrative implementability issues may include the need for rezoning of the area to allow for residential uses, which are not consistent with current surrounding land-use or the reasonably anticipated future use of the Site.

Cost –The capital cost of this alternative, including the completed IRM, and the assumed 30 years of monitoring and annual certifications, the net present value of this alternative is approximately \$6,510,000 as shown on Table 2. Table 4 is a summary of costs of each of the alternatives.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to Fact Sheets and other planned Citizen Participation activities.

3.4 Alternative 4 - Unrestricted Use Cleanup

An Unrestricted Use alternative would necessitate remediation of all soil/fill where concentrations exceed the unrestricted use SCO per 6NYCRR Part 375. For Unrestricted Use scenarios, excavation and off-site disposal of impacted soil/fill is generally regarded as the most applicable remedial measure, because engineering controls cannot be used to supplement the remedy. As such, the Unrestricted Use alternative assumes that those areas which exceed Unrestricted SCOs would be excavated and disposed at an off-Site commercial solid waste landfill. In addition IRM completed and LNAPL product recovery, the entire 2.0-acre BCP Site would need to be excavated to approximately 20-feet below post-redevelopment final grade to potentially achieve Unrestricted SCOs. The estimated total volume of impacted soil/fill that would be removed from the Site is approximately 64,535 cubic yards.

Based on the removal of all assumed source areas (i.e., subgrade piping, LNAPL and impacted soil-fill) groundwater concentration would be expected to decrease significantly. Annual LNAPL removal and groundwater monitoring would be conducted for up to five years. In addition, per Part 375, a restriction on groundwater use would be included as part of the remedial program.

Overall Protection of Public Health and the Environment – The Unrestricted Use alternative would achieve the corresponding Part 375 SCOs, which are designed to be protective of human health under any reuse scenario.

Compliance with SCGs – The Unrestricted Use alternative would need to be performed in accordance with applicable, relevant, and appropriate standards, guidance, and criteria.

Long-Term Effectiveness and Permanence – The Unrestricted Use alternative would achieve removal of all residual impacted soil/fill; therefore, no soil/fill exceeding the unrestricted use SCOs would remain on the Site. As such, the Unrestricted Use alternative would provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal of all impacted soil/fill; LNAPL, and subgrade piping; the Unrestricted Use alternative would permanently and significantly reduce the toxicity, mobility, and volume of Site contamination.

Short-Term Effectiveness – The principal advantage of a large-scale excavation to achieve unrestricted standards is reliability of effectiveness in the long-term. In the short-term, there would be significant increase in exposure of VOC-impacted soil to on-site workers and the community under this alternative. Excavation activities would be completed over an approximate three-month period and backfilling would take approximately one month. Commercial construction equipment would be utilized, a health and safety plan would be followed, and community air monitoring would be completed during excavation activities. However, primary disadvantages include increased truck traffic during excavation and backfill, noise, and air emissions, including fugitive dust, odors and VOCs. Therefore, this alternative represents a significant adverse effect in the short-term.

Implementability – Excavations of VOC-impacted soils to depths of 20 fbgs in coarse-grained sand and gravel poses several technical implementability concerns. Sloughing of excavation walls could occur, which would likely require shoring/stabilizing excavation

sidewalls. Groundwater and/or stormwater handling, treatment and/or discharge/disposal would be required. Given the high volume of soil required for removal, a high volume of truck traffic on a relatively small site would be needed to remove soils from the Site. Administrative implementability issues may include the need for rezoning of the area to allow for unrestricted uses, which are not consistent with current surrounding land-use or the reasonably anticipated future use of the Site.

Cost – The capital cost of implementing an Unrestricted Use alternative (post-IRM) is estimated at \$8,250,000 as shown on Table 3. Post-remedial groundwater monitoring and annual certification costs would not be incurred. Table 4 is a summary of costs of each of the alternatives.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to Fact Sheets and other planned Citizen Participation activities.

3.5 Recommended Remedial Measure

Based on the Alternatives Analysis evaluation, Alternative #2 – Commercial Use Cleanup is the recommended final remedial approach for the Scott Rotary Seals Site. This remedy is fully protective of human health and the environment, is advantageous over other remedies when evaluated against the remedy selection criteria, and fully satisfies all RAOs for the Site. Furthermore, this remedy is consistent with previous discussions between DST and the Department. The components and details of the remedial approach are more fully described in the RAWP recently submitted to the Department.

4.0 **References**

- 1) New York State Department of Environmental Conservation. DER-10 Technical Guidance for Site Investigation and Remediation. May 2010.
- 2) Neeson-Clark Associates, Inc. Phase I Environmental Site Assessment (ESA) for 350 Franklin Street (Vacant Parcel), Olean, New York. September 2008.
- 3) Neeson-Clark Associates, Inc. Limited Subsurface Investigation for Vacant Lot- Franklin Street, Olean, New York. November 2008.
- 4) TurnKey Environmental Restoration, LLC. *Phase II Investigation Report, Franklin Street, Olean, New York*. July 2009.
- 5) TurnKey Environmental Restoration, LLC. Pre-Design Investigation Report, 301 Franklin Street, Olean, New York. Revised June 2011.

COST ESTIMATE FOR COMMERCIAL USE ALTERNATIVE

SCOTT ROTARY SEALS SITE

Item	Quantity	Units		Unit Cost		Total Cost
Impacted Soil/Fill Removal						
Soil/Fill Excavating & Hauling	5300	CY	\$	20.00	\$	106,000
Disposal at TSDF (1.5 tons per CY)	7950	TON	\$	30.00	\$	238,500
Post-Excavation Confirmatory Sampling ¹	150	EA	\$	325.00	\$	48,750
Subtotal:		_/.	Ŷ	020.00	\$	393,250
Subistal.					Ψ	555,250
Site Restoration	5000	01	¢	40.50	¢	00.050
Import, Backfill, Place & Compact	5300	CY	\$	18.50	\$ \$	98,050
Subtotal:					⊅	98,050
Soil Vapor Extraction System						
System Installation and Maintenance	1	LS	\$	125,000.00	\$	125,000
Subtotal:					\$	125,000
NAPL Removal						
Equipment Installation and Maintenance	1	LS	\$	10,000.00	\$	10,000
Subtotal:					\$	10,000
Soil Cover System						
Import and Place	2000	CY	\$	18.50	\$	37,000
Cover Soil Characterization and Sampling	4	EA	\$	900.00	\$	3,600
Subtotal:		L /(Ψ	000.00	\$	40,600
					Ť	40,000
Active Sublab Depressurization System						
System Installation and Maintenance	1	LS	\$	20,000.00	\$	20,000
Subtotal:					\$	20,000
Subtotal Capital Cost					\$	686,900
Contractor Mobilization/Demobilization (5%)					\$	34,345
Health and Safety (2%)					\$	13,738
Engineering/Contingency (35%)					\$	240,415
Engineering/Contingency (35 %)					Ψ	240,413
Total Unrestricted Cleanup Cost					\$	975,398
Total IRM Cost					\$	250,000
						·
Total Capital Cost					\$	1,225,398
Annual Operation Maintenance & Monitoring (OM8	<u>M):</u>				I	
Groundwater Monitoring/NAPL Removal	1	Yr	\$	20,000.00	\$	20,000
Annual Certification	1	Yr	\$	2,000.00	\$	2,000
Total Annual OM&M Cost					\$	22,000
Number of Vegra (n)						~
Number of Years (n):			1			30
Interest Rate (I):			1			5%
p/A value:						15.3725
OM&M Present Worth (PW):					\$	338,195
Total Procent Worth (PW): Conital Cost , OMPM P	N		<u> </u>		¢	1 562 502
Total Present Worth (PW): Capital Cost + OM&M P	/				\$	1,563,593

COST ESTIMATE FOR RESIDENTIAL USE ALTERNATIVE

SCOTT ROTARY SEALS SITE

Item	Quantity	Units		Unit Cost		Total Cost
Impacted Soil/Fill Removal	40.400	01/	~	00.00	<u>م</u>	000.000
Soil/Fill Excavating & Hauling	48400	CY TON	\$ \$	20.00	\$	968,000
Disposal at TSDF (1.5 tons per CY)	72600 150	EA	э \$	30.00	\$ \$	2,178,000
Post-Excavation Confirmatory Sampling Subtotal:	150	EA	φ	325.00	э \$	48,750 3,194,750
Sublotal.					Ψ	3,134,730
Site Restoration						
Import, Backfill, Place & Compact	48400	CY	\$	18.50	\$	895,400
Backfill Characterization Sampling	50	EA	\$	900.00	\$	45,000
Subtotal:					\$	940,400
Excavation Groundwater Management						
Treatment System Operation and Maintenance	1	LS	\$	25,000.00	\$	25,000
Subtotal:	1	LO	φ	25,000.00	φ \$	25,000 25,000
Subtotal.					Ψ	23,000
NAPL Removal						
Equipment Installation and Maintenance	1	LS	\$	10,000.00	\$	10,000
Subtotal:					\$	10,000
Subtotal Capital Cost					\$	4,170,150
Contractor Mobilization/Demobilization (5%)					\$	208,508
Health and Safety (2%)					\$	83,403
Engineering/Contingency (35%)					\$	1,459,553
Total Restricted Cleanup Cost					\$	5,921,613
Total IRM Cost					\$	250,000
Total Carital Cart					*	C 474 C40
Total Capital Cost					\$	6,171,613
Annual Operation Maintenance & Monitoring (OM8	ιM):					
Groundwater Monitoring/NAPL Removal	1	Yr	\$	20,000.00	\$	20,000
Annual Certification	1	Yr	\$	2,000.00	\$	2,000
Total Annual OM&M Cost					¢	22.000
					\$	22,000
Number of Years (n):						30
Interest Rate (I):						5%
p/A value:						15.372
OM&M Present Worth (PW):					\$	338,195
Total Present Worth (PW): Capital Cost + OM&M P	N				\$	6,509,808

COST ESTIMATE FOR UNRESTRICTED USE ALTERNATIVE

SCOTT ROTARY SEALS SITE

Item	Quantity	Units		Unit Cost		Total Cost
Impacted Soil/Fill Removal						
Soil/Fill Excavating & Hauling	64535	CY	\$	20.00	\$	1,290,700
Disposal at TSDF (1.5 tons per CY)	96803	TON	\$	30.00	\$	2,904,075
Post-Excavation Confirmatory Sampling ¹	150	EA	\$	325.00	\$	48,750
Subtotal:	100	L/(Ψ	020.00	\$	4,243,525
Custotai					Ŷ	1,210,020
Site Restoration						
Import, Backfill, Place & Compact	64535	CY	\$	18.50	\$	1,193,898
Backfill Characterization Sampling	50	EA	\$	900.00	\$	45,000
Subtotal:					\$	1,238,898
					-	
Excavation Groundwater Management						
Treatment System Operation and Maintenance	1	LS	\$	25,000.00	\$	25,000
Groundwater Disposal	150000	GAL	\$	0.10	\$	15,000
Subtotal:					\$	40,000
NAPL Removal						
Equipment Installation and Maintenance	1	LS	\$	10,000.00	\$	10,000
Subtotal:					\$	10,000
Subtotal Capital Cost					\$	5,532,423
Contractor Mobilization/Demobilization (5%)					\$	276,621
Health and Safety (2%)					\$	110,648
Engineering/Contingency (35%)					\$	1,936,348
Total Unrestricted Cleanup Cost					\$	7,856,040
Total IRM Cost					\$	250,000
Total Capital Cost					\$	8,106,040
					¥	0,100,010
Annual Operation Maintenance & Monitoring (OM&	M):					
Groundwater Monitoring/NAPL Removal	5	Yr	\$	20,000.00	\$	100,000
Annual Certification	5	Yr	\$	2,000.00	\$	10,000
	<u> </u>			_,		. 5,000
Total Romodial Cost					\$	9 216 040
Total Remedial Cost					¢	8,216,040

