PERIODIC REVIEW REPORT REPORTING PERIOD: FEBRUARY 11, 2017 THROUGH FEBRUARY 10, 2018

211 FRANKLIN STREET OLEAN, NEW YORK NYSDEC SITE NO. C905038

This Periodic Review Report (PRR) was prepared in accordance with the provisions of the document *DER-10 Technical Guidance for Site Investigation and Remediation* (DER-10). This is the second PRR submitted for New York State Department of Environmental Conservation (NYSDEC) Site No. C905038 located at 211 Franklin Street, City of Olean, Cattaraugus County, New York (the Site). This document presents a summary of site characterization and remedial activities conducted at the Site pursuant to obtaining a Certificate of Completion issued on November 12, 2015, and the site management activities completed in the period between February 11, 2017 and February 10, 2018 (the reporting period). The site management requirements are outlined in the document titled *211 Franklin Street, Cattaraugus County, City of Olean, New York, Site Management Plan, NYSDEC Site Number: C905038*, dated October 2015, (the SMP) as modified by Revision No.1 (i.e., reduction in scope and frequency to post-remediation monitoring program) approved by the NYSDEC on March 21, 2017 (the SMP Revision 1).

This report includes the following elements:

- Site background information;
- identification of the remedial goals established for the Site;
- a description of the ICs and ECs for the Site;
- a review of monitoring protocols and results;
- a description of site monitoring activities, site inspections and groundwater monitoring; an evaluation of the remedy performance, effectiveness and protectiveness; and,
- conclusions and recommendations based on the work completed to date.

I. Executive Summary

- A. Site Conditions, Contamination and Remedial History
 - The Site consists of a 5.79 acre parcel of land developed with an approximate 280,000 square foot, two-story industrial building with a partial basement (refer to the Project Locus Map included as Figure 1).
 - Silence Dogood, LLC entered into the Brownfield Cleanup Program (BCP) administered by the NYSDEC in accordance with Brownfield Cleanup Agreement (BCA) Index # C905038-05-14, which was executed on May 22, 2014, to investigate and remediate the Site. As outlined in the BCA, Silence Dogood, LLC is a Volunteer with respect to the requirements of the BCP.
 - A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the Site. As summarized in the April 2015 RI report, the following

conditions were identified at the Site, prior to remediation: localized impacts to surface soil and subsurface soil/fill from various PAHs and metals (and PCBs in isolated areas); impacts to site-related groundwater from metals, in addition to petroleum-related impacts to the groundwater on the western portion of the Site that originated from an off-site location; and impacts to soil vapor beneath the building on the Site from various chlorinated and/or non-chlorinated VOCs including acetone, TCE and PCE.

- The Site was remediated in accordance with the provisions of a Decision Document (DD), issued by the NYSDEC dated September 1, 2015. The DD included Remedial Action Objectives for public health protection pertaining to soil vapor, soil and groundwater impacts related to the Site. The DD also specified the selected remedy for the Site, as Track 4 Restricted (Commercial) Use with site-specific soil cleanup objectives. See Section II.B. of the PRR for a summary of the remedial actions completed under the DD.
- Day Environmental, Inc. (DAY) prepared a Site Management Plan (SMP) on behalf of Silence Dogood, LLC, and this document was approved by the NYSDEC. The site management requirements outlined in Section 6.3(b) of DER-10, and the SMP were implemented at the Site beginning on November 12, 2015.
- A certificate of completion (COC), documenting completion of the remedial program, was issued for NYSDEC Site #C905038 on November 12, 2015. The COC identified ongoing requirements for the Site, including compliance with the SMP, periodic reporting through PRRs, and periodic certification of the Engineering Controls (EC) and Institutional Controls (IC) that are required at the Site.
- DAY prepared a letter on behalf of Silence Dogood, LLC dated February 16, 2017, outlining proposed modifications to the SMP and monitoring schedule. The recommendations in this document were approved by the NYSDEC in a letter dated March 21, 2017. These proposed modifications to the SMP and monitoring schedule were implemented at the Site starting on March 21, 2017.
- B. Effectiveness of the Remedial Program

Progress made during the reporting period toward meeting the remedial objectives for the Site include continued operation and monitoring of the EC, including the site-wide cover system and sub-slab depressurization system (SSDS); and post-remediation media testing, including indoor air and groundwater. Monitoring data from the work completed to date shows that the remedial program is currently meeting, and has the ability to achieve, the remedial objectives for the Site.

C. Compliance

No areas of non-compliance with the SMP Revision 1 were identified during the reporting period. As such, no steps are currently deemed necessary to correct areas of non-compliance.

Minor maintenance activities were completed in response to findings of the site-wide cover system inspection on June 21, 2017. Specifically, holes (i.e., an animal burrow and

erosion from the fire suppression system blow down) were observed at two locations that penetrated the 1-foot soil cover, and apparent erosion to the edge of the soil cover was noted at the southwest corner of the Site. On August 7, 2017, representatives of the tenant filled the apparent animal burrows with soil, and placed additional soil cover over the area of apparent erosion.

- D. Recommendations
 - 1. The requirements identified in the SMP Revision 1 for the Site were met during the reporting period, and no modifications are required at this time to bring the plan into compliance.
 - 2. It is recommended that the frequency of future PRRs remain as identified in the SMP Revision 1 (i.e., submitted every year subsequent to this report, such that the next PRR covers the reporting period February 11, 2018 through February 10, 2019).
 - 3. As described in the SMP Revision 1, the final soil vapor intrusion and postremediation groundwater sampling events will occur during the next reporting period. [Note: Per SMP Revision 1, annual monitoring of the indoor air in Area 1 through Area 6, is to be completed annually for a period of three years to evaluate the potential for soil vapor intrusion; and groundwater monitoring is to be performed for an initial period of three years to assess the performance of the remedy (i.e., at the frequency of quarterly for the first three quarters of the first year then on an annual basis for the remaining two years).] Following the completion of the monitoring events described above, and pending sample results similar to those from previous monitoring events, soil vapor intrusion monitoring and post-remediation groundwater monitoring will be discontinued with NYSDEC approval.
 - 4. Since residual contamination remains at the Site, it is recommended that site management requirements be continued.

II. Site Overview

A. Site Location, Site Features and Nature and Extent of Contamination

The Site is located in City of Olean, Cattaraugus County, New York and is identified as Section 94.040 Block 1 and Lot 21 on the Cattaraugus County Tax Map. The Site is bound by Franklin Street followed by a parking lot, athletic field and undeveloped land to the north-northwest; by a railroad Right-of-Way (ROW) to the south-southeast; by an undeveloped lot to the east-northeast; and by a railroad ROW to the west-northwest. A Property Survey Map of the Site is included in Attachment A of this document.

The properties adjoining the Site and in the neighborhood surrounding the Site are primarily utilized for residential and industrial uses. The properties immediately south-southeast of the Site include a railroad ROW followed by residential properties; the properties immediately north-northwest of the Site include Franklin Street followed by commercial and vacant properties, including BCP Site #905043, and parkland; the properties immediately east-northeast of the Site include grass-covered vacant properties followed by residential properties; and the properties to the west-southwest of the Site include a railroad ROW followed by commercial and industrial properties.

The Site consists of an approximate 5.79 acre parcel of land developed with an approximate 280,000 square foot, two-story industrial building with a partial basement. The Site is zoned industrial and is currently utilized for industrial use. The Site is occupied by SolEpoxy Inc., which manufactures molding powders, coating powders, and formulated resins used to insulate electrical components.

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the Site. The results of this study are described in the following report:

• Remedial Investigation Alternatives Analysis Report, 211 Franklin Street, City of Olean, Cattaraugus County, New York, BCP Site Number: C905038, dated January 2015 (Revised April 10, 2015)

The April 2015 RI identified the following conditions at the Site, prior to remediation:

- Impacts to surface soil from: various polycyclic aromatic hydrocarbons (PAHs); polychlorinated biphenyls (PCBs) in isolated locations; and metals including arsenic, cadmium, copper, mercury and nickel.
- Impacts to subsurface soil/fill from various PAHs and metals including: arsenic, cadmium, copper, lead, mercury, nickel, and zinc.
- Impacts to site-related groundwater from metals, including barium, chromium, magnesium, selenium and thallium; and petroleum-related impacts to the groundwater on the western portion of the Site, which originated from an off-site location.
- Impacts to soil vapor from various chlorinated and/or non-chlorinated VOCs, including acetone, trichloroethene (TCE) and tetrachloroethene (PCE).

B. Chronology

A chronology of Remedial Actions performed at the Site is presented below.

- Silence Dogood, LLC entered into the BCP administered by (NYSDEC) in accordance with Brownfield Cleanup Agreement Index # C905038-05-14, which was executed on May 22, 2014, to investigate and remediate the Site. As outlined in the BCA, Silence Dogood, LLC is a Volunteer with respect to the requirements of the BCP.
- The Site was remediated under a DD, issued by the NYSDEC dated September 1, 2015. The DD included Remedial Action Objectives for public health protection pertaining to Site related soil vapor, soil and groundwater. The DD specified the selected remedy for the Site, as Track 4 Restricted (Commercial) Use with site-specific soil cleanup objectives. Elements of the Remedy include:
 - A site cover constructed and maintained to provide a barrier above surface soil containing concentrations that exceed the Restricted Commercial Use soil cleanup objectives (SCOs). The cover consists of a continuous concrete pad within the footprint of the existing building; and concrete/asphalt pavement, concrete sidewalk, and/or one-foot thick soil cover over exterior locations. Where

the soil cover was utilized, a minimum of one foot of soil was used as set forth in 6 NYCRR Part 375-6.7(d) for commercial use. The soil cover was placed over a demarcation layer, with the upper four inches of placed soil of sufficient quality to maintain a vegetation layer. Fill material brought to the Site for use as cover material met the requirements set forth in 6 NYCRR Part 375-6.7(d);

- A SSDS installed beneath a portion of the building at the Site where elevated soil gas concentrations of chlorinated VOCs, primarily PCE and TCE, were identified (see Figure 2). The purpose of the SSDS is to preclude the migration of vapors into the building;
- Imposition of an institutional control in the form of an environmental easement for the controlled property;
- Development and implementation of a SMP; and
- Periodic certification of the institutional and engineering controls
- The remediation of the Site was completed in accordance with a Remedial Action Work Plan that was approved by the NYSDEC on September 1, 2015.
- DAY prepared a SMP on behalf of Silence Dogood, LLC, dated October 2015, and this document was approved by the NYSDEC. The site management requirements outlined in Section 6.3(b) of DER-10, and the SMP were implemented at the Site beginning on November 12, 2015. The SMP includes an Institutional and Engineering Control Plan that identifies use restrictions and engineering controls for the site, a Monitoring Plan to assess the performance and effectiveness of the Remedy, an Operation and Maintenance Plan to insure the continued operation of the SSDS, and details the steps and media-specific requirements necessary to ensure that the institutional and/or engineering controls remain in place and effective. [Note: Revision No.1 to the SMP, dated February 16, 2017, was approved by the NYSDEC on March 21, 2017. The revision included a reduction in the scope, frequency, and duration of the post-remediation monitoring program.]
- A COC was issued for NYSDEC Site #C905038 on November 12, 2015, documenting completion of the remedial program. The COC identified ongoing requirements for the Site, including compliance with the SMP, periodic reporting through PRRs, and periodic certification of the Engineering Controls (EC) and Institutional Controls (IC) that are required at the Site.

As presented in the DD, the cleanup goals for the Site are to prevent ingestion/direct contact with contaminated surface and subsurface soil/fill materials, prevent exposure to onsite groundwater, and prevent exposure to contaminants volatizing from subsurface locations. Generally, remedial processes are considered complete when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

III. Evaluation of Remedy Performance, Effectiveness and Protectiveness

The Site remedy included:

- the placement, and/or maintenance, of a site-wide cover system (i.e., concrete/asphalt pavement, concrete sidewalk, and/or one-foot thick soil cover over exterior locations and continuous concrete pad within the footprint of the existing building) to prevent direct contact with impacted materials (i.e., surface soil, subsurface soil/fill, etc.),
- continuous operation of a SSDS installed in the central portion of the building, to mitigate the potential for vapor intrusion into the indoor air; and
- institutional controls to prevent exposure to onsite groundwater.

The effectiveness of this remedy is evaluated by the completion of annual inspections of the cover system, quarterly (or more frequent) measurements of SSDS system pressure, an annual review of the SSDS mechanical components (i.e., the exhaust fans), and post-remediation media sampling (i.e., indoor air and groundwater).

- On June 21, 2017, a DAY representative completed the annual inspection of the site-wide cover system. A copy of the site-wide inspection form, completed during the June 21, 2017 inspection is included in Attachment B. Photographs, taken on July 21, 2017 illustrating the condition of the exterior site cover on that date, are also included in Attachment B.
- Periodic monitoring of vacuum pressure at the inlet side of each of the two exhaust fans that operate the SSDS at the Site (i.e., designated Fan #1 and Fan #2) was completed at approximate monthly intervals between February 2017 and January 2018. Copies of the monitoring logs completed during the reporting period for Fan #1 and Fan #2 are included in Attachment C.
- On June 21, 2017, an annual review of the SSDS was performed to confirm that the mechanical components (i.e., Fan #1 and Fan #2) were operating as intended, and to identify the need for maintenance (if any). Copies of the results of the annual review are included in Attachment C.
- The results of the indoor air and groundwater monitoring completed at the Site are discussed in Section V of this PRR.

IV. IC/EC Compliance Report

- A. IC/EC Compliance Report
 - 1. A description of each control, its objective, and how performance of the control is evaluated is provided below.
 - <u>Groundwater Use Restriction</u>: restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) and/or the Cattaraugus County Department of Health. The effectiveness of this control is evaluated based upon monitoring of groundwater usage at the Site (or lack thereof).

- <u>Land use Restriction</u>: allows the use and development of the controlled property for commercial and industrial uses as defined by 6 NYCRR Part 375-1.8(g), although land use is subject to local zoning laws. The effectiveness of this control is evaluated based upon monitoring of land usage at the Site.
- <u>Site Management Plan</u>: The objective of the SMP is to manage remaining contamination present at the Site that is above regulatory criteria in a manner that is protective of human health and the environment. The SMP includes an Institutional and Engineering Control (IC/EC) Plan, a Site Monitoring Plan an Operation and Maintenance (O&M) Plan and an excavation plan (i.e., the excavation work plan included as Appendix B of the SMP). The effectiveness of the controls outlined above is evaluated through monitoring and periodic certification. Controls on the Site include:
 - Construction and maintenance of a site-wide cover system to provide a barrier above surface soil containing concentrations that exceed the Restricted Commercial Use SCOs. The cover system consists of the continuous concrete pad within the footprint of the existing building, and a combination of concrete/asphalt pavement, concrete sidewalk, and one-foot thick soil cover on the exterior;
 - Installation and continued operation of the SSDS, installed beneath a designated section of the building on the Site to preclude the potential for migration of vapors into the building;
 - Routine monitoring to document the continued operation of the SSDS, the integrity of the site-wide cover system, and to document post remediation indoor air and groundwater conditions.
 - Implementation of specific requirements outlined in the SMP, including the provisions of the IC/EC Plan (i.e. Excavation Work Plan, Soil Vapor Intrusion Evaluation, and Contingency Plan), Site Monitoring Plan, and Operation and Maintenance Plan, to assure the provisions described in these documents are followed.
- 2. Status:

Each control is fully in place, is being adhered to, and appears to be effective as of the date of this report.

During the annual inspection of the site-wide cover system that occurred on June 21, 2017, holes that penetrated the 1-foot soil cover were observed at two locations (refer to the site sketch included in Attachment B). One hole was located outside of the facility boiler room door, and appeared to be an animal burrow. The other hole was located below the facility fire suppression system blow-down piping, and appeared to be the result of erosion from the effluent. The dimensions of the holes measured less than one foot in diameter and extended toward the building foundation. In addition, erosion of the edge of the 1 ft. thick soil cover was observed near the southwest corner of the property, adjacent to the fence surrounding the break area. [Note: an area of cracked/spalled concrete was observed on the surface of the concrete cover located in the shipping lot on the west side of the site. However, it was determined

that the cracked/spalled area of concrete only extended through a thin concrete layer that had been lapped over an adjacent section during construction; and competent concrete cover was observed below the cracked/spalled area of concrete. Therefore, repairs to this area were not deemed necessary. In addition, minor cracks were observed at the edge of portions of the concrete backfill, poured to replace portions of the interior floors in the areas where SSDS trenches had been excavated in the Packaging Department; possibly resulting from subsidence of the material used to backfill the SSDS trenches. However, the cracking observed did not appear to compromise the integrity of the cover system in this area, nor impede the operation of the SSDS. Therefore, repairs in these areas were not deemed necessary.]

On August 7, 2017, representatives of the Owner filled the holes with soil. Coarse gravel was also placed above and on the edge of the cover system at the southwest corner of the Site, to reduce the erosive effects to the cover system in this area. A completed maintenance request ticket for August 7, 2017, which documents the maintenance and repair activities competed is included in Attachment B.

3. Corrective Measures:

None required.

4. Conclusions and Recommendations for Changes:

The controls are being effectively implemented as of the date of this report, and no changes are deemed necessary at this time.

B. IC/EC Certification

Certification Statement and forms are included as Attachment D to this report.

V. Monitoring Plan Compliance Report

- A. Components
 - <u>Site-Wide Inspections</u>: annual inspections are required to observe and document the condition of the cover system installed at the Site. Site-wide inspections are also required after all severe weather events that have the potential to affect ECs.
 - <u>Treatment System Monitoring</u>: quarterly (or more frequent) system checks and an annual review are required to confirm that the SSDS is operating as intended, and to identify the need for maintenance.
 - <u>Post-Remediation Media Monitoring and Sampling</u>: Groundwater samples and indoor air samples are collected/tested on an annual basis to assess the performance of the remedy.
- B. Summary of the Monitoring Completed
 - <u>Site-Wide Inspections</u>: On June 21, 2017, a DAY representative completed the annual inspection of the site-wide cover system. A copy of the site-wide inspection

Page 8 of 14

form completed for June 21, 2017 is included in Attachment B. Photographs, taken on July 21, 2017 illustrating the condition of the exterior site cover on that date, are also included in Attachment B.

• <u>Treatment System Monitoring</u>: Periodic monitoring of vacuum pressure at the inlet side of each of the two exhaust fans that operate the SSDS at the Site (i.e., designated Fan #1 and Fan #2) was completed at approximate monthly intervals between February 2017 and January 2018. Copies of the monitoring logs completed during the reporting period for Fan #1 and Fan #2 are included in Attachment C.

On June 21, 2017, an annual review of the SSDS was performed to confirm that the mechanical components (i.e., Fan #1 and Fan #2) were operating as intended, and to identify the need for maintenance (if any). Copies of the documents prepared summarizing the findings of the annual review are included in Attachment C.

• Post-Remediation Media Monitoring and Sampling:

During the reporting period, indoor air samples were collected from the Site on March 24, 2017 and groundwater samples were collected from the Site on June 21, 2017, in accordance with the SMP Revision 1.

The results of the indoor air sampling conducted within the reporting period are provided herein as follows:

- Copies of the indoor air sampling logs completed during the annual sampling event that occurred on March 24, 2017 are provided in Attachment E. The approximate indoor air sample locations are depicted on Figure 2. The location of one outdoor (i.e., background) air sample is also depicted on Figure 2.
- A copy of the analytical laboratory report for the indoor air samples (and outdoor background sample) collected on March 24, 2017 is included in Attachment F. A copy of the data usability summary report (DUSR) prepared for the indoor air samples (and outdoor background sample) collected on March 24, 2017 is also included in Attachment F.
- A summary of volatile organic compounds (VOCs) detected by the analytical laboratory in the indoor air samples (and outdoor background sample) collected on March 24, 2017 is included in Table 1.

The results of the groundwater sampling conducted within the reporting period are provided herein as follows:

- Copies of the groundwater sampling logs completed during the annual sampling event that occurred on June 21, 2017 are included in Attachment G. The approximate monitoring well locations from which the groundwater samples were collected are depicted on Figure 3.
- A copy of the analytical laboratory report for the groundwater samples collected on June 21, 2017 is included in Attachment H. A copy of the DUSR prepared for the groundwater samples collected on June 21, 2017 is also included in Attachment H.

Summaries of VOCs, semi-volatile organic compounds (SVOCs) and metals detected by the analytical laboratory in the groundwater samples collected on June 21, 2017 (and during previous sampling events) are included in Table 2, Table 3 and Table 4, respectively.

The analytical laboratory test results for the samples collected during the reporting period were submitted to the NYSDEC EIMS Team via NYENVDATA in an EQUIS EDD format, and these data were deemed complete and accepted.

- C. Comparison with Remedial Objectives
 - <u>Site-Wide Inspections</u>: The results of the site-wide inspections indicate that remedial objectives were achieved during the reporting period. Specifically, the site-wide inspections revealed that the cover system is intact and functioning as designed to eliminate direct contact. Minor maintenance activities completed in response to the June 21, 2017 inspection were completed as described in Section IV.A.2.
 - <u>Treatment System Monitoring</u>: Measurements of vacuum pressure at the inlet side of Fan #1 recorded during the reporting period ranged between 2.4 in. and 2.5 in. Measurements of vacuum pressure at the inlet side of Fan #2 recorded during the reporting period ranged between 1.6 in. and 1.8 in. The measurements made during the reporting period indicate that the SSDS is functioning as designed, and that no repairs or system adjustments are required.

The annual review of the SSDS that was performed June 21, 2017 confirmed that the mechanical components (i.e., Fan #1 and Fan #2) were operating as intended, and did not identify the need for any systems maintenance.

• <u>Post-Remediation Media Monitoring and Sampling:</u>

The results of the June 21, 2017 post-remediation groundwater sampling event indicate that groundwater in the western portion of the Site is impacted with petroleum that originated from an off-site location, and that concentrations do not increase in downgradient locations. The June 21, 2017 results are similar to the results discussed in the April 2015 RI report. [Note: During the post-remediation monitoring events conducted at the Site, bis (2-ethylhexyl) phthalate has been detected in groundwater samples collected from eight of the thirteen monitoring wells The source of bis (2-ethylhexyl) phthalate is unknown, as it is not sampled. reportedly been used in manufacturing operations conducted at the Site, but it is often a sampling/testing artifact. Only the groundwater samples collected from monitoring wells MW-F and MW-L on June 21, 2017 contained concentrations of bis (2ethylhexyl) phthalate that exceeded the class GA groundwater standard of 5 µg/l. Specifically, concentrations of bis (2-ethylhexyl) phthalate in the groundwater samples collected from MW-F and MW-L on June 21, 2017 were 202 μ g/l and 6.79 μ g/l, respectively. While the concentration of bis (2-ethylhexyl) phthalate in the groundwater sample collected from MW-F on June 21, 2017 is the highest bis (2ethylhexyl) phthalate concentration detected in the post-remediation groundwater samples, there does not appear to be a trend of increasing concentrations; rather sporadic detections suggesting that the bis (2-ethylhexyl) phthalate detected in the

groundwater is not attributable to operations conducted at the Site, but more likely a sampling/testing artifact.]

The concentrations of metals detected in the groundwater samples collected during the reporting period are generally similar to those identified in the April 2015 RI report, and the concentrations measured during the current reporting period do not suggest an on-going source of metal contamination to groundwater originating on the Site degrading the groundwater quality, but rather a periodic isolated influx of metals in the groundwater influenced by seasonal groundwater fluctuations. Based on the depth to groundwater measurements made on June 21, 2017 and the calculated groundwater elevations, shallow groundwater flow across the Site is similar to the pattern identified in the April 2015 RI report (i.e., toward the east-southeast. A potentiometric contour map depicting groundwater elevations measured on June 21, 2017 is provided as Figure 3.

The results of the indoor air sampling event completed on March 24, 2017 indicate that the SSDS is functioning as designed. While the chlorinated VOCs PCE and TCE were detected in each of the indoor air samples collected on March 24, 2017, the concentrations measured were below applicable standards. In addition, PCE and TCE were also detected in the outdoor (background) air sample collected on that date. Specifically, the highest concentration of TCE measured in the indoor air samples collected on March 24, 2017 (i.e., 0.24 μ g/m³, collected from Area 4) is below (one order of magnitude lower than) the NYSDOH Indoor Air Guidance Value for TCE of 2 μ g/m³, and lower than the concentration (i.e., 0.60 μ g/m³) of TCE that was measured in the outdoor (background) sample collected on March 24, 2017 ranged between 0.42 μ g/m³ (Area 3) and 9.09 μ g/m³ (Area 2), and are below the NYSDOH Indoor Air Guidance Value for PCE of 30 μ g/m³.

The concentrations of acetone (Area 1 through Area 6), benzene (Area 3), 1,3butadiene (Area 3), 2-butanone (Area 4), MIBK (Area 6), naphthalene (Area 2, Area 3, Area 4 and Area 6), 1,2,4-trimethylbenzene (Area 2), and trichlorofluoromethane (Area1, Area 3 and Area 4) measured in the indoor air samples collected on March 21, 2017 exceed the air reference values referenced on Table 1. The concentrations of benzene, naphthalene, 1,2,4-trimethylbenzene and trichlorofluoromethane measured in indoor air samples collected during the current reporting period are similar to those measured during the previous reporting period. The presence of 1,3butadiene in the indoor air sample collected during the reporting period from Area 3 is the first detection of this compound in indoor air samples collected from the Site.

Acetone, MIBK and 2-butanone continue to be used at the Site in the manufacturing process, and thus the indoor air concentrations of these constituents are likely attributable to manufacturing operations and not soil vapor intrusion. As such, the applicable indoor air standards for acetone, MIBK, and 2-butanone are Occupational Safety and Health Administration (OSHA) permissible levels, and the concentrations measured in the indoor air samples collected on March 24, 2017 are below the applicable OSHA standards.

The concentrations of benzene, 1,3-butadiene, naphthalene and 1,2,4trimethylbenzene measured in indoor air samples collected on March 21, 2017 that exceeded their respective indoor air reference value are greater than the highest concentration measured in the soil vapor samples collected during the RI. The concentrations of trichlorofluoromethane measured in indoor air samples collected on March 21, 2017 exceeding the respective indoor air reference value are the same order of magnitude to the highest concentration of trichlorofluoromethane measured in the soil vapor during the RI. Further, benzene, naphthalene, and trichlorofluoromethane were also detected in the outdoor background sample collected on March 24, 2017. As such, the presence of benzene, 1,3-butadiene, naphthalene, 1,2,4-trimethylbenzene and trichlorofluoromethane at the Site do not appear attributable to intrusion of soil vapor.

D. Monitoring Deficiencies

There are no monitoring deficiencies identified at this time.

- E. Conclusions and Recommendations for Changes
 - <u>Site-Wide Inspection and Treatment System Monitoring</u>: The site-wide inspection and treatment system monitoring confirmed that the remedial systems/actions for the Site are functioning properly, and effective in achieving their intended objectives. No changes to the site-wide inspection, treatment system monitoring process, or remedial actions are recommended at this time.
 - <u>Post-Remediation Media Monitoring and Sampling:</u>

The results of indoor air and post-remediation groundwater sampling completed during the reporting period indicate that the remedial actions implemented at the Site have been effective in achieving the remedial objectives identified, and no changes are recommended at this time.

It is recommended that indoor air and post-remediation groundwater sampling and testing continue to be completed in accordance with the procedures outlined in the SMP Revision 1 (i.e., the annual monitoring of the indoor air in Area 1 through Area 6, completed for a period of three years to evaluate the potential for soil vapor intrusion; and groundwater monitoring to be performed for an initial period of three years to assess the performance of the remedy.

VI. Operation & Maintenance (O&M) Plan Compliance Report

A. Components of the O & M Plan

The SSDS is designed for continuous, unmanned operation, and requires very little operation and maintenance labor. All components of this system are designed for years of uninterrupted service. Nonetheless, quarterly (or more frequent) system checks and annual reviews are performed to confirm that all are operating as intended, and to identify the need for any maintenance.

B. Summary of O & M Completed During the Reporting Period

Periodic monitoring of the SSDS has been discussed elsewhere in this report. The current components of the O&M Plan (continuous operation and periodic monitoring of the SSDS) started on August 11, 2015 and it continued throughout the reporting period.

C. Evaluation of the Remedial Systems

Periodic monitoring of the SSDS indicates that the system is operating as designed. Further, the results of the annual indoor air sample event that occurred on March 24, 2017 indicate that the SSDS is effectively mitigating soil vapor intrusion into the building at the Site.

D. O&M Deficiencies

No deficiencies were identified in complying with the O&M plan during the reporting period.

E. Conclusions and Recommendations for Improvements

No improvements to the O&M plan are recommended at this time.

VII. Overall PRR Conclusions and Recommendations

A. Compliance with SMP

The requirements identified in the SMP Revision 1 were met during the reporting period, and no modifications are required at this time to bring the plan into compliance.

B. Performance and Effectiveness of the Remedy

An evaluation of the components of the SMP during the reporting period indicates that:

- the IC/EC controls are protective of human health and the environment;
- the monitoring plan sufficiently monitors the performance of the remedies implemented;
- the O&M Plan adequately addresses the on-going operation of the SSDS; and
- the remedial program is achieving the remedial goals identified for the Site.

C. Future Submittals

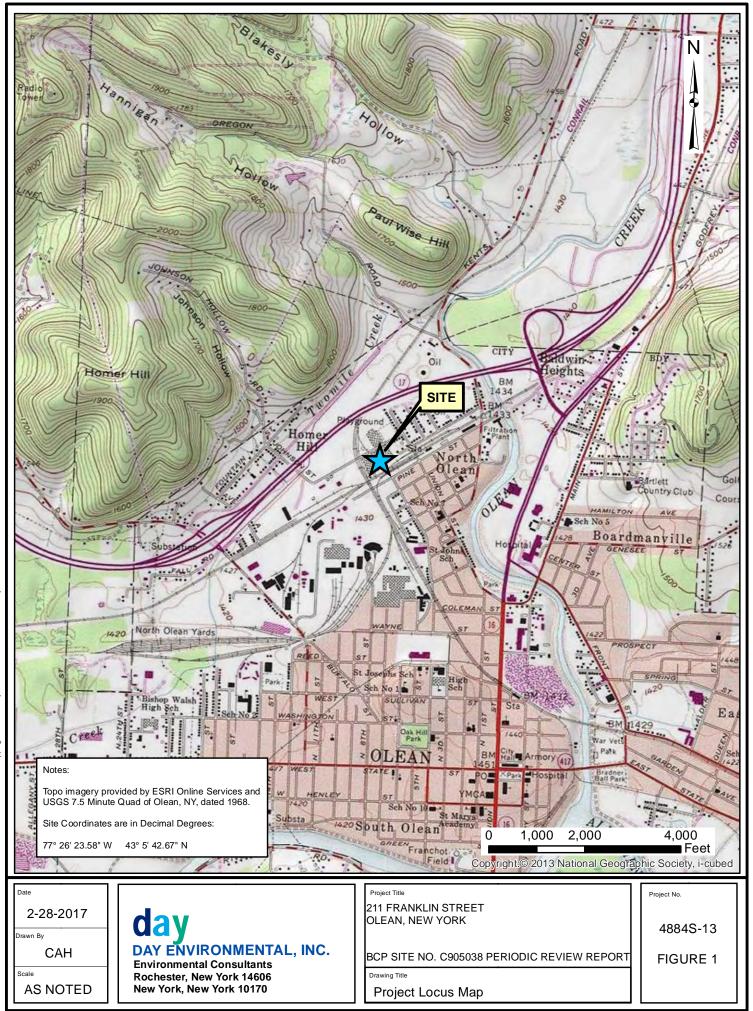
- 1. The next indoor air sampling event will occur on or around March 26, 2018. The next post-remediation groundwater sampling event and cover system inspection will occur on or around June 21, 2018.
- 2. It is recommended that the frequency of future PRRs remain as identified in the SMP Revision 1 (i.e., submitted every year subsequent to this report, such that the next PRR covers the reporting period February 11, 2018 through February 10, 2019).
- 3. The requirements for site closure have not been achieved. As such, it is recommended that site management continue.

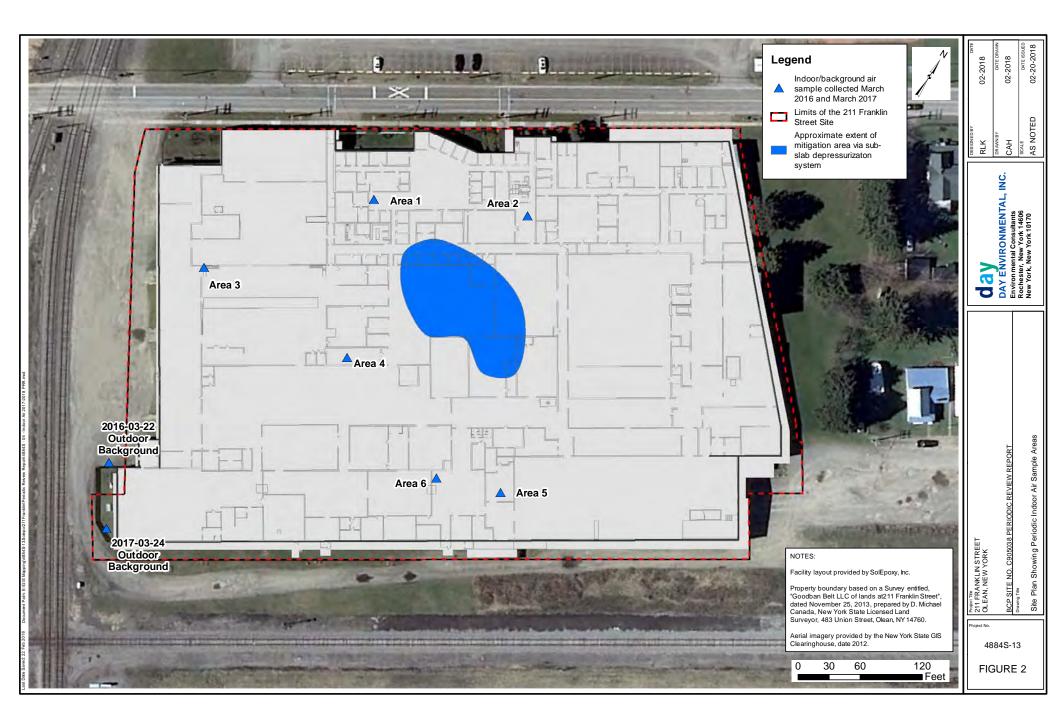
PERIODIC REVIEW REPORT REPORTING PERIOD FEBRUARY 11, 2017 THROUGH FEBRUARY 10, 2018

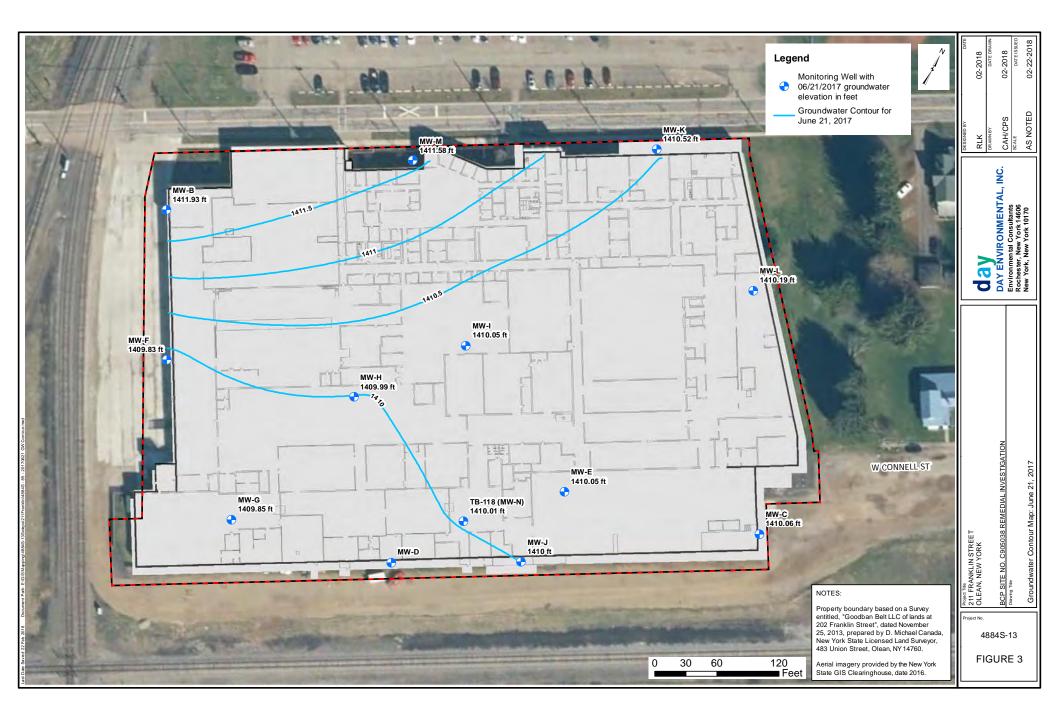
211 FRANKLIN STREET OLEAN, NEW YORK NYSDEC SITE NO. C905038

FIGURES

Figure 1	Project Locus
Figure 2	Site plan
Figure 3	Groundwater Contour Map for June 21, 2017


TABLES


Table 1	Summary of Volatile Organic Compounds: Indoor Air and Background Air Samples
Table 2	Detected Volatile Organic Compounds in Groundwater Samples
Table 3	Detected Semi-Volatile Organic Compounds in Groundwater Samples
Table 4	Detected TAL Metals in Groundwater Samples


ATTACHMENTS

Attachment A	Property Survey Map
Attachment B	Site Wide Inspection Form, Photographs and Documentation of Repairs
Attachment C	SSDS Periodic Monitoring and Annual Inspection Results
Attachment D	Institutional and Engineering Control Certification Forms
Attachment E	Sampling logs for March 24, 2017 Indoor Air Sampling Event
Attachment F	Analytical Laboratory Report for March 24, 2017 Indoor Air Sampling Event
Attachment G	Sampling logs for June 21, 2017 Groundwater Sampling Event
Attachment H	Analytical Laboratory Report for June 21, 2017 Groundwater Sampling Event

FIGURES

TABLES

TABLE 1 211 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905038

SUMMARY OF VOLATILE ORGANIC COMPOUNDS INDOOR AIR AND BACKGROUND AIR SAMPLES COLLECTED MARCH 2016 AND MARCH 2017

														Sample De	esign	ation and D	Date												_
Detected Constituent	Indoor Air Reference Value		Are	ea 1			Are	a 2			Are	ea 3			Are	a 4			Are	ea 5			Are	a 6		Outdo	or Back	kground	
	(ug/m ³) ⁽¹⁾	3/22/20	016	3/24/20	17	3/23/201	6 ⁵	3/24/201	17	3/22/20:	16	3/24/20:	17	3/22/201	16	3/24/20	17	3/22/201	.6	3/24/20	17	3/22/2016		3/24/201	7	3/22/201	6 3	3/24/201	17
1-4, Dioxane	NA	U		U		U		U		U		U		U		U		3.48		U		U		U		U		U	
1,1,1-Trichloroethane	20.6	U		U		U		U		U		U		U		U		U		U		U		U		U		U	
1,1-Dichloroethane	0.7	U		U		U		U		U		U		U		U		U		U		U		0.09		U		U	
1,1-Dichloroethene	1.4	U		υ		U		U				U		U		U		U		U		U		0.10		U		U	
1,1,2-Trichlorotrifluoroethane	NA	U		0.80		U		0.65	J	U		0.78		U		0.58	J	U		0.61	J	0.120		0.76	٦	U		0.84	
1,2,4-Trichlorobenzene	6.8	U		U		U		2.56		U		2.72	٦	U		U		U		2.66		U		3.80		U		U	J
1,2,4-Trimethylbenzene	9.5	U		7.37		0.150		13.13		U		7.37		0.190		U		U		U		U		3.03		U		U	
1,3,5-Trimethylbenzene	3.7	U		1.96		U		3.45		U		1.69		0.100		1.37		U		0.75		U		0.87		U		U	
1,3-Butadiene	3.0	U		U		U		U		U		8.64		U		U		U		U		U		U		U		U	
2-Butanone (MEK)	12	1.32		4.45		0.930		4.84		1.68		6.99		3.44		12.74		1.36		3.30		0.470		3.36		0.400		2.12	
2-Hexanone (MBK)	NA	U		U	J	U		U		U		U	J	U		U		3.16		U		0.260		U		U		U	J
4-Ethyltoluene	3.6	U		1.38	J	U		2.35		U		2.00	J	U		1.06		U		0.44	1	U		0.67		U		U	J
4-Isopropyltoluene	NA	U		1.08		U		U		U		U		U		1.01	J	U		0.6	J	U		1.02	J	U		U	
4-Methyl-2-Pentanone (MIBK)	6	1.61		2.40		0.970		1.77		4.80		5.41		6.02		5.86		4.75		2.46		0.170		15.45		U		U	
Acetone	98.9	48.20	D	221.94	D	388	D	472.88	D	56.6	D	710.51	D	118.00	D	311.29	D	59.0	D	299.4	D	5.66		403.97	D	5.08		17.04	
Benzene	9.4	1.14		2.10		0.670		1.16		1.55		12.38		1.57		6.25		0.360		1.96		0.130		2.61		0.130		0.99	
Bromodichloromethane	NA	U		NT		U		NT		U		NT		U		NT		U		NT		0.110		NT		U		NT	
Carbon Disulfide	4.2	U		U		U		U		U		U		U		0.54	J	U		U		U		U		U		U	
Carbon Tetrachloride	1.3	0.08		0.76		0.16		1.02		0.09		0.48		0.11		0.49		0.12		0.51		0.11		0.64		0.08		0.75	
Chloroform	1.1	U		U		0.16		U		U		0.81		U		0.6		0.22		0.95		0.99		0.66		U		U	
Chloromethane	3.7	U		1.99		U		1.75	J	U		2.17		U		U	J	U		1.85	J	U		1.70	J	U		1.91	
Cyclohexane	NA	U		U		0.25		U		0.19		U		0.23		0.66	1	U		U		U		1.14		U		U	
Dichlorodifluoromethane	16.5	0.84		3.59		0.83		2.75		0.89		3.40		0.78		2.27		0.79		2.71		0.97		3.14		0.93		3.41	
Ethanol	210	60.20	D	124.06	D	36.6	D	152.5	D	17.0	D	142.2	D	93.60	D	137.07	D	8.91		50.91	D	2.26		69.39	D	2.12		7.79	
Ethyl acetate	5.4	U		0.85	J	U		0.48		U		0.84	J	U		0.57		1.54		0.72		U		0.90		0.65		0.42	J
Ethylbenzene	5.7	U		0.63	J	0.12		0.47		0.13		2.15	J	0.29		1.99		0.50		0.52		U		0.73		U		U	J
Hexane	10.2	U		1.18	J	1.74		1.40	J	U		2.28		1.35		3.41		U		1.43	J	U		0.71	J	U		0.78	J
isopropyl alcohol	NA	6.16		16.81		26.0	D	20.5		4.23		24.15		10.60	D	40.25	D	5.03		7.26		0.85		4.79		0.54		0.75	
Isopropylbenzene	NA	U		U		U		U		U		U		U		U		U		U		U		U		U		U	
m/p-Xylene	22.2	0.20		2.54		0.53		2.10		0.510		7.89	1	1.16		7.67	1	1.62		1.78		U		2.84		U		U	
Methylene Chloride	60 ⁽²⁾	0.34		5.94	J	1.03		7.26		0.36		4.55	J	0.38		2.23	1	0.34		23.40		0.14		2.39		0.25		4.51	J
Methyl tert-Butyl Ether (MTBE)	11.5	U		U	J	U		U		U		U	J	U		U	1	U		U		U		U		U		U	J
Naphthalene	5.1	U		4.23	J	U		8.48		U		17.22	J	0.71		8.53		1.32		3.98		U		10.89		U		4.46	J
n-Butylbenzene	NA	U		U		U		U		U		U		U		U	1	U		0.81		U		1.18		U		U	
n-Heptane	NA	0.19		2.40	1	0.24		2.12		0.22		9.51	1	0.52		5.25	1	U		2.60		U		3.1		U		0.67	
o-Xylene	7.9	U		1.65	J	0.14		2.26		0.11		2.96	J	0.24		2.69	1	0.27		0.70		U		1.09		U		U	J
Propene	NA	U		U	1	U		U		U		22.20	D	U		U	1	U		U		U		U		U		U	
sec-Butylbenzene	NA	U		U		U		U		U		U		U		U	1	U		U		U		U		U		U	
Styrene	1.9	U		0.37	J	U		U		U		1.64	J	U		0.66	1	U		U		U		0.51		U		U	J
Tetrachloroethene	30 ⁽³⁾	U		0.52		U		9.09		U		0.42		U		0.44		U		2.09		U		0.59		U		0.98	
Tetrahydrofuran	NA	U		U		U		U		U		0.48	1	U		0.41	1	U		U		U		U		U		1.14	
Toluene	43	1.39		5.34	J	0.78		2.84		2.55		21.52	J	4.23		17.05	1	0.80		6.21		U		8.58		U		0.81	J
trans-1,2-Dichloroethene	NA	U		U		U		0.400		U		0.55	1	U		0.49	1	U		U		U		U		U		U	
Trichloroethene	2 ⁽⁴⁾	U		0.16		U		0.33		U		0.16		U		0.24	1	0.05		0.13		U		0.22		U		0.60	
Trichlorofluoromethane	18.1	7.97		33.66		5.09		11.46		5.72		37.37		8.20	D	21.69	<u> </u>	2.15		7.92		0.40		9.44		0.35		2.06	
Total VOCs		129.64	-	450.16		464.39		730.03		96.63	-	1063.41	-	251.72	-	595.36		95.77		428.67		12.64		560.36		10.53	_	52.03	

NOTES

Volatile organic compound (VOC) concentrations are presented in micrograms per cubic meter ($\mu g/m^3$).

No NYSDOH criteria is available for soil vapor samples

U = Not detected at concentration above analytical laboratory reporting limit. Refer to the analytical laboratory report for the associated reporting limit.

NA = Not Available. J = Estimated Value. NT = Not Tested D = Sample Diluted.

(1) Unless otherwise noted the Indoor Air Reference Value shown is the 90th percentile referenced in Table C2 of the NYSDOH document title "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006.

(2) NYSDOH derived air guidance values in NYSDOH document titled "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006.

⁽³⁾ Guidance value identified in NYSDOH September 2013 Fact Sheet "Tetrachloroethene (PERC) in Indoor and Outdoor Air".

⁽⁴⁾ Guidance value identified in NYSDOH August 2015 Fact Sheet "Trichloroethene (TCE) in Indoor and Outdoor Air".

(5) Indicates that the sample tested from location #2 was the third attempt to fill a summa canister over an approximate 8-hour period. The first two sample collections attempted did not meet the 8-hour time collection criteria.

Highlighted value exceeds the Indoor Air Reference Value

TABLE 2 211 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905038

DETECTED VOLATILE ORGANIC COMPOUNDS (VOCS) IN GROUNDWATER SAMPLES

Contaminant	Groundwater Standard or			M	N-B					MW-C					MW-D					MW-E			
	Guidance Value	7/9/2014	7/31/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016	7/10/2014	9/29/2014	3/22/2016	6/29/2016	9/27/2016	7/9/2014	9/29/2014	3/22/2016	6/29/2016	9/27/2016	7/9/2014	9/29/2014	3/23/2016	6/29/2016	9/27/2016	
Acetone	50	U	U	U	U	U	U	U	U	U	U	14.8	U	U	U	U	6.0 J	U	U	U	U	3.9 J	
2-Butanone (MEK)	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Chloroform	7	U	U	U	U	U	U	U	U	3.5 J	3.4 J	2.8	U	U	U	U	U	U	U	U	U	U i	
Chloromethane	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Naphthalene	10	4.5 J	U	U	U	U	NT	U	U	U	U	NT	2.9 J	U	U	U	NT	U	U	U	U	NT	
lethyl acetate	NA	NT	NT	U	U	U	1.5 J	NT	U	Uj	U	U	NT	U	U	U	U	NT	U	U	U	Uj	
Methylcyclohexane	NA	NT	NT	2.7 J	U	U	U	NT	U	U	U	U	NT	U	U	U	U	NT	U	U	U	U	
n-Propylbenzene	5	0.99 J	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	
sec-Butylbenzene	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
tert-Butyl Alcohol	NA	U	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	
tert-Butylbenzene	5	2.8 J	2.7 J	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	
1,2,4-Trimethylbenzene	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Toluene	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
Total VOCs		8.29	2.7	2.7	U	U	6.8	U	U	3.5	3.4	17.6	2.9	U	U	U	6.0	U	U	U	U	3.9	
Total TICs		175	140	75	90.5	11	9.1	U	U	U	U	U	26	U	U	U	5.0	23	U	U	U	U	
Total VOCs and TICs		183.29	142.7	77.7	90.5	11	15.9	U	U	3.5	3.4	17.6	28.9	U	U	U	11	23	U	U	U	3.9	
			NW-F																				-
Contaminant	Groundwater Standard or									MW-G					MW-H						W-I		
Contaminant		7/9/2014	9/30/2014	M 3/23/2016	N-F 6/29/2016	9/27/2016	6/21/2017	7/7/2014	9/30/2014	MW-G 3/23/2016	6/29/2016	9/27/2016	7/8/2014	9/29/2014	MW-H 3/23/2016	6/29/2016	9/27/2016	7/8/2014	9/30/2014	M 3/23/2016	W-I 6/29/2016	9/27/2016	6/21/
	Standard or	7/9/2014 U	9/30/2014 U			9/27/2016 10.6	6/21/2017 U	7/7/2014 U	9/30/2014 U		6/29/2016 U	9/27/2016 U	7/8/2014 U	9/29/2014 U		6/29/2016 U	9/27/2016 U	7/8/2014 U	9/30/2014 U			9/27/2016 28.0	
Acetone	Standard or Guidance Value			3/23/2016	6/29/2016					3/23/2016		9/27/2016 U U			3/23/2016					3/23/2016			6/21/
Acetone 2-Butanone (MEK)	Standard or Guidance Value 50	U	U	3/23/2016 U	6/29/2016 U	10.6	U	U	U	3/23/2016 U	U	9/27/2016 U U U	U	U	3/23/2016 U	U	U	U	U	3/23/2016 U	6/29/2016 U	28.0	
Acetone 2-Butanone (MEK) Chloroform	Standard or Guidance Value 50 50	UU	UU	3/23/2016 U U	6/29/2016 U U	10.6 U	UUU	UU	U U	3/23/2016 U U	UU	UU	UU	UU	3/23/2016 U U	UU	UU	UU	UU	3/23/2016 U U	6/29/2016 U U	28.0 U	6/21,
Acetone 2-Butanone (MEK) Chloroform Chloromethane	Standard or Guidance Value 50 50 7 5 10	U U U U U	U U U	3/23/2016 U U U	6/29/2016 U U U	10.6 U U			UUUU	3/23/2016 U U U	U U U	U U U 0.6 J NT		U U U	3/23/2016 U U U	υυυ	UUUU		U U U	3/23/2016 U U U	6/29/2016 U U U	28.0 U U	
Acetone 2-Butanone (MEK) Chloroform Chloromethane Naphthalene	Standard or Guidance Value 50 50 7 5 10 NA	U U U U U NT	UUUUUU	3/23/2016 U U U U	6/29/2016 U U U U	10.6 U U U	U U U U U NT	U U U U U NT	U U U U	3/23/2016 U U U U	U U U U	U U U 0.6 J	U U U U U U NT	U U U	3/23/2016 U U U	U U U U	U U U 0.6 J NT U	U U U U U U NT		3/23/2016 U U U U U U U U	6/29/2016 U U U	28.0 U U 0.6 J	
Acetone 2-Butanone (MEK) Chloroform Chloromethane Naphthalene Methyl acetate Methyl acetate	Standard or Guidance Value 50 50 7 5 10 NA NA	U U U U U NT		3/23/2016 U U U U U U U U U	6/29/2016 U U U U U U U U	10.6 U U NT U U	U U U U U NT NT	U U U U U NT NT		3/23/2016 U U U U U U U U U U		U U 0.6 J NT 2.0 J U	U U U U U NT NT		3/23/2016 U U U U U U U U U U		U U U 0.6 J NT U U	U U U U U NT NT		3/23/2016 U U U U U U U U	6/29/2016 U U U U U U U U U	28.0 U U 0.6 J NT U U U	
Acetone 2-Butanone (MEK) Chloroform Chloromethane Naphthalene Methyla caetate Methylcyclohexane n-Propylbenzene	Standard or Guidance Value 50 7 5 10 NA NA 5 5	U U U U U NT V U		3/23/2016 U U U U U U U U NT	6/29/2016 U U U U U U U NT	10.6 U U NT U U NT	U U U U U NT NT U	U U U U U NT NT U		3/23/2016 U U U U U U U NT	U U U U U U U U NT	U U 0.6 J NT 2.0 J U NT	U U U U U NT V U		3/23/2016 U U U U U U U NT	U U U U U U U U NT	U U U 6.6 J NT U U NT	U U U U NT NT U		3/23/2016 U U U U U U U U NT	6/29/2016 U U U U U U U NT	28.0 U U 0.6 J NT U U NT	
Acetone 2-Butanone (MEK) Chloroform Chloromethane Naphthalene Methyl acetate Methylcyclohexane n-Propylbenzene sec-Butylbenzene	Standard or Guidance Value 50 50 7 5 10 NA NA 5 5 5	U U U U U NT U U U		3/23/2016 U U U U U U U NT U	6/29/2016 U U U U U U U U U U U	10.6 U U NT U NT U U	U U U U NT V U U U U U U U U	U U U U NT NT U U U		3/23/2016 U U U U U U U U U U U U U U	U U U U U U U U U U U	U U 0.6 J NT 2.0 J U NT U	U U U U NT NT U U		3/23/2016 U U U U U U U U U U U U	U U U U U U U NT U	U U U 0.6 J NT U U U U U	U U U U U NT U U U		3/23/2016 U U U U U U NT U	6/29/2016 U U U U U U U NT U	28.0 U 0.6 J NT U U NT U	
Acetone 2-Butanone (MEK) Chloroform Chloromethane Naphthalene Methyl acetate Methylcyclohexane n-Propylbenzene seo-Butylbenzene Hert-Butyl Alcohol	Standard or Guidance Value 50 7 5 10 NA 5 NA 5 NA	U U U U V NT V U U U		3/23/2016 U U U U U U U NT NT	6/29/2016 U U U U U U U NT U NT	10.6 U U NT U NT U NT	U U U U V V NT V U U U U U U U U	U U U U NT NT U U U		3/23/2016 U U U U U U NT NT	U U U U U U U NT U NT	U U U 0.6 J NT 2.0 J U U NT U NT	U U U U V NT V U U U		3/23/2016 U U U U U U U NT U NT	U U U U U U U NT U NT	U U U 0.6 J NT U NT U NT	U U U U NT NT U U U U		3/23/2016 U U U U U U U NT U NT	6/29/2016 U U U U U U V V U V U NT	28.0 U U 0.6 J NT U U NT U NT	
Acetone 2-2-Butanone (MEK) Chloroform Chloromethane Maphthalene Methyl acetate Methyl cyclohexane n-Progylbenzene sec-Butylbenzene tert-Butylbenzene	Standard or Guidance Value 50 50 7 5 10 NA 5 5 NA 5	U U U U NT V U U U U U U		3/23/2016 U U U U U U NT NT NT	6/29/2016 U U U U U U NT NT NT	10.6 U U NT U U NT NT NT	U U U U NT NT U U U U U U 0.47	U U U U NT NT U U U U 3.9 J		3/23/2016 U U U U U U NT NT NT	U U U U U U U U U U U U U NT NT	U U U 0.6 J NT 2.0 J U NT U NT	U U U U U NT NT U U U U 3.9 J		3/23/2016 U U U U U U U NT NT NT	U U U U U U U U V U V U V V V V V V V V	U U U 0.6 J NT U U U NT NT	U U U U NT U U U U U U U 2.5 J		3/23/2016 U U U U U U NT U NT NT	6/29/2016 U U U U U U NT NT NT	28.0 U U 0.6 J NT U U NT NT NT	
Acetone 2-butanone (MEK) Chicorotti Chicorotti Anghinalene Methyla costate Methylacottate Methylacottate Methylacottate Methylacottate are-Butylanzane terr-Butyl Alcohol are-Butylanzane	Standard or Guidance Value 50 7 5 10 NA 5 5 5 5 5 5 5 5 5 5 5 5 5	U U U U U NT V U U U U U U U U		3/23/2016 U U U U U U U NT U NT U U U	6/29/2016 U U U U U U U NT U NT U U U	10.6 U U NT U NT U NT NT U U	U U U U U NT NT U U U U U U U U U U U U	U U U U U NT NT U U U U U U U U U U U U		3/23/2016 U U U U U U U NT U NT U U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U U U	U U U 0.6 J NT 2.0 J U NT U NT U U	U U U U U NT NT U U U U U U U U U U U U		3/23/2016 U U U U U U U U U N T U N T U U U U U U	U U U U U U U U U U U U U U U U U U U	U U 0.6 J NT U U NT NT U U U U U U U	U U U U NT U U U U U U U 2.5.J U	U U U U U U U U U U U U U U U U	3/23/2016 U U U U U U U U U U NT U U U U	6/29/2016 U U U U U U NT U NT U U U U U	28.0 U 0.6 J NT U U NT U NT U NT U U	
Acetone 2-2-Butanone (MEK) Chloroform Chloromethane Maphthalene Methyl acetate Methyl cyclohexane n-Progylbenzene sec-Butylbenzene tert-Butylbenzene	Standard or Guidance Value 50 50 7 5 10 NA 5 5 NA 5	U U U U NT V U U U U U U		3/23/2016 U U U U U U NT NT NT	6/29/2016 U U U U U U NT NT NT	10.6 U U NT U U NT NT NT	U U U U NT NT U U U U U U 0.47	U U U U NT NT U U U U 3.9 J		3/23/2016 U U U U U U NT NT NT	U U U U U U U U U U U U U NT NT	U U U 0.6 J NT 2.0 J U NT U NT	U U U U U NT NT U U U U 3.9 J		3/23/2016 U U U U U U U NT NT NT	U U U U U U U U V U V U V V V V V V V V	U U U 0.6 J NT U U U NT NT	U U U U NT U U U U U U U 2.5 J		3/23/2016 U U U U U U NT U NT NT	6/29/2016 U U U U U U NT NT NT	28.0 U U 0.6 J NT U U NT NT NT	
Acetone 2-Butanone (MEK) Chicoroettane Nachthalene Methyl acetate Methylcyclobexane n-Propybenzane se-Burythenzane tert-Buryt Alcohol an-Burythonzane 12,4-Frimethylbenzane	Standard or Guidance Value 50 7 5 10 NA 5 5 5 5 5 5 5 5 5 5 5 5 5	U U U U U NT V U U U U U U U U		3/23/2016 U U U U U U U NT U NT U U U	6/29/2016 U U U U U U U NT U NT U U U	10.6 U U NT U NT U NT NT U U	U U U U U NT NT U U U U U U U U U U U U	U U U U U NT NT U U U U U U U U U U U U		3/23/2016 U U U U U U U NT U NT U U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U U U	U U U 0.6 J NT 2.0 J U NT U NT U U	U U U U U NT NT U U U U U U U U U U U U		3/23/2016 U U U U U U U U U N T U N T U U U U U U	U U U U U U U U U U U U U U U U U U U	U U 0.6 J NT U U NT NT U U U U U U U	U U U U NT U U U U U U U 2.5.J U	U U U U U U U U U U U U U U U U	3/23/2016 U U U U U U U U U U NT U U U U	6/29/2016 U U U U U U NT U NT U U U U U	28.0 U 0.6 J NT U U NT U NT U NT U U	
Actone 2-Butanone (MEK) Chicoroform Chicoroform Chicoronethane Naphthalene Methyfacichexane n-Progrieberzene see-Butyfacherzene see-Butyfacherzene 12.4-Trimethyfberzene Tolkerne	Standard or Guidance Value 50 7 5 10 NA 5 5 5 5 5 5 5 5 5 5 5 5 5	U U U U U NT U U U U U U U U U U U U		3/23/2016 U U U U U U NT NT NT V U U U U	6/29/2016 U U U U U U NT NT NT U U U U U U U U U U U U U	10.6 U U U U U U U U U U U U U U U U	U U U NT NT U U U U U U U U U U U U U U	U U U U NT U U U U U U U U U U U U U U U		3/23/2016 U U U U U U U N T N T N T U U U U	U U U U U U U NT NT NT U U U U U U	U U U 0.6 J NT 2.0 J U NT U NT U U U U U	U U U U NT V U U U U U U U U U U U U U U U U U U		3/23/2016 U U U U U U N T N T N T U U U U U U U	U U U U U U U U V V V V V V V U U U U U	U U 0.6 J NT U U U NT NT U U U U U U	U U U U U NT U U U U U U U U U U U		3/23/2016 U U U U U U U U NT U NT U U U U U	6/29/2016 U U U U U U U U NT U NT U U U U U U	28.0 U U 0.6 J NT U U U NT U U U U U U U U	1

Contaminant	Groundwater Standard or			MV	V-J					MW-K					MV	/-L						MW-M		
	Guidance Value	7/10/2014	9/29/2014	3/22/2016	6/29/2016	9/27/2016	6/21/2017	7/10/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016	7/7/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	6/21/2017	7/9/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016	6/21/2017
Acetone	50	U	U	U	U	7.8 J	U	U	U	U	U	U	U	U	U	U	5.2 J	1.78 J	U	U	U	U	4.9 J	U
2-Butanone (MEK)	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.5 J	U
Chloroform	7	U	U	U	U	U	U	U	U	U	U	U	0.65 J	U	U	U	U	U	U	U	U	U	U	U
Chloromethane	5	U	U	U	U	0.5 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	C	U	U
Naphthalene	10	U	U	U	U	NT	U	U	U	U	U	NT	U	U	U	U	NT	U	U	U	U	L L	NT	U
Methyl acetate	NA	NT	0	U	U	U	NT	NT	U	U ,	U	U	NT	U	U	U	U	NT	NT	U	U	0	1.4 J	NT
Methylcyclohexane	NA	NT	U	U	U	U	NT	NT	U	U	U	U	NT	U	U	U	U	NT	NT	U	U	UJ	U	NT
n-Propylbenzene	5	U	U	NT	NT	NT	U	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	U	NT	NT	NT	U
sec-Butylbenzene	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Uİ	U	U	U	U	U	U	U	0.37 J
tert-Butyl Alcohol	NA	U	U	NT	NT	NT	U	U	U	NT	NT	NT	U	U	NT	NT	NT	U	4.5 J	U	NT	NT	NT	U
tert-Butylbenzene	5	U	U	NT	NT	NT	U	U	U	NT	NT	NT	U	U	NT	NT	NT	U	3.6 J	U	NT	NT	NT	2.39
1,2,4-Trimethylbenzene	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Toluene	5	U	U	U	U	U	U	U	U	U	U	U	0.74 J	U	U	U	U	U	U	U	U	UJ	U	U
Total VOCs		U	U	U	U	8.3	U	U	U	U	U	U	1.39	U	U	0	5.2	1.78	8.1	U	U	U	7.8	
Total TICs		U	U	U	U	U	U	U	U	U	U	U	27.7	U	U	U	U	U	130	22	U	U	U	U
Total VOCs and TICs		U	U	U	U	8.3	U	U	U	U	U	U	29.09	U	U	0	5.2	1.78	138.1	22	U	U	7.8	

Contaminant	Groundwater Standard or			MW-N			Production Wel
	Guidance Value	7/7/2014	9/29/2014	3/23/2016	6/29/2016	9/27/2016	9/30/2014
Acetone	50	U	U	U	U	6.1 J	U
2-Butanone (MEK)	50	U	U	U	U	U	U
Chloroform	7	U	U	U	U	U	U
Chloromethane	5	U	U	U	U	0.7 J	U
Naphthalene	10	U	U	U	U	NT	U
Methyl acetate	NA	NT	U I	U	U	U i	U
Methylcyclohexane	NA	NT	U	U	UJ	U	U
n-Propylbenzene	5	U	U	NT	NT	NT i	U
sec-Butylbenzene	5	U	U	U	U	U	U
tert-Butyl Alcohol	NA	U	U	NT	NT	NT	U
tert-Butylbenzene	5	U	U	NT	NT	NT	U
1,2,4-Trimethylbenzene	5	U	U	U	U	U	U
Toluene	5	U	U	U	UJ	U	U
Total VOCs		U	U	U	U	6.8	U
Total TICs		87	5.1	U	U	U	U
Total VOCs and TICs		87	5.1	U	U	6.8	U

Notes

Groundwater Standards or Guidance Values as referenced in New York State Department of Environmental Conservation (NYSDEC) Technical and Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Test results and groundwater standards or guidance values reported in µg/L = micrograms per Liter or parts per billion (ppb).

