Periodic Review Report

Scott Rotary Seals Site Olean, New York BCP Site No. 905036

May 2016 0189-016-001

Prepared For: DST Properties NY, LLC Scott Rotary Seals

2558 Hamburg Turnpike, Buffalo, New York | phone: (716) 856-0599 | fax: (716) 856-0583

PERIODIC REVIEW REPORT

SCOTT ROTARY SEALS SITE (BCP SITE No. C905036)

OLEAN, NEW YORK

June 2016 0189-016-001

Prepared for:

DST Properties NY, LLC

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

In Association With:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0635

PERIODIC REVIEW REPORT

Scott Rotary Seals Site Table of Contents

INT	RODUCTION	1
1.1		
1.2		
1.3	Compliance and Recommendations	
SITE	E OVERVIEW	4
SITE	E MANAGEMENT PLAN	6
3.1		
	3.1.2 LNAPL Recovery System	
	3.1.4 Groundwater Monitoring	
	3.1.5 Annual Inspection and Certification Program	8
3.2	Soil/Fill Management Plan	9
3.3		
	3.3.2 Engineering Controls	
Con	NCLUSIONS AND RECOMMENDATIONS	11
Dro	Y ARATION / LIMITATION	12
	1.1 1.2 1.3 SITE SITE 3.1	1.2 Remedial History 1.3 Compliance and Recommendations. SITE OVERVIEW. SITE MANAGEMENT PLAN 3.1 Operation, Monitoring and Maintenance Plan 3.1.1 Active Sub-slab Depressurization System. 3.1.2 LNAPL Recovery System. 3.1.3 SVE System. 3.1.4 Groundwater Monitoring. 3.1.5 Annual Inspection and Certification Program. 3.2 Soil/Fill Management Plan 3.3 Engineering and Institutional Control Requirements and Compliance 3.3.1 Institutional Controls.

PERIODIC REVIEW REPORT

Scott Rotary Seals Site Table of Contents

FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan (Pre-Remediation)
Figure 3	Site Plan (Post-Remediation)

APPENDICIES

Appendix A	Site Inspection Forms
Appendix B	Site Photolog
Appendix C	ASD Periodic Inspection Logs
Appendix D	LNAPL Periodic Inspection Logs
Appendix E	SVE Periodic Inspection Logs
Appendix F	Groundwater Monitoring Report

1.0 Introduction

Benchmark Environmental Engineering and Science, PLLC (Benchmark) in association with TurnKey Environmental Restoration, LLC (TurnKey) has prepared this Periodic Review Report (PRR), on behalf of DST Properties NY, LLC (DST) to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C905036, located in Olean, Cattaraugus County, New York (Site; see Figure 1), commonly referred to as the Scott Rotary Seals Site.

This PRR has been prepared for the Scott Rotary Seals Site in accordance with NYSDEC DER-10/*Technical Guidance for Site Investigation and Remediation* (May 3, 2010). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A).

This PRR and the associated inspections form has been completed for the post-remedial activities at the Site for the period from June 1, 2015 to May 31, 2016.

1.1 Site Background

The Scott Rotary Seals Site encompasses approximately 2-acres of land which was redeveloped as an approximately 15,000-sf facility for the manufacture of rotating unions and rotary timing valves along with commercial office space in Olean, New York (see Figure 1). The Site was formerly a portion of a larger refinery and petroleum bulk storage facility commonly known as the former Socony-Vacuum facility situated in a heavily industrialized area of Olean. Figure 2 is an aerial view of the Site prior to remediation and redevelopment. Figure 3 is an aerial view of the Site following remediation and redevelopment.

Grossly contaminated soils, stained soils and petroleum-like odors were observed site-wide during a Phase II Investigation completed by TurnKey in 2009. The Investigation also identified the presence of volatile organic compounds (VOC) tentatively identified compounds (TICs) and semi-volatile organic compounds (SVOC) TICs in soil, and acetone, sec-butylbenzene, and phenanthrene, in groundwater above NYSDEC GWQS. It was concluded that, based on visual/olfactory observations, PID measurements, and analytical results, significant site-wide petroleum-VOC and -SVOC impacts were evident, with grossly contaminated soils present in some areas, and that remediation was warranted. Groundwater

was also impacted by Light Non-Aqueous Phase Liquids (LNAPL) on at least one occasion in monitoring wells MW-2, MW-4 and MW-6 (see Figure 4 in Appendix F).

1.2 Remedial History

After acceptance into the New York State BCP in March 2010, an Interim Remedial Measures (IRM) Work Plan was prepared and subsequently approved by the NYSDEC. IRM activities were completed between March and May 2011 to address the removal of abandoned underground piping (and the contents thereof) and removal of four soil/fill/debris piles. A Remedial Action Work Plan (RAWP) was prepared and submitted by DST and was approved by the NYSDEC to address the residual soil and groundwater remediation. Remedial activities are described below in Section 2.0. The remedial program was successful in achieving the remedial objectives for the Site, and the Site Management Plan (SMP) and Final Engineering Report (FER) were approved by the Department in December 2012. The NYSDEC issued a COC for the Site on December 11, 2012.

1.3 Compliance and Recommendations

The site photo log is included in Appendix B. At the time of the Site inspection (June 29, 2016), the Site was fully compliant with the Department's approved SMP.

At the outset of the SVE system operation vapor-phase activated carbon was used to treat the effluent air from the SVE trailer. The effluent air concentrations dropped and odors were not evident over time. The NYSDEC was petitioned to terminate the usage of vapor-phase carbon which was granted by the NYSDEC in correspondence dated August 1, 2012.

The NYSDEC was petitioned in May 2013 to assess the discontinuation of operation of the SVE system as a significant reduction was observed in the mass removal rate and the mass removal rate was "leveling-off". The NYSDEC granted the request and as such the SVE discontinuation evaluation which included soil sampling and testing was undertaken and discussed in a letter report to the NYSDEC dated July 16, 2013. The split-spoon soil sampling from the four borings completed for the SVE discontinuation evaluation showed that the soil quality has greatly improved; gray staining has been reduced and the soils are predominantly yellowish-brown; odors are either absent or reduced from strong to slight; the

VOC concentrations based on PID readings have been decreased by a minimum of 80% to over 90%; the soil analytical data show there are no exceedances of the Commercial Soil Clean-up Objectives (CSCOs); and the concentrations of contaminants have decreased sharply in the SVE exhaust. Benchmark/TurnKey proposed that the SVE system be terminated; this request was approved on March 7, 2016.

Groundwater sampling was discontinued in 2015 as we believed that there was agreement with the Department per the June 2015 PRR that recommended termination of groundwater sampling. However, in a May 2, 2016 letter from the Department, we were informed that groundwater sampling was not terminated and that additional groundwater sampling would be required. Benchmark/TurnKey undertook additional groundwater sampling on May 6, 2016. The results of the groundwater sampling are provided in Section 3.1.4.

2.0 SITE OVERVIEW

The Scott Rotary Seals Site, located in the City of Olean, and identified as SBL 94.040-1-29.02, is an approximate 2-acre parcel bounded by Franklin Street to the north, railroad tracks to the south and east, and commercial and former industrial properties to the west (see Figures 1 and 2). The Site was historically a portion of a larger petroleum refinery and bulk petroleum storage and distribution facility formerly known as Socony.

Environmental site investigations were conducted by TurnKey prior to acceptance into the BCP which confirmed contamination of the Site's soil and groundwater.

DST Properties NY, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC in 2010 to remediate and redevelop the site as a rotary union and timing valve manufacturer and commercial office space. The remedial activities began in March 2011 and were completed in July 2012 and were done under an approved IRM Work Plan and the approved RAWP. The remedial activities included:

<u>IRM</u>

- Removed, cleaning and recycling of historic piping, collection of solid and liquid pipe contents, and off-site treatment/disposal for pipe contents;
- Excavation and off-site disposal of soil/fill/debris piles;

RAWP

- Removal of shallow grossly contaminated soil/fill;
- Extraction and treatment of soil/gas using a SVE system consisting of nine extraction wells, treatment of the recovered gas with carbon, prior to discharge to the atmosphere. Carbon usage was suspended as agreed upon with the NYSDEC (refer to Section 1.3 for further detail);
- Implementation of a Soil/Fill Management Plan (SFMP) during Site redevelopment;
- Implementation of LNAPL recovery including absorbent socks and a PetrotrapTM free product skimmer in selected wells;
- Installation of a vapor barrier and an active sub-slab depressurization (ASD) system beneath the newly constructed manufacturing and commercial office space;
- Semi-annual groundwater monitoring; and
- Placement of a soil cover system.

Remedial activities were completed in July 2012. The FER and SMP for the Site were approved by the Department in November 2012. The COC was issued for the Site on December 11, 2012.

3.0 SITE MANAGEMENT PLAN

A SMP was prepared for the Site, and approved by the Department in November 27, 2012. The SMP includes an Operation, Monitoring and Maintenance (OM&M) Plan, a Soil/Fill Management Plan (SFMP), and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

3.1 Operation, Monitoring and Maintenance Plan

The OM&M Plan consists of four major components, including the Active Sub-slab Depressurization System (ASD); LNAPL Recovery System; the SVE system; and the Annual Inspection & Certification Program.

3.1.1 Active Sub-slab Depressurization System

An ASD system was installed within the newly constructed manufacturing and commercial office space building. As required by the Department-approved SMP, the ASD system must: (1) be operated continuously to maintain a negative pressure (below ambient atmospheric) under the floor slab; (2) be visually inspected periodically to verify proper operation; and (3) annually inspected and certified that the system is performing properly and remains an effective engineering control (EC).

During the annual Site Inspection, the inspector verified that the ASD system was operating properly, as indicated by the readings on the vacuum gauges. A summary of the ASD periodic inspection readings are included in Appendix C.

3.1.2 LNAPL Recovery System

Previous investigations indicated sporadic evidence of LNAPL (i.e., product and/or sheen) in wells MW-2, MW-4 and MW-6 (refer to Figure 4 in Appendix F), likely attributable to seasonal fluctuations in groundwater elevations, which is managed utilizing hydrocarbon absorbent socks and passive skimmer. Absorbent socks are installed in MW-2 and MW-4. The adsorbent socks are installed in the well at the LNAPL/water interface. During monthly inspections, socks that have obvious staining/saturation of LNAPL are removed and replaced with new socks. Used socks are containerized, labeled, characterized and will be properly disposed off-Site.

A free product passive skimmer (PetrotrapTM) was installed in well MW-6 to address an apparent localized LNAPL layer in the area of well MW-6. There has been no significant product recovered with the PetrotrapTM and as such, it has been replaced with an absorbent sock.

LNAPL has not been detected in the groundwater wells since 2013. As such, it is recommended that LNAPL monitoring be discontinued.

The components of the LNAPL recovery system are inspected during monthly site inspections. LNAPL inspection notes are provided in Appendix D.

3.1.3 SVE System

The SVE system was operated between March 2012 and December 2015¹. Installation of the SVE system was completed in March 2012, including the installation of nine (9) SVE wells, associated conveyance piping, and placement of the trailer-mounted SVE system. SVE system emissions were controlled using two (2) 1,000-lb vapor-phase granulated active carbon (GAC) vessels plumbed in series². SVE system monitoring was conducted on a minimum frequency of monthly throughout the operation period³. SVE system monitoring included: monitoring of mechanical system components for proper operation, vacuum monitoring at each SVE well and at the main intake; and, VOC vapor PID screening at each SVE well and between the GAC vessels. Detailed procedures for monitoring, operating and maintaining the SVE System are provided in the SMP. A summary of monitoring is provided in Appendix E.

3.1.4 Groundwater Monitoring

Five groundwater monitoring events (May 10, 2013, December 6, 2013, July 18, 2014, December 4, 2014 and May 6, 2016) were completed at the Scott Rotary Seals Site that included sampling and analysis of groundwater collected from wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6 using the procedures in the approved SMP. The groundwater

³ Continuous SVE system operations were reduced via Department correspondence (July 24, 2014) such that the SVE system operations were conducted between June and December.

¹ The Department has approved discontinuation of SVE system operations and removal of the SVE system including the SVE wells March 7, 2016.

² The carbon canisters were removed as agreed to with the NYSDEC on August 1, 2012.

samples indicate that that the groundwater does not contain any exceedances of the GWQS; VOC TICs have been significantly reduced post-remediation; and, there is a decreasing trend in the VOC TICs as groundwater traverses the Site. On this basis, no further groundwater sampling is recommended. The results of the sampling and analysis are more fully discussed in Appendix F.

3.1.5 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines the requirements for the Site, to certify and attest that the institutional controls and/or engineering controls employed at the Site are unchanged from the previous certification. The Annual Certification will primarily consist of an annual Site Inspection to complete the NYSDEC's IC/EC Certification Form. The Site inspection will verify that the IC/ECs:

- Are in place and effective.
- Are performing as designed.
- That nothing has occurred that would impair the ability of the controls to protect the public health and environment.
- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls.
- Access is available to the Site to evaluate continued maintenance of such controls.

A Site inspection of the property was conducted by a Benchmark Scientist who meets the requirements of a Qualified Environmental Professional (QEP) on June 29, 2016. At the time of the inspection, the property was being used as for the manufacture of rotary seals and unions (Scott Rotary Seals) with surface parking and landscaped areas. No observable indication of intrusive activities was noted during the Site inspection. Scott Rotary Seals utilizes the local municipal water supply, and no observable use of groundwater was noted during the Site inspection.

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A. A photolog of the Site inspection is included in Appendix B.

3.2 Soil/Fill Management Plan

A SFMP was included in the approved-SMP for the Site. The SFMP provides guidelines for the management of soil and fill material during any future intrusive actives.

No intrusive activities requiring management of on-Site soil or fill material; or the placement of backfill materials occurred during the monitoring period.

3.3 Engineering and Institutional Control Requirements and Compliance

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the BCAs for the Site.

3.3.1 Institutional Controls

- Groundwater-Use Restriction the use of groundwater for potable and non-potable purposes is prohibited; and
- Land-Use Restriction: The controlled property may be used for commercial and/or industrial use; and
- Implementation of the SMP including the OM&M Plan and SFMP.

3.3.2 Engineering Controls

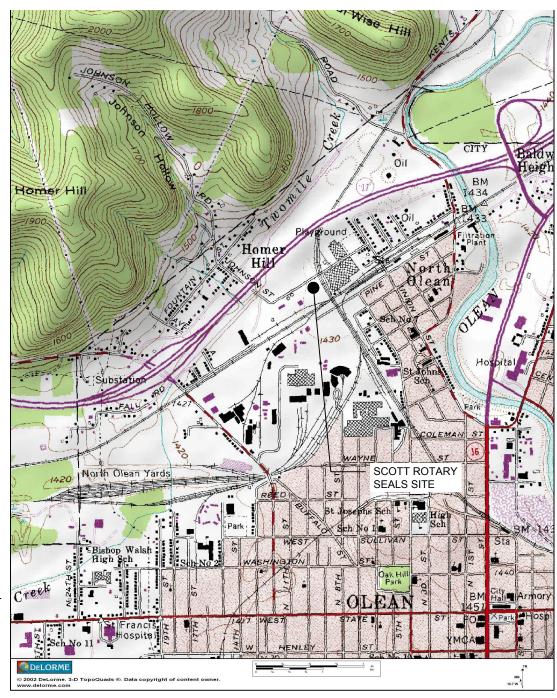
- Vapor Mitigation ASD System has been operated continuously and properly maintained.
- SVE System SVE system was operated and monitored nearly continuously between March 2012 and December 2015. Per the Department's approval, the SVE system operations have been discontinued.
- LNAPL Recovery/Monitoring LNAPL recovery and monitoring has been done monthly. No LNAPL has been observed since October 2013.
- Groundwater Monitoring Groundwater monitoring was completed between May 2013 and May 2016.
- Cover System The cover system, including building foundations, concrete sidewalks, asphalt and gravel driveways and parking areas, and landscaped vegetated areas are all being maintained in compliance with the SMP.

At the time of the site inspection, the Site was fully compliant with all institutional control requirements and compliant with engineering controls as discussed above.