SUMMARY OF REMEDIAL ALTERNATIVES COSTS

SCOTT ROTARY SEALS SITE

Remedial Alternative	Estimated Cost
<u>No Further Action</u> (Cost of completed IRM)	\$250,000
<u>Commercial Use Cleanup</u> (Cost of completed IRM, plus commercial use cleanup)	\$1,563,593
Residential Use Cleanup (Cost of completed IRM, plus residential use cleanup)	\$6,509,808
<u>Unrestricted Use Cleanup</u> (Cost of completed IRM, plus unrestricted use cleanup)	\$8,216,040

APPENDIX A

Pre-Design Investigation Report (revised June 2011) Tables and Figures

TABLE 1 SURFACE SOIL ANALYTICAL RESULTS SCOTT ROTARY SEALS SITE 301 FRANKLIN STREET OLEAN, NEW YORK

Parameter ¹ TCL plus STARS Volatile Organic Comp Acetone 2-Butanone (MEK) Methylcyclohexane Methylene chloride	500 500 500 	SS-1 mg/kg ³ 0.071 0.036 0.02	SS-2	SS-3	SS-4			
Acetone 2-Butanone (MEK) Methylcyclohexane	500 500 500 	0.071 0.036						
2-Butanone (MEK) Methylcyclohexane	500 500 	0.036						
Methylcyclohexane	 500 			ND	ND			
	500 	0.02	ND	ND	ND			
Methylene chloride		0.02	0.0033	ND	ND			
		0.0063	ND	ND	0.0046 J			
Tentatively Identified Compounds (TICs)		0.16	0.020	ND	ND			
Total VOCs		0.30	0.023	ND	0.005			
TCLSemi-Volatile Organic Compounds	(SVOCs) - mg/kg	3						
Acenaphthene	500	ND	0.25 DJ	ND	ND			
Anthracene	500	ND	0.45 DJ	ND	ND			
Benzo(a)anthracene	5.6	0.16	1.3 DJ	ND	0.91 D			
Benzo(b)fluoranthene	5.6	0.28	1.6 DJ	0.88	1 D			
Benzo(g,h,i)perylene	500	0.16	1.1 DJ	0.93	2.1 D			
Benzo(k)fluoranthene	56	ND	0.6 DJ	ND	ND			
Benzo(a)pyrene	1	0.17	1.5 DJ	ND	1.5 D			
Carbozole		ND	0.23 DJ	ND	ND			
Chrysene	56	0.19	1.4 DJ	ND	1.5 D			
Dibenzo(a,h)anthracene	0.56	ND	ND	ND	1.5 D			
Fluoranthene	500	0.3	2.9 D	ND	0.35 DJ			
Fluorene	500	ND	0.17 DJ	ND	ND			
Bis(2-ethylhexyl) phthalate		ND	ND	ND	ND			
Indeno(1,2,3-cd)pyrene	5.6	0.13	0.81 DJ	ND	0.92 D			
Naphthalene	500	ND	ND	ND	ND			
Phenanthrene	500	0.17	2 D	ND	0.28 DJ			
Pyrene	500	0.27	2.7 D	0.71	0.51 DJ			
Tentatively Identified Compounds (TICs)		0.84	ND	ND	46.23			
Total SVOCs		2.7	17.0	2.5	56.8			
TAL Metals - mg/kg								
Aluminum		9390	7340	6800	8180			
Arsenic	16	18.5	30.7	42.4	21.1			
Barium	400	82.1	84.9	96.8	132			
Beryllium	590	0.406	0.406	0.455	0.741			
Cadmium	9.3	ND	0.31	0.329	ND			
Calcium		5520	21000	9190	3210			
Chromium	400	9.59	10	16	8.98			
Cobalt		6.61	4.82	5.6	6.67			
Copper	270	53.1	63.9	173	167			
Iron		17800	16900	27800	16900			
Lead	1000	69	93.9	518	93.5			
Magnesium		2550	5280	2550	1500			
Manganese	10,000	546 J	437 J	282 J	429 J			
Nickel	310	13.5	14.2	16.8	13.6			
Potassium		692	1020	583	695			
Vanadium		16.2	20	20.4	18.1			
Zinc	10,000	87.1 J	142 J	142 J	114 J			
Mercury	2.8	0.571	0.872	1.93	0.191			
Organochlorine Pesticides mg/kg ³								
alpha-BHC	3.4	ND	ND	ND	ND			
4,4'-DDE	62	ND	ND	ND	ND			
4,4'-DDT	47	ND	0.0074 J	ND	0.0056 NJ			
Endrin	89	ND	ND	ND	0.0018 J			
Polychlorinated Biphenyls (PCBs) - mg/	′kg³							
All Aroclors 1 ND ND ND ND								

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other Sompounds were reported as non-detect.
 Values per NYSDEC Part 375 Restricted-Commercial Soil Cleanup Objectives (SCOs).
 Sample results were reported by the laboratory in micograms per kilogram (ug/kg) and converted to milligram

per kilogram (mg/kg) for comparison to SCOs.

 Definitions:

 ND = Parameter not detected above laboratory detection limit.

 "--" = No SCO available.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 NJ = The detection is tentative in identification and estimated in value.

 D = All compounds were identified in an analysis at the secondary dilution factor.

 Sample concentration exceeds Commercial SCO.

TABLE 2

QUALITATIVE PID¹ SOIL SCREENING SUMMARY SCOTT ROTARY SEALS SITE 301 FRANKLIN STREET OLEAN, NEW YORK

Elevation (ft)	TP-1	TP-2	TP-3	TP-4	TP-5	TP-6	TP-7	TP-8	TP-9	TP-10	TP-11	TP-12	TP/SB-13	TP-14	TP/SB-15	TP/SB-16	TP/SB-17	TP/SB-18	TP-19	TP/SB-20	TP/SB-21	TP/SB-22	TP/SB-23	TP/SB-24	MW1	MW2	MW3	MW4	MW5	MW6	MW7	MW8	SB-1	SB-2	Elevation (ft)
1435																																			1435
1434																																1.7	L		1434
1433 1432																																			1433 1432
1432																		1.6														0.2	├ ──┤		1432
1430																				ND					96				0.1	0.1			├ ───┤		1430
1429																		1.3		8.7											0.8	0.4			1429
1428												ND						1.3		8.7		11.3							0.1	0		2.4			1428
1427				ND									ND					1.5				11.5			5.7					0.1	0.5	0	ND	ND	1427
1426				ne -	ND							100	ne -		ND			1.3		ND	ND	84.2	2.3	7.3	0.7			1.2	0.1	0.1	0.0	ů		ne -	1426
1425	ND	ND	ND			ND					ND		0.7										-	_		4.3	13.3		-	0.2	0.4	0.9	└───┦		1425
1424 1423											25.8	805			791	ND		1	11.3			14.7	1.6	2.4				2.4	0.2				1.3	170	1424 1423
1423					64		ND	ND			20.8	605	55.7				ND	-		1.8					135					0.4	0.2	19.2	⊢]		1423
1421				195	04		ND		ND	ND			-		1183		ND	0.4	360			345	69.6	73		20.7	7.1	290	0.2			10.4	ND	778	1421
1420													309	ND																1	1.7				1420
1419						1195							670		1536			ND	297	0.5	67	915	1316	295	125	1336	9	227	0.5	0.3	0.4	2.2	10.6	1040	1419
1418			1.9								540		670		1599			75	308		103	833	1767	432	125		6.1	599	0.7	0.3	0.4		57	493	1418
1417	11.9												1463		1000			10	000	23	100	000		402		1782	0.1	000	0.7	113	0.7	290	<u>,</u>	400	1417
1416		25.8						42		1094					1609	451		108	369	-	134	945	1700	463			10.3	915	0.8				78	610	1416
1415									1254				1534			50.4		180	187	230	050			404	78.9		9.5		1.6	92.4	0.5	535	70		1415
1414 1413							1								1861	584		180	187		650	1062	1605	481		1989	9.5	78.9	1.6		367	148	72	1588	1414 1413
1413									-				1718							408								70.5		317		140			1412
1411													0.450		1875	394	33.7	109	350	707	682	1082	1607	537	050	1305	180		0.4		16.7	655		1296	1411
1410				-lovetion (4400 44424	fmal) haar		am Tabla F					2453	791	2048	912	106	705	523	787	316	1103	1934	1166	259	1726	718	754	765	230			212	1477	1410
1409		kange of gi	roundwater	elevation	1400-1413	msi) based	d on data fr	rom Table 5					54.2	791	2048	912	106	705	523	538	310	1103	1934	1100		1720	/18	1306	765	14.3	116	860		1477	1409
1408															904	1920	707	332			16		714	1529		1928	488		417				255	726	1408
1407													ND												465			1490		201	93.2	297			1407
1406						1	1								285	0.2	290	803					590	1592		508	227		783				354	796	1406
1405 1404																							185					813		156	763		┢───┦		1405 1404
1404															185	130	58.7	21.7					100	132	230	775	137						278		1404
1402																		1							200			507			1087		$ \longrightarrow $		1402
1401																		13.6								314	79.8		499				312		1401
1400																										646	720	853							1400
1399																										040	720	1326							1399

1. Photoionization detector (PID) screening results in parts per million (ppm).

Not detected at that depth interval.