VOC = Volatile Organic Compound TIC = Tentatively Identified Compound

U = The analyte was analyzed for, but was not detected above the associated reported quantitation limit. Refer to the analytical laboratory report for the associated reported quantitation limit

J = indicates a concentration below the reporting limit and equal to or above the detection limit, and is considered an estimated concentation

NA = Not Available NT = Not Tested

* = Exceeds Groundwater Standard or Guidance Value

TABLE 3 211 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905038

DETECTED SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCS) IN GROUNDWATER SAMPLES

6							-										-				
Contaminant	Groundwater Standard or			MW-B					MW-C					MW-D					MW-E		
	Guidance Value	7/9/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016	7/10/2014	9/29/2014	3/22/2016	6/29/2016	9/27/2016	7/9/2014	9/29/2014	3/22/2016	6/29/2016	9/27/2016	7/9/2014	9/29/2014	3/23/2016	6/29/2016	9/27/2016
1-Methylnaphthalene	NA	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT
Benzoic acid	NA	U	NT	NT	NT	NT	U	NT	NT	NT	NT	U	NT	NT	NT	NT	U	NT	NT	NT	NT
Butylbenzylphthalate	50	U	U	U	U	UJ	U	U	U	U	U	U	U	U	U	UJ	U	U	1.4 J	U	U
Bis (2-ethylhexyl) phthalate	5	U	U	U	U	UJ	U	U	2.1 J	23 *	U	U	U	1.9 J	5.1 J *	UJ	U	U	U	4.9 J	U
Caprolactam	NA	NT	U	U	U	U	NT	U	U	U	U	NT	U	U	U	UJ	NT	U	U	U	U
Di-n-butylphthalate	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U
Di-n-octyl phthalate	50	U	U	U	U	U	U	U	U	U	1	U	U	U	U	UJ	U	U	U	U	U
Fluorene	50	1.3 J	U	U	U	U	U	U	U	U	U	U	U	U	U	UJ	U	U	U	U	U
Total SVOCs		1.3	U	U	U	U	U	U	2.1	23	U	U	U	1.9	5.1	U	U	U	1.4	4.9	U
Total TICs		154	236.4	530	945	40.1	39.8	4.8	24.6	16.8	U	19.1	8.5	50.3	89.3	U	22	U	192.3	27.6	U
Total SVOCs and TICs		155.3	236.4	530	945	40.1	39.8	4.8	26.7	39.8	U	19.1	8.5	52.2	94.4	U	22	U	193.7	32.5	U

Contaminant	Groundwater Standard or			M	N-F					MW-G					MW-H					N	(W-I		
	Guidance Value	7/9/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	6/21/2017	7/7/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	7/8/2014	9/29/2014	3/23/2016	6/29/2016	9/27/2016	7/8/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	6/21/2017
1-Methylnaphthalene	NA	U j	U	NT	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	NT
Benzoic acid	NA	U	NT	NT	NT	NT	U	U	NT	NT	NT	NT	U	NT	NT	NT	NT	U	NT	NT	NT	NT	U
Butylbenzylphthalate	50	U	U	U	U	UJ .	U	U	U	U	U	U	U	U	U	U	UJ .	U	U	U	U	UJ	U
Bis (2-ethylhexyl) phthalate	5	U	U	2.8 J	11 *	UJ	202 JH *	U	U	U	U	U	U	U	U	U	UJ	U	U	6.3 J *	5.1 J *	UJ	U
Caprolactam	NA	NT	U	U	U	U	NT	NT	U	U	U	U	NT	U	U	U	U	NT	U	U	U	U	NT
Di-n-butylphthalate	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Di-n-octyl phthalate	50	υj	U	U	U	U	27.8 JH	U	U	U	U	U	U	U	U	U	U	U	U	υj	U	U	U
Fluorene	50	U	U	U	U	U	U	U	U	U	U	U	1.1 J	U	U	U	U	U	U	U	U	U	U
Total SVOCs		U	U	2.8	11	U	229.8	U	U	U	U	U	1.1	U	U	U	U	U	U	6.3	5.1	U	U
Total TICs		11	19.5	77.5	346	U	5.2	35.1	136.8	614	1089	112.8	171.6	111.8	758	688.4	447.5	18.2	16.6	24.9	531	9.7	4.5
Total SVOCs and TICs		11	19.5	80.3	357	U	235.0	35.1	136.8	614	1089	112.8	172.7	111.8	758	688.4	447.5	18.2	16.6	31.2	536.1	9.7	4.5

Contaminant	Groundwater Standard or			M	W-J					MW-K					м	W-L						MW-M		
	Guidance Value	7/10/2014	9/29/2014	3/22/2016	6/29/2016	9/27/2016	6/21/2017	7/10/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016	7/7/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	6/21/2017	7/9/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016	6/21/2017
1-Methylnaphthalene	NA	U	U	NT	NT	NT	NT	U	U	NT	NT	NT	U	U	NT	NT	NT	NT	2.1 J	U	NT	NT	NT	NT
Benzoic acid	NA	U	NT	NT	NT	NT	U	U .	NT	NT	NT	NT	U	NT	NT	NT	NT	U	U .	NT	NT	NT	NT	0.86 J
Butylbenzylphthalate	50	U	U	U	U	UJ	U	U	U	U	U	UJ	U	U	U	U	U	U	U	U	1.1 J	U	UJ	U
Bis (2-ethylhexyl) phthalate	5	U	U	100 J *	22 *	UJ	U	U	U	1.6 J	5.2 J *	UJ	U	U	4.3 J	U	U	6.79 JH *	U	U	4.3 J	U	UJ	U
Caprolactam	NA	NT	U	U	U	U	NT	NT	U	U	U	U	NT	U	U	U	U	NT	NT	U	U	4.7 J	U	NT
Di-n-butylphthalate	50	U	U	U	U	U	U	U	U	U	U	U	1 J	U	U	U	U	U	U	U	1.3 J	U	U	U
Di-n-octyl phthalate	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Fluorene	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Total SVOCs		U	U	100	22	U	0	U	U	1.6	5.2	U	1	U	4.3	U	U	6.79	2.1	U	6.9	4.7	U	0.86
Total TICs		U	11.3	U	99.7	U	U	52	72	62.7	145.3	U	4.9	4.2	20.6	74.6	U	U	26.6	49.6	28.6	302.9	298.8	U
Total SVOCs and TICs		U	11.3	100	121.7	U	0	52	72	64.3	150.5	U	5.9	4.2	24.9	74.6	U	6.79	28.7	49.6	35.5	307.6	298.8	0.86

Contaminant	Groundwater Standard or			MW-N					Production W	ell
	Guidance Value	7/7/2014	9/29/2014	3/23/2016	6/29/201	.6	9/27/2016	5	9/30/2014	
1-Methylnaphthalene	NA	U	U	NT	NT	1	NT	1	U	
Benzoic acid	NA	U	NT	NT	NT	1	NT	j	U	_
Butylbenzylphthalate	50	U	U	U	U	1	UJ		U	_
Bis (2-ethylhexyl) phthalate	5	U	U	U	U		IJ		U	
Caprolactam	NA	NT	U	U	5.3 J	i	U		U	
Di-n-butylphthalate	50	U	U	U	U		U		U	
Di-n-octyl phthalate	50	U	U	U	U	1	U		U	_
Fluorene	50	U	U	U	U	Ì	U		U	
Total SVOCs		U	U	U	5.3		U		U	
Total TICs		79	22.9	49.4	113.5		U		U	_
Total SVOCs and TICs		79	22.9	49.4	118.8		U		U	-

Notes

Groundwater Standards or Guidance Values as referenced in New York State Department of Environmental Conservation (NYSDEC) Technical and Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

Test results and groundwater standards or guidance values reported in µg/L = micrograms per Liter or parts per billion (ppb).

SVOC = Semi-Volatile Organic Compound TIC = Tentatively Identified Compound

U = The analyte was analyzed for, but was not detected above the associated reported quantitation limit. Refer to the analytical laboratory report for the associated reported quantitation limit

J = indicates a concentration below the reporting limit and equal to or above the detection limit, and is considered an estimated concentation

JH = Data Validation indicated the concentration estimated by the analytical laboratory is biased high

NA = Not Available NT = Not Tested

* = Exceeds Groundwater Standard or Guidance Value

TABLE 4 211 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905038

DETECTED TAL METALS IN GROUNDWATER SAMPLES

Contaminant	Groundwater Standard or			MW-B					MW-C					MW-D				MW-E		
	Guidance Value	7/9/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016	7/10/2014	9/29/2014	3/22/2016	6/29/2016	9/27/2016	7/9/2014	9/29/2014	3/22/2016	6/29/2016 9/27/2	7/9/2014	9/29/2014	3/23/2016	6/29/2016	9/27/2016
luminum	NA	U	66.2 J	U	U	U	U	1220.0	18.1 J	U	U	U	U	U	U U	U	U	U	690.0 JH	38.4 J
ntimony	3	U	U	U	15.5 JH	* U	U	U	U	8.4 JH	* U	U	U	U	13.3 JH * U	U	U	5.2 J	* 11.3 JH *	U
rsenic	25	U	U	U	9.7 J	U	U	5.1 J	4.0 J	9.1 J	U	U	U	U	12.0 J U	U	U	U	9.7 J	U
larium	1,000	616	200	684	143 JH	670 JH	219	221	164 J	146 JH	166 JH	259	200 J	231	248 JH 345	H 207	223	232	253 JH	219 JH
alcium	NA	293,000	300,000	358,000	330,000 JH	309,000 JH	114,000	114,000	92,100	79,700 JH	88,500 JH	153,000	133,000	141,000	132,000 JH 249,000	H 124,000	134,000	14,200	145,000 JH	130,000 JH
hromium	50	0.86 J	U	0.98 J	3.70 JH	56.20 *	U	1.8 J	0.85 J	2.80 JH	U	U	U	0.46 J	3.20 JH 1.70	0.9 J	3.5 J	1.60 J	4.70 JH	U
obalt	NA	U	U	U	U	U	U	U	U	U	U	U	U	U	U U	U	U	U	0.81 JH	U
opper	200	U	U	1.40 J	1.80 JH	4.0 J	U	4.5 J	U	1.70 JH	U	U	U	U	1.70 JH U	U	U	1.40 J	5.40 JH	U
on	300	156 J	92.4 J	2090.0	* 631.0	* 552 *	U	1510 *	63.5 J	U	13.5 J	663	* 376	* 84.1 J	104.0 J 142	110 J	84 J	161.0 J	1140.0	73.8
ead	25	U	U	U	7.2 J	U	U	U	U	U	U	U	U	U	UU	U	U	U	4.8 J	U
lagnesium	35,000	20,500	15,700	25,900	19,200 JH	22,300 JH	18,100	18,900	14,600	13,300 JH	14,500 JH	23,600	20,400	22,100	21,300 JH 37,600	H * 21,000	22,500	24,600	25,500 JH	22,900 JH
langanese	300	1,480 *	2,800 *	2,090	* 2,560 JH	* 1,650 *	U	122	2.2 J	1.3 JH	U	752	* 619	* 501	* 577 JH * 1,610	* U	U	5.6 J	75.7 JH	8.2
fercury	0.7	U	U	U	U	U	U	U	U	U	U	U	U	U	UU	U	U	U	U	U
lickel	100	U	U	2.9 J	3.7 J	20.2	U	1.5 J	1.5 J	2.1 J	U	U	U	1.9 J	3.2 J U	U	U	1.5 J	4.3 J	U
otassium	NA	6,730 E	6,240	7,960	6,240	7,090	3,660	4,510	3,460	2,820	3,100	5,130 E	5,200	5,100	4,880 5,960	3,770 E	3,840	4,260	4,040	3,320
elenium	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U U	U	U	U	U	U
odium	20,000		184,000 *	435,000	* 236,000 JH	* 320,000 *	128,000	* 131,000	94,300 *	76,600 JH	* 85,000	* 116,000	* 126,000		* 113,000 JH * 146,000	* 125,000	* 125,000	* 132,000	* 130,000 JH *	125,000
hallium	0.5	7.6 J *	U	U	12.20 J	* U	U	U	U	U	U	U	U	2.80 J	* 3.50 J * U	7.1 J	* U	U	3.40 J *	U
anadium	NA	1.6 J	U	U	0.38 JH	U	U	2.0 J	U	U	U	U	U	U	U U	U	U	U	0.39 JH	U
inc	2,000	6.3 J	U	36.6 J	U	U	6.2 J	10.9 J	11.5 J	U	U	U	U i	11.6 J	U U	I U I	U	9.8 J	8.7 J	U
	Groundwater									MW C					NEW 11					W/ 1

Contaminant	Groundwater Standard or				MW-F					MW-G					MW-H					M	N-1			
	Guidance Value	7/9/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	6/21/2017	7/7/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	7/8/2014	9/29/2014	3/23/2016	6/29/2016	9/27/2016	7/8/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	6/21/2017	
Aluminum	NA	U	347	U	U	U	NT	U	1550.0	U	U	U	U	U	U	U	34.0 J	U	U	U	U	U	NT	
Antimony	3	U	U	U	21.4 JH	* U	U	U	U	U	16.0 JH	* U	U	U	U	15.3 JH	* U	U	U	U	16.4 JH *	U	U	
Arsenic	25	U	U	U	7.3 J	U	U	U	U	5.5 J	8.2 J	U	U	U	U	8.0 J	U	U	U	4.6 J	10.5 J	5.8 J	1.9 J	
Barium	1,000	29.4 J	132 J	17.6 J	40.0 JH	36.4 JH	24.0	427	901	659	793 JH	766 JH	444.0	791.0	97 J	413 JH	241 JH	609	1910	* 86 J	1350 JH *	1,330 JH *	163	
Calcium	NA	463,000	401,000	450,000	344,000 JH	417,000 JH	NT	341,000	312,000	249,000	267,000 JH	252,000 JH	411,000	306,000	698,000	302,000 JH	311,000 JH	215,000	170,000	265,000	196,000 JH	241,000 JH	NT	
Chromium	50	U	0.72 J	1.40 J	3.90 JH	U	U	0.77 J	3 J	1.10 J	4.20 JH	1.8 J	2.0 J	1.1 J	2.60 J	4.70 JH	8.2 J	U	5.2 J	0.38 J	3.40 JH	U	U	
Cobalt	NA	U	U	U	3.1 JH	U	NT	U	1.0 J	U	U	U	U	U	U	U	U	U	U	U	U	U	NT	
Copper	200	U	U	3.80 J	3.50 JH	U	NT	U	8.6 J	U	1.40 JH	U	U	U	10.30 J	1.60 JH	U	U	U	U	1.9 JH	U	NT	
Iron	300	582 *	2650	120.0 J	153.0 J	3,690	* NT	1790 *	3620	* 283.0	51.7 J	42.9	924	513	* 18,000	* 166 J	3,780	* 2600	* 4350	* 691 *	1970 *	4,200 *	NT	
Lead	25	4.3 J	U	U	7.2 J	U	NT	U	U	U	5.3 J	U	U	U	6.3 J	7.8 J	U	U	U	U	5.2 J	U	NT	
Magnesium	35,000	20,800	22,500	19,700	15,000 JH	17,100 JH	26,600	32,200	31,300	25,700	29,200 JH	28,000 JH	39,700	* 36,200	* 63,400	* 37,600 JH	* 41,600 JH	* 20,800	16,900	27,600	19,600 JH	23,000 JH	19,800	
Manganese Mercury	300	770 *	1,480	12.6 J	2,410 JH	* 586	* NT	1,060 *	914	* 692 *	627 JH	* 542	* 443	426	* 5,810	* 574 JH	* 823	* 1,720	* 1,480	* 1,080 *	* HL 809	2,060 *	* NT	
	0.7	U	U	U	U	U	NT	U	U	0.040 J	U	U	U	U	U	U	U	U	U	U	U	U	NT	
Nickel	100	1.5 J	1.1 J	3.2 J	5.1 J	U	NT	U	4.0 J	3.0 J	3.8 J	U	0.9 J	U	5.9 J	4.1 J	5.7 J	U	7.2 J	3.3 J	3.4 J	U	NT	
Potassium	NA	3,780	5,430	3,840	3,440	3,640	NT	9,260 E	8,990	7,910	7,680	6,980	13,100 E	12,000	17,200	12,000	11,400	5,060 J	4,670	6,010	4,380	5,650	NT	
Selenium Sodium	10	U	U	U	U	U	NT	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	NT	
	20,000	123,000 *	186,000	95,400	* 118,000 JH	* 72,600	* NT	152,000 *	196,000	* 160,000 *	180,000 JH	* 168,000	* 409,000	* 291,000	* 493,000	* 321,000 JH	* 226,000	* 205,000	* 174,000	* 20,400 *	178,000 JH *	175,000 *	* NT	1
Thallium	0.5	15.50 J *	U	7.30 J	* 11.60 J	* U	U	13.4 J *	U	3.90 J *	6.00 J	* U	9.3 J	* U	7.60 J	* 9.4 J	* U	U	U	4.90 J *	7.1 J *	U	U	1
Vanadium	NA	U	U	U	U	U	U	1.2 J	3.4 J	U	U	U	1.3 J	1.3 J	U	U	U	U	U	U	U	U	U	
Zinc	2,000	818	91.2	892.0	306	95.7 JH	NT	5.7 J	34.6 J	6.2 J	U	U	5.4 J	U	9.9 1	U	12.9 JH	6.5 J	U	14.3 J	U	U	NT	1

Contaminant	Groundwater Standard or						MW-J						MW-K						N	/W-L						MW-M		
	Guidance Value	7/1	0/2014	9/29/201	14	3/22/2016	6/29/2016	9/2	/2016 6/21	/2017	7/10/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016		7/7/2014	9/30/2014	3/23/2016	6/29/2016	9/27/2016	6/21/2017	7/9/2014	9/30/2014	3/22/2016	6/29/2016	9/27/2016	6/21/2017
Aluminum	NA	977		U	1	U	34.6 J	U	NT		93.6 J	U	18.3 J	U	35.3 J		196 J	U	U	173.0 J	201	NT	115 J	1310	U	U	U	NT
Antimony	3	U		U		U	12.5 JH	* U	U		U	U	U	12.4 JH	* U		U	U	U	15.8 JH	* U	U	U	U	8.5 J	* 18.1 JH	* U	U
Arsenic	25	U		U		U	8.9 J	U	U		U	U	8.1 J	12.6 J	5.7 J		U	U	U	11.6 J	U	U	U	7.0 J	U	8.7 J	U	U
Barium	1,000	183	1	219		208	224 JH	233	JH 179.0		616	928	520	792 JH	1,230 JH	*	168 J	202	197 J	213 JH	256 JH	165.0	1010	* 812	242	156 JH	55.5 JH	432.0
Calcium	NA	127,0	00	143,000		13,900	146,000 JH	145,00	JH NT		146,000	136,000	134,000	152,000 JH	150,000 JH	1	122,000	144,000	149,000	148,000	159,000 JH	NT	272,000	325,000	251,000	368,000	538,000 JH	NT
Chromium	50	2.1	1	U		0.58 J	3.5 JH	U	U		0.70 J	1.1 J	U	3.2 JH	1.5 J		0.85 J	0.71 J	0.93 J	3.7 JH	U	U	0.77 J	1.9 J	0.95 J	3.80 JH	117	U
Cobalt	NA	U		U	1	U	U	U	NT		U	1.2 J	U	0.84 JH	1.6 J		2.2 J	U	U	0.96 JH	U	NT	U	U	U	U	0.9 J	NT
Copper	200	6.0		U		1.20 J	2.8 JH	U	NT		U	U	2.00 J	2.80 JH	U		U	U	U	3.8 JH	U	NT	U	5.2 J	U	1.9 JH	17.8	NT
Iron	300	187		* 33.9 J		U	71 J	19.4	J NT		290	621	157 J	179 J	694	*	434	* 351	* U	383	* 446	* NT	5520	* 5150	* 1250	* 443	2,980	* NT
Lead	25	4.3	J	U		U	U	U	NT		U	U	U	U	U		U	U	U	U	U	NT	U	U	U	7.8 J	U	NT
Magnesium	35,000	20,80	0	23,100		22,800	24,300 JH	24,30	JH 18,900		21,100	20,100	19,000	23,700 JH	23,400 JH	2	21,300	23,400	23,200	25,600 JH	28,700 JH	21,000	22,600	26,300	22,200	27,600 JH		* 21,800 J
Manganese	300	131		U		U	30.0 JH	U	NT		1,900	* 1,910	1,210	* 3,070 JH	* 3,140	*	1,050	* 101	5.9 J	311	* 60.2	NT	1,370	* 1,210	* 1,700	* 1,650	• 4,010 •	* NT
Mercury	0.7	U		U		U	U	U	NT		U	U	U	U	0.11 J		U	U	U	U	U	NT	U	U	U	U	U	NT
Nickel	100	2.6	1	U		1.5 J	2.8 J	U	NT		2.4 J	3.7 J	2.5 J	5.8 J	U		2.7 J	U	1.4 J	4.0 J	U	NT	U	1.9 J	2.8 J	3.9 J	59.7	NT
Potassium	NA	4,19		3,950		4,100	3,850	3,700	NT		3,600	3,650	3,540	3,330	3,420		5,920 E	4,150	4,170	3,840	4,090	NT	12,800 E	15,700	12,700	19,700	17,400	NT
Selenium	10	15.1)]	* U		U	U	U	NT		U	U	U	U	U		U	U	U	U	U	NT	U	U	U	U	U	NT
Sodium	20,000	137,0	00	* 137,000	* 1	131,000	* 132,000 JH	* 145,00	JH * NT		109,000	* 92,600	112,000	* 85,700 JH	* 99,500	* 1	108,000	* 138,000	* 122,000	* 136,000 JH	* 178,000	* NT	439,000	* 694,000	* 349,000	* 972,000 JH	* 622,000 JH *	NT
Thallium	0.5	U		U		U	4.10 J	* U	U		U	U	U	8.20 J	* U		U	U	U	3.8 J	* U	U	U	U	3.40 J	* 12.70 J	• U	U
Vanadium	NA	1.3	J	U		U	U	U	U		U	1.3 J	U	U	U		1.3 J	U	U	U	U	U	U	2.0 J	U	U	1.9 J	U
Zinc	2,000	20.1	1	6.2 J	1	9.1 J	U	U	NT		7.3 J	6.2 J	10.6 J	U	U		8.4 J	U	8.7 J	4.4 J	U	NT	5.1 J	10.9 J	26.7 J	U	U	NT

Contaminant	Groundwater Standard or						MW-N					Production	Wel
	Guidance Value	7/7/2	014		9/29/201	4	3/23/2016	5	6/29/2016	5	9/27/2016	9/30/2014	4
Aluminum	NA	434			326	1	U		U		U	U	Г
Antimony	3	U			U	1	U		13.5 JH		U	U	Г
Arsenic	25	U			U	1	U		8.7 J		U	4.8 J	Г
Barium	1,000	241			179 J	1	190 J		200 JH		258 JH	289	Г
Calcium	NA	161,000			128,000		138,000		136,000		165,000 JH	129,000	Г
Chromium	50	309.00		*	148.00		73.0	•	10.7 JH		10.2	0.84 J	Г
Cobalt	NA	U			U		U		U		U	U	Г
Copper	200	4.3	J		U		U		1.4 JH		U	U	Г
Iron	300	2100		*	843		87.5 J		U		40.4	1030	Г
Lead	25	U			U		U		U		U	U	1
Magnesium	35,000	25,700			19,900		20,700		21,400 JH		25,600 JH	22,500	1
Manganese	300	453		*	382	•	205		190		181	91	
Mercury	0.7	U			U	1	U		U		U	U	
Nickel	100	2.2	J.		1.6 J	1	2.0 J		2.3 J		U	1.3 J	1
Potassium	NA	5,520	Е		6,120	1	5,180		4,310		4,444	3,900	Γ
Selenium	10	U			U		U		U		U	U	Г
Sodium	20,000	162,000		*	126,000	•	149,000	•	131,000 JH	•	156,000	* 129,000	Г
Thallium	0.5	U			U	1	3.60 J	٠	2.90 J	•	U	U	Г
Vanadium	NA	1.7	1		1.4 J	1	U		U		U	U	Г
Zinc	2,000	14.2	1		7.3 J	1	8.9 J		U		U	369	Г

Notes

Test results and groundwater standards or guidance values reported in µg/L = micrograms per Liter or parts per billion (ppb).

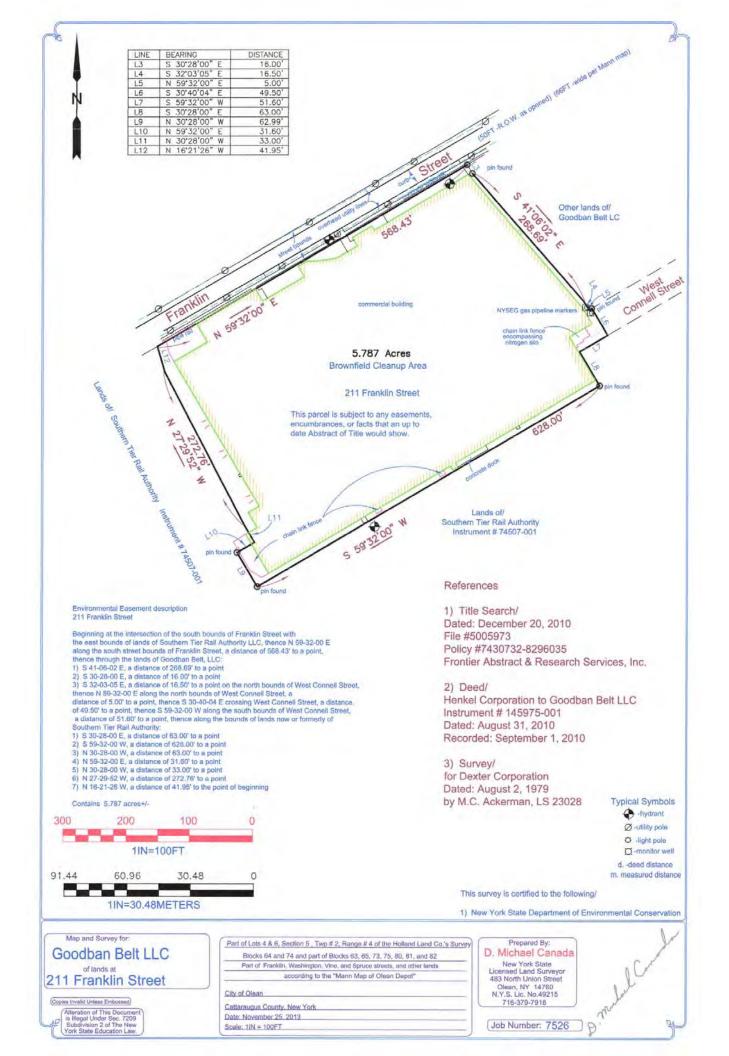
Groundwater Standards or Guidance Values as referenced in New York State Department of Environmental Conservation (NYSDEC) Technical and Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

NA = Not Available

U = The analyte was analyzed for, but was not detected above the associated reported quantitation limit. Refer to the analytical laboratory report for the associated reported quantitation limit

E = an estimated concentration due to the presence of interferences

J = indicates a concentration below the reporting limit and equal to or above the detection limit, and is considered an estimated concentation


JH = Data Validation indicated the concentration estimated by the analytical laboratory is biased high

* = Exceeds Groundwater Standard or Guidance Value

Day Environmental, Inc.

ATTACHMENT A

PROPERTY SURVEY MAP

ATTACHMENT B

SITE WIDE INSPECTION FORM, PHOTOGRAPHS AND DOCUMENTATION OF REPAIRS Site-Wide Inspection Form

211 Franklin Street

City of Olean, New York

NYSDEC Site Number: C905038

Date of Inspection Site Visit: June 21, 2017

Personnel Performing Inspection Site Visit: C. Hampton

Affiliation of Personnel: Goologist, Day Environmental, Inc.

1. Check integrity of impermeable portions (e.g., concrete) of cover system, include whether any sloughing, cracks, settlement, damage, etc.

Discuss observations and any corrective actions:

1) Some minor cracks + degreddion along REC Joints - Shipping lot on what sided Sile

2. Check integrity of permeable portions (e.g., soil) of cover system, include whether any sloughing, cracks, settlement, damage, etc.

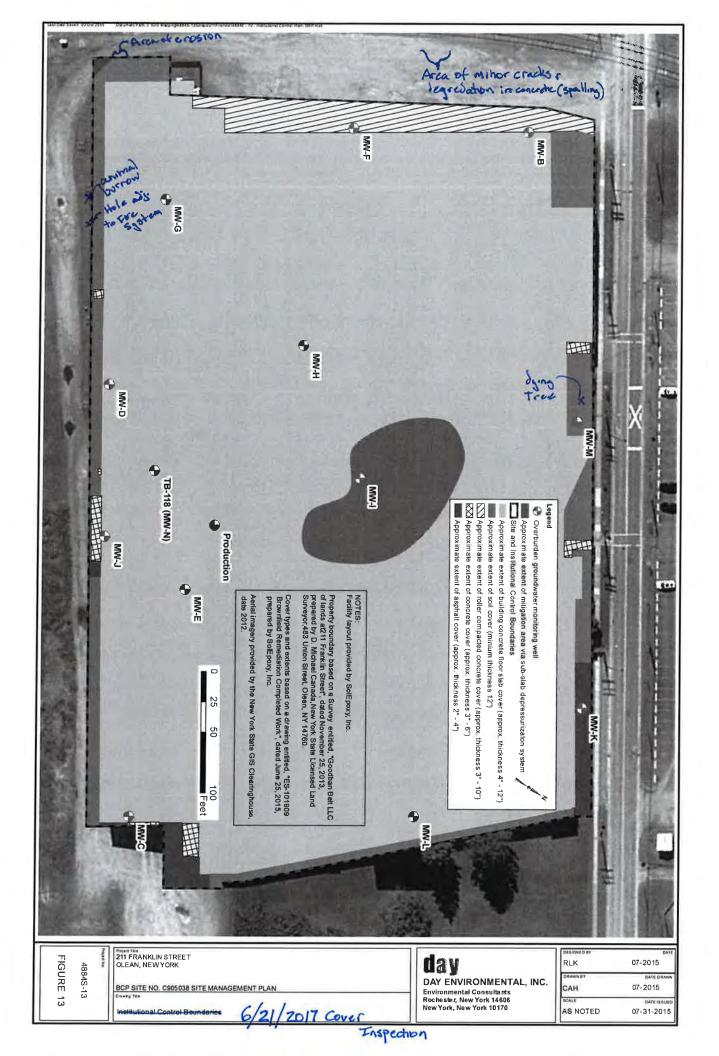
Discuss observations and any corrective actions:

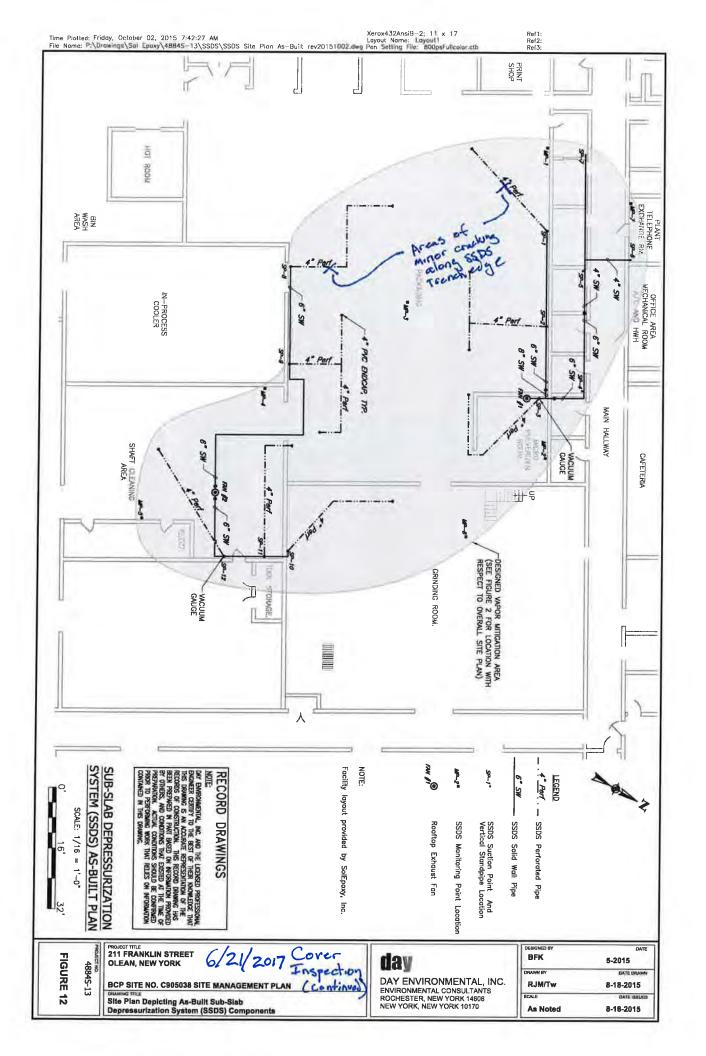
() Minor crosion along edge of soil cover-south westede of site (outside brack arm); 2) Benimal burrow on & Side (3) hole next to sprinkler System (#9)

3. Check integrity of vegetative cover (e.g., grass), include whether any dead areas, erosion, etc.

Discuss observations and any corrective actions:

Direpetation in good condition except one dead/dying tree in break area. Isper M. W. This free has been dying since transplant


Site Management Plan, Site # [C905038]


4. Check integrity of building floor slabs (e.g., ground floor and basement), include whether any sloughing, cracks, settlement, damage, etc.

Discuss observations and any corrective actions:

. SSDS Moni	toring
	#1 - Have pressure measurements been collected monthly, since last ection? ① N
	#2 - Have pressure measurements been collected monthly, since last ection? $\stackrel{\frown}{ imes}$ N
c. Have	e the Annual Inspections for Fan #1 and Fan #2 been completed?
Y	(date completed)
N	by end of 2017-06 (anticipated inspection date)
Discuss observa	tions and any corrective actions:
Non	e
stells	Check Mar 10 of permitted performance in 13 of environments

Site Management Plan, Site # [C905038]

View of the soil cover adjacent to the north of the facility building and concrete cover on the northern portion of the Shipping Lot, facing east.

SOI epoxy

SHIPPING

NYS IN A

0 III H

View of the concrete cover on the Shipping Lot and the west side of the facility building, facing southeast.

View of the concrete cover on the Shipping Lot and the west side of the facility building, facing northeast.

All search and a

View of erosion along the edge of the soil cover located at the southwest corner of the Site, adjacent to the Maintenance Department break area fence, facing north.

View of the soil cover in the Maintenance Department break area, facing north.

- P'24

View of the asphalt cover located at the southwest corner of the Site, adjacent to the Maintenance Department break area fence, and the soil cover adjacent to the south of the facility building, facing east.

8

E

View of the apparent animal burrow observed adjacent to the boiler room door, facing northeast.

he

Link.

View of the soil cover located along the southern edge of the facility building, facing west.

View of the asphalt cover located at the southeast portion of the Site, adjacent to the Receiving Lot, facing west.

sol epoxy

0

1000

11

View of the soil cover located along the eastern edge of the facility building, facing south.

View of the asphalt cover located along the northern edge of the facility building in the Visitor Parking area, facing west

T

View of the soil cover located along the northern edge of the facility building, adjacent to the east of the Main Entrance, facing southwest.

View of the soil cover located along the northern edge of the facility building, adjacent to the east of the Main Entrance, facing southwest.

-

Sector Sector	Contraction of the	7	Jone	Constant Property	67.000	
Request No.:	185399	1	some	Date S	ubmitted	7 /10/2017 +
Department:	544 💌	D	uplicate	Date C	ompleted	8 / 7 /2017 -
Charge No.:	544.601		Сору		ntus	07772017
Machine No. :	_	Bras	s Tag Description	Г	Pending Acceptan	ce 🗖 Rejected
Brass Tag No.:	-				Open	F Parts Hold
Requested By :	MBW	Approved By :	Dan		(Accepted	l) 🔽 Complete
Work Description	n	Description				
Erosion along ed	dge of cover- Apparen	t animal burrow and Er	osion from fire system	☐ ☐ Safety	Maintena	nce Category Priority
Equipment A	vailable:	Equip	nent Needed By: -	1		
1 /19/2018	▼ 12:12:00 PM	4 🕂 17	19/2018 👻	Est. Time (hrs)	Schedu	CONTRACTOR OF T
ogged Hours				Remarks		
	Mechanic Hours	No of	Mechanics 0	_		
	20.000000000	Total R	egular Hrs 0	- 11		
	A COLOR OF STREET	Tota	Overtime			
		2 2	Total Hrs 0	-11		
	al autors -	and the second	F			
		R4				
		REAL	ans a		0.0)	ATTOCHEO
		1-431			575	ATTROHED
	TTEM	s. con	10 75	LATTRE	TUY	VOER DI
						ITTE

SECTON

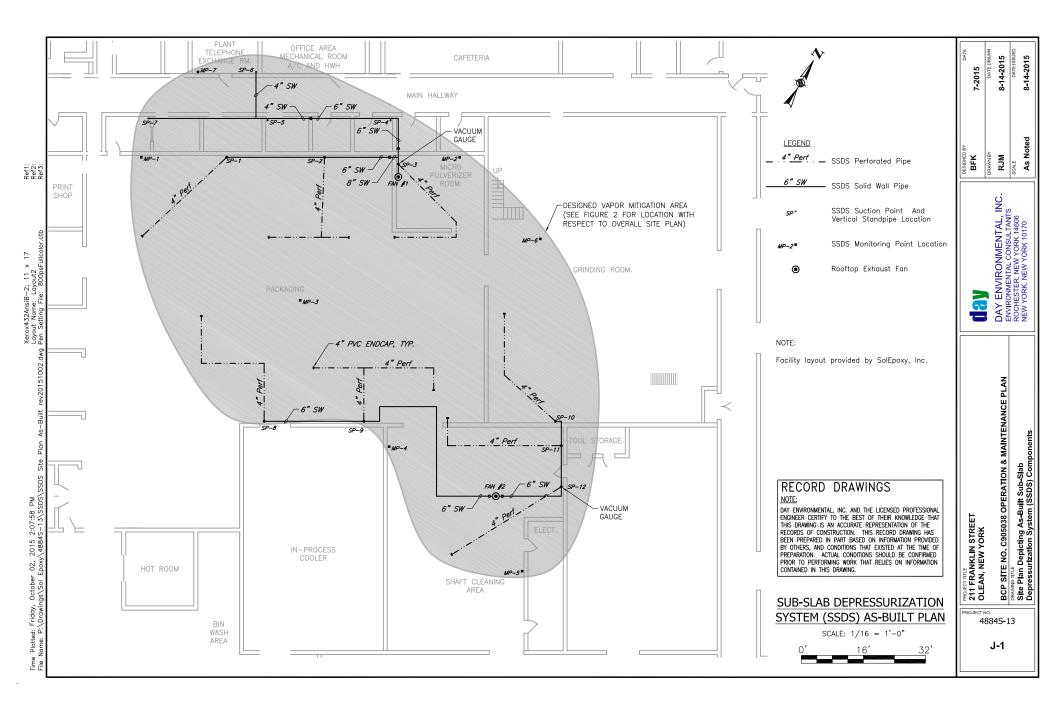
MARL WENSEL.

epoxy

Mark Wendel Plant Engineering Manager mark.wendel@solepoxy.com

www.solepoxy.com

SolEpoxy, Inc. 211 Franklin Street Olean, NY 14760 USA


SIDOWN

tel: +1 716 372 6300 x 239 mb: +1 716 378 8546 fax: +1 716 372 6864 toll-free: +1 800 829 2209

partners in problem solving™

ATTACHMENT C

SSDS PERIODIC MONITORING AND ANNUAL INSPECTION RESULTS

SSDS INSPECTION LOG FORM

QUARTERLY INSPECTION		Fan #1			Fan #2			
Date	6-21-17				6-21-17	\sim		
Inspector	m.c.				MC.			
Static Pressure (in. H ₂ O vacuum)		2.5			1.8			
Static Pressure Required* (in. H ₂ O vacuum)	≥ 1.7 in.	\geq 1.7 in.	\geq 1.7 in.	\geq 1.7 in.	\geq 1.2 in.	≥ 1.2 in.	≥ 1.2 in.	≥ 1.2 in.
Refer to SSDS Mor	thly Inspection	Forms for sta	atic pressure n	neasurements	, completed be	tween 2/17/20	17 and 1/4/20	18.
ANNUAL INSPECTION		Far	n#1			Fai	1 <i>#</i> 2	
Date	ĺ	(e-21-	17		6	i-21-1	7	
Inspector	1	И. С.				M-C.	•	
Fan Operation Confirmed	3	4-21- 11. C. 128				125-		e e e e e e e e e e e e e e e e e e e
Exhaust Point Free of Obstruction	Ý	es .			1	1-e S.		
Fan Checked for :	1				1			
Vibration/Noise		123			Y	125	· · · · · · · · · · · · · · · · · · ·	
Damage		YRS			1	Yes		
Secure Mounting		Yes.				Ves	4444-4	
Secure Power Connection		les				Yes		
Piping Checked for:						/		
Damage	<u> </u>	e 5-				ýes		
Secure Mounting	Ý	25				Yes		
Transition Seals Secure		les				yes.		

*Static pressures reading(s) below these values require systems repair, maintenance and/or engineering evaluation to confirm continued effectiveness.

-		· · · · · · · · · · · · · · · · · · ·	
SSDS Mo	nthly Inspection	(Fan #1)	
	Inspector	Date	Reading *
Jan-17			
[•] Feb-17	B.P.	2/17/17	2.4
Mar-17	B.P.	3/13/17	24
Apr-17	BP.	4/5/17	2.4
May-17	DL	5/ +/17	2.4
Jun-17	BP	6377	2.5
Jul-17	BP	7/10/17	2.5
Aug-17	BP	8/4/17	2.5
Sep-17	BP	9/12/17	2.5
Oct-17	BP	10/3/17	2.5
Nov-17	BP	11/3/17	2.5
Dec-17	BP	02/5/17	2.4
BINAL	BP	1/4/18	2.4
	······································		

*Reading should be greater than

or equal to 1.7 in.

*Static pressure readings below these values require system repair, maintenance and/or engineering evaluation to confirm continued effectiveness

SSDS Mo	onthly Inspection	(Fan #2)	
	Inspector	Date	Reading *
Jan-17			
Feb-17	B.P	2/17/17	1.7
Mar-17	BP	3/13/17	1.6
Apr-17	BP	4/5/17	1.7
May-17	DL	5/1/17	1.7
Jun-17	BP	6/2/17	1.8
Jul-17	RP	7/10/17	1.8
Aug-17	DP	\$1417	1.8
Sep-17	BP	9/12/17	1.8
Oct-17	BP	10/3/17	1.8
Nov-17	BP	1//3/17	1.8
Dec-17	BP	12/5/17	1.7
JANB	BP	1/4/18	1.6
			- Ang

*Reading should be greater than

or equal to 1.2 in.

*Static pressure readings below these values require system repair, maintenance and/or engineering evaluation to confirm continued effectiveness

ATTACHMENT D

INSTITUTIONAL AND ENGINEERING CONTROL CERTIFICATION FORMS

Énclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	Site Details	Box 1			
Site No.	C905038				
Site Name 21	1 Franklin Street				
Site Address: City/Town: Ol County: Cattara Site Acreage:	augus				
Reporting Perio	od: February 10, 2017 to February 10, 2018 February 11, 2017				
		YES	NO		
1. Is the infor	mation above correct?		•		
If NO, inclu	ude handwritten above or on a separate sheet.				
	or all of the site property been sold, subdivided, merged, or undergone a nendment during this Reporting Period?				
	been any change of use at the site during this Reporting Period RR 375-1.11(d))?		•		
for or at the Although no 9-9 -0412-00	ederal, state, and/or local permits (e.g., building, discharge) been issued e property during this Reporting Period? t issued during the reporting period, copies of NYSDEC DEC PERMIT# 0014/02001, NYSDOH Permit #04022737 and City of Olean Permit #E-1-15 ct at the property during the reporting period and are attached.		•		
5. Is the site of	currently undergoing development?		•		
		Box 2 YES	NO		
	ent site use consistent with the use(s) listed below? al and Industrial				
7. Are all ICs/	ECs in place and functioning as designed?				
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.				
Signature of Ow	mer, Remedial Party or Designated Representative Date				

			Box 2A
		· · ·	YES NO
	nation revealed that assumptions made ing offsite contamination are no longer		
	ES to question 8, include documenta n has been previously submitted wit		
	s in the Qualitative Exposure Assessme posure Assessment must be certified e		
	O to question 9, the Periodic Review e Exposure Assessment based on th		
SITE NO. C905038			Box 3
Description of Instit	utional Controls		
Parcel	<u>Owner</u>	Institutional Control	
94.040-1-21	Silence Dogwood LLC	Ground Water Use Soil Management P Landuse Restriction Monitoring Plan Site Management P O&M Plan IC/EC Plan	lan
			Box 4
Description of Engi	neering Controls		
Parcel	Engineering Control		
94.040-1-21	Vapor Mitigation Cover System		

. . .

		Box 5
	Periodic Review Report (PRR) Certification Statements	
1. _、	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, a reviewed by, the party making the certification;	and
	b) to the best of my knowledge and belief, the work and conclusions described in this centric are in accordance with the requirements of the site remedial program, and generally acceleration processing program, and generally acceleration processing program.	
	engineering practices; and the information presented is accurate and compete. YES	NO
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Ins or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of th following statements are true:	
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchan since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public he the environment;	alth and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, mechanism remains valid and sufficient for its intended purpose established in the docum	
	YES	NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
· 4	A Corrective Measures Work Plan must be submitted along with this form to address these issu	ies.
S	Signature of Owner, Remedial Party or Designated Representative Date	

	IC CERTIFICATIONS SITE NO. C905038	
		Box 6
certify that all information and st	R DESIGNATED REPRESENTAT atements in Boxes 1,2, and 3 are t able as a Class "A" misdemeanor,	true. I understand that a false
Jeffrey Belt	at211 Franklin Stree	et, Olean, New York 14760,
print name	print business	address
am certifying as l	Representative of the Owner	(Owner or Remedial Party)
		•
for the Site named in the Site Det	ails Section of this form.	
(DAIN)		MARCH 7, 2018
Signature of Owner, Remedial Pa Rendering Certification	arty, or Designated Representative	Date

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

t	Barton F. Kline	at Day Environmental, Inc., 1563 Lyell Avenue, Rochester, NY 14606,
	print name	print business address
am cer	tifying as a Professional Enginee	r for the <u>Owner, Silence Dogood, LLC.</u> (Owner or Remedial Party)
		SEOFNEW LOP
		K A A A A A A A A A A A A A A A A A A A
	B. F.KS	2 e El 2 1 3/8/18
	ure of Professional Engineer, for t dial Party, Rendering Certification	
		24

NYSDEC

AIR PERMIT # 9-9 -0412-00014/02001

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Region 9 Main Office 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7000 I F: (716) 851-7211 www.dec.ny.gov

July 16, 2015

Mr. Robert Groele Soelpoxy Inc. 211 Franklin Street Olean, New York 14760

Dear Permittee:

PERMIT TRANSMITTAL LETTER DEC PERMIT # 9-9-0412-00014/02001

Enclosed is your permit which was issued in accordance with applicable provisions of the Environmental Conservation Law. The permit is valid for only that project, activity or operation expressly authorized.

The DEC permit number and Program ID number, if applicable, should be retained for your records and should be referenced on all future correspondence and applications related to the permit. If modifications are desired after permit issuance, you must submit the proposed revisions and receive written approval from the Permit Administrator prior to initiating any change. If the Department determines that the modification represents a material change in the scope of the authorized project, activity, operation or permit conditions, you will be required to submit a new application for permit.

Please note the <u>expiration date</u> of the permit. Applications for permit renewal should be made well in advance of the expiration date (minimum of 30 days) and submitted to the Regional Permit Administrator at the above address. For SPDES, Solid Waste and Hazardous Waste Permits, renewals must be made at least 180 days prior to the expiration date.

Please review all permit conditions carefully. In particular, identify your initial responsibilities under this permit in order to assure timely action if required. Since failure to comply precisely with permit conditions may be treated as a violation of the environmental conservation law, you are requested to provide a copy of the permit to the project contractor, facility operator, and other persons directly responsible for permit implementation (if any).

If you have any questions, please contact this office at the above address.

Respectfully, David S. Denk Regional Permit Administrator

DSD:lj

Enclosure

ecc: Captain Frank Lauricella, Division of Law Enforcement, NYSDEC Region 9 Alfred Carlacci, RAPCE, NYSDEC Region 9 Buffalo, Attn: Geoffrey Knall

Department of Environmental Conservation

> PERMIT Under the Environmental Conservation Law (ECL)

IDENTIFICATION INFORMATION

Permit Typ	e: Air State Facility
Permit ID:	9-0412-00014/02001
	Effective Date: 07/16/2015 Expiration Date: 07/15/2025
Permit Issu	ed To:SOLEPOXY INC
	211 FRANKLIN ST
	OLEAN, NY 14760
Contact:	ROBERT GROELE
	SOLEPOXY INC
	211 FRANKLIN ST
	OLEAN, NY 14760
Facility:	SOLEPOXY INC
and the second	211 FRANKLIN ST
	OLEAN, NY 14760-1297

Description:

the PPL COMPANY

SolEpoxy manufactures epoxy molding compounds and epoxy coating powders for the protection and insulation of electrical, electronic and microelectronic components in the City of Olean, Cattaraugus County. SolEpoxy was formerly known as Henkel Adhesive Corporation until September 2010. SolEpoxy's manufacturing processes includes batch mixing, blending, extruding, grinding, and packaging.

This renewal is being issued to remove most of the liquid encapsulants production line and associated air contaminates from the permit. This renewal will also remove the facility wide emission caps for Volatile Organic Compounds (VOC), Total Hazardous Air Pollutants (HAP), and individual HAPs such as; Methyl Alcohol, Methyl Ethyl Ketone (MEK), 2-Pentanone 4-Methyl, Formaldehyde, Toluene, and Trichloroethylene (TCE). Due to a decline in production along with the removal of most of liquid encapsulation production line, SolEpoxy's emissions are low enough that they do not need to cap out of Title V applicability. SolEpoxy is still required to calculate and keep track of all emissions emitted from the facility. All of the processes are in one emission unit, U-00001.

The caps for SolEpoxy were introduced into permit when the facility was still owned by Henkel. At the time the Potential to Emit (PTE) was derived from conservative calculations with the facility only making products with the highest emissions. This yielded a PTE of 90 tons for HAPs and 92 tons for VOCs. SolEpoxy's current PTE has dwindled to 0.13 tons for HAPs and 8.98 tons for VOCs. Because the facility has 51 emission points it is more economical to keep its Air State Facility permit than to apply for an Air Registration.

The liquid encapsulants were manufactured under processes R02, R05, and R07. These processes have been discontinued and removed from the permit. The HAPs derived from these

processes; Formaldehyde, Toluene, and Trichloroethylene (TCE), are no longer emitted from the facility. The production of the liquid encapsulants have been relocated to another facility. Only a few pieces of equipment remain in the building and in the permit. Should the liquid encapsulant line become active again, SolEpoxy does not intend to operate the production line in a manner that will produce the former HAPs associated with the encapsulatant production, i.e. Formaldehyde, Toluene and TCE.

SolEpoxy also uses a Heptane Silicone release spray to ensure epoxies do not stick to their plastic mold trays, which are used to produce Light Emitting Diode (LED) product. This would be classified as a Class "B" spray coating operation in 6NYCRR Subpart 228-1. However, SolEpoxy's actual VOC emissions are about 1 ton per year which is below the 3 ton per year applicability level that requires the use of complaint coatings. The facility must still comply with 228-1.3 General Requirements for records and housekeeping. The usage of the release spray is tracked.

The permit includes opacity and particulate emissions limits at the facility level. SolEpoxy shall not allow emissions with an average opacity during any six consecutive minutes to exceed 20 percent or greater from any stack or emission point, except only the emission of uncombined water. Similarly particulate emissions shall not exceed 0.050 grains per dry standard cubic foot from any emission point at the facility.

SolEpoxy also has two industrial size boilers, one rated at 200 horsepower and the other at 80 horsepower. Both boilers only fire natural gas, therefore they are not subject to 40 CFR63 Subpart JJJJJJ—National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources. These boilers are rated less than 10 million Btu/hr and are exempt from permitting under 6NYCRR Part 201-3.2(c)(1)(i).

SolEpoxy has two natural gas emergency generators located at the facility and each one is rated at 34.6 horsepower, and are used only to provide backup lighting for the facility. These emergency generators are exempt from permitting under Subpart 201-3: Permit Exempt and Trivial Activities [6NYCRR Part 201-3.2(c)(6)]. 201-3.2 states that emergency power generating stationary internal combustion engines defined in 201.1(cq) are exempt sources. 200.1(cq) defines an emergency generator a stationary internal combustion engine that operates as an electrical power source only when the usual supply of power is unavailable, and operates for no more than 500 hours per year.

However, SolEpoxy must still comply with the requirements of 40CFR63 Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines which is administered by EPA. The generators are existing emergency generators at an area source of hazardous air pollutants. They were manufactured in 1995. In order for the emergency engine to be in compliance with Subpart ZZZZ, the facility must follow the requirements in §63.6603(a) Table 2d, item 5, which are listed below.

(1) Change oil and filter every 500 hours of operation or annually, whichever comes first; The facility has the option to utilize an oil analysis program as specified in 40 CFR 63.6625 to extend the specified oil change requirement.

(2) Inspect the air filter every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.

(3) Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.

In addition, the engine shall be equipped with a non-resettable hour meter if one is not already installed. The engine shall be operated and maintained per the manufacturer's instructions or your own maintenance plan, per 40 CFR 63.6625(e)(3). SolEpoxy must keep records of operation, maintenance and each malfunction for both of the emergency standby generators to demonstrate compliance with 40 CFR 63 subpart ZZZZ.

SolEpoxy also has one room onsite devoted to Research and Development (R&D). This room contained about 12 mini electric ovens and a small epoxy mixing line. Because this is a small scale R&D project, it is also considered exempt from permitting under Subpart 201-3: Permit Exempt and Trivial Activities [6NYCRR Part 201-3.2(c)(40)].

By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the ECL, all applicable regulations, the General Conditions specified and any Special Conditions included as part of this permit.

Permit Administrator:

DAVID S DENK DIVISION OF ENVIRONMENTAL PERMITS 270 MICHIGAN AVE BUFFALO, NY 14203-2915

Authorized Signature:

Date: 7,16,2015

Notification of Other State Permittee Obligations

Item A:

Permittee Accepts Legal Responsibility and Agrees to Indemnification

The permittee expressly agrees to indemnify and hold harmless the Department of Environmental Conservation of the State of New York, its representatives, employees and agents ("DEC") for all claims, suits, actions, and damages, to the extent attributable to the permittee's acts or omissions in connection with the compliance permittee's undertaking of activities in connection with, or operation and maintenance of, the facility or facilities authorized by the permit whether in compliance or not in any compliance with the terms and conditions of the permit. This indemnification does not extend to any claims, suits, actions, or damages to the extent attributable to DEC's own negligent or intentional acts or omissions, or to any claims, suits, or actions naming the DEC and arising under article 78 of the New York Civil Practice Laws and Rules or any citizen suit or civil rights provision under federal or state laws.

Item B: Permittee's Contractors to Comply with Permit

> The permittee is responsible for informing its independent contractors, employees, agents and assigns of their responsibility to comply with this permit, including all special conditions while acting as the permittee's agent with respect to the permitted activities, and such persons shall be subject to the same sanctions for violations of the Environmental Conservation Law as those prescribed for the permittee.

Item C: Permittee Responsible for Obtaining Other Required Permits

> The permittee is responsible for obtaining any other permits, approvals, lands, easements and rights-of-way that may be required to carry out the activities that are authorized by this permit.

Item D: No Right to Trespass or Interfere with Riparian Rights

> This permit does not convey to the permittee any right to trespass upon the lands or interfere with the riparian rights of others in order to perform the permitted work nor does it authorize the impairment of any rights, title, or interest in real or personal property held or vested in a person not a party to the permit.

PAGE LOCATION OF CONDITIONS

PAGE

4

DEC GENERAL CONDITIONS General Provisions

- 1 Facility Inspection by the Department
- 4 2 Relationship of this Permit to Other Department Orders and Determinations
- 4 3 Applications for permit renewals, modifications and transfers
- 5 4 Permit modifications, suspensions or revocations by the Department Facility Level
- 5 5 Submission of application for permit modification or renewal-REGION 9 HEADQUARTERS

DEC GENERAL CONDITIONS **** General Provisions **** GENERAL CONDITIONS - Apply to ALL Authorized Permits.

Condition 1: Facility Inspection by the Department Applicable State Requirement: ECL 19-0305

Item 1.1:

The permitted site or facility, including relevant records, is subject to inspection at reasonable hours and intervals by an authorized representative of the Department of Environmental Conservation (the Department) to determine whether the permittee is complying with this permit and the ECL. Such representative may order the work suspended pursuant to ECL 71-0301 and SAPA 401(3).

Item 1.2:

The permittee shall provide a person to accompany the Department's representative during an inspection to the permit area when requested by the Department.

Item 1.3:

A copy of this permit, including all referenced maps, drawings and special conditions, must be available for inspection by the Department at all times at the project site or facility. Failure to produce a copy of the permit upon request by a Department representative is a violation of this permit.

Condition 2: Relationship of this Permit to Other Department Orders and Determinations Applicable State Requirement: ECL 3-0301 (2) (m)

Item 2.1:

Unless expressly provided for by the Department, issuance of this permit does not modify, supersede or rescind any order or determination previously issued by the Department or any of the terms, conditions or requirements contained in such order or determination.

Condition 3: Applications for permit renewals, modifications and transfers Applicable State Requirement: 6 NYCRR 621.11

Item 3.1:

The permittee must submit a separate written application to the Department for renewal, modification or transfer of this permit. Such application must include any forms or supplemental information the Department requires. Any renewal, modification or transfer granted by the Department must be in writing.

Item 3.2:

The permittee must submit a renewal application at least 180 days before expiration of permits for Title V Facility Permits, or at least 30 days before expiration of permits for State Facility Permits.

Item 3.3:

Permits are transferrable with the approval of the department unless specifically prohibited by the statute, regulation or another permit condition. Applications for permit transfer should be submitted prior to actual transfer of ownership.

Condition 4: Permit modifications, suspensions or revocations by the Department Applicable State Requirement: 6 NYCRR 621.13

Item 4.1:

The Department reserves the right to exercise all available authority to modify, suspend, or revoke this permit in accordance with 6NYCRR Part 621. The grounds for modification, suspension or revocation include:

a) materially false or inaccurate statements in the permit application or supporting papers;b) failure by the permittee to comply with any terms or conditions of the permit;c) exceeding the scope of the project as described in the permit application;

d) newly discovered material information or a material change in environmental conditions, relevant technology or applicable law or regulations since the issuance of the existing permit;
 e) noncompliance with previously issued permit conditions, orders of the commissioner, any provisions of the Environmental Conservation Law or regulations of the Department related to the permitted activity.

**** Facility Level ****

Condition 5: Submission of application for permit modification or renewal-REGION 9 HEADQUARTERS Applicable State Requirement: 6 NYCRR 621.6 (a)

Item 5.1:

Submission of applications for permit modification or renewal are to be submitted to: NYSDEC Regional Permit Administrator Region 9 Headquarters Division of Environmental Permits 270 Michigan Avenue Buffalo, NY 14203-2915 (716) 851-7165

New York State Department of Environmental Conservation Permit ID: 9-0412-00014/02001 Facility DEC ID: 9041200014

Permit Under the Environmental Conservation Law (ECL)

ARTICLE 19: AIR POLLUTION CONTROL - AIR STATE FACILITY

IDENTIFICATION INFORMATION

Permit Issued To:SOLEPOXY INC 211 FRANKLIN ST OLEAN, NY 14760

Facility:

PERMIT

SOLEPOXY INC 211 FRANKLIN ST OLEAN, NY 14760-1297

Authorized Activity By Standard Industrial Classification Code: 3087 - CUSTOM COMPOUND PURCHASED RESINS 3089 - PLASTICS PRODUCTS, NEC

Permit Effective Date: 07/16/2015

Permit Expiration Date: 07/15/2025

New York State Department of Environmental Conservation Permit ID: 9-0412-00014/02001 Facility DEC ID: 9041200014

PAGE LOCATION OF CONDITIONS

PAGE	
	FEDERALLY ENFORCEABLE CONDITIONS
	Facility Level
6	1 6 NYCRR 201-3.2 (a): Exempt Sources - Proof of Eligibility
6	2 6 NYCRR 201-3.2 (a): Compliance Demonstration
7	3 6 NYCRR 211.1: Air pollution prohibited
7 7 7 8	4 40CFR 63, Subpart ZZZZ: Compliance and Enforcement
7	5 40CFR 63.6603(a), Subpart ZZZZ: Compliance Demonstration
8	6 40CFR 63.6625(f), Subpart ZZZZ: Compliance Demonstration
	Emission Unit Level
	EU=U-00001
9	7 6 NYCRR 212.4 (c): Compliance Demonstration
9	8 6 NYCRR 212.6 (a): Compliance Demonstration
	EU=U-00001,EP=E0017,Proc=R08
10	9 6 NYCRR 228-1.3 (a): Compliance Demonstration
11	10 6 NYCRR 228-1.3 (b) (1): Compliance Demonstration
12	11 6 NYCRR 228-1.3 (b) (2): Compliance Demonstration
12	12 6 NYCRR 228-1.3 (c): Surface Coating- Prohibitions
13	13 6 NYCRR 228-1.3 (d): Surface Coating - Handling, storage and disposal
	STATE ONLY ENFORCEABLE CONDITIONS
	Facility Level
15	14 ECL 19-0301: Contaminant List
16	15 6 NYCRR 201-1.4: Malfunctions and start-up/shutdown activities
16	16 6 NYCRR Subpart 201-5: Emission Unit Definition
17	17 6 NYCRR 201-5.2 (c): Renewal deadlines for state facility permits
17	18 6 NYCRR 201-5.3 (c): Compliance Demonstration
18	19 6 NYCRR 211.2: Visible Emissions Limited
	Emission Unit Level

- 18 20 6 NYCRR Subpart 201-5: Emission Point Definition By Emission Unit
- 21 21 6 NYCRR Subpart 201-5: Process Definition By Emission Unit

New York State Department of Environmental Conservation Permit ID: 9-0412-00014/02001 Facility DEC ID: 9041200014

FEDERALLY ENFORCEABLE CONDITIONS **** Facility Level ****

NOTIFICATION OF GENERAL PERMITTEE OBLIGATIONS This section contains terms and conditions which are federally enforceable. Permittees may also have other obligations under regulations of general applicability

Item A: Sealing - 6 NYCRR 200.5

The Commissioner may seal an air contamination source to prevent its operation if compliance with 6 NYCRR Chapter III is not met within the time provided by an order of the Commissioner issued in the case of the violation. Sealing means labeling or tagging a source to notify any person that operation of the source is prohibited, and also includes physical means of preventing the operation of an air contamination source without resulting in destruction of any equipment associated with such source, and includes, but is not limited to, bolting, chaining or wiring shut control panels, apertures or conduits associated with such source.