4.0 CONCLUSIONS AND RECOMMENDATIONS

- At the time of the Site inspection, the Site was in compliance with the SMP. Specifically, the Site is fully compliant with the Institutional Controls including landuse restrictions, groundwater-use restrictions, and the soil/fill management plan component; and fully compliant with the Engineering Controls (continuous operation of the ASD system, monthly LNAPL monitoring, and SVE system operations). The cover system is compliant with the Cover System Engineering Control.
- Long-term groundwater monitoring and LNAPL monitoring is recommended to be terminated.
- All groundwater wells are recommended to be abandoned using the NYSDEC approved

5.0 DECLARATION/LIMITATION


Benchmark Environmental Engineering and Science, PLLC, personnel conducted the annual site inspections for Brownfield Cleanup Program Site No. C905036, Olean, New York, according to generally accepted practices. This report complied with the scope of work provided to DST Properties NY, LLC by Benchmark Environmental Engineering and Science, PLLC and TurnKey Environmental Restoration, LLC.

This report has been prepared for the exclusive use of DST Properties NY, LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of DST Properties NY, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark Environmental Engineering and Science, PLLC and TurnKey Environmental Restoration, LLC.

FIGURES

FIGURE 1

PROJECT NO.: 0189-015-001

DATE: MAY 2016

DRAFTED BY: RFL / KRR

SITE LOCATION AND VICINITY MAP

PERIODIC REVIEW REPORT SCOTT ROTARY SEALS SITE

OLEAN, NEW YORK
PREPARED FOR

DST PROPERTIES NY, LLC

DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.

Not to Scale

Property Boundary (Approximate)

Base Image per Bing Maps

2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: 0189-014-011

DATE: MAY 2016

DRAFTED BY: RFL / KRR

SITE PLAN PRE-REMEDIATION

PERIODIC REVIEW REPORT SCOTT ROTARY SEALS SITE

OLEAN, NEW YORK

DST PROPERTIES NY, LLC

DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.

Not to Scale

Property Boundary (Approximate)

Base Image per Google Maps

2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: 0189-014-011

DATE: MAY 2016

DRAFTED BY: RFL / KRR

SITE PLAN POST-REMEDIATION

PERIODIC REVIEW REPORT SCOTT ROTARY SEALS SITE

OLEAN, NEW YORK
PREPARED FOR

DST PROPERTIES NY, LLC

DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	ite No.	Box 1						
Si	te Name	Scott Rotary Seals						
Cit Co Sit	ty/Town: ounty: Ca te Acreac	ttaraugus						
			YES	NO				
1	Is the in	nformation above correct? nclude handwritten above or on a separate sheet. See date chape a bove.		×				
	II IYO, i	nclude nandwritten above or on a separate sneet. 52000 a process						
2.	1103 30	me or all of the site property been sold, subdivided, merged, or undergone a pamendment during this Reporting Period?		7				
3.	3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?							
4.	Have a for or a		#					
		answered YES to questions 2 thru 4, include documentation or evidence cumentation has been previously submitted with this certification form.						
5.	that do			%				
5.	that do	cumentation has been previously submitted with this certification form.	Box 2	· ÿ Z				
5.	that do	cumentation has been previously submitted with this certification form.		ÿZ NO				
5. 6.	Is the s	cumentation has been previously submitted with this certification form.	Box 2					
	Is the s	ite currently undergoing development? urrent site use consistent with the use(s) listed below?	Box 2 YES	NO				
6.	Is the control of the	ite currently undergoing development? urrent site use consistent with the use(s) listed below?	Box 2 YES	NO 🗆				
6.	Is the control of the comment of the	cumentation has been previously submitted with this certification form. ite currently undergoing development? urrent site use consistent with the use(s) listed below? ercial and Industrial Cs/ECs in place and functioning as designed? THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and	Box 2 YES	NO 🗆				
6. 7.	Is the control of the comment of the comment of the control of the	cumentation has been previously submitted with this certification form. ite currently undergoing development? current site use consistent with the use(s) listed below? ercial and Industrial Cs/ECs in place and functioning as designed? THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	Box 2 YES	NO 🗆				

				Box 2	A
				YES	NO
8.	Has any new information revealed Assessment regarding offsite contact				×
9.	ll valid? ve years)	74			
	If you answered NO to question updated Qualitative Exposure A				
SITE	NO. C905036			Box 3	3
	Description of Institutional Co	ontrols			
<u>Parcel</u> 94.040	<u>Owner</u> -1-29.02 DST Prop	erties NY, LLC	Institutional Control Ground Water Use Restrict Landuse Restriction Monitoring Plan Site Management Plan O&M Plan Soil Management Plan IC/EC Plan	ion	
- Prop farming - Grou - soil a - Activ Future - Cont VOCs a - Grou - Sem	erty may only be used for commercy and vegetable gardens prohibited and hardscape cover system covering substantial depressurization system on-site buildings require vapor intruinued operation of a soil vapor extrand SVOCs from 6 feet below groundwater treatment to remove LNAF in-annual groundwater monitoring.	equired under the SMP included sial or industrial uses. Lower uses the entire surface of the site to mitigate potential vapor intuition assessment or mitigation action system to remediate so and surface to the water table.	te: ses (residential/restricted reside (approximately 2 acres) rusion into the existing on-sit n. oil contaminated with petroleu	sidential), e buildinç	g
	Description of Engineering Co	antrole		Box 4	
	_ compared to Engineering of				
<u>Parcel</u> 94.040	-1-29.02	Engineering Control Vapor Mitigation Cover System Groundwater Treatment Sys Air Sparging/Soil Vapor Extr			

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements							
1.	I certify by checking "YES" below that:							
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;							
b) to the best of my knowledge and belief, the work and conclusions described in this certi- are in accordance with the requirements of the site remedial program, and generally accep engineering practices; and the information presented is accurate and compete.								
	YES NO							
	_ X □							
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	al						
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged sind the date that the Control was put in-place, or was last approved by the Department;	се						
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	Ł						
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;							
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and							
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.							
	YES NO							
	j x i □							
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.							
	Signature of Owner, Remedial Party or Designated Representative Date							

IC CERTIFICATIONS SITE NO. C905036

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name print business address

am certifying as Manager Cowner's Representative print business address

(Owner or Remedial Party)

Crystal Wiell Representative Representative Rendering Certification

The Site named in the Site Details Section of this form.

The Site named in the Site Details Section of this form.

The Site named in the Site Details Section of this form.

The Site named in the Site Details Section of this form.

The Site named in the Site Details Section of this form.

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

APPENDIX B

SITE PHOTOGRAPHIC LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 3:

Photo 2:

Photo 4:



Photo 1: Manometer gauge (1.6 inches WC indicated – Fan 6)

Photo 2: Photohelic gauge (1.85 inches WC indicated – Fan 3)

Photo 3: Front of SRS Building (North looking northeast).

Photo 4: Scott Rotary Seals (SRS) Bldg. (looking southeast).

SITE PHOTOGRAPHS

Photo 5:

Photo 7:

Photo 6:

Photo 8:

Photo 5: Rear Side (south) of SRS Building; (looking east).

Photo 6: East side detention basin (looking northeast).

Photo 7: East side of SRS Building (looking north).

Photo 8: West side of Site (looking north).

APPENDIX C

ASD PERIODIC INSPECTION LOGS

Scott Rotary Seals Site (C905036) ASD System Inspection Log

Date	Time	Inspector's Initials	ASD-1 (in.WC)	ASD-2 (in.WC)	ASD-3 (in.WC)	ASD-4 (in.WC)	ASD-5 (in.WC)	ASD-6 (in.WC)	ASD-7 (in.WC)
7 15 15 13 9 12 15 13 10 16 15 13 10 16 15 13 10 16 15 16 10 16 16 16 10 16 16	16:00 2:51 2:51 3:40 3:40 3:40 3:40 1:07 1:10 1:10 1:10 1:10 1:10	PSU	Lay a ray a	1.000000000000000000000000000000000000	1.99 - 1.99 - 1.95 - 1.9	00000000000000000000000000000000000000	1.35 1.35 1.35 1.35 1.35 1.35 1.30 1.30 1.30 1.30 1.30 1.30 1.35	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	ジェングジャン・ファ

Notes:

Date		
6/19/13	on! or	
7/15/15	on i ok	
81715	an ! or	
9215	on de	
10/6/15	oniok	
11/1/5	on: ok	
12/2/15	on: ob	
1/5/16	n: oK	
2/2/16	on: ds	
3/1/16	on: oh	
414/16	on: ob	
5/6/16	on i ok	
6/2/16	mi ox	
6/29/40	on ok	

APPENDIX D

LNAPL PERIODIC INSPECTION LOGS

Scott Rotary Seals Site (C905036)

LNAPL System Inspection Log

			===	MV	V-2			M	w-4			М	W-6	
Date	Time	Inspector's Initials	Product Present? (Y/N)	Product Depth (fbTOR)	Water Level (fbTOR)	Change Absorbent Sock? (Y/N)	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Change Absorbent Sock? (Y/N)	Product Present? (Y/N)	Product Depth (fbTOR)	Water Level (fbTOR)	Change Absorbent Sock? (Y/N)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18:30	2222222 222222222222222222222222222222	2222222	1111111	14.50 1	22/22/22/22	222222	1111111	マイスの5.1.5.1.6.1.6.1.6.1.6.1.6.1.6.1.6.1.6.1.	2222222	222222	1111111	507999999999999999999999999999999999999	2222222
31163116	9:36	MU MU MU MU MU MU MU MU MU MU MU MU MU M	22222	11111	15.57 14.87 15.13 14.90 16.19 16.19	22222	22222	11111	12.29 12.39 12.39 12.39 13.66 14.81	2222	222222		18.20	22222
									v		- <u>4</u>			

Notes:

Date

Date

LIGIE Socks in good condition

FIGUE Socks in good condition

Date

Da

APPENDIX E

SVE PERIODIC INSPECTION LOGS

SVE SYSTEM LOG

SMEET LOF 2															
DATE	THE	STATEM Remains on Account of us No	Martin office (Miles of Street	SASTEM AND METER (Ampo) Dec	OPPERATOR PARTIES	PATRICE VACUUM AT CONDENSATE AND MORE THE WOOL	ASSESSE SANSON	NETM interfere belong tolled	PRINKER CATCE INDENT On WO	SELECTION, OTHER	REPLIENT PER BEAUTY, CAC VESSEL PT (FFM)	BEADSHE GAC	N=N	N.	
JAK.	14:00	OFF	42	14.4	Pan	50	2	275.70	4	5.4	-	=	~	N	
7-1-5	900	SENS	42 42	13.7	BING	495	2.0 1.75 J-15	276 255	45	15	-	-	¥	2	
3-15-6	1200	7	42	13.9	Philip Philip	45	79	255	4,5	200	-	-	Y	V	
10615		22	42	13.9	ML	400	1.9	268.	3-5	9.6	-	-	3	3	
11/19/15	00:00 Fo 01	3	3555	1300	ML	755	9.6	245.90	3.5	36.7	-	=	3	ST SANK	
的可能	10:04	3	35	13.9	ML	45	7.8	275.90	3.5	25	=	-	193	Say prin	
問題	母居	7	43	13.9	ML	42.5	20	275 %	3.6	3:5	-	-	9	9	1
NOTES:	-	/ -		- 14	# 10	and don't	50.41	to break	× 5.70.	- K	Awi	2.34	5 d	osca	1
motor red tager from 5 and Mw-of tally open a Fresh An Bland, 100% closed, Known with 100% ages															
6-22-15 System on 6-23-15 System off due to high maker, drain writer and rection t, Repayerin Sonseptiones 7-1-15 System off due to high water, drain natural restort system (system drain 7-158-4Am)															
7-13-15 6 streng of the to gover loss on 7-8-151 draved water and Restort system															
10/0/15 Steken at dische high water dan were Roset system of now															
101015 Sicken at the to paver issue De make & heart yello arran															
19/15 System of due to high water empty Rest system - of your 19/15 System on empty water 13/15 System on empty water 13/15 System on empty water 13/15/15 - Oystem on empty water															
2 15	611	km	100	.00	De 10	iorper		10	11/51/5	- 059	sem o	at I en	Ash	7.10	
a 115	24	- Circ	Or	· Cin	0.00	The same		-							

SCOTT ROTARY SEALS SITE (C905036) SVE SYSTEM LOG SHEET 1 OF 2

Date	Time	Inspector's Initials	System Running on Arrival? (Y or N)	Total System Time (hrs)	Amp Meter (Amps)	Intake Vacuum at Knockout (in. WC)	Air Flow Gauge (in.WC)	SCFM (use flow lookup table)	Pressure Gauge (exhaust) (in. WC)	Influent PID Reading (PPM)	Effluent PID Reading (PPM)	Greased Blower? (Y or N)	Condensate Water Present (Y or N)
13 33	9:45	ML	B		13.9	\$0	1.8	361.74	3.0	6.3		79-	٧
												-	
						Ta .	ov.	S .			3		
NOTES: 12 22 12 29 1	- Tank 15 - Tou	م جرزا مار کرزا	rempti	Ly Ber	t seed	ton OK	5						
IIsh	o - Sys	ikm s	2 text	Dun!	win	ze (zed)							
					XI.			3-					
			541	947	a page			· 开"	. h				

APPENDIX F

GROUNDWATER MONITORING REPORT

(PROVIDED ELECTRONICALLY)

Strong Advocates, Effective Solutions, Integrated Implementation

July 7, 2016

Ms. Crystal Wiech Scott Rotary Seals 4775 Route 16 Hinsdale, New York 14743

Re: Revision 1 Groundwater Monitoring Letter Report 301 Franklin Street (BCP Site No. 905036) Olean, New York

Dear Ms. Wiech:

TurnKey Environmental Restoration, LLC (TurnKey) has completed an additional round of groundwater sampling and testing on behalf of Scott Rotary Seals (aka DST Properties NY, LLC) following the New York State Department of Environmental Conservation's (NYSDEC) request for additional analytical data at the above referenced site (BCP Site No. 905036). The NYSDEC requested additional groundwater sampling and testing data prior to their making a decision on monitoring well abandonment. This letter report summarizes the results of the groundwater sampling event that occurred on May 6, 2016.

Background

The Scott Rotary Seals Site, located in the City of Olean, and identified as SBL 94.040-1-29.02, is an approximate 2-acre parcel bounded by Franklin Street to the north, railroad tracks to the south and east, and commercial and former industrial properties to the west (see Figures 1 and 3 in the PRR). The Site was historically a portion of a larger petroleum refinery and bulk petroleum storage and distribution facility formerly known as Socony.

DST Properties NY, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC in 2010 to remediate and redevelop the site as a rotary union and timing valve manufacturer and commercial office space. The remedial activities began in March 2011 and were completed in July 2012. The Certificate of Completion (COC) was issued for the Site

on December 11, 2012. Groundwater samples have been collected from this site since 2009 as documented in the 2015 Periodic Review Report. In addition, Light Non-Aqueous Phase Liquid (LNAPL) monitoring has been completed monthly in wells MW-2, MW-4 and MW-6; LNAPL has not been detected in over two years.

Scope of Work

A groundwater sampling event was completed on May 6, 2016 at the Scott Rotary Seals Site that included sampling and analysis of groundwater collected from wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6 using the procedures in the approved Site Management Plan (SMP). A groundwater sample was obtained from each well and analyzed for target compound list (TCL) volatile organic compounds (VOCs), Commissioner Policy (CP51) VOCs, and Tentatively Identified Compounds (TICs) using USEPA Method 8260C. Field notes from the groundwater sampling event are contained in Attachment 1 (of the electronic version). Groundwater elevations from 2009 through 2016 are summarized in Table 1 and groundwater flow direction as interpolated from the May 6, 2016 measurements is presented on Figure 3. Table 2 summarizes the analytical results from the May 6, 2016 sampling event as well as historic groundwater monitoring events completed by TurnKey. Laboratory analytical packages for the sampling events are in Attachment 2 (of the electronic version).

Results

The groundwater elevations (Table 1) were contoured as shown on Figure 4 using the May 2016 water level data. Overall groundwater flow direction in the uppermost sand and gravel aquifer is toward the southeast consistent with the prior groundwater contour maps.