Table 3 Subsurface Soil Analytical Results Scott Rotary Seals Site 301 Franklin Street Olean, New York

Decision 1	Commercial											SAMPLE	LOCATIO	•										
Parameter ¹	SCOs ² (mg/kg)	TP-2 (16-18)	TP-4 (4-10)	TP-5 (5-8)	TP-6 (3-11)	TP-9 (12-14)	TP-10 (3-11)	TP-12 (2.5-8.5)	MW-2 (16-20)	SB-1 (20-24)	SB-2 (16-20)	SB-13 (6-8)	TP-13 (14-16)	SB-13 (18-20)	TP-14 (15-17)	TP-15 (3-4)	TP-15 (15-17)	SB-15 (17-20)	TP-16 (15-17)	SB-16 (20-24)	TP-17 (15-17)	SB-17 (23-26)	TP-18 (15-17)	S (2
PID Results →		25.8	195	64	1195	1254	1094	100-805	1305- 1928	255-354	1296- 1477	309-670	1718-2453	0-54.2	791	791-1183	1875- 2048	904-2048	451-584	912-1920	0	290-707	75-108	21
Sample Date →		Jun-09	Jun-09	Jun-09	Jun-09	Jun-09	Jun-09	Jun-09	Jun-09	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	A
L plus STARS Volatile Organic Com	oounds (VOCs) -	mg/kg ³		1	r		-	T	T.	1			1						1	1		-	1	
cetone	500	ND	NA	NA	0.079	ND	ND	0.0073 J	ND	ND	ND	ND	ND	ND	0.047 J	ND	0.1	ND	0.04 J	ND	ND	ND	0.029 J	_
Butanone (MEK)	500	ND	NA	NA	ND	ND	0.18	ND	0.2	ND	ND	ND	ND	ND	ND	ND	0.019 J	ND	ND	ND	ND	ND	ND	_
arbon disulfide		ND	NA	NA	0.0024	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0043 J	ND	ND	ND	ND	ND	ND	_
sopropylbenzene (Cumene)		ND	NA	NA	0.014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	ND	ND	ND	ND	ND	ND	
lethylcyclohexane	500	ND ND	NA NA	NA NA	20 ND	ND ND	ND 0.2	ND ND	9.3 0.12	ND ND	0.81 ND	ND ND	ND ND	ND ND	ND 0.055	33 D ND	0.06	90 D ND	ND 0.076	1.9 ND	ND 0.0076	ND ND	ND 0.019 J	_
lethylene chloride	500	ND	NA	NA	ND	ND	ND	0.0012 J	0.12 ND	ND	ND	ND	ND	ND	0.055 0.016 J	ND	0.009 ND	ND	0.076 0.017 J	ND	0.0076 0.0029 J	ND	0.019 J	
,2,4-Trichlorobenzene		ND	NA	NA	ND	ND	0.14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0023 J	ND	ND	
-Propylbenzene	500	ND	NA	NA	0.0056	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
-Cymene (p-isopropyltoluene)		ND	NA	NA	ND	ND	ND	0.042 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
-Butylbenzene	500	ND	NA	NA	0.036	ND	ND	0.031 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
ec-Butylbenzene	500	0.0024	NA	NA	0.037	0.0074	0.094	0.022 J	ND	ND	0.088 NJ	ND	ND	ND	ND	ND	ND	0.78	ND	ND	ND	ND	0.0099 J	J
ert-Butylbenzene	500	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	0.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
entatively Identified Compounds (TICs)		0.5	NA	NA	9.0	8.5	110.7	5.6	174.0	23.6	108.0	57.2	85.0	16.2	16.7	280 W1	0.253	381 D	33.2	78.8	ND	12.28	14.2	
Total VOCs		0.50	NA	NA	29.16	8.46	111.31	5.69	183.62	23.60	108.81	57.20	85.11	16.20	16.81	313.00	0.45	471.78	33.33	80.70	0.01	12.28	14.27	
LSemi-Volatile Organic Compounds	1				r		-	T	r	1										1				—
enzo(a)anthracene	5.6	ND	NA	NA	0.068 DJ	ND	ND	0.16 DJ	0.048 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.15 J	_
Senzo(b)fluoranthene	5.6	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	+
enzo(g,h,i)perylene	500	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	0.1 DJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.077 J 0.098 J	
Benzo(a)pyrene Chrysene	56	2 D	NA	NA	0.14 DJ	ND	ND	0.43 DJ	0.085 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.098 J	+
luoranthene	500	0.17 DJ	NA	NA	ND	ND	ND	0.092 DJ	0.005 D3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	+
luorene	500	0.076 DJ	NA	NA	ND	0.31 DJ	ND	0.002 D0	0.54 DJ	ND	ND	ND	ND	0.014 NJ	0.16 J	0.35	0.017 NJ	0.43 NJ	ND	ND	ND	ND	ND	C
is(2-ethylhexyl) phthalate		ND	NA	NA	ND	ND	ND	ND	ND	0.24 DJ	ND	0.076 J	ND	0.44	ND	ND	ND	ND	ND	ND	ND	0.29	ND	+
deno(1,2,3-cd)pyrene	5.6	ND	NA	NA	ND	ND	ND	0.06 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
laphthalene	500	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J	ND	ND	ND	ND	ND	ND	T
henanthrene	500	ND	NA	NA	0.65 DJ	0.64 D	ND	0.52 DJ	0.87 DJ	ND	0.48 DJ	ND	ND	0.029 J	ND	0.61	0.042 J	0.74 J	ND	0.43	ND	0.046	ND	
-Methylphenol	-	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Pyrene	500	ND	NA	NA	ND	ND	ND	0.2 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Tentatively Identified Compounds (TICs)		29	NA	NA	319.2	58.9	89.1	121.4	195.1	17.59	164.4	ND	39.26	4.73	80.3	69.5	9.12	257.9	30.82	122.1	1.98	10.55	33.59	_
Total SVOCs		31.2	NA	NA	320.1	59.9	89.1	123.1	196.6	17.8	164.9	0.1	39.3	5.2	80.5	70.5	9.2	258.6	30.8	122.5	2.0	10.9	34.3	
L Metals - mg/kg		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6370	NA	NA	4380	NA	NA	NA	NA	Ŧ
Aluminum Arsenic	16	NA	6	6.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.5	NA	NA	4380 6.1	NA	NA	NA	NA	+
Barium	400	NA	38.9	35.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	30.1	NA	NA	31.7	NA	NA	NA	NA	+
Cadmium	9.3	NA	0.234	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA	+
Calcium	-	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	824	NA	NA	44400	NA	NA	NA	NA	+
Chromium	400	NA	7.08	6.48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.02	NA	NA	5.04	NA	NA	NA	NA	+
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.88	NA	NA	4.1	NA	NA	NA	NA	T
Copper	270	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	32.4	NA	NA	15.3	NA	NA	NA	NA	
on		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12200 B1	NA	NA	9890 B1	NA	NA	NA	NA	
ead	1000	NA	26.3	23.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.4	NA	NA	8.5	NA	NA	NA	NA	
lagnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1980	NA	NA	4200	NA	NA	NA	NA	_
langanese	10,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	198 B1 J	NA	NA	539 B1 J	NA	NA	NA	NA	_
lickel	310	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.6	NA	NA	9.76	NA	NA	NA	NA	_
Potassium	-	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	491 9.42	NA	NA	635	NA	NA NA	NA	NA NA	
	 10,000	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	9.42 68.9 J	NA NA	NA	6.94 53.4 J	NA NA	NA	NA NA	NA	+
anadium inc		11/1	0.363	0.592	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.042	NA	NA	ND	NA	NA	NA	NA	

Table 3 Subsurface Soil Analytical Results Scott Rotary Seals Site 301 Franklin Street Olean, New York

	Commercial											SAMPL	E LOCATI	ON									
Parameter ¹	SCOs ²	TP-19	TP-20	SB-20	TP-21	SB-21	TP-22	TP-23	SB-23	SB-24	TP-24	SB-24	North	East	South	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6	MW-7	MW-8
	(mg/kg)	(14-16)	(16-18)	(16-20)	(15-17)	(20-22)	(16-18)	(8-10)	(15-18)	(8-12)	(15-17)	(20-23)	Pile	Pile ⁴	Pile	(10-12)	(17-19)	(21-23)	(23-25)	(14-16)	(18-20)	(17-18)	(19-21)
PID Results →		523	230	230-408	134-650	316	1082- 1103	1767	1607- 1934	432-463	537-1166	132-1592	0	0	0	915	1306	765	417	113	317	367	535
Sample Date →		Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Aug-10	Oct-10	Oct-10	Oct-10	Oct-10	Oct-10	Oct-10	Jan-11	Jan-11
TCL plus STARS Volatile Organic Comp	ounds (VOCs) -	mg/kg ³	1	1	1		1	1	1	1	1	1	1	1			1	1	1	1			
Acetone	500	ND	0.037 J	ND	ND	ND	ND	0.07	ND	ND	ND	ND	ND	ND	ND	0.079	ND	ND	ND	0.051 J	0.085	0.076 J	0.064 J
2-Butanone (MEK)	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.013 J	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene (Cumene)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		0.7	ND	ND	ND	1.9	ND	0.11	17	0.11	7.3 D	4.3	ND	ND	ND	0.086	8.7 W1	ND	ND	ND	ND	ND	ND
Methylene chloride	500	0.02 J	0.069	ND	ND	ND	0.022 J	0.046 J	ND	ND	ND	ND	0.013	0.0059	0.0072	0.007	ND	0.04 J	0.008	0.026 J	0.043	0.071 U	0.048 B
Toluene	500	ND	0.016 J	ND	ND	ND	0.015 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Cymene (p-isopropyltoluene)		ND	ND	ND	ND	ND	0.021 J	0.021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.21 NJ	ND	ND
n-Butylbenzene	500	ND	ND	ND	ND	ND	ND	0.027	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	500	ND	ND	ND	ND	ND	ND	0.024	0.38 NJ	ND	0.39 D	ND	ND	ND	ND	ND	0.4 W1	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	500	0.023	ND	ND	0.11	ND	0.049	0.013	0.15 NJ	ND	0.43 D	0.2	ND	ND	ND	ND 2.65	ND	0.042 J	0.0025 U	ND 0.70	0.044 U	0.0077 J	0.03 NJ
Tentatively Identified Compounds (TICs)		19.1 19.84	0.57	56.40	111.1	136.0 137.90	14.3 14.40	5.07 5.38	122.00 139.00	78.10	274.00 282.12	129.10	ND	0.0152	ND 0.01	3.65 3.835	75.8	25.4 25.482	0.841 0.8515	8.76 8.837	32.95 33.332	3.43 3.5847	13.42 13.562
Total VOCs			0.69	56.40	111.21	137.90	14.40	5.38	139.00	78.21	282.12	133.60	0.01	0.0211	0.01	3.830	84.9	25.482	0.8515	8.837	33.332	3.3847	13.302
TCLSemi-Volatile Organic Compounds Benzo(a)anthracene	5.6	ND	ND	ND	ND	ND	ND	0.029 J	ND	ND	0.17 J	ND	0.28 DJ	0.1 DJ	0.22 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	5.6	ND	ND	ND	ND	ND	ND	0.029 J	ND	ND	ND	ND	0.28 DJ	ND	0.22 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17 NJ	ND	0.35 D3	0.15 DJ	0.25 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4 0.29 DJ	ND	0.25 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	56	ND	ND	ND	0.11 J	ND	ND	0.06 J	ND	ND	0.38	ND	0.32 DJ	0.13 DJ	0.24 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.48 DJ	0.15 DJ	0.39 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	500	ND	ND	ND	0.31	ND	ND	ND	0.34	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Bis(2-ethylhexyl) phthalate		ND	ND	ND	ND	ND	ND	0.077 J	1 J	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	5.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.21 DJ	0.1 DJ	0.15 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	500	ND	ND	ND	ND	ND	ND	0.042 J	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	500	ND	ND	ND	ND	0.78	ND	ND	0.58	ND	2.1	0.7	0.18 DJ	0.14 DJ	0.25 DJ	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	500	ND	ND	ND	ND	ND	ND	0.048 J	ND	ND	ND	ND	0.38 DJ	0.14 DJ	0.39 DJ	NA	NA	NA	NA	NA	NA	NA	NA
Tentatively Identified Compounds (TICs)		53.96	3.58	77.8	60	270	23.5	7.57	154.4	186.8	51.5	157.9	0.78	5.4	0.92 B	NA	NA	NA	NA	NA	NA	NA	NA
Total SVOCs		54.0	3.6	77.8	60.4	270.8	23.5	7.8	156.3	186.8	54.3	158.6	3.7	6.3	3.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TAL Metals - mg/kg																							
Aluminum		NA	3630	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	NA	4.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	400	NA	19.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	9.3	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	40400 D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	400	NA	5.33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		NA	7.08	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	270	NA	37.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron		NA	10300 B1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	1000	NA	6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	2630 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	10,000	NA	733 B1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	310	NA	13.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium		NA	405	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium		NA	5.23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	10,000	NA	80.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	2.8	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:
1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
2. Values per NYSDEC Part 375 Restricted-Commercial Soil Cleanup Objectives (SCOs).
3. Sample results were reported by the laboratory in micograms per kilogram (ug/kg) and converted to milligram per kilogram (mg/kg) for comparison to SCOs.