No person shall operate any air contamination source sealed by the Commissioner in accordance with this section unless a modification has been made which enables such source to comply with all requirements applicable to such modification.

Unless authorized by the Commissioner, no person shall remove or alter any seal affixed to any contamination source in accordance with this section.

Item B: Acceptable Ambient Air Quality - 6 NYCRR 200.6

Notwithstanding the provisions of 6 NYCRR Chapter III, Subchapter A, no person shall allow or permit any air contamination source to emit air contaminants in quantities which alone or in combination with emissions from other air contamination sources would contravene any applicable ambient air quality standard and/or cause air pollution. In such cases where contravention occurs or may occur, the Commissioner shall specify the degree and/or method of emission control required.

Item C:

Maintenance of Equipment - 6 NYCRR 200.7

Any person who owns or operates an air contamination source which is equipped with an emission control device shall operate such device and keep it in a satisfactory state of maintenance and repair in accordance with ordinary and necessary practices, standards and procedures, inclusive of manufacturer's specifications, required to operate such device effectively.

Item D: Unpermitted Emission Sources - 6 NYCRR 201-1.2

If an existing emission source was subject to the permitting requirements of 6 NYCRR Part 201 at the time of construction or

Renewal 1

modification, and the owner and/or operator failed to apply for a permit for such emission source then the following provisions apply:

(a) The owner and/or operator must apply for a permit for such emission source or register the facility in accordance with the provisions of Part 201.

(b) The emission source or facility is subject to all regulations that were applicable to it at the time of construction or modification and any subsequent requirements applicable to existing sources or facilities.

Item E: Emergency Defense - 6 NYCRR 201-1.5

An emergency constitutes an affirmative defense to an action brought for noncompliance with emissions limitations or permit conditions for all facilities in New York State.

(a) The affirmative defense of emergency shall be demonstrated through properly signed, contemporaneous operating logs, or other relevant evidence that:

 An emergency occurred and that the facility owner and/or operator can identify the cause(s) of the emergency;

(2) The equipment at the permitted facility causing the emergency was at the time being properly operated;

(3) During the period of the emergency the facility owner and/or operator took all reasonable steps to minimize levels of emissions that exceeded the emission standards, or other requirements in the permit; and

(4) The facility owner and/or operator notified the Department within two working days after the event occurred. This notice must contain a description of the emergency, any steps taken to mitigate emissions, and corrective actions taken.

(b) In any enforcement proceeding, the facility owner and/or operator seeking to establish the occurrence of an emergency has the burden of proof.

(c) This provision is in addition to any emergency or upset provision contained in any applicable requirement.

Item F: Recycling and Salvage - 6 NYCRR 201-1.7

Where practical, any person who owns or operates an air contamination source shall recycle or salvage air contaminants collected in an air cleaning device according to the requirements of 6 NYCRR.

Item G: Prohibition of Reintroduction of Collected Contaminants to the Air -6 NYCRR 201-1.8

No person shall unnecessarily remove, handle, or cause to be handled,

collected air contaminants from an air cleaning device for recycling, salvage or disposal in a manner that would reintroduce them to the outdoor atmosphere.

Item H:

Proof of Eligibility for Sources Defined as Exempt Activities - 6 NYCRR 201-3.2 (a)

The owner and/or operator of an emission source or unit that is eligible to be exempt, may be required to certify that it operates within the specific criteria described in 6 NYCRR Subpart 201-3. The owner or operator of any such emission source must maintain all required records on-site for a period of five years and make them available to representatives of the Department upon request. Department representatives must be granted access to any facility which contains emission sources or units subject to 6 NYCRR Subpart 201-3, during normal operating hours, for the purpose of determining compliance with this and any other state and federal air pollution control requirements, regulations, or law.

Item I:

Proof of Eligibility for Sources Defined as Trivial Activities - 6 NYCRR 201-3.3 (a)

The owner and/or operator of an emission source or unit that is listed as being trivial in 6 NYCRR Part 201 may be required to certify that it operates within the specific criteria described in 6 NYCRR Subpart 201-3. The owner or operator of any such emission source must maintain all required records on-site for a period of five years and make them available to representatives of the Department upon request. Department representatives must be granted access to any facility which contains emission sources or units subject to 6 NYCRR Subpart 201-3, during normal operating hours, for the purpose of determining compliance with this and any other state and federal air pollution control requirements, regulations, or law.

Item J:

Required Emission Tests - 6 NYCRR 202-1.1

An acceptable report of measured emissions shall be submitted, as may be required by the Commissioner, to ascertain compliance or noncompliance with any air pollution code, rule, or regulation. Failure to submit a report acceptable to the Commissioner within the time stated shall be sufficient reason for the Commissioner to suspend or deny an operating permit. Notification and acceptable procedures are specified in 6 NYCRR Subpart 202-1.

Item K: Open Fires Prohibitions - 6 NYCRR 215.2

Except as allowed by section 215.3 of 6 NYCRR Part 215, no person shall burn, cause, suffer, allow or permit the burning of any materials in an open fire.

Item L: Permit Exclusion - ECL 19-0305

The issuance of this permit by the Department and the receipt thereof by the Applicant does not and shall not be construed as barring, diminishing, adjudicating or in any way affecting any legal, administrative or equitable rights or claims, actions, suits, causes

of action or demands whatsoever that the Department may have against the Applicant for violations based on facts and circumstances alleged to have occurred or existed prior to the effective date of this permit, including, but not limited to, any enforcement action authorized pursuant to the provisions of applicable federal law, the Environmental Conservation Law of the State of New York (ECL) and Chapter III of the Official Compilation of the Codes, Rules and Regulations of the State of New York (NYCRR). The issuance of this permit also shall not in any way affect pending or future enforcement actions under the Clean Air Act brought by the United States or any person.

Item M: Federally Enforceable Requirements - 40 CFR 70.6 (b) All terms and conditions in this permit required by the Act or any applicable requirement, including any provisions designed to limit a facility's potential to emit, are enforceable by the Administrator and citizens under the Act. The Department has, in this permit, specifically designated any terms and conditions that are not required under the Act or under any of its applicable requirements as being enforceable under only state regulations.

FEDERAL APPLICABLE REQUIREMENTS The following conditions are federally enforceable.

Condition 1: Exempt Sources - Proof of Eligibility Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:6 NYCRR 201-3.2 (a),

Item 1.1:

The owner or operator of an emission source or activity that is listed as being exempt may be required to certify that it is operated within the specific criteria described in this Subpart. The owner or operator of any such emission source or activity must maintain all records necessary for demonstrating compliance with this Subpart on-site for a period of five years, and make them available to representatives of the department upon request.

Condition 2: Compliance Demonstration Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:6 NYCRR 201-3.2 (a)

Item 2.1:

The Compliance Demonstration activity will be performed for the Facility.

Item 2.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: WORK PRACTICE INVOLVING SPECIFIC OPERATIONS Monitoring Description:

AS PROOF OF EXEMPT ELIGIBILITY FOR THE EMERGENCY GENERATORS, THE FACILITY MUST MAINTAIN MONTHLY RECORDS WHICH DEMONSTRATE THAT EACH ENGINE IS OPERATED LESS THAN 500 HOURS PER YEAR, ON A 12-MONTH ROLLING TOTAL BASIS.

Work Practice Type: HOURS PER YEAR OPERATION Upper Permit Limit: 500.0 hours Monitoring Frequency: MONTHLY Averaging Method: ANNUAL MAXIMUM ROLLED MONTHLY Reporting Requirements: UPON REQUEST BY REGULATORY AGENCY

Condition 3: Air pollution prohibited Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:6 NYCRR 211.1

Item 3.1:

No person shall cause or allow emissions of air contaminants to the outdoor atmosphere of such quantity, characteristic or duration which are injurious to human, plant or animal life or to property, or which unreasonably interfere with the comfortable enjoyment of life or property. Notwithstanding the existence of specific air quality standards or emission limits, this prohibition applies, but is not limited to, any particulate, fume, gas, mist, odor, smoke, vapor, pollen, toxic or deleterious emission, either alone or in combination with others.

Condition 4: Compliance and Enforcement Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement: 40CFR 63, Subpart ZZZZ

Item 4.1:

The Department has not accepted delegation of 40 CFR Part 63 Subpart ZZZZ. Any questions concerning compliance and/or enforcement of this regulation should be referred to USEPA Region 2, 290 Broadway, 21st Floor, New York, NY 10007-1866; (212) 637-4080. Should the Department decide to accept delegation of 40 CFR Part 63 Subpart ZZZZ during the term of this permit, enforcement of this regulation will revert to the Department as of the effective date of delegation.

Condition 5: Compliance Demonstration Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement: 40CFR 63.6603(a), Subpart ZZZZ

Item 5.1:

The Compliance Demonstration activity will be performed for the Facility.

Item 5.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: RECORD KEEPING/MAINTENANCE PROCEDURES Monitoring Description:

The owner or operator of an existing emergency and black start spark ignition stationary RICE located at an area source of HAP emissions must comply with the following maintenance procedures:

 Change oil and filter every 500 hours of operation or annually, whichever comes first;

(2) Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;

(3) Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.

Initial compliance will be demonstrated according to the provisions in 40 CFR 63.6630.

Continuous compliance will then be demonstrated according to 40 CFR 63.6640. The facility must keep records according to the provisions in 40 CFR 63.6655 and submit the notifications and reports listed in 40 CFR 63.6645 and 63.6650.

Monitoring Frequency: AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION Reporting Requirements: AS REQUIRED - SEE MONITORING DESCRIPTION

Condition 6: Compliance Demonstration

Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:40CFR 63.6625(f), Subpart ZZZZ

Item 6.1:

The Compliance Demonstration activity will be performed for the Facility.

Item 6.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: RECORD KEEPING/MAINTENANCE PROCEDURES Monitoring Description:

Owners or operators of an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, must install a non-resettable hour meter if one is not already installed, and record hours of operation, including run time during emergencies.

Monitoring Frequency: AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION Reporting Requirements: UPON REQUEST BY REGULATORY AGENCY

**** Emission Unit Level ****

Condition 7: Compliance Demonstration Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:6 NYCRR 212.4 (c)

Item 7.1:

The Compliance Demonstration activity will be performed for:

Emission Unit: U-00001

Regulated Contaminant(s): CAS No: 0NY075-00-0 PARTICULATES

Item 7.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: INTERMITTENT EMISSION TESTING Monitoring Description:

> For each stack, emissions of solid particulate are limited to less than 0.050 grains of particulate per cubic foot of exhaust gas, expressed at standard conditions on a dry basis. Compliance testing by the facility will be conducted at the discretion of the Department.

Parameter Monitored: PARTICULATES Upper Permit Limit: 0.050 grains per dscf Reference Test Method: EPA Method 5 Monitoring Frequency: AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION Averaging Method: AVERAGING METHOD AS PER REFERENCE TEST METHOD INDICATED Reporting Requirements: UPON REQUEST BY REGULATORY AGENCY

Condition 8: Compliance Demonstration

Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:6 NYCRR 212.6 (a)

Item 8.1:

The Compliance Demonstration activity will be performed for:

Emission Unit: U-00001

Regulated Contaminant(s): CAS No: 0NY075-00-0 PARTICULATES

Item 8.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: INTERMITTENT EMISSION TESTING Monitoring Description:

No persons shall cause or allow emissions having an average opacity

Air Pollution Control Permit Conditions Page 9 FINAL

during any six consecutive minutes of 20 percent or greater from any process emission source, except emissions of uncombined water. The Department reserves the right to perform or require the performance of a Method 9 opacity evaluation at any time during facility operation. The facility will also allow the Department to perform the Method 9 evaluation anywhere on plant property.

Parameter Monitored: OPACITY Upper Permit Limit: 20 percent Reference Test Method: EPA Method 9 Monitoring Frequency: AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION Averaging Method: 6-MINUTE AVERAGE (METHOD 9) Reporting Requirements: UPON REQUEST BY REGULATORY AGENCY

Condition 9: Compliance Demonstration Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement: 6 NYCRR 228-1.3 (a)

Item 9.1:

The Compliance Demonstration activity will be performed for:

Emission Unit: U-00001 Process: R08 Emission Point: E0017

Regulated Contaminant(s): CAS No: 0NY075-00-0 PARTICULATES

Item 9.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: MONITORING OF PROCESS OR CONTROL DEVICE PARAMETERS AS SURROGATE

Monitoring Description:

No person shall cause or allow emissions having an average opacity during any six consecutive minutes of 20 percent or greater from any process emission source, except only the emission of uncombined water. Compliance will be determined by conducting observations of visible emissions from the emission unit, process, etc. to which this condition applies. The observation(s) must be conducted during daylight hours except during adverse weather conditions (fog, rain, or snow). Observations must be recorded in a bound logbook or other format acceptable to the Department. The following data must be recorded for each stack:

- date and time of day
- observer's name
- identity of emission point
- weather condition
- was a plume observed?

This logbook must be retained at the facility for five (5) years after

the date of the last entry. If the operator observes any visible emissions the permittee will immediately investigate any such occurrence and take corrective action, as necessary, to reduce or eliminate the emissions. If visible emissions persist after corrections are made, the permittee will immediately notify the department and may be required to conduct a Method 9 assessment within 24 hours to determine the degree of opacity.

Records of these observations, investigations and corrective actions will be kept on-site in a format acceptable to the department and the semiannual progress report and annual compliance certifications required of all permittees subject to Title V must include a summary of these instances.

Parameter Monitored: OPACITY Upper Permit Limit: 20 percent Reference Test Method: 40 CFR 60 Appendix A Method 9 Monitoring Frequency: SEMI-ANNUALLY Averaging Method: 6 MINUTE AVERAGE Reporting Requirements: UPON REQUEST BY REGULATORY AGENCY

Condition 10: Compliance Demonstration Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:6 NYCRR 228-1.3 (b) (1)

Item 10.1:

The Compliance Demonstration activity will be performed for:

Emission Unit: U-00001 Process: R08 Emission Point: E0017

Item 10.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: RECORD KEEPING/MAINTENANCE PROCEDURES Monitoring Description:

The owner or operator of an emission source subject to 6 NYCRR Part 228-1 must maintain the following records in a format acceptable to the department for a period of at least five years:

1. A certification from the coating supplier or manufacturer which lists the parameters used to determine the actual VOC content of each as applied coating used at the facility.

Purchase, usage and/or production records of each coating material, including solvents.

Records identifying each air cleaning device that has an overall removal efficiency of at least 90 percent.

4. Records verifying each parameter used to calculate the overall removal efficiency, as described in Equation 2 of Section 228-1.5(c), if applicable.

5. Any additional information required to determine compliance with Part 228-1.

Upon request, the owner or operator of an emission source subject to 6 NYCRR Part 228-1 must submit a copy of the records kept in accordance with this condition to the department within 90 days of receipt of the request.

Monitoring Frequency: AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION Reporting Requirements: UPON REQUEST BY REGULATORY AGENCY

Condition 11: Compliance Demonstration Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:6 NYCRR 228-1.3 (b) (2)

Item 11.1:

The Compliance Demonstration activity will be performed for:

Emission Unit: U-00001 Process: R08 Emission Point: E0017

Item 11.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: RECORD KEEPING/MAINTENANCE PROCEDURES Monitoring Description:

Owners and operators of emission sources not subject to 6 NYCRR Part 228-1, as set forth in Paragraphs 228-1.1(b)(9) or (13), or those sources that are using coatings not subject to specific requirements of Part 228-1 as set forth in Paragraph 228-1.3(e)(2), or Clauses 228-1.4(b)(5)(iii)(e), 228-1.4(b)(5)(iii)(i) or 228-1.4(b)(5)(iv), must maintain records on an as used basis. The records must include the relevant regulatory citation of each exemption and quantity of coating used. If the exemption criteria are based on VOC usage, the records must contain calculations and supplier/manufacturer material data sheets for verification of VOC usage. All records required by this Paragraph must be maintained at the facility for a period of five years.

Monitoring Frequency: AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION Reporting Requirements: AS REQUIRED - SEE MONITORING DESCRIPTION

Condition 12:

Surface Coating- Prohibitions Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement: 6 NYCRR 228-1.3 (c)

Air Pollution Control Permit Conditions Page 12 FINAL

Renewal 1

•

New York State Department of Environmental Conservation Permit ID: 9-0412-00014/02001 Facility DEC ID: 9041200014

Item 12.1:

This Condition applies to Emission Unit: U-00001 Emission Point: E0017 Process: R08

Item 12.2:

(1) No person shall sell, supply, offer for sale, solicit, use, specify, or require for use, the application of a coating on a part or product at a facility with a coating line described in Subpart 228-1.1(a) if such sale, specification, or use is prohibited by any of the provisions of this Subpart. The prohibition shall apply to all written or oral contracts under the terms of which any coating is to be applied to any part or product at an affected facility. This prohibition shall not apply to the following:

(i) coatings utilized at surface coating lines where control equipment has been installed to meet the maximum permitted VOC content limitations specified in the tables of Subpart 228-1.4;

(ii) coatings utilized at surface coating lines where a coating system is used which meets the requirements specified in Subpart 228-1.5(d); and

(iii) coatings utilized at surface coating lines that have been granted variances pursuant to Subpart 228-1.5(e).

(2) Any person selling a coating for use in a coating line subject to Subpart 228-1 must, upon request, provide the user with certification of the VOC content of the coating supplied.

Condition 13: Surface Coating - Handling, storage and disposal Effective between the dates of 07/16/2015 and 07/15/2025

Applicable Federal Requirement:6 NYCRR 228-1.3 (d)

Item 13.1:

This Condition applies to Emission Unit: U-00001 Emission Point: E0017 Process: R08

Item 13.2:

Within the work area(s) associated with a coating line, the owner or operator of a facility must:

 use closed, non-leaking containers to store or dispose of cloth or other absorbent applicators impregnated with VOC solvents that are used for surface preparation, cleanup or coating removal;

(2) store in closed, non-leaking containers spent or fresh VOC solvents to be used for surface preparation, cleanup or coating removal;

(3) not use VOC solvents to cleanup spray equipment unless equipment is used to collect the cleaning compounds and to minimize VOC evaporation;

(4) not use open containers to store or dispense surface coatings and/or inks unless production, sampling, maintenance or inspection procedures require operational access. This provision does not apply to the actual device or equipment designed for the purpose of applying a coating material to a substrate. These devices may include, but are not limited to: spray guns, flow coaters, dip tanks, rollers, knife coaters, and extrusion coaters;

(5) not use open containers to store or dispose of spent surface coatings, or spent VOC solvents;

(6) minimize spills during the handling and transfer of coatings and VOC solvents; and

(7) clean hand held spray guns by one of the following:

(i) an enclosed spray gun cleaning system that is kept closed when not in use;

(ii) non-atomized discharge of VOC solvent into a paint waste container that is kept closed when not in use;

(iii) disassembling and cleaning of the spray gun in a vat that is kept closed when not in use; or

(iv) atomized spray into a paint waste container that is fitted with a device designed to capture atomized VOC solvent emissions.

STATE ONLY ENFORCEABLE CONDITIONS **** Facility Level ****

NOTIFICATION OF GENERAL PERMITTEE OBLIGATIONS This section contains terms and conditions which are not federally enforceable. Permittees may also have other obligations under regulations of general applicability

Item A: Public Access to Recordkeeping for Facilities With State Facility Permits - 6 NYCRR 201-1.10 (a) Where facility owners and/or operators keep records pursuant to compliance with the requirements of 6 NYCRR Subpart 201-5.4, and/or the emission capping requirements of 6 NYCRR Subpart 201-7, the Department will make such records available to the public upon request in accordance with 6 NYCRR Part 616 - Public Access to Records. Facility owners and/or operators must submit the records required to comply with the request within sixty working days of written notification by the Department.

Item B: General Provisions for State Enforceable Permit Terms and Condition -6 NYCRR Part 201-5 Any person who owns and/or operates stationary sources shall operate and maintain all emission units and any required emission control

and maintain all emission units and any required emission control devices in compliance with all applicable Parts of this Chapter and existing laws, and shall operate the facility in accordance with all criteria, emission limits, terms, conditions, and standards in this permit. Failure of such person to properly operate and maintain the effectiveness of such emission units and emission control devices may be sufficient reason for the Department to revoke or deny a permit.

The owner or operator of the permitted facility must maintain all required records on-site for a period of five years and make them available to representatives of the Department upon request. Department representatives must be granted access to any facility regulated by this Subpart, during normal operating hours, for the purpose of determining compliance with this and any other state and federal air pollution control requirements, regulations or law.

STATE ONLY APPLICABLE REQUIREMENTS The following conditions are state only enforceable.

Condition 14: Contaminant List Effective between the dates of 07/16/2015 and 07/15/2025

Applicable State Requirement: ECL 19-0301

Item 14.1:

Emissions of the following contaminants are subject to contaminant specific requirements in this

Air Pollution Control Permit Conditions Page 15 FINAL

Renewal I

STATE ONLY ENFORCEABLE CONDITIONS **** Facility Level ****

NOTIFICATION OF GENERAL PERMITTEE OBLIGATIONS This section contains terms and conditions which are not federally enforceable. Permittees may also have other obligations under regulations of general applicability

Public Access to Recordkeeping for Facilities With State Facility Item A: Permits - 6 NYCRR 201-1.10 (a) Where facility owners and/or operators keep records pursuant to compliance with the requirements of 6 NYCRR Subpart 201-5.4, and/or the emission capping requirements of 6 NYCRR Subpart 201-7, the Department will make such records available to the public upon request in accordance with 6 NYCRR Part 616 - Public Access to Records. Facility owners and/or operators must submit the records required to comply with the request within sixty working days of written notification by the Department, General Provisions for State Enforceable Permit Terms and Condition -Item B: 6 NYCRR Part 201-5 Any person who owns and/or operates stationary sources shall operate and maintain all emission units and any required emission control

and maintain all emission units and any required emission control devices in compliance with all applicable Parts of this Chapter and existing laws, and shall operate the facility in accordance with all criteria, emission limits, terms, conditions, and standards in this permit. Failure of such person to properly operate and maintain the effectiveness of such emission units and emission control devices may be sufficient reason for the Department to revoke or deny a permit.

The owner or operator of the permitted facility must maintain all required records on-site for a period of five years and make them available to representatives of the Department upon request. Department representatives must be granted access to any facility regulated by this Subpart, during normal operating hours, for the purpose of determining compliance with this and any other state and federal air pollution control requirements, regulations or law.

STATE ONLY APPLICABLE REQUIREMENTS The following conditions are state only enforceable.

Condition 14:	Contaminant List			
	Effective between the dates of	07/16/2015 and	07/15/2025	

Applicable State Requirement: ECL 19-0301

Item 14.1:

Emissions of the following contaminants are subject to contaminant specific requirements in this

Air Pollution Control Permit Conditions Page 15 FINAL

Renewal I

permit(emission limits, control requirements or compliance monitoring conditions).

CAS No: 0NY075-00-0 Name: PARTICULATES

Condition 15: Malfunctions and start-up/shutdown activities Effective between the dates of 07/16/2015 and 07/15/2025

Applicable State Requirement:6 NYCRR 201-1.4

Item 15.1:

(a) The facility owner or operator shall take all necessary and appropriate actions to prevent the emission of air pollutants that result in contravention of any applicable emission standard during periods of start-up, shutdown, or malfunction.

(b) The facility owner or operator shall compile and maintain records of all equipment malfunctions, maintenance, or start-up/shutdown activities when they can be expected to result in an exceedance of any applicable emission standard, and shall submit a report of such activities to the department when requested to do so, or when so required by a condition of a permit issued for the corresponding air contamination source. Such reports shall state whether any violations occurred and, if so, whether they were unavoidable, include the time, frequency and duration of the maintenance and/or start-up/shutdown activities, and an estimate of the emission rates of any air contaminants released. Such records shall be maintained for a period of at least five years and made available for review to department representatives upon request. Facility owners or operators subject to continuous stack monitoring and quarterly reporting requirements need not submit additional reports for equipment maintenance or start-up/shutdown activities for the facility to the department.

(c) In the event that emissions of air contaminants in excess of any emission standard in this Subchapter occur due to a malfunction, the facility owner or operator shall compile and maintain records of the malfunction and notify the department as soon as possible during normal working hours, but not later than two working days after becoming aware that the malfunction occurred. When requested by the department, the facility owner or operator shall submit a written report to the department describing the malfunction, the corrective action taken, identification of air contaminants, and an estimate of the emission rates.

(d) The department may also require the owner or operator to include, in reports described under Subdivisions (b) and (c) of this Section, an estimate of the maximum ground level concentration of each air contaminant emitted and the effect of such emissions.

(e) A violation of any applicable emission standard resulting from start-up, shutdown, or malfunction conditions at a permitted or registered facility may not be subject to an enforcement action by the department and/or penalty if the department determines, in its sole discretion, that such a violation was unavoidable. The actions and recordkeeping and reporting requirements listed above must be adhered to in such circumstances.

Condition 16: Emission Unit Definition Effective between the dates of 07/16/2015 and 07/15/2025

Applicable State Requirement:6 NYCRR Subpart 201-5

Air Pollution Control Permit Conditions Page 16 FINAL

Renewal 1

Item 16.1:

The facility is authorized to perform regulated processes under this permit for: Emission Unit: U-00001

Emission Unit Description:

This emission unit uses batch mixing operations to produce electronic formulated liquids. This emission unit also uses blending, extruding, grinding and packaging operations to produce molding powders and coating powders. This unit contains all eleven processes at the facility; identified as R01, R03, R04, R06, R08, R09, R10, R11, R12, R13 and R14, and all 51 emission points.

Building(s): 01

Condition 17: Renewal deadlines for state facility permits Effective between the dates of 07/16/2015 and 07/15/2025

Applicable State Requirement:6 NYCRR 201-5.2 (c)

Item 17.1:

The owner or operator of a facility having an issued state facility permit shall submit a complete application at least 180 days, but not more than eighteen months, prior to the date of permit expiration for permit renewal purposes.

Condition 18: Compliance Demonstration Effective between the dates of 07/16/2015 and 07/15/2025

Applicable State Requirement:6 NYCRR 201-5.3 (c)

Item 18.1:

The Compliance Demonstration activity will be performed for the Facility.

Item 18.2:

Compliance Demonstration shall include the following monitoring:

Monitoring Type: RECORD KEEPING/MAINTENANCE PROCEDURES Monitoring Description:

> Any reports or submissions required by this permit shall be submitted to the Regional Air Pollution Control Engineer (RAPCE) at the following address:

Division of Air Resources NYS Dept. of Environmental Conservation Region 9 270 Michigan Ave. Buffalo, NY 14203

Monitoring Frequency: AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION Reporting Requirements: UPON REQUEST BY REGULATORY AGENCY

Condition 19: Visible Emissions Limited

Effective between the dates of 07/16/2015 and 07/15/2025

Applicable State Requirement:6 NYCRR 211.2

Item 19.1:

Except as permitted by a specific part of this Subchapter and for open fires for which a restricted burning permit has been issued, no person shall cause or allow any air contamination source to emit any material having an opacity equal to or greater than 20 percent (six minute average) except for one continuous six-minute period per hour of not more than 57 percent opacity.

**** Emission Unit Level ****

Condition 20: Emission Point Definition By Emission Unit Effective between the dates of 07/16/2015 and 07/15/2025

Applicable State Requirement:6 NYCRR Subpart 201-5

Item 20.1:

The following emission points are included in this permit for the cited Emission Unit:

	Emission	Unit:	U-00001
--	----------	-------	---------

Emission Point: E0001		
Height (ft.): 24	Diameter (in.): 12	
NYTMN (km.): 4666.	NYTME (km.): 215.4	Building: 01
Emission Point: E0002		
Height (ft.): 24	Diameter (in.): 24	
NYTMN (km.): 4666.	NYTME (km.): 215.4	Building: 01
Emission Point: E0003		
Height (ft.): 17	Diameter (in.): 2	
NYTMN (km.): 4666.	NYTME (km.): 215.4	Building: 01
Emission Point: E0004		
Height (ft.): 17	Diameter (in.): 2	
NYTMN (km.): 4666.	NYTME (km.): 215.4	Building: 01
Emission Point: E0012		
Height (ft.): 37	Diameter (in.): 18	
NYTMN (km.): 4665.8		Building: 01
Emission Point: E0013		
Height (ft.): 29	Diameter (in.): 18	
NYTMN (km.): 4665.8	STATISTICS AND STREET AS CONTAINS	Building: 01
Emission Point: E0014		
Height (ft.): 26	Diameter (in.): 10	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01

Emission Point: E0	0015		
Height (ft.): 3	36	Diameter (in.): 28	
NYTMN (kn		NYTME (km.): 215.4	Building: 01
Emission Point: E0		4	
Height (ft.); 2		Diameter (in.): 18	AT COMPANY THE OW
NYTMN (kn	n.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0	017		
Height (ft.):	35	Diameter (in.): 24	
NYTMN (kn		NYTME (km.): 215.4	Building: 01
Emission Point: E0	019		
Height (ft.): 2		Diameter (in.): 12	
			Dullillan 01
NYTMN (kn	1.): 4005.8	NYTME (km.): 215.4	Building: 01
	019		
Height (ft.): 2		Diameter (in.): 12	
NYTMN (kn	1.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0	020		
Height (ft.): 2		Length (in.): 12	Width (in.): 12
NYTMN (kn		NYTME (km.): 215.4	Building: 01
		a series to be the state	
Emission Point: E0		denter an an an as	
Height (ft.): 2		Diameter (in.): 16	2.00000000
NYTMN (km	n.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0	022		
Height (ft.): 2	20	Diameter (in.): 2	
NYTMN (km	n.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0	023		
Height (ft.): 1		Diameter (in.): 2	
NYTMN (km	1. 1665 8	NYTME (km.): 215.4	Building: 01
	1,), 4005.0	NT TME (KIII.). 215.4	Building, 01
Emission Point: E0		and the second second	
Height (ft.): 3		Diameter (in.): 2	
NYTMN (km	n.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0	028		
Height (ft.): 3		Diameter (in.): 2	
NYTMN (km		NYTME (km.): 215.4	Building: 01
Emission Point: E0	030		
		Diamatar (in): 1	
Height (ft.): 2 NYTMN (km		Diameter (in.): 1 NYTME (km.): 215.4	Building: 01
IN T TIMIN (KIII		191 TIME (KIII.): 215.4	Bunung: 01
Emission Point: E0		man - second - 1	
Height (ft.): 2		Diameter (in.): 3	
NYTMN (km	.): 4665.8	NYTME (km.): 215.4	Building: 01
			and the second se

Air Pollution Control Permit Conditions Page 19 FINAL

•

New York State Department of Environmental Conservation Permit ID: 9-0412-00014/02001 Facility DEC ID: 9041200014

Emission Point: E0034		
Height (ft.): 23	Diameter (in.): 2	
		Building: 01
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0038		
Height (ft.): 17	Diameter (in.): 18	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
141 TMI14 (KIII.). 4005.8	KI I WIE (KIII.). 213.4	bunung, or
Emission Point: E0039		
Height (ft.): 18	Diameter (in.): 6	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
	all contractions where	a reason a start
Emission Point: E0041		
Height (ft.): 19	Diameter (in.): 4	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
Public Panto		
Emission Point: E0042	D2	
Height (ft.): 19	Diameter (in.): 3	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0043		
Height (ft.): 21	Diameter (in.): 8	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
IVI I IVIIV (KIII.). 4005.8	(§ 1 1)(IL (KIII.), 215.4	Building, 01
Emission Point: E0044		
Height (ft.): 19	Diameter (in.): 4	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
E I D I I EQUIS		
Emission Point: E0045	2 10 14 14 14 14 14 14 14 14 14 14 14 14 14	
Height (ft.): 37	Length (in.): 24	Width (in.): 24
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0047		
Height (ft.): 23	Length (in.): 9	Width (in.): 6
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
N I IMIN (KIII.): 4005.8	NY TIME (KIII.): 213.4	Building: 01
Emission Point: E0048		
Height (ft.): 28	Diameter (in.): 18	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
arrest are a second		
Emission Point: E0049	allow an and the state of the	
Height (ft.): 17	Diameter (in.): 18	
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0051		
Height (ft.): 21	Diameter (in.): 4	
		Puilding 01
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
Emission Point: E0052		
Height (ft.): 27	Length (in.): 12	Width (in.): 12
NYTMN (km.): 4665.8	NYTME (km.): 215.4	Building: 01
111 1 min (km.). 4005.0	111 1 1115 (km)/ 215.4	Dunung. of

Air Pollution Control Permit Conditions Page 20 FINAL

Emission Point: E0053 Height (ft.): 19 NYTMN (km.): 4665.8

Length (in.): 10 NYTME (km.): 215.4 Width (in.): 12 Building: 01

Emission Point: E0054 Height (ft.): 21 NYTMN (km.): 4665.8

Diameter (in.): 8 NYTME (km.): 215.4

NYTME (km.): 215.4

NYTME (km.): 215.4

NYTME (km.): 215.4

NYTME (km.): 215.4

Diameter (in.): 8

Diameter (in.): 4

Diameter (in.): 8

Diameter (in.): 8

Emission Point: E0055 Height (ft.): 21 NYTMN (km.): 4665.8

Emission Point: E0056 Height (ft.): 15 NYTMN (km.): 4665.8

Emission Point: E0057 Height (ft.): 21 NYTMN (km.): 4665.8

Emission Point: E0058 Height (ft.): 21 NYTMN (km.): 4665.8

Emission Point: E0059 Height (ft.): 21 D NYTMN (km.): 4665.8 N

Diameter (in.): 8 NYTME (km.): 215.4

Emission Point: E0060 Height (ft.): 21 Diameter (in.): 8 NYTMN (km.): 4665.8 NYTME (km.): 215.4

Condition 21: Process Definition By Emission Unit Effective between the dates of 07/16/2015 and 07/15/2025

Applicable State Requirement:6 NYCRR Subpart 201-5

Item 21.1:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001 Process: R01 Source Classification Code: 3-13-065-99 Process Description: This process contains three batch reactors used to produce formulated liquids needed in the manufacture of solid state electronic parts.

Emission Source/Control: C0001 - Control Control Type: FABRIC FILTER

Emission Source/Control: S0001 - Process

Emission Source/Control: S0002 - Process

Emission Source/Control: S0003 - Process

Item 21.2:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001 Process: R03 Source Classification Code: 3-13-065-99 Process Description: An A-Tank and a K-Tank mixer used to produce formulated liquids needed in the manufacture of electronic solid state parts.

Emission Source/Control: C0001 - Control Control Type: FABRIC FILTER

Emission Source/Control: S0007 - Process

Item 21.3:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001 Process: R04 Source Classification Code: 3-13-065-99 Process Description:

> This process contains several mixers and a roll mill used to produce formulated liquids needed in the manufacture of electronic solid state parts.

Emission Source/Control: C0002 - Control Control Type: MAT OR PANEL FILTER

Emission Source/Control: C0003 - Control Control Type: MAT OR PANEL FILTER

Emission Source/Control: S0009 - Process

Emission Source/Control: S0010 - Process

Emission Source/Control: S0011 - Process

Emission Source/Control: S0013 - Process

Emission Source/Control: S0015 - Process

Emission Source/Control: S0017 - Process

Emission Source/Control: S0018 - Process

Emission Source/Control: S0019 - Process

Item 21.4:

This permit authorizes the following regulated processes for the cited Emission Unit:

 Emission Unit:
 U-00001

 Process:
 R06

 Source Classification Code:
 3-13-065-99

 Process Description:
 Image: Classification Code:

 Description:
 Image: Classification Code:

This process contains several batch reactors, a mixer and a KADY disperser used to produce formulated liquids needed in the manufacture of electronic solid state parts.

Emission Source/Control: C0004 - Control Control Type: FABRIC FILTER

Emission Source/Control: S0033 - Process

Emission Source/Control: S0037 - Process

Emission Source/Control: S0039 - Process

Item 21.5:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001 Process: R08 Source Classification Code: 3-13-065-99 Process Description:

> This process contains two batch reactors, a spray booth, a weigh station, a packaging table, a mixer, a pour hood and a rack hood all used to produce formulated liquids needed in the manufacture of electronic solid state parts.

Emission Source/Control: C0004 - Control Control Type: FABRIC FILTER

Emission Source/Control: S0029 - Process

Emission Source/Control: S0046 - Process

Emission Source/Control: S0047 - Process

Emission Source/Control: S0048 - Process

Emission Source/Control: S0049 - Process

Emission Source/Control: S0050 - Process

Emission Source/Control: S0051 - Process

Emission Source/Control: S0052 - Process

Item 21.6:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit:	U-00001		
Process: R09		Source Classification Code: 3-13-065-99	

Air Pollution Control Permit Conditions Page 23 FINAL

Renewal 1

Process Description:

This process contains 13 ovens and two packing hoods all used to produce formulated liquids needed in the manufacture of electronic solid state parts.

Emission Source/Control:	S0053 - Process
Emission Source/Control:	S0055 - Process
Emission Source/Control:	S0057 - Process
Emission Source/Control:	S0058 - Process
Emission Source/Control:	S0059 - Process
Emission Source/Control:	S0060 - Process
Emission Source/Control:	S0061 - Process
Emission Source/Control:	S0062 - Process
Emission Source/Control:	S0063 - Process
Emission Source/Control:	S0100 - Process
Emission Source/Control:	S0101 - Process
Emission Source/Control:	S0103 - Process
Emission Source/Control:	S0104 - Process
Emission Source/Control:	S0105 - Process
Emission Source/Control:	S0106 - Process

Item 21.7:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001
 Process: R10 Source Classification Code: 3-13-065-99
 Process Description:

 This process contains a flash dryer and a mixer both used to produce formulated liquids needed in the manufacture of electronic solid state parts.

 Emission Source/Control: C0005 - Control Control Type: FABRIC FILTER
 Emission Source/Control: S0064 - Process
 Emission Source/Control: S0065 - Process

Item 21.8:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001 Process: R11 Source Classification Code: 3-13-065-99 Process Description:

This process contains seven (7) ribbon blenders, two grinders and two weigh stations used to produce molding powders and coating powders.

Emission Source/Control: C0006 - Control Control Type: FABRIC FILTER

Emission Source/Control: C0008 - Control Control Type: FABRIC FILTER

Emission Source/Control: C0015 - Control Control Type: FABRIC FILTER

Emission Source/Control: C0016 - Control Control Type: FABRIC FILTER

Emission Source/Control: C0017 - Control Control Type: FABRIC FILTER

Emission Source/Control: C0018 - Control Control Type: FABRIC FILTER

Emission Source/Control: C0019 - Control Control Type: FABRIC FILTER

Emission Source/Control: S0066 - Process

Emission Source/Control: S0067 - Process

Emission Source/Control: S0068 - Process

Emission Source/Control: S0069 - Process

Emission Source/Control: S0070 - Process

Emission Source/Control: S0071 - Process

Emission Source/Control: S0072 - Process

Emission Source/Control: S0075 - Process

Emission Source/Control: S0076 - Process

Emission Source/Control: S0077 - Process

Item 21.9:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001 Process: R12

Source Classification Code: 3-13-065-99

Process Description:

This process contains six (6) extruders and a central vacuum exhaust system used to produce molding powders and coating powders.

Emission Source/Control: C0014 - Control Control Type: FABRIC FILTER

Emission Source/Control:S0078 - ProcessEmission Source/Control:S0079 - ProcessEmission Source/Control:S0080 - ProcessEmission Source/Control:S0081 - ProcessEmission Source/Control:S0082 - ProcessEmission Source/Control:S0083 - ProcessEmission Source/Control:S0083 - Process

Item 21.10:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001 Process: R13 Source Classification Code: 3-13-065-99 Process Description: This process contains two extruders and a grinder to produce scale up quanities of molding powders and coating powders.

Emission Source/Control: C0009 - Control Control Type: FABRIC FILTER

Emission Source/Control: S0086 - Process

Emission Source/Control: S0087 - Process

Emission Source/Control: S0088 - Process

Item 21.11:

This permit authorizes the following regulated processes for the cited Emission Unit:

Emission Unit: U-00001 Process: R14 Source Classification Code: 3-13-065-99 Process Description: This process contains packaging and classifing equiptment used to produce molding powders and coating powders.

Emission Source/Control: C0010 - Control

Air Pollution Control Permit Conditions Page 26 FINAL

Renewal 1

Control Type: FABRIC FILTER Emission Source/Control: S0091 - Process

Emission Source/Control: S0092 - Process

Emission Source/Control: S0094 - Process

Renewal 1

NYSDOH INDUSTRIAL RADIOGRAPHY REGISTRATION PERMIT #04022737

	State of New York
	Department of Health
	- Aldreine
	CERTIFICATE OF REGISTRATION
	ificate is to certify that the following Radiation Installation is registered ises indicated pursuant to section 16.50 of the New York State Sanitary Code.
	rtificate must be conspicuously displayed at the Radiation Installation.
Registration	SOLEPOXY INC
Number 04022737	211 FRANKLIN STREET
	OLEAN NY 14760-1211
	n inspection interval for installation type of Industrial Radiography is 1 year Deriod begins November 8, 2016 and expires November 8, 2018
Registration p	Deriod begins November 8, 2016 and expires November 8, 2018 A South Howard Zucker M.D.
Registration p Stepler 10 rector, Bureau of Environ	mental Radiation Protection 2016 and expires November 8, 2018 Howard Zucker M.D. Commissioner
Registration p Stepler 10 rector, Bureau of Environ	mental Radiation Protection 2016 and expires November 8, 2018 Howard Zucker M.D. Commissioner
Registration p Stypin 10 irector, Bureau of Environ	Deriod begins November 8, 2016 and expires November 8, 2018 - Aouth mental Radiation Protection 71
Registration p Stypin 10 irector, Bureau of Environ	mental Radiation Protection 2016 and expires November 8, 2018 Howard Zucker M.D. Commissioner
Registration p	Deriod begins November 8, 2016 and expires November 8, 2018 Mental Radiation Protection T1 New York State Department of Health Bureau of Environmental Radiation Protection Attn: Radiation Equipment
Registration p Stylen w rector, Bureau of Environ 1-3376 (04/200 R11937	Deriod begins November 8, 2016 and expires November 8, 2018 Market Howard Zucker M.D. Mental Radiation Protection 71 New York State Department of Health Bureau of Environmental Radiation Protection Attn: Radiation Equipment Empire State Plaza, Corning Tower 12th fl
Registration p Stephen 10 rector, Bureau of Environ	Deriod begins November 8, 2016 and expires November 8, 2018 Mathieve Howard Cucker M.D. Internal Radiation Protection 71 New York State Department of Health Bureau of Environmental Radiation Protection Attn: Radiation Equipment Empire State Plaza, Corning Tower 12th fl
Registration p Stylen w rector, Bureau of Environ 1-3376 (04/200 R11937	Deriod begins November 8, 2016 and expires November 8, 2018 Mathieve Howard Cucker M.D. Internal Radiation Protection 71 New York State Department of Health Bureau of Environmental Radiation Protection Attn: Radiation Equipment Empire State Plaza, Corning Tower 12th fl
Registration p Styalar M rector, Bureau of Environs 1-3376 (04/200 R11937 Phone (518) 402-75 You are	A mental Radiation Protection Mew York State Department of Health Bureau of Environmental Radiation Protection Attn: Radiation Equipment Empire State Plaza, Corning Tower 12th fl 70 Albany, NY 12237 Fax (518) 402-7575 NOTIFICATION OF CHANGES required to notify the above office in writing WITHIN 10 DAYS if there is any
Registration p Styalow w rector, Bureau of Environs 1-3376 (04/200 R11937 Phone (518) 402-75 You are change	Americal begins November 8, 2016 and expires November 8, 2018 Americal Radiation Protection Howard Pucker M.D. Immissioner 71 New York State Department of Health Bureau of Environmental Radiation Protection Attn: Radiation Equipment Empire State Plaza, Corning Tower 12th fl 70 Albany, NY 12237 Fax (518) 402-7575 NOTIFICATION OF CHANGES

changes voids this certificate

2. A change in location of the installation.

3. A change in the name of the installation.

- 4. The discontinuance of the installation.
 - 5. Addition, removal, or replacement of radiation equipment.

3376 (04/2001) (

Renewal

Registration period begins November 8, 2016 and expires November 8, 2018

SOLEPOXY INC **211 FRANKLIN STREET** OLEAN NY 14760-1211

Industrial Radiography Registration Generated On 10/24/2016 For 04022737

CITY OF OLEAN

WASTEWATER DISCHARGE PERMIT NO. E-1-15

PERMIT NO. E-1-15

<u>City of Olean</u> Industrial Pretreatment Program WASTEWATER DISCHARGE PERMIT

In accordance with all terms and conditions of the City Code of Ordinances, Chapter 27, et. seq., and with any applicable provisions of Federal or State law or regulation, permission for the contribution of wastewaters containing regulated pollutants into the City of Olean sewage system is hereby granted to:

SolEpoxy, Inc. 211 Franklin Street Olean, NY 14760

Responsible Person: Robert Groele Title: VP Engineering Telephone: 716-372-6300 X-290

e-mail: Robert.groele@solepoxy.com

e-mail: mark.wendel@solepoxy.com

Facility Representative: Mark Wendel Title: Maintenance Manager Telephone: 716-372-6300 X-239

Facility Representative: Title: Telephone: 372-6300

e-mail:

STANDARD INDUSTRIAL CLASSIFICATION CODE: 3087

This permit is granted in accordance with the application filed in May 2015 and in conformity with any plans, specifications and other data submitted in support of the above application, all of which are filed with and considered a part of this permit. In addition, the following general and special conditions are a part of this permit. Any part of this permit, may be modified at any time during the period it is in force.

Effective: June 1, 2015 Expires : May 31, 2018

Approved by:	Mayor, City of Olean		WWTP Senior Operator
Name:	William Aiello	OR	Brad Camp
Signature:			
Date:	5/28/15		5/28/15

GENERAL PROVISIONS

G-1. CORRESPONDENCE

All submittals and correspondence should be addressed to :

Wastewater Treatment Plant Senior Operator City of Olean Wastewater Treatment Plant 174 S. 19th Street Olean, New York 14760

G-2. SPILL PREVENTION CONTROL PROGRAM

The industrial user shall take all reasonable precautions to prevent accidental spills in order to eliminate or minimize the accidental or slug discharge of pollutants into the sewer system.

The industrial user shall notify the City immediately upon any accidental or slug discharge to the sanitary sewer. Formal written notification discussing circumstances and remedies shall be submitted to the City within 5 days of the occurrence.

G-3. DILUTION

No industrial user shall increase the use of potable or process water or, in any way, attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve compliance with the limitations contained in this permit.

G-4. PROPER DISPOSAL OF PRETREATMENT SLUDGES AND SPENT CHEMICALS

The disposal of sludges and spent chemicals generated shall be done in accordance with Section 405 of the Clean Water Act and Subtitles C and D of the Resource Conservation and Recovery Act and any other applicable statutes or regulations pertaining to disposal of sludges and spent chemicals.

All industrial users must notify in writing the POTW, the New York State Department of Environmental Conservation and the United States Environmental Protection Agency of any discharge that would be considered a hazardous waste if disposed of in a different manner.

G-5. PROHIBITIONS

No industrial user may discharge any pollutant that may create an explosive hazard including but not limited to wastestreams with a closed cup flash point of less than 140^o F or 60^o C using testing methods specified in 40 CFR 261.21.

No industrial user shall discharge petroleum oil, non- biodegradable cutting oil, products of mineral oil origin in amounts that will cause interference or pass through.

No industrial user shall discharge any pollutant that may result in the presence of toxic gases, vapors or fumes in a quantity that may cause acute worker health and/or safety problems.

G-6. SIGNATORY REQUIREMENTS

All reports required by this permit shall be signed by a principal executive officer of the user, or his designee. Electronic submittal of permit applications, reports and other correcpondence shall be documented in a letter bearing an appropriate signature.

G-7. CHANGE IN DISCHARGE

The industrial user shall promptly and as soon as possible notify the City in advance of the introduction of new wastewater or pollutants or any substantial change in the volume or characteristics of the wastewater being introduced into the public sewers from the user's industrial processes including listed or characteristic hazardous wastes. The notification shall be in conformance with 40CFR Part 122.41(I)(i) and 40CFR 403.12(p). Formal written notification shall follow within 30 days of such introduction.

G-8. FAILURE TO REAPPLY

The City may seek temporary restraining orders, plug or disconnect service or permanent injunctions if there is an imminent danger to health, safety or property when after inspection, monitoring or analysis it is determined that the discharge or wastewater to the sanitary sewer is in violation of Federal, State or local laws, ordinances or regulations.

G-9. LIMITATION OF PERMIT TRANSFER

Wastewater discharge permits are issued to a specific user for a specific operation and are not assignable to another user or transferable to any other location without the prior written approval of the City. Sale of a user shall obligate the purchaser to seek prior written approval of the City for continued discharge to the sewage system.

G-10. FALSIFYING INFORMATION OR TAMPERING WITH MONITORING EQUIPMENT

Knowingly making any false statement on any report or other document required by this permit or knowingly rendering any monitoring device or method inaccurate, may result in punishment under the criminal laws of the City, as well as being subjected to civil penalties and relief.

G-11. MODIFICATION OR REVISION OF THE PERMIT

- a) The terms and conditions of this permit may be subject to modification by the City at any time as limitations or requirements as identified by the City's Ordinance, are modified or other just cause exists.
- b) This permit may also be modified to incorporate special conditions resulting from the issuance of a special order.
- c) The terms and conditions may be modified as a result of EPA promulgating a new Federal pretreatment standard.

G-12. DUTY TO REAPPLY

Within ninety (90) days of the notification, the user shall reapply for reissuance of the permit on a form provided by the City.

G-13. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

SAMPLING and ANALYSES

S-1. SAMPLE METHODS

Wastewater discharge samples and analyses and flow measurements taken as required in this permit shall be representative of the volume and character of the permitted discharge. Sampling and analytical methods shall be in accordance with accepted National Environmental Laboratory Approval Program (NELAP) protocol. Contracted laboratories must be NELAP certified by the New York State Department of Health.

S-2. SAMPLING MANHOLE

The industrial user shall construct a sampling manhole if the Wastewater Treatment Plant Chief Operator, or the Director of Public Works, determines such sampling point is required.

S-3. SAMPLING - NOTIFICATION

The permittee shall notify the Wastewater Treatment Plant Chief Operator, at least one week prior to conducting self-monitoring for the purpose of taking wastewater discharge samples for analysis,

S-4. SAMPLE ANALYSES- REQUIREMENTS

The industrial user is required to monitor the parameters listed for each sample point.

SAMPLE POINT: mixing chamber (in liquids room)				
PARAMETER	DISCHARGE LIMITS	SAMPLE TYPE		
pH	6.0-9.0	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)		
Oil and Grease	50 mg/l (daily maximum)	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)		
1,1,1-Trichloroethane	0.049 mg/l (DAILY MAXIMUM)	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)		
Trichloroethylene	1.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
Chromium (+6)	1.5mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
Copper (Total)	2.1 mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
Cadmium (Total)	1.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
Lead (Total)	5.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
Nickel (Total)	0.9 mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
Zinc (Total)	3.5 mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
Arsenic (Total)	0.02 mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
Mercury (Total)	0.05 mg/l (daily maximum)	24 Hour Composite (flow based)		
Silver (Total)	5.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (flow based)		
BOD ₅	250 mg/l*	24 Hour Composite (flow based)		
TSS	250 mg/l*	24 Hour Composite (flow based)		
Flow	Monitor	24 Hr. Total (recorded hourly)		

*Five (5) day Biochemical Oxygen Demand and Total Suspended Solids discharges greater than 250 mg/l shall be subject to review and approval by the WWTP Chief Operator or the Director of Public Works.

Other pollutants, as specified by the City, shall be sampled on a schedule determined by the City if said additional monitoring is deemed necessary by the City in order to assure compliance with City, State and Federal standards.

S-5 SAMPLE ANALYSES - REPORTING

The industrial user is required to submit to the City a self monitoring report on the analytical results of its sampling <u>May 15</u> and <u>October 15</u> of each year.

A statement shall be included in all monitoring reports pertaining to the protocols used during the sampling and/or analyses. A proper monitoring report shall contain the following information:

- Exact time and place of sample
- Dates of sample
- Dates analyses were performed
- Person performing sampling and/or analyses
- Analytical techniques or methods used
- Analytical results including proper units
- A map indicating sampling location
- Chain of Custody Log

If sampling by the industrial user indicates a violation, the user must notify the City within 24 hours of becoming aware of the violation. The industrial user must also resample and submit results of this resampling to the City within thirty (30) days.

INSPECTION

I-1. RIGHT OF ENTRY

The industrial user shall, after reasonable notification by the City, allow the City or its representative, exhibiting proper credentials and identification, to enter upon the premises of the user, at all reasonable hours, for the purposes of inspection, sampling, or records inspection. Reasonable hours in the context of inspection and sampling includes any time the industrial user is operating any process which results in a process wastewater discharge to the City's sewage system.

I-2. RECORDS RETENTION

- a) The industrial user shall retain and preserve for no less than three (3) years, any records, books, documents, memoranda, reports, correspondence and any and all summaries thereof, relating to monitoring, sampling and chemical analyses made by or in behalf of the user in connection with its discharge.
- b) All records that pertain to matters that are the subject of special orders or any other enforcement or litigation activities brought by the City shall be retained and preserved by the industrial user until all enforcement activities have concluded and all periods of limitation with respect to any and all appeals have expired.

COMPLIANCE

C-1. CITY ORDINANCE

The industrial user shall comply will all the general discharge standards of the City Sewer Use Ordinance (Chapter 27, City Code).

C-2. COMPLIANCE SCHEDULE

In order to meet the wastewater discharge limitations specified elsewhere in this permit, the industrial user may be required to make in-plant process modifications and install a treatment facility. The following construction schedule, if applicable, shall be adhered to and reports on progress shall be submitted to the City, as outlined below:

TASK	COMPLIANCE DATE	APPLICABILITY
Submit baseline monitoring report	NA	Not Applicable at time of issue
Investigate in-plant process modifications and treatment options.	NA	Not Applicable at time of issue
Complete preliminary engineering	NA	Not Applicable at time of issue
Go out to bid	NA	Not Applicable at time of issue
Secure equipment and begin construction	NA	Not Applicable at time of issue
Complete installation	NA	Not Applicable at time of issue
Pretreatment system start-up	NA	Not Applicable at time of issue
Achieve final compliance	NA	Not Applicable at time of issue

C-3. PROGRESS REPORT

Not later than fourteen (14) days following each date in the compliance schedule, the industrial user shall submit a progress report to the City. This report must indicate whether or not the increment of progress was met on the date, the reason(s) for any delay, and what steps are being taken by the user to return to the schedule established. In no event shall more than nine (9) months elapse between such progress reports to the City.

C-4. FINAL COMPLIANCE REPORT

Within 90 days following the final compliance date, the industrial user shall submit a final compliance report. The industrial user will be required to sample its wastewater for the pollutants specified in S-4, and report compliance. Any reasons for not complying and any steps being taken by the user to comply shall be part of the report.

C-5. PRETREATMENT FAILURE

Any upset experienced by the industrial user of its treatment that places it in a temporary state of non-compliance with wastewater discharge limitations contained in this permit or other limitations specified in the City's Ordinance shall be reported to the City within 24 hours of first awareness of the commencement of the upset. A detailed report shall be filed within 5 days. Additionally any violation for any reason, including but not limited to routine monitoring shall be reported within 24 hours of violation detection and the permittee must conduct resampling within 30 days.

C-6. CIVIL AND CRIMINAL PENALTIES

By resolution the Common Council has adopted an Enforcement Response Plan which was previously mailed to permit holders on March 28, 1990 and which is made part of this permit by reference.

Any industrial user who fails to comply with any provisions of the City of Olean sewer use ordinance or this permit may be liable to monetary forfeitures. Fines for significant noncompliance shall be \$1,000.00 per day. The continued violation of any provision shall constitute a separate offense for each and every day such violation shall continue.

The City may hold hearings regarding violations and depending upon the outcome of the hearings the director may revoke or suspend the industrial user's permit to discharge.

C-7. SIGNIFICANT NONCOMPLIANCE

Significant noncompliance involving discharge violations will be calculated on the basis of "rolling quarters". Significant noncompliance shall be based upon data for the previous six (6) months. Quarters shall end on March 31, June 30, September 30 and December 31 of each calendar year.

Significant noncompliance means any violation or group of violations that meets one or more of the following criteria:

- Chronic violations of wastewater discharge limits, defined here as those in which sixty-six (66) percent or more of all of the measurements taken for the same pollutant parameter during a six (6) month period exceed (by any magnitude) a numeric pretreatment standard or requirement, including instantaneous limits, as defined by 40 CFR 403.3(I);
- Technical Review Criteria (TRC) violations, defined here as those in which thirtythree (33) percent or more of all of the measurements for each pollutant parameter taken during a six (6) month period equal or exceed the product of the numeric pretreatment standard or requirement, including instantaneous limits, as defined by 40 CFR 403.3(I) multiplied by the applicable TRC (TRC=1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH);
- Any other violation of a pretreatment effluent limit (daily maximum or longer-term average, instantaneous limit, or narrative standard) that the City of Olean determines has caused, alone or in combination with other discharges, interference or pass through (including endangering the health of Wastewater Treatment Plant personnel or the general public);
- Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or to the environment or has resulted in the Wastewater Treatment Plant's exercise of its emergency authority to halt or prevent any such discharge;
- Failure to meet, within ninety (90) days after the schedule date, a compliance schedule milestone contained in a local control mechanism or enforcement order for starting construction, completing construction, or attaining final compliance.
- Failure to provide, within thirty (30) days after the due date, required report such as baseline monitoring reports, ninety (90) day compliance reports, periodic self-monitoring reports, and reports on compliance with compliance schedules;
- Failure to accurately report noncompliance;
- Any other violation or group of violations, which may include a violation of Best Management Practices, which the City of Olean determines will adversely affect the operation or implementation of the City's pretreatment program.