Analytical results from May 6, 2016 (Refer to Table 2) indicated that VOCs were not detected above NYSDEC Class GA groundwater quality standards (GWQS) as listed in NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) in any of the groundwater samples. VOC TICs were detected in the groundwater samples ranging between concentrations of 8 and 110 ug/L.

The temporal concentrations of VOC TICs are presented graphically on Figure 5. VOC TICs have decreased significantly from the pre-remediation results and continue to show a downward trend. For example, total VOC TICs were reported at a concentration of 1,100 and 26,000 ug/l from sampling in June 2009 at wells MW-3 and MW-2, respectively.

The May 6, 2016 results from well MW-3, 10 ug/L, and well MW-2, 110 ug/L, continue to show that the groundwater quality is improving. LNAPL monitoring data are presented in Table 3 and LNAPL has not been detected since 2013.

Conclusions

The results of VOC testing show that the groundwater quality does not contain any exceedances of the GWQS; VOC TICs are present at very low concentrations, have been significantly reduced post-remediation and continue to show a downward trend. LNAPL has not been detected in over two years in the monitoring wells.

Recommendations

We recommend that no further groundwater sampling or LNAPL monitoring be completed. The groundwater wells are recommended to be abandoned in accordance with NYSDECs CP-43: "Groundwater Monitoring Well Decommissioning Policy."

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Michael A. Lesakowski Sr. Project Manager

Cc: Chad Staniszewski, NYSDEC Region 9

TABLE 1 SUMMARY OF GROUNDWATER ELEVATIONS SCOTT ROTARY SEALS SITE OLEAN, NEW YORK

Location	Date	Grade	TOR Elevation (ft)	DTP (if present) (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (ft)	Corrected Groundwater Elevation ¹ (ft)
	6/29/09	1431.89	1435.04		27.58		1407.46	1407.46
	8/19/10	1431.89	1435.04		28.40		1406.64	1406.64
	10/26/10	1431.89	1435.04		29.01		1406.03	1406.03
	3/10/11	1431.89	1435.04		23.71		1411.33	1411.33
MW-1	5/10/13	1431.89	1432.60		23.57		1409.03	1409.03
M W - 1	12/6/13	1431.89	1432.60		25.52		1407.08	1407.08
	7/18/14	1431.89	1432.60		23.32		1409.28	1409.28
	8/4/14	1431.89	1432.60		24.11		1408.49	1408.49
	12/4/14	1431.89	1432.60		25.29		1407.31	1407.31
	5/6/16	1431.89	1432.60		23.50		1409.10	1409.10
	6/29/09	1425.84	1428.19		18.61		1409.58	1409.58
	8/19/10	1425.84	1428.19		19.51		1408.68	1408.68
	10/26/10	1425.84	1428.19	20.34	20.35	0.01	1407.84	1407.85
	3/10/11	1425.84	1428.19		15.28		1412.91	1412.91
	9/18/2012	1425.84	1428.19		18.54		1409.65	1409.65
	11/29/2012	1425.84	1428.19		17.79		1410.40	1410.40
	1/21/2013	1425.84	1428.19				NA	NA
	2/20/2013	1425.84	1428.19				NA	NA
	3/13/2013	1425.84	1428.19				NA	NA
	4/12/2013	1425.84	1428.19		14.96		1413.23	1413.23
	5/10/13	1425.84	1426.66		15.08		1411.58	1411.58
) (IV) (1)	6/5/2013	1425.84	1426.66		16.02		1410.64	1410.64
MW-2	7/12/2013	1425.84	1426.66		16.05		1410.61	1410.61
	8/7/2013	1425.84	1426.66		16.78		1409.88	1409.88
	9/10/2013	1425.84	1426.66		18.22		1408.44	1408.44
	9/23/2013	1425.84	1426.66				NA	NA
	10/11/2013	1425.84	1426.66		18.52		1408.14	1408.14
	10/18/2013	1425.84	1428.19				NA	NA
	11/7/2013	1425.84	1428.19		18.32		1409.87	1409.87
	12/6/13	1425.84	1428.19		17.37		1410.82	1410.82
	1/10/2014	1425.84	1428.19		15.44		1412.75	1412.75
	4/25/2014	1425.84	1428.19		14.51		1413.68	1413.68
	5/12/2014	1425.84	1428.19		14.39		1413.80	1413.80
	6/6/2014	1425.84	1428.19		14.27		1413.92	1413.92

SUMMARY OF GROUNDWATER ELEVATIONS SCOTT ROTARY SEALS SITE OLEAN, NEW YORK

Location	Date	Grade	TOR Elevation (ft)	DTP (if present) (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (ft)	Corrected Groundwater Elevation ¹ (ft)
	7/10/2014	1425.84	1428.19		15.14		1413.05	1413.05
	7/18/14	1425.84	1428.19		15.01		1413.18	1413.18
	8/4/14	1425.84	1428.19		15.64		1412.55	1412.55
MOVI 2 (C)	9/22/14	1425.84	1428.19		15.79		1412.40	1412.40
MW-2 (Cont)	10/9/2014	1425.84	1428.19		15.82		1412.37	1412.37
	11/3/2014	1425.84	1428.19		17.73		1410.46	1410.46
	12/4/14	1425.84	1428.19		17.29		1410.90	1410.90
	5/6/16	1425.84	1428.19		14.98		1413.21	1413.21
	6/29/09	1426.24	1428.26		18.79		1409.47	1409.47
	8/19/10	1426.24	1428.26		19.52		1408.74	1408.74
	10/26/10	1426.24	1428.26		20.38		1407.88	1407.88
	3/10/11	1426.24	1428.26		15.31		1412.95	1412.95
	5/10/13	1426.24	1426.29		14.71		1411.58	1411.58
MW-3	12/6/13	1426.24	1426.29		17.00		1409.29	1409.29
	7/18/14	1426.24	1426.29		14.64		1411.65	1411.65
	8/4/14	1426.24	1426.29		15.27		1411.02	1411.02
	12/4/14	1426.24	1426.29		16.90		1409.39	1409.39
	5/6/16	1426.24	1426.29		14.68		1411.61	1411.61
	10/26/10	1425.85	1427.61	19.71	19.72	0.01	1407.89	1407.90
	3/10/11	1425.85	1427.61		14.69		1412.92	1412.92
	9/18/2012	1425.85	1427.61		15.99		1411.62	1411.62
	11/29/2012	1425.85	1427.61		15.22		1412.39	1412.39
	1/21/2013	1425.85	1427.61				NA	NA
	2/20/2013	1425.85	1427.61				NA	NA
	3/13/2013	1425.85	1427.61				NA	NA
	4/12/2013	1425.85	1427.61		12.37		1415.24	1415.24
) OV	5/10/13	1425.85	1427.61		12.47		1415.14	1415.14
MW-4	6/5/2013	1425.85	1427.61		13.41		1414.20	1414.20
	7/12/2013	1425.85	1427.61		13.42		1414.19	1414.19
	8/7/2013	1425.85	1427.61		14.25		1413.36	1413.36
	9/10/2013	1425.85	1427.61		15.61		1412.00	1412.00
	9/23/2013	1425.85	1427.61				NA	NA
	10/11/2013	1425.85	1427.61		15.91		1411.70	1411.70
	10/18/2013	1425.85	1427.61				NA	NA
	11/7/2013	1425.85	1427.61		15.72		1411.89	1411.89
	12/6/13	1425.85	1427.61		14.79		1412.82	1412.82

SUMMARY OF GROUNDWATER ELEVATIONS SCOTT ROTARY SEALS SITE OLEAN, NEW YORK

				OLEAN, NEV				
Location	Date	Grade	TOR Elevation (ft)	DTP (if present) (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (ft)	Corrected Groundwater Elevation ¹ (ft)
	1/10/2014	1425.85	1427.61		12.87		1414.74	1414.74
	4/25/2014	1425.85	1427.61		11.99		1415.62	1415.62
	5/12/2014	1425.85	1427.61		11.84		1415.77	1415.77
	6/6/2014	1425.85	1427.61		11.73		1415.88	1415.88
	7/10/2014	1425.85	1427.61		12.54		1415.07	1415.07
MW-4 (Cont)	7/18/14	1425.85	1427.61		12.40		1415.21	1415.21
MW-4 (Colit)	8/4/14	1425.85	1427.61		13.05		1414.56	1414.56
	9/22/14	1425.85	1427.61		13.21		1414.40	1414.40
	10/9/2014	1425.85	1427.61		13.26		1414.35	1414.35
	11/3/2014	1425.85	1427.61		15.24		1412.37	1412.37
	12/4/14	1425.85	1427.61		14.73		1412.88	1412.88
	5/6/16	1425.85	1427.61		12.39		1415.22	1415.22
	10/26/10	1430.78	1433.26		27.17		1406.09	1406.09
	3/10/11	1430.78	1433.26		21.91		1411.35	1411.35
	5/10/13	1430.78	1429.46		20.23		1409.23	1409.23
MW-5	12/6/13	1430.78	1429.46		22.17		1407.29	1407.29
111111	7/18/14	1430.78	1429.46		20.01		1409.45	1409.45
	8/4/14	1430.78	1429.46		20.82		1408.64	1408.64
	12/4/14	1430.78	1429.46		21.96		1407.50	1407.50
	5/6/16	1430.78	1429.46		20.18		1409.28	1409.28
	10/26/10	1430.78	1434.02	27.80	28.68	0.88	1405.34	1406.04
	3/10/11	1430.78	1434.02		22.42		1411.60	1411.60
	3/11/11	1430.78	1434.02		23.42		1410.60	1410.60
	3/12/11	1430.78	1434.02		24.42		1409.60	1409.60
	3/13/11	1430.78	1434.02		25.42		1408.60	1408.60
	3/14/11	1430.78	1434.02		26.42		1407.60	1407.60
	3/15/11	1430.78	1434.02		27.42		1406.60	1406.60
MW-6	9/18/2012	1430.78	1434.02		19.71		1414.31	1414.31
	11/29/2012	1430.78	1434.02	19.22	19.23	0.01	1414.79	1414.80
	1/21/2013	1430.78	1434.02	18.00	18.01	0.01	1416.01	1416.02
	2/20/2013	1430.78	1434.02	18.21	18.22	0.01	1415.80	1415.81
	3/13/2013	1430.78	1434.02	18.03	18.04	0.01	1415.98	1415.99
	4/12/2013	1430.78	1434.02	17.87	17.88	0.01	1416.14	1416.15
	5/10/13	1430.78	1434.02		17.91		1416.11	1416.11
	6/5/2013	1430.78	1434.02		18.74		1415.28	1415.28

SUMMARY OF GROUNDWATER ELEVATIONS SCOTT ROTARY SEALS SITE OLEAN, NEW YORK

Location	Date	Grade	TOR Elevation (ft)	DTP (if present) (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (ft)	Corrected Groundwater Elevation ¹ (ft)
	7/12/2013	1430.78	1434.02		18.60		1415.42	1415.42
	8/7/2013	1430.78	1434.02		18.81		1415.21	1415.21
	9/10/2013	1430.78	1434.02	20.87	21.93	1.06	1412.09	1412.94
	9/23/2013	1430.78	1434.02		20.6		1413.42	1413.42
	10/11/2013	1430.78	1434.02	20.7	20.8	0.10	1413.22	1413.30
	10/18/2013	1430.78	1434.02	20.05	20.06	0.01	1413.96	1413.97
	11/7/2013	1430.78	1434.02		20.78		1413.24	1413.24
	12/6/2013	1430.78	1434.02		19.15		1414.87	1414.87
	12/6/13	1430.78	1434.02		19.18		1414.84	1414.84
	1/10/2014	1430.78	1434.02		18.11		1415.91	1415.91
MW-6 (Cont)	4/25/2014	1430.78	1434.02		17.45		1416.57	1416.57
	5/12/2014	1430.78	1434.02		17.31		1416.71	1416.71
	6/6/2014	1430.78	1434.02		17.14		1416.88	1416.88
	7/10/2014	1430.78	1434.02		17.98		1416.04	1416.04
	7/18/14	1430.78	1429.92		17.86		1412.06	1412.06
	8/4/14	1430.78	1429.92		18.46		1411.46	1411.46
	9/22/14	1430.78	1429.92		18.51		1411.41	1411.41
	10/9/2014	1430.78	1429.92		18.62		1411.30	1411.30
	11/3/2014	1430.78	1429.92		20.09		1409.83	1409.83
	12/4/14	1430.78	1429.92		19.41		1410.51	1410.51
	5/6/16	1430.78	1429.92		17.65		1412.27	1412.27
	3/10/11	1430.12	1432.97		21.37		1411.60	1411.60
MW-7	12/4/14	1430.12	1432.97		23.84		1409.13	1409.13
	5/6/16	1430.12	1432.97		20.68		1412.29	1412.29
	3/10/11	1431.08	1434.01		20.59		1413.42	1413.42
MW-8	12/4/14	1431.08	1434.01		23.29		1410.72	1410.72
	5/6/16	1431.08	1434.01		21.42		1412.59	1412.59

Notes:

- 1. Groundwater Elevation corrected for product level using assumed specific gravity of 0.80. 2. All elevations are feet relative to NAVD 1988.

TOR = Top of riser DTP = Depth to product DTW = Depth to water

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS SCOTT ROTARY SEALS SITE

OLEAN, NEW YORK

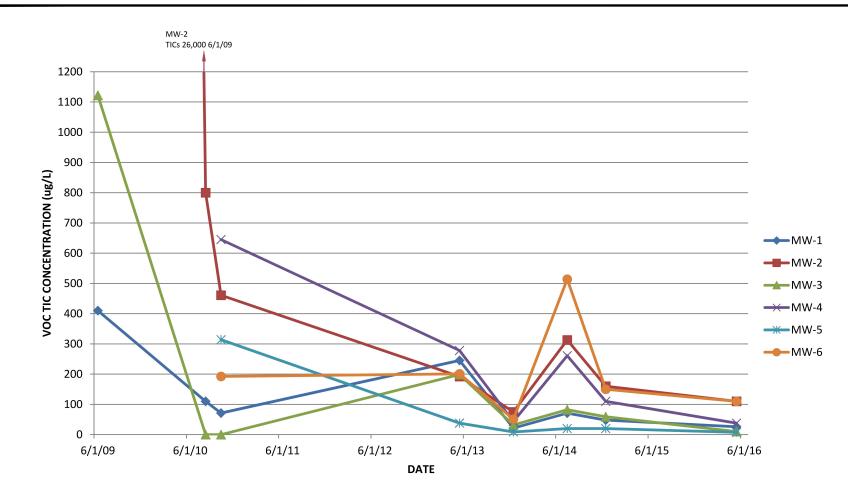
															Samp	ole Location	s												
Parameter 1	GWQS ²				M	N-1							M\	W-2	<u> </u>									MW-3					
		6/29/09	8/19/10	10/28/10	5/10/13	12/6/13	7/18/14	12/4/14	5/5/16	6/29/09	8/19/10	10/28/10	5/10/13	12/6/13	7/18/14	12/4/14	5/6/16	6/29/09	8/19/10	10/28/10	5/10/13	12/6/13	12/6/13 ⁵	7/18/14	7/18/14 5	12/4/14	12/4/14 ⁵	5/6/16	5/6/2016 ⁵
Volatile Organic Compounds (VOCs) - ug	/L																												
Acetone	50	ND	ND J	ND	14	ND	4.8 J	ND	2.9 J B	200 DJ	ND J	ND	16	ND	3.7 J	ND	3.7 J B	ND	ND J	ND	3.9 J	ND	ND	2.6 J	2.6 J	ND	ND	ND	ND
Benzene	1	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	0.16 J	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	50	ND	ND J	ND	9.1	ND	ND	ND	ND	ND	ND J	ND	35	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	60	27 D	ND J	ND	ND	ND	ND	ND	ND	29 D	ND J	ND	ND	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4 J
Chloroethane	5	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7 J	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl chloride)	5	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	-	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND J	3 D	ND	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	0.88 J	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND J	ND	ND	0.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	-	ND	ND J	ND	0.74 J	0.53 J	ND	ND	ND	5,200	260 J	200 D	13 J	ND	ND	2.8 J	5.8 J	44 D	ND J	ND	ND	0.3 J	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	NT	NT	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	2.7	ND	NT	NT	ND	ND	ND	1 J	ND	ND	ND	ND	0.74 J
p/m-Xylene ⁴	5	ND	ND J	ND	ND	2 JB	ND	ND	ND	ND	ND	ND	ND	4.2 JB	ND	ND	ND	ND	ND J	ND	ND	1.4 JB	1 JB	ND	ND	ND	ND	ND	ND
p-Cymene (p-isopropyltoluene)	5	ND	ND J	ND	ND	1.5 J	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND J	ND	ND	1.6 J	1.6 J	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND J	ND	ND	0.74 J	ND	ND	ND	ND	ND J	ND	ND	1.8 J	ND	ND	ND	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND	ND J	ND	ND	ND	ND	ND	ND	43 D	ND J	ND	1.4 J	ND	1.7 J	1.6 J	1.4 J	ND	ND J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ND	1.7 J	1.4	0.81 J	1.5 J	0.96 J	1.1 J	1.1 J	ND	ND J	ND	1.6 J	ND	1.7 J	1.5 J	1.5 J	ND	ND J	ND	ND	1.6 J	1.6 J	ND	ND	1.5 J	1.5 J	ND	ND
Tentatively Identified Compounds (TICs)3	-	410 J	110 J	71.2 J	245.2 J	21.4 J	71 J	48 J	26 J	26000 J	800 J	461 J	192 J	74.8 J	313 J	160 J	110 J	1122 J	ND J	ND	198.8 J	31.9 J	50.6 J	82.3 J	261 J	59 J	73 J	10 J	59 J