 Definitions:

 ND = Parameter not detected above laboratory detection limit.

 NA = Sample not analyzed for parameter.

 "--" = No SCO available.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 B = Analyte was detected in the associated blank as well as in the sample.

 D = All compounds were identified in an analysis at the secondary dilution factor.

 NJ = The detection is tentative in identification and estimated in value.

 W1 = Sample was prepared and analyzed utilizing a medium level extraction.

TABLE 4 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SCOTT ROTARY SITE 301 FRANKLIN STREET OLEAN, NEW YORK

				<u></u>	EW TORP		Sample Loca	ations				
Parameter ¹	NYSDEC Class GA Groundwater Quality	M	W-1	M	W-2	M	W-3	MW-4	MW-5	MW-6	MW-7	MW-8
	Standards ²	8/19/10	10/28/10	8/19/10	10/28/10	8/19/10	10/28/10	10/28/10	10/28/10	10/28/10	1/17/11	1/17/11
TCL plus STARS Volatile Organic Comp	ounds (VOCs) - ug/	L				-						
Acetone	50	ND J	ND	ND J	ND	ND J	ND	ND	3.2 J	ND	6.3 J	ND
2-Butanone (MEK)	50	ND J	ND	ND J	ND	ND J	ND	ND	ND	ND	1.7 J	ND
Carbon disulfide	60	ND J	ND	ND J	ND	ND J	ND	ND	ND	ND	ND	ND
Cyclohexane	-	ND J	ND	ND J	3 D	ND J	ND	3.9 DJ	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND J	ND	ND J	ND	ND J	ND	ND	ND	1.1	1.1	0.98 J
Methylcyclohexane	-	ND J	ND	260 J	200 D	ND J	ND	390 D	ND	7 D	71 D	6.2
o-Xylenes	5	ND J	ND	ND J	ND	ND J	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND J	ND	ND J	ND	ND J	ND	3.2 DJ	ND	2.2 D	ND	ND
tert-Butylbenzene	100	1.7 J	1.4	ND J	ND	ND J	ND	ND	4.3	2.2	2.2	1.9
Tentatively Identified Compounds (TICs) ³		110 J	71.2	800 J	461	ND J	ND	645	314	192.3	226	346
Total VOCs	•	110 J	73	1,060 J	664	ND J	ND	1,042	322	205	308	355
STARS Semi-Volatile Organic Compound	ds (SVOCs) - ug/L											
Acenaphthene	20	ND J	NA	ND J	NA	0.61 J	NA	NA	NA	NA	NA	NA
Di-n-butyl phthalate	50	ND J	NA	ND J	NA	ND J	NA	NA	NA	NA	NA	NA
Fluorene	50	ND J	NA	2.7 J	NA	1.7 J	NA	NA	NA	NA	NA	NA
Phenanthrene	50	ND J	NA	2.3 DJ	NA	ND J	NA	NA	NA	NA	NA	NA
Tentatively Identified Compounds (TICs) ³		78 J	NA	508 J	NA	110 J	NA	NA	NA	NA	NA	NA
Total SVOCs	•	78 J	NA	510 J	NA	112 J	NA	NA	NA	NA	NA	NA
TAL Metals - ug/L		-		•		•		•				
Aluminum	-	ND J	NA	357 J	NA	ND J	NA	NA	NA	NA	NA	NA
Arsenic	25	ND J	NA	21.4 J	NA	ND J	NA	NA	NA	NA	NA	NA
Barium	1000	270 J	NA	687 J	NA	345 J	NA	NA	NA	NA	NA	NA
Calcium	-	184000 J	NA	185000 J	NA	244000 J	NA	NA	NA	NA	NA	NA
Iron	300	1860 J	NA	17500 J	NA	1690 J	NA	NA	NA	NA	NA	NA
Magnesium	35000	23800 J	NA	37400 J	NA	26800 J	NA	NA	NA	NA	NA	NA
Manganese	300	1260 J	NA	733 J	NA	880 J	NA	NA	NA	NA	NA	NA
Potassium		3630 J	NA	6170 J	NA	3410 J	NA	NA	NA	NA	NA	NA
Sodium	20000	23.1 J	NA	4500 J	NA	5700 J	NA	NA	NA	NA	NA	NA
Organochlorine Pesticides ug/L												
alpha-BHC	0.01	0.016 J	NA	0.018 J	NA	0.016 J	NA	NA	NA	NA	NA	NA
gamma-BHC (lindane)	0.05	ND J	NA	0.009 J	NA	0.011 J	NA	NA	NA	NA	NA	NA
4,4'-DDE	0.2	ND J	NA	ND J	NA	0.014 J	NA	NA	NA	NA	NA	NA
4,4'-DDT	0.2	ND J	NA	0.017 J	NA	ND J	NA	NA	NA	NA	NA	NA
Heptachlor	0.04	ND J	NA	ND J	NA	0.0094 J	NA	NA	NA	NA	NA	NA

Notes:
1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
3. Excludes TICs identified in the laboratory blank.

EXcludes Thes Refinites

Definitions:
ND = Parameter not detected above laboratory detection limit.
"--" = No SCO available.
J = Estimated value; result is less than the sample quantitation limit but greater than zero.
D= All compounds were identified in an analysis at the secondary dilution factor.
Sample Result exceeds NYSDEC Groundwater Quality Standards.

TABLE 5 SUMMARY OF GROUNDWATER ELEVATIONS SCOTT ROTARY SEALS SITE 301 FRANKLIN STREET OLEAN, NEW YORK

Location	Date	Grade	TOR Elevation ¹ (fmsl)	DTP (if present) (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (fmsl)	Corrected Groundwater Elevation ² (fmsl)
MW-1	6/29/2009	1431.89	1435.04	NP	27.58	NP	1407.46	1407.46
MW-1	8/19/2010	1431.89	1435.04	NP	28.40	NP	1406.64	1406.64
MW-1	10/26/2010	1431.89	1435.04	NP	29.01	NP	1406.03	1406.03
MW-1	3/10/2011	1431.89	1435.04	NP	23.71	NP	1411.33	1411.33
MW-2	6/29/2009	1425.84	1428.19	NP	18.61	NP	1409.58	1409.58
MW-2	8/19/2010	1425.84	1428.19	NP	19.51	NP	1408.68	1408.68
MW-2	10/26/2010	1425.84	1428.19	20.34	20.35	0.01	1407.84	1407.85
MW-2	3/10/2011	1425.84	1428.19	NP	15.28	NP	1412.91	1412.91
MW-3	6/29/2009	1426.24	1428.26	NP	18.79	NP	1409.47	1409.47
MW-3	8/19/2010	1426.24	1428.26	NP	19.52	NP	1408.74	1408.74
MW-3	10/26/2010	1426.24	1428.26	NP	20.38	NP	1407.88	1407.88
MW-3	3/10/2011	1426.24	1428.26	NP	15.31	NP	1412.95	1412.95
MW-4	10/26/2010	1425.85	1427.61	19.71	19.72	0.01	1407.89	1407.90
MW-4	3/10/2011	1425.85	1427.61	NP	14.69	NP	1412.92	1412.92
MW-5	10/26/2010	1430.78	1433.26	NP	27.17	NP	1406.09	1406.09
MW-5	3/10/2011	1430.78	1433.26	NP	21.91	NP	1411.35	1411.35
MW-6	10/26/2010	1430.78	1434.02	27.80	28.68	0.88	1405.34	1406.04
MW-6	3/10/2011	1430.78	1434.02	NP	22.42	NP	1411.60	1411.60
MW-7	1/17/2011	1430.12	1432.97	NP	24.33	NP	1408.64	1408.64
MW-7	3/10/2011	1430.12	1432.97	NP	21.37	NP	1411.60	1411.60
MW-8	1/17/2011	1431.08	1434.01	NP	23.01	NP	1411.00	1411.00
MW-8	3/10/2011	1431.08	1434.01	NP	20.59	NP	1413.42	1413.42

Notes:

1. Wells MW-1 through MW-6 were surveyed on 10-26-10 and wells MW-7 and MW-8 were surveyed on 1-14-11 with known elevation (fire hydrant) of 1428.94 feet above mean sea level.

2. Groundwater Elevation corrected for product level using assumed specific gravity of 0.80.

3. All elevations are feet above mean sea level (fmsl).

TOR = Top of riser

DTP = Depth to product

DTW = Depth to water

fb = feet below

= Most recent sampling event, elevations used to generate Figure 6.