ATTACHMENT E

SAMPLING LOGS FOR MARCH 24, 2017 INDOOR AIR SAMPLING EVENT

Project Address: 21	84S-13 1 Franklin Stree ean NY		Sample Type: Indoor Air	Air Sampling Log
016		et	Sample Type: Indoor Air	
1	ean NY			
AY Representative:		Date:	3/24/2017	Page 1 of 1
	CAH/CDD	Canister #:	5566	
Sample Location:	Area 1	Regulator #:	58	
Sample Designation:	AREAI	Start:	07:27 - Gauge realing 29.0 in the	
Test Duration:	8hr 37m.	End:	07:27 - Gauge realing - 2900 in Hy 16:04 - Qauge reading - 7 in Hg	
Γ		1		
	Time	Vacuum Gage Reading (inches of Hg)	Notes	1
	07:27	-30	Start	
(08:37	-28		
	09:26	-26		
_1	0:20	-22		
	11:18	-20		
	12:30	-18		
	13:25	-16		
	14:28	-13		
	5:34	-10		
1	6:04	-9	STOP	
Ê				
	-			

Sample Location: Area 2 Regulator #: 1314	Air Sampling Log
DAY Representative: <u>CAH/CDD</u> Canister #: <u>0235</u> Sample Location: <u>Area 2</u> Regulator #: <u>1314</u> Sample Designation: <u>AREA 2</u> Start: <u>07:26</u> - Gauge Reading = -29.0 Test Duration: <u>8hr 9min</u> End: <u>15:35</u> - Gauge Reading = -5.5 Time Vacuum Gage Reading (inches of Hg) Notes 07:26 > -30 Start 09:24 -25	Page 1 of 1
DAY Representative: <u>CAH/CDD</u> Sample Location: <u>Area 2</u> Sample Designation: <u>AREA Z</u> Test Duration: <u>Bhr 9 min</u> Time Vacuum Gage Reading 07:26 > -30 Start 09:24 $-25Canister #: 07:26 - Gauge Reading = -29.0End: 15:35 - Gauge Reading = -5.5Notes$	
Sample Location:Area 2Regulator #: 1314Sample Designation: $AREA Z$ Start: 07:26 - Gauge Reading = -29.0Test Duration: $Bhc 9min$ End: 15:35 - Gauge Reading = -5.5TimeVacuum Gage Reading (inches of Hg)Notes07:26> -30Start07:26> -30Start09:24-25-28	
Sample Designation: $AREA Z$ Test Duration: $8hc 9min$ Time Vacuum Gage Reading (inches of Hg) 07:26 > -30 09:241 - 25 Start: $07:26$ - Gauge Reading = -29.0 End: $15:35$ - Gauge Reading = -5.5 Notes	
TimeVacuum Gage Reading (inches of Hg)Notes $07:26$ > -30 $5tart$ $08:35$ -28-28 $09:241$ -25	
TimeVacuum Gage Reading (inches of Hg)Notes $07:26$ > -30 $5tart$ $08:35$ -28-28 $09:241$ -25	
08:35 -28	
08:35 -28	
10:20 -23	
11:20 -20	
12:30 -16	
13:24 - 13	
15:35 -7 STOP	

Project #:	4884S-13	-		Air Sampling Log
Project Address:	211 Franklin Stre	et	Sample Type: Indoor Air	
	Olean NY	Date:	3/24/2017	Page 1 of 1
DAY Representativ	re: CAH/CDD	Canister #:	0230	
Sample Locatio	on: Area 3	Regulator #:	2889	
Sample Designatio	IN: AREA 3	Start: _	07:28 - Gause Realing - 29.0 mills	
Test Duratio	m: Shr 0.	m End:	07:28-Gauge Reading - 29.0 mH	7
	Time	Vacuum Gage Reading	Notes	
	-	(inches of Hg)		
	07:28	-28	Start	
	08:38	-25		
	09:29	-23		
	10:19	-17		
	12:28	-14.5		
	13:22	-11		
	14:31	-7		
	15:28	-5	STOP	
				11
	-			
	-			
	-			
	-			
D	1.1.	prox 3' above		Air Sampling Log

	AL, INC			ENVIRONMENTAL CONSUL
roject #:	4884S-13			Air Sampling Log
roject Address:	211 Franklin Stre	et	Sample Type: Indoor Air	
	Olean NY	Date:	3/24/2017	Page 1 of 1
OAY Representativ	e: CAH/CDD	Canister #:	0472	
Sample Locatio	n: Area 4	Regulator #:	69	
Sample Designation	n: AREA 4			
	n: Shr 36.	End:	07:30 Gauge Reading = - 9 16:06 Gauge Reading = - 9	
		1		
	Time	Vacuum Gage Reading (inches of Hg)	Notes	
	07:30	-29,5	start	
	08:39	-27		
	09:31	-25		
	10:18	-22		
	12:29	-19.5		
	13:24	-14.5		
	14:31	-12		
	15:32	-10		
	16:06	-9	STOP	
	1			
	-			
	_			
Reculator	the acistan	5' alton Floor	-	Air Sampling Log

Project #:	4884S-13			Air Sampling Log
Project Address:	211 Franklin Stre	et	Sample Type: Indoor Air	
	Olean NY	Date:	3/24/2017	Page 1 of 1
DAY Representative	CAH/CDD	Canister #:	0256	
Sample Location	Area 5	Regulator #:	1550	
Sample Designation	AREA 5	Start:	07:23 - Gauge Reading = 28.5	in 45
Test Duration	9hr Om	End:	07:23 - Gauge Reading = 28.5 16:23 - Bauge Rad ing =-	-6.5
	Time	Vacuum Gage Reading (inches of Hg)	Notes	
	07:73	7-30	01 4	
	07:23	-28	Start	
	09:23	-26		
	10:23	-24		
	11:21	-21		
	12:23	- 19.5		
	13:18	-16.5		
	14:34	-13.5	Automation -	
	16:23	-9	STOP	
_				
A fair 11.		5' above floor		Air Sampling Log

Project #:	4884S-13	5		Air Sampling Log
Project Address:	211 Franklin Stree	et	Sample Type: Indoor Air	
	Olean NY	Date:	3/24/2017	Page 1 of 1
DAY Representative	CAH/CDD	Canister #:	0259	
Sample Location	: Area 6	Regulator #:	9	
Sample Designation	AREAG	Start:	07:22 - Gauge Reading = - 29 in Hy	
Test Duration	8hr 20m	End:	15:42-Gauge Reading = -6.5, 1	CA
	Time	Vacuum Gage Reading (inches of Hg)	Notes	
	07:22	>-30	STAILT	
	08:33	- 28.5		
	09:19	- 26.5		
	10:23	- 2014		
	11:22	-21		
	13:19	-18		
	14:32	-12		
	15:42	-8.5	STOP	
		1		
			1	
1.03				

	AL, INC			AN AFFILIATE OF DAY ENGINEE
roject #:	4884S-13			Air Sampling Log
roject Address:	211 Franklin Stree	et	Sample Type: Outdoor (Background) Air	
	Olean NY	Date:	3/24/2017	Page 1 of 1
AY Representative			17157	
Sample Location	SW Corner M	Munt. Yaid Regulator #:	2994	
ample Designation	Juboor (B.	(kground) Start:	07:20 - Gause Reading=29.0 in 14	
Test Duration	Bhr Imi	End:	07:20 - Gause Reading= 29.0 in 14 15:21 - Gause Reading = -5.5.	olta
	Time	Vacuum Gage Reading (inches of Hg)	Notes	
	07:20	- 28.5	Start	
	08:46	-24.5		
	10:25	-21		
	11:24	-18	_	
	12:26	-14.5		
	13:21	-12		
	14:35	-8		
	15:21	-5.5	Stop	
	-			

ATTACHMENT F

ANALYTICAL LABORATORY REPORT AND DUSR FOR MARCH 24, 2017 INDOOR AIR SAMPLING EVENT 🛟 eurofins

Spectrum Analytical

Final ReportRe-Issued ReportRevised Report

Report Date: 10-Apr-17 12:48

Laboratory Report

Day Environmental, Inc. 1563 Lyell Avenue Rochester, NY 14606 Attn: Charles Hampton

Project: 211 Franklin St - Olean, NY

Project #: 4884S-13

Laboratory ID	Client Sample ID	<u>Container</u>	<u>Matrix</u>	Date Sampled	Date Received
SC32956-01	Outdoor(background)	Summa canister 6 liter	Indoor/Ambient Air	24-Mar-17 15:21	29-Mar-17 11:35
SC32956-02	Area 1	Summa canister 6 liter	Indoor/Ambient Air	24-Mar-17 16:04	29-Mar-17 11:35
SC32956-03	Area 3	Summa canister 6 liter	Indoor/Ambient Air	24-Mar-17 15:28	29-Mar-17 11:35
SC32956-04	Area 6	Summa canister 6 liter	Indoor/Ambient Air	24-Mar-17 15:42	29-Mar-17 11:35
SC32956-05	Area 2	Summa canister 6 liter	Indoor/Ambient Air	24-Mar-17 15:35	29-Mar-17 11:35
SC32956-06	Area 4	Summa canister 6 liter	Indoor/Ambient Air	24-Mar-17 16:06	29-Mar-17 11:35
SC32956-07	Area 5	Summa canister 6 liter	Indoor/Ambient Air	24-Mar-17 16:23	29-Mar-17 11:35

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

June O'Connor Laboratory Director

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 38 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the RDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

Samples are received and the pressure is recorded from the gauge on the canister. If a canister does not have a gauge, a vacuum gauge is attached to the valve and pressure is recorded. If the canister is below -10 psig, the can must be pressurized to 0 psig. Tedlar bags do not have the pressure recorded. The can pressure can be located within this report in the sample header information.

If a Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA TO-15 SIM

Calibration:

1704016
Analyte quantified by quadratic equation type calibration.

1,1-Dichloroethane

1,1-Dichloroethene Carbon tetrachloride Tetrachloroethene Trichloroethene Vinyl chloride

This affected the following samples:

1705653-BLK1 1705653-BS1 1705653-BSD1 Area 1 Area 3 Outdoor(background) S703544-ICV1 S703569-CCV1 S703569-CCV2

1704017

Analyte quantified by quadratic equation type calibration.

Vinyl chloride

This affected the following samples:

1705783-BLK1 1705783-BSD1 1705783-BSD1 Area 2 Area 4 Area 5 Area 6 S703573-ICV1 S703581-CCV1 S703581-CCV2

S703581-CRL1

EPA TO-15 SIM

S703581-CRL1

Low level calibration check failed, reportable sample concentrations may be biased high.

Tetrachloroethene

EPA TO-15L

Calibration:

1704016

Analyte quantified by quadratic equation type calibration.

1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichlorotrifluoroethane (Freon 113) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorotetrafluoroethane (Freon 114) 1,3-Butadiene 1,3-Dichlorobenzene 4-Isopropyltoluene Acrylonitrile Benzyl chloride Bromoform Bromomethane Chlorobenzene Chloroethane Chloroform Chloromethane Dichlorodifluoromethane (Freon12) Isopropylbenzene Methylene chloride Naphthalene n-Butylbenzene Propene sec-Butylbenzene Styrene trans-1,2-Dichloroethene Trichlorofluoromethane (Freon 11)

This affected the following samples:

1705653-BLK1 1705653-BSD1 Area 1 Area 3 Outdoor(background) S703544-ICV1 S703569-CCV1 S703569-CCV2

1704017

Calibration:

1704017

Analyte quantified by quadratic equation type calibration.

1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichlorotrifluoroethane (Freon 113) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorotetrafluoroethane (Freon 114) 1,3-Dichlorobenzene 4-Isopropyltoluene Benzyl chloride Bromomethane Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dichlorodifluoromethane (Freon12) Methylene chloride Naphthalene n-Butylbenzene n-Heptane Trichlorofluoromethane (Freon 11)

This affected the following samples:

1705783-BLK1 1705783-BS1 1705783-BSD1 1705851-BLK1 1705851-BS1 1705851-BSD1 Area 2 Area 4 Area 5 Area 6 S703573-ICV1 S703581-CCV1 S703581-CCV2 S703590-CCV1 S703590-CCV2

Laboratory Control Samples:

1705653 BS/BSD

Ethylbenzene percent recoveries (109/138) are outside individual acceptance criteria (65-135), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Area 1 Area 3 Outdoor(background)

Methylene chloride percent recoveries (110/196) are outside individual acceptance criteria (65-135), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Area 1 Area 3 Outdoor(background)

Laboratory Control Samples:

1705653 BSD

1,2,4-Trichlorobenzene RPD 46% (35%) is outside individual acceptance criteria.

Methylene chloride RPD 56% (35%) is outside individual acceptance criteria.

Naphthalene RPD 46% (35%) is outside individual acceptance criteria.

Samples:

S703569-CCV2

Analyte percent difference is outside individual acceptance criteria (30), but within overall method allowances.

2-Hexanone (MBK) (41.4%) 4-Ethyltoluene (39.8%) cis-1,3-Dichloropropene (36.3%) Ethylbenzene (46.8%) Methyl tert-butyl ether (35.3%) o-Xylene (37.3%) Toluene (31.3%) trans-1,3-Dichloropropene (42.2%)

Analyte percent drift is outside individual acceptance criteria (30), but within overall method allowances.

Styrene (37.2%)

This affected the following samples:

1705653-BLK1 1705653-BS1 1705653-BSD1 Area 1 Area 3 Outdoor(background)

S703581-CCV2

Analyte percent drift is outside individual acceptance criteria (30), but within overall method allowances.

Chloromethane (41.3%)

This affected the following samples:

1705783-BLK1 1705783-BS1 1705783-BSD1 Area 2 Area 4 Area 5 Area 6

S703590-CCV1

Analyte percent difference is outside individual acceptance criteria (30), but within overall method allowances.

Styrene (35.0%)

Analyte percent drift is outside individual acceptance criteria (30), but within overall method allowances.

1,2,4-Trichlorobenzene (33.0%)

Samples:

S703590-CCV1

This affected the following samples:

1705851-BLK1 1705851-BS1 1705851-BSD1

S703590-CCV2

Analyte percent difference is outside individual acceptance criteria (30), but within overall method allowances.

4-Ethyltoluene (37.2%) Ethylbenzene (39.5%) m,p-Xylene (38.4%) o-Xylene (38.4%) Styrene (48.2%)

Analyte percent drift is outside individual acceptance criteria (30), but within overall method allowances.

1,1,2,2-Tetrachloroethane (33.8%) 1,2-Dichlorobenzene (32.8%) 1,3-Dichlorobenzene (33.8%) 1,4-Dichlorobenzene (32.8%)

This affected the following samples:

1705851-BLK1 1705851-BS1 1705851-BSD1

SC32956-02 Area 1

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Acetone Ethanol

SC32956-02RE1 Area 1

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

 SC32956-03
 Area 3

 OR
 Propene

 This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.
 Acetone

 Acetone
 Ethanol

 SC32956-03RE1
 Area 3

 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC32956-04

Area 6

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Acetone Ethanol

Samples:

SC32956-04RE1 Area 6

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC32956-05 Area 2

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Acetone Ethanol

SC32956-05RE1 Area 2

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC32956-06

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Acetone Ethanol Isopropyl alcohol

SC32956-06RE1 Area 4

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC32956-07

Area 5

Area 4

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Acetone Ethanol

SC32956-07RE1 Area 5

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

S703569-CRL2

Low level calibration check failed, data was accepted due to sample concentrations < MDL.

Hexachlorobutadiene Methylene chloride

Low level calibration check failed, reporting limit has been elevated.

Ethyl acetate

S703581-CRL2

Low level calibration check failed, data was accepted due to sample concentrations > 3X MRL.

n-Heptane

Low level calibration check failed, reporting limit has been elevated.

1,1,2,2-Tetrachloroethane 1,2-Dichlorotetrafluoroethane (Freon 114) 1,3-Dichlorobenzene 2-Hexanone (MBK) 4-Isopropyltoluene Chloromethane

Sample Acceptance Check Form

Client:Day Environmental, Inc.Project:211 Franklin St - Olean, NY / 4884S-13Work Order:SC32956Sample(s) received on:3/29/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	<u>No</u>	N/A
Were custody seals present?		\checkmark	
Were custody seals intact?			\checkmark
Were samples received at a temperature of $\leq 6^{\circ}$ C?			\checkmark
Were samples cooled on ice upon transfer to laboratory representative?			\checkmark
Were samples refrigerated upon transfer to laboratory representative?			\checkmark
Were sample containers received intact?	\checkmark		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	\checkmark		
Did sample container labels agree with Chain of Custody document?	\checkmark		

Were samples received within method-specific holding times?

 \checkmark

Summary of Hits

Lab ID: SC32956-01			Client ID: Outdoor(ba	ckground)	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Carbon tetrachloride	0.119		0.0200	ppbv	EPA TO-15 SIM
Tetrachloroethene	0.145		0.0200	ppbv	EPA TO-15 SIM
Trichloroethene	0.111		0.0200	ppbv	EPA TO-15 SIM
1,1,2-Trichlorotrifluoroethane (Freon 113)	0.109		0.100	ppbv	EPA TO-15L
2-Butanone (MEK)	0.718		0.100	ppbv	EPA TO-15L
Acetone	7.17		0.500	ppbv	EPA TO-15L
Benzene	0.310		0.100	ppbv	EPA TO-15L
Chloromethane	0.927		0.100	ppbv	EPA TO-15L
Dichlorodifluoromethane (Freon12)	0.689		0.100	ppbv	EPA TO-15L
Ethanol	4.13		0.500	ppbv	EPA TO-15L
Ethyl acetate	0.116	J	0.500	ppbv	EPA TO-15L
Hexane	0.220	J	0.500	ppbv	EPA TO-15L
Isopropyl alcohol	0.307	J	0.500	ppbv	EPA TO-15L
Methylene chloride	1.30		0.100	ppbv	EPA TO-15L
Naphthalene	0.851		0.500	ppbv	EPA TO-15L
n-Heptane	0.163		0.100	ppbv	EPA TO-15L
Tetrahydrofuran	0.386		0.100	ppbv	EPA TO-15L
Toluene	0.216		0.100	ppbv	EPA TO-15L
Trichlorofluoromethane (Freon 11)	0.367		0.100	ppbv	EPA TO-15L

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Carbon tetrachloride	0.121		0.0200	ppbv	EPA TO-15 SIM
Tetrachloroethene	0.0760		0.0200	ppbv	EPA TO-15 SIM
Trichloroethene	0.0301		0.0200	ppbv	EPA TO-15 SIM
1,1,2-Trichlorotrifluoroethane (Freon 113)	0.105		0.100	ppbv	EPA TO-15L
1,2,4-Trimethylbenzene	1.50		0.100	ppbv	EPA TO-15L
1,3,5-Trimethylbenzene	0.399		0.100	ppbv	EPA TO-15L
2-Butanone (MEK)	1.51		0.100	ppbv	EPA TO-15L
4-Ethyltoluene	0.280		0.100	ppbv	EPA TO-15L
4-Isopropyltoluene	0.202		0.100	ppbv	EPA TO-15L
4-Methyl-2-pentanone (MIBK)	0.586		0.100	ppbv	EPA TO-15L
Acetone	163	Е	0.500	ppbv	EPA TO-15L
Benzene	0.659		0.100	ppbv	EPA TO-15L
Chloromethane	0.964		0.100	ppbv	EPA TO-15L
Dichlorodifluoromethane (Freon12)	0.727		0.100	ppbv	EPA TO-15L
Ethanol	123	Е	0.500	ppbv	EPA TO-15L
Ethyl acetate	0.236	J	0.500	ppbv	EPA TO-15L
Ethylbenzene	0.146		0.100	ppbv	EPA TO-15L
Hexane	0.335	J	0.500	ppbv	EPA TO-15L
Isopropyl alcohol	6.85		0.500	ppbv	EPA TO-15L
m,p-Xylene	0.586		0.200	ppbv	EPA TO-15L
Methylene chloride	1.71		0.100	ppbv	EPA TO-15L
Naphthalene	0.808		0.500	ppbv	EPA TO-15L
n-Heptane	0.586		0.100	ppbv	EPA TO-15L
o-Xylene	0.381		0.100	ppbv	EPA TO-15L
Styrene	0.0867	J	0.100	ppbv	EPA TO-15L
Toluene	1.42		0.100	ppbv	EPA TO-15L
Trichlorofluoromethane (Freon 11)	5.99		0.100	ppbv	EPA TO-15L
Lab ID: SC32956-02RE1			Client ID: Area 1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Acetone	93.4	D	5.00	ppbv	EPA TO-15L
Ethanol	65.8	D	5.00	ppbv	EPA TO-15L

Lab ID. 5032750-05			Chem ID. Mica 5		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Carbon tetrachloride	0.0759		0.0200	ppbv	EPA TO-15 SIM
Tetrachloroethene	0.0614		0.0200	ppbv	EPA TO-15 SIM
Trichloroethene	0.0307		0.0200	ppbv	EPA TO-15 SIM
1,1,2-Trichlorotrifluoroethane (Freon 113)	0.102		0.100	ppbv	EPA TO-15L
1,2,4-Trichlorobenzene	0.367		0.100	ppbv	EPA TO-15L
1,2,4-Trimethylbenzene	1.50		0.100	ppbv	EPA TO-15L
1,3,5-Trimethylbenzene	0.344		0.100	ppbv	EPA TO-15L
1,3-Butadiene	3.91		0.100	ppbv	EPA TO-15L
2-Butanone (MEK)	2.37		0.100	ppbv	EPA TO-15L
4-Ethyltoluene	0.407		0.100	ppbv	EPA TO-15L
4-Methyl-2-pentanone (MIBK)	1.32		0.100	ppbv	EPA TO-15L
Acetone	391	Е	0.500	ppbv	EPA TO-15L
Benzene	3.88		0.100	ppbv	EPA TO-15L
Chloroform	0.167		0.100	ppbv	EPA TO-15L
Chloromethane	1.05		0.100	ppbv	EPA TO-15L
Dichlorodifluoromethane (Freon12)	0.688		0.100	ppbv	EPA TO-15L
Ethanol	110	Е	0.500	ppbv	EPA TO-15L
Ethyl acetate	0.233	J	0.500	ppbv	EPA TO-15L
Ethylbenzene	0.496		0.100	ppbv	EPA TO-15L
Iexane	0.646		0.500	ppbv	EPA TO-15L
sopropyl alcohol	9.84		0.500	ppbv	EPA TO-15L
n,p-Xylene	1.82		0.200	ppbv	EPA TO-15L
Methylene chloride	1.31		0.100	ppbv	EPA TO-15L
Naphthalene	3.29		0.500	ppbv	EPA TO-15L
n-Heptane	2.32		0.100	ppbv	EPA TO-15L
p-Xylene	0.683		0.100	ppbv	EPA TO-15L
Propene	OR		0.100	ppbv	EPA TO-15L
Styrene	0.386		0.100	ppbv	EPA TO-15L
Fetrahydrofuran	0.162		0.100	ppbv	EPA TO-15L
Toluene	5.72		0.100	ppbv	EPA TO-15L
rans-1,2-Dichloroethene	0.139		0.100	ppbv	EPA TO-15L
Frichlorofluoromethane (Freon 11)	6.65		0.100	ppbv	EPA TO-15L
Lab ID: SC32956-03RE1			Client ID: Area 3		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Acetone	299	D	25.0	ppbv	EPA TO-15L
Ethanol	75.4	D	25.0	ppbv	EPA TO-15L
Propene	12.9	D	5.00	ppbv	EPA TO-15L

hod 1 1
Л
4
1
1
1
hod
t

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Carbon tetrachloride	0.162		0.0200	ppbv	EPA TO-15 SIM
Tetrachloroethene	1.34		0.0200	ppbv	EPA TO-15 SIM
Trichloroethene	0.0615		0.0200	ppbv	EPA TO-15 SIM
1,1,2-Trichlorotrifluoroethane (Freon 113)	0.0844	J	0.100	ppbv	EPA TO-15L
1,2,4-Trichlorobenzene	0.345		0.100	ppbv	EPA TO-15L
1,2,4-Trimethylbenzene	2.67		0.100	ppbv	EPA TO-15L
1,3,5-Trimethylbenzene	0.701		0.100	ppbv	EPA TO-15L
2-Butanone (MEK)	1.64		0.100	ppbv	EPA TO-15L
4-Ethyltoluene	0.479		0.100	ppbv	EPA TO-15L
4-Methyl-2-pentanone (MIBK)	0.432		0.100	ppbv	EPA TO-15L
Acetone	190	Е	0.500	ppbv	EPA TO-15L
Benzene	0.364		0.100	ppbv	EPA TO-15L
Chloromethane	0.847		0.500	ppbv	EPA TO-15L
Dichlorodifluoromethane (Freon12)	0.557		0.100	ppbv	EPA TO-15L
Ethanol	82.0	Е	0.500	ppbv	EPA TO-15L
Ethyl acetate	0.132		0.100	ppbv	EPA TO-15L
Ethylbenzene	0.108		0.100	ppbv	EPA TO-15L
Hexane	0.396	J	0.500	ppbv	EPA TO-15L
Isopropyl alcohol	8.35		0.500	ppbv	EPA TO-15L
m,p-Xylene	0.485		0.200	ppbv	EPA TO-15L
Methylene chloride	2.09		0.100	ppbv	EPA TO-15L
Naphthalene	1.62		0.500	ppbv	EPA TO-15L
n-Heptane	0.517		0.100	ppbv	EPA TO-15L
o-Xylene	0.522		0.100	ppbv	EPA TO-15L
Toluene	0.756		0.100	ppbv	EPA TO-15L
trans-1,2-Dichloroethene	0.102		0.100	ppbv	EPA TO-15L
Trichlorofluoromethane (Freon 11)	2.04		0.100	ppbv	EPA TO-15L
Lab ID: SC32956-05RE1			Client ID: Area 2		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Acetone	199	D	10.0	ppbv	EPA TO-15L
Ethanol	80.9	D	10.0	ppbv	EPA TO-15L

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Carbon tetrachloride	0.0780		0.0200	ppbv	EPA TO-15 SIM
Tetrachloroethene	0.0649		0.0200	ppbv	EPA TO-15 SIM
Trichloroethene	0.0453		0.0200	ppbv	EPA TO-15 SIM
1,1,2-Trichlorotrifluoroethane (Freon 113)	0.0762	J	0.100	ppbv	EPA TO-15L
1,3,5-Trimethylbenzene	0.278		0.100	ppbv	EPA TO-15L
2-Butanone (MEK)	4.32		0.100	ppbv	EPA TO-15L
4-Ethyltoluene	0.215		0.100	ppbv	EPA TO-15L
4-Isopropyltoluene	0.188	J	0.500	ppbv	EPA TO-15L
4-Methyl-2-pentanone (MIBK)	1.43		0.100	ppbv	EPA TO-15L
Acetone	93.5	Е	0.500	ppbv	EPA TO-15L
Benzene	1.96		0.100	ppbv	EPA TO-15L
Carbon disulfide	0.173	J	0.500	ppbv	EPA TO-15L
Chloroform	0.124		0.100	ppbv	EPA TO-15L
Cyclohexane	0.193		0.100	ppbv	EPA TO-15L
Dichlorodifluoromethane (Freon12)	0.459		0.100	ppbv	EPA TO-15L
Ethanol	62.3	Е	0.500	ppbv	EPA TO-15L
Ethyl acetate	0.158		0.100	ppbv	EPA TO-15L
Ethylbenzene	0.460		0.100	ppbv	EPA TO-15L
Hexane	0.966		0.500	ppbv	EPA TO-15L
Isopropyl alcohol	14.2	Е	0.500	ppbv	EPA TO-15L
m,p-Xylene	1.77		0.200	ppbv	EPA TO-15L
Methylene chloride	0.642		0.100	ppbv	EPA TO-15L
Naphthalene	1.63		0.500	ppbv	EPA TO-15L
n-Heptane	1.28		0.100	ppbv	EPA TO-15L
o-Xylene	0.620		0.100	ppbv	EPA TO-15L
Styrene	0.154		0.100	ppbv	EPA TO-15L
Tetrahydrofuran	0.140		0.100	ppbv	EPA TO-15L
Toluene	4.53		0.100	ppbv	EPA TO-15L
trans-1,2-Dichloroethene	0.124		0.100	ppbv	EPA TO-15L
Trichlorofluoromethane (Freon 11)	3.86		0.100	ppbv	EPA TO-15L
Lab ID: SC32956-06RE1			Client ID: Area 4		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method

rarameter	Result	riag	Reporting Limit	Units	Analytical Method
Acetone	131	D	10.0	ppbv	EPA TO-15L
Ethanol	72.7	D	10.0	ppbv	EPA TO-15L
Isopropyl alcohol	16.4	D	10.0	ppbv	EPA TO-15L

Client ID: Area 5

Lab ID: 5032/30-07								
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method			
Carbon tetrachloride	0.0813		0.0200	ppbv	EPA TO-15 SIM			
Tetrachloroethene	0.308		0.0200	ppbv	EPA TO-15 SIM			
Trichloroethene	0.0234		0.0200	ppbv	EPA TO-15 SIM			
1,1,2-Trichlorotrifluoroethane (Freon 113)	0.0802	J	0.100	ppbv	EPA TO-15L			
1,2,4-Trichlorobenzene	0.358		0.100	ppbv	EPA TO-15L			
1,3,5-Trimethylbenzene	0.152		0.100	ppbv	EPA TO-15L			
2-Butanone (MEK)	1.12		0.100	ppbv	EPA TO-15L			
4-Ethyltoluene	0.0891	J	0.100	ppbv	EPA TO-15L			
4-Isopropyltoluene	0.112	J	0.500	ppbv	EPA TO-15L			
4-Methyl-2-pentanone (MIBK)	0.601		0.100	ppbv	EPA TO-15L			
Acetone	109	Е	0.500	ppbv	EPA TO-15L			
Benzene	0.614		0.100	ppbv	EPA TO-15L			
Chloroform	0.195		0.100	ppbv	EPA TO-15L			
Chloromethane	0.897		0.500	ppbv	EPA TO-15L			
Cyclohexane	0.331		0.100	ppbv	EPA TO-15L			
Dichlorodifluoromethane (Freon12)	0.549		0.100	ppbv	EPA TO-15L			
Ethanol	25.8	Е	0.500	ppbv	EPA TO-15L			
Ethyl acetate	0.201		0.100	ppbv	EPA TO-15L			
Ethylbenzene	0.120		0.100	ppbv	EPA TO-15L			
Hexane	0.407	J	0.500	ppbv	EPA TO-15L			
Isopropyl alcohol	2.96		0.500	ppbv	EPA TO-15L			
m,p-Xylene	0.410		0.200	ppbv	EPA TO-15L			
Methylene chloride	6.74		0.100	ppbv	EPA TO-15L			
Naphthalene	0.760		0.500	ppbv	EPA TO-15L			
n-Butylbenzene	0.148		0.100	ppbv	EPA TO-15L			
n-Heptane	0.634		0.100	ppbv	EPA TO-15L			
o-Xylene	0.162		0.100	ppbv	EPA TO-15L			
Toluene	1.65		0.100	ppbv	EPA TO-15L			
Trichlorofluoromethane (Freon 11)	1.41		0.100	ppbv	EPA TO-15L			
Lab ID: SC32956-07RE1			Client ID: Area 5					
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method			
Acetone	126	D	10.0	ppbv	EPA TO-15L			
Ethanol	27.0	D	10.0	ppbv	EPA TO-15L			

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Identification Outdoor(background) SC32956-01		<u>C</u>	<u>lient Projec</u> 4884S-13		<u>Matrix</u> or/Ambier	nt Air	Collection Date/Time 24-Mar-17 15:21		Received 29-Mar-17		
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Qualit	y Analyses										
Volatile O	rganics in Air Low Level	ppbv	Prepared Dilution: 1	04-Apr-17				<u>essure: -6</u> : 17157	Regula	ator ID: 2	2994
115-07-1	Propene	< 0.100	0.100	< 0.170	0.170	U	EPA TO-15L	04-Apr-17	BRF	1705653	3
75-71-8	Dichlorodifluoromethane (Freon12)	0.689	0.100	3.41	0.490			"	"	"	х
74-87-3	Chloromethane	0.927	0.100	1.91	0.210			"	"	"	х
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.100	0.100	< 0.700	0.700	U	H	"	"	"	х
106-99-0	1,3-Butadiene	< 0.100	0.100	< 0.220	0.220	U		"	"	"	Х
74-83-9	Bromomethane	< 0.100	0.100	< 0.390	0.390	U	"	"	"	"	х
75-00-3	Chloroethane	< 0.100	0.100	< 0.260	0.260	U		"	"	"	Х
67-64-1	Acetone	7.17	0.500	17.0	1.19			"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	0.367	0.100	2.06	0.560			"	"	"	Х
64-17-5	Ethanol	4.13	0.500	7.79	0.940			"		"	
107-13-1	Acrylonitrile	< 0.100	0.100	< 0.220	0.220	U		"		"	х
75-09-2	Methylene chloride	1.30	0.100	4.51	0.350			"		"	х
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.109	0.100	0.840	0.770			"		"	х
75-15-0	Carbon disulfide	< 0.500	0.500	< 1.56	1.56	U		"		"	х
156-60-5	trans-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U		"		"	х
1634-04-4	Methyl tert-butyl ether	< 0.100	0.100	< 0.360	0.360	U		"		"	х
67-63-0	Isopropyl alcohol	0.307	0.500	0.750	1.23	J	"	"		"	х
78-93-3	2-Butanone (MEK)	0.718	0.100	2.12	0.290		"	"		"	х
156-59-2	cis-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U	"	"		"	х
110-54-3	Hexane	0.220	0.500	0.780	1.76	J		"		"	х
141-78-6	Ethyl acetate	0.116	0.500	0.420	1.80	J	"	"		"	
67-66-3	Chloroform	< 0.100	0.100	< 0.490	0.490	U		"		"	х
109-99-9	Tetrahydrofuran	0.386	0.100	1.14	0.290			"		"	
71-55-6	1,1,1-Trichloroethane	< 0.100	0.100	< 0.550	0.550	U		"		"	х
71-43-2	Benzene	0.310	0.100	0.990	0.320		"	"		"	х
110-82-7	Cyclohexane	< 0.100	0.100	< 0.340	0.340	U	"	"		"	х
123-91-1	1,4-Dioxane	< 0.500	0.500	< 1.80	1.80	U		"		"	х
142-82-5	n-Heptane	0.163	0.100	0.670	0.410		"	"		"	х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 0.100	0.100	< 0.410	0.410	U		"		"	х
10061-01-5	cis-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U		"		"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U		"		"	х
108-88-3	Toluene	0.216	0.100	0.810	0.380			"		"	х
591-78-6	2-Hexanone (MBK)	< 0.100	0.100	< 0.410	0.410	U		"		"	
108-90-7	Chlorobenzene	< 0.100	0.100	< 0.460	0.460	U		"		"	х
630-20-6	1,1,1,2-Tetrachloroethane	< 0.100	0.100	< 0.690	0.690	U		"	"	"	
100-41-4	Ethylbenzene	< 0.100	0.100	< 0.430	0.430	U		"		"	х
179601-23-1	m,p-Xylene	< 0.200	0.200	< 0.870	0.870	U	"			"	х
75-25-2	Bromoform	< 0.100	0.100	< 1.03	1.03	U	"	"		"	х
100-42-5	Styrene	< 0.100	0.100	< 0.430	0.430	U	"	"		"	х
95-47-6	o-Xylene	< 0.100	0.100	< 0.430	0.430	U	"	"	"	"	х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.100	0.100	< 0.690	0.690	U	"	"	"	"	х
98-82-8	Isopropylbenzene	< 0.100	0.100	< 0.490	0.490	U	"		"	"	х
108-67-8	1,3,5-Trimethylbenzene	< 0.100	0.100	< 0.490	0.490	U	"				х
622-96-8	4-Ethyltoluene	< 0.100	0.100	< 0.490	0.490	U	"			"	

Sample Identification Outdoor(background) SC32956-01		<u>C</u>	Client Project # 4884S-13 Indoc			nt Air	Collection Date/Time 24-Mar-17 15:21		<u>Received</u> 29-Mar-17		
CAS No.	-01 Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Ratch	Cert
	• • • •	Result Onus	NDL	nesuu ug/m	RDL	Thug	inclinoù heg.	. Intury Seu	maryst	Butch	
-	ty Analyses										
Volatile C	rganics in Air Low Level	ppbv	ppbv Prepared 04-Apr-17 Dilution: 1				<u>Can pre</u> Can ID:	Regulator ID: 2994			
95-63-6	1,2,4-Trimethylbenzene	< 0.100	0.100	< 0.490	0.490	U	EPA TO-15L	04-Apr-17	BRF	170565	3 X
91-20-3	Naphthalene	0.851	0.500	4.46	2.62			"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U	"	"		"	Х
100-44-7	Benzyl chloride	< 0.100	0.100	< 0.520	0.520	U		"	"	"	Х
135-98-8	sec-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U		"	"	"	
99-87-6	4-Isopropyltoluene	< 0.100	0.100	< 0.540	0.540	U	"	"		"	
95-50-1	1,2-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U	"	"		"	Х
104-51-8	n-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U	"	"		"	
120-82-1	1,2,4-Trichlorobenzene	< 0.100	0.100	< 0.740	0.740	U	"	"	"	"	х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	86		80-120 %			"	"	"	"	
Chlorinate	ed SIM	ppbv	Prepared Dilution: 1				<u>Can pre</u> Can ID:	<u>essure: -6</u> 17157	Regula	ator ID:	2994
75-01-4	Vinyl chloride	< 0.0200	0.0200	< 0.0500	0.0500	U	EPA TO-15 SIM	"	BRF	"	Х
75-35-4	1,1-Dichloroethene	< 0.0200	0.0200	< 0.0800	0.0800	U		"	"	"	Х
75-34-3	1,1-Dichloroethane	< 0.0200	0.0200	< 0.0800	0.0800	U		"	"	"	Х
56-23-5	Carbon tetrachloride	0.119	0.0200	0.750	0.130			"	"	"	Х
79-01-6	Trichloroethene	0.111	0.0200	0.600	0.110		"	"		"	Х
127-18-4	Tetrachloroethene	0.145	0.0200	0.980	0.140		"	"			х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	86		80-120 %			"	"			

CAS No. Analyte(s) Result/Units *RDL Result ug/m² *RDL Flag Method Ref. Analyzea Air Quality Analyses ppby Prepared 04-Apr-17 Can pressure: -8 Can ID: 5566 115-07-1 Propene < 0.100 < 0.170 0.170 U EPA TO-15L 04-Apr-17 75-71-8 Dichtorodifluoromethane (Freon12) 0.727 0.100 3.59 0.490 " " 74-87-3 Chloromethane 0.964 0.100 1.99 0.210 " " " 76-14-2 1.2-Dichtorotetrafluoroethane (Freon 114) <0.100 < 0.700 0.700 U " " " 74-83-9 Bromomethane < 0.100 0.100 < 0.220 0.220 U " " 75-03 Chioroethrane < 0.100 0.100 < 0.260 0.260 U " " 75-64-1 Acetone 163 0.500 387 1.19 E " " "	0	Batch ator ID: 1705653 " "	58 3 X X
Volatile Organics in Air Low Level ppbv Prepared 04-Apr-17 Dilution: 1 Scan ID: 5566 115-07-1 Propene < 0.100 0.100 < 0.170 U EPATO-15L 04-Apr-11 75-71-8 Dichlorodifluoromethane (Freon12) 0.727 0.100 3.59 0.490 74-87-3 Chloromethane 0.964 0.100 1.99 0.210	7 BRF " " " "	1705653 " "	3 X X
Dilution: 1 Can ID: 5566 115-07-1 Propene < 0.100	7 BRF " " 	1705653 " "	3 X X
75-71-8 Dichlorodifluoromethane (Freon12) 0.727 0.100 3.59 0.490 " " 74-87-3 Chloromethane 0.964 0.100 1.99 0.210 " " " 76-14-2 1,2-Dichlorotetrafluoroethane (Freon 114) <0.100			x x
73-1-3 Dichrobiolnicipane (Freon 12) 0.727 0.100 3.59 0.490 74-87-3 Chloromethane 0.964 0.100 1.99 0.210 " " 76-14-2 1,2-Dichlorotetrafluoroethane (Freon 114) <0.100		11	х
76-14-2 1,2-Dichlorotetrafluoroethane (Freon 114) <0.100	 	"	
114)1001			
T0-39-0T,3-BitadieneC 0.1000.100C 0.2200.220074-83-9Bromomethane< 0.100	"	"	Х
75-00-3 Chloroethane < 0.100			Х
67-64-1 Acetone 163 0.500 387 1.19 E " " 75-69-4 Trichlorofluoromethane (Freon 11) 5.99 0.100 33.7 0.560 " " 64-17-5 Ethanol 123 0.500 232 0.940 E " " 107-13-1 Acrylonitrile <0.100		"	Х
75-69-4 Trichlorofluoromethane (Freon 11) 5.99 0.100 33.7 0.560 " " 64-17-5 Ethanol 123 0.500 232 0.940 E " " 107-13-1 Acrylonitrile < 0.100	"	"	Х
64-17-5Ethanol1230.5002320.940E""107-13-1Acrylonitrile< 0.100		"	Х
107-13-1 Acrylonitrile < 0.100	"	"	Х
75-09-2 Methylene chloride 1.71 0.100 5.94 0.350 " " 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.105 0.100 0.800 0.770 " " 75-15-0 Carbon disulfide < 0.500	"	"	
75-05-2 Methylerie chlohde 1.71 0.100 5.94 0.350 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.105 0.100 0.800 0.770 " " 75-15-0 Carbon disulfide < 0.500	"	"	Х
75-15-0 Carbon disulfide < 0.500	"	"	Х
156-60-5 trans-1,2-Dichloroethene < 0.100	"	"	Х
1634-04-4 Methyl tert-butyl ether < 0.100	"	"	Х
	"	"	Х
67-63-0 Isopropyl alcohol 6.85 0.500 16.8 1.23 " "	"	"	Х
	"	"	Х
78-93-3 2-Butanone (MEK) 1.51 0.100 4.45 0.290 " "	"	"	Х
156-59-2 cis-1,2-Dichloroethene < 0.100 0.100 < 0.400 U " "	"	"	Х
110-54-3 Hexane 0.335 0.500 1.18 1.76 J " "	"	"	Х
141-78-6 Ethyl acetate 0.236 0.500 0.850 1.80 J " "	"	"	
67-66-3 Chloroform < 0.100 0.100 < 0.490 U " "	"	"	Х
109-99-9 Tetrahydrofuran < 0.100 0.100 < 0.290 U " "	"	"	
71-55-6 1,1,1-Trichloroethane < 0.100 0.100 < 0.550 U " "	"	"	Х
71-43-2 Benzene 0.659 0.100 2.10 0.320 " "	"	"	Х
110-82-7 Cyclohexane < 0.100 0.100 < 0.340 U " "	"	"	Х
123-91-1 1,4-Dioxane < 0.500 0.500 < 1.80 U " "	"	"	Х
142-82-5 n-Heptane 0.586 0.100 2.40 0.410 " "	"	"	Х
108-10-1 4-Methyl-2-pentanone (MIBK) 0.586 0.100 2.40 0.410 " "	"	"	Х
10061-01-5 cis-1,3-Dichloropropene < 0.100 0.100 < 0.450 U " "	"	"	Х
10061-02-6 trans-1,3-Dichloropropene < 0.100 0.100 < 0.450 U " "		"	Х
108-88-3 Toluene 1.42 0.100 5.34 0.380 " "	"		Х
591-78-6 2-Hexanone (MBK) < 0.100 0.100 < 0.410 U " " 108-00.7 Chlerebengane < 0.100	"		
106-90-7 Chilofobelizene < 0.100 0.100 < 0.400 0.400 0			Х
630-20-6 1,1,1,2-Tetrachloroethane < 0.100			
			X
1/3001-25-1 III,p-Ayletie 0.300 0.200 2.54 0.670			X
			X
100-42-5 Styrene 0.0867 0.100 0.370 0.430 J " " 95.47.6 a Yulana a Yulana </td <td></td> <td></td> <td>X</td>			X
0-Xylene 0.301 0.100 1.65 0.430			X
			X
			X
108-67-8 1,3,5-Trimethylbenzene 0.399 0.100 1.96 0.490 " " 622-96-8 4-Ethyltoluene 0.280 0.100 1.38 0.490 " "	"		Х

Sample Identification Area 1 SC32956-02		Client Project # 4884S-13			<u>Matrix</u> Indoor/Ambient Air		Collection Date/Time 24-Mar-17 16:04		<u>Re</u> 29-		
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Quali	ty Analyses										
<u>Volatile C</u>	organics in Air Low Level	<u>ppbv</u>	ppbv Prepared 04-Apr-17 Dilution: 1				<u>Can pressure: -8</u> Can ID: 5566		Regulator ID: 58		58
95-63-6	1,2,4-Trimethylbenzene	1.50	0.100	7.37	0.490		EPA TO-15L	04-Apr-17	BRF	1705653	Х
91-20-3	Naphthalene	0.808	0.500	4.23	2.62		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U	"	"	"	"	Х
100-44-7	Benzyl chloride	< 0.100	0.100	< 0.520	0.520	U	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U	"	"	"		
99-87-6	4-Isopropyltoluene	0.202	0.100	1.08	0.540		"	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U	"	"	"	"	Х
104-51-8	n-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	< 0.100	0.100	< 0.740	0.740	U	"	"	"	"	х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	84		80-120 %			"	"	"	"	
Re-analy	sis of Volatile Organics in Air Low Level		Dilution: 1	<u>0</u>		GS1					
67-64-1	Acetone	93.4	5.00	222	11.9	D	EPA TO-15L	07-Apr-17	BRF	1705851	Х
64-17-5	Ethanol	65.8	5.00	124	9.43	D	H	"	"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89		80-120 %			"	"	"	"	
Chlorinat	ed SIM	<u>ppbv</u>	Prepared Dilution: 1				<u>Can pre</u> Can ID:	<u>essure: -8</u> 5566	Regul	ator ID: 5	58
75-01-4	Vinyl chloride	< 0.0200	0.0200	< 0.0500	0.0500	U	EPA TO-15 SIM	04-Apr-17	BRF	1705653	Х
75-35-4	1,1-Dichloroethene	< 0.0200	0.0200	< 0.0800	0.0800	U	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 0.0200	0.0200	< 0.0800	0.0800	U	"	"	"	"	х
56-23-5	Carbon tetrachloride	0.121	0.0200	0.760	0.130		"	"	"	"	х
79-01-6	Trichloroethene	0.0301	0.0200	0.160	0.110		"	"	"	"	х
127-18-4	Tetrachloroethene	0.0760	0.0200	0.520	0.140		"	"	"	"	х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	84		80-120 %			"	"	"	"	

Sample Identification Area 3 SC32956-03		<u>C</u>	<u>Client Project #</u> 4884S-13			nt Air	Collection Dat 24-Mar-17 1			<u>ceived</u> Mar-17	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Qualit	y Analyses										
Volatile O	rganics in Air Low Level	ppbv	ppbv Prepared 04-Apr-17 Dilution: 1				<u>Can pre</u> Can ID	<u>essure: -6</u> : 0230	<u>-6</u> Regulator ID: 2889		2889
115-07-1	Propene	OR	0.100		0.170		EPA TO-15L	04-Apr-17	BRF	1705653	3
75-71-8	Dichlorodifluoromethane (Freon12)	0.688	0.100	3.40	0.490			"	"	"	Х
74-87-3	Chloromethane	1.05	0.100	2.17	0.210		"		"	"	х
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.100	0.100	< 0.700	0.700	U	"	"	"	"	х
106-99-0	1,3-Butadiene	3.91	0.100	8.64	0.220			"	"	"	Х
74-83-9	Bromomethane	< 0.100	0.100	< 0.390	0.390	U		"		"	Х
75-00-3	Chloroethane	< 0.100	0.100	< 0.260	0.260	U		"	"	"	Х
67-64-1	Acetone	391	0.500	929	1.19	Е		"		"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	6.65	0.100	37.4	0.560			"		"	Х
64-17-5	Ethanol	110	0.500	207	0.940	Е		"		"	
107-13-1	Acrylonitrile	< 0.100	0.100	< 0.220	0.220	U		"		"	Х
75-09-2	Methylene chloride	1.31	0.100	4.55	0.350			"		"	Х
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.102	0.100	0.780	0.770		"			"	Х
75-15-0	Carbon disulfide	< 0.500	0.500	< 1.56	1.56	U	"			"	Х
156-60-5	trans-1,2-Dichloroethene	0.139	0.100	0.550	0.400		"			"	Х
1634-04-4	Methyl tert-butyl ether	< 0.100	0.100	< 0.360	0.360	U		"		"	Х
67-63-0	Isopropyl alcohol	9.84	0.500	24.2	1.23			"		"	х
78-93-3	2-Butanone (MEK)	2.37	0.100	6.99	0.290			"		"	х
156-59-2	cis-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U		"		"	х
110-54-3	Hexane	0.646	0.500	2.28	1.76			"		"	х
141-78-6	Ethyl acetate	0.233	0.500	0.840	1.80	J	"	"		"	
67-66-3	Chloroform	0.167	0.100	0.810	0.490		"	"		"	х
109-99-9	Tetrahydrofuran	0.162	0.100	0.480	0.290		"	"		"	
71-55-6	1,1,1-Trichloroethane	< 0.100	0.100	< 0.550	0.550	U	"	"		"	х
71-43-2	Benzene	3.88	0.100	12.4	0.320					"	х
110-82-7	Cyclohexane	< 0.100	0.100	< 0.340	0.340	U				"	х
123-91-1	1,4-Dioxane	< 0.500	0.500	< 1.80	1.80	U				"	х
142-82-5	n-Heptane	2.32	0.100	9.51	0.410					"	х
108-10-1	4-Methyl-2-pentanone (MIBK)	1.32	0.100	5.41	0.410					"	х
10061-01-5	cis-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U				"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U				"	х
108-88-3	Toluene	5.72	0.100	21.5	0.380					"	х
591-78-6	2-Hexanone (MBK)	< 0.100	0.100	< 0.410	0.410	U				"	
108-90-7	Chlorobenzene	< 0.100	0.100	< 0.460	0.460	U				"	х
630-20-6	1,1,1,2-Tetrachloroethane	< 0.100	0.100	< 0.690	0.690	U			"	"	
100-41-4	Ethylbenzene	0.496	0.100	2.15	0.430		"			"	х
179601-23-1	m,p-Xylene	1.82	0.200	7.89	0.870		"	"	"	"	х
75-25-2	Bromoform	< 0.100	0.100	< 1.03	1.03	U	"			"	х
100-42-5	Styrene	0.386	0.100	1.64	0.430		"			"	х
95-47-6	o-Xylene	0.683	0.100	2.96	0.430		"	"	"	"	х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.100	0.100	< 0.690	0.690	U	"	"	"	"	х
98-82-8	Isopropylbenzene	< 0.100	0.100	< 0.490	0.490	U	"	"	"	"	х
108-67-8	1,3,5-Trimethylbenzene	0.344	0.100	1.69	0.490		"			"	х
622-96-8	4-Ethyltoluene	0.407	0.100	2.00	0.490		"		"	"	

	Sample Identification		lient Projec	:t <u>#</u>	<u>Matrix</u>		Collection Date	e/Time	Received		
Area 3 SC32956	-03		4884S-13	Indo	or/Ambier	nt Air	24-Mar-17 1	5:28	29-]	Mar-17	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Qualit	ty Analyses										
Volatile C	organics in Air Low Level	ppbv Prepared 04-Apr-17 Dilution: 1		04-Apr-17			<u>Can pre</u> Can ID:	essure: -6 0230	Regulator ID: 2889		2889
95-63-6	1,2,4-Trimethylbenzene	1.50	0.100	7.37	0.490		EPA TO-15L	04-Apr-17	BRF	1705653	х
91-20-3	Naphthalene	3.29	0.500	17.2	2.62				"	"	х
541-73-1	1,3-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U			"	"	х
100-44-7	Benzyl chloride	< 0.100	0.100	< 0.520	0.520	U			"	"	х
135-98-8	sec-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U			"	"	
99-87-6	4-Isopropyltoluene	< 0.100	0.100	< 0.540	0.540	U	"		"		
95-50-1	1,2-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U	"		"		х
104-51-8	n-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U			"	"	
120-82-1	1,2,4-Trichlorobenzene	0.367	0.100	2.72	0.740			"	"	"	х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	90		80-120 %					"	"	
Re-analy	sis of Volatile Organics in Air Low Level		Dilution: 5	<u>0</u>		GS1					
115-07-1	Propene	12.9	5.00	22.2	8.61	D	EPA TO-15L	07-Apr-17	BRF	1705851	
67-64-1	Acetone	299	25.0	710	59.4	D		"	"	"	х
64-17-5	Ethanol	75.4	25.0	142	47.1	D	"		"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	86		80-120 %			"		"	"	
Chlorinate	ed SIM	ppbv	Prepared (Dilution: 1	04-Apr-17			<u>Can pre</u> Can ID:	<u>essure: -6</u> 0230	Regula	ator ID: 2	2889
75-01-4	Vinyl chloride	< 0.0200	0.0200	< 0.0500	0.0500	U	EPA TO-15 SIM	04-Apr-17	BRF	1705653	х
75-35-4	1,1-Dichloroethene	< 0.0200	0.0200	< 0.0800	0.0800	U	"		"		х
75-34-3	1,1-Dichloroethane	< 0.0200	0.0200	< 0.0800	0.0800	U	"		"		х
56-23-5	Carbon tetrachloride	0.0759	0.0200	0.480	0.130				"	"	х
79-01-6	Trichloroethene	0.0307	0.0200	0.160	0.110			"	"	"	х
127-18-4	Tetrachloroethene	0.0614	0.0200	0.420	0.140		"	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	90		80-120 %			"	"	"	"	

Sample Identification Area 6 SC32956-04		<u>C</u>	lient Projec 4884S-13		<u>Matrix</u> or/Ambier	nt Air	Collection Dat 24-Mar-17 1			<u>ceived</u> Mar-17	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Qualit	y Analyses										
Volatile Organics in Air Low Level		ppbv	Prepared Dilution: 1	<u>06-Apr-17</u>			<u>Can pro</u> Can ID	<u>essure: -7</u> : 0259	Regulator ID: 9		
115-07-1	Propene	< 0.100	0.100	< 0.170	0.170	U	EPA TO-15L	06-Apr-17	BRF	1705783	\$
75-71-8	Dichlorodifluoromethane (Freon12)	0.636	0.100	3.14	0.490					"	х
74-87-3	Chloromethane	0.823	0.500	1.70	1.03		•	"	"	"	Х
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.500	0.500	< 3.49	3.49	U	n	"	"	"	Х
106-99-0	1,3-Butadiene	< 0.100	0.100	< 0.220	0.220	U			"	"	Х
74-83-9	Bromomethane	< 0.100	0.100	< 0.390	0.390	U	•	"	"	"	Х
75-00-3	Chloroethane	< 0.100	0.100	< 0.260	0.260	U		"		"	Х
67-64-1	Acetone	141	0.500	335	1.19	Е	"		"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	1.68	0.100	9.44	0.560		"		"	"	Х
64-17-5	Ethanol	36.6	0.500	69.0	0.940	Е	"		"	"	
107-13-1	Acrylonitrile	< 0.100	0.100	< 0.220	0.220	U	"	"		"	Х
75-09-2	Methylene chloride	0.688	0.100	2.39	0.350				"	"	Х
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.0994	0.100	0.760	0.770	J			"	"	Х
75-15-0	Carbon disulfide	< 0.500	0.500	< 1.56	1.56	U		"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U			"	"	Х
1634-04-4	Methyl tert-butyl ether	< 0.100	0.100	< 0.360	0.360	U			"	"	Х
67-63-0	Isopropyl alcohol	1.95	0.500	4.79	1.23			"	"	"	Х
78-93-3	2-Butanone (MEK)	1.14	0.100	3.36	0.290			"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U			"	"	Х
110-54-3	Hexane	0.200	0.500	0.710	1.76	J		"	"	"	Х
141-78-6	Ethyl acetate	0.250	0.100	0.900	0.360			"	"	"	
67-66-3	Chloroform	0.136	0.100	0.660	0.490			"	"	"	Х
109-99-9	Tetrahydrofuran	< 0.100	0.100	< 0.290	0.290	U		"		"	
71-55-6	1,1,1-Trichloroethane	< 0.100	0.100	< 0.550	0.550	U		"		"	Х
71-43-2	Benzene	0.818	0.100	2.61	0.320			"		"	Х
110-82-7	Cyclohexane	< 0.100	0.100	< 0.340	0.340	U		"	"	"	Х
123-91-1	1,4-Dioxane	< 0.500	0.500	< 1.80	1.80	U	"	"	"	"	Х
142-82-5	n-Heptane	0.756	0.100	3.10	0.410		"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	3.77	0.100	15.4	0.410		"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U		"	"	"	Х
108-88-3	Toluene	2.28	0.100	8.58	0.380		"	"		"	Х
591-78-6	2-Hexanone (MBK)	< 0.500	0.500	< 2.05	2.05	U	"	"		"	
108-90-7	Chlorobenzene	< 0.100	0.100	< 0.460	0.460	U		"	"	"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 0.100	0.100	< 0.690	0.690	U		"	"	"	
100-41-4	Ethylbenzene	0.169	0.100	0.730	0.430		"	"	"	"	Х
179601-23-1	···;F · ·)	0.654	0.200	2.84	0.870						Х
75-25-2	Bromoform	< 0.100	0.100	< 1.03	1.03	U					X
100-42-5	Styrene	0.120	0.100	0.510	0.430		u u	"	"	"	Х
95-47-6	o-Xylene	0.251	0.100	1.09	0.430		"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.500	0.500	< 3.43	3.43	U	"	"	"	"	Х
98-82-8	Isopropylbenzene	< 0.100	0.100	< 0.490	0.490	U	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	0.177	0.100	0.870	0.490		"	"	"	"	Х
622-96-8	4-Ethyltoluene	0.136	0.100	0.670	0.490			"			

Sample Identification Area 6 SC32956-04		<u>C</u>	lient Projec 4884S-13			atrix <u>Collection Date</u> mbient Air 24-Mar-17 15				<u>ceived</u> Mar-17	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Qualit	ty Analyses										
<u>Volatile C</u>	organics in Air Low Level	<u>ppbv</u>	Prepared Dilution: 1				<u>Can pre</u> Can ID:	<u>essure: -7</u> 0259	Regula	ator ID: 9)
95-63-6	1,2,4-Trimethylbenzene	0.617	0.100	3.03	0.490		EPA TO-15L	06-Apr-17	BRF	1705783	Х
91-20-3	Naphthalene	2.08	0.500	10.9	2.62		"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 0.500	0.500	< 3.01	3.01	U	"	"	"	"	Х
100-44-7	Benzyl chloride	< 0.100	0.100	< 0.520	0.520	U		"	"	"	х
135-98-8	sec-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U		"	"	"	
99-87-6	4-Isopropyltoluene	0.191	0.500	1.02	2.68	J		"	"	"	
95-50-1	1,2-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U		"	"	"	Х
104-51-8	n-Butylbenzene	0.215	0.100	1.18	0.550			"	"	"	
120-82-1	1,2,4-Trichlorobenzene	0.512	0.100	3.80	0.740		"	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	90		80-120 %			"	"	"	"	
Re-analy	sis of Volatile Organics in Air Low Level		Dilution: 2	<u>0</u>		GS1					
67-64-1	Acetone	170	10.0	404	23.8	D	EPA TO-15L	06-Apr-17	BRF	1705783	Х
64-17-5	Ethanol	36.8	10.0	69.4	18.8	D	u	"	"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	86		80-120 %			"	"	"	"	
Chlorinate	ed SIM	ppbv	Prepared 06-Apr-17 Dilution: 1				<u>Can pressure: -7</u> Can ID: 0259		Regulator ID: 9)
75-01-4	Vinyl chloride	< 0.0200	0.0200	< 0.0500	0.0500	U	EPA TO-15 SIM	06-Apr-17	BRF	1705783	Х
75-35-4	1,1-Dichloroethene	0.0253	0.0200	0.100	0.0800		"	"	"	"	х
75-34-3	1,1-Dichloroethane	0.0223	0.0200	0.0900	0.0800		"	"	"	"	х
56-23-5	Carbon tetrachloride	0.102	0.0200	0.640	0.130			"	"	"	х
79-01-6	Trichloroethene	0.0412	0.0200	0.220	0.110			"	"	"	х
127-18-4	Tetrachloroethene	0.0864	0.0200	0.590	0.140		"		"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	90		80-120 %			"	"	"	"	

Sample Identification Area 2 SC32956-05		<u>C</u>	lient Projec 4884S-13		<u>Matrix</u> or/Ambier	nt Air	Collection Dat 24-Mar-17 1			<u>eeived</u> Mar-17				
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.			
Air Qualit	y Analyses													
Volatile Organics in Air Low Level		ppbv	Prepared Dilution: 1	<u>06-Apr-17</u>			<u>Can pressure: -6</u> Can ID: 0235		Regulator ID: 1314					
115-07-1	Propene	< 0.100	0.100	< 0.170	0.170	U	EPA TO-15L	06-Apr-17	BRF	1705783	3			
75-71-8	Dichlorodifluoromethane (Freon12)	0.557	0.100	2.75	0.490		"	"	"	"	х			
74-87-3	Chloromethane	0.847	0.500	1.75	1.03		"	"	"	"	х			
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.500	0.500	< 3.49	3.49	U	n	"	"	"	х			
106-99-0	1,3-Butadiene	< 0.100	0.100	< 0.220	0.220	U		"	"	"	х			
74-83-9	Bromomethane	< 0.100	0.100	< 0.390	0.390	U	"	"	"	"	х			
75-00-3	Chloroethane	< 0.100	0.100	< 0.260	0.260	U		"	"	"	х			
67-64-1	Acetone	190	0.500	451	1.19	Е		"		"	Х			
75-69-4	Trichlorofluoromethane (Freon 11)	2.04	0.100	11.5	0.560		"	"	"	"	Х			
64-17-5	Ethanol	82.0	0.500	155	0.940	Е	"	"	"	"				
107-13-1	Acrylonitrile	< 0.100	0.100	< 0.220	0.220	U	"	"	"	"	Х			
75-09-2	Methylene chloride	2.09	0.100	7.26	0.350		"	"	"	"	Х			
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.0844	0.100	0.650	0.770	J	"	"		"	Х			
75-15-0	Carbon disulfide	< 0.500	0.500	< 1.56	1.56	U	"	"	"	"	Х			
156-60-5	trans-1,2-Dichloroethene	0.102	0.100	0.400	0.400		"	"		"	Х			
1634-04-4	Methyl tert-butyl ether	< 0.100	0.100	< 0.360	0.360	U	"	"	"	"	Х			
67-63-0	Isopropyl alcohol	8.35	0.500	20.5	1.23		"	"		"	Х			
78-93-3	2-Butanone (MEK)	1.64	0.100	4.84	0.290		"	"	"	"	Х			
156-59-2	cis-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U	"	"	"	"	Х			
110-54-3	Hexane	0.396	0.500	1.40	1.76	J		"	"	"	Х			
141-78-6	Ethyl acetate	0.132	0.100	0.480	0.360			"	"	"				
67-66-3	Chloroform	< 0.100	0.100	< 0.490	0.490	U		"	"	"	Х			
109-99-9	Tetrahydrofuran	< 0.100	0.100	< 0.290	0.290	U		"	"	"				
71-55-6	1,1,1-Trichloroethane	< 0.100	0.100	< 0.550	0.550	U		"		"	Х			
71-43-2	Benzene	0.364	0.100	1.16	0.320			"		"	Х			
110-82-7	Cyclohexane	< 0.100	0.100	< 0.340	0.340	U	"	"		"	Х			
123-91-1	1,4-Dioxane	< 0.500	0.500	< 1.80	1.80	U	"	"		"	Х			
142-82-5	n-Heptane	0.517	0.100	2.12	0.410		"	"	"	"	Х			
108-10-1	4-Methyl-2-pentanone (MIBK)	0.432	0.100	1.77	0.410			"	"	"	Х			
10061-01-5	cis-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U		"	"	"	Х			
10061-02-6	trans-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U		"	"	"	Х			
108-88-3	Toluene	0.756	0.100	2.84	0.380			"	"	"	Х			
591-78-6	2-Hexanone (MBK)	< 0.500	0.500	< 2.05	2.05	U	"	"		"				
108-90-7	Chlorobenzene	< 0.100	0.100	< 0.460	0.460	U		"		"	Х			
630-20-6	1,1,1,2-Tetrachloroethane	< 0.100	0.100	< 0.690	0.690	U	"	"		"				
100-41-4	Ethylbenzene	0.108	0.100	0.470	0.430			"		"	Х			
179601-23-1	···;F · ·)	0.485	0.200	2.10	0.870		"	"	"	"	Х			
75-25-2	Bromoform	< 0.100	0.100	< 1.03	1.03	U	"	"	"	"	Х			
100-42-5	Styrene	< 0.100	0.100	< 0.430	0.430	U	"	"	"	"	Х			
95-47-6	o-Xylene	0.522	0.100	2.26	0.430		"	"	"	"	Х			
79-34-5	1,1,2,2-Tetrachloroethane	< 0.500	0.500	< 3.43	3.43	U	"	"	"	"	Х			
98-82-8	Isopropylbenzene	< 0.100	0.100	< 0.490	0.490	U	"		"	"	Х			
108-67-8	1,3,5-Trimethylbenzene	0.701	0.100	3.45	0.490		"	"	"	"	Х			
622-96-8	4-Ethyltoluene	0.479	0.100	2.35	0.490		"	"						

Sample Identification Area 2 SC32956-05		<u>C</u>			<u>Matrix</u> or/Ambient Air		Collection Date/Time 24-Mar-17 15:35		<u>Received</u> 29-Mar-17		
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Quali	ty Analyses										
Volatile C	Organics in Air Low Level	<u>ppbv</u>	<u>Prepared 06-Apr-17</u> <u>Dilution: 1</u>				<u>Can pre</u> Can ID:	<u>essure: -6</u> 0235	Regulator ID: 131		314
95-63-6	1,2,4-Trimethylbenzene	2.67	0.100	13.1	0.490		EPA TO-15L	06-Apr-17	BRF	1705783	Х
91-20-3	Naphthalene	1.62	0.500	8.48	2.62		"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 0.500	0.500	< 3.01	3.01	U		"	"		Х
100-44-7	Benzyl chloride	< 0.100	0.100	< 0.520	0.520	U		"	"		х
135-98-8	sec-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U		"	"		
99-87-6	4-Isopropyltoluene	< 0.500	0.500	< 2.68	2.68	U	"		"		
95-50-1	1,2-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U	"		"		Х
104-51-8	n-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U	"		"		
120-82-1	1,2,4-Trichlorobenzene	0.345	0.100	2.56	0.740		"	"	"	"	х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89		80-120 %			"	"	"		
Re-analy	sis of Volatile Organics in Air Low Level		Dilution: 2	<u>0</u>		GS1					
67-64-1	Acetone	199	10.0	473	23.8	D	EPA TO-15L	06-Apr-17	BRF	1705783	Х
64-17-5	Ethanol	80.9	10.0	152	18.8	D	u	"	"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	84		80-120 %			"	"	"		
Chlorinat	ed SIM	<u>ppbv</u>	Prepared 06-Apr-17 Dilution: 1				<u>Can pressure: -6</u> Can ID: 0235		Regulator ID: 1314		
75-01-4	Vinyl chloride	< 0.0200	0.0200	< 0.0500	0.0500	U	EPA TO-15 SIM	06-Apr-17	BRF	1705783	Х
75-35-4	1,1-Dichloroethene	< 0.0200	0.0200	< 0.0800	0.0800	U	"		"		Х
75-34-3	1,1-Dichloroethane	< 0.0200	0.0200	< 0.0800	0.0800	U	"	"	"		Х
56-23-5	Carbon tetrachloride	0.162	0.0200	1.02	0.130				"	"	х
79-01-6	Trichloroethene	0.0615	0.0200	0.330	0.110				"	"	х
127-18-4	Tetrachloroethene	1.34	0.0200	9.09	0.140		"	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	89		80-120 %				"	"	"	