,	•									Sa	mple Location	ons										-Site)
Parameter ¹	GWQS ²		=	MV					I	1 5	MW-5							W-6			MW-7	MV
		10/28/10	5/10/13	12/6/13	7/18/14	12/4/14	5/6/16	10/28/10	5/10/13	5/10/13 5	12/6/13	7/18/14	12/4/14	5/6/16	10/28/10	5/10/13	12/6/13	7/18/14	12/4/14	5/6/16	1/17/11	1/17
/olatile Organic Compounds (VOCs) - ug	<i></i>			1				1		T	I		1	1			1		1			
Acetone	50	ND	11	ND	4.7 J	ND	1.6 J B	3.2	17	12	ND	2.3 J	ND	2.4 JB	ND	5.7	3.1 J	2.4 J	ND	ND	6.3	NE
Benzene	1	ND	ND	ND	ND	0.16 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
2-Butanone (MEK)	50	ND	32	ND	ND	ND	ND	ND	8.1	9.6	ND	ND	ND	ND	ND	11	ND	ND	3.8 J	ND	1.7	NE
Carbon disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5 J	ND	NE
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl chloride)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	-	3.9 DJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.35 J	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	0.8 J	ND	ND	ND	0.84 J	1.1	0.98
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	-	390 D	3.7 J	2.8 J	ND	ND	1.5 J	ND	1.6 J	1.8 J	1.6 J	ND	ND	ND	7 D	1.3 J	0.92 J	ND	ND	0.66 J	71 D	6.2
Naphthalene	10	NT	ND	ND	ND	ND	1.2 J	NT	ND	ND	ND	1 J	ND	ND	NT	ND	ND	ND	ND	2.5	NT	NT
p/m-Xylene ⁴	5	ND	ND	5.2 JB	ND	ND	ND	ND	ND	ND	1.2 JB	ND	ND	ND	ND	ND	1.2 JB	ND	ND	ND	ND	ND
p-Cymene (p-isopropyltoluene)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.88 J	ND	ND	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.79 J	0.74 J	ND	ND	ND	ND	ND
sec-Butylbenzene	5	3.2 DJ	0.87 J	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND	ND	ND	2.2 D	1.1 J	0.79 J	0.73 J	ND	0.82 J	ND	ND
tert-Butylbenzene	5	ND	ND	ND	0.74 J	0.96 J	ND	4.3	ND	ND	0.88 J	ND	ND	ND	2.2	1.5 J	1.4 J	1.3 J	1.0 J	1.2 J	2.2	1.9
Tentatively Identified Compounds (TICs) ³	-	645 J	278 J	43.2 J	261 J	110 J	38 J	314 J	37.9 J	47.6 J	8.8 J	20 J	20 J	7.6 J	192.3 J	201 J	51.2 J	514 J	150 J	110 J	226 J	346
 Only those parameters detected at a minim 2. Values per NYSDEC Part 703 Groundwate Excludes TICs identified in the laboratory b 4. m/p-xylene detected in trip blank for Decen 5. Blind Dupllicate Stind Duplicate The Parameter not detected above laborator "" = No Groundwater Standard J = Estimated value; result is less than the sa B = Parameter detected in blank. D= Analyte was detected in the associated bl B = Analyte was detected in the associated bl 	r Quality Standards lank. sher 6, 2013 samplir y detection limit. NT mple quantitation lim sis at the secondary	(GWQS). g event. = Not tested it but greater t dilution factor.	than zero.	table; all othe	er compounds	were reporte	d as non-dete	ect.														
NT = Not Tested BOLD	= Sample result exc	•	C Groundwate	er Quality Sta	ndards.																	

TABLE 3 Scott Rotary Seals Site (C905036)

LNAPL System Inspection Log

]	MW-2]	MW-4		MW-6					
Date	Time	Inspector's Initials	Product Present? (Y/N)	Product Depth (fbTOR)	Water Level (fbTOR)	Change Absorbent Sock? (Y/N)	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Change Absorbent Sock? (Y/N)	Product Present? (Y / N)	Skimmer Operational? (Y/N)	Product Depth (fbTOR)	Water Level (fbTOR)	Change Absorbent Sock? (Y/N)	
9/18/2012	12:00	PWW	N	NP	18.54	N	N	NP	15.99	N	N	Y	NP	19.71	NA	
11/29/2012	13:30	PWW	N	NP	17.79	N	N	NP	15.22	N	Y	Y	19.22	19.23	NA	
1/21/2013	13:15	PWW	N	NP	-	N	N	NP		N	Y	Y	18.00	18.01	NA	
2/20/2013	13:15	PWW	N	NP		N	N	NP		N	Y	Y	18.21	18.22	NA	
3/13/2013	13:15	PWW	N	NP		N	N	NP		N	Y	Y	18.03	18.04	NA	
4/12/2013	12:50	PWW	N	NP	14.96	N	N	NP	12.37	N	Y	Y	17.87	17.88	NA	
5/10/2013	15:00	JAE	N	NP	15.08	N	N	NP	12.49	N	N	Y	NP	17.91	NA	
6/5/2013	11:00	BMG	N	NP	16.02	N	N	NP	13.41	N	N	Y	NP	18.74	NA	
7/12/2013	12:00	BMG	N	NP	16.05	N	N	NP	13.42	N	N	NA	NP	18.60	N 1	
8/7/2013	9:00	BMG	N	NP	16.78	N	N	NP	14.25	N	N	NA	NP	18.81	N	
9/10/2013	15:20	BMG	N	NP	18.22	N	N	NP	15.61	N	Y	NA	20.87	21.93	Y	
9/23/2013	9:15	BMG	N	NP		N	N	NP		N	N	NA	NP	20.6	N	
10/11/2013	9:00	BMG	N	NP	18.52	N	N	NP	15.91	N	Y	NA	20.7	20.8	N	
10/18/2013	9:00	BMG	N	NP		N	N	NP		N	Y	NA	20.05	20.06	N	
11/7/2013	10:50	BMG	N	NP	18.32	N	N	NP	15.72	N	N	NA	NP	20.78	N	
12/6/2013	9:30	BMG	N	NA	17.45	N	N	NP	14.82	N	N	NA	NP	19.15	N	
1/10/2014	10:15	BMG	N	NP	15.44	N	N	NP	12.87	N	N	NA	NP	18.11	N	
4/25/2014	13:00	PWW	N	NP	14.51	N	N	NP	11.99	N	N	NA	NP	17.45	N	
5/12/2014	11:00	JCT	N	NP	14.39	N	N	NP	11.84	N	N	NA	NP	17.31	N	
6/6/2014	12:20	PWW	N	NP	14.27	N	N	NP	11.73	N	N	NA	NP	17.14	N	
7/10/2014	8:20	PWW	N	NP	15.14	N	N	NP	12.54	N	N	NA	NP	17.98	N	
8/4/2014	11:30	PWW	N	NP	15.64	N	N	NP	13.05	N	N	NA	NP	18.46	N	
9/22/2014	11:00	PWW	N	NP	15.79	N	N	NP	13.21	N	N	NA	NP	18.51	N	
10/9/2014	12:00	PWW	N	NP	15.82	N	N	NP	13.26	N	N	NA	NP	18.62	N	
11/3/2014	9:30	PWW	N	NP	17.73	N	N	NP	15.24	N	N	NA	NP	20.09	N	
12/4/2014	12:30	PWW	N	NP	17.89	N	N	NP	14.73	N	N	NA	NP	19.41	N	
1/6/2015	12:00	PWW	N	NP	17.34	N	N	NP	14.75	N	N	NA	NP	19.44	N	
2/23/2015	13:00	PWW							SEE NOTI	E 2	_	•			•	
3/12/2015	10:30	ML	N	NP	17.71	N	N	NP	15.14	N	N	NA	NP	19.54	N	
4/15/2015	13:30	ML	N	NP	14.3	N	N	NP	11.73	N	N	NA	NP	16.92	N	
5/29/2015	12:00	PWW	N	NP	14.62	N	N	NP	12.01	N	N	NA	NP	17.01	N	
6/19/2015	16:00	PWW	N	NP	14.3	N	N	NP	12.1	N	N	NA	NP	18.11	N	
7/15/2015	12:43	ML	N	NP	15.43	N	N	NP	12.83	N	N	NA	NP	18.24	N	
8/17/2018	12:57	ML	N	NP	16.73	N	N	NP	14.11	N	N	NA	NP	14.8 ?	N	
9/2/2015	13:30	PWW	N	NP	17.53	N	N	NP	15.04	N	N	NA	NP	19.45	N	
10/6/2015	13:40	ML	N	NP	17.79	N	N	NP	15.22	N	N	NA	NP	19.14	N	
11/11/2015	9:15	ML	N	NP	17.28	N	N	NP	14.71	N	N	NA	NP	19.03	N	
12/2/2015	11:20	ML	N	NP	16.72	N	N	NP	14.19	N	N	NA	NP	18.98	N	
1/5/2016	10:15	ML	N	NP	15.12	N			ROZEN		N	NA	NP	17.48	N	
2/2/2016	9:36	ML	N	NP	15.57	N	N	NP	12.99	N	N	NA	NP	18.2	N	
3/1/2016	9:47	ML	N	NP	14.87	N	N	NP	12.29	N	N	NA	NP	17.22	N	
4/14/2016	9:38	ML	N	NP	15.13	N	N	NP	12.54	N	N	NA	NP	17.72	N	
5/6/2016	11:54	ML	N	NP	14.98	N	N	NP	12.39	N	N	NA	NP	17.65	N	


NP= Not present

Notes:

7/12/2013 1) Replace oil skimmer at MW-6 with absorbent sock. 2/23/2015 2) Wells inaccessible due to ice.

FIGURES 4 & 5

NOTES: VOC = VOLATILE ORGANIC COMPOUND; TIC = TENTATIVELY IDENTIFIED COMPOUND. CONCENTRATION IN MICROGRAMS PER LITER (ug/L).

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0189-015-001

DATE: MAY 2016 REV JULY 2016

DRAFTED BY: RFL

SUMMARY OF VOC TICS CONCENTRATION TRENDS IN GROUNDWATER

GROUNDWATER MONITORING REPORT

SCOTT ROTARY SEALS SITE

OLEAN, NEW YORK
PREPARED FOR

DST PROPERTIES NY, LLC

DISCLAIMER

PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION., LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION., LLC.