TABLE 6 SUMMARY OF IRM SOIL PILE ANALYTICAL TESTING SCOTT ROTARY SEALS SITE 301 FRANKLIN STREET OLEAN, NEW YORK

	Commercial		S		N	
Parameter ¹	SCOs ² (mg/Kg)	North Pile	South Pile E	South Pile W	East Pile	West Pile
TCL plus STARS Volatile Organic Com		ng/Kg ³	ī.			T
Methylene chloride	500	0.0056	0.0046 J	0.0045 J	0.0042 J	0.0052 J
1,2,4-Trichlorobenzene	190	0.0017 BJ	0.0019 BJ	0.0018 BJ	0.002 BJ	0.0022 BJ
1,3,5-Trimethylbenzene	190	0.00054 BJ	0.00061 BJ	0.00058 BJ	0.0006 BJ	0.00062 BJ
xylenes, Total	500	0.0011 BJ	ND	ND	ND	0.0011 BJ
Total VOCs		0.01	0.01	0.01	0.01	0.01
TCLSemi-Volatile Organic Compounds	(SVOCs) - mg/Kg		1			T
2-Methylnaphthalene		0.088 J	0.088 J	0.042 J	0.054 J	0.15 J
Acenaphthylene	500	ND	ND	ND	ND	0.12 J
Anthracene	500	0.03 J	0.045 J	0.031 J	0.078 J	0.18 J
Benzo(a)anthracene	5.6	0.15 J	0.24 J	0.21 J	0.2 J	0.68 J
Benzo(b)fluoranthene	5.6	0.1 J	0.23 J	0.24 J	0.23 J	0.55 J
Benzo(k)fluoranthene	56	0.051 J	0.15 J	0.12 J	0.11 J	0.27 J
Benzo(g,h,i)perylene	500	0.26 J	0.2 J	0.2 J	0.17 J	0.39 J
Benzo(a)pyrene	1	0.13 J	0.22 J	0.21 J	0.19 J	0.6 J
Chrysene	56	0.17 J	0.28 J	0.26 J	0.27 J	0.72 J
Dibenzofuran		0.029 J	ND	ND	ND	ND
Fluoranthene	500	0.18 J	0.32 J	0.36 J	0.35 J	1.3
Indeno(1,2,3-cd)pyrene	5.6	0.094 J	0.12 J	0.14 J	0.12 J	0.27 J
Naphthalene	500	0.047 J	ND	ND	ND	0.087 J
Phenanthrene	500	0.15 J	0.19 J	0.18 J	0.23 J	0.87 J
Pyrene	500	0.24 J	0.42 J	0.38 J	0.32 J	0.14 J
Total SVOC	s	1.6	2.4	2.3	2.2	5.9
TAL Metals - mg/Kg						
Aluminum		8950	7670	6950	7160	9890
Arsenic	16	20.1	22.3	20.1	52.9	12.9
Barium	400	94.6	96.3	83.7	137	95.5
Beryllium	590	0.8	0.6	0.45	0.56	0.57
Cadmium	9.3	0.39	0.66	0.41	0.67	0.53
Calcium		3160	7010	9270	12300	19600
Chromium	400	10.3 B	13.4 B	12.1 B	10.6 B	11.9 B
Cobalt		8.2	5.8	5.7	5	6.3
Copper	270	207	441	80.6	198	268
Iron		17100	19700	17500	16600	18100
Lead	1000	1770	195	230	143	90.7
Magnesium		2290	2840	3040	2340	3840
Manganese	10,000	521	376	405	346	429
Nickel	310	17.5	18.7	16.8	13.7	16.3
Potassium		589	797	841	700	641
Vanadium		19.2	24.9	31.8	16.2	18.7
Zinc	10,000	103	215	175	157	151
Mercury	2.8	1.5	2.9	3.6	4.4	2.7
PCB's mg/kg ³						
1260	1	ND	ND	ND	0.1	ND
Organochlorine Pesticides mg/kg ³		•		1		
gamma-BHC (Lindane)	9.2	ND	ND	ND	ND	ND
a ()	200	ND	ND	ND	ND	ND
Endosulfan II	200	ND	ND	IND I		

Notes:

Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 Values per NYSDEC Part 375 Restricted-Commercial Soil Cleanup Objectives (SCOs).

3. Sample results were reported by the laboratory in ug/Kg and converted to mg/Kg for comparison to SCOs.

Definitions: ND = Parameter not detected above laboratory detection limit.

ND = raialineer no descue adove above above above of minit. NA = Sample no tanalyzed for parameter. *--* = No SCO available. J = Estimated value; result is less than the sample quantitation limit but greater than zero. B = Analyte was detected in the associated blank as well as in the sample.

TABLE 7 SUMMARY OF IRM PIPE REMOVAL QUANTITIES SCOTT ROTARY SEALS SITE 301 FRANKLIN STREET OLEAN, NEW YORK

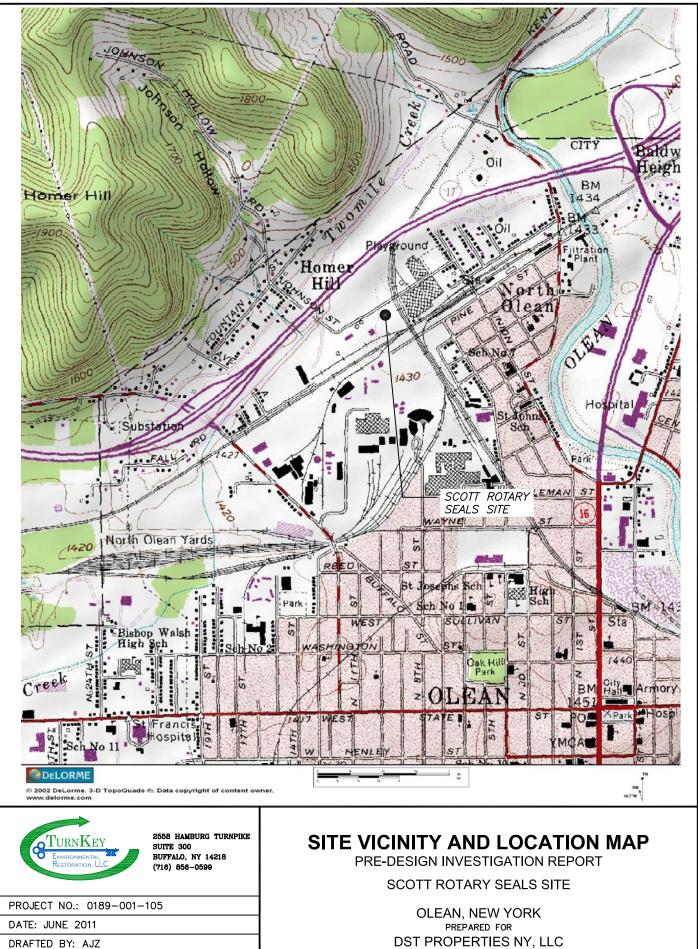

Total Pipes										
Pipe Size	Total Removed Length (ft)	Contents								
2-inch	39	Oil/Scale/Water								
3-inch	1250	Oil/Scale/Water								
4-inch	1244	Oil/Scale/Water								
6-inch	1859	Oil/Scale/Water								
8-inch	860	Oil/Scale/Water								
10-inch	354	Oil/Scale/Water								
12-inch	155	Oil/Scale/Water								
Total Footage	5761									

TABLE 8 SUMMARY OF IRM MATERIALS/WASTES DISPOSITION SCOTT ROTARY SEALS SITE 301 FRANKLIN STREET OLEAN, NEW YORK

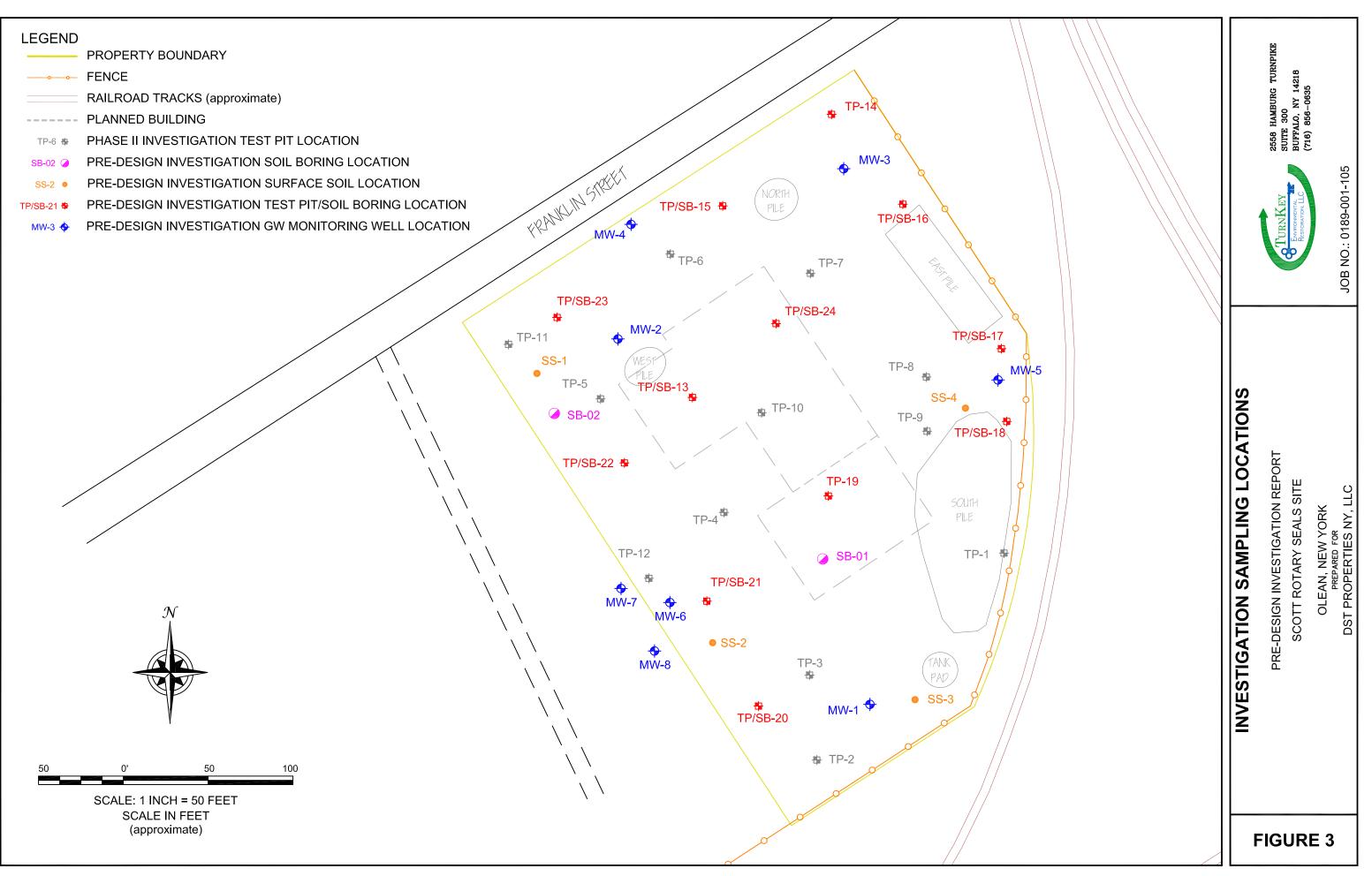
	Material Removed/Re	cycled	
Material Removed/Recycled	Identification	Amount	Disposal Facility
Piping	Scrap Piping	75.4 Tons	Gateway Materials Cheektowaga, NY
Oil Drums	D-1,2,4,8,16,24,25,26	8 Drums	CWM Chemical Services, LLC Model City, NY
Pipe Scale Drums	D-3,5,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23	17 Drums	CWM Chemical Services, LLC Model City, NY
Fill/Soil	Metals-Impacted Soil/Fill Piles	1,982 tons	Waste Management- Chaffee Landfill Chaffee, NY
Oil/Water	Oil/Water Mixture from Pipes	1489 gallons/6.77 Tons	E.I.C.S. Niagara Falls, NY