Sample Identification Area 4 SC32956-06		<u>C</u>	lient Projec 4884S-13		MatrixCollection Date/Timeloor/Ambient Air24-Mar-17 16:06				<u>Received</u> 29-Mar-17			
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.	
Air Qualit	ty Analyses											
Volatile Organics in Air Low Level		ppbv	Prepared Dilution: 1	<u>06-Apr-17</u>			<u>Can pro</u> Can ID	<u>essure: -8</u> : 0472	Regulator ID: 69			
115-07-1	Propene	< 0.100	0.100	< 0.170	0.170	U	EPA TO-15L	06-Apr-17	BRF	1705783	3	
75-71-8	Dichlorodifluoromethane (Freon12)	0.459	0.100	2.27	0.490			"	"	"	х	
74-87-3	Chloromethane	< 0.500	0.500	< 1.03	1.03	U		"		"	х	
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.500	0.500	< 3.49	3.49	U	u	"	"	"	х	
106-99-0	1,3-Butadiene	< 0.100	0.100	< 0.220	0.220	U	"	"	"	"	х	
74-83-9	Bromomethane	< 0.100	0.100	< 0.390	0.390	U	"	"		"	Х	
75-00-3	Chloroethane	< 0.100	0.100	< 0.260	0.260	U	"	"		"	Х	
67-64-1	Acetone	93.5	0.500	222	1.19	Е	"	"		"	х	
75-69-4	Trichlorofluoromethane (Freon 11)	3.86	0.100	21.7	0.560		"	"		"	х	
64-17-5	Ethanol	62.3	0.500	117	0.940	Е	"	"		"		
107-13-1	Acrylonitrile	< 0.100	0.100	< 0.220	0.220	U	"	"		"	х	
75-09-2	Methylene chloride	0.642	0.100	2.23	0.350		"	"		"	х	
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.0762	0.100	0.580	0.770	J	"	"		"	х	
75-15-0	Carbon disulfide	0.173	0.500	0.540	1.56	J	"	"		"	х	
156-60-5	trans-1,2-Dichloroethene	0.124	0.100	0.490	0.400		"	"		"	Х	
1634-04-4	Methyl tert-butyl ether	< 0.100	0.100	< 0.360	0.360	U	"	"		"	х	
67-63-0	Isopropyl alcohol	14.2	0.500	34.8	1.23	Е	"	"		"	Х	
78-93-3	2-Butanone (MEK)	4.32	0.100	12.7	0.290		"	"		"	х	
156-59-2	cis-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U	"	"	"	"	Х	
110-54-3	Hexane	0.966	0.500	3.41	1.76			"	"	"	Х	
141-78-6	Ethyl acetate	0.158	0.100	0.570	0.360		"	"		"		
67-66-3	Chloroform	0.124	0.100	0.600	0.490			"	"	"	Х	
109-99-9	Tetrahydrofuran	0.140	0.100	0.410	0.290			"	"	"		
71-55-6	1,1,1-Trichloroethane	< 0.100	0.100	< 0.550	0.550	U	"	"		"	Х	
71-43-2	Benzene	1.96	0.100	6.25	0.320		"	"		"	Х	
110-82-7	Cyclohexane	0.193	0.100	0.660	0.340		"	"	"	"	Х	
123-91-1	1,4-Dioxane	< 0.500	0.500	< 1.80	1.80	U	"	"	"	"	Х	
142-82-5	n-Heptane	1.28	0.100	5.25	0.410		"	"	"	"	Х	
108-10-1	4-Methyl-2-pentanone (MIBK)	1.43	0.100	5.86	0.410		"	"		"	Х	
10061-01-5	cis-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U	"	"		"	Х	
10061-02-6	trans-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U	"	"		"	Х	
108-88-3	Toluene	4.53	0.100	17.0	0.380		"	"		"	Х	
591-78-6	2-Hexanone (MBK)	< 0.500	0.500	< 2.05	2.05	U	"	"		"		
108-90-7	Chlorobenzene	< 0.100	0.100	< 0.460	0.460	U	"	"		"	Х	
630-20-6	1,1,1,2-Tetrachloroethane	< 0.100	0.100	< 0.690	0.690	U	"	"	"	"		
100-41-4	Ethylbenzene	0.460	0.100	1.99	0.430		"	"		"	Х	
179601-23-1		1.77	0.200	7.67	0.870		"	"	"	"	Х	
75-25-2	Bromoform	< 0.100	0.100	< 1.03	1.03	U	"	"	"	"	Х	
100-42-5	Styrene	0.154	0.100	0.660	0.430		"	"	"	"	Х	
95-47-6	o-Xylene	0.620	0.100	2.69	0.430		"		"	"	Х	
79-34-5	1,1,2,2-Tetrachloroethane	< 0.500	0.500	< 3.43	3.43	U	"	"	"	"	Х	
98-82-8	Isopropylbenzene	< 0.100	0.100	< 0.490	0.490	U	"	"	"	"	Х	
108-67-8	1,3,5-Trimethylbenzene	0.278	0.100	1.37	0.490		"	"	"	"	Х	
622-96-8	4-Ethyltoluene	0.215	0.100	1.06	0.490		"	"	"			

	dentification	C	lient Projec	et <u>#</u>	<u>Matrix</u>		Collection Date	e/Time	Re	ceived	
Area 4 SC32956	-06		4884S-13	Indo	or/Ambier	nt Air	24-Mar-17 1	6:06	29-1	Mar-17	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Qualif	ty Analyses										
-	rganics in Air Low Level	ppbv	Prepared (Dilution: 1	06-Apr-17			<u>Can pre</u> Can ID:	<u>essure: -8</u> 0472	Regula	ator ID: 6	39
95-63-6	1,2,4-Trimethylbenzene	< 0.100	0.100	< 0.490	0.490	U	EPA TO-15L	06-Apr-17	BRF	1705783	Х
91-20-3	Naphthalene	1.63	0.500	8.53	2.62		"		"	"	х
541-73-1	1,3-Dichlorobenzene	< 0.500	0.500	< 3.01	3.01	U	"		"	"	х
100-44-7	Benzyl chloride	< 0.100	0.100	< 0.520	0.520	U	"		"	"	х
135-98-8	sec-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U			"	"	
99-87-6	4-Isopropyltoluene	0.188	0.500	1.01	2.68	J	"		"	"	
95-50-1	1,2-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U	"		"	"	х
104-51-8	n-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U			"	"	
120-82-1	1,2,4-Trichlorobenzene	< 0.100	0.100	< 0.740	0.740	U	"	"	"	"	х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	94		80-120 %			"		"	"	
Re-analys	sis of Volatile Organics in Air Low Level		Dilution: 2	<u>0</u>		GS1					
67-64-1	Acetone	131	10.0	311	23.8	D	EPA TO-15L	06-Apr-17	BRF	1705783	Х
64-17-5	Ethanol	72.7	10.0	137	18.8	D	"	"	"	"	
67-63-0	Isopropyl alcohol	16.4	10.0	40.2	24.5	D	"		"	"	х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	84		80-120 %			"		"	"	
Chlorinate	ed SIM	ppbv	Prepared (Dilution: 1	06-Apr-17			<u>Can pre</u> Can ID:	essure: -8 0472	Regula	ator ID: 6	39
75-01-4	Vinyl chloride	< 0.0200	0.0200	< 0.0500	0.0500	U	EPA TO-15 SIM	06-Apr-17	BRF	1705783	Х
75-35-4	1,1-Dichloroethene	< 0.0200	0.0200	< 0.0800	0.0800	U			"	"	х
75-34-3	1,1-Dichloroethane	< 0.0200	0.0200	< 0.0800	0.0800	U			"	"	х
56-23-5	Carbon tetrachloride	0.0780	0.0200	0.490	0.130		"	"	"	"	х
79-01-6	Trichloroethene	0.0453	0.0200	0.240	0.110		"	"	"	"	х
127-18-4	Tetrachloroethene	0.0649	0.0200	0.440	0.140		"	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	94		80-120 %			"		"	"	

Sample Ic Area 5 SC32956	lentification -07	<u>C</u>	lient Projec 4884S-13		<u>Matrix</u> or/Ambier	nt Air	Collection Dat 24-Mar-17 1			<u>ceived</u> Mar-17	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Qualit	y Analyses										
Volatile O	rganics in Air Low Level	ppbv	Prepared Dilution: 1	<u>06-Apr-17</u>			<u>Can pre</u> Can ID	<u>essure: -7</u> : 0256	Regula	ator ID:	1550
115-07-1	Propene	< 0.100	0.100	< 0.170	0.170	U	EPA TO-15L	06-Apr-17	BRF	1705783	3
75-71-8	Dichlorodifluoromethane (Freon12)	0.549	0.100	2.71	0.490				"	"	х
74-87-3	Chloromethane	0.897	0.500	1.85	1.03		"	"	"	"	х
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.500	0.500	< 3.49	3.49	U	n	"	"	"	х
106-99-0	1,3-Butadiene	< 0.100	0.100	< 0.220	0.220	U	"		"	"	Х
74-83-9	Bromomethane	< 0.100	0.100	< 0.390	0.390	U			"	"	х
75-00-3	Chloroethane	< 0.100	0.100	< 0.260	0.260	U			"	"	х
67-64-1	Acetone	109	0.500	259	1.19	Е		"		"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	1.41	0.100	7.92	0.560		"		"	"	Х
64-17-5	Ethanol	25.8	0.500	48.6	0.940	Е	"		"	"	
107-13-1	Acrylonitrile	< 0.100	0.100	< 0.220	0.220	U	"		"	"	Х
75-09-2	Methylene chloride	6.74	0.100	23.4	0.350		"		"	"	Х
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.0802	0.100	0.610	0.770	J	"	"		"	Х
75-15-0	Carbon disulfide	< 0.500	0.500	< 1.56	1.56	U	"		"	"	Х
156-60-5	trans-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U			"	"	Х
1634-04-4	Methyl tert-butyl ether	< 0.100	0.100	< 0.360	0.360	U			"	"	Х
67-63-0	Isopropyl alcohol	2.96	0.500	7.26	1.23		"		"	"	Х
78-93-3	2-Butanone (MEK)	1.12	0.100	3.30	0.290		"			"	Х
156-59-2	cis-1,2-Dichloroethene	< 0.100	0.100	< 0.400	0.400	U			"	"	Х
110-54-3	Hexane	0.407	0.500	1.43	1.76	J		"	"	"	Х
141-78-6	Ethyl acetate	0.201	0.100	0.720	0.360			"	"	"	
67-66-3	Chloroform	0.195	0.100	0.950	0.490			"	"	"	Х
109-99-9	Tetrahydrofuran	< 0.100	0.100	< 0.290	0.290	U		"	"	"	
71-55-6	1,1,1-Trichloroethane	< 0.100	0.100	< 0.550	0.550	U	"	"		"	Х
71-43-2	Benzene	0.614	0.100	1.96	0.320		"	"		"	Х
110-82-7	Cyclohexane	0.331	0.100	1.14	0.340		"	"		"	Х
123-91-1	1,4-Dioxane	< 0.500	0.500	< 1.80	1.80	U		"		"	Х
142-82-5	n-Heptane	0.634	0.100	2.60	0.410			"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	0.601	0.100	2.46	0.410			"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	< 0.100	0.100	< 0.450	0.450	U	"	"	"	"	Х
108-88-3	Toluene	1.65	0.100	6.21	0.380		"	"		"	Х
591-78-6	2-Hexanone (MBK)	< 0.500	0.500	< 2.05	2.05	U	"	"		"	
108-90-7	Chlorobenzene	< 0.100	0.100	< 0.460	0.460	U	"	"		"	Х
630-20-6	1,1,1,2-Tetrachloroethane	< 0.100	0.100	< 0.690	0.690	U		"		"	
100-41-4	Ethylbenzene	0.120	0.100	0.520	0.430		"	"	"	"	Х
179601-23-1	···;F · ·)	0.410	0.200	1.78	0.870		"	"	"	"	х
75-25-2	Bromoform	< 0.100	0.100	< 1.03	1.03	U	"	"	"	"	Х
100-42-5	Styrene	< 0.100	0.100	< 0.430	0.430	U	"	"	"	"	Х
95-47-6	o-Xylene	0.162	0.100	0.700	0.430		"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.500	0.500	< 3.43	3.43	U	"	"	"	"	Х
98-82-8	Isopropylbenzene	< 0.100	0.100	< 0.490	0.490	U	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	0.152	0.100	0.750	0.490		"	"	"	"	Х
622-96-8	4-Ethyltoluene	0.0891	0.100	0.440	0.490	J	"	"		"	

This laboratory report is not valid without an authorized signature on the cover page.

Sample I Area 5 SC32956	dentification -07	<u>C</u>	lient Projec 4884S-13		<u>Matrix</u> or/Ambier	nt Air	Collection Date 24-Mar-17 1			<u>eceived</u> Mar-17	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert.
Air Quali	ty Analyses										
Volatile C	organics in Air Low Level	<u>ppbv</u>	Prepared (Dilution: 1	06-Apr-17			<u>Can pre</u> Can ID:	essure: -7 0256	Regul	ator ID: 1	550
95-63-6	1,2,4-Trimethylbenzene	< 0.100	0.100	< 0.490	0.490	U	EPA TO-15L	06-Apr-17	BRF	1705783	Х
91-20-3	Naphthalene	0.760	0.500	3.98	2.62			"	"		Х
541-73-1	1,3-Dichlorobenzene	< 0.500	0.500	< 3.01	3.01	U		"	"	"	Х
100-44-7	Benzyl chloride	< 0.100	0.100	< 0.520	0.520	U		"	"	"	Х
135-98-8	sec-Butylbenzene	< 0.100	0.100	< 0.550	0.550	U	"	"	"		
99-87-6	4-Isopropyltoluene	0.112	0.500	0.600	2.68	J		"	"		
95-50-1	1,2-Dichlorobenzene	< 0.100	0.100	< 0.600	0.600	U		"	"		х
104-51-8	n-Butylbenzene	0.148	0.100	0.810	0.550			"	"		
120-82-1	1,2,4-Trichlorobenzene	0.358	0.100	2.66	0.740		"	"	"	"	х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	88		80-120 %			"	"	"		
Re-analy	sis of Volatile Organics in Air Low Level		Dilution: 2	<u>0</u>		GS1					
67-64-1	Acetone	126	10.0	299	23.8	D	EPA TO-15L	06-Apr-17	BRF	1705783	Х
64-17-5	Ethanol	27.0	10.0	50.9	18.8	D	"	"	"	"	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	82		80-120 %			"	"	"	"	
Chlorinat	ed SIM	<u>ppbv</u>	Prepared (Dilution: 1	06-Apr-17			<u>Can pre</u> Can ID:	<u>essure: -7</u> 0256	Regul	ator ID: 1	550
75-01-4	Vinyl chloride	< 0.0200	0.0200	< 0.0500	0.0500	U	EPA TO-15 SIM	06-Apr-17	BRF	1705783	х
75-35-4	1,1-Dichloroethene	< 0.0200	0.0200	< 0.0800	0.0800	U	"		"		х
75-34-3	1,1-Dichloroethane	< 0.0200	0.0200	< 0.0800	0.0800	U	"	"	"		х
56-23-5	Carbon tetrachloride	0.0813	0.0200	0.510	0.130				"	"	х
79-01-6	Trichloroethene	0.0234	0.0200	0.130	0.110				"	"	х
127-18-4	Tetrachloroethene	0.308	0.0200	2.09	0.140		"	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	88		80-120 %				"	"	"	

Container Type:	Summa canister 6 liter	Date of Analysis:	3/15/2017
Canister ID:	0230	Analyst's Initials:	BRF

The sampling device detailed above has been tested and is certified to the limits for the target compounds as listed below.

Analyte	Quantitation Limit (ppbv)	Analyte	Quantitation Limit (ppbv)
Acetone	<0.5	Ethanol	<0.5
Acrylonitrile	<0.1	4-Isopropyl Toluene	<0.5
Benzene	<0.1	Ethyl acetate	< 0.1
Benzyl chloride	<0.1	Ethylbenzene	< 0.1
Bromodichloromethane	< 0.04	4-Ethyltoluene	<0.1
Bromoform	<0.1	n-Heptane	< 0.1
Bromomethane	<0.1	Hexachlorobutadiene	<0.04
1,3-Butadiene	<0.1	Hexane	<0.5
2-Butanone (MEK)	<0.1	2-Hexanone (MBK)	< 0.1
Carbon disulfide	<0.5	Isopropyl alcohol	<0.5
Carbon tetrachloride	< 0.04	4-Methyl-2-pentanone (MIBK)	< 0.1
Chlorobenzene	<0.1	Methyl tert-butyl ether	< 0.1
Chloroethane	<0.1	Methylene chloride	< 0.1
1,4-Dioxane	<0.5	Naphthalene	< 0.1
n-Butylbenzene	<0.1	1,1,1,2-Tetrachlorethane	< 0.1
Chloroform	<0.1	Propene	< 0.1
Chloromethane	<0.1	Styrene	< 0.1
Cyclohexane	<0.1	1,1,2,2-Tetrachloroethane	<0.04
Dibromochloromethane	< 0.04	Tetrachloroethene	<0.04
1,2-Dibromoethane (EDB)	< 0.04	Tetrahydrofuran	< 0.1
1,2-Dichlorobenzene	<0.1	Toluene	< 0.1
1,3-Dichlorobenzene	<0.1	1,2,4-Trichlorobenzene	< 0.1
1,4-Dichlorobenzene	< 0.04	1,1,1-Trichloroethane	< 0.1
Dichlorodifluoromethane (Freon12)	<0.1	1,1,2-Trichloroethane	<0.04
1,1-Dichloroethane	< 0.04	Trichloroethene	< 0.04
1,2-Dichloroethane	< 0.04	1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.1
1,1-Dichloroethene	< 0.04	Trichlorofluoromethane (Freon 11)	< 0.1
cis-1,2-Dichloroethene	<0.1	1,2,4-Trimethylbenzene	<0.1
trans-1,2-Dichloroethene	<0.1	1,3,5-Trimethylbenzene	<0.1
1,2-Dichloropropane	< 0.04	Vinyl chloride	<0.04
cis-1,3-Dichloropropene	<0.1	m,p-Xylene	<0.2
trans-1,3-Dichloropropene	<0.1	o-Xylene	<0.1
1,2-Dichlorotetrafluoroethane (Freon 114)	<0.1	sec-Butylbenzene	<0.1
Isopropylbenzene	<0.1		

This certification applies to the following sampling devices:

Container Type:	Summa canister 6 liter	Date of Analysis:	3/16/2017
Canister ID:	0235	Analyst's Initials:	BRF

The sampling device detailed above has been tested and is certified to the limits for the target compounds as listed below.

Analyte	Quantitation Limit (ppbv)	Analyte	Quantitation Limit (ppbv)
Acetone	<0.5	Ethanol	<0.5
Acrylonitrile	<0.1	4-Isopropyl Toluene	<0.5
Benzene	<0.1	Ethyl acetate	<0.1
Benzyl chloride	<0.1	Ethylbenzene	<0.1
Bromodichloromethane	< 0.04	4-Ethyltoluene	<0.1
Bromoform	<0.1	n-Heptane	<0.1
Bromomethane	<0.1	Hexachlorobutadiene	< 0.04
1,3-Butadiene	<0.1	Hexane	<0.5
2-Butanone (MEK)	<0.1	2-Hexanone (MBK)	< 0.1
Carbon disulfide	<0.5	Isopropyl alcohol	<0.5
Carbon tetrachloride	< 0.04	4-Methyl-2-pentanone (MIBK)	< 0.1
Chlorobenzene	<0.1	Methyl tert-butyl ether	< 0.1
Chloroethane	<0.1	Methylene chloride	< 0.1
1,4-Dioxane	<0.5	Naphthalene	<0.1
n-Butylbenzene	<0.1	1,1,1,2-Tetrachlorethane	< 0.1
Chloroform	<0.1	Propene	< 0.1
Chloromethane	<0.1	Styrene	<0.1
Cyclohexane	<0.1	1,1,2,2-Tetrachloroethane	<0.04
Dibromochloromethane	< 0.04	Tetrachloroethene	< 0.04
1,2-Dibromoethane (EDB)	< 0.04	Tetrahydrofuran	< 0.1
1,2-Dichlorobenzene	<0.1	Toluene	< 0.1
1,3-Dichlorobenzene	<0.1	1,2,4-Trichlorobenzene	< 0.1
1,4-Dichlorobenzene	< 0.04	1,1,1-Trichloroethane	< 0.1
Dichlorodifluoromethane (Freon12)	<0.1	1,1,2-Trichloroethane	<0.04
1,1-Dichloroethane	< 0.04	Trichloroethene	<0.04
1,2-Dichloroethane	< 0.04	1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.1
1,1-Dichloroethene	< 0.04	Trichlorofluoromethane (Freon 11)	< 0.1
cis-1,2-Dichloroethene	<0.1	1,2,4-Trimethylbenzene	< 0.1
trans-1,2-Dichloroethene	<0.1	1,3,5-Trimethylbenzene	< 0.1
1,2-Dichloropropane	<0.04	Vinyl chloride	<0.04
cis-1,3-Dichloropropene	<0.1	m,p-Xylene	<0.2
trans-1,3-Dichloropropene	<0.1	o-Xylene	<0.1
1,2-Dichlorotetrafluoroethane (Freon 114)	<0.1	sec-Butylbenzene	<0.1
Isopropylbenzene	<0.1		

This certification applies to the following sampling devices:

Container Type:	Summa canister 6 liter	Date of Analysis:	3/11/2017
Canister ID:	0256	Analyst's Initials:	BRF

The sampling device detailed above has been tested and is certified to the limits for the target compounds as listed below.

Analyte	Quantitation Limit (ppbv)	Analyte	Quantitation Limit (ppbv)
Acetone	<0.5	Ethanol	<0.5
Acrylonitrile	<0.1	4-Isopropyl Toluene	<0.5
Benzene	<0.1	Ethyl acetate	< 0.1
Benzyl chloride	<0.1	Ethylbenzene	< 0.1
Bromodichloromethane	< 0.04	4-Ethyltoluene	< 0.1
Bromoform	<0.1	n-Heptane	< 0.1
Bromomethane	<0.1	Hexachlorobutadiene	< 0.04
1,3-Butadiene	<0.1	Hexane	<0.5
2-Butanone (MEK)	<0.1	2-Hexanone (MBK)	< 0.1
Carbon disulfide	<0.5	Isopropyl alcohol	<0.5
Carbon tetrachloride	< 0.04	4-Methyl-2-pentanone (MIBK)	< 0.1
Chlorobenzene	<0.1	Methyl tert-butyl ether	< 0.1
Chloroethane	<0.1	Methylene chloride	< 0.1
1,4-Dioxane	<0.5	Naphthalene	< 0.1
n-Butylbenzene	<0.1	1,1,1,2-Tetrachlorethane	<0.1
Chloroform	<0.1	Propene	<0.1
Chloromethane	<0.1	Styrene	< 0.1
Cyclohexane	<0.1	1,1,2,2-Tetrachloroethane	< 0.04
Dibromochloromethane	< 0.04	Tetrachloroethene	<0.04
1,2-Dibromoethane (EDB)	< 0.04	Tetrahydrofuran	<0.1
1,2-Dichlorobenzene	<0.1	Toluene	<0.1
1,3-Dichlorobenzene	<0.1	1,2,4-Trichlorobenzene	<0.1
1,4-Dichlorobenzene	< 0.04	1,1,1-Trichloroethane	<0.1
Dichlorodifluoromethane (Freon12)	<0.1	1,1,2-Trichloroethane	< 0.04
1,1-Dichloroethane	< 0.04	Trichloroethene	< 0.04
1,2-Dichloroethane	< 0.04	1,1,2-Trichlorotrifluoroethane (Freon 113)	<0.1
1,1-Dichloroethene	< 0.04	Trichlorofluoromethane (Freon 11)	<0.1
cis-1,2-Dichloroethene	<0.1	1,2,4-Trimethylbenzene	<0.1
trans-1,2-Dichloroethene	<0.1	1,3,5-Trimethylbenzene	<0.1
1,2-Dichloropropane	<0.04	Vinyl chloride	<0.04
cis-1,3-Dichloropropene	<0.1	m,p-Xylene	<0.2
trans-1,3-Dichloropropene	<0.1	o-Xylene	< 0.1
1,2-Dichlorotetrafluoroethane (Freon 114)	<0.1	sec-Butylbenzene	< 0.1
Isopropylbenzene	<0.1		

This certification applies to the following sampling devices:

Container Type:	Summa canister 6 liter	Date of Analysis:	3/16/2017
Canister ID:	0259	Analyst's Initials:	BRF

The sampling device detailed above has been tested and is certified to the limits for the target compounds as listed below.

Analyte	Quantitation Limit (ppbv)	Analyte	Quantitation Limit (ppbv)
Acetone	<0.5	Ethanol	<0.5
Acrylonitrile	<0.1	4-Isopropyl Toluene	<0.5
Benzene	< 0.1	Ethyl acetate	< 0.1
Benzyl chloride	<0.1	Ethylbenzene	< 0.1
Bromodichloromethane	< 0.04	4-Ethyltoluene	< 0.1
Bromoform	<0.1	n-Heptane	< 0.1
Bromomethane	< 0.1	Hexachlorobutadiene	<0.04
1,3-Butadiene	< 0.1	Hexane	<0.5
2-Butanone (MEK)	< 0.1	2-Hexanone (MBK)	< 0.1
Carbon disulfide	<0.5	Isopropyl alcohol	<0.5
Carbon tetrachloride	< 0.04	4-Methyl-2-pentanone (MIBK)	<0.1
Chlorobenzene	< 0.1	Methyl tert-butyl ether	< 0.1
Chloroethane	<0.1	Methylene chloride	<0.1
1,4-Dioxane	<0.5	Naphthalene	<0.1
n-Butylbenzene	< 0.1	1,1,1,2-Tetrachlorethane	< 0.1
Chloroform	< 0.1	Propene	< 0.1
Chloromethane	< 0.1	Styrene	<0.1
Cyclohexane	< 0.1	1,1,2,2-Tetrachloroethane	< 0.04
Dibromochloromethane	< 0.04	Tetrachloroethene	<0.04
1,2-Dibromoethane (EDB)	< 0.04	Tetrahydrofuran	< 0.1
1,2-Dichlorobenzene	< 0.1	Toluene	< 0.1
1,3-Dichlorobenzene	< 0.1	1,2,4-Trichlorobenzene	< 0.1
1,4-Dichlorobenzene	< 0.04	1,1,1-Trichloroethane	< 0.1
Dichlorodifluoromethane (Freon12)	<0.1	1,1,2-Trichloroethane	<0.04
1,1-Dichloroethane	< 0.04	Trichloroethene	<0.04
1,2-Dichloroethane	< 0.04	1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.1
1,1-Dichloroethene	< 0.04	Trichlorofluoromethane (Freon 11)	< 0.1
cis-1,2-Dichloroethene	<0.1	1,2,4-Trimethylbenzene	<0.1
trans-1,2-Dichloroethene	<0.1	1,3,5-Trimethylbenzene	<0.1
1,2-Dichloropropane	< 0.04	Vinyl chloride	<0.04
cis-1,3-Dichloropropene	<0.1	m,p-Xylene	<0.2
trans-1,3-Dichloropropene	<0.1	o-Xylene	< 0.1
1,2-Dichlorotetrafluoroethane (Freon 114)	<0.1	sec-Butylbenzene	< 0.1
Isopropylbenzene	<0.1		

This certification applies to the following sampling devices:

Container Type:	Summa canister 6 liter	Date of Analysis:	3/16/2017
Canister ID:	0472	Analyst's Initials:	BRF

The sampling device detailed above has been tested and is certified to the limits for the target compounds as listed below.

Analyte	Quantitation Limit (ppbv)	Analyte	Quantitation Limit (ppbv)
Acetone	<0.5	Ethanol	<0.5
Acrylonitrile	<0.1	4-Isopropyl Toluene	<0.5
Benzene	<0.1	Ethyl acetate	< 0.1
Benzyl chloride	<0.1	Ethylbenzene	< 0.1
Bromodichloromethane	< 0.04	4-Ethyltoluene	< 0.1
Bromoform	<0.1	n-Heptane	< 0.1
Bromomethane	<0.1	Hexachlorobutadiene	< 0.04
1,3-Butadiene	<0.1	Hexane	<0.5
2-Butanone (MEK)	<0.1	2-Hexanone (MBK)	< 0.1
Carbon disulfide	<0.5	Isopropyl alcohol	<0.5
Carbon tetrachloride	< 0.04	4-Methyl-2-pentanone (MIBK)	< 0.1
Chlorobenzene	<0.1	Methyl tert-butyl ether	< 0.1
Chloroethane	<0.1	Methylene chloride	< 0.1
1,4-Dioxane	<0.5	Naphthalene	< 0.1
n-Butylbenzene	<0.1	1,1,1,2-Tetrachlorethane	<0.1
Chloroform	<0.1	Propene	<0.1
Chloromethane	<0.1	Styrene	< 0.1
Cyclohexane	<0.1	1,1,2,2-Tetrachloroethane	< 0.04
Dibromochloromethane	< 0.04	Tetrachloroethene	<0.04
1,2-Dibromoethane (EDB)	< 0.04	Tetrahydrofuran	<0.1
1,2-Dichlorobenzene	<0.1	Toluene	<0.1
1,3-Dichlorobenzene	<0.1	1,2,4-Trichlorobenzene	<0.1
1,4-Dichlorobenzene	< 0.04	1,1,1-Trichloroethane	<0.1
Dichlorodifluoromethane (Freon12)	<0.1	1,1,2-Trichloroethane	< 0.04
1,1-Dichloroethane	< 0.04	Trichloroethene	< 0.04
1,2-Dichloroethane	< 0.04	1,1,2-Trichlorotrifluoroethane (Freon 113)	<0.1
1,1-Dichloroethene	< 0.04	Trichlorofluoromethane (Freon 11)	<0.1
cis-1,2-Dichloroethene	<0.1	1,2,4-Trimethylbenzene	<0.1
trans-1,2-Dichloroethene	<0.1	1,3,5-Trimethylbenzene	<0.1
1,2-Dichloropropane	<0.04	Vinyl chloride	<0.04
cis-1,3-Dichloropropene	<0.1	m,p-Xylene	<0.2
trans-1,3-Dichloropropene	<0.1	o-Xylene	< 0.1
1,2-Dichlorotetrafluoroethane (Freon 114)	<0.1	sec-Butylbenzene	< 0.1
Isopropylbenzene	<0.1		

This certification applies to the following sampling devices:

Container Type:	Summa canister 6 liter	Date of Analysis:	3/16/2017
Canister ID:	17157	Analyst's Initials:	BRF

The sampling device detailed above has been tested and is certified to the limits for the target compounds as listed below.

Analyte	Quantitation Limit (ppbv)	Analyte	Quantitation Limit (ppbv)
Acetone	<0.5	Ethanol	<0.5
Acrylonitrile	<0.1	4-Isopropyl Toluene	<0.5
Benzene	<0.1	Ethyl acetate	<0.1
Benzyl chloride	<0.1	Ethylbenzene	<0.1
Bromodichloromethane	< 0.04	4-Ethyltoluene	<0.1
Bromoform	<0.1	n-Heptane	<0.1
Bromomethane	<0.1	Hexachlorobutadiene	< 0.04
1,3-Butadiene	<0.1	Hexane	<0.5
2-Butanone (MEK)	<0.1	2-Hexanone (MBK)	< 0.1
Carbon disulfide	<0.5	Isopropyl alcohol	<0.5
Carbon tetrachloride	< 0.04	4-Methyl-2-pentanone (MIBK)	<0.1
Chlorobenzene	<0.1	Methyl tert-butyl ether	<0.1
Chloroethane	<0.1	Methylene chloride	<0.1
1,4-Dioxane	<0.5	Naphthalene	<0.1
n-Butylbenzene	<0.1	1,1,1,2-Tetrachlorethane	<0.1
Chloroform	<0.1	Propene	<0.1
Chloromethane	<0.1	Styrene	<0.1
Cyclohexane	<0.1	1,1,2,2-Tetrachloroethane	< 0.04
Dibromochloromethane	< 0.04	Tetrachloroethene	< 0.04
1,2-Dibromoethane (EDB)	< 0.04	Tetrahydrofuran	< 0.1
1,2-Dichlorobenzene	<0.1	Toluene	<0.1
1,3-Dichlorobenzene	<0.1	1,2,4-Trichlorobenzene	< 0.1
1,4-Dichlorobenzene	< 0.04	1,1,1-Trichloroethane	< 0.1
Dichlorodifluoromethane (Freon12)	<0.1	1,1,2-Trichloroethane	< 0.04
1,1-Dichloroethane	< 0.04	Trichloroethene	< 0.04
1,2-Dichloroethane	< 0.04	1,1,2-Trichlorotrifluoroethane (Freon 113)	<0.1
1,1-Dichloroethene	< 0.04	Trichlorofluoromethane (Freon 11)	< 0.1
cis-1,2-Dichloroethene	<0.1	1,2,4-Trimethylbenzene	< 0.1
trans-1,2-Dichloroethene	<0.1	1,3,5-Trimethylbenzene	< 0.1
1,2-Dichloropropane	< 0.04	Vinyl chloride	<0.04
cis-1,3-Dichloropropene	<0.1	m,p-Xylene	<0.2
trans-1,3-Dichloropropene	<0.1	o-Xylene	< 0.1
1,2-Dichlorotetrafluoroethane (Freon 114)	<0.1	sec-Butylbenzene	< 0.1
Isopropylbenzene	<0.1		

This certification applies to the following sampling devices:

Container Type:	Summa canister 6 liter	Date of Analysis:	3/11/2017
Canister ID:	5566	Analyst's Initials:	BRF

The sampling device detailed above has been tested and is certified to the limits for the target compounds as listed below.

Analyte	Quantitation Limit (ppbv)	Analyte	Quantitation Limit (ppbv)
Acetone	<0.5	Ethanol	<0.5
Acrylonitrile	<0.1	4-Isopropyl Toluene	<0.5
Benzene	<0.1	Ethyl acetate	< 0.1
Benzyl chloride	<0.1	Ethylbenzene	< 0.1
Bromodichloromethane	< 0.04	4-Ethyltoluene	< 0.1
Bromoform	<0.1	n-Heptane	< 0.1
Bromomethane	<0.1	Hexachlorobutadiene	< 0.04
1,3-Butadiene	<0.1	Hexane	<0.5
2-Butanone (MEK)	<0.1	2-Hexanone (MBK)	< 0.1
Carbon disulfide	<0.5	Isopropyl alcohol	<0.5
Carbon tetrachloride	< 0.04	4-Methyl-2-pentanone (MIBK)	< 0.1
Chlorobenzene	<0.1	Methyl tert-butyl ether	< 0.1
Chloroethane	<0.1	Methylene chloride	< 0.1
1,4-Dioxane	<0.5	Naphthalene	< 0.1
n-Butylbenzene	<0.1	1,1,1,2-Tetrachlorethane	<0.1
Chloroform	<0.1	Propene	<0.1
Chloromethane	<0.1	Styrene	< 0.1
Cyclohexane	<0.1	1,1,2,2-Tetrachloroethane	< 0.04
Dibromochloromethane	< 0.04	Tetrachloroethene	<0.04
1,2-Dibromoethane (EDB)	< 0.04	Tetrahydrofuran	<0.1
1,2-Dichlorobenzene	<0.1	Toluene	<0.1
1,3-Dichlorobenzene	<0.1	1,2,4-Trichlorobenzene	<0.1
1,4-Dichlorobenzene	< 0.04	1,1,1-Trichloroethane	<0.1
Dichlorodifluoromethane (Freon12)	<0.1	1,1,2-Trichloroethane	< 0.04
1,1-Dichloroethane	< 0.04	Trichloroethene	< 0.04
1,2-Dichloroethane	< 0.04	1,1,2-Trichlorotrifluoroethane (Freon 113)	<0.1
1,1-Dichloroethene	< 0.04	Trichlorofluoromethane (Freon 11)	<0.1
cis-1,2-Dichloroethene	<0.1	1,2,4-Trimethylbenzene	<0.1
trans-1,2-Dichloroethene	<0.1	1,3,5-Trimethylbenzene	<0.1
1,2-Dichloropropane	<0.04	Vinyl chloride	<0.04
cis-1,3-Dichloropropene	<0.1	m,p-Xylene	<0.2
trans-1,3-Dichloropropene	<0.1	o-Xylene	< 0.1
1,2-Dichlorotetrafluoroethane (Freon 114)	<0.1	sec-Butylbenzene	< 0.1
Isopropylbenzene	<0.1		

This certification applies to the following sampling devices:

Notes and Definitions

- CRL1 Low level calibration check failed, data was accepted due to sample concentrations < MDL. CRL2 Low level calibration check failed, data was accepted due to sample concentrations > 3X MRL. CRL3 Low level calibration check failed, reporting limit has been elevated. CRL5 Low level calibration check failed, reportable sample concentrations may be biased high. D Data reported from a dilution Е This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration. GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). OR Over Range QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample. QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits. QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data. QR5 RPD out of acceptance range. U Analyte included in the analysis, but not detected at or above the MDL. dry Sample results reported on a dry weight basis NR Not Reported
- RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

for Air Analyses Spectrum Analytical $_{PRC}$ of Alic Analyses Burnist Tere Sol Epex, Toc. Properative 23. Lyell Aucave 211 Frendulus Streed Properative 25HSH-C2LO Ame: TeG. Boll Clean, Nocu York, HTGG Simpletice: Clean, Social Streed 25HSH-C2LO Ame: TeG. Boll Roome: Clean, Nocu York, HTGG Simpletice: Clean, Social Streed 26HSH-C2LO Ame: TeG. Boll Roome: Clean, Social Streed Simpletice: Clean, Social Streed 26HSH-C2LO Ame: TeG. Boll Roome: Clean, Social Streed Simpletice: Clean, Social Streed 27. Boll Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed 28 No. Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed 29. Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed -20. Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed -20. Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed -20. Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, Social Streed Simpletice: Clean, S		inct	nai	a dey mail	Champton @	Cha	esults to	E-mail Results to	156		Jack	7	KM J	2	24	operit	hur (
for Air Analyses Deturn Analytical $roge_d Note: Intervention and the first of the second				EQUIS	DIEC	NVS	- mat	KEDD For	Time:	,	3/25/17		Beceived by	Non	hand	pquished by	Rel		
Tor Air Analyses Tor Air Analyses Not on Analysical the the second and th			tedia.) with air n	QC issue(s	suspect any	ficulties or :	echnical dif	experience any i	115 if you e	ately at (800) 789-5	partment immedi	ESAL'S Air De	lease contact	P				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	for further info.	nt Service Dept	TESAI's Clie	apply contac	charge may	* additiona					inted:	P							
for Air Analyses Charla marked, The more Term Sol Elevery Torus Torus to the construction of the solution of	D CT RCP	D TIER IV*	B*	XNY ASP		DQA*		Date:			gned:	S			F		by:		
for Air Analyses C Analyses None C Analyses None C Analyses Same Nr C Analyses Same Nr C Analyses Same Nr C Analyses Same Nr Same Nr C Analyses Same Nr Same Nr <th <="" colspan="2" td=""><td>I MA CAM</td><td>D TIER II*</td><td>A*</td><td>D NY ASP</td><td></td><td>□ Standard</td><td>on the back</td><td>ons as listed</td><td>s document.</td><td>agree to the of thi</td><td>isual observation, and</td><td>1</td><td>tLl # auge</td><td>G</td><td>1</td><td>5-</td><td>Order # 4</td></th>	<td>I MA CAM</td> <td>D TIER II*</td> <td>A*</td> <td>D NY ASP</td> <td></td> <td>□ Standard</td> <td>on the back</td> <td>ons as listed</td> <td>s document.</td> <td>agree to the of thi</td> <td>isual observation, and</td> <td>1</td> <td>tLl # auge</td> <td>G</td> <td>1</td> <td>5-</td> <td>Order # 4</td>		I MA CAM	D TIER II*	A*	D NY ASP		□ Standard	on the back	ons as listed	s document.	agree to the of thi	isual observation, and	1	tLl # auge	G	1	5-	Order # 4
Curofins Intermanalytical pre		z Level:	Reporting	QA/Q0			i, based on	ting condition	eived in good war	has been rece	attest that all media		Filters -	#	, t	141	eeded:		
$ \begin{array}{ $			Stop				2	10	1) 1190	19-2		0	ow Rate/Settin	Y Ph	ter N	hes	acation: R		
for Air Analyses In the construction of the constructio			Start									15: 9	Flow Controlle		N 1	2	Jompany: .		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ambient Press (inches of Hg	Temperature (Fahrenheit)	Client Use					Iments:	rements & Con	QC Kequi	pecial instructions	2 4	LL Canisters:			Sharle	Requested by: (
Involve for Air Analyses Spectrum Analytical $p_{ge_{-0}}$ Native Analyses Native Analyses Advise for Air Analyses Native Analyses Native Analyses Advise for Air Analyses Native Analyses Advise for Air Analyses Native Analyses All Frewhulen Native Analyses Native and analyses All Frewhulen Native and analyses Native and analyses S - H5H - C 21O Ann: Tekk Dirker Verkulen Native and analyses Native and analyses S - H5H - C 21O Ann: Tekk Dirker Verkulen Native and analyses Native and analyses S - H5H - C 21O Ann: Tekk Dirker Verkulen Native and analyses Native and analyses S - H5H - C 21O Ann: Tekk Dirker Verkulen Native and analyses S - H5H - C 21O Native analyses Native analyses S - H5H - C 21O Native analyses Native analyses <td></td> <td>Ambient</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>+</td> <td></td> <td></td> <td>-</td>		Ambient										2		+			-		
for Air Analyses Interview of the analyses Analyses <th 2"="" and="" colspa<="" colspan="2" td="" the=""><td>×</td><td>¥</td><td>10.</td><td>70</td><td>-6.5</td><td></td><td>16:23</td><td>07:13</td><td>145</td><td></td><td></td><td>Von</td><td>1.2</td><td>0 0551</td><td></td><td>-30</td><td>-</td></th>	<td>×</td> <td>¥</td> <td>10.</td> <td>70</td> <td>-6.5</td> <td></td> <td>16:23</td> <td>07:13</td> <td>145</td> <td></td> <td></td> <td>Von</td> <td>1.2</td> <td>0 0551</td> <td></td> <td>-30</td> <td>-</td>		×	¥	10.	70	-6.5		16:23	07:13	145			Von	1.2	0 0551		-30	-
In origin for Air Analyses In origin for Air Analyses In origin for Air Analyses Analyses Analyses Analyses Analyses Analyses Analyse Analyse Analyse A	¥	×	70	70	9	-29	1.0	07:30		.,0	1.000	100	9.6	69 1		-30	9 TEHO		
Information of the second provide the second the sec			1			×			-				1.5	2996 9		30	6407 6		
for Air Analyses Invoice To: Sol EPoxy Toc. Invoice To: Sol Sol 2 Cli Freedul In Shore Tors on Tor	7.	×	23	25	-5.5	-29	15:35	07:26			AREA 2	05	t'l	1314 0		-30	-		
for Air Analyses Introduction of Air Analyses Spectrum Analytical $ngeof$	*	*	70	10	6.	-29	15:42	07:22	5/24/17	6.4	100	CH	1.3	q o		-30			
In original spectrum Analytical spectrum A	×	4:	70	70	in	-29	15:23		5/24/17	20	AREA3	co.	is	5889 6		- 30			
for Air Analyses Involve for Air Analyses Involve for Air Analyses All The Analytical Page of Air Analyses All This subject to luboratory appoint. Colspan="2">Analysis Analysis Analysis Analysis All This subject to luboratory appoint. Colspan="2">Analysis Analysis Analysis Analysis Analysis Maintris	×	+	73	73	1-1	-29	16:04	07:27	24/17	1.1	12.00	Co	1.4	28 0		-7U	566 6		
for Air Analyses Spectrum Analytical Page_or_ Orgonal Page_or_ Orgonal All TATs subject to laboratory approxit. Environmental, Env. Invoice To: Sol Eboxy, Env. Page_or_ Project No.: H88H s13 All TATs subject to laboratory approxit. S5 - 45H - OZIO Atm: Taff, Ball Offension Atm: Taff, Ball New York In Street Project No.: H88H s13 Analysis Match S5 - 45H - OZIO Atm: Taff, Ball New York In Street Project No.: 488H s13 Sinte NH Sint	x	×	65	3	55	-29	15:21	07:20	3/24/17	Scould	Do Hoor Bud	320860	i	-		-20	171576		
for Air Analyses for Air Analyses Involve for Air Analyses Involve for Air Analyses Involve for Air Analyses All TAT - Date Needed: Spectrum Analytical Page of Page of All TAT - Date Needed: Alll		TO-	Interior Temp. (F) (Stop)	Interior Temp. (F) (Start)	Canister Pressure in Field ("Hg) (Stop)	Canister Pressure in Field ("Hg) (Start)		Time Start (24 hr clock)	Sample Date(8)		Sample Id:	Lab Id:	Flow ontroller Readout (mi/min)	CI I	Lincoming Campater Pressury ("Hg) (Lab)	-	an ID Size		
Curofins Spectrum Analytical for Air Analyses Invoice To: Sol Epoxy Invoice To: <th< td=""><td>bient</td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>RQN:</td><td></td><td>No.1</td><td>P.O.</td><td>lea</td><td>Haven</td><td>C.</td><td>et Manag</td></th<>	bient	15								RQN:		No.1	P.O.	lea	Haven	C.	et Manag		
Curofins Spectrum Analytical for Air Analyses Image of Page Image Image of All TATs subject to laboratory approval. Day Environmental, Inc. Invoice Tri: Sol Epoxy Inc. Image	Air	LL			non	Hamp		Sampler(s)			BAIL	1.	Atta	210	I	01	Tel#:		
Curofins Spectrum Analytical for Air Analyses Image of		. (5	Z.	State:		an	Ole	Location:											
Curofins Spectrum Analytical for Air Analyses Image of		1114	N.	Tank	121		h	Site Name:	F	L	Ť.	01			1	ochest	R		
Curofins Spectrum Analytical for Air Analyses Gr Air Analyses Rush TAT - Date Needed: Day Environmental, Inc. Invoice To: Sol EPoxy, Inc. Invoice To: Sol EPoxy, Inc. Analysis Matrix)			0	2	-	Project No		Street	Frenklin	211		C.	ell Au	C	-		
Curofins Spectrum Analytical for Air Analyses	Matrix	Analysis			-	1.4				nc.	E.		*		You men	1 1	Report To:]		
eurofins for Air Analyses	boratory approval. I needed for rushes	ATs subject to la -hour notificatio	- All T. Min. 24		No.				of	Page		alytical		Spect					
	d:	T - Date Neede	Rush TA	-				es	Analys	Air .	for				SUI	urof	e e		

Special Handling: SC 32956364

-			act	-	(me in s me	unptead	Cha	Rosulte we	(Mile-	X	156	5	3/30		1 27	×	Ť	Der12	(a) hug	D.
_			-		EQUIS		NY5 DEC		Printer of the Party	X	11 35		5/25/1		Con 2 2	En les	2	Religionship by	Relign	1
				white	(Heulitics or suspect on) Dr. Is nets) with dr media	QU INHERS	(an tords)	ulties or yo	mout diffic	US MID TEL	ou experien	5/15316-682	in manufantely at t8808 789-9128 if you experience any technical a		12 fir Tenan	contact LN US	Medice			
	ditter infi-	Mart Buy The	al Newlog F	TISAP CIE	a hold how when we react a VAL of a start of the part of the second s	Atta white a	- Turonomia				-		120000			4		1		
	DET ROP	5	D DER IV.		XNY ASPH		0100A*		Thite				JPRVG.					3226 8	A 164.1	Propage 199
	DMACAM		D THER II.	attan tanta	N WWW		Theboose T	a bach	San Belor an	nazid mizid	a free locate state	the soul citeboy f	word Alsternan		4	L'aver		GAL	40,	Crides - C
2		- t		1	in the start			-	1.2.5.1	19.00	and t	the local sector	that with	STUD.			IN1	1148 41	700	
1				Stine				4	10.	2	1110	10,		0-2	- Contractions	T Man	AIV	a Cnr	Day	Combasie
(Mg)	(inches of Mg)		(Fahrenheif)	055		in mileton								4	Outon.	-	Hampton	arle	10	Requested by
applies.	support from		Authorit	climit					29142	& Come	NUMBER	ctions/UC R	Special Instructions/UK Roomirconents & Comments;	9	Starker -	THMO: 0	4	3/13/17	Date of Request	Date (0
-							•									-				
X							-							1	57	0 5	286	8	2 6	47162
	r	T	3.	70	0	-6.5	3.4.5	0 23	01:1310	17 0	3 24	2	AREA	Ven	9	0 9.	57 153	-20 -	¢.	10256
-	F	+	2	705	10	14.	-24	1	7:3	12 0	2 2 3	h.	PAREA	ICE	6	9	13 8	-36	126	tthom
×				1		Junin		-	-	-					5	69.	294	30	26	6402
-	7.	-4.	+	لان	13	5.2	-11-	15:35	1:24	1170	3/00	N	AKEA Z	05	t	4 9.	51 37	-30	\$ 5	40235
	1-		+	The	10	14 5	1	2 11 2	122	17 6	69/3	6	ARCH G	24	20	-	5 9	52	0 6	LUASO
	P	1	+	7	N		1.1-	2	1 15	17 6	51-1	24	MREA3	3	لى	9 1.	335 2	- 30 -	30	14 0230
	10	1	+	73	2	-7	-12	4	12.1.2	17 2	3/24	-	NKEN	C2	-£	4	95 9	W	0	LL 5566
	£		*	65	33	01	-2-	12 9	1-20	0 11	all and	Redering	Ost Bearl	37134-1	5	1 9.1	C 2994	-20 -	0	H21417
Check box	Soil Gas	Indoor /Am	TO	lutering Benge Abs VSLogs	lourbor (amp vizy (Start)	1996) 1996) 1997 - 1996 1997 - 1997 1997	0.40 -		Univ State a Ht slove)	101	to all the	M				11 12 12 12 12 12 12 12 12 12 12 12 12 1	and a second sec		2.0	Territor -
if cani	orent	(i)jent	15				-	-		-		RÓN		for the second s	12.45		wate it	C. H	solonejų nejos,	petion
ister i	40	Air	1-1-			10.11	Henisto		va mpierzy.	X				14	Alter	14	4 2224	55 43	38	1.0.1.0
s retu		·	(2)	Z	State	1	5	-	.08361141	-						-je	-			
rned un			(101)	3	Tranklin	1211	10 5	14.3	Project No.	line B	and the	Carl Ye	to the state	120		F	A care	Rechoster	Rec	
1	Marris	+	-A malty sis		*	1			1	-		TIL	11 - 1 - N - 2	1	100.00	The	I my notal , I no	HIND .	The D.	Report Vic
Sec.	six actro scalaria	of filmsteads	All is a subject of the statistical data for the statistic model of the statistic model of the statistics of the statist	Mar. 1								Part		IVICAL	Spectrum Analytical	Jectry	4			
		1000	an inc	C. Menter					2	- NOALYSCO	1012 - 1	115 101						CINID IN	100 - C C C	8.0
	An interaction		1.1	12 Stille			PERSONCE PERSON	EJ Jat o	2	1 STAT	A ST A TO	C AL	WANKIN'	- XX 110					5	×
		A DOLLARD	And in case of the local division of the loc			AN SAL	ALC: N DE CALL													

Chain of Custody Record/Field Test Data Sheets

Batch Summary

<u>1705653</u>

<u>Air Quality Analyses</u> 1705653-BLK1 1705653-BS1 1705653-BSD1 SC32956-01 (Outdoor(background)) SC32956-02 (Area 1) SC32956-03 (Area 3)

<u>1705783</u>

<u>Air Quality Analyses</u> 1705783-BLK1 1705783-BLK2 1705783-BS1 1705783-BSD1 SC32956-04 (Area 6) SC32956-04 (Area 6) SC32956-05 (Area 2) SC32956-05 (Area 2) SC32956-06 (Area 4) SC32956-06 (Area 4) SC32956-07 (Area 5) SC32956-07RE1 (Area 5)

<u>1705851</u>

<u>Air Quality Analyses</u> 1705851-BLK1 1705851-BS1 1705851-BSD1 SC32956-02RE1 (Area 1) SC32956-03RE1 (Area 3)

<u>S703544</u>

Air Quality Analyses S703544-CAL1 S703544-CAL2 S703544-CAL3 S703544-CAL4 S703544-CAL5 S703544-CAL6 S703544-CAL7 S703544-CAL8 S703544-CAL9 S703544-CALA S703544-ICV1 S703544-LCV1 S703544-LCV2 S703544-LCV3 S703544-TUN1

<u>8703569</u>

Air Quality Analyses

S703569-CCV1 S703569-CCV2 S703569-CRL1 S703569-CRL2 S703569-CRL3 S703569-TUN1 S703569-TUN2

<u>8703573</u>

Air Quality Analyses S703573-CAL1 S703573-CAL2 S703573-CAL3 S703573-CAL4 S703573-CAL5 S703573-CAL6 S703573-CAL7 S703573-CAL8 S703573-CAL9 S703573-CALA S703573-ICV1 S703573-LCV1 S703573-LCV2 S703573-LCV3 S703573-TUN1

<u>S703581</u>

<u>Air Quality Analyses</u> S703581-CCV1 S703581-CCV2 S703581-CCV3 S703581-CRL1 S703581-CRL2 S703581-CRL3 S703581-CRL4 S703581-TUN1 S703581-TUN2

<u>8703590</u>

<u>Air Quality Analyses</u> S703590-CCV1 S703590-CCV2 S703590-CRL1 S703590-TUN1

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

211 Franklin St.- Olean, NY #4884S-13 Eurofins/Spectrum Analytical SDG#SC32956 July 5, 2017 Sampling date: 3/24/2017

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

> 211 Franklin St.- Olean, NY #4884S-13 SDG# SC32956

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Day Environmental, project located at 211 Franklin St.- Olean, NY #4884S-13, Eurofins/Spectrum Analytical (Eurofins) SDG#SC32956 submitted to Vali-Data of WNY, LLC on June 29, 2017. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocol (ASP) and USEPA National Functional Guidelines (NFG). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Samples: Area 2, Area 4, Area 6, Area 1 and Area 3 were diluted due to high target analyte concentration.

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this report:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Surrogate Recovery
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Tuning
- Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Method Blank, Laboratory Control Samples, Continuing Calibration and Canister Certification Blanks.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met. Clean canister data was not included in the original package. Those pages are attached.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met except Acetone was detected above the MDL, below the reporting limit and is qualified as estimated in 1705851-BLK1. Tetrachloroethene was detected above the MDL, below the reporting limit and is qualified as estimated in 1705783-BLK1. Associated samples in which these target analytes were detected below 5 times the blank concentration and above the reporting limit should be qualified as undetected at 5 times the blank concentration. Associated samples in which these target analytes were detected below 5 times the blank concentration and below the reporting limit should be qualified as undetected at meter reporting limit.

LABORATORY CONTROL SAMPLES

All criteria were met except the RPD of Methylene Chloride, Naphthalene, 1,2,4-Trichlorobenzene and Hexachlorobutadiene was outside QC limits between 1705653-BS1 and 1705653-BSD1. The RPD of Naphthalene was outside QC limits between 1705851-BS1 and 1705851-BSD1. These target analytes should be qualified as estimated in the associated laboratory control samples and the associated samples.

Several target analytes were outside QC limits in the matrix spike duplicate but within limits in the matrix spike, so no further action is required.

MS/MSD

No MS/MSD was performed.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met. Alternate forms of regression were performed on most target analytes whose %RSD >15.0%,

211 Franklin St.- Olean, NY #4884S-13

SDG# SC32956

with acceptable results.

CONTINUING CALIBRATION

All criteria were met except the %D of Methyl tert-butyl ether, cis-1,3-Dichloropropene, trans-1,3-Dichloropropene, Toluene, 2-Hexanone, Ethylbenzene, Styrene, o-Xylene and 4-Ethyltoluene was outside QC limits in S703569-CCV2. The %D of Chloromethane was outside QC limits in S703581-CCV2. The %D of Styrene and 1,2,4-Trichlorobenzene was outside QC limits in S703590-CCV1. The %D of Ethylbenzene, m&p-Xylene, Styrene, o-Xylene, 1,1,2,2-Tetrachlroethane, 4-Ethyltoluene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene and 1,2-Dichlorobenzene was outside QC limits in S703590-CCV2. These target analytes should be qualified as estimated in the associated blanks, spikes and samples.

GC/MS PERFORMANCE CHECK

All criteria were met.

CANISTER CLEAN BLANKS

All criteria were met except Acetone was detected above the MDL, below the reporting limit in the canister clean blank for samples; Area 1 and Area 4. Methylene Chloride was detected above the MDL, below the reporting limit in the canister clean blank for samples; Area 3 and Area 4. 4-Methyl-2-pentanone was detected above the MDL, below the reporting limit in the canister clean blank for samples; Area 1, Area 2 and Area 6. If these target analytes were detected above the MDL but below 5 times the contamination concentration, then they should be qualified as undetected at 5 times the contamination concentration.

ATTACHMENT G

SAMPLING LOGS FOR JUNE 21, 2017 GROUNDWATER SAMPLING EVENT

LOW-FLOW GROUNDWATER PURGING AND SAMPLING LOG

WELL MW-F

SECTION 1 - SITE AND W	ELL INFORMATION
SITE LOCATION 211 Franklin Street	JOB # _ 4884S-13
PROJECT NAME: C905038	DATE:6/21/17
SAMPLE COLLECTOR(S): <u>C. Hampton/Z. Tennies</u>	WEATHER: Sunny, Warm
PID READING IN WELL HEADSPACE (PPM):	MEASURING POINT (for water levels): <u>Top of Casing</u>
CASING TYPE: PVC	WELL DIAMETER (INCHES): 2
SCREENED INTERVAL [FT BGS]: <u>17 – 27.5</u> '	INITIAL WATER LEVELSWL / Date Measured(SWL) [FT]:19.65 / 6-21-17
WELL DEPTH [FT BGS]: 28.0'	DEPTH OF PUMP INTAKE [FT BGS]: 22.5
(Do <u>NOT</u> Measure Well depth Prior To Purging And Sampling)	
LNAPL: N/O DNAPL: N/M	OTHER OBSERVATIONS: None

SECTION 2 – SA	MPLING EQUIPMENT
CONTROL BOX: QED MP-10	TUBING TYPE: <u>1/4" Water , 1/8" Air</u>
WATER QUALITY METER: Horiba U-50 Series	WATER LEVEL METER: Heron
PUMP TYPE: <u>34</u> " Bladder	PURGE GAS: <u>Air</u>
CONTROL BOX DISCHARGE RATE: <u>3</u>	CONTROL BOX REFILL RATE: <u>3</u>
STABILIZED PUMP RATE (ml/min): 90	STABILIZED DRAWDOWN WATER LEVEL [FT]: 19.65

		SECTIO	DN 3 – WA '	FER QUA	LITY DATA	A MONITORI	NG		
Time	Pumping Rate (ml/min)	Water Level (ft)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Conductivity (mS/cm)	рН	Temp. (C ⁰)	Total Vol. Pumped (ml)
12:14	90	19.65			Pump on –	no measureme	ent		0
12:40	90	19.65	2.35	32	1.1	2.27	7.01	19.26	2,340
12:45	90	19.65	1.86	26	1.0	2.28	6.99	18.57	2,790
12:49	90	19.65	1.79	24	1.2	2.29	6.96	18.11	3,150
12:53	90	19.65	1.68	22	1.1	2.29	6.96	18.01	3,510
12:57	90	19.65	1.62	18	0.8	2.29	6.97	17.91	3,870
	SAMPLE O	BSERVATIO	NS: Clean	r	•	•		•	-
	SECTION 4	- SAMPLE IDF	ENTIFICAT	TION AND	ANALYTI	CAL LABORA	FORY PAR	AMETERS	
		r		T			T T		

 SAMPLE ID #
 DATE / TIME
 SAMPLING METHOD
 ANALYTICAL SCAN(S)

 MW-F
 6-21-17 / 13:00
 Bladder Pump
 VOCs, SVOCs, Metals

LOW-FLOW GROUNDWATER PURGING AND SAMPLING LOG

WELL MW-I

SECTION 1 - SITE AND	WELL INFORMATION
SITE LOCATION 211 Franklin Street PROJECT NAME: C905038 SAMPLE COLLECTOR(S): C. Hampton/Z. Tennies	JOB # <u>4884S-13</u> DATE: <u>6/21/17</u> WEATHER: (indoors)
PID READING IN WELL HEADSPACE (PPM): <u>N/M</u> CASING TYPE: PVC	MEASURING POINT (for water levels): <u>Top of Casing</u> WELL DIAMETER (INCHES): 2
SCREENED INTERVAL [FT BGS]: <u>23.5 – 33.5'</u> WELL DEPTH [FT BGS]: <u>33.5'</u> (Do <u>NOT</u> Measure Well depth Prior To Purging And Sampling)	INITIAL WATER LEVEL SWL / Date Measured (SWL) [FT]: 23.46 / 6-21-17 DEPTH OF PUMP INTAKE [FT BGS]: 28.0
LNAPL: No DNAPL: N/M	OTHER OBSERVATIONS: None
SECTION 2 – SAMP	LING EOUIPMENT
CONTROL BOX: QED MP-10	TUBING TYPE: 1/4" Water , 1/8" Air
WATER QUALITY METER: Horiba U-50 series	WATER LEVEL METER: Solinst
PUMP TYPE: <u>¾" Bladder</u>	PURGE GAS:Air
CONTROL BOX DISCHARGE RATE: 3	CONTROL BOX REFILL RATE: 3
STABILIZED PUMP RATE (ml/min): 125 S	TABILIZED DRAWDOWN WATER LEVEL [FT]: 23.47

		SECTIO	DN 3 – WA '	FER QUA	LITY DATA	A MONITORI	NG		
Time	Pumping Rate (ml/min)	Water Level (ft)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Conductivity (mS/cm)	pН	Temp. (C ⁰)	Total Vol. Pumped (ml)
07:20	125	23.47			Pump on – 1	no measureme	nt		0
07:34	125	23.47	2.15	-94	3.6	1.93	7.06	17.80	1,750
07:37	125	23.47	1.84	-92	5.0	1.94	7.03	17.54	2,125
07:40	125	23.47	1.39	-89	3.5	1.94	6.97	17.13	2,500
07:44	125	23.47	1.17	-93	3.0	1.92	7.06	17.03	2,160
07:47	125	23.47	1.11	-93	2.9	1.92	7.07	16.96	2,430
07:50	125	23.47	0.98	-94	2.5	1.91	7.08	16.94	2,700
	SAMPLE O	BSERVATIO	NS: Clear	r	1			1	JL
	SECTION 4	- SAMPLE IDE	ENTIFICAT	TION AND	ANALYTIC	CAL LABORAT	FORY PAR	AMETERS	5
SAM	PLE ID#	DATE / '	TIME	S	AMPLING N	METHOD	ANA	ALYTICAL	SCAN(S)
	MW-I	6-21-17 /	08:00		Bladder F	ump	,	VOCs, SVOC	, Metals

My Documents\Documents CAH 0001-xxxx\CAH1141

LOW-FLOW GROUNDWATER PURGING AND SAMPLING LOG

WELL MW-J

SECTION 1 - SITE AND WELL INFORMATION				
SITE LOCATION 211 Franklin Street	JOB #4884S-13			
PROJECT NAME: C905038	DATE: <u>6/21/17</u>			
SAMPLE COLLECTOR(S): <u>C. Hampton/Z. Tennies</u>	WEATHER: Sunny, Warm			
PID READING IN WELL HEADSPACE (PPM): <u>N/M</u>	MEASURING POINT (for water levels): Top of Casing			
CASING TYPE: PVC	WELL DIAMETER (INCHES): 2			
SCREENED INTERVAL [FT BGS]: 22.5 – 33.5'	INITIAL WATER LEVELSWL / Date Measured(SWL) [FT]:23.93 / 6-21-17			
WELL DEPTH [FT BGS]: <u>33.5'</u> (Do <u>NOT</u> Measure Well depth Prior To Purging And Sampling)	DEPTH OF PUMP INTAKE [FT BGS]: 28.0'			
LNAPL: No DNAPL: NM OTHER OBSERVATIONS: None				
SECTION 2 – SAMPL	ING EQUIPMENT			
CONTROL BOX: QED MP-10	TUBING TYPE: <u>1/4" Water , 1/8" Air</u>			
WATER QUALITY METER: Horiba U-50 series	WATER LEVEL METER: Heron			
PUMP TYPE: <u>3/4</u> " Bladder	PURGE GAS:			
CONTROL BOX DISCHARGE RATE: _3	CONTROL BOX REFILL RATE: _3			
STABILIZED PUMP RATE (ml/min): 100 ST	TABILIZED DRAWDOWN WATER LEVEL [FT]: 23.93			
CECTION 2 WATER OUAT				
SECTION 3 – WATER QUAL	ITY DATA MONITORING			
Time Pumping Water DO ORP	Turbidity Conductivity pH Temp. Total Vol.			