ATTACHMENT 1

GROUNDWATER SAMPLING FIELD NOTES

GROUNDWATER FIELD FORM

Project Nar	ne: <	th Rod	ring Se	es!			Date:	May 6	20110
Location:	OI For	althin St	· Hear	Project	No.:TOIRS	1-011-00	N Field To	eam:	12 /W3L
	1 (5.		AN		.0.0	1000		100	DO /1-10/2
Well No	o. MW	- [Diameter (ir	ochoe).	, ((Sample Date	to / Timo:	5/1/	11 11160
	pth (fbTOR):				1/-			2/01	16 11,60
		2 6	Water Colu		1:19	DTW when		2002	e Purge & Sample
DTW (static		50.66	One Well Vo		1 12 1	Purpose:	Developmen		
Total Depth	1		Total Volum	e Purged (gal):	.75	Purge Meth	od: 100	Flas	
Time	Water Level	Acc. Volume	pН	Temp.	SC	Turbidity	DO	ORP	Appearance &
	(fbTOR)	(gallons)	(units)	(deg. C)	(uS)	(NTU)	(mg/L)	(mV)	Odor
11:39	o Initial	-	104	13,71	2646	28.2	1/0	- 44	Slight sheen : a
		5 34	1000				1,(9		c 1001
11,40	1 33.85	7.25	6,73		2596	16.9	1.08	-71	Clerky Shoon is
11, 49	2355	7.50	67.0	13.8	3606	13.7	1.90	-72	11 11
11.46	123.55	7.75	6.80	13.8	2607	19.0	1,12	- 34	11 61
	4								
	5								
	6								
	7								
	В								
	9								
	10								
					ļ			L	,
Sample I	nformation:								
11:50	S1 23. 65	075	6.33	14.0	2589	1109	1211	-85	Cler No abor
~	S2 -		-	_	EXISTS.	Please	- Constant	-	
			•						
		,			h			1	
Well No	· MW-	<u>م</u>	Diameter (in	iches): a		Sample Dat	o / Timo:	1-111-	19:10
						Sample Dat	e / Hille.	0110	10.10
Product Dep	oth (fbTOR):	_	Water Colur		7.37	DTW when		7.56	10.10
Product Dep DTW (static		7.65	Water Colur One Well Vo	nn (ft):	7.37			7.66 Sample	
) (fbTOR):	7.65	One Well Vo	nn (ft):	.53	DTW when	sampled: Development	7.56 Sample	e Purge & Sample
DTW (static) (fbTOR):	7.65 6.92 Acc.	One Well Vo	nn (ft): blume (gal): e Purged (gal):	1.25	DTW when Purpose: [Purge Meth	sampled: Development	Flow	e Purge & Sample
DTW (static) (fbTOR): (fbTOR): Water Level	Acc. Volume	One Well Vo Total Volum pH	nn (ft): blume (gal): e Purged (gal): Temp.	1. 35 sc	DTW when Purpose: [Purge Meth Turbidity	sampled: Development	Flow ORP	Purge & Sample Appearance &
DTW (static) (fbTOR): \(\f\) (fbTOR): \(\f\) Water	Acc.	One Well Vo	nn (ft): blume (gal): e Purged (gal):	1.25	DTW when Purpose: [Purge Meth	sampled: Development	Flow	e Purge & Sample
DTW (static) (fbTOR): (fbTOR): Water Level	Acc. Volume	One Well Vo Total Volum pH (units)	nn (ft): blume (gal): e Purged (gal): Temp.	SC (uS)	DTW when Purpose: [Purge Method Turbidity (NTU)	sampled: Development	ORP (mV)	Appearance & Odor
DTW (static	(fbTOR): (TbTOR): Water Level (fbTOR) u Initial	Acc. Volume (gallons)	One Well Vo	nn (ft): olume (gal): e Purged (gal): Temp. (deg. C)	1832	DTW when Purpose: [Purge Meth Turbidity (NTU)	Dovelopment DO (mg/L)	ORP (mV)	Purge & Sample Appearance &
DTW (static Total Depth Time	(fbTOR): (fbTOR): Water Level (fbTOR) o Initial	Acc. Volume (gallons)	One Well Vo	nn (ft): olume (gal): e Purged (gal): Temp. (deg. C)	1832 1849	DTW when Purpose: [Purge Meth Turbidity (NTU)	Dovelopment DO (mg/L)	ORP (mV) - 189 - 222	Appearance & Odor Clear Petro-H
DTW (static Total Depth Time	(fbTOR): (fbTOR): Water Level (fbTOR) o Initial	Acc. Volume (gallons)	One Well Vo	nn (ft): e Purged (gal): Temp. (deg. C)	1.25 sc (us) 1832 1819	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 727 - 244	Appearance & Odor Clear / Petro-H
DTW (static Total Depth Time	(fbTOR): (GbTOR): Water Level (fbTOR) o Initial 1 7 5 5 6	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU)	Dovelopment DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time	(fbTOR): (fbTOR): Water Level (fbTOR) o Initial	Acc. Volume (gallons)	One Well Vo	nn (ft): e Purged (gal): Temp. (deg. C)	1.25 sc (us) 1832 1819	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 727 - 244	Appearance & Odor Clear / Petro-H
DTW (static Total Depth Time	(fbTOR): (GbTOR): Water Level (fbTOR) o Initial 1 7 5 5 6	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time 12'04 12'06 12'06	(fbTOR): (GbTOR): Water Level (fbTOR) o Initial 1 7 5 5 6	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time	(fbTOR): (GbTOR): Water Level (fbTOR) o Initial 1 7 5 5 6	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time	(fbTOR): (GbTOR): Water Level (fbTOR) o Initial 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time	(fbTOR): (GbTOR): Water Level (fbTOR) o Initial 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time	(fbTOR): (GbTOR): Water Level (fbTOR) o Initial 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time	(fbTOR): (GbTOR): Water Level (fbTOR) o Initial 1 7 56 4 17 56 7 8 9	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time	(fbTOR): (TbTOR): (Water Level (fbTOR)) o Initial 1	Acc. Volume (gallons) Lil 75 L.50	One Well Volume PH (units) 7: (8) 7: 100 (a, S, T)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939 1938	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 14.8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II II Clear No Shear
DTW (static Total Depth Time	(fbTOR): (fbTOR): (Vater Level (fbTOR)) Date Control Contro	Acc. Volume (gallons)	One Well Volume PH (units) 7: (8) 7: (9) 7: (00) 7: (00)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 /4-8	Development od: DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 284	Appearance & Odor Clear / Petro-II
DTW (static Total Depth Time	(fbTOR): (TbTOR): (Water Level (fbTOR)) o Initial 1	Acc. Volume (gallons) Lil 75 L.50	One Well Volume PH (units) 7: (8) 7: 100 (a, S, T)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939 1938	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 14.8	Development od: DO (mg/L)	Place ORP (mV) - 189 - 222 - 244 - 254 - 260	Appearance & Odor Clear / Petro-li II Clear to alor Clear / No alor
DTW (static Total Depth Time	(fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR)	Acc. Volume (gallons) Lil 75 L.50 75 1.25	One Well Volume PH (units) 7: (8) 7: 100 (a, S, T)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939 1938	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 14.8 10.0 7.41 5.41	sampled: Development od: Carlo DO (mg/L) F./O 92 P./O 92 P./O	ORP (mV) - 189 - 722 - 244 - 254 - 260 - 364	Appearance & Odor Clear Petro-III (Clear to Ador Clear to Ado
DTW (static Total Depth Time	(fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR)	Acc. Volume (gallons) Lil 75 L.50 75 1.25	One Well Volume PH (units) 7: (8) 7: 100 (a, S, T)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939 1938	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 14.8 10.0 7.41 5.41	sampled: Development od: Canal DO (mg/L)	ORP (mV) - 189 - 722 - 244 - 254 - 260 State Parame	Appearance & Odor Clear / Petro-II (Clear 19 school Clear 19 school Cl
DTW (static Total Depth Time	(fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR)	Acc. Volume (gallons) Lil 75 L.50 75 1.25	One Well Volume PH (units) 7: (8) 7: 100 (a, S, T)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939 1938	DTW when Purpose: [Purge Meth Turbidity (NTU) 20.7 14.8 10.0 7.41 5.41	Dovelopment od: DO (mg/L) John Grant Gran	ORP (mV) - 189 - 722 - 244 - 254 - 260 State Parame ph	Appearance & Odor Clear Petro-II (Icar Appearance & Odor Clear Appea
DTW (static Total Depth Time	(fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR)	Acc. Volume (gallons) Lil 75 L.50 75 1.25	One Well Volume PH (units) 7: (8) 7: 100 (a, S, T)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939 1938	DTW when Purpose: [Purge Meth Turbidity (NTU) 20. 7 14.8 10.0 7.41 5.41 5.41	Dovelopment od: DO (mg/L) JOURNAL OF THE CALCULATION TO THE CALCULATI	ORP (mV) - 189 - 722 - 244 - 254 - 2560 State Parame pH SC	Appearance & Odor Clear Petro-II (Icar De Ador Clear De Ador C
DTW (static Total Depth Time	(fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR)	Acc. Volume (gallons) Lil 75 L.50 75 1.25	One Well Volume PH (units) 7: (8) 7: 100 (a, S, T)	nn (ft): e Purged (gal): Temp. (deg. C) 14.8 13.7	1832 1832 1819 1939 1938	DTW when Purpose: [Purge Meth Turbidity (NTU) 20. 7 14.8 10.0 7.41 5.41 5.41 5.41	DO (mg/L) JOO (mg	ORP (mV) - 137 - 727 - 384 - 360 State Parame pH SC Turbid	Appearance & Odor Clear Petro-II Clear Appearance & Odor Clear Appea
DTW (static Total Depth Time	(fbTOR): (GbTOR): (Vater Level (fbTOR)) 0 Initial 1 7 56 4 7 56 6 7 8 9 10 nformation: S1 7 56 S2 7	Acc. Volume (gallons) L. 1 . 25 L. 50 . 75 1.00	One Well Volum PH (units) 7: (8) 7: (9) 7: (0) 7: (0) 7: (0) MS/MS	nn (ft): olume (gal): e Purged (gal): Temp. (deg. C) 14.8 13.7 13.7 13.7	1832 1832 1819 1924 1924 1837	DTW when Purpose: [Purge Meth Turbidity (NTU) 20. 7 14.8 10.0 7.41 5.41 5.41 6.11 7.41	Dovelopment od: DO (mg/L) JOO	ORP (mV) - 137 - 727 - 384 - 360 State Parame pH SC Turbid DO	Appearance & Odor Clear / Refront (Clear Machine) Clear Machine Clear Machine
DTW (static Total Depth Time	(fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR): ('fbTOR)	Acc. Volume (gallons) L. 1 . 25 L. 50 . 75 1.00	One Well Volum PH (units) 7: (8) 7: (9) 7: (0) 7: (0) 7: (0) MS/MS	nn (ft): olume (gal): e Purged (gal): Temp. (deg. C) 14.8 13.7 13.7 13.7	1832 1832 1819 1924 1924 1837	DTW when Purpose: [Purge Meth Turbidity (NTU) 20. 7 14.8 10.0 7.41 5.41 5.41 6.11 7.41	DO (mg/L) JOO (mg	ORP (mV) - 137 - 727 - 384 - 360 State Parame pH SC Turbid	Appearance & Odor Clear / Refront (Clear Machine) Clear Machine Clear Machine

Groundwater Field Form xls GWFF - TK

Groundwaler Field Form xls GWFF - TK

GROUNDWATER FIELD FORM

Project Nar	ne: 5ccH	Rotar	y Sec	7			Date:	Mecay 1	0.2016
Location:	Or Fran	Win St.	7 Oka		810T:.0N	9-0110-0	S Field To	eam: 🔰	PWW /MJL
Well No	o. MW	- 3	Diameter (in	nches):	2 '	Sample Dat	e / Time:	5/6/16	10:57
	pth (fbTOR):	-	Water Colu		12.74	DTW when	sampled: 1	1,69	,
DTW (static		14.68		olume (gal):	2.08	Purpose:	Development	Sampl	e Purge & Sample
Total Depth		27.42		ne Purged (gal):		Purge Meth		low-fl	
	Water	Acc.			T				
Time	Level (fbTOR)	Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
10:48	o Initial	7.10	6-28	13.3	1695	277	2.76	174	Stickt Terbiod
10:50	114.69	,25	6.94	12.5	1649	95.6	2.51	162	cler is the prop
1052	214.69	7.50	6.95	12.3	16 22	(07.C	2.44	157	clear sight and
10:5 F	314 109	.76	7.01	12.0	1632	50.9	2.26	145	OCAC GIRTH OF
10:58	414.69	71.0	7.01	11.5	11,42	38.0	2.16	155	Cleir 120 orbit
	5	7 100				0010	8.110	1.00	X-X3 (636)
	6								
	7								
	8								
	9								
	10								
	nformation:		-		T	10 6 4		1.0.1	(Je17/10), 000r
10:57	5114,69	1.0	10.5	19-4	1610	35.5	1.92	131	Sken
-	S2 —	******			anyanishw				
Well No	. MW	-5	Diameter (in	nches): 7	tl.	Sample Dat	e / Time: L	5/6/16	11:22
Product Dep			Water Colu		7,96	DTW when	War Market	1720	25
DTW (static		10.18	One Well V		1.30	Purpose:	Development	Sample	710
Total Depth	73.4.7.4.7. 2	8.14		e Purged (gal):		Purge Meth		- Flou	
·	Water	Acc.			TV -				
Time	Level	Volume	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	(fbTOR)	(gallons)	(units)	(deg. C)	(u3)	(1410)	(mg/L)	(1117)	Odoi
11:15	o Initial	4.1	7.02	12.2	1761	144	5.99	147	Slight Torbit
11:17	120,25	4.25	704	12.1	1753	96.3	6.25	135	Clear No oder
11:19	221,26	-25	6.99	12-1	1755	841	5.76	149	1/ 1/
	321.25		7.01	12.1	1247	34.0		iva	2
1() 00:1	4	/. ~	7.01	1007	1	31.0	0010	1 , ,	
	5					,			
	6								
	7								
	0								
	0								
	9					- 24			
	10								
	nformation:								
11,33	81 2013E	(よ)	7.09	11.9	1746	24.5		143	Cleer 100 als
	S2 -	America 11		Section 1	-	Contract of the Contract of th	-		distribution .
Der	D1.	20 7	D	11. 1	1	111-2		Stat	bilization Criteria
REMARK	5 : 07/	ic pi	PCO	HECTEC	Jon 1	/W >Volu	me Calculation	Param	
				192			THE VOILABOUT	Pil	
							0.041	SC	
							0.163	Turbio	
Note: All me	easurements	are in foot	dietanca fra	n ton of rice	,		0.653	ORI	
AUG. AII III	asarements	are in ieet,	notatic≙ itOl	n top oi risei	•	_ 🖵	1.403/	J J OK	1 101111
imundwaler Field Fo	arm vie			PREPAR	ED BY:	Ta	1/	11	8

GROUNDWATER FIELD FORM

Project Name: Scott Rotary Seed Date: 14016 2016 Project No.: 7 0189 - 016-001 Location: 30 Field Team: Franklin St. PWW /MJI Well No. MW ~ 12:53 5 Diameter (inches): Sample Date / Time: Product Depth (fbTOR): 3.02 DTW when sampled: Water Column (ft): 2.12 DTW (static) (fbTOR): One Well Volume (gal): Purpose: Development Sample Purge & Sample Total Depth (fbTOR): 00 Total Volume Purged (gal): Purge Method: \cx Water Acc. рΗ Temp. SC Turbidity DO ORP Appearance & Time Level Volume (units) (NTU) (deg. C) (uS) Odor (mg/L) (mV) (fbTOR) (gallons) :45 1492 128 Initial D 9 6P 226 48 84 50 a 11 62 15,10 4 1471 2-8 2 75 6.98 CL This it wheen 15,10 14. 59 957 -193 Sample Information: estight on 51 15.10 Well No. Mus Sample Date / Time: 5 Diameter (inches): 47 Product Depth (fbTOR): Water Column (ft): DTW when sampled: 12.58 20 Sample Purge & Sample DTW (static) (fbTOR): One Well Volume (gal): Purpose: Development 21 Total Depth (fbTOR): 25 Total Volume Purged (gal): Purge Method: Law Water Acc. Temp. SC Turbidity DQ ORP Appearance & Time Level Volume (units) (NTU) (deg. C) (uS) (mg/L) (mV) Odor (fbTOR) (gallons) Initial 50 9 スマ 17657 ישנים. 12.59 90.5 .OQ -180 70 313 50 *5 13. 19 97 00 Sample Information: 12135 51 12.5 clear, NU odo Stabilization Criteria 21,42 8- CUM **REMARKS:** Volume Calculation Parameter Criteria Diam. Vol. (g/ft) ± 0.1 unit 20,68 pΗ 0.041 ± 3% SC OG 2" 0.163 Turbidity ± 10% Kany Sheen on MWD 4" 0.653 DO ± 0_3 mg/L Note: All measurements are in feet, distance from top of riser. 1.469 ± 10 mV

PREPARED BY:

Groundwater Field Form xls GWFF - TK

EQUIPMENT CALIBRATION LOG

			711	DATE: S/6	Mary Mary	1	V	PREPARED BY:
			,	\		$\backslash\!\!\!\backslash$		ADDITIONAL REMARKS:
		background area					uR/H	Radiation Meter
		open air					%	
		open air				7	ppm	Carbon monoxide
		open air					ppm	☐ Hydrogen sulfide
		open air					%	☐ Oxygen
		zero air					mg/m³	☐ Particulate meter
100% of	96.3% 510pm	100% Satual IIOII	Pun	10050041867 🗶 140200100319 🗆	- FOOT - WOOD I LACOU	0	ָ כ -	Disposed Cygen
	100%	2000/ 51:1:		0807000023281	EACH MODEL HOSSE	P	3	Dissolved Oxygen
factor = 1.0		ppm Iso. Gas			MIII 671		70	_
MIBK response		open air zero			MinRAE 2000		nan	
				6223973				
1715 OR	1413	7 67 @ Sm C73 C	Party	6212375	Ultra Meter 6P	0	mS	Op. Color.
1110		14/2_0000		6213516 💢	Myron L Company	0 70	S	Sp. Cond meter
800 /	118	800		13120C030432				
18	101	100	1000	07110C026405 [Turbidimeter	(
20 / 05	12	20		061200020523423	11000 or	2002	Z T C	Turbidity meter
1.7	3	< 0.4 or 10 for 2100 Q						
10.01	60.0	10.01						
\	10.14	7.00	Server	6212375	Ultra Meter 6P	cô	units	M pH meter
14.6 5.4	3,99	4.00		6213516	Mvron L Company	00		1
SETTINGS	POST CAL. READING	STANDARD	CAL. BY	SERIAL NUMBER	MAKE/MODEL	TIME	STINU	METER TYPE
Rental	ВМ	Instrument Source:	Instrumer			150	perti	Client: DST Pro
	9016	6,3	Dale: May)	100	- フェー	Project No.: 1 2189

Equipment Calibration Log.xls

ATTACHMENT 2

ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L1613787

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Paul Werthman Phone: (716) 856-0599

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Report Date: 05/13/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787 **Report Date:** 05/13/16

Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
MW-1	WATER	301 FRANKLIN STREET OLEAN, NY	05/06/16 11:50	05/06/16
MW-2	WATER	301 FRANKLIN STREET OLEAN, NY	05/06/16 12:53	05/06/16
MW-3	WATER	301 FRANKLIN STREET OLEAN, NY	05/06/16 10:57	05/06/16
MW-4	WATER	301 FRANKLIN STREET OLEAN, NY	05/06/16 12:35	05/06/16
MW-5	WATER	301 FRANKLIN STREET OLEAN, NY	05/06/16 11:22	05/06/16
MW-6	WATER	301 FRANKLIN STREET OLEAN, NY	05/06/16 12:10	05/06/16
DUP	WATER	301 FRANKLIN STREET OLEAN, NY	05/06/16 08:00	05/06/16
TRIP BLANK	WATER	301 FRANKLIN STREET OLEAN, NY	05/06/16 09:00	05/06/16
	MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 DUP	MW-1 WATER MW-2 WATER MW-3 WATER MW-4 WATER MW-5 WATER MW-6 WATER DUP WATER	Client IDMatrixLocationMW-1WATER301 FRANKLIN STREET OLEAN, NYMW-2WATER301 FRANKLIN STREET OLEAN, NYMW-3WATER301 FRANKLIN STREET OLEAN, NYMW-4WATER301 FRANKLIN STREET OLEAN, NYMW-5WATER301 FRANKLIN STREET OLEAN, NYMW-6WATER301 FRANKLIN STREET OLEAN, NYDUPWATER301 FRANKLIN STREET OLEAN, NY	Client ID Matrix Location Date/Time MW-1 WATER 301 FRANKLIN STREET OLEAN, NY 05/06/16 11:50 MW-2 WATER 301 FRANKLIN STREET OLEAN, NY 05/06/16 12:53 MW-3 WATER 301 FRANKLIN STREET OLEAN, NY 05/06/16 10:57 MW-4 WATER 301 FRANKLIN STREET OLEAN, NY 05/06/16 12:35 MW-5 WATER 301 FRANKLIN STREET OLEAN, NY 05/06/16 11:22 MW-6 WATER 301 FRANKLIN STREET OLEAN, NY 05/06/16 12:10 DUP WATER 301 FRANKLIN STREET OLEAN, NY 05/06/16 08:00

Project Name:DST PROPERTIESLab Number:L1613787Project Number:T0189-016-001Report Date:05/13/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at	800-624-9220 with any questions.
-----------------------------------	----------------------------------

Project Name:DST PROPERTIESLab Number:L1613787Project Number:T0189-016-001Report Date:05/13/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/13/16

Melissa Cripps Melissa Cripps

ORGANICS

VOLATILES

Project Name: DST PROPERTIES

Project Number: T0189-016-001

SAMPLE RESULTS

Lab Number: L1613787

Report Date: 05/13/16

Lab ID: L1613787-01

Client ID: MW-1

Sample Location: 301 FRANKLIN STREET OLEAN, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/12/16 15:46

Analyst: PD Date Collected: 05/06/16 11:50 Date Received: 05/06/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: L1613787-01 Date Collected: 05/06/16 11:50

Client ID: MW-1 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 1,4-Dichlorobenzene ND 2.5 0.70 1 ug/l Methyl tert butyl ether ND ug/l 2.5 0.70 1 ND 2.5 1 p/m-Xylene ug/l 0.70 ND o-Xylene 2.5 0.70 1 ug/l Xylenes, Total ND 2.5 0.70 1 ug/l ND 0.70 cis-1,2-Dichloroethene 2.5 1 ug/l 1,2-Dichloroethene, Total ND 2.5 0.70 1 ug/l 1 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND 5.0 1.0 1 ug/l J Acetone 2.9 5.0 1.5 1 ug/l Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND 5.0 1.9 1 ug/l 4-Methyl-2-pentanone ND 5.0 1.0 1 ug/l ND 1.0 1 2-Hexanone ug/l 5.0 Bromochloromethane ND 2.5 0.70 1 ug/l 1,2-Dibromoethane ND 2.0 0.65 1 ug/l 2.5 n-Butylbenzene ND 0.70 ug/l 1 sec-Butylbenzene ND 2.5 0.70 1 ug/l tert-Butylbenzene ND 2.5 0.70 1 ug/l ND 1 1,2-Dibromo-3-chloropropane 2.5 0.70 ug/l Isopropylbenzene ND 2.5 0.70 1 ug/l p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND 2.5 0.70 1 ug/l n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND 2.0 ug/l 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 41. 1 Freon-113 ND 2.5 0.70 1 ug/l ND Methyl cyclohexane ug/l 10 0.40 1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: L1613787-01 Date Collected: 05/06/16 11:50

Client ID: MW-1 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	26	J	ug/l	1
Unknown	7.2	J	ug/l	1
Butane, 2,2-dimethyl-	1.6	NJ	ug/l	1
Butane, 2,3-Dimethyl-	5.6	NJ	ug/l	1
Unknown Aromatic	1.3	J	ug/l	1
Unknown	1.3	J	ug/l	1
Unknown	2.5	J	ug/l	1
Unknown Aromatic	1.3	J	ug/l	1
Unknown Aromatic	2.0	J	ug/l	1
Unknown Aromatic	1.5	J	ug/l	1
Unknown Benzene	1.7	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

L1613787

Project Name: DST PROPERTIES

Project Number: T0189-016-001

SAMPLE RESULTS

Lab Number:

Report Date: 05/13/16

Lab ID: L1613787-02

Client ID: MW-2

Sample Location: 301 FRANKLIN STREET OLEAN, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/12/16 18:56

Analyst: PΚ Date Collected: 05/06/16 12:53

Date Received: 05/06/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	0.88	J	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 05/06/16 12:53

Client ID: MW-2 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 1,4-Dichlorobenzene ND 2.5 0.70 1 ug/l Methyl tert butyl ether ND ug/l 2.5 0.70 1 ND 2.5 1 p/m-Xylene ug/l 0.70 ND o-Xylene 2.5 0.70 1 ug/l Xylenes, Total ND 2.5 0.70 1 ug/l ND 0.70 cis-1,2-Dichloroethene 2.5 1 ug/l 1,2-Dichloroethene, Total ND 2.5 0.70 1 ug/l 1 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND 5.0 1.0 1 ug/l J Acetone 3.7 5.0 1.5 1 ug/l Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND 5.0 1.9 1 ug/l 4-Methyl-2-pentanone ND 5.0 1.0 1 ug/l ND 1.0 1 2-Hexanone ug/l 5.0 Bromochloromethane ND 2.5 0.70 1 ug/l 1,2-Dibromoethane ND 2.0 0.65 1 ug/l 2.5 n-Butylbenzene ND 0.70 ug/l 1 sec-Butylbenzene J 2.5 0.70 1.4 1 ug/l tert-Butylbenzene 1.5 J 2.5 0.70 1 ug/l ND 1 1,2-Dibromo-3-chloropropane 2.5 0.70 ug/l Isopropylbenzene ND 2.5 0.70 1 ug/l p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 2.7 2.5 0.70 1 ug/l n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND 2.0 ug/l 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 41. 1 Freon-113 ND 2.5 0.70 1 ug/l Methyl cyclohexane 5.8 J ug/l 10 0.40 1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: L1613787-02 Date Collected: 05/06/16 12:53

Client ID: MW-2 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	110	J	ug/l	1
Butane, 2,3-Dimethyl-	11	NJ	ug/l	1
Unknown Cycloalkane	16	J	ug/l	1
Unknown Cycloalkane	14	J	ug/l	1
Unknown Cycloalkane	9.0	J	ug/l	1
Unknown Cycloalkane	8.6	J	ug/l	1
Unknown Cycloalkane	7.1	J	ug/l	1
Unknown	15	J	ug/l	1
Unknown Aromatic	10	J	ug/l	1
Unknown	10	J	ug/l	1
Unknown Naphthalene	8.5	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	96		70-130	

Project Name: DST PROPERTIES

Project Number: T0189-016-001

SAMPLE RESULTS

Lab Number: L1613787

Report Date: 05/13/16

Lab ID: L1613787-03

Client ID: MW-3

Sample Location: 301 FRANKLIN STREET OLEAN, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/12/16 19:19

Analyst: PΚ Date Collected: 05/06/16 10:57 Date Received: 05/06/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 05/06/16 10:57

Client ID: MW-3 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 1,4-Dichlorobenzene ND 2.5 0.70 1 ug/l Methyl tert butyl ether ND ug/l 2.5 0.70 1 ND 2.5 1 p/m-Xylene ug/l 0.70 ND o-Xylene 2.5 0.70 1 ug/l Xylenes, Total ND 2.5 0.70 1 ug/l ND cis-1,2-Dichloroethene 2.5 0.70 1 ug/l 1,2-Dichloroethene, Total ND 2.5 0.70 1 ug/l 1 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND 5.0 1.0 1 ug/l ND Acetone 5.0 1.5 1 ug/l Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND 5.0 1.9 1 ug/l 4-Methyl-2-pentanone ND 5.0 1.0 1 ug/l ND 1 2-Hexanone ug/l 5.0 1.0 Bromochloromethane ND 2.5 0.70 1 ug/l 1,2-Dibromoethane ND 2.0 0.65 1 ug/l 2.5 n-Butylbenzene ND 0.70 ug/l 1 sec-Butylbenzene ND 2.5 0.70 1 ug/l tert-Butylbenzene ND 2.5 0.70 1 ug/l ND 1 1,2-Dibromo-3-chloropropane 2.5 0.70 ug/l Isopropylbenzene ND 2.5 0.70 1 ug/l p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND 2.5 0.70 1 ug/l n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND 2.0 ug/l 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 41. 1 Freon-113 ND 2.5 0.70 1 ug/l ND Methyl cyclohexane ug/l 10 0.40 1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: L1613787-03 Date Collected: 05/06/16 10:57

Client ID: MW-3 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	10	J	ug/l	1
Unknown	8.6	J	ug/l	1
Unknown Aromatic	1.4	J	ug/l	1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	93		70-130			
Toluene-d8	94		70-130			
4-Bromofluorobenzene	99		70-130			
Dibromofluoromethane	98		70-130			

Project Name: DST PROPERTIES

Project Number: T0189-016-001

SAMPLE RESULTS

L1613787

Lab Number:

Report Date: 05/13/16

Lab ID: L1613787-04

Client ID: MW-4

Sample Location: 301 FRANKLIN STREET OLEAN, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/12/16 19:43

Analyst: PΚ Date Collected: 05/06/16 12:35

Date Received: 05/06/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 05/06/16 12:35

Client ID: MW-4 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 1,4-Dichlorobenzene ND 2.5 0.70 1 ug/l Methyl tert butyl ether ND ug/l 2.5 0.70 1 ND 2.5 1 p/m-Xylene ug/l 0.70 ND o-Xylene 2.5 0.70 1 ug/l Xylenes, Total ND 2.5 0.70 1 ug/l ND 0.70 cis-1,2-Dichloroethene 2.5 1 ug/l 1,2-Dichloroethene, Total ND 2.5 0.70 1 ug/l 1 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND 5.0 1.0 1 ug/l J Acetone 1.6 5.0 1.5 1 ug/l Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND 5.0 1.9 1 ug/l 4-Methyl-2-pentanone ND 5.0 1.0 1 ug/l ND 1.0 1 2-Hexanone ug/l 5.0 Bromochloromethane ND 2.5 0.70 1 ug/l 1,2-Dibromoethane ND 2.0 0.65 1 ug/l 2.5 n-Butylbenzene ND 0.70 ug/l 1 sec-Butylbenzene ND 2.5 0.70 1 ug/l tert-Butylbenzene ND 2.5 0.70 1 ug/l ND 1 1,2-Dibromo-3-chloropropane 2.5 0.70 ug/l Isopropylbenzene ND 2.5 0.70 1 ug/l p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 1.2 J 2.5 0.70 1 ug/l n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND 2.0 ug/l 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 41. 1 Freon-113 ND 2.5 0.70 1 ug/l Methyl cyclohexane 1.5 J ug/l 10 0.40 1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: L1613787-04 Date Collected: 05/06/16 12:35

Client ID: MW-4 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	38	J	ug/l	1
Sulfur Dioxide	8.3	NJ	ug/l	1
Butane, 2,3-Dimethyl-	3.5	NJ	ug/l	1
Pentane, 2,3-dimethyl-	3.0	NJ	ug/l	1
Unknown	2.7	J	ug/l	1
Unknown Cycloalkane	2.7	J	ug/l	1
Unknown Cycloalkane	3.6	J	ug/l	1
Unknown Cycloalkane	3.2	J	ug/l	1
Unknown Benzene	3.5	J	ug/l	1
Unknown Aromatic	5.0	J	ug/l	1
Unknown Naphthalene	2.6	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

L1613787

Project Name: DST PROPERTIES

Project Number: T0189-016-001

SAMPLE RESULTS

Report Date: 05/13/16

Lab Number:

Lab ID: L1613787-05

Client ID: MW-5

Sample Location: 301 FRANKLIN STREET OLEAN, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/12/16 20:06

Analyst: PΚ

Date Collected:	05/06/16 11:22
Date Received:	05/06/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DST PROPERTIES **Lab Number:** L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 05/06/16 11:22

Client ID: MW-5 Date Received: 05/06/16 Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	2.4	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Tentatively Identified Compounds				
Total TIC Compounds	7.6	J	ug/l	1
Unknown	7.6	J	ug/l	1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 05/06/16 11:22

Client ID: MW-5 Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	93		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	98		70-130	

Project Name: DST PROPERTIES

Project Number: T0189-016-001

SAMPLE RESULTS

Lab Number: L1613787

Report Date: 05/13/16

SAMPLE RESUL

Lab ID: L1613787-06

Client ID: MW-6

Sample Location: 301 FRANKLIN STREET OLEAN, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/12/16 20:29

Analyst: PK

Date Collected:	05/06/16 12:10
Date Received:	05/06/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	0.84	J	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 05/06/16 12:10

Client ID: MW-6 Date Received: 05/06/16 Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	1.5	J	ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	0.82	J	ug/l	2.5	0.70	1
tert-Butylbenzene	1.2	J	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	2.5		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.35	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	41.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.66	J	ug/l	10	0.40	1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: L1613787-06 Date Collected: 05/06/16 12:10

Client ID: MW-6 Date Received: 05/06/16 Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	110	J	ug/l	1
Unknown	8.3	J	ug/l	1
Unknown	61	J	ug/l	1
Unknown Benzene	4.6	J	ug/l	1
Unknown Benzene	3.5	J	ug/l	1
Unknown Aromatic	4.1	J	ug/l	1
Unknown Benzene	4.4	J	ug/l	1
Unknown Aromatic	4.2	J	ug/l	1
Unknown Aromatic	7.3	J	ug/l	1
Unknown Aromatic	3.5	J	ug/l	1
Unknown Naphthalene	6.1	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	99		70-130	

Project Name: DST PROPERTIES

Project Number: T0189-016-001

SAMPLE RESULTS

Lab Number: L1613787

Report Date: 05/13/16

Client ID: DUP

Lab ID:

Sample Location: 301 FRANKLIN STREET OLEAN, NY

L1613787-07

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/12/16 20:52

Analyst: PK

Date Collected:	05/06/16 08:00
Date Received:	05/06/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 05/06/16 08:00

Client ID: DUP Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab 1,4-Dichlorobenzene ND 2.5 0.70 1 ug/l Methyl tert butyl ether ND ug/l 2.5 0.70 1 ND 2.5 1 p/m-Xylene ug/l 0.70 ND o-Xylene 2.5 0.70 1 ug/l Xylenes, Total ND 2.5 0.70 1 ug/l ND cis-1,2-Dichloroethene 2.5 0.70 1 ug/l 1,2-Dichloroethene, Total ND 2.5 0.70 1 ug/l 1 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND 5.0 1.0 1 ug/l ND Acetone 5.0 1.5 1 ug/l Carbon disulfide J 1.4 ug/l 5.0 1.0 1 2-Butanone ND 5.0 1.9 1 ug/l 4-Methyl-2-pentanone ND 5.0 1.0 1 ug/l ND 1 2-Hexanone ug/l 5.0 1.0 Bromochloromethane ND 2.5 0.70 1 ug/l 1,2-Dibromoethane ND 2.0 0.65 1 ug/l n-Butylbenzene ND 0.70 ug/l 2.5 1 sec-Butylbenzene ND 2.5 0.70 1 ug/l tert-Butylbenzene ND 2.5 0.70 1 ug/l ND 1 1,2-Dibromo-3-chloropropane 2.5 0.70 ug/l Isopropylbenzene ND 2.5 0.70 1 ug/l p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 0.74 J 2.5 0.70 1 ug/l n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND 2.0 ug/l 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 41. 1 Freon-113 ND 2.5 0.70 1 ug/l ND Methyl cyclohexane ug/l 10 0.40 1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: L1613787-07 Date Collected: 05/06/16 08:00