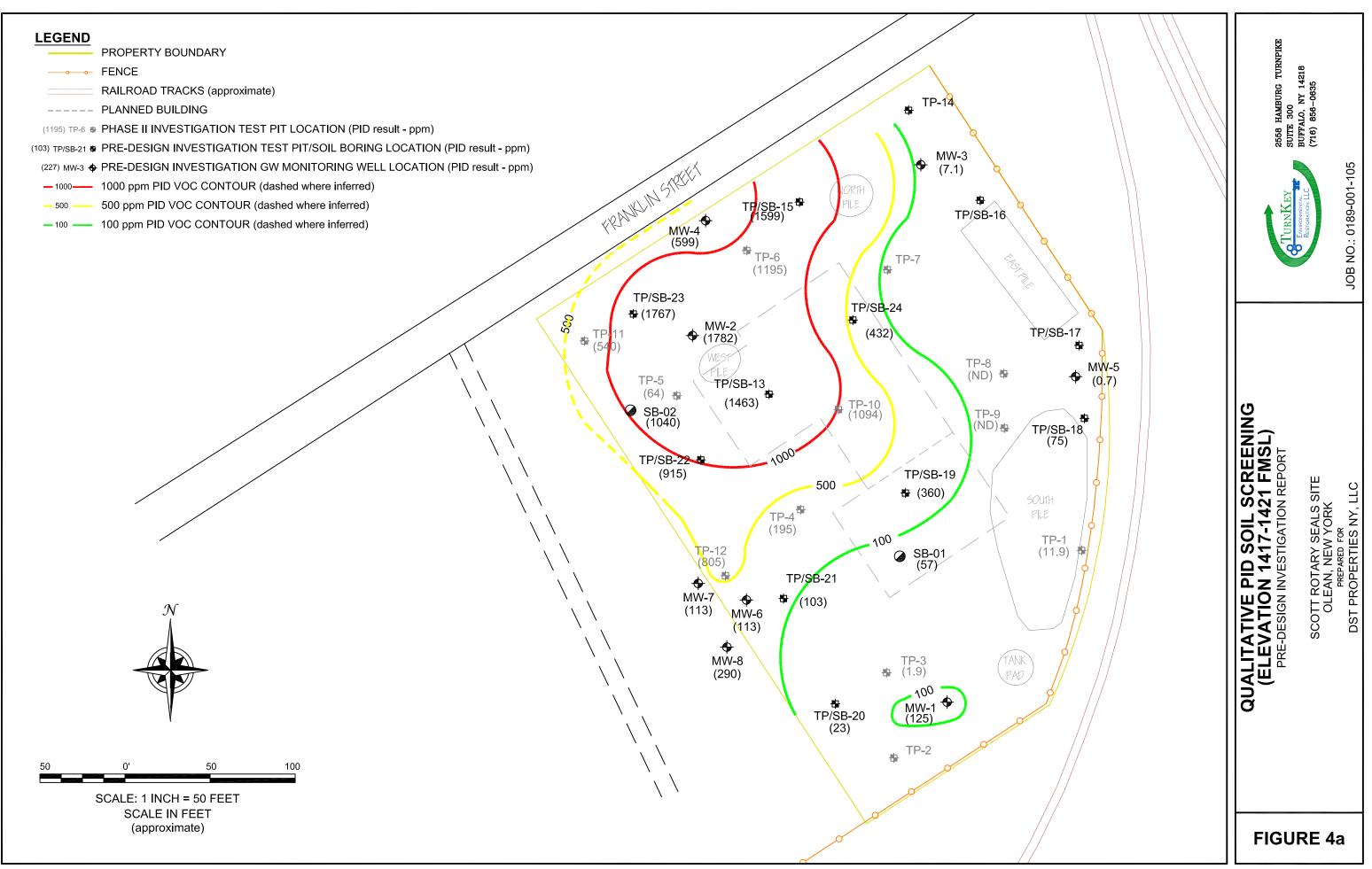
FIGURE 1

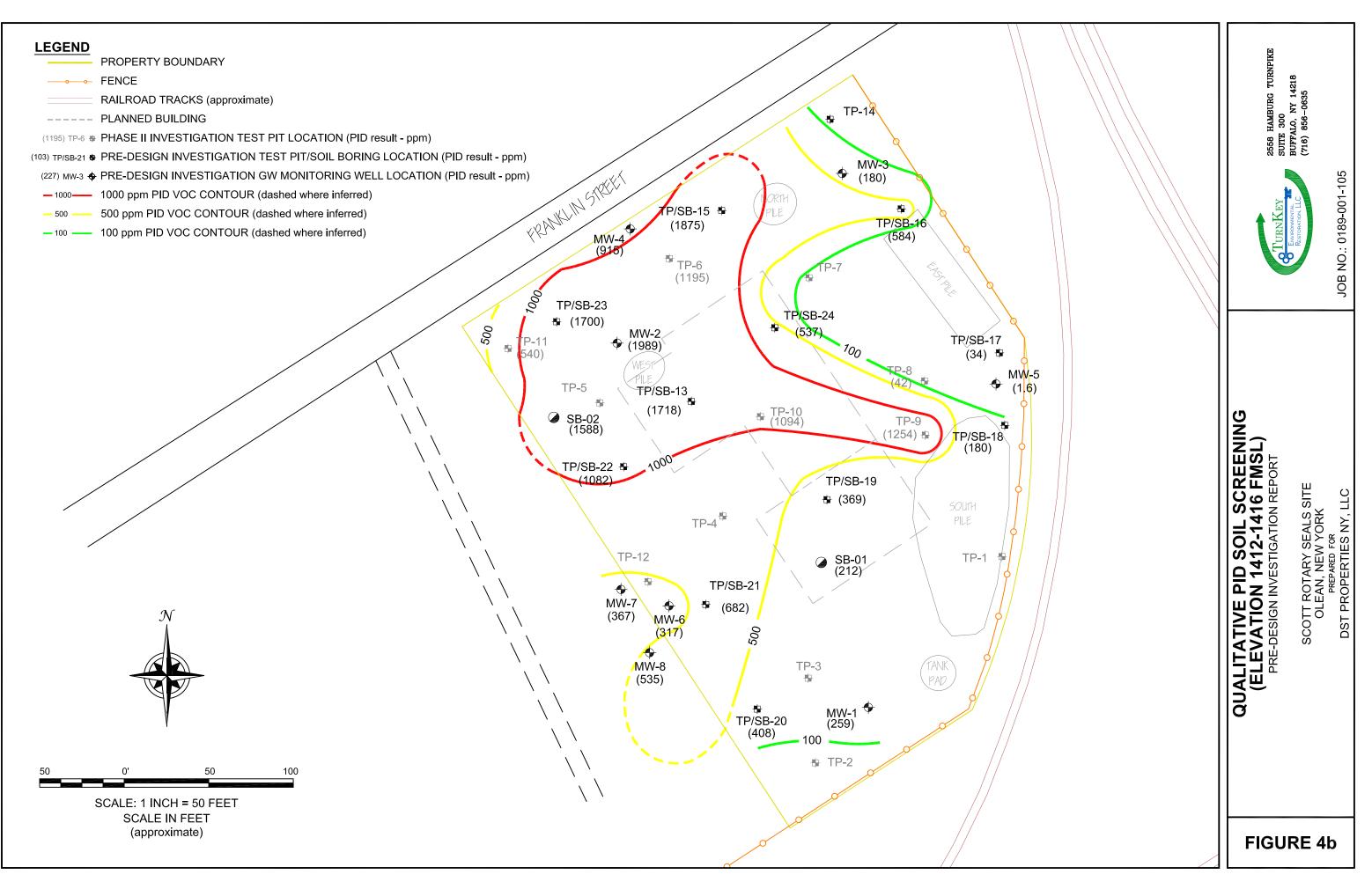
Not to Scale

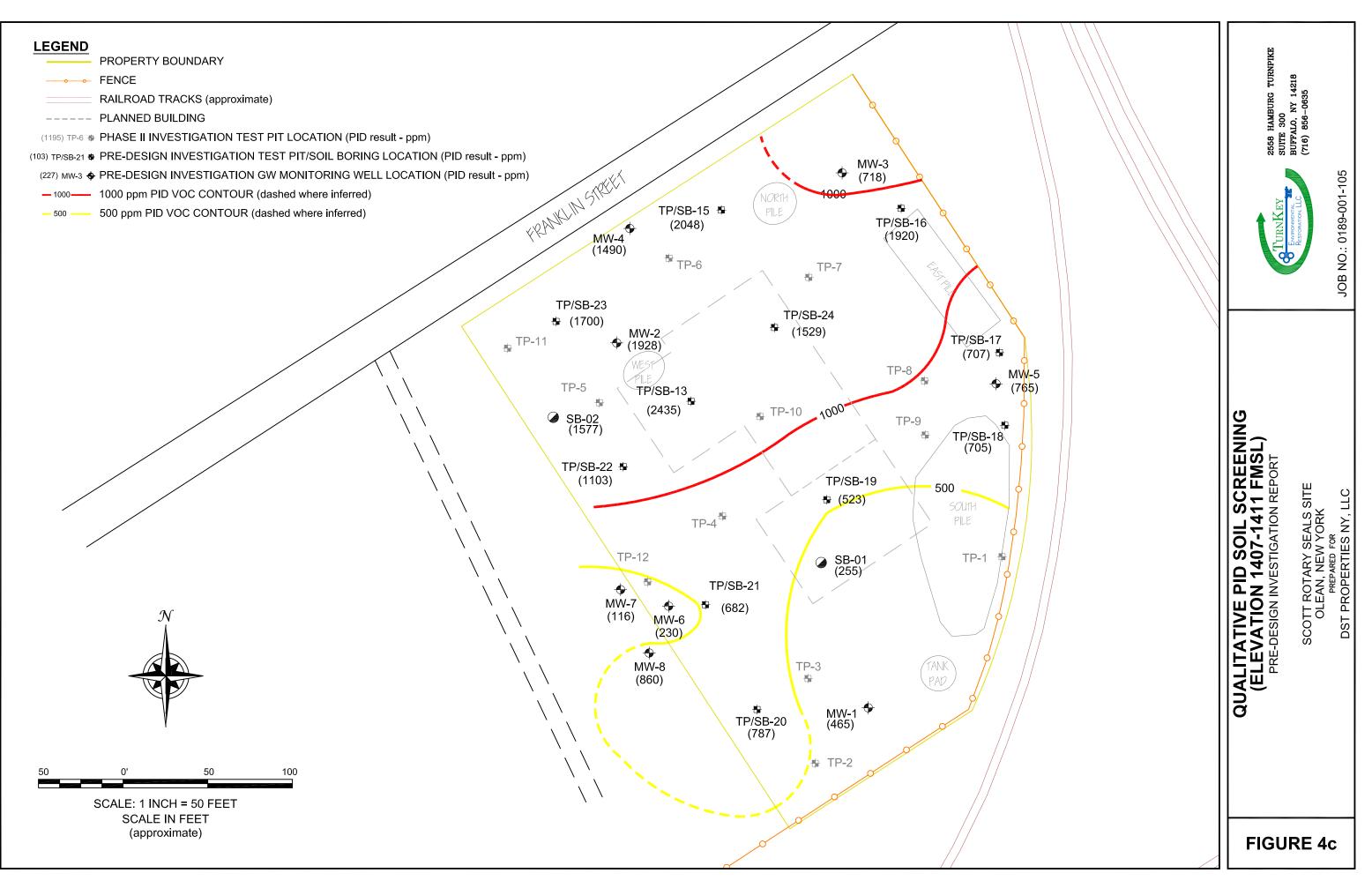
ENVIRONMENTAL RESTORATION, LLC

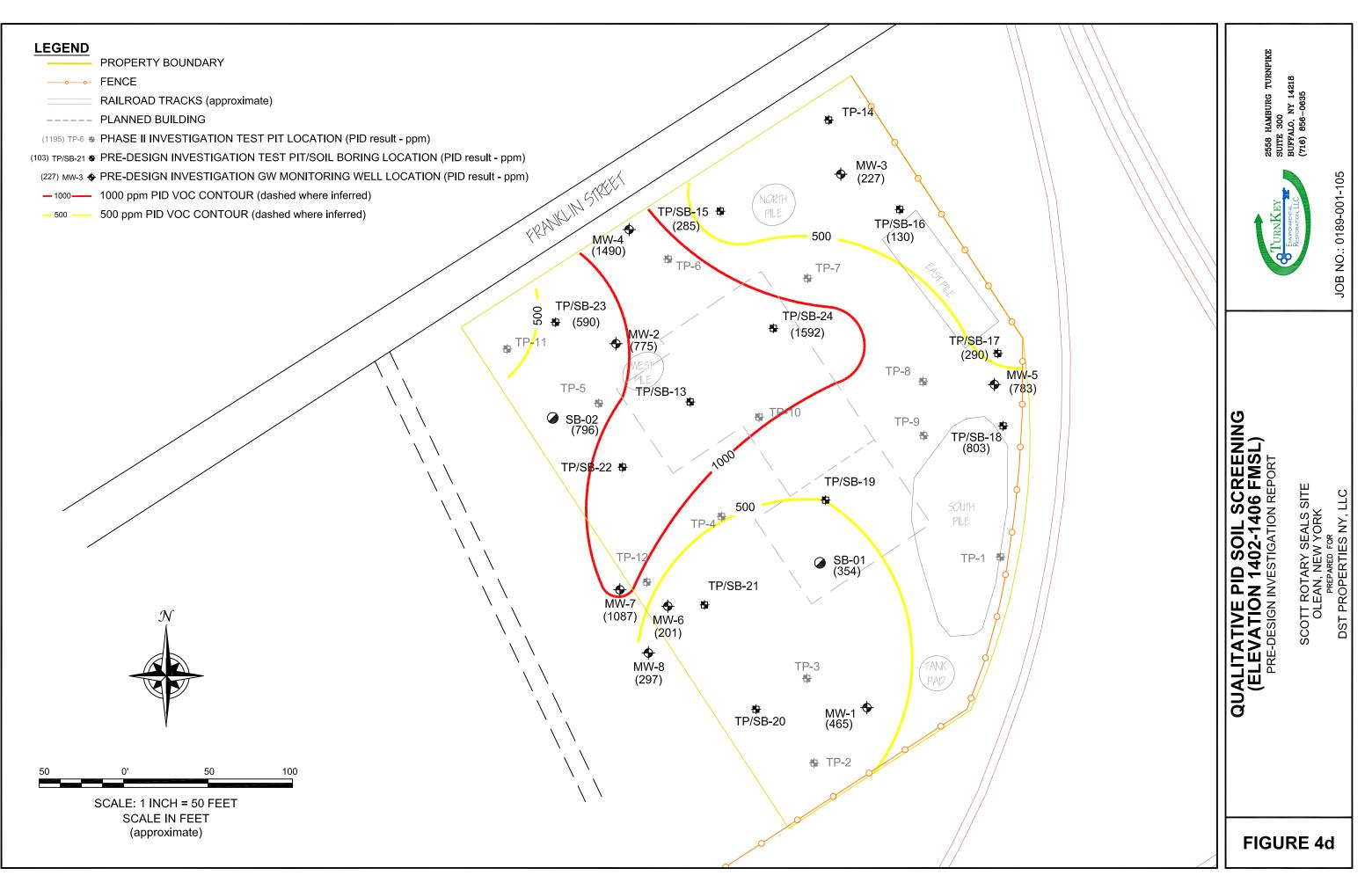
2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635