		SECIR	JNJ = WA	IEK QUA			10		
Time	Pumping Rate (ml/min)	Water Level (ft)	DO (%)	ORP (mv)	Turbidity (NTU)	Conductivity (mS/cm)	рН	Temp. (C ⁰)	Total Vol. Pumped (ml)
10:34	100	23.93			Pump on –	no measureme	nt		0
10:43	100	23.93	21.5	44	0.0	1.26	7.28	17.13	900
10:49	100	23.93	21.5	38	0.0	1.28	7.30	17.69	1,500
10:53	100	23.93	20.9	40	0.0	1.28	7.30	17.59	1,900
10:57	100	23.93	19.8	40	0.0	1.27	7.29	17.65	2,300
11:01	100	23.93	19.8	41	0.0	1.27	7.29	17.73	2,700
11:05	100	23.93	19.3	47	0.0	1.27	7.29	17.74	3,100
		-							
	SAMPLE O	BSERVATIO	NS: Clear	r					
	SECTION 4	- SAMPLE IDE	ENTIFICAT	TON AND) ANALYTI(CAL LABORAT	FORY PAR	RAMETERS	
SAM	PLE ID #	DATE /	ТІМЕ	S	AMPLING 1	METHOD	ANA	ALYTICAL	SCAN(S)
	MW-J	6-21-17 /	11:07		Bladder I	Pump	V	/OCs, SVOCs	, Metals

My Documents\Documents CAH 0001-xxxx\CAH1141

LOW-FLOW GROUNDWATER PURGING AND SAMPLING LOG

WELL MW-L

SECTION 1 - SITE AND WELL INFORMATION				
SITE LOCATION 211 Franklin Street	JOB #4884S-13			
PROJECT NAME: C905038	DATE: <u>6/21/17</u>			
SAMPLE COLLECTOR(S): <u>C. Hampton/Z. Tennies</u>	WEATHER: Sunny, Warm			
PID READING IN WELL HEADSPACE (PPM): <u>N/M</u>	MEASURING POINT (for water levels): <u>Top of Casing</u>			
CASING TYPE: PVC	WELL DIAMETER (INCHES): 2			
SCREENED INTERVAL [FT BGS]: 22 – 34'	INITIAL WATER LEVELSWL / Date Measured(SWL) [FT]:23.62 / 6-21-17			
WELL DEPTH [FT BGS]: <u>34'</u> (Do NOT Measure Well depth Prior To Purging And Sampling)	DEPTH OF PUMP INTAKE [FT BGS]: 28.0			
LNAPL: <u>No</u> DNAPL: <u>N/M</u>	OTHER OBSERVATIONS: None			

SECTION 2 – SAMPLING EQUIPMENT					
CONTROL BOX: QED MP-10	TUBING TYPE: 1/4" Water , 1/8" Air				
WATER QUALITY METER: Horiba U-50 series	WATER LEVEL METER: Solinst				
PUMP TYPE: <u>34" Bladder</u>	PURGE GAS: <u>Air</u>				
CONTROL BOX DISCHARGE RATE: <u>3</u>	CONTROL BOX REFILL RATE: <u>3</u>				
STABILIZED PUMP RATE (ml/min): 90	STABILIZED DRAWDOWN WATER LEVEL [FT]: 24.62				

SECTION 3 – WATER QUALITY DATA MONITORING									
Time	Pumping Rate (ml/min)	Water Level (ft)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Conductivity (mS/cm)	рН	Temp. (C ⁰)	Total Vol. Pumped (ml)
08:55	90	24.62			Pump on –	no measureme	nt		0
09:14	90	24.62	7.26	75	3.0	1.27	7.29	14.89	1,170
09:19	90	24.62	7.40	76	2.5	1.27	7.27	14.11	2,160
09:21	90	24.62	7.39	73	2.2	1.28	7.27	13.60	2,340
09:24	90	24.62	7.22	74	2.2	1.28	7.28	13.51	2,610
09:27	90	24.62	7.03	72	2.1	1.28	7.26	13.41	2,880
	SAMPLE O	BSERVATIO	NS: Class	r					
	SAMPLE O	BSEKVATIU	INS: Clea	r					

SECTION 4 - SAMPLE IDENTIFICATION AND ANALYTICAL LABORATORY PARAMETERS					
SAMPLE ID # DATE / TIME SAMPLING METHOD ANALYTICAL SCAN(S)					
MW-L	6-21-17 / 09:30	Bladder Pump	VOCs, SVOCs, Metals		

LOW-FLOW GROUNDWATER PURGING AND SAMPLING LOG

WELL MW-M

SECTION 1 - SITE AND WELL INFORMATION				
SITE LOCATION 211 Franklin Street	JOB #			
PROJECT NAME: C905038	DATE: <u>6/21/17</u>			
SAMPLE COLLECTOR(S): <u>C. Hampton/Z. Tennies</u>	WEATHER: Sunny, Warm			
PID READING IN WELL HEADSPACE (PPM): N/M	MEASURING POINT (for water levels): Top of Casing			
CASING TYPE: PVC	WELL DIAMETER (INCHES): 2			
SCREENED INTERVAL [FT BGS]: <u>18 – 28'</u>	INITIAL WATER LEVELSWL / Date Measured(SWL) [FT]:20.99 / 6-21-17			
WELL DEPTH [FT BGS]: 28'	DEPTH OF PUMP INTAKE [FT BGS]: 25.5'			
(Do <u>NOT</u> Measure Well depth Prior To Purging And Sampling)				
LNAPL: <u>No</u> DNAPL: <u>N/M</u>	OTHER OBSERVATIONS: Slight petroleum odor			

SECTION 2 – SAMPLING EQUIPMENT					
CONTROL BOX: QED MP-10	TUBING TYPE: <u>1/4" Water , 1/8" Air</u>				
WATER QUALITY METER: Horiba U-50 series	WATER LEVEL METER: Heron OWIP				
PUMP TYPE: <u>3/4</u> " Bladder	PURGE GAS: <u>Air</u>				
CONTROL BOX DISCHARGE RATE: <u>3</u>	CONTROL BOX REFILL RATE: 3				
STABILIZED PUMP RATE (ml/min): 100	STABILIZED DRAWDOWN WATER LEVEL [FT]: 21.10				

	SECTION 3 – WATER QUALITY DATA MONITORING								
Time	Pumping Rate (ml/min)	Water Level (ft)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Conductivity (mS/cm)	рН	Temp. (C ⁰)	Total Vol. Pumped (ml)
14:00	100	21.10			Pump on – I	no measureme	nt		0
14:27	100	21.10	3.49	-58	4.8	2.62	7.06	18.48	2,700
14:31	100	21.10	1.02	-62	5.5	2.65	7.05	17.93	3,100
14:35	100	21.10	0.82	-63	4.6	2.64	7.06	18.04	3,500
14:38	100	21.10	0.55	-66	2.6	2.65	7.05	17.81	3,800
14:42	100	21.10	0.50	-68	2.7	2.64	7.06	18.21	4,200
14:46	100	21.10	0.50	-69	1.4	2.68	7.05	17.80	4,600
	SAMPLE O	BSERVATIO	NS: Clean	r, slight p	etroleum-t	ype odor			
	SECTION 4	- SAMPLE IDE	ENTIFICAT	TON AND	ANALYTIC	CAL LABORAT	FORY PAR	AMETERS	
SAMI	PLE ID #	DATE / '	TIME	S	AMPLING I	METHOD	ANA	ALYTICAL	SCAN(S)
1	MW-M	6-21-17 /	14:47		Bladder I	Pump	VOCs, S	VOCs, Metals	s (MS/MSD)

My Documents\Documents CAH 0001-xxxx\CAH1141

ATTACHMENT H

ANALYTICAL LABORATORY REPORT AND DUSR FOR JUNE 21, 2017 GROUNDWATER SAMPLING EVENT

Spectrum Analytical

Final ReportRevised Report

Report Date: 07-Jul-17 15:36

Laboratory Report SC36327

Day Environmental, Inc. 1563 Lyell Avenue Rochester, NY 14606 Attn: Ray Kampff

Project: 211 Franklin St - Olean, NY Project #: 4884S-13

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Christina White Laboratory Director

Istina O. White

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 47 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order:	SC36327
Project:	211 Franklin St - Olean, NY
Project Number:	48848-13

Laboratory ID	<u>Client Sample ID</u>	Matrix	Date Sampled	Date Received
SC36327-01	MW-I	Ground Water	21-Jun-17 08:00	23-Jun-17 15:11
SC36327-02	MW-L	Ground Water	21-Jun-17 09:30	23-Jun-17 15:11
SC36327-03	MW-F	Ground Water	21-Jun-17 13:06	23-Jun-17 15:11
SC36327-04	MW-M	Ground Water	21-Jun-17 14:47	23-Jun-17 15:11
SC36327-05	FB 062117	Ground Water	21-Jun-17 14:18	23-Jun-17 15:11
SC36327-06	ТВ	Ground Water	21-Jun-17 00:00	23-Jun-17 15:11
SC36327-07	MW-J	Ground Water	21-Jun-17 11:07	23-Jun-17 15:11

CASE NARRATIVE:

Data has been reported to the RDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 2.4 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

SC36327 Narrative:

Low flow collection of samples was indicated on the chain of custody with a specific time for each container. For Sample Login purposes the earliest collection time was used for each unique ID.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Spikes:

1711234-MSD1 Source: SC36327-04

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Magnesium

SW846 8260C

Calibration:

SW846 8260C

Calibration:

1706080

Analyte quantified by quadratic equation type calibration.

1,1,2,2-Tetrachloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,3,5-Trimethylbenzene 2-Hexanone (MBK) 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) Bromochloromethane Bromoform Carbon tetrachloride cis-1,3-Dichloropropene Dibromochloromethane Di-isopropyl ether Ethyl tert-butyl ether m,p-Xylene Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene

This affected the following samples:

1711014-BLK1 1711014-BSD1 FB 062117 MW-F MW-I MW-J MW-L MW-M S705685-ICV1 S705855-CCV1 TB

Laboratory Control Samples:

1711014 BSD

Tert-Butanol / butyl alcohol RPD 25% (20%) is outside individual acceptance criteria.

Spikes:

1711224-MS1 Source: SC36327-04RE1

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Vinyl chloride

SW846 8260C

Spikes:

1711224-MSD1 Source: SC36327-04RE1

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

1,4-Dioxane

Dichlorodifluoromethane (Freon12)

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1,1,2-Tetrachloroethane Carbon tetrachloride

Samples:

```
S705855-CCV1
```

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Acetone (-22.6%) trans-1,4-Dichloro-2-butene (-22.8%)

This affected the following samples:

1711014-BLK1 1711014-BSD1 FB 062117 MW-F MW-I MW-J MW-L MW-M TB

S705945-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1,2-Tetrachloroethane (37.9%) 1,1,1-Trichloroethane (20.8%) 1,2-Dibromo-3-chloropropane (31.1%) 1,3-Dichlorobenzene (25.4%) Bromodichloromethane (30.3%) Carbon tetrachloride (46.5%) Chloromethane (20.9%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Bromoform (49.2%) Dibromochloromethane (34.2%)

This affected the following samples:

1711224-BLK1 1711224-BS1 1711224-BSD1 1711224-MS1 1711224-MSD1

SC36327-02 MW-L

07-Jul-17 15:36

SW846 8260C

Samples:

SC36327-02 MW-L

This compound is a common laboratory contaminant.

Acetone

SW846 8270D

Calibration:

1706036

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol 3-Nitroaniline 4,6-Dinitro-2-methylphenol Aniline Benzidine Carbazole

This affected the following samples:

1710848-BLK1 1710848-BS1 1710848-BSD1 1710848-DUP1 1710848-MS1 1710848-MSD1 FB 062117 MW-F MW-I MW-J MW-L MW-M S705262-ICV1 S705947-CCV1 S705948-CCV1 S706043-CCV1

Laboratory Control Samples:

1710848 BS/BSD

Benzidine percent recoveries (177/150) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

FB 062117 MW-F MW-I MW-J MW-L MW-M

1710848-BS1

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Benzidine

Spikes:

1710848-MS1 Source: SC36327-04

SW846 8270D

Spikes:

1710848-MS1 Source: SC36327-04

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Benzoic acid N-Nitrosodimethylamine Phenol Pyridine

1710848-MSD1 Source: SC36327-04

Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

Benzidine

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Benzoic acid Phenol Pyridine

Samples:

S705947-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Benzidine (-42.6%)

This affected the following samples:

1710848-BLK1 1710848-BSD1 1710848-DUP1 1710848-MS1 1710848-MSD1 MW-F MW-I MW-L MW-L MW-M

S705948-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

3,3'-Dichlorobenzidine (25.2%) 4-Chloroaniline (21.5%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

3-Nitroaniline (24.2%) Aniline (32.8%) Benzidine (59.4%) Carbazole (30.7%)

This affected the following samples:

FB 062117 MW-J

S706043-CCV1

SW846 8270D

Samples:

S706043-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

4-Chloroaniline (27.7%) Benzo (b) fluoranthene (21.1%) Benzo (k) fluoranthene (-24.7%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

3-Nitroaniline (30.3%) Benzidine (20.4%) Carbazole (41.7%)

This affected the following samples:

MW-F

SC36327-03 MW-F

This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Bis(2-ethylhexyl)phthalate

SC36327-03RE1 MW-F

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC36327-05 FB 062117

Acid surrogate recovery outside of control limits. The data was accepted based on valid recovery of remaining two acid surrogates.

Phenol-d5

SW846 8270D TICS

Samples:

SC36327-01 MW-I

(Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.

n-Hexadecanoic Acid

SC36327-03

(Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than

MW-F

10% of the nearest internal standard.

n-Hexadecanoic Acid

SC36327-03RE1 MW-F

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:Day Environmental, Inc.Project:211 Franklin St - Olean, NY / 4884S-13Work Order:SC36327Sample(s) received on:6/23/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	<u>No</u>
Were custody seals present?		\checkmark
Were custody seals intact?		
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark	
Were samples refrigerated upon transfer to laboratory representative?	\checkmark	
Were sample containers received intact?	\checkmark	
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark	
Were samples accompanied by a Chain of Custody document?	\checkmark	
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		
Did sample container labels agree with Chain of Custody document?	\checkmark	
Were samples received within method-specific holding times?	\checkmark	

 \Box

Summary of Hits

ParameterResultFingReporting LimitUnitsAnalytical MethodArsenic0.0019J0.0040mg/lSW846 6010CBarlum0.1630.0050mg/lSW846 6010CMagnesium19.80.2020mg/lSW846 6010CMaphnlalene0.82J1.00µg/lSW846 6200Ctert-Butylbenzene1.461.00µg/lSW846 8260CTab ID:SC36327-02Client D:MW-LParameterResultFingReporting LimitUnitsAnalytical MethodBarium0.1650.0050mg/lSW846 6010CAccione1.78001.J10.0µg/lSW846 6010CAccione1.78001.J10.0µg/lSW846 6010CBis(2-ethylhexyl)phthalate6.794.85µg/lSW846 8200CBis(2-ethylhexyl)phthalate1.27J4.85µg/lSW846 6010CBarium0.02400.0050mg/lSW846 6010CMagnesiam26.60.0200mg/lSW846 6010CBis(2-ethylhexyl)phthalate153F4.90µg/lSW846 6010CBis(2-ethylhexyl)phthalate153F4.90µg/lSW846 8200CBis(2-ethylhexyl)phthalate27.84.90µg/lSW846 8200Bis(2-ethylhexyl)phthalate20.2D24.5µg/lSW846 8200Bis(2-ethylhexyl)phthalate20.2D24.5µg/lSW846 8200Bis(2-ethylhexyl)phthalate <th>Lab ID: SC36327-01</th> <th></th> <th></th> <th>Client ID: MW-I</th> <th></th> <th></th>	Lab ID: SC36327-01			Client ID: MW-I		
Barium 0.163 0.0050 mg/l SW846 6010C Magnesium 19.8 0.2000 mg/l SW846 6010C Naphtalene 0.82 J 1.00 µg/l SW846 6010C Lat JU: SG3527-02 Cient D: MW-L SW846 8260C Maine Lat JU: SG3527-02 Cient D: MW-L Maine Maine SW846 6010C Barium 0.165 0.0200 mg/l SW846 6010C SW846 6010C Agaesium 1.16 0.0200 mg/l SW846 6010C SW846 6010C Accrone 1.78 001,J 1.00 µg/l SW846 6010C Accrone 1.78 001,J 1.00 µg/l SW846 6010C Accrone 1.27 J 4.85 µg/l SW846 6010C Barium 0.240 0.0050 mg/l SW846 6010C Barium 0.240 0.0050 mg/l SW846 6010C Barium 0.47 J 1.00 µg/l SW846 8270D <t< th=""><th>Parameter</th><th>Result</th><th>Flag</th><th>Reporting Limit</th><th>Units</th><th>Analytical Method</th></t<>	Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Magnesium 19.8 0.0200 mg/l SW846 6010C Naphthalene 0.82 J 1.00 μ g/l SW846 620C tert-Butylbenzene 1.46 1.00 μ g/l SW846 8260C Lab D: SC36327-02 Citent D: Multical Method Parameter Result Fag Reporting Limit Unis Analytical Method Barium 0.165 0.0050 mg/l SW846 6010C Aganesium 2.10 0.0200 mg/l SW846 6010C Aganesium 1.78 O01.J 10.0 μ g/l SW846 6010C Actone 1.78 O01.J 10.0 μ g/l SW846 6010C Barium 0.0240 0.0050 mg/l SW846 6010C Barium 0.62 0.0200 mg/l	Arsenic	0.0019	J	0.0040	mg/l	SW846 6010C
Naphthalene 0.82 J 1.00 µg/l SW346 8260C tert-Butylbenzene 1.46 1.00 µg/l SW346 8260C Lab ID: SG36327-02 Client ID: Mut. Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.165 0.0050 mg/l SW346 6010C Acetone 1.78 0.02200 mg/l SW346 6010C Acetone 1.78 0.12 J 4.85 µg/l SW346 8270D Di-n-octyl phthalate 1.27 J 4.85 µg/l SW346 8270D Bis/C-ethylhexylphthalate 1.27 J 4.85 µg/l SW346 8270D Barium 0.0240 0.0050 mg/l SW346 8270D SW346 6010C Magnesium 0.240 0.0050 mg/l SW346 6010C SW346 8270D Bis/loc-thylhexylphthalate 153 E 4.90 µg/l SW346 8270D Bis/loc-thylhexylphthalate 123 E	Barium	0.163		0.0050	mg/l	SW846 6010C
terl-Butylbenzene 1.46 1.00 µg/l SW346 8260C Lab ID: SC36327-02 Client ID: MW-L Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.165 0.0050 mg/l SW346 6010C Agenesium 21.0 0.0200 mg/l SW346 6010C Acetone 1.78 001, J 1.0.0 µg/l SW346 8270D Bis(2-ethylphexyl)phthalate 6.79 4.85 µg/l SW346 8270D Di-n-octyl phthalate 1.27 J 4.85 µg/l SW346 8270D Barium 0.0240 0.0050 mg/l SW346 6010C Bis(2-ethylhexyl)phthalate 153 E 4.90 µg/l SW346 8270D Di-n-octyl phthalate 27.8 4.90 µg/l SW346 8270D Di-n-octyl phthalate 202 D 24.5 µg/l SW346 8270D <t< td=""><td>Magnesium</td><td>19.8</td><td></td><td>0.0200</td><td>mg/l</td><td>SW846 6010C</td></t<>	Magnesium	19.8		0.0200	mg/l	SW846 6010C
Lab ID: SC36327-02 Client ID: MW-L Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.165 0.0200 mg/l SW846 6010C Magnesium 21.0 0.0200 mg/l SW846 6010C Acetone 1.78 001, J 10.0 µg/l SW846 620C Bis(2-ethylhexyl)phthalate 6.79 4.85 µg/l SW846 8270D Di-n-octyl phthalate 1.27 J 4.85 µg/l SW846 620C Barium 0.0240 0.0050 mg/l SW846 6010C Magnesium 0.6240 0.0020 mg/l SW846 6010C Magnesium 0.64 0.0200 mg/l SW846 6010C Magnesium 0.64 1.00 µg/l SW846 620D Bis(2-ethylhexyl)phthalate 153 E 4.90 µg/l SW846 8270D Di-n-octyl phthalate 27.8 4.90 µg/l SW846 8270D Bis(2-ethylhexyl)phthalate 20	Naphthalene	0.82	J	1.00	µg/l	SW846 8260C
Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.165 0.0050 mg/l SW846 6010C Magnesium 21.0 0.0200 mg/l SW846 6010C Acetone 1.78 O01, J 10.0 µg/l SW846 620C Bis(2-ethylhexyl)phthalate 6.79 4.85 µg/l SW846 8270D Di-n-octyl phthalate 1.27 J 4.85 µg/l SW846 8270D Lab ID: SC36327-03 Client ID: MW-F Termeter Result Flag Reporting Limit Units Analytical Method Barium 0.0240 0.0050 mg/l SW846 6010C Magnesium 2.6.6 0.0200 mg/l SW846 6010C Magnesium 2.6.6 0.0200 mg/l SW846 620C Bis(2-ethylhexyl)phthalate 153 E 4.90 µg/l SW846 8270D Di-n-octyl phthalate 27.8 4.90 µg/l SW846 8270D Bis(2-ethylhexyl)phtha	tert-Butylbenzene	1.46		1.00	µg/l	SW846 8260C
Barium 0.165 0.0050 mg/l SW46 6010C Magnesium 21.0 0.0200 mg/l SW46 6010C Acetone 1.78 001, J 10.0 \mug/l SW846 6010C Bis(2-ethylhexyl)phthalate 6.79 4.85 \mug/l SW846 8270D Di-n-octyl phthalate 1.27 J 4.85 \mug/l SW846 8270D Lab ID: SC36327-03 Client ID: MW-F Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.0240 0.0050 mg/l SW846 6010C Magnesium Bai(2-ethylhexyl)phthalate 153 E 4.90 \mug/l SW846 6010C Bis(2-ethylhexyl)phthalate 153 E 4.90 \mug/l SW846 6010C Isi(2-ethylhexyl)phthalate 27.8 4.90 \mug/l SW846 8270D Di-n-octyl phthalate 27.9 D 24.5 \mug/l SW846 8270D Bis(2-ethylhexyl)phthalate 202 D 24.5 <th>Lab ID: SC36327-02</th> <th></th> <th></th> <th>Client ID: MW-L</th> <th></th> <th></th>	Lab ID: SC36327-02			Client ID: MW-L		
Magnesium 21.0 0.0200 mg/l SW846 6010C Acetone 1.78 001, J 10.0 μ g/l SW846 8260C Bis(2-ethylhexyl)phthalate 6.79 4.85 μ g/l SW846 8270D Di-n-octyl phthalate 1.27 J 4.85 μ g/l SW846 8270D Lab ID: SC36327-03 Cient ID: MW-F Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.0240 0.0050 mg/l SW846 6010C Magnesium 26.6 0.0200 mg/l SW846 8200D Bis(2-ethylhexyl)phthalate 153 E 4.90 μ g/l SW846 8270D Di-n-octyl phthalate 27.8 4.90 μ g/l SW846 8270D Di-n-octyl phthalate 202 D 24.5 μ g/l SW846 8270D Bis(2-ethylhexyl)phthalate 202 D 24.5 μ g/l SW846 8270D Di-n-octyl phthalate 202 D 24.5 μ g/l SW846 8270D Di-n-octyl phthalate 202 D	Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Actione 1.78 O01, J 10.0 $\mu g/l$ SW846 8260C Bis(2-ethylhexyl)phthalate 6.79 4.85 $\mu g/l$ SW846 8270D Di-n-octyl phthalate 1.27 J 4.85 $\mu g/l$ SW846 8270D Lab ID: SC36327-03 Client ID: MW-F Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.0240 0.0050 mg/l SW846 6010C Magnesium 26.6 0.0200 mg/l SW846 8260C Bis(2-ethylhexyl)phthalate 153 E 4.90 $\mu g/l$ SW846 8270D Di-n-octyl phthalate 27.8 4.90 $\mu g/l$ SW846 8270D Di-n-octyl phthalate 202 D 24.5 $\mu g/l$ SW846 8270D Bis(2-ethylhexyl)phthalate 202 D 24.5 $\mu g/l$ SW846 8270D Di-n-octyl phthalate 202 D 24.5 $\mu g/l$ SW846 8270D Di-n-octyl phthalate 202 D 24.5 $\mu g/l$ SW846 8270D Di-n-octyl phthalate <th< td=""><td>Barium</td><td>0.165</td><td></td><td>0.0050</td><td>mg/l</td><td>SW846 6010C</td></th<>	Barium	0.165		0.0050	mg/l	SW846 6010C
Bis(2-ethylhexyl)phthalate 6.79 4.85 $\mu g/1$ SW846 8270D Di-n-octyl phthalate 1.27 J 4.85 $\mu g/1$ SW846 8270D Lab ID: SC36327-03 Client ID: MW-F SW846 8270D Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.0240 0.0050 mg/1 SW846 6010C Magnesium 26.6 0.0200 mg/1 SW846 820D Bis(2-ethylhexyl)phthalate 153 E 4.90 $\mu g/1$ SW846 8270D Di-n-octyl phthalate 27.8 4.90 $\mu g/1$ SW846 8270D Lab ID: SC36327-03RE1 Client ID: MW-F Parameter Result Flag Reporting Limit Units Analytical Method Bis(2-ethylhexyl)phthalate 202 D 24.5 $\mu g/1$ SW846 8270D Di-n-octyl phthalate 202 D 24.5 $\mu g/1$ SW846 8270D Di-n-octyl phthalate 202 D 24.5 $\mu g/1$ SW846 8270D Di-n-octyl phthalate	Magnesium	21.0		0.0200	mg/l	SW846 6010C
Di-n-octyl pithalate 1.27 J 4.85 μg/l SW846 8270D Lab ID: SC36327-03 Client ID: MW-F Parameter Result Fag Reporting Limit Units Analytical Method Barium 0.0240 0.0050 mg/l SW846 6010C Magnesium 26.6 0.0200 mg/l SW846 6010C tert-Butylbenzene 0.47 J 1.00 µg/l SW846 8270D Bis(2-ethylhexyl)phthalate 153 E 4.90 µg/l SW846 8270D Di-n-octyl phthalate 27.8 4.90 µg/l SW846 8270D Bis(2-ethylhexyl)phthalate 202 D 24.5 µg/l SW846 8270D Di-n-octyl phthalate 202 D 24.5 µg/l SW846 8270D Bis(2-ethylhexyl)phthalate 202 D 24.5 µg/l SW846 8270D Di-n-octyl phthalate 37.9 D 24.5 µg/l SW846 8270D Barlor: SC36327-04 Client ID:	Acetone	1.78	O01, J	10.0	µg/l	SW846 8260C
Lab ID: SC36327-03 Client ID: MW-F Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.0240 0.0050 mg/l SW846 6010C Magnesium 26.6 0.0200 mg/l SW846 6010C Magnesium 26.6 0.0200 mg/l SW846 6010C tert-Butylbenzene 0.47 J 1.00 µg/l SW846 8270D Di-n-octyl phthalate 153 E 4.90 µg/l SW846 8270D Di-n-octyl phthalate 27.8 4.90 µg/l SW846 8270D Bis(2-ethylhexyl)phthalate 202 D 24.5 µg/l SW846 8270D Bis(2-ethylhexyl)phthalate 202 D 24.5 µg/l SW846 8270D Di-n-octyl phthalate 202 D 24.5 µg/l SW846 8270D Di-n-octyl phthalate 37.9 D 24.5 µg/l SW846 8270D Barium 0.432 0.0050 mg/l SW846 6010C <td>Bis(2-ethylhexyl)phthalate</td> <td>6.79</td> <td></td> <td>4.85</td> <td>µg/l</td> <td>SW846 8270D</td>	Bis(2-ethylhexyl)phthalate	6.79		4.85	µg/l	SW846 8270D
ParameterResultFlagReporting LimitUnitsAnalytical MethodBarium0.02400.0050mg/lSW846 6010CMagnesium26.60.0200mg/lSW846 6010Ctert-Butylbenzene0.47J1.00µg/lSW846 6020CBis(2-ethylhexyl)phthalate153E4.90µg/lSW846 8270DDi-n-octyl phthalate27.84.90µg/lSW846 8270DLab ID:SC36327-03RE1Client ID:MW-FParameterResultFlagReporting LimitUnitsAnalytical MethodBis(2-ethylhexyl)phthalate202D24.5µg/lSW846 8270DDi-n-octyl phthalate202D24.5µg/lSW846 8270DDi-n-octyl phthalate37.9D24.5µg/lSW846 8270DDi-n-octyl phthalate202D24.5µg/lSW846 8270DDi-n-octyl phthalate37.9D24.5µg/lSW846 8270DDi-n-octyl phthalate21.80.0050mg/lSW846 6010CMagnesium0.4320.0050mg/lSW846 6010CMagnesium21.80.200mg/lSW846 6010C1,2,4-Trimethylbenzene0.41J1.00µg/lSW846 8260CNaphthalene0.81J1.00µg/lSW846 8260Csec-Butylbenzene0.37J1.00µg/lSW846 8260Ctert-Butylbenzene2.391.00µg/lSW846 8260C <td>Di-n-octyl phthalate</td> <td>1.27</td> <td>J</td> <td>4.85</td> <td>µg/l</td> <td>SW846 8270D</td>	Di-n-octyl phthalate	1.27	J	4.85	µg/l	SW846 8270D
Barium 0.0240 0.0050 mg/l SW846 6010C Magnesium 26.6 0.0200 mg/l SW846 6010C tert-Butylbenzene 0.47 J 1.00 µg/l SW846 820C Bis(2-ethylhexyl)phthalate 153 E 4.90 µg/l SW846 8270D Di-n-octyl phthalate 27.8 4.90 µg/l SW846 8270D Lab ID: SC36327-03RE1 Client ID: MW-F Parameter Result Flag Reporting Limit Units Analytical Method Bis(2-ethylhexyl)phthalate 202 D 24.5 µg/l SW846 8270D Di-n-octyl phthalate 37.9 D 24.5 µg/l SW846 8270D Di-n-octyl phthalate 37.9 D 24.5 µg/l SW846 8270D Lab ID: SC36327-04 Client ID: MW-M Method Magnesium Barium 0.432 0.0050 mg/l SW846 6010C Magnesium 1,2,4-Trimethylbenzene 0.44 J	Lab ID: SC36327-03			Client ID: MW-F		
Magnesium 26.6 0.0200 mg/l SW846 6010C tert-Butylbenzene 0.47 J 1.00 µg/l SW846 8260C Bis(2-ethylhexyl)phthalate 153 E 4.90 µg/l SW846 8270D Di-n-octyl phthalate 27.8 4.90 µg/l SW846 8270D Lab ID: SC36327-03RE1 Client ID: MW-F Parameter Result Flag Reporting Limit Units Analytical Method Bis(2-ethylhexyl)phthalate 202 D 24.5 µg/l SW846 8270D Di-n-octyl phthalate 37.9 D 24.5 µg/l SW846 8270D Di-n-octyl phthalate 37.9 D 24.5 µg/l SW846 8270D Lab ID: SC36327-04 E Client ID: MW-F SW846 8270D Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.432 0.0050 mg/l SW846 6010C Magnesium 21.8 0.0200	Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
tert-Butylbenzene 0.47 J 1.00 μg/l SW846 8260C Bis(2-ethylhexyl)phthalate 153 E 4.90 μg/l SW846 8270D Di-n-oetyl phthalate 27.8 4.90 μg/l SW846 8270D Lab ID: SC36327-03RE1 Client ID: MW-F Parameter Result Flag Reporting Limit Units Analytical Method Bis(2-ethylhexyl)phthalate 202 D 24.5 μg/l SW846 8270D Di-n-oetyl phthalate 37.9 D 24.5 μg/l SW846 8270D Lab ID: SC36327-04 E Client ID: MW-M SW846 8270D Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.432 0.0050 mg/l SW846 6010C Magnesium 21.8 0.0200 mg/l SW846 8260C Naphthalene 0.81 J 1.00 µg/l SW846 8260C sec-Butylbenzene 0.37 J <	Barium	0.0240		0.0050	mg/l	SW846 6010C
Bis(2-ehylhexyl)phthalate153E4.90µg/lSW846 8270DDi-n-octyl phthalate27.84.90µg/lSW846 8270DLab ID:SC36327-03RE1Client ID:MW-FParameterResultFlagReporting LimitUnitsAnalytical MethodBis(2-ethylhexyl)phthalate202D24.5µg/lSW846 8270DDi-n-octyl phthalate37.9D24.5µg/lSW846 8270DDi-n-octyl phthalate37.9D24.5µg/lSW846 8270DBarium0.4320.0050mg/lSW846 6010CBarium0.4320.0050mg/lSW846 6010CMagnesium21.80.0200mg/lSW846 8260CNaphthalene0.81J1.00µg/lSW846 8260CSec-Butylbenzene0.37J1.00µg/lSW846 8260Ctert-Butylbenzene2.39J1.00µg/lSW846 8260Ctert-Butylbenzene0.37J1.00µg/lSW846 8260C	Magnesium	26.6		0.0200	mg/l	SW846 6010C
Di-n-octyl phthalate27.84.90μg/lSW846 8270DLab ID:SC36327-03RE1Client ID:MW-FParameterResultFlagReporting LimitUnitsAnalytical MethodBis(2-ethylhexyl)phthalate202D24.5μg/lSW846 8270DDi-n-octyl phthalate37.9D24.5μg/lSW846 8270DLab ID:SC36327-04Client ID:MW-MParameterResultFlagReporting LimitUnitsAnalytical MethodBarium0.4320.0050mg/lSW846 6010CMagnesium21.80.0200mg/lSW846 6010C1,2,4-Trimethylbenzene0.44J1.00μg/lSW846 8260CNaphthalene0.37J1.00μg/lSW846 8260Ctert-Butylbenzene0.37J1.00μg/lSW846 8260Ctert-Butylbenzene2.39I.00μg/lSW846 8260C	tert-Butylbenzene	0.47	J	1.00	µg/l	SW846 8260C
Lab ID:SC36327-03RE1Client ID:MW-FParameterResultFlagReporting LimitUnitsAnalytical MethodBis(2-ethylhexyl)phthalate202D24.5µg/lSW846 8270DDi-n-octyl phthalate37.9D24.5µg/lSW846 8270DLab ID:SC36327-04Client ID:MW-MParameterResultFlagReporting LimitUnitsAnalytical MethodBarium0.4320.0050mg/lSW846 6010CMagnesium21.80.0200mg/lSW846 6010C1,2,4-Trimethylbenzene0.44J1.00µg/lSW846 8260CNaphthalene0.81J1.00µg/lSW846 8260Csec-Butylbenzene0.37J1.00µg/lSW846 8260Ctert-Butylbenzene2.39I.00µg/lSW846 8260C	Bis(2-ethylhexyl)phthalate	153	Е	4.90	µg/l	SW846 8270D
ParameterResultFlagReporting LimitUnitsAnalytical MethodBis(2-ethylhexyl)phthalate202D24.5µg/lSW846 8270DDi-n-octyl phthalate37.9D24.5µg/lSW846 8270DLab ID:SC36327-04Client ID:MW-MParameterResultFlagReporting LimitUnitsAnalytical MethodBarium0.4320.0050mg/lSW846 6010CMagnesium21.80.0200mg/lSW846 6010C1,2,4-Trimethylbenzene0.44J1.00µg/lSW846 8260CNaphthalene0.81J1.00µg/lSW846 8260Csec-Butylbenzene0.37J1.00µg/lSW846 8260Ctert-Butylbenzene2.391.00µg/lSW846 8260C	Di-n-octyl phthalate	27.8		4.90	μg/l	SW846 8270D
Bis(2-ethylhexyl)phthalate 202 D 24.5 $\mu g/l$ SW846 8270D Di-n-octyl phthalate 37.9 D 24.5 $\mu g/l$ SW846 8270D Lab ID: SC36327-04 Client ID: MW-M Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.432 0.0050 mg/l SW846 6010C Magnesium 21.8 0.0200 mg/l SW846 8260C Naphthalene 0.81 J 1.00 $\mu g/l$ SW846 8260C sec-Butylbenzene 0.37 J 1.00 $\mu g/l$ SW846 8260C tert-Butylbenzene 2.39 1.00 $\mu g/l$ SW846 8260C	Lab ID: SC36327-03RE1			Client ID: MW-F		
Di-n-octyl phthalate 37.9 D 24.5 μg/l SW846 8270D Lab ID: SC36327-04 Client ID: MW-M Parameter Result Flag Reporting Limit Units Analytical Method Barium 0.432 0.0050 mg/l SW846 6010C Magnesium 21.8 0.0200 mg/l SW846 6010C 1,2,4-Trimethylbenzene 0.44 J 1.00 μg/l SW846 8260C Naphthalene 0.81 J 1.00 μg/l SW846 8260C sec-Butylbenzene 0.37 J 1.00 μg/l SW846 8260C tert-Butylbenzene 2.39 1.00 μg/l SW846 8260C	Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Lab ID:SC36327-04Client ID:MW-MParameterResultFlagReporting LimitUnitsAnalytical MethodBarium0.4320.0050mg/lSW846 6010CMagnesium21.80.0200mg/lSW846 6010C1,2,4-Trimethylbenzene0.44J1.00µg/lSW846 8260CNaphthalene0.81J1.00µg/lSW846 8260Csec-Butylbenzene0.37J1.00µg/lSW846 8260Ctert-Butylbenzene2.391.00µg/lSW846 8260C	Bis(2-ethylhexyl)phthalate	202	D	24.5	μg/l	SW846 8270D
ParameterResultFlagReporting LimitUnitsAnalytical MethodBarium0.4320.0050mg/lSW846 6010CMagnesium21.80.0200mg/lSW846 6010C1,2,4-Trimethylbenzene0.44J1.00µg/lSW846 8260CNaphthalene0.81J1.00µg/lSW846 8260Csec-Butylbenzene0.37J1.00µg/lSW846 8260Ctert-Butylbenzene2.391.00µg/lSW846 8260C	Di-n-octyl phthalate	37.9	D	24.5	μg/l	SW846 8270D
Barium 0.432 0.0050 mg/l SW846 6010C Magnesium 21.8 0.0200 mg/l SW846 6010C 1,2,4-Trimethylbenzene 0.44 J 1.00 µg/l SW846 8260C Naphthalene 0.81 J 1.00 µg/l SW846 8260C sec-Butylbenzene 0.37 J 1.00 µg/l SW846 8260C tert-Butylbenzene 2.39 1.00 µg/l SW846 8260C	Lab ID: SC36327-04			Client ID: MW-M		
Magnesium21.80.0200mg/lSW846 6010C1,2,4-Trimethylbenzene0.44J1.00µg/lSW846 8260CNaphthalene0.81J1.00µg/lSW846 8260Csec-Butylbenzene0.37J1.00µg/lSW846 8260Ctert-Butylbenzene2.391.00µg/lSW846 8260C	Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
1,2,4-Trimethylbenzene0.44J1.00µg/lSW846 8260CNaphthalene0.81J1.00µg/lSW846 8260Csec-Butylbenzene0.37J1.00µg/lSW846 8260Ctert-Butylbenzene2.391.00µg/lSW846 8260C	Barium	0.432		0.0050	mg/l	SW846 6010C
Naphthalene 0.81 J 1.00 µg/l SW846 8260C sec-Butylbenzene 0.37 J 1.00 µg/l SW846 8260C tert-Butylbenzene 2.39 1.00 µg/l SW846 8260C	Magnesium	21.8		0.0200	mg/l	SW846 6010C
sec-Butylbenzene 0.37 J 1.00 μg/l SW846 8260C tert-Butylbenzene 2.39 1.00 μg/l SW846 8260C	1,2,4-Trimethylbenzene	0.44	J	1.00	µg/l	SW846 8260C
tert-Butylbenzene 2.39 1.00 µg/l SW846 8260C	Naphthalene	0.81	J	1.00	µg/l	SW846 8260C
	sec-Butylbenzene	0.37	J	1.00	µg/l	SW846 8260C
	tert-Butylbenzene	2.39		1.00	μg/l	SW846 8260C
Benzoic acid 0.860 J 5.00 µg/l SW846 8270D	Benzoic acid	0.860	J	5.00	μg/l	SW846 8270D
Bis(2-ethylhexyl)phthalate 1.04 J 5.00 µg/l SW846 8270D	Bis(2-ethylhexyl)phthalate	1.04	J	5.00	µg/l	SW846 8270D

Lab ID: SC36327-05

Client ID: FB 062117

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Magnesium	0.0120	J	0.0200	mg/l	SW846 6010C
1,2,4-Trimethylbenzene	0.46	J	1.00	μg/l	SW846 8260C
m,p-Xylene	0.77	J	2.00	μg/l	SW846 8260C
Methylene chloride	5.10		2.00	μg/l	SW846 8260C
Toluene	0.37	J	1.00	μg/l	SW846 8260C
Bis(2-ethylhexyl)phthalate	5.54		5.05	μg/l	SW846 8270D
Di-n-octyl phthalate	1.08	J	5.05	µg/l	SW846 8270D
Lab ID: SC36327-06			Client ID: TB		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Methylene chloride	0.75	J	2.00	µg/l	SW846 8260C
Lab ID: SC36327-07			Client ID: MW-J		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Barium	0.179		0.0050	mg/l	SW846 6010C
Magnesium	18.9		0.0200	mg/l	SW846 6010C
Bis(2-ethylhexyl)phthalate	2.48	J	4.95	μg/l	SW846 8270D
Di-n-octyl phthalate	0.653	J	4.95	μg/l	SW846 8270D

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Id MW-I SC36327-	lentification			<u>Client F</u> 4884	Project # S-13		<u>Matrix</u> Ground Wa		ection Date JJun-17 08			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	i- C d-												
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00	U	µg/l	1.00	0.53	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	х
67-64-1	Acetone	< 10.0	U	µg/l	10.0	0.80	1	"	"		"	"	х
107-13-1	Acrylonitrile	< 0.50	U	µg/l	0.50	0.47	1		"	"	"	"	Х
71-43-2	Benzene	< 1.00	U	µg/l	1.00	0.28	1		"	"	"	"	Х
108-86-1	Bromobenzene	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	Х
74-97-5	Bromochloromethane	< 1.00	U	µg/l	1.00	0.34	1	"	"	"	"	"	Х
75-27-4	Bromodichloromethane	< 0.50	U	µg/l	0.50	0.42	1	"	"	"	"		Х
75-25-2	Bromoform	< 1.00	U	µg/l	1.00	0.42	1		"		"		х
74-83-9	Bromomethane	< 2.00	U	µg/l	2.00	0.90	1		"		"		х
78-93-3	2-Butanone (MEK)	< 2.00	U	μg/l	2.00	1.07	1			"	"	"	х
104-51-8	n-Butylbenzene	< 1.00	U	µg/l	1.00	0.41	1	"			"		х
135-98-8	sec-Butylbenzene	< 1.00	U	µg/l	1.00	0.33	1	"			"		х
98-06-6	tert-Butylbenzene	1.46		µg/l	1.00	0.32	1	"			"		х
75-15-0	Carbon disulfide	< 2.00	U	µg/l	2.00	0.41	1	"			"		х
56-23-5	Carbon tetrachloride	< 1.00	U	µg/l	1.00	0.44	1	"	"		"		х
108-90-7	Chlorobenzene	< 1.00	U	µg/l	1.00	0.25	1	"	"		"		х
75-00-3	Chloroethane	< 2.00	U	µg/l	2.00	0.59	1	"	"		"		х
67-66-3	Chloroform	< 1.00	U	µg/l	1.00	0.33	1	"	"		"		х
74-87-3	Chloromethane	< 2.00	U	µg/l	2.00	0.37	1	"	"		"		х
95-49-8	2-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1	"	"	"	"		х
106-43-4	4-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1	"	"		"		х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00	U	µg/l	2.00	0.86	1	"	"	"	"	"	х
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.32	1	"			"		х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	µg/l	0.50	0.20	1	"	"		"		х
74-95-3	Dibromomethane	< 1.00	U	µg/l	1.00	0.31	1	"	"		"		х
95-50-1	1,2-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.28	1	"	"		"		х
541-73-1	1,3-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.31	1	"	"		"		х
106-46-7	1,4-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.27	1	"	"		"		х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00	U	µg/l	2.00	0.58	1	"	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 1.00	U	µg/l	1.00	0.32	1	"			"		х
107-06-2	1,2-Dichloroethane	< 1.00	U	µg/l	1.00	0.28	1	"			"		х
75-35-4	1,1-Dichloroethene	< 1.00	U	µg/l	1.00	0.69	1	"			"		х
156-59-2	cis-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.33	1	"			"		х
156-60-5	trans-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.38	1	"			"		х
78-87-5	1,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.29	1	"			"		х
142-28-9	1,3-Dichloropropane	< 1.00	U	µg/l	1.00	0.21	1	"	"		"	"	х
594-20-7	2,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.42	1	"			"	"	х
563-58-6	1,1-Dichloropropene	< 1.00	U	µg/l	1.00	0.58	1	"			"	"	х
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.36	1	"	"	"	"	"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.35	1	"	"		"	"	х
100-41-4	Ethylbenzene	< 1.00	U	μg/l	1.00	0.33	1	"	"		"	"	х
87-68-3	Hexachlorobutadiene	< 0.50	U	μg/l	0.50	0.47	1	"	"		"	"	х
591-78-6	2-Hexanone (MBK)	< 2.00	U	μg/l	2.00	0.53	1				"		х

<u>Sample Ic</u> MW-I SC36327-	lentification 01				<u>Project #</u> 4S-13		<u>Matrix</u> Ground Wa		ection Date -Jun-17 08			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>											
98-82-8	Isopropylbenzene	< 1.00	U	µg/l	1.00	0.36	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	x
99-87-6	4-Isopropyltoluene	< 1.00	U	µg/l	1.00	0.28	1	"	"		"	"	Х
1634-04-4	Methyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.24	1	"	"		"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00	U	µg/l	2.00	0.52	1	"	"	u	"	"	х
75-09-2	Methylene chloride	< 2.00	U	µg/l	2.00	0.66	1	"	"		"	"	Х
91-20-3	Naphthalene	0.82	J	µg/l	1.00	0.35	1	"	"		"		Х
103-65-1	n-Propylbenzene	< 1.00	U	µg/l	1.00	0.34	1	"	"		"		Х
100-42-5	Styrene	< 1.00	U	µg/l	1.00	0.40	1	"			"	"	х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.00	U	µg/l	1.00	0.38	1	"	"		"		Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50	0.33	1	"	"		"	"	Х
127-18-4	Tetrachloroethene	< 1.00	U	µg/l	1.00	0.57	1	"	"		"	"	х
108-88-3	Toluene	< 1.00	U	µg/l	1.00	0.30	1	"	"		"	"	х
87-61-6	1,2,3-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1	"	"		"		Х
120-82-1	1,2,4-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1	"	"		"	"	Х
108-70-3	1,3,5-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.30	1	"	"		"	"	
71-55-6	1,1,1-Trichloroethane	< 1.00	U	µg/l	1.00	0.51	1	"			"	"	х
79-00-5	1,1,2-Trichloroethane	< 1.00	U	µg/l	1.00	0.33	1	"			"		Х
79-01-6	Trichloroethene	< 1.00	U	µg/l	1.00	0.50	1	"			"	"	х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	µg/l	1.00	0.49	1	"	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.00	U	µg/l	1.00	0.29	1	"	"		"		Х
95-63-6	1,2,4-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.36	1	"	"		"		Х
108-67-8	1,3,5-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.43	1	"	"		"		Х
75-01-4	Vinyl chloride	< 1.00	U	µg/l	1.00	0.47	1	"			"		Х
179601-23-1	m,p-Xylene	< 2.00	U	µg/l	2.00	0.38	1	"			"		Х
95-47-6	o-Xylene	< 1.00	U	µg/l	1.00	0.28	1	"			"		Х
109-99-9	Tetrahydrofuran	< 2.00	U	µg/l	2.00	1.06	1	"			"		
60-29-7	Ethyl ether	< 1.00	U	µg/l	1.00	0.37	1	"	"		"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.00	U	µg/l	1.00	0.49	1	"			"		Х
637-92-3	Ethyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.33	1	"			"	"	х
108-20-3	Di-isopropyl ether	< 1.00	U	µg/l	1.00	0.29	1	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0	U	µg/l	10.0	5.90	1	"	"	"	"	"	Х
123-91-1	1,4-Dioxane	< 20.0	U	µg/l	20.0	11.4	1	"	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.00	U	µg/l	5.00	0.82	1	n	"	"	"	"	Х
64-17-5	Ethanol	< 200	U	µg/l	200	30.9	1	"	"		"	"	х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	80 %		"	"		"	"	
2037-26-5	Toluene-d8	101			70-13	80 %		"	"		"	"	
17060-07-0	1,2-Dichloroethane-d4	101			70-13	80 %		"	"		"	"	
1868-53-7	Dibromofluoromethane	102			70-13			"	"		"	"	
<u>Ten</u> tativel [,]	y Identified Compounds by												
	Tentatively Identified Compounds	None found		µg/l			1	SW846 8260C TICs	"		EK	"	
Semivolati	le Organic Compounds by (GCMS											
Semivolat	ile Organic Compounds												

Sample Id MW-I SC36327	dentification -01				Project <u>#</u> IS-13		<u>Matrix</u> Ground Wa		ection Date I-Jun-17 08			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
<u>Semivola</u>	ile Organic Compounds by tile Organic Compounds by method SW846 3510C	GCMS											
83-32-9	Acenaphthene	< 4.81	U	µg/l	4.81	0.664	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	в х
208-96-8	Acenaphthylene	< 4.81	U	µg/l	4.81	0.657	1	"		"	"	"	х
62-53-3	Aniline	< 4.81	U	µg/l	4.81	1.70	1	"			"	"	х
120-12-7	Anthracene	< 4.81	U	µg/l	4.81	0.585	1	"		"	"	"	х
103-33-3	Azobenzene/Diphenyldiaz ene	< 4.81	U	µg/l	4.81	0.719	1	"	"	"	"	"	
92-87-5	Benzidine	< 4.81	U	µg/l	4.81	0.860	1	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 4.81	U	µg/l	4.81	0.515	1	"	"	"	"	"	х
50-32-8	Benzo (a) pyrene	< 4.81	U	µg/l	4.81	0.540	1	"	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	< 4.81	U	µg/l	4.81	0.420	1	"	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	< 4.81	U	µg/l	4.81	0.510	1	"	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	< 4.81	U	µg/l	4.81	0.462	1	"	"	"	"	"	Х
65-85-0	Benzoic acid	< 4.81	U	µg/l	4.81	0.507	1	"	"	"	"	"	Х
100-51-6	Benzyl alcohol	< 4.81	U	µg/l	4.81	0.750	1	"	"	"	"		Х
111-91-1	Bis(2-chloroethoxy)metha ne	< 4.81	U	µg/l	4.81	0.640	1	"	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	< 4.81	U	µg/l	4.81	0.706	1	"	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ethe r	< 4.81	U	µg/l	4.81	0.748	1	"	"	"	"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	< 4.81	U	µg/l	4.81	0.613	1	"	"	"	"		Х
101-55-3	4-Bromophenyl phenyl ether	< 4.81	U	µg/l	4.81	0.579	1	"	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	< 4.81	U	µg/l	4.81	0.421	1	"	"	"	"		Х
86-74-8	Carbazole	< 4.81	U	µg/l	4.81	1.50	1	"	"	"	"		Х
59-50-7	4-Chloro-3-methylphenol	< 4.81	U	µg/l	4.81	0.482	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 4.81	U	µg/l	4.81	0.705	1	"	"	"	"		Х
91-58-7	2-Chloronaphthalene	< 4.81	U	µg/l	4.81	0.567	1	"	"	"	"		Х
95-57-8	2-Chlorophenol	< 4.81	U	µg/l	4.81	0.719	1	"		"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 4.81	U	µg/l	4.81	0.580	1	"	u	u	"	"	х
218-01-9	Chrysene	< 4.81	U	µg/l	4.81	0.512	1	"		"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 4.81	U	µg/l	4.81	0.433	1	"	"	"	"	"	Х
132-64-9	Dibenzofuran	< 4.81	U	µg/l	4.81	0.712	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 4.81	U	µg/l	4.81	0.540	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 4.81	U	µg/l	4.81	0.622	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 4.81	U	µg/l	4.81	0.590	1	"	"	"	"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 4.81	U	µg/l	4.81	0.557	1	"	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	< 4.81	U	µg/l	4.81	0.510	1		"				Х
84-66-2	Diethyl phthalate	< 4.81	U	µg/l	4.81	0.599	1						X
131-11-3	Dimethyl phthalate	< 4.81	U	µg/l	4.81	0.729	1						X
105-67-9	2,4-Dimethylphenol	< 4.81	U	µg/l	4.81	0.628	1						X
84-74-2	Di-n-butyl phthalate	< 4.81	U	µg/l	4.81	0.439	1						X
534-52-1	4,6-Dinitro-2-methylphenol	< 4.81	U	µg/l	4.81	0.307	1						X
51-28-5	2,4-Dinitrophenol	< 4.81	U	µg/l	4.81	0.539	1						X
121-14-2	2,4-Dinitrotoluene	< 4.81	U	µg/l	4.81	0.647	1						X
606-20-2	2,6-Dinitrotoluene	< 4.81	U	µg/l	4.81	0.570	1						х

Sample Id MW-I SC36327-	<u>lentification</u> -01				<u>Project #</u> 48-13		<u>Matrix</u> Ground Wa		ection Date -Jun-17 08			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
Semivolat	tile Organic Compounds												
117-84-0	Di-n-octyl phthalate	< 4.81	U	µg/l	4.81	0.390	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	Х
206-44-0	Fluoranthene	< 4.81	U	µg/l	4.81	0.613	1				"		х
86-73-7	Fluorene	< 4.81	U	µg/l	4.81	0.588	1				"		х
118-74-1	Hexachlorobenzene	< 4.81	U	µg/l	4.81	0.549	1		"		"		Х
87-68-3	Hexachlorobutadiene	< 4.81	U	µg/l	4.81	0.373	1		"	"	"	"	х
77-47-4	Hexachlorocyclopentadien e	< 4.81	U	µg/l	4.81	0.996	1		"	"	"	"	Х
67-72-1	Hexachloroethane	< 4.81	U	µg/l	4.81	0.614	1	"	"		"	"	х
193-39-5	Indeno (1,2,3-cd) pyrene	< 4.81	U	μg/l	4.81	0.558	1		"		"	"	х
78-59-1	Isophorone	< 4.81	U	μg/l	4.81	0.563	1						х
91-57-6	2-Methylnaphthalene	< 4.81	U	μg/l	4.81	0.552	1						х
95-48-7	2-Methylphenol	< 4.81	U	μg/l	4.81	0.639	1						х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 9.62	U	µg/l	9.62	0.591	1	n	"	"	"	"	х
91-20-3	Naphthalene	< 4.81	U	µg/l	4.81	0.659	1				"		х
88-74-4	2-Nitroaniline	< 4.81	U	µg/l	4.81	0.583	1				"		х
99-09-2	3-Nitroaniline	< 4.81	U	µg/l	4.81	0.465	1		"	"	"	"	х
100-01-6	4-Nitroaniline	< 4.81	U	µg/l	4.81	0.360	1		"	"	"	"	х
98-95-3	Nitrobenzene	< 4.81	U	µg/l	4.81	0.663	1				"		х
88-75-5	2-Nitrophenol	< 4.81	U	µg/l	4.81	0.447	1				"		х
100-02-7	4-Nitrophenol	< 19.2	U	µg/l	19.2	0.806	1				"		х
62-75-9	N-Nitrosodimethylamine	< 4.81	U	µg/l	4.81	0.647	1				"		х
621-64-7	N-Nitrosodi-n-propylamine	< 4.81	U	µg/l	4.81	0.556	1		"		"	"	х
86-30-6	N-Nitrosodiphenylamine	< 4.81	U	µg/l	4.81	0.626	1				"		х
87-86-5	Pentachlorophenol	< 19.2	U	µg/l	19.2	0.359	1		"	"	"	"	х
85-01-8	Phenanthrene	< 4.81	U	µg/l	4.81	0.563	1		"	"	"	"	х
108-95-2	Phenol	< 4.81	U	µg/l	4.81	0.620	1				"		х
129-00-0	Pyrene	< 4.81	U	µg/l	4.81	0.587	1		"	"	"	"	х
110-86-1	Pyridine	< 4.81	U	µg/l	4.81	0.788	1		"	"	"	"	х
120-82-1	1,2,4-Trichlorobenzene	< 4.81	U	µg/l	4.81	0.661	1		"		"		х
90-12-0	1-Methylnaphthalene	< 4.81	U	µg/l	4.81	0.705	1		"		"		
95-95-4	2,4,5-Trichlorophenol	< 4.81	U	µg/l	4.81	0.500	1		"		"		х
88-06-2	2,4,6-Trichlorophenol	< 4.81	U	µg/l	4.81	0.498	1		"		"		х
82-68-8	Pentachloronitrobenzene	< 4.81	U	µg/l	4.81	0.669	1	"	"		"	"	Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 4.81	U	µg/l	4.81	0.697	1	"	"	"	"	"	Х
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	44			30-13	80 %		"	"		"	"	
367-12-4	2-Fluorophenol	28			15-11	0%		"	"		"	"	
4165-60-0	Nitrobenzene-d5	43			30-13	80 %		"			"	"	
4165-62-2	Phenol-d5	19			15-11	0%		"	"		"	"	
1718-51-0	Terphenyl-dl4	53			30-13	80 %		"	"		"	"	
118-79-6	2,4,6-Tribromophenol	55			15-11	0 %		"	"		"	"	
Tentativel	y Identified Compounds												
112-39-0	n-Hexadecanoic Acid	4.5	JN	µg/l			1	SW846 8270D TICS	"	"	MSL	"	
otal Meta	als by EPA 200/6000 Series N	Aethods											

Total Metals by EPA 200/6000 Series Methods

Sample Id MW-I SC36327-	lentification -01			-	Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date -Jun-17 08			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	als by EPA 200/6000 Series I by method General Prep-												
	Preservation	Lab Preserved		N/A			1	EPA 200/6000 methods	27-Jun-17		LNB	1710863	
	als by EPA 6000/7000 Series by method SW846 3005A												
7440-38-2	Arsenic	0.0019	J	mg/l	0.0040	0.0014	1	SW846 6010C	29-Jun-17	02-Jul-17	edt	1710998	Х
7440-39-3	Barium	0.163		mg/l	0.0050	0.0007	1		"	"	"		Х
7440-47-3	Chromium	< 0.0050	U	mg/l	0.0050	0.0009	1		"	"	"		Х
7439-95-4	Magnesium	19.8		mg/l	0.0200	0.0088	1		03-Jul-17	05-Jul-17	"	1711234	Х
7440-36-0	Antimony	< 0.0060	U	mg/l	0.0060	0.0016	1		29-Jun-17	02-Jul-17	"	1710998	Х
7440-28-0	Thallium	< 0.0050	U	mg/l	0.0050	0.0021	1		"		"		Х
7440-62-2	Vanadium	< 0.0050	U	mg/l	0.0050	0.0011	1	"	"	"	"		х

Sample Id MW-L SC36327-	lentification			<u>Client F</u> 4884	Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date I-Jun-17 09			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00	U	µg/l	1.00	0.53	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	×
67-64-1	Acetone	1.78	O01, J	µg/l	10.0	0.80	1	"			"	"	Х
107-13-1	Acrylonitrile	< 0.50	U	µg/l	0.50	0.47	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.00	U	μg/l	1.00	0.28	1	"	"		"		Х
108-86-1	Bromobenzene	< 1.00	U	μg/l	1.00	0.33	1	"			"	"	Х
74-97-5	Bromochloromethane	< 1.00	U	µg/l	1.00	0.34	1	"			"	"	Х
75-27-4	Bromodichloromethane	< 0.50	U	µg/l	0.50	0.42	1	"	"		"		Х
75-25-2	Bromoform	< 1.00	U	μg/l	1.00	0.42	1	"	"		"		Х
74-83-9	Bromomethane	< 2.00	U	µg/l	2.00	0.90	1	"	"		"		Х
78-93-3	2-Butanone (MEK)	< 2.00	U	µg/l	2.00	1.07	1	"	"		"		Х
104-51-8	n-Butylbenzene	< 1.00	U	μg/l	1.00	0.41	1	"	"		"		Х
135-98-8	sec-Butylbenzene	< 1.00	U	μg/l	1.00	0.33	1	"	"		"		Х
98-06-6	tert-Butylbenzene	< 1.00	U	μg/l	1.00	0.32	1	"	"		"		Х
75-15-0	Carbon disulfide	< 2.00	U	µg/l	2.00	0.41	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.00	U	µg/l	1.00	0.44	1	"	"	"	"		Х
108-90-7	Chlorobenzene	< 1.00	U	µg/l	1.00	0.25	1				"		Х
75-00-3	Chloroethane	< 2.00	U	µg/l	2.00	0.59	1				"		Х
67-66-3	Chloroform	< 1.00	U	µg/l	1.00	0.33	1				"		Х
74-87-3	Chloromethane	< 2.00	U	µg/l	2.00	0.37	1				"		х
95-49-8	2-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1				"		Х
106-43-4	4-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1				"		Х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00	U	µg/l	2.00	0.86	1	n	"	"	"	"	х
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.32	1				"		Х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	µg/l	0.50	0.20	1				"		Х
74-95-3	Dibromomethane	< 1.00	U	µg/l	1.00	0.31	1	"	"	"	"		Х
95-50-1	1,2-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.28	1				"		Х
541-73-1	1,3-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.31	1				"		Х
106-46-7	1,4-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.27	1			"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00	U	µg/l	2.00	0.58	1	n	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	< 1.00	U	µg/l	1.00	0.32	1				"		Х
107-06-2	1,2-Dichloroethane	< 1.00	U	µg/l	1.00	0.28	1			"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.00	U	µg/l	1.00	0.69	1			"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.33	1				"		х
156-60-5	trans-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.38	1				"		х
78-87-5	1,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.29	1				"		х
142-28-9	1,3-Dichloropropane	< 1.00	U	µg/l	1.00	0.21	1	"	"		"	"	х
594-20-7	2,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.42	1	"			"	"	х
563-58-6	1,1-Dichloropropene	< 1.00	U	µg/l	1.00	0.58	1	"			"	"	х
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.36	1	"			"	"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.35	1	"			"	"	х
100-41-4	Ethylbenzene	< 1.00	U	µg/l	1.00	0.33	1	"	"	"	"	"	х
87-68-3	Hexachlorobutadiene	< 0.50	U	µg/l	0.50	0.47	1	"	"	"	"	"	х
591-78-6	2-Hexanone (MBK)	< 2.00	U	μg/l	2.00	0.53	1				"		х