Client ID: DUP Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	59	J	ug/l	1
Unknown	10	J	ug/l	1
Unknown	38	J	ug/l	1
Unknown	1.6	J	ug/l	1
Unknown Aromatic	1.2	J	ug/l	1
Unknown	1.0	J	ug/l	1
Unknown	1.2	J	ug/l	1
Unknown	2.0	J	ug/l	1
Unknown Aromatic	1.2	J	ug/l	1
Benzene, pentamethyl-	1.6	NJ	ug/l	1
Unknown Aromatic	1.5	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	93		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	99		70-130	

Project Name: DST PROPERTIES

Project Number: T0189-016-001

SAMPLE RESULTS

Lab Number: L1613787

Report Date: 05/13/16

Result

Lab ID: L1613787-08

Client ID: TRIP BLANK

Sample Location: 301 FRANKLIN STREET OLEAN, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/12/16 21:16

Analyst: PΚ

Parameter

Date Collected: 05/06/16 09:00

Date Received: 05/06/16 Field Prep: Not Specified

MDL

Dilution Factor

ug/l ug/l ug/l ug/l ug/l ug/l ug/l	2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (0.70 0.70 0.70 0.13 0.15 0.50	1 1 1 1 1
ug/l ug/l ug/l ug/l ug/l ug/l ug/l	2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (0.70 0.70 0.13 0.13 0.15 0.50	1 1 1 1
ug/l (1) ug/l (2) ug/l (2) ug/l (3)	2.5 (c) 0.50 (d) 1.0 (d) 0.50 (d) 1.5 (d) 0.50 (d) 1.5 (e) 0.50 (e	0.70 0.13 0.13 0.15 0.50	1 1 1
ug/l (dug/l (dug	0.50 (1.0 (0.50 (1.5 (1.5 (1.5 (1.5 (1.5 (1.5 (1.5 (1.5	0.13 0.13 0.15 0.50	1
ug/l (dug/l (dug	1.0 (c) 0.50 (d) 1.5 (d) 0.50 (d)	0.13 0.15 0.50	1
ug/l (0.50 (1.5 (1.5 (1.50)).50 (1.50)	0.15 0.50	
ug/l ug/l (1.5 (0.50	1
ug/l ().50		
ıg/l		n 10	1
3	0.5	0.18	1
ıg/l	2.5	0.70	1
	2.5	0.70	1
ıg/l ().50	0.13	1
ıg/l	2.5	0.70	1
ıg/l ().50	0.19	1
ıg/l ().50	0.16	1
ıg/l ().50	0.14	1
ıg/l ().50	0.14	1
ıg/l	2.0	0.65	1
ıg/l ().50	0.14	1
ıg/l ().50	0.16	1
ıg/l	2.5	0.70	1
ıg/l	2.5	0.70	1
ıg/l	2.5	0.70	1
ıg/l	2.5	0.70	1
ıg/l	1.0	0.07	1
ıg/l	2.5	0.70	1
ıg/l ().50	0.14	1
ıg/l	2.5	0.70	1
ıg/l (0.50	0.18	1
	2.5	0.70	1
ıg/l	2.5 (0.70	1
	ug/l ug/l ug/l	ug/l 2.5 ug/l 2.5 ug/l 2.5 ug/l 2.5 ug/l 1.0 ug/l 2.5 ug/l 2.5	ug/l 2.5 0.70 ug/l 2.5 0.70 ug/l 2.5 0.70 ug/l 1.0 0.07 ug/l 2.5 0.70 ug/l 0.50 0.14 ug/l 2.5 0.70 ug/l 0.50 0.18 ug/l 2.5 0.70

Qualifier

Units

RL

Project Name: DST PROPERTIES **Lab Number:** L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 05/06/16 09:00

Client ID: TRIP BLANK Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	2.3	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Tentatively Identified Compounds				
Total TIC Compounds	23	J	ug/l	1
Unknown	23	J	ug/l	1

Project Name: DST PROPERTIES Lab Number: L1613787

Project Number: T0189-016-001 **Report Date:** 05/13/16

SAMPLE RESULTS

Lab ID: L1613787-08 Date Collected: 05/06/16 09:00

Client ID: TRIP BLANK Date Received: 05/06/16
Sample Location: 301 FRANKLIN STREET OLEAN, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	98		70-130	

L1613787

05/13/16

Project Name:DST PROPERTIESLab Number:Project Number:T0189-016-001Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/16 10:21

Analyst: PD

Parameter	Result	Qualifier U	Inits	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s	s): 01	Batch:	WG893396-3
Methylene chloride	ND		ug/l	2.5	0.70
1,1-Dichloroethane	ND		ug/l	2.5	0.70
Chloroform	ND		ug/l	2.5	0.70
Carbon tetrachloride	ND		ug/l	0.50	0.13
1,2-Dichloropropane	ND		ug/l	1.0	0.13
Dibromochloromethane	ND		ug/l	0.50	0.15
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	2.5	0.70
Trichlorofluoromethane	ND		ug/l	2.5	0.70
1,2-Dichloroethane	ND		ug/l	0.50	0.13
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14
Bromoform	ND		ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
Chloromethane	ND		ug/l	2.5	0.70
Bromomethane	ND		ug/l	2.5	0.70
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	2.5	0.70
1,1-Dichloroethene	ND		ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Trichloroethene	ND		ug/l	0.50	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70

Project Name: DST PROPERTIES
Project Number: T0189-016-001

Lab Number: L1613787 **Report Date:** 05/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/16 10:21

Analyst: PD

Parameter	Result	Qualifier L	Jnits	RL	MDL
Volatile Organics by GC/MS	· Westborough Lal	o for sample(s): 01	Batch:	WG893396-3
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
Xylenes, Total	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
tert-Butylbenzene	ND		ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
p-Isopropyltoluene	ND		ug/l	2.5	0.70
Naphthalene	ND		ug/l	2.5	0.70
n-Propylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70

L1613787

Project Name: DST PROPERTIES
Project Number: T0189-016-001

T0189-016-001 Report Date:

Report Date: 05/13/16

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/16 10:21

Analyst: PD

Parameter	Result	Qualifier Un	ts	RL	MDL	
Volatile Organics by GC/MS - Wo	estborough La	b for sample(s)	: 01	Batch:	WG893396-3	
Methyl Acetate	ND	uį	g/l	2.0	0.23	
Cyclohexane	ND	u	g/l	10	0.27	
1,4-Dioxane	ND	uį	g/l	250	41.	
Freon-113	ND	uį	g/l	2.5	0.70	
Methyl cyclohexane	ND	uţ	g/l	10	0.40	

Tentatively Identified Compounds				
Total TIC Compounds	3.8	J	ug/l	
Unknown	3.8	J	ug/l	

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	92		70-130			
Toluene-d8	97		70-130			
4-Bromofluorobenzene	99		70-130			
Dibromofluoromethane	98		70-130			

Project Name: DST PROPERTIES Project Number: T0189-016-001

Lab Number: L1613787

Report Date: 05/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8260C 05/12/16 18:33

Analyst: PΚ

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	02-08 Batch:	WG893621-3
Methylene chloride	ND	ug/	2.5	0.70
1,1-Dichloroethane	ND	ug/	2.5	0.70
Chloroform	ND	ug/	2.5	0.70
Carbon tetrachloride	ND	ug/	0.50	0.13
1,2-Dichloropropane	ND	ug/	1.0	0.13
Dibromochloromethane	ND	ug/	0.50	0.15
1,1,2-Trichloroethane	ND	ug/	1.5	0.50
Tetrachloroethene	ND	ug/	0.50	0.18
Chlorobenzene	ND	ug/	2.5	0.70
Trichlorofluoromethane	ND	ug/	2.5	0.70
1,2-Dichloroethane	ND	ug/	0.50	0.13
1,1,1-Trichloroethane	ND	ug/	2.5	0.70
Bromodichloromethane	ND	ug/	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/	0.50	0.14
Bromoform	ND	ug/	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/	0.50	0.14
Benzene	ND	ug/	0.50	0.16
Toluene	ND	ug/	2.5	0.70
Ethylbenzene	ND	ug/	2.5	0.70
Chloromethane	ND	ug/	2.5	0.70
Bromomethane	ND	ug/	2.5	0.70
Vinyl chloride	ND	ug/	1.0	0.07
Chloroethane	ND	ug/	2.5	0.70
1,1-Dichloroethene	ND	ug/	0.50	0.14
trans-1,2-Dichloroethene	ND	ug/	2.5	0.70
Trichloroethene	ND	ug/	0.50	0.18
1,2-Dichlorobenzene	ND	ug/	2.5	0.70

Project Name: DST PROPERTIES
Project Number: T0189-016-001

Lab Number: L1613787 **Report Date:** 05/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/16 18:33

Analyst: PK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s): 02-08	Batch:	WG893621-3
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

Project Name: DST PROPERTIES
Project Number: T0189-016-001

Lab Number:

L1613787

Report Date:

05/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/12/16 18:33

Analyst: PK

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS - West	borough La	b for sample(s):	02-08 Batch:	WG893621-3	
Methyl Acetate	ND	ug/	l 2.0	0.23	
Cyclohexane	ND	ug/	l 10	0.27	
1,4-Dioxane	ND	ug/	l 250	41.	
Freon-113	ND	ug/	l 2.5	0.70	
Methyl cyclohexane	ND	ug/	l 10	0.40	

Tentatively Identified Compounds				
Total TIC Compounds	4.8	J	ug/l	
Sulfur Dioxide	4.8	NJ	ug/l	

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	94		70-130			
Toluene-d8	95		70-130			
4-Bromofluorobenzene	99		70-130			
Dibromofluoromethane	98		70-130			

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 0	1 Batch: WG	893396-1	WG893396-2		
Methylene chloride	108		110		70-130	2	20
1,1-Dichloroethane	104		105		70-130	1	20
Chloroform	104		106		70-130	2	20
2-Chloroethylvinyl ether	65	Q	61	Q	70-130	6	20
Carbon tetrachloride	93		96		63-132	3	20
1,2-Dichloropropane	104		104		70-130	0	20
Dibromochloromethane	93		92		63-130	1	20
1,1,2-Trichloroethane	103		103		70-130	0	20
Tetrachloroethene	105		107		70-130	2	20
Chlorobenzene	102		104		75-130	2	20
Trichlorofluoromethane	100		101		62-150	1	20
1,2-Dichloroethane	102		102		70-130	0	20
1,1,1-Trichloroethane	107		107		67-130	0	20
Bromodichloromethane	106		104		67-130	2	20
trans-1,3-Dichloropropene	89		88		70-130	1	20
cis-1,3-Dichloropropene	94		94		70-130	0	20
1,1-Dichloropropene	106		108		70-130	2	20
Bromoform	85		83		54-136	2	20
1,1,2,2-Tetrachloroethane	100		98		67-130	2	20
Benzene	106		106		70-130	0	20
Toluene	101		102		70-130	1	20

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
latile Organics by GC/MS - Westborough	h Lab Associated	sample(s): 0	1 Batch: WG	893396-1	WG893396-2			
Ethylbenzene	101		102		70-130	1		20
Chloromethane	91		94		64-130	3		20
Bromomethane	96		97		39-139	1		20
Vinyl chloride	103		104		55-140	1		20
Chloroethane	105		105		55-138	0		20
1,1-Dichloroethene	108		110		61-145	2		20
trans-1,2-Dichloroethene	107		109		70-130	2		20
Trichloroethene	102		104		70-130	2		20
1,2-Dichlorobenzene	104		104		70-130	0		20
1,3-Dichlorobenzene	102		104		70-130	2		20
1,4-Dichlorobenzene	101		103		70-130	2		20
Methyl tert butyl ether	108		106		63-130	2		20
p/m-Xylene	105		106		70-130	1		20
o-Xylene	106		108		70-130	2		20
cis-1,2-Dichloroethene	108		109		70-130	1		20
Dibromomethane	105		105		70-130	0		20
1,2,3-Trichloropropane	99		98		64-130	1		20
Acrylonitrile	107		107		70-130	0		20
Isopropyl Ether	102		102		70-130	0		20
tert-Butyl Alcohol	121		112		70-130	8		20
Styrene	109		111		70-130	2		20

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
platile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 0	1 Batch: WG	893396-1	WG893396-2			
Dichlorodifluoromethane	92		92		36-147	0	20	
Acetone	108		102		58-148	6	20	
Carbon disulfide	114		116		51-130	2	20	
2-Butanone	95		91		63-138	4	20	
Vinyl acetate	95		93		70-130	2	20	
4-Methyl-2-pentanone	92		88		59-130	4	20	
2-Hexanone	89		86		57-130	3	20	
Acrolein	100		100		40-160	0	20	
Bromochloromethane	109		110		70-130	1	20	
2,2-Dichloropropane	96		97		63-133	1	20	
1,2-Dibromoethane	106		106		70-130	0	20	
1,3-Dichloropropane	103		102		70-130	1	20	
1,1,1,2-Tetrachloroethane	104		104		64-130	0	20	
Bromobenzene	104		105		70-130	1	20	
n-Butylbenzene	102		103		53-136	1	20	
sec-Butylbenzene	102		104		70-130	2	20	
tert-Butylbenzene	89		91		70-130	2	20	
o-Chlorotoluene	99		102		70-130	3	20	
p-Chlorotoluene	100		102		70-130	2	20	
1,2-Dibromo-3-chloropropane	99		100		41-144	1	20	
Hexachlorobutadiene	116		115		63-130	1	20	

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG	893396-1	WG893396-2			
Isopropylbenzene	103		104		70-130	1	20	
p-Isopropyltoluene	96		97		70-130	1	20	
Naphthalene	99		92		70-130	7	20	
n-Propylbenzene	100		101		69-130	1	20	
1,2,3-Trichlorobenzene	117		108		70-130	8	20	
1,2,4-Trichlorobenzene	113		108		70-130	5	20	
1,3,5-Trimethylbenzene	102		103		64-130	1	20	
1,2,4-Trimethylbenzene	102		102		70-130	0	20	
Methyl Acetate	99		97		70-130	2	20	
Ethyl Acetate	101		97		70-130	4	20	
Cyclohexane	95		96		70-130	1	20	
Ethyl-Tert-Butyl-Ether	106		104		70-130	2	20	
Tertiary-Amyl Methyl Ether	93		91		66-130	2	20	
1,4-Dioxane	122		116		56-162	5	20	
Freon-113	105		107		70-130	2	20	
1,4-Diethylbenzene	95		96		70-130	1	20	
4-Ethyltoluene	102		104		70-130	2	20	
1,2,4,5-Tetramethylbenzene	93		94		70-130	1	20	
Ethyl ether	104		104		59-134	0	20	
trans-1,4-Dichloro-2-butene	74		72		70-130	3	20	
lodomethane	63	Q	76		70-130	19	20	

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number:

L1613787

Report Date:

Parameter	LCS %Recovery	Qual	LC %Rec			ecovery imits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01 Batcl	n: WG8933	96-1 WG893	3396-2				
Methyl cyclohexane	105		1	06	7	0-130	1		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	%Recovery Qual		Qual	Criteria	
1,2-Dichloroethane-d4	93		92		70-130	
Toluene-d8	97		98		70-130	
4-Bromofluorobenzene	98		99		70-130	
Dibromofluoromethane	100		100		70-130	

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	02-08 Batch:	WG893621-1	WG893621-2			
Methylene chloride	112		107		70-130	5		20
1,1-Dichloroethane	105		100		70-130	5		20
Chloroform	106		102		70-130	4		20
2-Chloroethylvinyl ether	57	Q	60	Q	70-130	5		20
Carbon tetrachloride	89		85		63-132	5		20
1,2-Dichloropropane	105		102		70-130	3		20
Dibromochloromethane	94		93		63-130	1		20
1,1,2-Trichloroethane	103		102		70-130	1		20
Tetrachloroethene	103		98		70-130	5		20
Chlorobenzene	103		99		75-130	4		20
Trichlorofluoromethane	88		83		62-150	6		20
1,2-Dichloroethane	103		101		70-130	2		20
1,1,1-Trichloroethane	104		98		67-130	6		20
Bromodichloromethane	106		103		67-130	3		20
trans-1,3-Dichloropropene	91		88		70-130	3		20
cis-1,3-Dichloropropene	95		93		70-130	2		20
1,1-Dichloropropene	103		98		70-130	5		20
Bromoform	90		88		54-136	2		20
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20
Benzene	106		103		70-130	3		20
Toluene	101		97		70-130	4		20