PROJECT NO.: 0189-001-105


DATE: JUNE 2011


DRAFTED BY: NTM

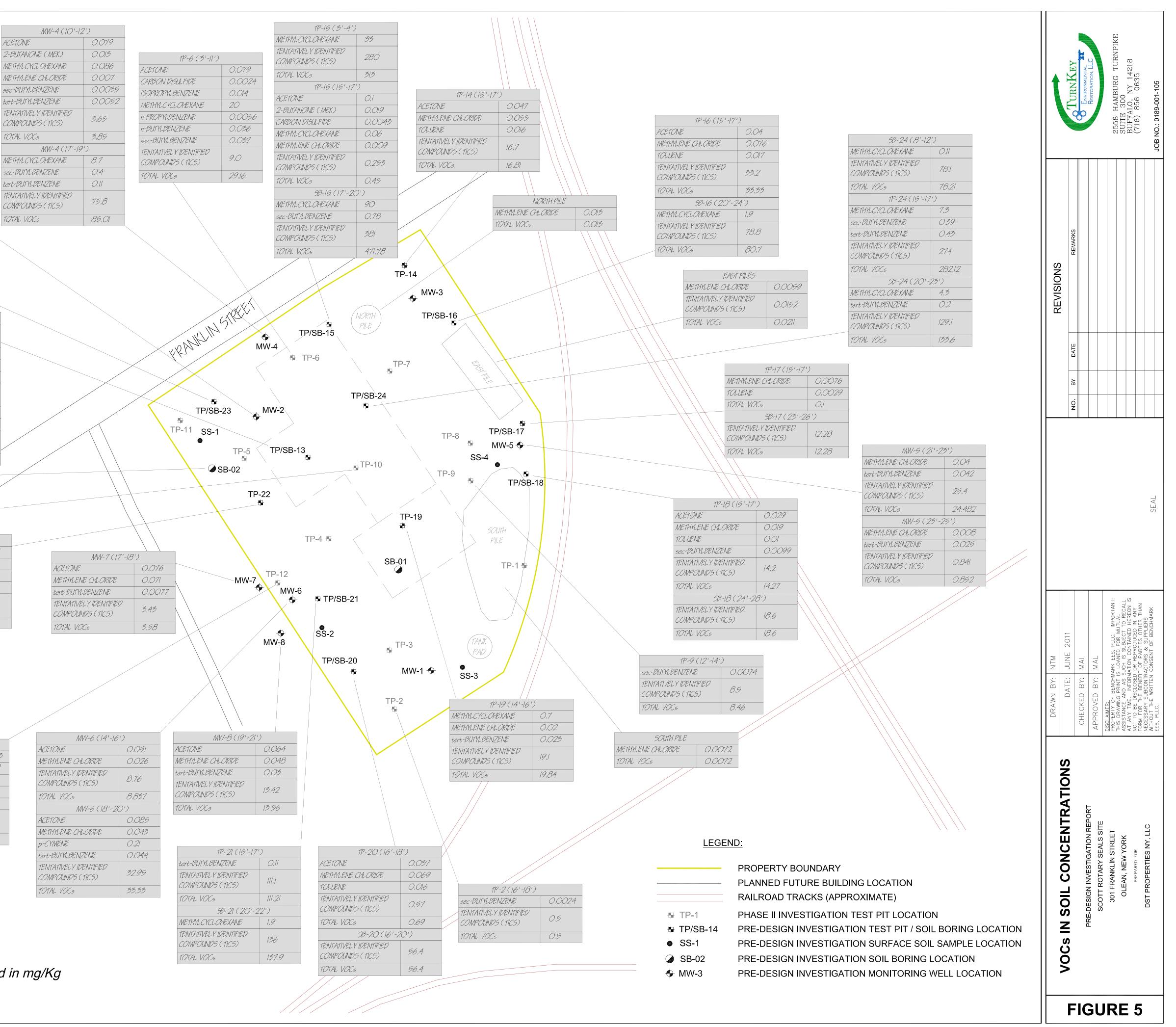

Property Boundary (Approximate)

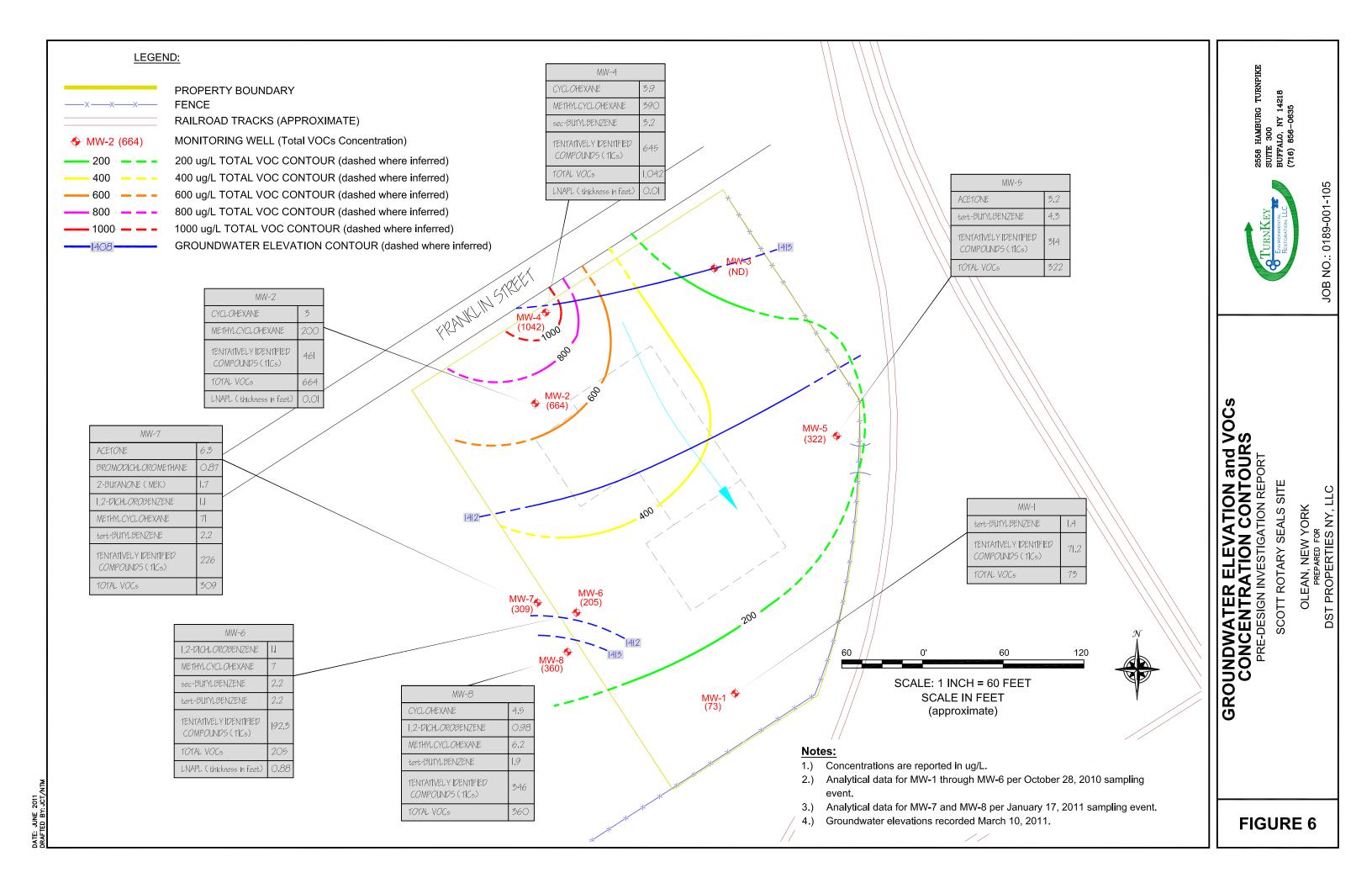

SITE PLAN (AERIAL) PRE-DESIGN INVESTIGATION REPORT SCOTT ROTARY SEALS SITE OLEAN, NEW YORK PREPARED FOR DST PROPERTIES NY, LLC