Volatile Org Volatile Org 8-82-8 9-87-6 634-04-4 08-10-1 5-09-2 1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6)2 Analyte(s) ganic Compounds ganic Compounds by SW8	Result			IS-13				-Jun-17 09	.50	2.3-	Jun-17	
Volatile Org Volatile Org 8-82-8 9-87-6 634-04-4 08-10-1 5-09-2 1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	ganic Compounds	Result					Ground Wa		5un 17 09	.50	25	suir r,	
Volatile Org 8-82-8 9-87-6 634-04-4 08-10-1 5-09-2 1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	· ·		Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
8-82-8 9-87-6 634-04-4 08-10-1 5-09-2 1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	ganic Compounds by SW8												
9-87-6 634-04-4 08-10-1 5-09-2 1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6		<u>846 8260</u>											
634-04-4 08-10-1 5-09-2 1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	Isopropylbenzene	< 1.00	U	µg/l	1.00	0.36	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	Х
08-10-1 5-09-2 1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	4-Isopropyltoluene	< 1.00	U	µg/l	1.00	0.28	1		"	"	"	"	Х
5-09-2 1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	Methyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.24	1	"	"	"	"	"	Х
1-20-3 03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	4-Methyl-2-pentanone (MIBK)	< 2.00	U	µg/l	2.00	0.52	1	"	"	u	"	"	Х
03-65-1 00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	Methylene chloride	< 2.00	U	µg/l	2.00	0.66	1	"	"	"	"	"	Х
00-42-5 30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	Naphthalene	< 1.00	U	µg/l	1.00	0.35	1		"	"	"	"	Х
30-20-6 9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	n-Propylbenzene	< 1.00	U	µg/l	1.00	0.34	1		"	"	"	"	Х
9-34-5 27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	Styrene	< 1.00	U	µg/l	1.00	0.40	1		"	"	"	"	Х
27-18-4 08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	1,1,1,2-Tetrachloroethane	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	Х
08-88-3 7-61-6 20-82-1 08-70-3 1-55-6	1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50	0.33	1		"	"	"	"	Х
7-61-6 20-82-1 08-70-3 1-55-6	Tetrachloroethene	< 1.00	U	µg/l	1.00	0.57	1		"	"	"	"	Х
20-82-1 08-70-3 1-55-6	Toluene	< 1.00	U	µg/l	1.00	0.30	1		"	"	"	"	х
08-70-3 1-55-6	1,2,3-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	Х
1-55-6	1,2,4-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	х
	1,3,5-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.30	1		"	"	"	"	
	1,1,1-Trichloroethane	< 1.00	U	µg/l	1.00	0.51	1		"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	х
9-01-6	Trichloroethene	< 1.00	U	µg/l	1.00	0.50	1		"	"	"	"	х
	Trichlorofluoromethane (Freon 11)	< 1.00	U	µg/l	1.00	0.49	1	H	"		"	"	х
6-18-4	1,2,3-Trichloropropane	< 1.00	U	µg/l	1.00	0.29	1		"	"	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.36	1		"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.43	1		"	"	"	"	Х
5-01-4	Vinyl chloride	< 1.00	U	µg/l	1.00	0.47	1		"	"	"	"	Х
79601-23-1	m,p-Xylene	< 2.00	U	µg/l	2.00	0.38	1		"	"	"	"	Х
5-47-6	o-Xylene	< 1.00	U	µg/l	1.00	0.28	1		"	"	"	"	Х
09-99-9	Tetrahydrofuran	< 2.00	U	µg/l	2.00	1.06	1		"	"	"	"	
0-29-7	Ethyl ether	< 1.00	U	µg/l	1.00	0.37	1		"	"	"	"	х
94-05-8	Tert-amyl methyl ether	< 1.00	U	µg/l	1.00	0.49	1		"	"	"	"	х
37-92-3	Ethyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	х
08-20-3	Di-isopropyl ether	< 1.00	U	µg/l	1.00	0.29	1		"	"	"	"	х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0	U	µg/l	10.0	5.90	1		"	"	"	"	х
23-91-1	1,4-Dioxane	< 20.0	U	µg/l	20.0	11.4	1		"	"	"	"	х
	trans-1,4-Dichloro-2-buten e	< 5.00	U	µg/l	5.00	0.82	1	"		"	"	"	Х
4-17-5	Ethanol	< 200	U	µg/l	200	30.9	1	"	"	"	"	"	х
Surrogate ree	ecoveries:												
-	4-Bromofluorobenzene	93			70-13	0%		"	"			"	
	Toluene-d8	30 100			70-13			"		"		"	
	1,2-Dichloroethane-d4	100			70-13			"		"		"	
	Dibromofluoromethane	100			70-13			"		"		"	
	Identified Compounds by				70-13	U /0							
	Tentatively Identified Compounds	None found		µg/l			1	SW846 8260C TICs	"	"	EK	"	
emivolatile	e Organic Compounds by C	GCMS											
Semivolatile	e organie Compounus DV C												

07-Jul-17 15:36

Sample Id	dentification			Client I	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
MW-L					4S-13		Ground Wa		l-Jun-17 09			Jun-17	
SC36327	-02												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
	tile Organic Compounds by method SW846 3510C												
83-32-9	Acenaphthene	< 4.85	U	µg/l	4.85	0.671	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	в х
208-96-8	Acenaphthylene	< 4.85	U	µg/l	4.85	0.663	1	"	"	"	"	"	Х
62-53-3	Aniline	< 4.85	U	µg/l	4.85	1.72	1	"	"	"	"	"	х
120-12-7	Anthracene	< 4.85	U	µg/l	4.85	0.590	1	"	"	"	"	"	х
103-33-3	Azobenzene/Diphenyldiaz ene	< 4.85	U	µg/l	4.85	0.726	1	"	"		"	"	
92-87-5	Benzidine	< 4.85	U	µg/l	4.85	0.868	1	"	"	"	"	"	х
56-55-3	Benzo (a) anthracene	< 4.85	U	µg/l	4.85	0.520	1	"		"	"		х
50-32-8	Benzo (a) pyrene	< 4.85	U	µg/l	4.85	0.546	1	"	"	"	"	"	х
205-99-2	Benzo (b) fluoranthene	< 4.85	U	µg/l	4.85	0.424	1	"	"	"	"	"	х
191-24-2	Benzo (g,h,i) perylene	< 4.85	U	µg/l	4.85	0.515	1	"	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	< 4.85	U	µg/l	4.85	0.466	1	"	"	"	"	"	Х
65-85-0	Benzoic acid	< 4.85	U	µg/l	4.85	0.512	1	"	"	"	"	"	Х
100-51-6	Benzyl alcohol	< 4.85	U	µg/l	4.85	0.757	1		"	"	"		Х
111-91-1	Bis(2-chloroethoxy)metha ne	< 4.85	U	µg/l	4.85	0.647	1	"	"		"	"	х
111-44-4	Bis(2-chloroethyl)ether	< 4.85	U	µg/l	4.85	0.713	1	"		"	"		Х
108-60-1	Bis(2-chloroisopropyl)ethe r	< 4.85	U	µg/l	4.85	0.755	1	"	"		"	"	х
117-81-7	Bis(2-ethylhexyl)phthalate	6.79		µg/l	4.85	0.619	1		"	"	"		х
101-55-3	4-Bromophenyl phenyl ether	< 4.85	U	µg/l	4.85	0.584	1	"	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	< 4.85	U	µg/l	4.85	0.425	1		"	"	"		х
86-74-8	Carbazole	< 4.85	U	µg/l	4.85	1.51	1	"		"	"	"	х
59-50-7	4-Chloro-3-methylphenol	< 4.85	U	µg/l	4.85	0.486	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 4.85	U	µg/l	4.85	0.712	1	"	"	"	"	"	х
91-58-7	2-Chloronaphthalene	< 4.85	U	µg/l	4.85	0.573	1	"	"	"	"	"	х
95-57-8	2-Chlorophenol	< 4.85	U	µg/l	4.85	0.726	1	"		"	"		х
7005-72-3	4-Chlorophenyl phenyl ether	< 4.85	U	µg/l	4.85	0.585	1	"	"		"	"	Х
218-01-9	Chrysene	< 4.85	U	µg/l	4.85	0.517	1	"		"	"		х
53-70-3	Dibenzo (a,h) anthracene	< 4.85	U	µg/l	4.85	0.437	1	"	"	"	"	"	х
132-64-9	Dibenzofuran	< 4.85	U	µg/l	4.85	0.718	1	"	"	"	"	"	х
95-50-1	1,2-Dichlorobenzene	< 4.85	U	µg/l	4.85	0.546	1	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 4.85	U	µg/l	4.85	0.628	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 4.85	U	µg/l	4.85	0.596	1	"	"	"	"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 4.85	U	µg/l	4.85	0.562	1		"	"	"		Х
120-83-2	2,4-Dichlorophenol	< 4.85	U	µg/l	4.85	0.515	1	"	"	"	"	"	Х
84-66-2	Diethyl phthalate	< 4.85	U	µg/l	4.85	0.605	1	"	"	"	"	"	Х
131-11-3	Dimethyl phthalate	< 4.85	U	µg/l	4.85	0.736	1	"	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	< 4.85	U	µg/l	4.85	0.634	1	"	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	< 4.85	U	µg/l	4.85	0.444	1	"	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 4.85	U	µg/l	4.85	0.310	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 4.85	U	µg/l	4.85	0.545	1	"	"	"	"	"	х
121-14-2	2,4-Dinitrotoluene	< 4.85	U	µg/l	4.85	0.653	1	"		"	"	"	Х
606-20-2	2,6-Dinitrotoluene	< 4.85	U	µg/l	4.85	0.576	1	"	"	"	"	"	х

Sample Id MW-L SC36327-	-02			<u>Client F</u> 4884	Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date -Jun-17 09			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
Semivolat	ile Organic Compounds												
117-84-0	Di-n-octyl phthalate	1.27	J	µg/l	4.85	0.394	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	х
206-44-0	Fluoranthene	< 4.85	U	µg/l	4.85	0.619	1		"	"	"	"	Х
86-73-7	Fluorene	< 4.85	U	µg/l	4.85	0.594	1				"	"	х
118-74-1	Hexachlorobenzene	< 4.85	U	µg/l	4.85	0.554	1	"	"		"		х
87-68-3	Hexachlorobutadiene	< 4.85	U	µg/l	4.85	0.377	1		"		"	"	х
77-47-4	Hexachlorocyclopentadien e	< 4.85	U	µg/l	4.85	1.01	1	n	"	"	"	"	х
67-72-1	Hexachloroethane	< 4.85	U	µg/l	4.85	0.620	1			"	"	"	х
193-39-5	Indeno (1,2,3-cd) pyrene	< 4.85	U	µg/l	4.85	0.563	1				"	"	х
78-59-1	Isophorone	< 4.85	U	µg/l	4.85	0.569	1				"		х
91-57-6	2-Methylnaphthalene	< 4.85	U	µg/l	4.85	0.557	1				"	"	х
95-48-7	2-Methylphenol	< 4.85	U	µg/l	4.85	0.646	1				"		х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 9.71	U	µg/l	9.71	0.597	1	"	"	"	"	"	х
91-20-3	Naphthalene	< 4.85	U	µg/l	4.85	0.665	1		"	"	"	"	Х
88-74-4	2-Nitroaniline	< 4.85	U	µg/l	4.85	0.588	1		"	"	"	"	Х
99-09-2	3-Nitroaniline	< 4.85	U	µg/l	4.85	0.470	1		"	"	"	"	х
100-01-6	4-Nitroaniline	< 4.85	U	µg/l	4.85	0.363	1		"	"	"	"	х
98-95-3	Nitrobenzene	< 4.85	U	µg/l	4.85	0.670	1		"	"	"	"	Х
88-75-5	2-Nitrophenol	< 4.85	U	µg/l	4.85	0.451	1				"	"	х
100-02-7	4-Nitrophenol	< 19.4	U	µg/l	19.4	0.814	1		"	"	"	"	Х
62-75-9	N-Nitrosodimethylamine	< 4.85	U	µg/l	4.85	0.653	1				"	"	х
621-64-7	N-Nitrosodi-n-propylamine	< 4.85	U	µg/l	4.85	0.561	1	"	"		"	"	х
86-30-6	N-Nitrosodiphenylamine	< 4.85	U	µg/l	4.85	0.632	1				"		Х
87-86-5	Pentachlorophenol	< 19.4	U	µg/l	19.4	0.362	1				"	"	х
85-01-8	Phenanthrene	< 4.85	U	µg/l	4.85	0.569	1		"		"	"	х
108-95-2	Phenol	< 4.85	U	µg/l	4.85	0.626	1		"		"		Х
129-00-0	Pyrene	< 4.85	U	µg/l	4.85	0.592	1		"		"	"	х
110-86-1	Pyridine	< 4.85	U	µg/l	4.85	0.795	1		"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 4.85	U	µg/l	4.85	0.667	1		"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 4.85	U	µg/l	4.85	0.712	1		"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 4.85	U	µg/l	4.85	0.505	1		"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 4.85	U	µg/l	4.85	0.503	1	"	"		"		Х
82-68-8	Pentachloronitrobenzene	< 4.85	U	µg/l	4.85	0.676	1	"		"	"	"	Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 4.85	U	µg/l	4.85	0.704	1	н	"		"	"	х
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	47			30-13	80 %					"	"	
367-12-4	2-Fluorophenol	32			15-11	0%		"	"		"	"	
4165-60-0	Nitrobenzene-d5	44			30-13	80 %		"	"		"	"	
4165-62-2	Phenol-d5	23			15-11	0%		"			"	"	
1718-51-0	Terphenyl-dl4	62			30-13	80 %		"	"		"	"	
118-79-6	2,4,6-Tribromophenol	53			15-11	0%		"	"		"	"	
Tentativel	y Identified Compounds												
	Tentatively Identified Compounds als by EPA 200/6000 Series N	None found		µg/l			1	SW846 8270D TICS	"	"	MSL	"	

<u>Sample Ic</u> MW-L SC36327-	-02			<u>Client F</u> 4884	Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date -Jun-17 09			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	als by EPA 200/6000 Series N by method General Prep-N												
	Preservation	Lab Preserved		N/A			1	EPA 200/6000 methods	27-Jun-17		LNB	1710863	
	als by EPA 6000/7000 Series by method SW846 3005A	Methods											
7440-38-2	Arsenic	< 0.0040	U	mg/l	0.0040	0.0014	1	SW846 6010C	29-Jun-17	02-Jul-17	edt	1710998	Х
7440-39-3	Barium	0.165		mg/l	0.0050	0.0007	1		"		"		Х
7440-47-3	Chromium	< 0.0050	U	mg/l	0.0050	0.0009	1		"	"	"		Х
7439-95-4	Magnesium	21.0		mg/l	0.0200	0.0088	1		03-Jul-17	05-Jul-17	"	1711234	Х
7440-36-0	Antimony	< 0.0060	U	mg/l	0.0060	0.0016	1		29-Jun-17	02-Jul-17	"	1710998	Х
7440-28-0	Thallium	< 0.0050	U	mg/l	0.0050	0.0021	1		"	"	"		х
7440-62-2	Vanadium	< 0.0050	U	mg/l	0.0050	0.0011	1	"	"	"			х

MW-F	lentification			<u>Client F</u> 4884	Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date			<u>ceived</u> Jun-17	
SC36327-				¥7. •.	*DD1		D ¹ / ₂ /2					D (1	<u> </u>
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00	U	µg/l	1.00	0.53	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	x
67-64-1	Acetone	< 10.0	U	µg/l	10.0	0.80	1	"			"	"	х
107-13-1	Acrylonitrile	< 0.50	U	µg/l	0.50	0.47	1	"	"	"	"	"	Х
71-43-2	Benzene	< 1.00	U	μg/l	1.00	0.28	1	"			"	"	Х
108-86-1	Bromobenzene	< 1.00	U	μg/l	1.00	0.33	1	"			"	"	Х
74-97-5	Bromochloromethane	< 1.00	U	µg/l	1.00	0.34	1	"			"		Х
75-27-4	Bromodichloromethane	< 0.50	U	µg/l	0.50	0.42	1	"			"		Х
75-25-2	Bromoform	< 1.00	U	µg/l	1.00	0.42	1	"	"		"		Х
74-83-9	Bromomethane	< 2.00	U	µg/l	2.00	0.90	1	"	"	"	"		Х
78-93-3	2-Butanone (MEK)	< 2.00	U	µg/l	2.00	1.07	1	"	"	"	"		Х
104-51-8	n-Butylbenzene	< 1.00	U	µg/l	1.00	0.41	1	"	"		"		х
135-98-8	sec-Butylbenzene	< 1.00	U	µg/l	1.00	0.33	1	"	"		"		х
98-06-6	tert-Butylbenzene	0.47	J	µg/l	1.00	0.32	1	"	"	"	"	"	Х
75-15-0	Carbon disulfide	< 2.00	U	µg/l	2.00	0.41	1	"	"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.00	U	µg/l	1.00	0.44	1	"	"		"		х
108-90-7	Chlorobenzene	< 1.00	U	µg/l	1.00	0.25	1	"	"		"		х
75-00-3	Chloroethane	< 2.00	U	µg/l	2.00	0.59	1	"	"		"		х
67-66-3	Chloroform	< 1.00	U	µg/l	1.00	0.33	1	"	"		"		х
74-87-3	Chloromethane	< 2.00	U	µg/l	2.00	0.37	1				"		х
95-49-8	2-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1	"	"		"		х
106-43-4	4-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1	"	"		"		х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00	U	µg/l	2.00	0.86	1	"	"	"	"	"	х
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.32	1	"	"		"		х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	µg/l	0.50	0.20	1	"	"	"	"		Х
74-95-3	Dibromomethane	< 1.00	U	µg/l	1.00	0.31	1	"	"	"	"		Х
95-50-1	1,2-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.28	1	"	"		"		х
541-73-1	1,3-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.31	1	"	"		"		х
106-46-7	1,4-Dichlorobenzene	< 1.00	U	μg/l	1.00	0.27	1				"	"	х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00	U	µg/l	2.00	0.58	1	n	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 1.00	U	µg/l	1.00	0.32	1	"	"		"		х
107-06-2	1,2-Dichloroethane	< 1.00	U	µg/l	1.00	0.28	1	"	"		"	"	х
75-35-4	1,1-Dichloroethene	< 1.00	U	µg/l	1.00	0.69	1	"	"		"	"	х
156-59-2	cis-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.33	1	"	"		"	"	х
156-60-5	trans-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.38	1	"	"		"	"	х
78-87-5	1,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.29	1	"	"		"	"	х
142-28-9	1,3-Dichloropropane	< 1.00	U	µg/l	1.00	0.21	1	"	"		"	"	х
594-20-7	2,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.42	1	"	"		"	"	х
563-58-6	1,1-Dichloropropene	< 1.00	U	µg/l	1.00	0.58	1	"	"		"	"	х
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.36	1	"	"		"	"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.35	1	"	"		"	"	х
100-41-4	Ethylbenzene	< 1.00	U	µg/l	1.00	0.33	1	"	"		"	"	х
87-68-3	Hexachlorobutadiene	< 0.50	U	µg/l	0.50	0.47	1	"			"	"	х
591-78-6	2-Hexanone (MBK)	< 2.00	U	µg/l	2.00	0.53	1	"	"		"		х

	Analyte(s) rganic Compounds rganic Compounds by SW3 Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK) Methylene ebleride	<i>Result</i> <u>846 8260</u> < 1.00 < 1.00 < 1.00	<i>Flag</i> U	Units	*RDL	MDL	Dilution						
olatile Or 3-82-8 3-87-6 334-04-4 98-10-1 5-09-2	rganic Compounds by SW3 Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK)	< 1.00 < 1.00	U				Duunon	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
3-82-8 9-87-6 334-04-4 98-10-1 5-09-2	Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK)	< 1.00 < 1.00	U										
9-87-6 634-04-4 08-10-1 5-09-2	4-Isopropyltoluene Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK)	< 1.00	U										
634-04-4 08-10-1 5-09-2	Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK)		-	µg/l	1.00	0.36	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	х
08-10-1 5-09-2	4-Methyl-2-pentanone (MIBK)	< 1.00	U	µg/l	1.00	0.28	1	"	"	"	"	"	х
5-09-2	(MIBK)		U	µg/l	1.00	0.24	1		"	"	"	"	х
	Mathulana ablavida	< 2.00	U	µg/l	2.00	0.52	1	"	"	"	"	"	Х
1-20-3	Methylene chloride	< 2.00	U	µg/l	2.00	0.66	1	"	"	"	"	"	х
	Naphthalene	< 1.00	U	µg/l	1.00	0.35	1	"	"	"	"	"	х
)3-65-1	n-Propylbenzene	< 1.00	U	µg/l	1.00	0.34	1	"	"	"	"	"	х
0-42-5	Styrene	< 1.00	U	µg/l	1.00	0.40	1	"	"	"	"	"	х
30-20-6	1,1,1,2-Tetrachloroethane	< 1.00	U	µg/l	1.00	0.38	1	"	"	"	"	"	х
9-34-5	1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50	0.33	1		"	"	"	"	х
27-18-4	Tetrachloroethene	< 1.00	U	µg/l	1.00	0.57	1	"	"	"	"	"	Х
)8-88-3	Toluene	< 1.00	U	µg/l	1.00	0.30	1	"	"		"	"	х
7-61-6	1,2,3-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1	"	"	"	"	"	х
20-82-1	1,2,4-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1	"	"	"	"	"	х
08-70-3	1,3,5-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.30	1	"	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.00	U	µg/l	1.00	0.51	1	"	"	"	"	"	х
9-00-5	1,1,2-Trichloroethane	< 1.00	U	µg/l	1.00	0.33	1	"	"	"	"	"	х
9-01-6	Trichloroethene	< 1.00	U	µg/l	1.00	0.50	1	"	"	"	"	"	х
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	µg/l	1.00	0.49	1	"		"	"	"	Х
6-18-4	1,2,3-Trichloropropane	< 1.00	U	µg/l	1.00	0.29	1	"	"	"	"	"	х
5-63-6	1,2,4-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.36	1	"	"	"	"	"	х
08-67-8	1,3,5-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.43	1	"	"	"	"	"	х
5-01-4	Vinyl chloride	< 1.00	U	µg/l	1.00	0.47	1	"	"	"	"	"	х
79601-23-1	m,p-Xylene	< 2.00	U	µg/l	2.00	0.38	1	"	"	"	"	"	х
5-47-6	o-Xylene	< 1.00	U	µg/l	1.00	0.28	1	"	"	"	"	"	х
9-99-9	Tetrahydrofuran	< 2.00	U	µg/l	2.00	1.06	1	"	"	"	"	"	
)-29-7	Ethyl ether	< 1.00	U	µg/l	1.00	0.37	1	"	"	"	"	"	х
94-05-8	Tert-amyl methyl ether	< 1.00	U	µg/l	1.00	0.49	1	"	"	"	"	"	х
37-92-3	Ethyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.33	1	"	"	"	"	"	х
)8-20-3	Di-isopropyl ether	< 1.00	U	µg/l	1.00	0.29	1	"	"	"	"	"	х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0	U	µg/l	10.0	5.90	1	"	"	"	"	"	х
23-91-1	1,4-Dioxane	< 20.0	U	µg/l	20.0	11.4	1	"	"	"	"	"	х
0-57-6	trans-1,4-Dichloro-2-buten e	< 5.00	U	µg/l	5.00	0.82	1	"		"	"	"	Х
I-17-5	Ethanol	< 200	U	µg/l	200	30.9	1	"		"	"	"	Х
urrogate r	ecoveries:												
50-00-4	4-Bromofluorobenzene	92			70-13	0%		"	"	"		"	
037-26-5	Toluene-d8	100			70-13	0%		"	"	"		"	
7060-07-0	1,2-Dichloroethane-d4	102			70-13			"	"	"		"	
368-53-7	Dibromofluoromethane	100			70-13			"	"	"		"	
entativel	/ Identified Compounds by	GC/MS											
	Tentatively Identified Compounds	None found		µg/l			1	SW846 8260C TICs	"	"	EK	"	
emivolati	le Organic Compounds by (GCMS											
<u>emivolati</u>	ile Organic Compounds												

-	lentification			Client I	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
MW-F SC36327-	-03			4884	4S-13		Ground Wa	ater 21	l-Jun-17 13	:06	23-	Jun-17	
		D 14	El	U: 4-	¢0∩1	MDI	Dilution	Mathad Daf	D	A	A	Dutal	Cart
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Preparea	Analyzed	Analyst	Batch	Cert.
	ile Organic Compounds by (GCMS											
	tile Organic Compounds by method SW846 3510C												
83-32-9	Acenaphthene	< 4.90	U	µg/l	4.90	0.677	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	х
208-96-8	Acenaphthylene	< 4.90	U	µg/l	4.90	0.670	1	"		"	"	"	х
62-53-3	Aniline	< 4.90	U	µg/l	4.90	1.74	1	"	"	"	"	"	х
120-12-7	Anthracene	< 4.90	U	µg/l	4.90	0.596	1	"	"	"	"	"	Х
103-33-3	Azobenzene/Diphenyldiaz ene	< 4.90	U	µg/l	4.90	0.733	1	"	"	"	"	"	
92-87-5	Benzidine	< 4.90	U	µg/l	4.90	0.876	1	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 4.90	U	µg/l	4.90	0.525	1	"	"	"	"	"	х
50-32-8	Benzo (a) pyrene	< 4.90	U	µg/l	4.90	0.551	1	"	"	"	"	"	х
205-99-2	Benzo (b) fluoranthene	< 4.90	U	µg/l	4.90	0.428	1	"	"	"	"	"	х
191-24-2	Benzo (g,h,i) perylene	< 4.90	U	µg/l	4.90	0.520	1	"		"	"	"	Х
207-08-9	Benzo (k) fluoranthene	< 4.90	U	µg/l	4.90	0.471	1	"	"	"	"	"	Х
65-85-0	Benzoic acid	< 4.90	U	µg/l	4.90	0.517	1	"	"	"	"	"	Х
100-51-6	Benzyl alcohol	< 4.90	U	µg/l	4.90	0.765	1	"	"	"	"	"	Х
111-91-1	Bis(2-chloroethoxy)metha ne	< 4.90	U	µg/l	4.90	0.653	1	n	"	"	"	"	х
111-44-4	Bis(2-chloroethyl)ether	< 4.90	U	µg/l	4.90	0.720	1	"	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ethe r	< 4.90	U	µg/l	4.90	0.763	1	"	"		"	"	х
117-81-7	Bis(2-ethylhexyl)phthalate	153	Е	µg/l	4.90	0.625	1	"	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	< 4.90	U	µg/l	4.90	0.590	1	n	"	"	"	"	х
85-68-7	Butyl benzyl phthalate	< 4.90	U	µg/l	4.90	0.429	1	"	"	"	"		Х
86-74-8	Carbazole	< 4.90	U	µg/l	4.90	1.53	1	"	"	"	"	"	х
59-50-7	4-Chloro-3-methylphenol	< 4.90	U	µg/l	4.90	0.491	1	"	"	"	"	"	х
106-47-8	4-Chloroaniline	< 4.90	U	µg/l	4.90	0.719	1	"	"	"	"	"	Х
91-58-7	2-Chloronaphthalene	< 4.90	U	µg/l	4.90	0.578	1	"	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 4.90	U	µg/l	4.90	0.733	1	"	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 4.90	U	µg/l	4.90	0.591	1	"	"	"	"	"	х
218-01-9	Chrysene	< 4.90	U	µg/l	4.90	0.522	1		"	"	"		Х
53-70-3	Dibenzo (a,h) anthracene	< 4.90	U	µg/l	4.90	0.441	1	"	"	"	"	"	Х
132-64-9	Dibenzofuran	< 4.90	U	µg/l	4.90	0.725	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 4.90	U	µg/l	4.90	0.551	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 4.90	U	µg/l	4.90	0.634	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 4.90	U	µg/l	4.90	0.602	1	"	"	"	"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 4.90	U	µg/l	4.90	0.568	1	"	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	< 4.90	U	µg/l	4.90	0.520	1	"	"	"	"	"	Х
84-66-2	Diethyl phthalate	< 4.90	U	µg/l	4.90	0.611	1	"	"	"	"	"	Х
131-11-3	Dimethyl phthalate	< 4.90	U	µg/l	4.90	0.743	1	"		"	"	"	Х
105-67-9	2,4-Dimethylphenol	< 4.90	U	µg/l	4.90	0.640	1	"	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	< 4.90	U	µg/l	4.90	0.448	1	"	"		"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 4.90	U	µg/l	4.90	0.313	1		"			"	Х
51-28-5	2,4-Dinitrophenol	< 4.90	U	µg/l	4.90	0.550	1		"			"	Х
121-14-2	2,4-Dinitrotoluene	< 4.90	U	µg/l	4.90	0.660	1	"		"	"	"	х
606-20-2	2,6-Dinitrotoluene	< 4.90	U	µg/l	4.90	0.581	1	"			"	"	Х

Sample Id MW-F SC36327	-03				Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date I-Jun-17 13			<u>cceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
Semivolat	tile Organic Compounds												
117-84-0	Di-n-octyl phthalate	27.8		µg/l	4.90	0.398	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	Х
206-44-0	Fluoranthene	< 4.90	U	µg/l	4.90	0.625	1		"	"	"	"	Х
86-73-7	Fluorene	< 4.90	U	µg/l	4.90	0.600	1	"	"	"	"		х
118-74-1	Hexachlorobenzene	< 4.90	U	µg/l	4.90	0.560	1	"	"	"	"		Х
87-68-3	Hexachlorobutadiene	< 4.90	U	µg/l	4.90	0.380	1	"	"	"	"		х
77-47-4	Hexachlorocyclopentadien e	< 4.90	U	µg/l	4.90	1.02	1	"	"	"	"	"	х
67-72-1	Hexachloroethane	< 4.90	U	µg/l	4.90	0.626	1	"		"	"		х
193-39-5	Indeno (1,2,3-cd) pyrene	< 4.90	U	µg/l	4.90	0.569	1	"	"	"	"	"	х
78-59-1	Isophorone	< 4.90	U	µg/l	4.90	0.575	1	"		"	"		х
91-57-6	2-Methylnaphthalene	< 4.90	U	µg/l	4.90	0.563	1	"	"	"	"	"	х
95-48-7	2-Methylphenol	< 4.90	U	µg/l	4.90	0.652	1	"	"	"	"	"	х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 9.80	U	µg/l	9.80	0.603	1	"	"	"	"		х
91-20-3	Naphthalene	< 4.90	U	µg/l	4.90	0.672	1	"		"	"		х
88-74-4	2-Nitroaniline	< 4.90	U	µg/l	4.90	0.594	1	"		"	"		х
99-09-2	3-Nitroaniline	< 4.90	U	µg/l	4.90	0.475	1	"		"	"		х
100-01-6	4-Nitroaniline	< 4.90	U	µg/l	4.90	0.367	1	"		"	"		х
98-95-3	Nitrobenzene	< 4.90	U	µg/l	4.90	0.676	1	"		"	"		х
88-75-5	2-Nitrophenol	< 4.90	U	µg/l	4.90	0.456	1	"		"	"		х
100-02-7	4-Nitrophenol	< 19.6	U	µg/l	19.6	0.822	1	"			"		х
62-75-9	N-Nitrosodimethylamine	< 4.90	U	µg/l	4.90	0.660	1	"			"		х
621-64-7	N-Nitrosodi-n-propylamine	< 4.90	U	µg/l	4.90	0.567	1	"	"	"	"	"	х
86-30-6	N-Nitrosodiphenylamine	< 4.90	U	µg/l	4.90	0.638	1	"	"	"	"	"	х
87-86-5	Pentachlorophenol	< 19.6	U	µg/l	19.6	0.366	1	"	"	"	"	"	х
85-01-8	Phenanthrene	< 4.90	U	µg/l	4.90	0.575	1	"	"	"	"	"	х
108-95-2	Phenol	< 4.90	U	µg/l	4.90	0.632	1	"	"	"	"	"	х
129-00-0	Pyrene	< 4.90	U	µg/l	4.90	0.598	1	"		"	"		х
110-86-1	Pyridine	< 4.90	U	µg/l	4.90	0.803	1	"	"	"	"	"	х
120-82-1	1,2,4-Trichlorobenzene	< 4.90	U	µg/l	4.90	0.674	1	"	"	"	"	"	х
90-12-0	1-Methylnaphthalene	< 4.90	U	µg/l	4.90	0.719	1	"	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 4.90	U	µg/l	4.90	0.510	1	"	"	"	"	"	х
88-06-2	2,4,6-Trichlorophenol	< 4.90	U	µg/l	4.90	0.508	1	"		"	"		х
82-68-8	Pentachloronitrobenzene	< 4.90	U	µg/l	4.90	0.682	1	"		"	"		х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 4.90	U	µg/l	4.90	0.711	1	"	"	"	"	"	х
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	44			30-13	0 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	31			15-11	0 %		"	"	"	"	"	
4165-60-0	Nitrobenzene-d5	44			30-13	0 %		"	"	"	"	"	
4165-62-2	Phenol-d5	22			15-11	0 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	47			30-13	0 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	50			15-11	0 %		"	"		"	"	
Compoun			GS1										
	by method SW846 3510C			~	e · -		_	011/2					
83-32-9	Acenaphthene	< 24.5	U, D	µg/l	24.5	3.39	5	SW846 8270D	28-Jun-17	04-Jul-17	MSL	1710848	X

Sample Ic MW-F SC36327-	<u>lentification</u> -03				Project # IS-13		<u>Matrix</u> Ground Wa		<u>ection Date</u> 1-Jun-17 13			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
<u>Re-analys</u> Compoun	<u>sis of Semivolatile Organic</u> ds	-	GS1										
208-96-8	Acenaphthylene	< 24.5	U, D	µg/l	24.5	3.35	5	SW846 8270D	28-Jun-17	04-Jul-17	MSL	1710848	х
62-53-3	Aniline	< 24.5	U, D	μg/l	24.5	8.68	5	"			"		х
120-12-7	Anthracene	< 24.5	U, D	μg/l	24.5	2.98	5	"			"		х
103-33-3	Azobenzene/Diphenyldiaz ene	< 24.5	U, D	µg/l	24.5	3.67	5	n	"		"	"	
92-87-5	Benzidine	< 24.5	U, D	µg/l	24.5	4.38	5	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 24.5	U, D	µg/l	24.5	2.63	5	"	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	< 24.5	U, D	µg/l	24.5	2.75	5	"	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	< 24.5	U, D	µg/l	24.5	2.14	5	"	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	< 24.5	U, D	µg/l	24.5	2.60	5	"	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	< 24.5	U, D	µg/l	24.5	2.35	5	"	"	"	"	"	Х
65-85-0	Benzoic acid	< 24.5	U, D	µg/l	24.5	2.58	5	"	"	"	"	"	Х
100-51-6	Benzyl alcohol	< 24.5	U, D	µg/l	24.5	3.82	5	"	"	"	"	"	Х
111-91-1	Bis(2-chloroethoxy)metha ne	< 24.5	U, D	µg/l	24.5	3.26	5	"	"		"	"	х
111-44-4	Bis(2-chloroethyl)ether	< 24.5	U, D	µg/l	24.5	3.60	5	"	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ethe r	< 24.5	U, D	µg/l	24.5	3.81	5	"	"	"	"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	202	D	µg/l	24.5	3.13	5	"	"	"	"		Х
101-55-3	4-Bromophenyl phenyl ether	< 24.5	U, D	µg/l	24.5	2.95	5	"	"	"	"	"	х
85-68-7	Butyl benzyl phthalate	< 24.5	U, D	µg/l	24.5	2.15	5		"	"	"	"	Х
86-74-8	Carbazole	< 24.5	U, D	µg/l	24.5	7.65	5	"	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	< 24.5	U, D	µg/l	24.5	2.46	5	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 24.5	U, D	µg/l	24.5	3.59	5	"	"	"	"	"	Х
91-58-7	2-Chloronaphthalene	< 24.5	U, D	µg/l	24.5	2.89	5	"	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 24.5	U, D	µg/l	24.5	3.67	5	"	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 24.5	U, D	µg/l	24.5	2.96	5	"	"	"	"	"	Х
218-01-9	Chrysene	< 24.5	U, D	µg/l	24.5	2.61	5	"	"	"	"		Х
53-70-3	Dibenzo (a,h) anthracene	< 24.5	U, D	µg/l	24.5	2.21	5	"	"	"	"		Х
132-64-9	Dibenzofuran	< 24.5	U, D	µg/l	24.5	3.63	5	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 24.5	U, D	µg/l	24.5	2.75	5	"	"	"	"		Х
541-73-1	1,3-Dichlorobenzene	< 24.5	U, D	µg/l	24.5	3.17	5	"	"	"	"		Х
106-46-7	1,4-Dichlorobenzene	< 24.5	U, D	µg/l	24.5	3.01	5	"			"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 24.5	U, D	µg/l	24.5	2.84	5	"		"	"	"	Х
120-83-2	2,4-Dichlorophenol	< 24.5	U, D	µg/l	24.5	2.60	5	"	"	"	"	"	Х
84-66-2	Diethyl phthalate	< 24.5	U, D	µg/l	24.5	3.05	5	"	"	"	"		Х
131-11-3	Dimethyl phthalate	< 24.5	U, D	µg/l	24.5	3.72	5	n	"		"	"	Х
105-67-9	2,4-Dimethylphenol	< 24.5	U, D	µg/l	24.5	3.20	5	n	"		"	"	Х
84-74-2	Di-n-butyl phthalate	< 24.5	U, D	µg/l	24.5	2.24	5	n	"		"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 24.5	U, D	µg/l	24.5	1.56	5	"	"		"	"	Х
51-28-5	2,4-Dinitrophenol	< 24.5	U, D	µg/l	24.5	2.75	5	"			"	"	Х
121-14-2	2,4-Dinitrotoluene	< 24.5	U, D	µg/l	24.5	3.30	5	"	"		"	"	Х
606-20-2	2,6-Dinitrotoluene	< 24.5	U, D	µg/l	24.5	2.91	5	"		"	"	"	Х
117-84-0	Di-n-octyl phthalate	37.9	D	µg/l	24.5	1.99	5	"		"	"	"	Х

Sample Id MW-F SC36327-	-03				Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date I-Jun-17 13			<u>cceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
<u>Re-analys</u> Compoun	sis of Semivolatile Organic		GS1										
206-44-0	Fluoranthene	< 24.5	U, D	µg/l	24.5	3.13	5	SW846 8270D	28-Jun-17	04-Jul-17	MSL	1710848	х
86-73-7	Fluorene	< 24.5	U, D	µg/l	24.5	3.00	5		"	"	"	"	х
118-74-1	Hexachlorobenzene	< 24.5	U, D	μg/l	24.5	2.80	5				"		х
87-68-3	Hexachlorobutadiene	< 24.5	U, D	µg/l	24.5	1.90	5		"	"	"		х
77-47-4	Hexachlorocyclopentadien e	< 24.5	U, D	µg/l	24.5	5.08	5	"	"	"	"	"	х
67-72-1	Hexachloroethane	< 24.5	U, D	µg/l	24.5	3.13	5	"		"	"		х
193-39-5	Indeno (1,2,3-cd) pyrene	< 24.5	U, D	µg/l	24.5	2.84	5		"	"	"		х
78-59-1	Isophorone	< 24.5	U, D	µg/l	24.5	2.87	5				"		х
91-57-6	2-Methylnaphthalene	< 24.5	U, D	µg/l	24.5	2.81	5		"	"	"		х
95-48-7	2-Methylphenol	< 24.5	U, D	µg/l	24.5	3.26	5		"	"	"		Х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 49.0	U, D	µg/l	49.0	3.01	5	"	"	"	"	"	х
91-20-3	Naphthalene	< 24.5	U, D	µg/l	24.5	3.36	5		"	"	"		х
88-74-4	2-Nitroaniline	< 24.5	U, D	µg/l	24.5	2.97	5		"	"	"		х
99-09-2	3-Nitroaniline	< 24.5	U, D	µg/l	24.5	2.37	5		"	"	"		х
100-01-6	4-Nitroaniline	< 24.5	U, D	µg/l	24.5	1.83	5		"	"	"		х
98-95-3	Nitrobenzene	< 24.5	U, D	µg/l	24.5	3.38	5		"	"	"	"	Х
88-75-5	2-Nitrophenol	< 24.5	U, D	µg/l	24.5	2.28	5		"	"	"	"	Х
100-02-7	4-Nitrophenol	< 98.0	U, D	µg/l	98.0	4.11	5		"	"	"		Х
62-75-9	N-Nitrosodimethylamine	< 24.5	U, D	µg/l	24.5	3.30	5		"	"	"	"	Х
621-64-7	N-Nitrosodi-n-propylamine	< 24.5	U, D	μg/l	24.5	2.83	5		"		"		Х
86-30-6	N-Nitrosodiphenylamine	< 24.5	U, D	μg/l	24.5	3.19	5		"		"		Х
87-86-5	Pentachlorophenol	< 98.0	U, D	μg/l	98.0	1.83	5		"		"		Х
85-01-8	Phenanthrene	< 24.5	U, D	µg/l	24.5	2.87	5		"	"	"	"	Х
108-95-2	Phenol	< 24.5	U, D	µg/l	24.5	3.16	5	"	"	"	"		Х
129-00-0	Pyrene	< 24.5	U, D	µg/l	24.5	2.99	5		"	"	"	"	Х
110-86-1	Pyridine	< 24.5	U, D	µg/l	24.5	4.01	5		"	"	"		Х
120-82-1	1,2,4-Trichlorobenzene	< 24.5	U, D	µg/l	24.5	3.37	5		"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 24.5	U, D	µg/l	24.5	3.59	5	"	"	"	"		
95-95-4	2,4,5-Trichlorophenol	< 24.5	U, D	µg/l	24.5	2.55	5		"	"	"		Х
88-06-2	2,4,6-Trichlorophenol	< 24.5	U, D	µg/l	24.5	2.54	5		"	"	"		Х
82-68-8	Pentachloronitrobenzene	< 24.5	U, D	µg/l	24.5	3.41	5	"	"	"	"		Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 24.5	U, D	µg/l	24.5	3.55	5	"	"	"	"	"	Х
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	49			30-13	0%			"	"	"		
367-12-4	2-Fluorophenol	30			15-11	0 %					"		
4165-60-0	Nitrobenzene-d5	43			30-13	0%		"	"		"	"	
4165-62-2	Phenol-d5	21			15-11	0 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	49			30-13	0 %		"	"		"	"	
118-79-6	2,4,6-Tribromophenol	43			15-11	0 %		"	"		"	"	
	y Identified Compounds by method SW846 3510C												
112-39-0	n-Hexadecanoic Acid	5.2	JN	µg/l			1	SW846 8270D TICS	28-Jun-17	29-Jun-17	MSL	1710848	

<u>Sample Id</u> MW-F SC36327-	lentification 03			<u>Client P</u> 4884			<u>Matrix</u> Ground Wa		ection Date, -Jun-17 13			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GCMS											
Compoun	sis of Tentatively Identified ds by method SW846 3510C		GS1										
	Tentatively Identified Compounds	None found		µg/l			5	SW846 8270D TICS	28-Jun-17	04-Jul-17	MSL	1710848	
	als by EPA 200/6000 Series M by method General Prep-M												
	Preservation	Lab Preserved		N/A			1	EPA 200/6000 methods	27-Jun-17		LNB	1710863	
	als by EPA 6000/7000 Series by method SW846 3005A	Methods											
7440-38-2	Arsenic	< 0.0040	U	mg/l	0.0040	0.0014	1	SW846 6010C	29-Jun-17	02-Jul-17	edt	1710998	Х
7440-39-3	Barium	0.0240		mg/l	0.0050	0.0007	1		"	"	"	"	Х
7440-47-3	Chromium	< 0.0050	U	mg/l	0.0050	0.0009	1		"	"	"	"	Х
7439-95-4	Magnesium	26.6		mg/l	0.0200	0.0088	1		03-Jul-17	05-Jul-17	"	1711234	Х
7440-36-0	Antimony	< 0.0060	U	mg/l	0.0060	0.0016	1	"	29-Jun-17	02-Jul-17	"	1710998	Х
7440-28-0	Thallium	< 0.0050	U	mg/l	0.0050	0.0021	1	"	"	"	"		Х
7440-62-2	Vanadium	< 0.0050	U	mg/l	0.0050	0.0011	1	"	"	"	"	"	х

Sample Id MW-M SC36327-	lentification			<u>Client F</u> 4884	Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date I-Jun-17 14			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Duanauad	Analyzed	Analyst	Patak	Cant
	Analyte(s)	Кезин	Tug	Onus	KDL	MDL	Ditution	meinoù Kej.	Trepureu	Anuiyzeu	Anutysi	Duich	<u> </u>
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00	U	µg/l	1.00	0.53	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	х
67-64-1	Acetone	< 10.0	U	µg/l	10.0	0.80	1	"			"	"	х
107-13-1	Acrylonitrile	< 0.50	U	μg/l	0.50	0.47	1			"	"	"	х
71-43-2	Benzene	< 1.00	U	μg/l	1.00	0.28	1			"	"	"	х
108-86-1	Bromobenzene	< 1.00	U	μg/l	1.00	0.33	1			"	"	"	х
74-97-5	Bromochloromethane	< 1.00	U	µg/l	1.00	0.34	1				"		х
75-27-4	Bromodichloromethane	< 0.50	U	µg/l	0.50	0.42	1				"		х
75-25-2	Bromoform	< 1.00	U	µg/l	1.00	0.42	1	"			"		х
74-83-9	Bromomethane	< 2.00	U	µg/l	2.00	0.90	1	"			"		х
78-93-3	2-Butanone (MEK)	< 2.00	U	µg/l	2.00	1.07	1	"			"		х
104-51-8	n-Butylbenzene	< 1.00	U	µg/l	1.00	0.41	1	"	"		"		х
135-98-8	sec-Butylbenzene	0.37	J	µg/l	1.00	0.33	1	"			"		х
98-06-6	tert-Butylbenzene	2.39		µg/l	1.00	0.32	1	"			"		х
75-15-0	Carbon disulfide	< 2.00	U	µg/l	2.00	0.41	1	"			"		х
56-23-5	Carbon tetrachloride	< 1.00	U	µg/l	1.00	0.44	1				"	"	х
108-90-7	Chlorobenzene	< 1.00	U	μg/l	1.00	0.25	1	"			"		х
75-00-3	Chloroethane	< 2.00	U	μg/l	2.00	0.59	1	"			"		х
67-66-3	Chloroform	< 1.00	U	µg/l	1.00	0.33	1	"			"		х
74-87-3	Chloromethane	< 2.00	U	μg/l	2.00	0.37	1	"			"		х
95-49-8	2-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1	"			"		х
106-43-4	4-Chlorotoluene	< 1.00	U	μg/l	1.00	0.32	1	"			"	"	х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00	U	µg/l	2.00	0.86	1	"	"	"	"	"	х
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.32	1	"	"	"	"		х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	µg/l	0.50	0.20	1	"	"		"		х
74-95-3	Dibromomethane	< 1.00	U	µg/l	1.00	0.31	1	"	"		"		х
95-50-1	1,2-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.28	1	"	"		"		х
541-73-1	1,3-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.31	1	"	"		"		х
106-46-7	1,4-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.27	1	"	"		"		х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00	U	µg/l	2.00	0.58	1	"	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 1.00	U	µg/l	1.00	0.32	1	"			"		х
107-06-2	1,2-Dichloroethane	< 1.00	U	µg/l	1.00	0.28	1	"			"	"	х
75-35-4	1,1-Dichloroethene	< 1.00	U	µg/l	1.00	0.69	1	"			"	"	х
156-59-2	cis-1,2-Dichloroethene	< 1.00	U	μg/l	1.00	0.33	1	"			"	"	х
156-60-5	trans-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.38	1	"	"		"	"	х
78-87-5	1,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.29	1	"	"		"	"	х
142-28-9	1,3-Dichloropropane	< 1.00	U	µg/l	1.00	0.21	1	"	"		"	"	х
594-20-7	2,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.42	1	"	"	"	"	"	х
563-58-6	1,1-Dichloropropene	< 1.00	U	μg/l	1.00	0.58	1	"			"	"	х
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	μg/l	0.50	0.36	1	"			"	"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	μg/l	0.50	0.35	1	"			"	"	х
100-41-4	Ethylbenzene	< 1.00	U	μg/l	1.00	0.33	1	"			"	"	х
87-68-3	Hexachlorobutadiene	< 0.50	U	μg/l	0.50	0.47	1	"			"	"	х
591-78-6	2-Hexanone (MBK)	< 2.00	U	μg/l	2.00	0.53	1	"			"		х

	04 Analyte(s) rganic Compounds rganic Compounds by SW Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether	<i>Result</i> 846 8260 < 1.00	Flag	4884 Units	* <i>RDL</i>		Ground Wa	ater 21	-Jun-17 14	:47	23-	Jun-17	
CAS No. Volatile Or Volatile Or 18-82-8 19-87-6	Analyte(s) rganic Compounds rganic Compounds by SW Isopropylbenzene 4-Isopropyltoluene	<u>846 8260</u>	Flag	Units	*RDL								
<u>/olatile Or</u> 18-82-8 19-87-6	rganic Compounds by SW Isopropylbenzene 4-Isopropyltoluene					MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
<u>/olatile Or</u> 18-82-8 19-87-6	rganic Compounds by SW Isopropylbenzene 4-Isopropyltoluene												
18-82-8 19-87-6	Isopropylbenzene 4-Isopropyltoluene												
	4-Isopropyltoluene		U	µg/l	1.00	0.36	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	х
634-04-4		< 1.00	U	μg/l	1.00	0.28	1		"	"		"	х
		< 1.00	U	μg/l	1.00	0.24	1		"		"	"	х
08-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00	U	µg/l	2.00	0.52	1	"		"	"	"	х
5-09-2	Methylene chloride	< 2.00	U	µg/l	2.00	0.66	1		"	"	"	"	Х
1-20-3	Naphthalene	0.81	J	µg/l	1.00	0.35	1		"	"	"	"	Х
03-65-1	n-Propylbenzene	< 1.00	U	µg/l	1.00	0.34	1		"	"	"	"	Х
00-42-5	Styrene	< 1.00	U	µg/l	1.00	0.40	1		"	"	"	"	Х
30-20-6	1,1,1,2-Tetrachloroethane	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	Х
9-34-5	1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50	0.33	1		"	"	"	"	Х
27-18-4	Tetrachloroethene	< 1.00	U	µg/l	1.00	0.57	1		"	"	"	"	Х
08-88-3	Toluene	< 1.00	U	µg/l	1.00	0.30	1		"	"	"	"	Х
7-61-6	1,2,3-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1		"	"		"	Х
08-70-3	1,3,5-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.30	1		"	"	"	"	
1-55-6	1,1,1-Trichloroethane	< 1.00	U	µg/l	1.00	0.51	1		"	"	"	"	х
9-00-5	1,1,2-Trichloroethane	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	х
9-01-6	Trichloroethene	< 1.00	U	µg/l	1.00	0.50	1		"	"	"	"	х
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	µg/l	1.00	0.49	1	"	"	"	"	"	х
6-18-4	1,2,3-Trichloropropane	< 1.00	U	µg/l	1.00	0.29	1		"	"	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	0.44	J	µg/l	1.00	0.36	1		"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.43	1		"	"	"	"	Х
5-01-4	Vinyl chloride	< 1.00	U	µg/l	1.00	0.47	1		"	"	"	"	Х
79601-23-1	m,p-Xylene	< 2.00	U	µg/l	2.00	0.38	1		"	"		"	Х
5-47-6	o-Xylene	< 1.00	U	µg/l	1.00	0.28	1		"	"	"	"	Х
09-99-9	Tetrahydrofuran	< 2.00	U	µg/l	2.00	1.06	1		"	"	"	"	
0-29-7	Ethyl ether	< 1.00	U	µg/l	1.00	0.37	1		"	"	"	"	Х
94-05-8	Tert-amyl methyl ether	< 1.00	U	µg/l	1.00	0.49	1		"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	Х
08-20-3	Di-isopropyl ether	< 1.00	U	µg/l	1.00	0.29	1		"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0	U	µg/l	10.0	5.90	1		"	"	"	"	Х
23-91-1	1,4-Dioxane	< 20.0	U	µg/l	20.0	11.4	1		"	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-buten e	< 5.00	U	µg/l	5.00	0.82	1	H	"	"	"	"	х
4-17-5	Ethanol	< 200	U	µg/l	200	30.9	1	"	"	"	"	"	х
Surrogate r	ecoveries:												
60-00-4	4-Bromofluorobenzene	97			70-13	80 %		"	"			"	
2037-26-5	Toluene-d8	101			70-13			"	"	"		"	
7060-07-0	1,2-Dichloroethane-d4	102			70-13			"	"			"	
868-53-7	Dibromofluoromethane	103			70-13			"	"	"		"	
	v Identified Compounds by												
	Tentatively Identified Compounds	None found		µg/l			1	SW846 8260C TICs	"	"	EK	"	
	le Organic Compounds by (ile Organic Compounds	GCMS											

NNAM CONSTANDCharle baseKassesConverter21-mar/14/723-mar/723-mar/7CSD32-04Cander(s)RadeFlagNaNBMBMaleMale ARAnalyzerAnalyzerAnalyzerRadeConstant RadeConstant RadeNBNBMaleMaleMaleMaleMaleConstant RadeNB <th>Sample Ic</th> <th>dentification</th> <th></th> <th></th> <th>Client I</th> <th>Project #</th> <th></th> <th>Matrix</th> <th>Coll</th> <th>ection Date</th> <th>/Time</th> <th>Re</th> <th>ceived</th> <th></th>	Sample Ic	dentification			Client I	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
Schedure Rank Fag Knix KDL Dilution Method Ref. Paperal Ambjacid Ambjacid <th>MW-M</th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	MW-M					•								
amviolatile Organic Compounds by GCMS Samviolatile Organic Compounds Propert lytemed by embodies Source of the second sec	SC36327	-04			100	10 10		Ground m		i bull 17 11		23	Juli 17	
Samutal Langence Composite protect Langence L	CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Procession in the second seco	Semivolat	ile Organic Compounds by (GCMS											
90-8-8 Accomptinylem < S.00 U µpd S.00 0.833 1 * <														
Babba Anthreson C pg1 5.00 1.77 1 -	83-32-9	Acenaphthene	< 5.00	U	µg/l	5.00	0.691	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	х
28-13 Anthracene 6.50 U µg1 5.00 0.608 1	208-96-8	Acenaphthylene	< 5.00	U	µg/l	5.00	0.683	1	"			"	"	х
Base And Set Prime Dipheryking ene S. BOD U μp1 S. DO 0.748 1 · · · <th< td=""><td>62-53-3</td><td>Aniline</td><td>< 5.00</td><td>U</td><td>µg/l</td><td>5.00</td><td>1.77</td><td>1</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>х</td></th<>	62-53-3	Aniline	< 5.00	U	µg/l	5.00	1.77	1	"	"	"	"	"	х
and and base base base base abr.475 Benxidine < 5.00	120-12-7	Anthracene	< 5.00	U	µg/l	5.00	0.608	1	"	"	"	"	"	х
Name Bendfalter Solo U ppp Bood <	103-33-3		< 5.00	U	µg/l	5.00	0.748	1	"	"		"	"	
And Band (y) antingame Solu D ppi Solu D Solu Solu D Solu D Solu D Solu Solu Solu D Solu	92-87-5	Benzidine	< 5.00	U	µg/l	5.00	0.894	1	"	"	"	"	"	х
benzo (b) fuoranthene < 5.00	56-55-3	Benzo (a) anthracene	< 5.00	U	µg/l	5.00	0.536	1	"	"	"	"	"	х
Accesses Balantiz (b) (b) (b) prigning and b) Solu O. 40.3 I Image of the state	50-32-8	Benzo (a) pyrene	< 5.00	U	µg/l	5.00	0.562	1	"	"	"	"	"	х
Server Belant Q, M, Jayment S. 500 D Jayl S. 500 D. S. 500 D S. 500 D. S. 500 D S. 500 D. S	205-99-2	Benzo (b) fluoranthene	< 5.00	U	µg/l	5.00	0.437	1	"	"	"	"	"	Х
No. Solution Balack (N, Indunating III) Solution D <thd< th=""> D<td>191-24-2</td><td>Benzo (g,h,i) perylene</td><td>< 5.00</td><td>U</td><td>µg/l</td><td>5.00</td><td>0.530</td><td>1</td><td></td><td>"</td><td>"</td><td>"</td><td></td><td>Х</td></thd<>	191-24-2	Benzo (g,h,i) perylene	< 5.00	U	µg/l	5.00	0.530	1		"	"	"		Х
Nor-one Belig Lic alual View J pip1 Color Out Dist Dist <thdis< th=""> Dis Dist</thdis<>	207-08-9	Benzo (k) fluoranthene	< 5.00	U	µg/l	5.00	0.480	1	"	"	"	"	"	Х
Banky hatolink S.00 U pg/l S.00 0.666 1	65-85-0	Benzoic acid	0.860	J	µg/l	5.00	0.527	1		"	"	"		Х
Instant Back-chlorodelby/leftant S.00 D pg/l S.00 O.734 1 * <td>100-51-6</td> <td>Benzyl alcohol</td> <td>< 5.00</td> <td>U</td> <td>µg/l</td> <td>5.00</td> <td>0.780</td> <td>1</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>Х</td>	100-51-6	Benzyl alcohol	< 5.00	U	µg/l	5.00	0.780	1	"	"	"	"	"	Х
Balack - Line and a state page Soo 0.438 1 I	111-91-1		< 5.00	U	µg/l	5.00	0.666	1	"	"	"	"	"	х
Bis (2-unitodustry) yielne 5.00 0 µg/l 5.00 0.75 1 "	111-44-4	Bis(2-chloroethyl)ether	< 5.00	U	µg/l	5.00	0.734	1	"	"	"	"	"	Х
111111111111111111111111111111111111	108-60-1		< 5.00	U	µg/l	5.00	0.778	1	"	"		"	"	х
about open and a strengthy prenty intenty inteny intenty intenty intenty intenty intenty intenty intent	117-81-7	Bis(2-ethylhexyl)phthalate	1.04	J	µg/l	5.00	0.638	1	"	"	"	"	"	х
Name Name Solu D <thd< td=""><td>101-55-3</td><td></td><td>< 5.00</td><td>U</td><td>µg/l</td><td>5.00</td><td>0.602</td><td>1</td><td>n</td><td>"</td><td>"</td><td>"</td><td>"</td><td>х</td></thd<>	101-55-3		< 5.00	U	µg/l	5.00	0.602	1	n	"	"	"	"	х
4-Chloro-3-methylphenol <	85-68-7	Butyl benzyl phthalate	< 5.00	U	µg/l	5.00	0.438	1	"	"	"	"		Х
0647-8 4-Chloroanline < 5.00	86-74-8	Carbazole	< 5.00	U	µg/l	5.00	1.56	1	"	"	"	"	"	х
1-8-7 2-Chloronaphthalene < 5.00	59-50-7	4-Chloro-3-methylphenol	< 5.00	U	µg/l	5.00	0.501	1	"	"	"	"	"	х
32-Chloraphintalene 5.00 0 µg/l 5.00 0.380 1 "	106-47-8	4-Chloroaniline	< 5.00	U	µg/l	5.00	0.733	1	"		"	"		х
4-Chlorophenyl phenyl < 5.00	91-58-7	2-Chloronaphthalene	< 5.00	U	µg/l	5.00	0.590	1	"	"	"	"	"	х
etter etter <td< td=""><td>95-57-8</td><td>2-Chlorophenol</td><td>< 5.00</td><td>U</td><td>µg/l</td><td>5.00</td><td>0.748</td><td>1</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>Х</td></td<>	95-57-8	2-Chlorophenol	< 5.00	U	µg/l	5.00	0.748	1	"	"	"	"	"	Х
33-70-3 Dibenzo (a,h) anthracene < 5.00	7005-72-3		< 5.00	U	µg/l	5.00	0.603	1	"	"	"	"	"	х
32-84-9 Dibenzofuran < 5.00	218-01-9	Chrysene	< 5.00	U	µg/l	5.00	0.532	1		"	"	"		Х
35-50-1 1,2-Dichlorobenzene < 5.00	53-70-3	Dibenzo (a,h) anthracene	< 5.00	U	µg/l	5.00	0.450	1		"	"	"		Х
541-73-1 1,3-Dichlorobenzene < 5.00	132-64-9	Dibenzofuran	< 5.00	U	µg/l	5.00	0.740	1	"	"	"	"	"	Х
1,4-Dichlorobenzene < 5.00	95-50-1	1,2-Dichlorobenzene	< 5.00	U	µg/l	5.00	0.562	1		"	"	"		Х
1,4=Dichlorobenizene < 3.00	541-73-1	1,3-Dichlorobenzene	< 5.00	U	µg/l	5.00	0.647	1		"	"	"		Х
120-83-2 2,4-Dichlorophenol < 5.00	106-46-7	1,4-Dichlorobenzene	< 5.00	U	µg/l	5.00	0.614	1	"	"	"	"	"	Х
A4-66-2 Diethyl phthalate < 5.00	91-94-1	3,3'-Dichlorobenzidine	< 5.00	U	µg/l	5.00	0.579	1	"	"	"	"		Х
131-11-3 Dimethyl phthalate < 5.00	120-83-2	2,4-Dichlorophenol	< 5.00	U	µg/l	5.00	0.530	1	"	"	"	"		Х
105-67-9 2,4-Dimethylphenol < 5.00	84-66-2	Diethyl phthalate	< 5.00					1	"		"	"	"	
34-74-2 Di-n-butyl phthalate < 5.00 U μg/l 5.00 0.457 1 "<	131-11-3								"		"	"		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105-67-9	2,4-Dimethylphenol	< 5.00	U	µg/l		0.653	1	"		"	"	"	х
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	84-74-2	Di-n-butyl phthalate	< 5.00	U	µg/l	5.00	0.457	1	"		"	"	"	
121-14-2 2,4-Dinitrotoluene < 5.00 U μg/l 5.00 0.673 1 " " " " X	534-52-1	4,6-Dinitro-2-methylphenol	< 5.00	U	µg/l		0.319	1	"	"	"	"	"	х
	51-28-5	2,4-Dinitrophenol	< 5.00	U	µg/l		0.561	1	"	"	"	"	"	х
506-20-2 2,6-Dinitrotoluene < 5.00 U μg/l 5.00 0.593 1 " " " " X	121-14-2	2,4-Dinitrotoluene	< 5.00	U	µg/l	5.00	0.673	1	"		"	"	"	х
	606-20-2	2,6-Dinitrotoluene	< 5.00	U	µg/l	5.00	0.593	1	"		"	"	"	Х