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	02-08 Batch:	WG893621-1	WG893621-2			
Ethylbenzene	101		95		70-130	6		20
Chloromethane	94		59	Q	64-130	46	Q	20
Bromomethane	59		72		39-139	20		20
Vinyl chloride	98		89		55-140	10		20
Chloroethane	105		101		55-138	4		20
1,1-Dichloroethene	103		99		61-145	4		20
trans-1,2-Dichloroethene	107		104		70-130	3		20
Trichloroethene	102		99		70-130	3		20
1,2-Dichlorobenzene	106		102		70-130	4		20
1,3-Dichlorobenzene	105		99		70-130	6		20
1,4-Dichlorobenzene	104		99		70-130	5		20
Methyl tert butyl ether	111		112		63-130	1		20
p/m-Xylene	105		99		70-130	6		20
o-Xylene	107		102		70-130	5		20
cis-1,2-Dichloroethene	111		106		70-130	5		20
Dibromomethane	107		105		70-130	2		20
1,2,3-Trichloropropane	100		99		64-130	1		20
Acrylonitrile	108		108		70-130	0		20
Isopropyl Ether	105		102		70-130	3		20
tert-Butyl Alcohol	121		114		70-130	6		20
Styrene	111		106		70-130	5		20

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-08 Batch:	WG893621-1	WG893621-2			
Dichlorodifluoromethane	83		79		36-147	5		20
Acetone	114		112		58-148	2		20
Carbon disulfide	110		105		51-130	5		20
2-Butanone	103		106		63-138	3		20
Vinyl acetate	98		98		70-130	0		20
4-Methyl-2-pentanone	93		93		59-130	0		20
2-Hexanone	92		91		57-130	1		20
Acrolein	96		99		40-160	3		20
Bromochloromethane	111		109		70-130	2		20
2,2-Dichloropropane	94		90		63-133	4		20
1,2-Dibromoethane	107		105		70-130	2		20
1,3-Dichloropropane	103		102		70-130	1		20
1,1,1,2-Tetrachloroethane	105		102		64-130	3		20
Bromobenzene	107		102		70-130	5		20
n-Butylbenzene	100		93		53-136	7		20
sec-Butylbenzene	99		93		70-130	6		20
tert-Butylbenzene	88		82		70-130	7		20
o-Chlorotoluene	101		96		70-130	5		20
p-Chlorotoluene	102		96		70-130	6		20
1,2-Dibromo-3-chloropropane	98		97		41-144	1		20
Hexachlorobutadiene	106		102		63-130	4		20

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number: L1613787

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	02-08 Batch:	WG893621-1	WG893621-2			
Isopropylbenzene	102		96		70-130	6		20
p-Isopropyltoluene	95		89		70-130	7		20
Naphthalene	109		104		70-130	5		20
n-Propylbenzene	99		93		69-130	6		20
1,2,3-Trichlorobenzene	112		117		70-130	4		20
1,2,4-Trichlorobenzene	112		113		70-130	1		20
1,3,5-Trimethylbenzene	103		96		64-130	7		20
1,2,4-Trimethylbenzene	103		97		70-130	6		20
Methyl Acetate	98		98		70-130	0		20
Ethyl Acetate	104		103		70-130	1		20
Cyclohexane	86		82		70-130	5		20
Ethyl-Tert-Butyl-Ether	108		108		70-130	0		20
Tertiary-Amyl Methyl Ether	96		96		66-130	0		20
1,4-Dioxane	124		113		56-162	9		20
Freon-113	96		92		70-130	4		20
1,4-Diethylbenzene	93		89		70-130	4		20
4-Ethyltoluene	103		97		70-130	6		20
1,2,4,5-Tetramethylbenzene	94		90		70-130	4		20
Ethyl ether	105		105		59-134	0		20
trans-1,4-Dichloro-2-butene	86		81		70-130	6		20
lodomethane	66	Q	77		70-130	15		20

Project Name: DST PROPERTIES

Project Number: T0189-016-001

Lab Number:

L1613787

Report Date:

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-08	Batch:	WG893621-1	WG893621-2				
Methyl cyclohexane	95			91		70-130	4		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	90		93		70-130	
Toluene-d8	97		96		70-130	
4-Bromofluorobenzene	100		99		70-130	
Dibromofluoromethane	100		101		70-130	

Project Name: DST PROPERTIES
Project Number: T0189-016-001

Lab Number:

L1613787

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS	- Westborough L	ab Assoc	ciated sample(s	s): 01 QC Ba	tch ID: WG893396-4	WG893396-	QC Sample: L16	13787-0	O1 Client ID: MW-1
Methylene chloride	ND	10	11	115	12	122	70-130	9	20
1,1-Dichloroethane	ND	10	11	114	12	119	70-130	9	20
Chloroform	ND	10	11	111	12	117	70-130	9	20
Carbon tetrachloride	ND	10	10	102	11	109	63-132	10	20
1,2-Dichloropropane	ND	10	11	114	12	119	70-130	9	20
Dibromochloromethane	ND	10	9.8	98	10	104	63-130	2	20
1,1,2-Trichloroethane	ND	10	11	112	12	117	70-130	9	20
Tetrachloroethene	ND	10	11	109	12	118	70-130	9	20
Chlorobenzene	ND	10	11	107	11	114	75-130	0	20
Trichlorofluoromethane	ND	10	12	116	12	116	62-150	0	20
1,2-Dichloroethane	ND	10	11	111	12	116	70-130	9	20
1,1,1-Trichloroethane	ND	10	12	116	12	123	67-130	0	20
Bromodichloromethane	ND	10	11	114	12	120	67-130	9	20
trans-1,3-Dichloropropene	ND	10	9.5	95	10	100	70-130	5	20
cis-1,3-Dichloropropene	ND	10	9.7	97	10	103	70-130	3	20
1,1-Dichloropropene	ND	10	12	118	12	124	70-130	0	20
Bromoform	ND	10	9.1	91	10	100	54-136	9	20
1,1,2,2-Tetrachloroethane	ND	10	12	116	12	121	67-130	0	20
Benzene	ND	10	12	115	12	121	70-130	0	20
Toluene	ND	10	11	106	11	113	70-130	0	20
Ethylbenzene	ND	10	11	109	12	115	70-130	9	20

Project Name: DST PROPERTIES
Project Number: T0189-016-001

Lab Number:

L1613787

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery imits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS -	Westborough	Lab Asso	ociated sample(s	s): 01 QC Ba	atch ID: WG	893396-4	WG893396-5	QC Sam	ple: L16	13787-0	1 Clie	nt ID: MW-1
Chloromethane	ND	10	5.9	59	Q	12	124	6	4-130	68	Q	20
Bromomethane	ND	10	4.9	49		5.9	59	3	9-139	19		20
Vinyl chloride	ND	10	12	116		13	127	5	5-140	8		20
Chloroethane	ND	10	10	101		12	117	5	5-138	18		20
1,1-Dichloroethene	ND	10	12	116		12	125	6	1-145	0		20
trans-1,2-Dichloroethene	ND	10	11	114		12	124	7	0-130	9		20
Trichloroethene	ND	10	11	112		12	118	7	0-130	9		20
1,2-Dichlorobenzene	ND	10	11	112		12	120	7	0-130	9		20
1,3-Dichlorobenzene	ND	10	10	105		11	114	7	0-130	10		20
1,4-Dichlorobenzene	ND	10	10	104		11	113	7	0-130	10		20
Methyl tert butyl ether	ND	10	12	120		13	128	6	3-130	8		20
p/m-Xylene	ND	20	22	110		24	118	7	0-130	9		20
o-Xylene	ND	20	22	112		24	121	7	0-130	9		20
cis-1,2-Dichloroethene	ND	10	11	114		12	123	7	0-130	9		20
Dibromomethane	ND	10	11	115		12	120	7	0-130	9		20
1,2,3-Trichloropropane	ND	10	11	113		12	118	6	4-130	9		20
Acrylonitrile	ND	10	12	123		13	133	Q 7	0-130	8		20
Isopropyl Ether	ND	10	12	115		12	119	7	0-130	0		20
tert-Butyl Alcohol	6.0J	50	75	150	Q	79	158	Q 7	0-130	5		20
Styrene	ND	20	23	116		25	124	7	0-130	8		20
Dichlorodifluoromethane	ND	10	10	106		10	105	3	6-147	0		20

Project Name: DST PROPERTIES
Project Number: T0189-016-001

Lab Number:

L1613787

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ound	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS	- Westborough	Lab Asso	ciated sample(s	s): 01 QC Ba	tch ID: WG89	93396-4	WG893396-5	QC S	Sample: L16	13787-0	1 Clie	nt ID: MW-1
Acetone	2.9J	10	15	151	Q	15	151	Q	58-148	0		20
Carbon disulfide	ND	10	12	126		13	133	Q	51-130	8		20
2-Butanone	ND	10	12	116		12	119		63-138	0		20
Vinyl acetate	ND	10	11	112		11	115		70-130	0		20
4-Methyl-2-pentanone	ND	10	12	118		12	122		59-130	0		20
2-Hexanone	ND	10	12	125		13	130		57-130	8		20
Acrolein	ND	10	15	153		15	153		40-160	0		20
Bromochloromethane	ND	10	11	113		12	121		70-130	9		20
2,2-Dichloropropane	ND	10	9.5	95		10	102		63-133	5		20
1,2-Dibromoethane	ND	10	11	113		12	120		70-130	9		20
1,3-Dichloropropane	ND	10	11	113		12	117		70-130	9		20
1,1,1,2-Tetrachloroethane	ND	10	11	108		12	116		64-130	9		20
Bromobenzene	ND	10	11	107		12	115		70-130	9		20
n-Butylbenzene	ND	10	10	103		11	111		53-136	10		20
sec-Butylbenzene	ND	10	10	105		11	113		70-130	10		20
tert-Butylbenzene	ND	10	9.9	99		11	106		70-130	11		20
o-Chlorotoluene	ND	10	10	103		11	110		70-130	10		20
p-Chlorotoluene	ND	10	10	104		11	111		70-130	10		20
1,2-Dibromo-3-chloropropane	ND	10	12	118		12	123		41-144	0		20
Hexachlorobutadiene	ND	10	10	101		11	113		63-130	10		20
sopropylbenzene	ND	10	11	108		12	116		70-130	9		20

Project Name: DST PROPERTIES
Project Number: T0189-016-001

Lab Number:

L1613787

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS	- Westborough	Lab Ass	ociated sample(s): 01 QC	Batch ID: W	'G893396-4	WG893396-	5 QC	Sample: L16	13787-0)1 Clie	ent ID: MW-1
p-Isopropyltoluene	ND	10	9.7	97		10	105		70-130	3		20
Naphthalene	ND	10	17	171	Q	19	186	Q	70-130	11		20
n-Propylbenzene	ND	10	10	105		11	112		69-130	10		20
1,2,3-Trichlorobenzene	ND	10	14	145	Q	16	162	Q	70-130	13		20
1,2,4-Trichlorobenzene	ND	10	13	135	Q	14	143	Q	70-130	7		20
1,3,5-Trimethylbenzene	ND	10	10	106		11	113		64-130	10		20
1,2,4-Trimethylbenzene	ND	10	11	106		11	115		70-130	0		20
Methyl Acetate	ND	10	11	112		11	111		70-130	0		20
Ethyl Acetate	ND	10	12	117		12	119		70-130	0		20
Cyclohexane	ND	10	11	108		11	110		70-130	0		20
Ethyl-Tert-Butyl-Ether	ND	10	12	120		13	127		70-130	8		20
Tertiary-Amyl Methyl Ether	ND	10	11	106		11	114		66-130	0		20
1,4-Dioxane	ND	500	1200	241	Q	750	149		56-162	46	Q	20
Freon-113	ND	10	11	114		12	119		70-130	9		20
1,4-Diethylbenzene	ND	10	9.6	96		10	105		70-130	4		20
4-Ethyltoluene	ND	10	11	106		11	114		70-130	0		20
1,2,4,5-Tetramethylbenzene	ND	10	10	101		11	111		70-130	10		20
Ethyl ether	ND	10	11	108		12	118		59-134	9		20
rans-1,4-Dichloro-2-butene	ND	10	9.2	93		10	102		70-130	8		20
Methyl cyclohexane	ND	10	11	114		12	121		70-130	9		20

Project Name: DST PROPERTIES Project Number:

T0189-016-001

Lab Number:

L1613787

Report Date:

05/13/16

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 QC Batch ID: WG893396-4 WG893396-5 QC Sample: L1613787-01 Client ID: MW-1

	MS	6	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	99		96		70-130	
4-Bromofluorobenzene	101		101		70-130	
Dibromofluoromethane	101		100		70-130	
Toluene-d8	96		96		70-130	

Project Name:DST PROPERTIESLab Number:L1613787Project Number:T0189-016-001Report Date:05/13/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1613787-01A	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-01A1	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-01A2	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-01B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-01B1	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-01B2	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-01C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-01C1	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-01C2	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-02A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-02B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-02C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-03A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-03B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-03C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-04A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-04B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-04C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-05A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-05B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-05C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-06A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-06B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-06C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-07A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-07B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-07C	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-08A	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)
L1613787-08B	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260-R2(14)

Project Name:DST PROPERTIESLab Number:L1613787Project Number:T0189-016-001Report Date:05/13/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

TIC

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: DU Report with 'J' Qualifiers

Project Name:DST PROPERTIESLab Number:L1613787Project Number:T0189-016-001Report Date:05/13/16

Data Qualifiers

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:DST PROPERTIESLab Number:L1613787Project Number:T0189-016-001Report Date:05/13/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 2/3/2016 10:23:10 AM

ID No.:17873

Revision 6

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1,

SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name: Project Location:	ies Street Olean	Page 1			Date Rec'd in Lab Deliverables ASP-A EQUIS (1 File)			5/7 16 ASP-B EQuIS (4 File)		ALPHA Job # L 1613787 Billing Information Same as Client Info PO#			
Client Information	Project #10189 - 0					✓ Other									
	Environmental	(Use Project name as Pro					Regulatory Requirement						Disposal Site Inform	mation	
Address: 2558 Hamb	ourg Turnpike,Ste300	Project Manager:	Candace Fox				NY TOGS NY Part 375					rt 375	Please identify below location of		
Buffalo, NY 14218 ALPHAQuote #:							AWQ Standards NY CP-5				NY CF	P-51	applicable disposal facilities.		
Phone: 716-856-0599 Turn-Around Time							NY Re	stricted Us	se 🗸	Other		Disposal Facility:			
Fax: (716) 866-6583 Standard					NY Unrestricted Use						□ NJ □ NY				
Email: pwerthman	@benchmarkees.com	Rush (only if pre approved)		# of Days:			NYC Sewer Discharge					# W.	Other:	NA	
These samples have be	een previously analyze	ed by Alpha 🔽					ANALYSIS						Sample Filtration	ó	
Other project specific requirements/comments: Please specify Metals or TAL.					-8260+CP51+TICs						□ Done □ Lab to do Preservation □ Lab to do (Please Specify be	elow)			
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle Date	ection Time	Sample Matrix	Sampler's Initials	NYTCL						Sample Specific Con	nments e	
13787 - GI	MW-1		5/6/16	11:50	Water	Pur	х							3	
02	MW-2		1	12153	Water	PWU	х							3	
03	MW-3			10,57	Water	PINU	Х							3	
99	MW-4			12:35	Water	PWW	х							3	
95	MW-5			11:22	Water	PWW	X							3	
Of	MW-6			12'10	Water	PWW	х							3	
06	MS (MI	w-17			Water	PWW	х							3	
06	MSD (M	w-1)			Water	PWW	x							3	
	DUP		1	8:00	Water	PWW	х							3	
08	Trip Blank		3616	9',00	DI Water		Х							2	
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore	Westboro: Certification No: MA935 Mansfield: Certification No: MA015 Relinquished By: Date/T			F	reservative	A Received by:				Date/Time		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT		
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	Jan Wito	(AAL)			n	<u></u>	L'		517	11/16	Ólys	HAS READ AND TO BE BOUND E TERMS & COND	BY ALPHA'S	