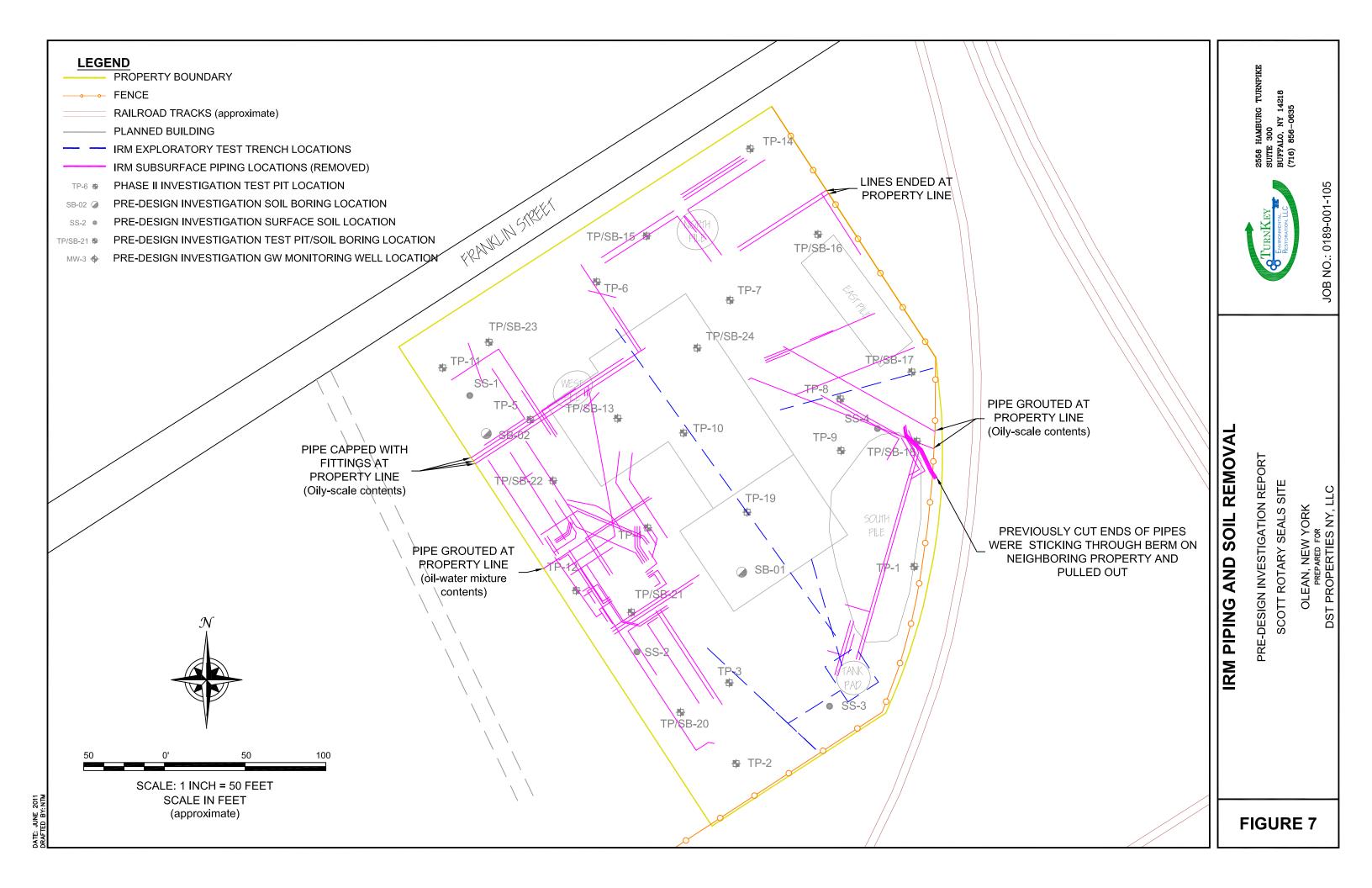
				Z DUITINOINE (TVIER)	0.012
				METHYLCYCLOHEXANE	0,086
				METHYLENE CHLORIDE	0,007
				sec-BUTYLBENZENE	0,0035
				tert-BUTYLBENZENE	0,0052
				TENTATIVEL Y IDENTIFIED COMPOUNDS (11CS)	3,65
		MW-2(16'-20	0')	TOTAL VOCs	3,85
m 01 (01 1 01	\ \	2-BUTANONE (MEK)	0,2		
1P-23 (8'-10'		METHYLCYCLOHEXANE	9,3		8,7
ETONE	0,07	METHYLENE CHLORIDE	0,12	sec-BUTYLBENZENE	0,4
THYLCYCLOHEXANE	0,11	TENTATIVEL Y IDENTIFIED	174	tert-BUTM_BENZENE	
THMENE CHLORIDE	0,046	COMPOUND5 (11C5)		TENTATIVEL Y IDENTIFIED	
SYMENE	0,021	TOTAL VOCS	183,62		75,8
BUTYLBENZENE	0,027				OF OI
-BUTYLBENZENE	0,024			TOTAL VOCS	85,01
E-BUTYLBENZENE	0,013		Ň		
ITATIVELY IDENTIFIED	5,07				
MPOUNDS (11CS)					
TAL VOCS	5,38				
5B-23 (15'-18	')				
1HYLCYCLOHEXANE	17				
-BUTYLBENZENE	0,38				
:-BUMLBENZENE	0,15	53-13(6'-	8')		
ITATIVEL Y IDENTIFIED MPOUNDS (11CS)	122	TENTATIVELY IDENTIFIED COMPOUNDS (TICS)	57,2		``````````````````````````````````````
TAL VOCS	139	TOTAL VOCS	57,2		
		1P-13(14'-	 16')		
		tert-BUTYLBENZENE	0,11		<u> </u>
		1ENTATIVEL Y IDENTIFIED COMPOUNDS (11CS)	85		
		TOTAL VOCS	85,11		/
		5B-13 (18'-			
			201		
	1.2	TENITATIVELY IDENITIEIED			$\langle \rangle$
5B-2 (16'-20		TENTATIVELY IDENTIFIED COMPOUNDS (TICS)	16,2		
THYLCYCLOHEXANE	0,81				
THYLCYCLOHEXANE -BUTYLBENZENE			16,2 16,2		
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED	0,81				
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS)	0,81 0,088 108				
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED	0,81 0,088				
THYLCYCLOHEXANE BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCS	0,81 0,088 108				
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCs TP-10 (3'-10')	0,81 0,088 108 108,81				
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCs TP-IO (3'-IO') -BUTANONE (MEK)	0,81 0,088 108 108,81 0,18	COMPOUNDS (TICS) TOTAL VOCS	16.2		
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCs TP-IO (3'-IO') -BUTANONE (MEK) ETHYLENE CHLORIDE	0.81 0.088 108 108,81 0.18 0.2	COMPOUND5 (TICS) TOTAL VOCs TP-22 (16	16.2		
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCs TP-IO (3'-IO') -BUTANONE (MEK) ETHYLENE CHLORIDE 2,4-TRICHLOROBENZENE	0.81 0.088 108 108.81 0.18 0.2 0.14	СОМРОЦИОБ (TICS) ТОТАL VOCs 10174L VOCs 10174L VOCs 10174L VOCs 10174L VOCs 10174L VOCs	16.2 -18') EO,	.022	MW-7 (17
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCs TP-IO (3'-IO') -BUTANONE (MEK) ETHYLENE CHLORIDE 2, 4-TRICHLOROBENZENE c-BUTYLBENZENE	0.81 0.088 108 108,81 0.18 0.2	COMPOUNDS (TICS) TOTAL VOCS TP-22 (16 METHYLENE CHLORIDU TOLUENE	16.2 -18') Ĕ −0, 	,015 ACETONE	
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCS TAL VOCS TAL VOCS ETHYLENE CHLORIDE 2, 4-TRICHLOROBENZENE C-BUTYLBENZENE NTATIVELY IDENTIFIED	0.81 0.088 108 108.81 0.18 0.2 0.14	COMPOUNDS (TICS) TOTAL VOCS TOTAL VOCS TP-22 (16 METHYLENE CHLORIDI TOLUENE p-CYMENE	16.2 '-18') E O, O, O,	.015 .021 METHYLE	
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCS TAL VOCS ETHYLENE CHLORIDE 2, 4-TRICHLOROBENZENE C-BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS)	0.81 0.088 108 108,81 0.18 0.2 0.14 0.094 110,7	COMPOUNDS (TICS) TOTAL VOCs	16.2 '-18') E O, O, O, O,	.015 .021 049 METHYLE	
THYLCYCLOHEXANE -BUTYLBENZENE NTATIVELY IDENTIFIED MPOUNDS (TICS) TAL VOCS TAL VOCS TAL VOCS ETHYLENE CHLORIDE 2, 4-TRICHLOROBENZENE C-BUTYLBENZENE NTATIVELY IDENTIFIED	0,8 0,088 108 108,8 0,18 0,2 0,14 0,094	COMPOUNDS (TICS) TOTAL VOCS TOTAL VOCS TP-22 (16 METHYLENE CHLORIDI TOLUENE p-CYMENE	16.2 -18') E 0, E 0, 0, 0, ED 14	,015 .021 .049 .3 TENTATIV COMPOL	E NE CHLORIDE

TP-12(2,5'-8	3,5')
ACETONE	0,0073
TOLUENE	0,0012
p-CYMENE	0,042
n-BUTYLBENZENE	0,031
sec-BUTYLBENZENE	0,022
TENTATIVEL Y IDENTIFIED COMPOUNDS (11CS)	5,6
TOTAL VOCS	5,69

MW-6 (14'-16') ACETONE METHYLENE CHLORIDE TENTATIVEL Y IDENTIFIED .OMPOUNDS (11CS) TOTAL VOCS MW-6 (18'-20') ACETONE


MW-4 (10'-12')


NETHYLENE CHLORIDE -CYMENE tert-BUMLBENZENE TENTATIVEL Y IDENTIFIED .OMPOUNDS (11C5) TOTAL VOCs



ME

Note: 1) Concentrations are reported in mg/Kg