Sample Id MW-M SC36327-	<u>dentification</u> -04			<u>Client F</u> 4884	<u>Project #</u> S-13		<u>Matrix</u> Ground Wa		ection Date -Jun-17 14			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
Semivolat	tile Organic Compounds												
117-84-0	Di-n-octyl phthalate	< 5.00	U	µg/l	5.00	0.406	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	х
206-44-0	Fluoranthene	< 5.00	U	µg/l	5.00	0.638	1		"	"	"	"	Х
86-73-7	Fluorene	< 5.00	U	μg/l	5.00	0.612	1				"	"	х
118-74-1	Hexachlorobenzene	< 5.00	U	μg/l	5.00	0.571	1				"	"	х
87-68-3	Hexachlorobutadiene	< 5.00	U	μg/l	5.00	0.388	1				"	"	х
77-47-4	Hexachlorocyclopentadien e	< 5.00	U	µg/l	5.00	1.04	1	u	"	"	"	"	х
67-72-1	Hexachloroethane	< 5.00	U	µg/l	5.00	0.639	1				"	"	х
193-39-5	Indeno (1,2,3-cd) pyrene	< 5.00	U	µg/l	5.00	0.580	1				"	"	х
78-59-1	Isophorone	< 5.00	U	µg/l	5.00	0.586	1				"	"	х
91-57-6	2-Methylnaphthalene	< 5.00	U	µg/l	5.00	0.574	1				"	"	х
95-48-7	2-Methylphenol	< 5.00	U	µg/l	5.00	0.665	1				"		х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 10.0	U	µg/l	10.0	0.615	1	"	"		"	"	х
91-20-3	Naphthalene	< 5.00	U	µg/l	5.00	0.685	1				"	"	х
88-74-4	2-Nitroaniline	< 5.00	U	µg/l	5.00	0.606	1				"		х
99-09-2	3-Nitroaniline	< 5.00	U	µg/l	5.00	0.484	1				"	"	х
100-01-6	4-Nitroaniline	< 5.00	U	µg/l	5.00	0.374	1				"	"	х
98-95-3	Nitrobenzene	< 5.00	U	µg/l	5.00	0.690	1				"	"	х
88-75-5	2-Nitrophenol	< 5.00	U	µg/l	5.00	0.465	1				"	"	х
100-02-7	4-Nitrophenol	< 20.0	U	µg/l	20.0	0.838	1				"		х
62-75-9	N-Nitrosodimethylamine	< 5.00	U	µg/l	5.00	0.673	1				"		х
621-64-7	N-Nitrosodi-n-propylamine	< 5.00	U	µg/l	5.00	0.578	1				"	"	х
86-30-6	N-Nitrosodiphenylamine	< 5.00	U	µg/l	5.00	0.651	1				"		х
87-86-5	Pentachlorophenol	< 20.0	U	µg/l	20.0	0.373	1				"		х
85-01-8	Phenanthrene	< 5.00	U	µg/l	5.00	0.586	1				"	"	х
108-95-2	Phenol	< 5.00	U	µg/l	5.00	0.645	1				"		х
129-00-0	Pyrene	< 5.00	U	µg/l	5.00	0.610	1				"		х
110-86-1	Pyridine	< 5.00	U	µg/l	5.00	0.819	1				"		х
120-82-1	1,2,4-Trichlorobenzene	< 5.00	U	µg/l	5.00	0.687	1				"	"	х
90-12-0	1-Methylnaphthalene	< 5.00	U	µg/l	5.00	0.733	1				"		
95-95-4	2,4,5-Trichlorophenol	< 5.00	U	µg/l	5.00	0.520	1				"	"	х
88-06-2	2,4,6-Trichlorophenol	< 5.00	U	µg/l	5.00	0.518	1				"	"	х
82-68-8	Pentachloronitrobenzene	< 5.00	U	µg/l	5.00	0.696	1				"	"	х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 5.00	U	µg/l	5.00	0.725	1	"	"	"	"	"	х
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	46			30-13	0 %						"	
367-12-4	2-Fluorophenol	32			15-11	0%					"	"	
4165-60-0	Nitrobenzene-d5	43			30-13			"			"	"	
4165-62-2	Phenol-d5	23			15-11			"			"	"	
1718-51-0	Terphenyl-dl4	55			30-13				"		"	"	
118-79-6	2,4,6-Tribromophenol	56			15-11			"	"		"	"	
Tentativel	y Identified Compounds												
	Tentatively Identified Compounds als by EPA 200/6000 Series N	None found		µg/l			1	SW846 8270D TICS	n	"	MSL	"	

Sample Ic MW-M SC36327-	<u>lentification</u> -04				Project <u>#</u> S-13		<u>Matrix</u> Ground Wa		ection Date -Jun-17 14			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	als by EPA 200/6000 Series N by method General Prep-I												
	Preservation	Lab Preserved		N/A			1	EPA 200/6000 methods	27-Jun-17		LNB	1710863	
	als by EPA 6000/7000 Series by method SW846 3005A												
7440-38-2	Arsenic	< 0.0040	U	mg/l	0.0040	0.0014	1	SW846 6010C	29-Jun-17	02-Jul-17	edt	1710998	Х
7440-39-3	Barium	0.432		mg/l	0.0050	0.0007	1		"		"	"	Х
7440-47-3	Chromium	< 0.0050	U	mg/l	0.0050	0.0009	1		"	"			Х
7439-95-4	Magnesium	21.8		mg/l	0.0200	0.0088	1		03-Jul-17	05-Jul-17		1711234	Х
7440-36-0	Antimony	< 0.0060	U	mg/l	0.0060	0.0016	1		29-Jun-17	02-Jul-17	"	1710998	х
7440-28-0	Thallium	< 0.0050	U	mg/l	0.0050	0.0021	1	"	"		"		х
7440-62-2	Vanadium	< 0.0050	U	mg/l	0.0050	0.0011	1	"	"	"		"	Х

Sample Ic FB 06211 SC36327-				<u>Client F</u> 4884	<u>Project #</u> S-13		<u>Matrix</u> Ground Wa		ection Date 1-Jun-17 14			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
<u>Volatile O</u>	rganic Compounds												
Prepared 76-13-1	by method SW846 5030 V 1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00	U	µg/l	1.00	0.53	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	X
67-64-1	Acetone	< 10.0	U	µg/l	10.0	0.80	1	"			"		х
107-13-1	Acrylonitrile	< 0.50	U	μg/l	0.50	0.47	1	"	"		"	"	х
71-43-2	Benzene	< 1.00	U	µg/l	1.00	0.28	1		"		"	"	х
108-86-1	Bromobenzene	< 1.00	U	μg/l	1.00	0.33	1	"	"		"	"	х
74-97-5	Bromochloromethane	< 1.00	U	μg/l	1.00	0.34	1	"	"		"	"	х
75-27-4	Bromodichloromethane	< 0.50	U	μg/l	0.50	0.42	1	"	"		"	"	х
75-25-2	Bromoform	< 1.00	U	µg/l	1.00	0.42	1		"		"		х
74-83-9	Bromomethane	< 2.00	U	μg/l	2.00	0.90	1	"			"		х
78-93-3	2-Butanone (MEK)	< 2.00	U	μg/l	2.00	1.07	1	"			"		х
104-51-8	n-Butylbenzene	< 1.00	U	μg/l	1.00	0.41	1	"			"		х
135-98-8	sec-Butylbenzene	< 1.00	U	µg/l	1.00	0.33	1	"			"		X
98-06-6	tert-Butylbenzene	< 1.00	U	μg/l	1.00	0.32	1	"			"		х
75-15-0	Carbon disulfide	< 2.00	U	μg/l	2.00	0.41	1	"			"		х
56-23-5	Carbon tetrachloride	< 1.00	U	μg/l	1.00	0.44	1	"			"		х
108-90-7	Chlorobenzene	< 1.00	U	µg/l	1.00	0.25	1	"			"		X
75-00-3	Chloroethane	< 2.00	U	μg/l	2.00	0.59	1	"	"		"	"	x
67-66-3	Chloroform	< 1.00	U	μg/l	1.00	0.33	1		"		"		x
74-87-3	Chloromethane	< 2.00	U	μg/l	2.00	0.37	1				"		x
95-49-8	2-Chlorotoluene	< 1.00	U	μg/l	1.00	0.32	1				"		x
106-43-4	4-Chlorotoluene	< 1.00	U	μg/l	1.00	0.32	1				"		x
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00	U	µg/l	2.00	0.86	1	n	"		"	"	x
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.32	1		"		"		х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	μg/l	0.50	0.20	1		"		"		х
74-95-3	Dibromomethane	< 1.00	U	μg/l	1.00	0.31	1		"		"		х
95-50-1	1,2-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.28	1		"		"		х
541-73-1	1,3-Dichlorobenzene	< 1.00	U	μg/l	1.00	0.31	1	"			"		х
106-46-7	1,4-Dichlorobenzene	< 1.00	U	μg/l	1.00	0.27	1	"	"		"		х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00	U	µg/I	2.00	0.58	1	"	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 1.00	U	µg/l	1.00	0.32	1	"	"	"	"		х
107-06-2	1,2-Dichloroethane	< 1.00	U	µg/l	1.00	0.28	1	"	"		"		х
75-35-4	1,1-Dichloroethene	< 1.00	U	µg/l	1.00	0.69	1	"	"		"		х
156-59-2	cis-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.33	1	"	"		"		х
156-60-5	trans-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.38	1	"	"		"		х
78-87-5	1,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.29	1	"			"	"	х
142-28-9	1,3-Dichloropropane	< 1.00	U	µg/l	1.00	0.21	1	"	"		"		х
594-20-7	2,2-Dichloropropane	< 1.00	U	μg/l	1.00	0.42	1	"			"	"	х
563-58-6	1,1-Dichloropropene	< 1.00	U	μg/l	1.00	0.58	1	"			"	"	х
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	μg/l	0.50	0.36	1	"			"	"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	μg/l	0.50	0.35	1	"			"	"	х
100-41-4	Ethylbenzene	< 1.00	U	µg/l	1.00	0.33	1	"			"	"	X
87-68-3	Hexachlorobutadiene	< 0.50	U	μg/l	0.50	0.47	1	"			"	"	x
591-78-6	2-Hexanone (MBK)	< 2.00	U	μg/l	2.00	0.53	1		"		"		x

Sample Id FB 06211	lentification 7				<u>Project #</u> IS-13		<u>Matrix</u> Ground Wa		ection Date -Jun-17 14			<u>ceived</u> Jun-17	
SC36327-	-05			4004	-15		Ground wa		-Juli-1 / 14	.10	23-	Juli-1 /	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	846 8260											
98-82-8	Isopropylbenzene	< 1.00	U	µg/l	1.00	0.36	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	Х
99-87-6	4-Isopropyltoluene	< 1.00	U	µg/l	1.00	0.28	1		"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.24	1		"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00	U	µg/l	2.00	0.52	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	5.10		µg/l	2.00	0.66	1		"	"	"	"	х
91-20-3	Naphthalene	< 1.00	U	µg/l	1.00	0.35	1		"	"	"	"	Х
103-65-1	n-Propylbenzene	< 1.00	U	µg/l	1.00	0.34	1		"	"	"	"	Х
100-42-5	Styrene	< 1.00	U	µg/l	1.00	0.40	1		"		"	"	х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.00	U	µg/l	1.00	0.38	1		"		"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50	0.33	1		"		"	"	Х
127-18-4	Tetrachloroethene	< 1.00	U	µg/l	1.00	0.57	1		"		"	"	х
108-88-3	Toluene	0.37	J	µg/l	1.00	0.30	1		"	"	"	"	х
87-61-6	1,2,3-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	х
120-82-1	1,2,4-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	х
108-70-3	1,3,5-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.30	1		"	"	"	"	
71-55-6	1,1,1-Trichloroethane	< 1.00	U	µg/l	1.00	0.51	1		"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	Х
79-01-6	Trichloroethene	< 1.00	U	µg/l	1.00	0.50	1		"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	µg/l	1.00	0.49	1	n		"	"	"	Х
96-18-4	1,2,3-Trichloropropane	< 1.00	U	µg/l	1.00	0.29	1		"	"	"	"	х
95-63-6	1,2,4-Trimethylbenzene	0.46	J	µg/l	1.00	0.36	1		"	"	"	"	х
108-67-8	1,3,5-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.43	1		"	"	"	"	х
75-01-4	Vinyl chloride	< 1.00	U	µg/l	1.00	0.47	1		"	"	"	"	х
179601-23-1	m,p-Xylene	0.77	J	µg/l	2.00	0.38	1		"		"		х
95-47-6	o-Xylene	< 1.00	U	µg/l	1.00	0.28	1		"	"	"		х
109-99-9	Tetrahydrofuran	< 2.00	U	µg/l	2.00	1.06	1		"	"	"		
60-29-7	Ethyl ether	< 1.00	U	µg/l	1.00	0.37	1		"		"	"	Х
994-05-8	Tert-amyl methyl ether	< 1.00	U	µg/l	1.00	0.49	1		"		"	"	х
637-92-3	Ethyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.33	1		"		"	"	х
108-20-3	Di-isopropyl ether	< 1.00	U	µg/l	1.00	0.29	1		"		"	"	х
75-65-0	Tert-Butanol / butyl alcohol	< 10.0	U	µg/l	10.0	5.90	1		"		"	"	х
123-91-1	1,4-Dioxane	< 20.0	U	µg/l	20.0	11.4	1		"		"	"	х
110-57-6	trans-1,4-Dichloro-2-buten e	< 5.00	U	µg/l	5.00	0.82	1	n	"	"	"	"	Х
64-17-5	Ethanol	< 200	U	µg/l	200	30.9	1	"	"		"	"	Х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	80 %		"			"	"	
2037-26-5	Toluene-d8	101			70-13			"			"	"	
17060-07-0	1,2-Dichloroethane-d4	100			70-13			"			"	"	
1868-53-7	Dibromofluoromethane	100			70-13			"			"	"	
	y Identified Compounds by												
	Tentatively Identified Compounds	None found		µg/l			1	SW846 8260C TICs	"	"	EK	"	
	ile Organic Compounds by ile Organic Compounds	GCMS											

HHMLIPCircuitGround WaterQ Laus,I7 14.18Q 3-Jun-17Q 3-Jun-17CLSD-27-05ConstantionFalleRateRADE <th>Sample Id</th> <th colspan="3">ample Identification</th> <th colspan="3">Client Project #</th> <th colspan="4">Matrix Collection Date/Time</th> <th colspan="3">Received</th>	Sample Id	ample Identification			Client Project #			Matrix Collection Date/Time				Received		
Schulzers Rauk						•								
Samulatile Organic Compounds by GCMS Samulatile Organic Compounds by GMS6 33100 Pagead NumeRol SW66 33100 13:3-9 Acompthese 5.05 U µg1 5.05 C.850 1 - - - X 38:44 Acompthese 5.05 U µg1 5.05 0.850 1 - - - X X 38:43 Antracene 5.05 U µg1 5.05 0.756 1 - - - X X 39:33 Automotent Dipersynitat 5.05 U µg1 6.05 0.641 1 - - - X X 39:34 Berno (a) preve 4.505 U µg1 6.05 0.641 1 - - - X X 39:28 Berno (a) preve 5.05 U µg1 6.05 0.545 - - - X X 39:24 Berno (a) foroanthere 5.05	SC36327	-05				~								
30343Abroncher6.50500.40100.5050.506 <td< th=""><th>CAS No.</th><th>Analyte(s)</th><th>Result</th><th>Flag</th><th>Units</th><th>*RDL</th><th>MDL</th><th>Dilution</th><th>Method Ref.</th><th>Prepared</th><th>Analyzed</th><th>Analyst</th><th>Batch</th><th>Cert.</th></td<>	CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
colspacecolspac	Semivolat	ile Organic Compounds by (GCMS											
Bits Accomptinyleme < 5.05 U µpt S.05 0.600 1 " <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Base Anthreson Sob U U U Sob U <thu< t<="" td=""><td>83-32-9</td><td>Acenaphthene</td><td>< 5.05</td><td>U</td><td>µg/l</td><td>5.05</td><td>0.698</td><td>1</td><td>SW846 8270D</td><td>28-Jun-17</td><td>29-Jun-17</td><td>MSL</td><td>1710848</td><td>Х</td></thu<>	83-32-9	Acenaphthene	< 5.05	U	µg/l	5.05	0.698	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	Х
30313 Antracene 6.05 U µg1 6.05 0.644 1 " ·	208-96-8	Acenaphthylene	< 5.05	U	µg/l	5.05	0.690	1	"			"	"	х
Andersame/Dipheryking re S.DS U µg1 S.DS 0.756 1 "	62-53-3	Aniline	< 5.05	U	µg/l	5.05	1.79	1	"	"	"	"	"	х
ene ene <td>120-12-7</td> <td>Anthracene</td> <td>< 5.05</td> <td>U</td> <td>µg/l</td> <td>5.05</td> <td>0.614</td> <td>1</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>х</td>	120-12-7	Anthracene	< 5.05	U	µg/l	5.05	0.614	1	"	"	"	"	"	х
bandballing S. Los U µg/l S. Los S. Los U µg/l Los Los U Z Z Z Z Z Z Z Z Z Z Z Z <thz< th=""> Z Z <thz< td=""><td>103-33-3</td><td></td><td>< 5.05</td><td>U</td><td>µg/l</td><td>5.05</td><td>0.756</td><td>1</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></thz<></thz<>	103-33-3		< 5.05	U	µg/l	5.05	0.756	1	"	"	"	"	"	
Norse Banck (r) annihume Norse C pip Bood pip Bood Pip Bood Pip	92-87-5	Benzidine	< 5.05	U	µg/l	5.05	0.903	1	"	"	"	"	"	х
Norway Balanta (a) pirent S.13 U pirent S.35 U	56-55-3	Benzo (a) anthracene	< 5.05	U	µg/l	5.05	0.541	1	"	"	"	"	"	х
Bandard (b)	50-32-8	Benzo (a) pyrene	< 5.05	U	µg/l	5.05	0.568	1	"	"	"	"	"	х
Markar Beliz (2) (1) (1) prime S. 30 U III (1) S. 30 D. 30.3	205-99-2	Benzo (b) fluoranthene	< 5.05	U	µg/l	5.05	0.441	1	"	"	"	"	"	Х
Markardon Belliz (M, Induminente S. O.G. D Jupit S. O.G. O.G. D.G.	191-24-2	Benzo (g,h,i) perylene	< 5.05	U	µg/l	5.05	0.535	1		"	"	"	"	Х
Norme Belig Link and Mark Solo D pg/l Solo O.Solo O.Solo D Pg/l Solo O.Solo D.Solo O.Solo O.Solo D.Solo O.Solo	207-08-9	Benzo (k) fluoranthene	< 5.05	U	µg/l	5.05	0.485	1	"	"	"	"	"	Х
Banky factorial S.0.5 U µg/l S.0.5 0.7 1 .	65-85-0	Benzoic acid	< 5.05	U	µg/l	5.05	0.532	1	"	"	"	"	"	Х
Instant Back-chionedinky jinemi S.0.0 Q µg/l S.0.0 Q/l I	100-51-6	Benzyl alcohol	< 5.05	U	µg/l	5.05	0.788	1		"	"	"	"	Х
Bigle - Histories opported by the set of th	111-91-1		< 5.05	U	µg/l	5.05	0.673	1	"	"	"	"	"	х
Bask2-unicodespression procession 5.05 0 p.p.n 5.05 0.760 1 ************************************	111-44-4	Bis(2-chloroethyl)ether	< 5.05	U	µg/l	5.05	0.741	1	"	"	"	"	"	х
Minute Biologeneric B	108-60-1		< 5.05	U	µg/l	5.05	0.786	1	"	"		"	"	х
absolute absolute absolute b pg/l b.000 l <t< td=""><td>117-81-7</td><td>Bis(2-ethylhexyl)phthalate</td><td>5.54</td><td></td><td>µg/l</td><td>5.05</td><td>0.644</td><td>1</td><td></td><td>"</td><td></td><td>"</td><td></td><td>х</td></t<>	117-81-7	Bis(2-ethylhexyl)phthalate	5.54		µg/l	5.05	0.644	1		"		"		х
Accord and the field plantate S.0.0 G.0.0 pg/l S.0.0 G.0.0 G.0.0 Pg/l S.0.0 G.0.0 G.0.0 Pg/l S.0.0 Pg/l S.0.0 </td <td>101-55-3</td> <td></td> <td>< 5.05</td> <td>U</td> <td>µg/l</td> <td>5.05</td> <td>0.608</td> <td>1</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>х</td>	101-55-3		< 5.05	U	µg/l	5.05	0.608	1	"	"	"	"	"	х
99-50-7 4-Chloro-3-methylphenol < 5.05	85-68-7	Butyl benzyl phthalate	< 5.05	U	µg/l	5.05	0.442	1		"		"		х
4-Chloroanline < 5.05	86-74-8	Carbazole	< 5.05	U	µg/l	5.05	1.58	1	"			"	"	х
1987 2-Chloronanthalene < 5.05	59-50-7	4-Chloro-3-methylphenol	< 5.05	U	µg/l	5.05	0.506	1	"	"	"	"	"	Х
32-Chiloraphinialerie 3.05 0 µg/n 5.05 0.586 1 "	106-47-8	4-Chloroaniline	< 5.05	U	µg/l	5.05	0.740	1	"	"	"	"	"	Х
4-Chlorophenyl phenyl < 5.05	91-58-7	2-Chloronaphthalene	< 5.05	U	µg/l	5.05	0.596	1	"	"	"	"	"	Х
etter etter <td< td=""><td>95-57-8</td><td>2-Chlorophenol</td><td>< 5.05</td><td>U</td><td>µg/l</td><td>5.05</td><td>0.756</td><td>1</td><td>"</td><td></td><td></td><td>"</td><td>"</td><td>Х</td></td<>	95-57-8	2-Chlorophenol	< 5.05	U	µg/l	5.05	0.756	1	"			"	"	Х
33-70-3 Dibenzo (a,h) anthracene < 5.05	7005-72-3		< 5.05	U	µg/l	5.05	0.609	1	"	"	"	"	"	х
132-64-9 Dibenzofuran < 5.05	218-01-9	Chrysene	< 5.05	U	µg/l	5.05	0.537	1	"	"	"	"		Х
36-50-1 1,2-Dichlorobenzene < 5.05	53-70-3	Dibenzo (a,h) anthracene	< 5.05	U	µg/l	5.05	0.455	1	"	"	"	"	"	х
541-73-1 1,3-Dichlorobenzene < 5.05	132-64-9	Dibenzofuran	< 5.05	U	µg/l	5.05	0.747	1	"	"	"	"	"	Х
1,4-Dichlorobenzene < 5.05	95-50-1	1,2-Dichlorobenzene	< 5.05	U	µg/l	5.05	0.568	1	"			"	"	Х
1,4-Dichlorobenizene < 3.05	541-73-1	1,3-Dichlorobenzene	< 5.05	U	µg/l	5.05	0.654	1	"	"	"	"	"	х
120-83-2 2,4-Dichlorophenol < 5.05	106-46-7	1,4-Dichlorobenzene	< 5.05	U	µg/l	5.05	0.620	1		"	"	"	"	Х
34-66-2 Diethyl phthalate < 5.05	91-94-1	3,3'-Dichlorobenzidine	< 5.05	U	µg/l	5.05	0.585	1	"	"	"	"		Х
131-11-3 Dimethyl phthalate < 5.05	120-83-2	2,4-Dichlorophenol	< 5.05	U	µg/l	5.05	0.535	1	"			"	"	х
105-67-9 2,4-Dimethylphenol < 5.05	84-66-2	Diethyl phthalate	< 5.05	U	µg/l	5.05	0.629	1	"	"		"	"	х
34-74-2 Di-n-butyl phthalate < 5.05	131-11-3	Dimethyl phthalate	< 5.05	U	µg/l	5.05	0.766	1	"	"		"	"	х
534-52-1 4,6-Dinitro-2-methylphenol < 5.05	105-67-9	2,4-Dimethylphenol	< 5.05	U	µg/l	5.05	0.660	1	"			"	"	х
51-28-5 2,4-Dinitrophenol < 5.05	84-74-2	Di-n-butyl phthalate	< 5.05	U	µg/l	5.05	0.462	1	"	"		"	"	х
121-14-2 2,4-Dinitrotoluene < 5.05 U μg/l 5.05 0.680 1 " " " " " X	534-52-1	4,6-Dinitro-2-methylphenol	< 5.05	U	µg/l	5.05	0.322	1	"	"		"	"	х
	51-28-5	2,4-Dinitrophenol	< 5.05	U	µg/l	5.05	0.567	1	"	"		"	"	х
506-20-2 2,6-Dinitrotoluene < 5.05 U μg/l 5.05 0.599 1 " " " " X	121-14-2	2,4-Dinitrotoluene	< 5.05	U	µg/l	5.05	0.680	1	"			"	"	Х
	606-20-2	2,6-Dinitrotoluene	< 5.05	U	µg/l	5.05	0.599	1	"		"	"	"	Х

FB 06211	236327-05					Ground Water		Collection Date/Time 21-Jun-17 14:18		<u>Received</u> 23-Jun-17			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
Semivolat	tile Organic Compounds												
117-84-0	Di-n-octyl phthalate	1.08	J	µg/l	5.05	0.410	1	SW846 8270D	28-Jun-17	29-Jun-17	MSL	1710848	х
206-44-0	Fluoranthene	< 5.05	U	µg/l	5.05	0.644	1				"	"	х
86-73-7	Fluorene	< 5.05	U	µg/l	5.05	0.618	1		"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 5.05	U	µg/l	5.05	0.577	1		"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 5.05	U	µg/l	5.05	0.392	1		"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 5.05	U	µg/l	5.05	1.05	1	u	"		"		х
67-72-1	Hexachloroethane	< 5.05	U	µg/l	5.05	0.645	1	"			"	"	х
193-39-5	Indeno (1,2,3-cd) pyrene	< 5.05	U	µg/l	5.05	0.586	1		"	"	"	"	х
78-59-1	Isophorone	< 5.05	U	µg/l	5.05	0.592	1				"	"	х
91-57-6	2-Methylnaphthalene	< 5.05	U	µg/l	5.05	0.580	1				"	"	х
95-48-7	2-Methylphenol	< 5.05	U	µg/l	5.05	0.672	1	"			"	"	х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 10.1	U	µg/l	10.1	0.621	1	"	"	"	"	"	х
91-20-3	Naphthalene	< 5.05	U	µg/l	5.05	0.692	1		"	"	"	"	Х
88-74-4	2-Nitroaniline	< 5.05	U	µg/l	5.05	0.612	1		"	"	"	"	Х
99-09-2	3-Nitroaniline	< 5.05	U	µg/l	5.05	0.489	1				"	"	х
100-01-6	4-Nitroaniline	< 5.05	U	µg/l	5.05	0.378	1		"	"	"	"	Х
98-95-3	Nitrobenzene	< 5.05	U	µg/l	5.05	0.697	1		"	"	"	"	Х
88-75-5	2-Nitrophenol	< 5.05	U	µg/l	5.05	0.470	1				"	"	Х
100-02-7	4-Nitrophenol	< 20.2	U	µg/l	20.2	0.846	1		"	"	"	"	Х
62-75-9	N-Nitrosodimethylamine	< 5.05	U	µg/l	5.05	0.680	1				"		Х
621-64-7	N-Nitrosodi-n-propylamine	< 5.05	U	µg/l	5.05	0.584	1				"	"	Х
86-30-6	N-Nitrosodiphenylamine	< 5.05	U	µg/l	5.05	0.658	1				"	"	Х
87-86-5	Pentachlorophenol	< 20.2	U	µg/l	20.2	0.377	1		"		"	"	Х
85-01-8	Phenanthrene	< 5.05	U	µg/l	5.05	0.592	1		"		"	"	Х
108-95-2	Phenol	< 5.05	U	µg/l	5.05	0.652	1		"		"	"	Х
129-00-0	Pyrene	< 5.05	U	µg/l	5.05	0.616	1		"		"		Х
110-86-1	Pyridine	< 5.05	U	µg/l	5.05	0.827	1		"		"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 5.05	U	µg/l	5.05	0.694	1		"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 5.05	U	µg/l	5.05	0.740	1		"		"		
95-95-4	2,4,5-Trichlorophenol	< 5.05	U	µg/l	5.05	0.525	1				"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 5.05	U	µg/l	5.05	0.523	1		"	"	"	"	Х
82-68-8	Pentachloronitrobenzene	< 5.05	U	µg/l	5.05	0.703	1		"	"	"	"	Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 5.05	U	µg/l	5.05	0.732	1	u	"	"	"	"	Х
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	36			30-13	0 %					"	"	
367-12-4	2-Fluorophenol	18			15-11	0 %		"	"		"	"	
4165-60-0	Nitrobenzene-d5	32		30-130 %		0 %		"	"		"	"	
4165-62-2	Phenol-d5	12	SAC		15-11	0 %		"	"		"	"	
1718-51-0	Terphenyl-dl4	39			30-13	0 %		"	"		"	"	
118-79-6	2,4,6-Tribromophenol	36		15-110 %			"	"		"	"		
<u>Tentativel</u>	y Identified Compounds												
	Tentatively Identified Compounds als by EPA 200/6000 Series N	None found		µg/I			1	SW846 8270D TICS	"	"	MSL		

FB 06211	Bample Identification FB 062117 SC36327-05				<u>Project #</u> 48-13		<u>Matrix</u> Ground Wa		Collection Date/Time 21-Jun-17 14:18			Received 23-Jun-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
	als by EPA 200/6000 Series by method General Prep													
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	27-Jun-17		LNB	1710863		
	als by EPA 6000/7000 Seri by method SW846 3005													
7440-38-2	Arsenic	< 0.0040	U	mg/l	0.0040	0.0014	1	SW846 6010C	29-Jun-17	02-Jul-17	edt	1710998	Х	
7440-39-3	Barium	< 0.0050	U	mg/l	0.0050	0.0007	1	"	"	"	"	"	Х	
7440-47-3	Chromium	< 0.0050	U	mg/l	0.0050	0.0009	1	"	"	"	"	"	Х	
7439-95-4	Magnesium	0.0120	J	mg/l	0.0200	0.0088	1	"	03-Jul-17	05-Jul-17	"	1711234	Х	
7440-36-0	Antimony	< 0.0060	U	mg/l	0.0060	0.0016	1	"	29-Jun-17	02-Jul-17	"	1710998	Х	
7440-28-0	Thallium	< 0.0050	U	mg/l	0.0050	0.0021	1		"		"		х	
7440-62-2	Vanadium	< 0.0050	U	mg/l	0.0050	0.0011	1	"	"		"	"	х	

Sample Id TB				<u>Client Project #</u> 4884S-13					Collection Date/Time 21-Jun-17 00:00		<u>Received</u> 23-Jun-17		
SC36327-	-06			-00-	5-15		Ground wa		- Juli -17 00	.00	25	Jun-1 /	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00	U	µg/l	1.00	0.53	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	×
67-64-1	Acetone	< 10.0	U	μg/l	10.0	0.80	1	"			"	"	х
107-13-1	Acrylonitrile	< 0.50	U	µg/l	0.50	0.47	1	"			"	"	х
71-43-2	Benzene	< 1.00	U	µg/l	1.00	0.28	1	"			"	"	х
108-86-1	Bromobenzene	< 1.00	U	µg/l	1.00	0.33	1	"	"		"		х
74-97-5	Bromochloromethane	< 1.00	U	µg/l	1.00	0.34	1	"	"		"		х
75-27-4	Bromodichloromethane	< 0.50	U	µg/l	0.50	0.42	1	"	"		"		х
75-25-2	Bromoform	< 1.00	U	μg/l	1.00	0.42	1	"	"		"		Х
74-83-9	Bromomethane	< 2.00	U	µg/l	2.00	0.90	1	"	"	"	"		Х
78-93-3	2-Butanone (MEK)	< 2.00	U	µg/l	2.00	1.07	1	"	"	"	"		Х
104-51-8	n-Butylbenzene	< 1.00	U	µg/l	1.00	0.41	1				"		х
135-98-8	sec-Butylbenzene	< 1.00	U	µg/l	1.00	0.33	1				"		х
98-06-6	tert-Butylbenzene	< 1.00	U	µg/l	1.00	0.32	1				"	"	х
75-15-0	Carbon disulfide	< 2.00	U	µg/l	2.00	0.41	1				"		х
56-23-5	Carbon tetrachloride	< 1.00	U	µg/l	1.00	0.44	1	"			"	"	х
108-90-7	Chlorobenzene	< 1.00	U	µg/l	1.00	0.25	1	"			"		х
75-00-3	Chloroethane	< 2.00	U	µg/l	2.00	0.59	1	"			"		х
67-66-3	Chloroform	< 1.00	U	µg/l	1.00	0.33	1	"			"		х
74-87-3	Chloromethane	< 2.00	U	µg/l	2.00	0.37	1	"			"		х
95-49-8	2-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1	"			"		х
106-43-4	4-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1	"			"		х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00	U	µg/l	2.00	0.86	1	"	"	u	"	"	х
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.32	1	"			"		х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	µg/l	0.50	0.20	1	"	"		"		х
74-95-3	Dibromomethane	< 1.00	U	µg/l	1.00	0.31	1	"	"		"		х
95-50-1	1,2-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.28	1	"	"		"		х
541-73-1	1,3-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.31	1	"	"		"		х
106-46-7	1,4-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.27	1	"	"		"		х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00	U	µg/l	2.00	0.58	1	"	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 1.00	U	µg/l	1.00	0.32	1	"			"		х
107-06-2	1,2-Dichloroethane	< 1.00	U	µg/l	1.00	0.28	1	"	"		"		х
75-35-4	1,1-Dichloroethene	< 1.00	U	µg/l	1.00	0.69	1	"	"		"	"	х
156-59-2	cis-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.33	1	"			"		х
156-60-5	trans-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.38	1				"		х
78-87-5	1,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.29	1	"			"	"	х
142-28-9	1,3-Dichloropropane	< 1.00	U	μg/l	1.00	0.21	1	"			"		х
594-20-7	2,2-Dichloropropane	< 1.00	U	μg/l	1.00	0.42	1	"			"		х
563-58-6	1,1-Dichloropropene	< 1.00	U	μg/l	1.00	0.58	1	"			"		х
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.36	1	"			"		x
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.35	1	"			"		X
100-41-4	Ethylbenzene	< 1.00	U	μg/l	1.00	0.33	1	"			"		x
87-68-3	Hexachlorobutadiene	< 0.50	U	μg/l	0.50	0.47	1	"			"		x
591-78-6	2-Hexanone (MBK)	< 2.00	U	μg/l	2.00	0.53	1				"		x

ТВ	ample Identification B C36327-06		<u>Client Project #</u> 4884S-13		<u>Matrix</u> Ground Water		Collection Date/Timeater21-Jun-17 00:00			Received 23-Jun-17			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile Or	rganic Compounds by SW	846 8260											
98-82-8	Isopropylbenzene	< 1.00	U	µg/l	1.00	0.36	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	х
99-87-6	4-Isopropyltoluene	< 1.00	U	µg/l	1.00	0.28	1			"	"		х
1634-04-4	Methyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.24	1			"	"	"	х
108-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00	U	µg/l	2.00	0.52	1	"	"	"	"	"	Х
75-09-2	Methylene chloride	0.75	J	µg/l	2.00	0.66	1	"		"	"	"	х
91-20-3	Naphthalene	< 1.00	U	µg/l	1.00	0.35	1			"	"		х
103-65-1	n-Propylbenzene	< 1.00	U	µg/l	1.00	0.34	1			"	"		х
100-42-5	Styrene	< 1.00	U	µg/l	1.00	0.40	1			"	"		х
630-20-6	1,1,1,2-Tetrachloroethane	< 1.00	U	µg/l	1.00	0.38	1			"	"		х
79-34-5	1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50	0.33	1			"	"		х
127-18-4	Tetrachloroethene	< 1.00	U	µg/l	1.00	0.57	1	"		"			х
108-88-3	Toluene	< 1.00	U	μg/l	1.00	0.30	1			"	"		х
87-61-6	1,2,3-Trichlorobenzene	< 1.00	U	μg/l	1.00	0.38	1			"			х
120-82-1	1,2,4-Trichlorobenzene	< 1.00	U	μg/l	1.00	0.38	1			"			х
108-70-3	1,3,5-Trichlorobenzene	< 1.00	U	μg/l	1.00	0.30	1			"			
71-55-6	1,1,1-Trichloroethane	< 1.00	U	μg/l	1.00	0.51	1			"			х
79-00-5	1,1,2-Trichloroethane	< 1.00	U	μg/l	1.00	0.33	1						x
79-01-6	Trichloroethene	< 1.00	U	μg/l	1.00	0.50	1						x
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	µg/l	1.00	0.49	1	"	"	"	"	"	X
96-18-4	1,2,3-Trichloropropane	< 1.00	U	µg/l	1.00	0.29	1			"			х
95-63-6	1,2,4-Trimethylbenzene	< 1.00	U	μg/l	1.00	0.36	1			"	"		х
108-67-8	1,3,5-Trimethylbenzene	< 1.00	U	μg/l	1.00	0.43	1			"			х
75-01-4	Vinyl chloride	< 1.00	U	μg/l	1.00	0.47	1			"			х
179601-23-1	-	< 2.00	U	μg/l	2.00	0.38	1			"			X
95-47-6	o-Xylene	< 1.00	U	μg/l	1.00	0.28	1			"			x
109-99-9	Tetrahydrofuran	< 2.00	U	μg/l	2.00	1.06	1						
60-29-7	Ethyl ether	< 1.00	U	μg/l	1.00	0.37	1						х
994-05-8	Tert-amyl methyl ether	< 1.00	U	μg/l	1.00	0.49	1						x
637-92-3	Ethyl tert-butyl ether	< 1.00	U	μg/l	1.00	0.33	1				"		X
108-20-3	Di-isopropyl ether	< 1.00	U		1.00	0.29	1						X
75-65-0				µg/l									
123-91-1	Tert-Butanol / butyl alcohol 1,4-Dioxane	< 10.0 < 20.0	U	µg/l	10.0 20.0	5.90 11.4	1					"	X
110-57-6	trans-1,4-Dichloro-2-buten	< 5.00	U U	µg/l µg/l	5.00	0.82	1 1	"	"			"	X X
64-17-5	e Ethanol	< 200	U	µg/l	200	30.9	1	"	"	"	"	"	х
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	91			70-13	0 %		"		"	"	"	
2037-26-5	Toluene-d8	100			70-13	0 %		"			"	"	
17060-07-0	1,2-Dichloroethane-d4	101			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	101			70-13	0 %		"			"	"	
Tentativel	y Identified Compounds by	GC/MS											
	Tentatively Identified Compounds	None found		µg/l			1	SW846 8260C TICs	"	"	EK	"	

MW-J	236327-07			<u>Client Project #</u> 4884S-13		Ground Water						Received 23-Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds rganic Compounds by SW by method SW846 5030 V												
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 1.00	U	µg/l	1.00	0.53	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	x
67-64-1	Acetone	< 10.0	U	µg/l	10.0	0.80	1		"	"	"	"	х
107-13-1	Acrylonitrile	< 0.50	U	µg/l	0.50	0.47	1		"	"	"	"	х
71-43-2	Benzene	< 1.00	U	µg/l	1.00	0.28	1		"	"	"		х
108-86-1	Bromobenzene	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	х
74-97-5	Bromochloromethane	< 1.00	U	µg/l	1.00	0.34	1	"	"	"	"		х
75-27-4	Bromodichloromethane	< 0.50	U	µg/l	0.50	0.42	1		"	"	"	"	х
75-25-2	Bromoform	< 1.00	U	µg/l	1.00	0.42	1		"	"	"		х
74-83-9	Bromomethane	< 2.00	U	µg/l	2.00	0.90	1		"	"	"	"	х
78-93-3	2-Butanone (MEK)	< 2.00	U	µg/l	2.00	1.07	1	"	"	"	"		х
104-51-8	n-Butylbenzene	< 1.00	U	µg/l	1.00	0.41	1	"	"	"	"		х
135-98-8	sec-Butylbenzene	< 1.00	U	µg/l	1.00	0.33	1	"	"	"	"		х
98-06-6	tert-Butylbenzene	< 1.00	U	µg/l	1.00	0.32	1	"	"	"	"		х
75-15-0	Carbon disulfide	< 2.00	U	µg/l	2.00	0.41	1	"	"	"	"		х
56-23-5	Carbon tetrachloride	< 1.00	U	µg/l	1.00	0.44	1		"	"	"	"	х
108-90-7	Chlorobenzene	< 1.00	U	µg/l	1.00	0.25	1	"	"	"	"		х
75-00-3	Chloroethane	< 2.00	U	µg/l	2.00	0.59	1	"	"	"	"		х
67-66-3	Chloroform	< 1.00	U	µg/l	1.00	0.33	1	"	"	"	"		х
74-87-3	Chloromethane	< 2.00	U	µg/l	2.00	0.37	1		"	"	"		х
95-49-8	2-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1		"	"	"		х
106-43-4	4-Chlorotoluene	< 1.00	U	µg/l	1.00	0.32	1	"	"	"	"		х
96-12-8	1,2-Dibromo-3-chloroprop ane	< 2.00	U	µg/l	2.00	0.86	1	"	"	"	"	"	х
124-48-1	Dibromochloromethane	< 0.50	U	µg/l	0.50	0.32	1		"	"	"		х
106-93-4	1,2-Dibromoethane (EDB)	< 0.50	U	µg/l	0.50	0.20	1	"	"	"	"		х
74-95-3	Dibromomethane	< 1.00	U	µg/l	1.00	0.31	1		"	"	"		х
95-50-1	1,2-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.28	1	"	"	"	"		х
541-73-1	1,3-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.31	1	"	"	"	"		х
106-46-7	1,4-Dichlorobenzene	< 1.00	U	µg/l	1.00	0.27	1	"	"	"	"		х
75-71-8	Dichlorodifluoromethane (Freon12)	< 2.00	U	µg/l	2.00	0.58	1	"	"	"	"	"	х
75-34-3	1,1-Dichloroethane	< 1.00	U	µg/l	1.00	0.32	1		"	"	"		х
107-06-2	1,2-Dichloroethane	< 1.00	U	µg/l	1.00	0.28	1		"	"	"		х
75-35-4	1,1-Dichloroethene	< 1.00	U	µg/l	1.00	0.69	1		"	"	"		х
156-59-2	cis-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.33	1	"	"	"	"		х
156-60-5	trans-1,2-Dichloroethene	< 1.00	U	µg/l	1.00	0.38	1	"	"	"			х
78-87-5	1,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.29	1	"	"	"	"		х
142-28-9	1,3-Dichloropropane	< 1.00	U	µg/l	1.00	0.21	1	"	"	"	"	"	х
594-20-7	2,2-Dichloropropane	< 1.00	U	µg/l	1.00	0.42	1	"	"	"	"	"	х
563-58-6	1,1-Dichloropropene	< 1.00	U	µg/l	1.00	0.58	1	"	"	"	"	"	х
10061-01-5	cis-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.36	1	"			"	"	х
10061-02-6	trans-1,3-Dichloropropene	< 0.50	U	µg/l	0.50	0.35	1	"		"	"	"	х
100-41-4	Ethylbenzene	< 1.00	U	μg/l	1.00	0.33	1	"	"	"	"	"	х
87-68-3	Hexachlorobutadiene	< 0.50	U	μg/l	0.50	0.47	1	"	"	"	"	"	х
591-78-6	2-Hexanone (MBK)	< 2.00	U	μg/l	2.00	0.53	1		"	"	"		х

	Analyte(s) rganic Compounds rganic Compounds by SW3 Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK) Methylene chloride Naphthalene n-Propylbenzene	Result 846 8260 < 1.00 < 1.00 < 2.00 < 2.00 < 1.00 < 2.00 < 1.00	<i>Flag</i> U U U U	Units µg/l µg/l	* <i>RDL</i>	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
olatile Or 3-82-8 3-87-6 334-04-4 98-10-1 5-09-2 -20-3 03-65-1	rganic Compounds by SW8 Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK) Methylene chloride Naphthalene	< 1.00 < 1.00 < 1.00 < 2.00 < 2.00	U U	µg/l	1.00								
3-82-8 9-87-6 334-04-4 98-10-1 9-09-2 1-20-3 93-65-1	Isopropylbenzene 4-Isopropyltoluene Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK) Methylene chloride Naphthalene	< 1.00 < 1.00 < 1.00 < 2.00 < 2.00	U U	µg/l	1.00								
)-87-6 334-04-4)8-10-1 ;-09-2 ;-20-3)3-65-1	4-Isopropyltoluene Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK) Methylene chloride Naphthalene	< 1.00 < 1.00 < 2.00 < 2.00	U U	µg/l	1.00								
34-04-4)8-10-1 5-09-2 -20-3)3-65-1	Methyl tert-butyl ether 4-Methyl-2-pentanone (MIBK) Methylene chloride Naphthalene	< 1.00 < 2.00 < 2.00	U			0.36	1	SW846 8260C	29-Jun-17	30-Jun-17	EK	1711014	х
)8-10-1 ;-09-2 -20-3)3-65-1	4-Methyl-2-pentanone (MIBK) Methylene chloride Naphthalene	< 2.00 < 2.00			1.00	0.28	1		"	"	"	"	х
5-09-2 -20-3)3-65-1	(MIBK) Methylene chloride Naphthalene	< 2.00	U	µg/l	1.00	0.24	1		"	"	"	"	х
-20-3 03-65-1	Naphthalene			µg/l	2.00	0.52	1	"	"	"	"	"	Х
)3-65-1	·	< 1 00	U	µg/l	2.00	0.66	1		"	"	"	"	х
	n-Propylbenzene	S 1.00	U	µg/l	1.00	0.35	1	"	"	"	"	"	х
0-42-5		< 1.00	U	µg/l	1.00	0.34	1		"	"	"	"	х
	Styrene	< 1.00	U	µg/l	1.00	0.40	1	"	"	"	"	"	х
80-20-6	1,1,1,2-Tetrachloroethane	< 1.00	U	µg/l	1.00	0.38	1	"	"	"	"	"	х
-34-5	1,1,2,2-Tetrachloroethane	< 0.50	U	µg/l	0.50	0.33	1		"	"	"	"	х
27-18-4	Tetrachloroethene	< 1.00	U	µg/l	1.00	0.57	1	"	"	"	"	"	Х
8-88-3	Toluene	< 1.00	U	µg/l	1.00	0.30	1	"	"	"	"	"	х
'-61-6	1,2,3-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	х
20-82-1	1,2,4-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.38	1		"	"	"	"	х
8-70-3	1,3,5-Trichlorobenzene	< 1.00	U	µg/l	1.00	0.30	1		"	"	"	"	
-55-6	1,1,1-Trichloroethane	< 1.00	U	µg/l	1.00	0.51	1	"	"	"	"	"	х
9-00-5	1,1,2-Trichloroethane	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	х
-01-6	Trichloroethene	< 1.00	U	µg/l	1.00	0.50	1		"	"	"	"	х
5-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	µg/l	1.00	0.49	1	"		"	"	"	Х
6-18-4	1,2,3-Trichloropropane	< 1.00	U	µg/l	1.00	0.29	1		"	"	"	"	х
5-63-6	1,2,4-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.36	1		"	"	"	"	х
8-67-8	1,3,5-Trimethylbenzene	< 1.00	U	µg/l	1.00	0.43	1	"	"	"	"	"	х
5-01-4	Vinyl chloride	< 1.00	U	µg/l	1.00	0.47	1		"	"	"	"	х
9601-23-1	m,p-Xylene	< 2.00	U	µg/l	2.00	0.38	1		"	"	"	"	х
5-47-6	o-Xylene	< 1.00	U	µg/l	1.00	0.28	1		"	"	"	"	х
9-99-9	Tetrahydrofuran	< 2.00	U	µg/l	2.00	1.06	1		"	"	"	"	
)-29-7	Ethyl ether	< 1.00	U	µg/l	1.00	0.37	1		"	"	"	"	х
94-05-8	Tert-amyl methyl ether	< 1.00	U	µg/l	1.00	0.49	1		"	"	"	"	х
37-92-3	Ethyl tert-butyl ether	< 1.00	U	µg/l	1.00	0.33	1		"	"	"	"	х
8-20-3	Di-isopropyl ether	< 1.00	U	µg/l	1.00	0.29	1		"	"	"	"	х
5-65-0	Tert-Butanol / butyl alcohol	< 10.0	U	µg/l	10.0	5.90	1		"	"	"	"	х
23-91-1	1,4-Dioxane	< 20.0	U	µg/l	20.0	11.4	1		"	"	"	"	х
0-57-6	trans-1,4-Dichloro-2-buten e	< 5.00	U	µg/l	5.00	0.82	1	u		"	"	"	Х
-17-5	Ethanol	< 200	U	µg/l	200	30.9	1	"		"	"	"	х
urrogate r	recoveries:												
50-00-4	4-Bromofluorobenzene	92			70-13	80 %		"	"			"	
)37-26-5	Toluene-d8	100			70-13	80 %		"	"			"	
7060-07-0	1,2-Dichloroethane-d4	102			70-13			"	"	"		"	
368-53-7	Dibromofluoromethane	100			70-13			"	"	"		"	
entativelv	y Identified Compounds by	GC/MS											
	Tentatively Identified Compounds	None found		µg/I			1	SW846 8260C TICs	"		EK	"	
emivolati	le Organic Compounds by C	GCMS											
<u>emivolati</u>	ile Organic Compounds												

<u>Sample Ic</u> MW-J	mple Identification W-J			<u>Client Project #</u> 4884S-13 G			<u>Matrix</u> <u>Collection Date/Ti</u> Ground Water 21-Jun-17 11:07							
SC36327-	-07			4884	4S-13		Ground Wa	ater 2	1-Jun-17 11	:07	23-	Jun-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Semivolati	ile Organic Compounds by (GCMS												
	tile Organic Compounds by method SW846 3510C													
83-32-9	Acenaphthene	< 4.95	U	µg/l	4.95	0.684	1	SW846 8270D	28-Jun-17	30-Jun-17	MSL	1710848	х	
208-96-8	Acenaphthylene	< 4.95	U	µg/l	4.95	0.676	1	"		"	"	"	х	
62-53-3	Aniline	< 4.95	U	µg/l	4.95	1.75	1	"			"	"	х	
120-12-7	Anthracene	< 4.95	U	µg/l	4.95	0.602	1	"	"	"	"	"	Х	
103-33-3	Azobenzene/Diphenyldiaz ene	< 4.95	U	µg/l	4.95	0.741	1	"	"		"	"		
92-87-5	Benzidine	< 4.95	U	µg/l	4.95	0.885	1	"	"	"	"	"	Х	
56-55-3	Benzo (a) anthracene	< 4.95	U	µg/l	4.95	0.531	1	"		"	"		Х	
50-32-8	Benzo (a) pyrene	< 4.95	U	µg/l	4.95	0.556	1	"	"	"	"	"	Х	
205-99-2	Benzo (b) fluoranthene	< 4.95	U	µg/l	4.95	0.433	1	"	"	"	"	"	х	
191-24-2	Benzo (g,h,i) perylene	< 4.95	U	µg/l	4.95	0.525	1	"	"	"	"	"	Х	
207-08-9	Benzo (k) fluoranthene	< 4.95	U	µg/l	4.95	0.475	1		"	"	"		Х	
65-85-0	Benzoic acid	< 4.95	U	µg/l	4.95	0.522	1	"	"	"	"	"	Х	
100-51-6	Benzyl alcohol	< 4.95	U	µg/l	4.95	0.772	1		"	"	"		Х	
111-91-1	Bis(2-chloroethoxy)metha ne	< 4.95	U	µg/l	4.95	0.659	1	"	"	"	"	"	х	
111-44-4	Bis(2-chloroethyl)ether	< 4.95	U	µg/l	4.95	0.727	1	"	"	"	"	"	Х	
108-60-1	Bis(2-chloroisopropyl)ethe r	< 4.95	U	µg/l	4.95	0.770	1	"	"	"	"	"	х	
117-81-7	Bis(2-ethylhexyl)phthalate	2.48	J	µg/l	4.95	0.632	1	"	"	"	"		Х	
101-55-3	4-Bromophenyl phenyl ether	< 4.95	U	µg/l	4.95	0.596	1	"	"	"	"	"	х	
85-68-7	Butyl benzyl phthalate	< 4.95	U	µg/l	4.95	0.434	1	"	"	"	"		Х	
86-74-8	Carbazole	< 4.95	U	µg/l	4.95	1.54	1	"	"	"	"	"	Х	
59-50-7	4-Chloro-3-methylphenol	< 4.95	U	µg/l	4.95	0.496	1	"	"	"	"	"	х	
106-47-8	4-Chloroaniline	< 4.95	U	µg/l	4.95	0.726	1	"	"	"	"		Х	
91-58-7	2-Chloronaphthalene	< 4.95	U	µg/l	4.95	0.584	1	"	"	"	"	"	Х	
95-57-8	2-Chlorophenol	< 4.95	U	µg/l	4.95	0.741	1	"	"	"	"	"	Х	
7005-72-3	4-Chlorophenyl phenyl ether	< 4.95	U	µg/l	4.95	0.597	1	"	"	"	"	"	х	
218-01-9	Chrysene	< 4.95	U	µg/l	4.95	0.527	1	"	"	"	"		Х	
53-70-3	Dibenzo (a,h) anthracene	< 4.95	U	µg/l	4.95	0.446	1	"	"	"	"		Х	
132-64-9	Dibenzofuran	< 4.95	U	µg/l	4.95	0.733	1	"	"	"	"	"	Х	
95-50-1	1,2-Dichlorobenzene	< 4.95	U	µg/l	4.95	0.556	1	"		"	"	"	Х	
541-73-1	1,3-Dichlorobenzene	< 4.95	U	µg/l	4.95	0.641	1	"	"	"	"	"	Х	
106-46-7	1,4-Dichlorobenzene	< 4.95	U	µg/l	4.95	0.608	1	"	"	"	"	"	Х	
91-94-1	3,3'-Dichlorobenzidine	< 4.95	U	µg/l	4.95	0.573	1	"	"	"	"	"	Х	
120-83-2	2,4-Dichlorophenol	< 4.95	U	µg/l	4.95	0.525	1		"	"	"		Х	
84-66-2	Diethyl phthalate	< 4.95	U	µg/l	4.95	0.617	1	"	"				X	
131-11-3	Dimethyl phthalate	< 4.95	U	µg/l	4.95	0.750	1		"			"	X	
105-67-9	2,4-Dimethylphenol	< 4.95	U	µg/l	4.95	0.647	1		"			"	Х	
84-74-2	Di-n-butyl phthalate	< 4.95	U	µg/l	4.95	0.452	1		"				X	
534-52-1	4,6-Dinitro-2-methylphenol	< 4.95	U	µg/l	4.95	0.316	1		"			"	X	
51-28-5	2,4-Dinitrophenol	< 4.95	U	µg/l	4.95	0.555	1		"			"	Х	
121-14-2	2,4-Dinitrotoluene	< 4.95	U	µg/l	4.95	0.666	1	"		"	"	"	Х	
606-20-2	2,6-Dinitrotoluene	< 4.95	U	µg/l	4.95	0.587	1	"	"	u	"	"	Х	

MW-J	C36327-07		<u>Client F</u> 4884	Project <u>#</u> S-13		Ground Water		Collection Date/Time 21-Jun-17 11:07		Received 23-Jun-17			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by (GCMS											
<u>Semivolat</u>	tile Organic Compounds												
117-84-0	Di-n-octyl phthalate	0.653	J	µg/l	4.95	0.402	1	SW846 8270D	28-Jun-17	30-Jun-17	MSL	1710848	Х
206-44-0	Fluoranthene	< 4.95	U	µg/l	4.95	0.632	1				"	"	Х
86-73-7	Fluorene	< 4.95	U	µg/l	4.95	0.606	1		"		"	"	Х
118-74-1	Hexachlorobenzene	< 4.95	U	µg/l	4.95	0.565	1		"		"	"	Х
87-68-3	Hexachlorobutadiene	< 4.95	U	µg/l	4.95	0.384	1		"		"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 4.95	U	µg/l	4.95	1.03	1	"	"	"	"		Х
67-72-1	Hexachloroethane	< 4.95	U	µg/l	4.95	0.633	1				"	"	х
193-39-5	Indeno (1,2,3-cd) pyrene	< 4.95	U	µg/l	4.95	0.574	1				"	"	х
78-59-1	Isophorone	< 4.95	U	µg/l	4.95	0.580	1				"	"	х
91-57-6	2-Methylnaphthalene	< 4.95	U	µg/l	4.95	0.568	1	"			"	"	х
95-48-7	2-Methylphenol	< 4.95	U	µg/l	4.95	0.658	1	"	"		"	"	х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 9.90	U	µg/l	9.90	0.609	1	"	"	"	"		х
91-20-3	Naphthalene	< 4.95	U	µg/l	4.95	0.678	1		"	"	"	"	х
88-74-4	2-Nitroaniline	< 4.95	U	µg/l	4.95	0.600	1	"	"	"	"	"	х
99-09-2	3-Nitroaniline	< 4.95	U	µg/l	4.95	0.479	1		"	"	"	"	х
100-01-6	4-Nitroaniline	< 4.95	U	µg/l	4.95	0.370	1		"	"	"	"	Х
98-95-3	Nitrobenzene	< 4.95	U	µg/l	4.95	0.683	1		"	"	"	"	Х
88-75-5	2-Nitrophenol	< 4.95	U	µg/l	4.95	0.460	1		"		"	"	Х
100-02-7	4-Nitrophenol	< 19.8	U	µg/l	19.8	0.830	1		"		"	"	Х
62-75-9	N-Nitrosodimethylamine	< 4.95	U	µg/l	4.95	0.666	1		"		"	"	Х
621-64-7	N-Nitrosodi-n-propylamine	< 4.95	U	µg/l	4.95	0.572	1		"	"	"	"	Х
86-30-6	N-Nitrosodiphenylamine	< 4.95	U	µg/l	4.95	0.645	1		"	"	"	"	Х
87-86-5	Pentachlorophenol	< 19.8	U	µg/l	19.8	0.369	1		"	"	"	"	Х
85-01-8	Phenanthrene	< 4.95	U	µg/l	4.95	0.580	1		"	"	"	"	Х
108-95-2	Phenol	< 4.95	U	µg/l	4.95	0.639	1		"		"	"	Х
129-00-0	Pyrene	< 4.95	U	µg/l	4.95	0.604	1		"	"	"	"	Х
110-86-1	Pyridine	< 4.95	U	µg/l	4.95	0.811	1		"		"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 4.95	U	µg/l	4.95	0.680	1	"	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 4.95	U	µg/l	4.95	0.726	1		"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 4.95	U	µg/l	4.95	0.515	1		"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 4.95	U	µg/l	4.95	0.513	1	"	"		"	"	Х
82-68-8 95-94-3	Pentachloronitrobenzene 1,2,4,5-Tetrachlorobenzen	< 4.95 < 4.95	U U	µg/l µg/l	4.95 4.95	0.689 0.718	1 1						x x
	e	\$ 4.00	0	μg/i	4.00	0.710	I						
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	43			30-13	80 %		"			"	"	
367-12-4	2-Fluorophenol	29		15-110 9		0 %		"	"		"	"	
4165-60-0	Nitrobenzene-d5	38		30-130				"	"		"	"	
4165-62-2	Phenol-d5	21			15-11			"	"		"	"	
1718-51-0	Terphenyl-dl4	55			30-13			"	"		"	"	
118-79-6	2,4,6-Tribromophenol	46		15-110 %		0%		"	"		"	"	
Tentativel	y Identified Compounds Tentatively Identified	None found		µg/l			1	SW846 8270D	"		MSL		
Total Meta	Compounds als by EPA 200/6000 Series N	Aethods						TICS					

MW-J	SC36327-07			<u>Client Project #</u> 4884S-13			<u>Matrix</u> Ground Water		Collection Date/Time 21-Jun-17 11:07			Received 23-Jun-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
	als by EPA 200/6000 by method Genera													
	Preservation	Field Preserved; pH<2 confirmed		N/A			1	EPA 200/6000 methods	27-Jun-17		LNB	1710863		
	als by EPA 6000/700 by method SW846													
7440-38-2	Arsenic	< 0.0040	U	mg/l	0.0040	0.0014	1	SW846 6010C	29-Jun-17	02-Jul-17	edt	1710998	Х	
7440-39-3	Barium	0.179		mg/l	0.0050	0.0007	1		"		"		х	
7440-47-3	Chromium	< 0.0050	U	mg/l	0.0050	0.0009	1		"		"		х	
7439-95-4	Magnesium	18.9		mg/l	0.0200	0.0088	1		03-Jul-17	05-Jul-17	"	1711234	х	
7440-36-0	Antimony	< 0.0060	U	mg/l	0.0060	0.0016	1		29-Jun-17	02-Jul-17	"	1710998	х	
7440-28-0	Thallium	< 0.0050	U	mg/l	0.0050	0.0021	1		"		"		х	
7440-62-2	Vanadium	< 0.0050	U	mg/l	0.0050	0.0011	1	"	"		"	"	х	

Notes and Definitions

- D Data reported from a dilution
- E This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.
- GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.
- J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- J N (Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.
- O01 This compound is a common laboratory contaminant.
- QC1 Analyte out of acceptance range.
- QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
- QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- QM8 The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.
- QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
- QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- SAC Acid surrogate recovery outside of control limits. The data was accepted based on valid recovery of remaining two acid surrogates.
- U Analyte included in the analysis, but not detected at or above the MDL.
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

v-F v-F v-F -M -M -M -M -M Received b		Sample ID: Date: $M_{H} - T$ $G_{1} + 1 + 17$ $M_{H} - F$ $G_{2} + 1 + 17$ $M_{H} - F$ $M_{H} - F$ $M_{H} - M$ M M M M M M M M M	$\begin{array}{c} \text{C-Compsite} \\ \text{Imple ID:} \\ -\mathcal{I} \\ \text{Orbein } \\ \text{Comparison } \\ \text{Orbein } \\ \text{Comparison } \\ \ \ \ \ \text{Comparison } \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	X2 = X3 = C=Compsite Sample ID: Date: $M_{M} - \mathcal{I}$ $M_{M} - \mathcal{L}$ $M_{M} - $	Groundwater SW-Surface Water udge A=Indoor/Ambient Air SG $X_2 = $	Groundwater SW=Surface Water udge A=Indoor/Ambient Air SG X2= C=Com Sample ID: Date: $Q_{h_{L}} - T$ $Q_{h_{L}} - $	4=HNO3	4=HNO3 ace Water tt Air SG C=Com Date: G(JL1/L= G(JL1/L= G(JL1/L= G(JL1/L= G(JL1/L=) G(JL1/L=) Recei	4=HNO3 ace Water tt Air SG C=Com Date: G/L1/L G/L1/L Recei	4=HNO3 ace Water tr Air SG Date: G/2-1/L- Date:	$4=HNO_3 = SNa$ $4=HNO_3 = SNa$ $1=$ ace Water WW=W tr Air SG=Soil Gas tr Air SG=Soil Gas $X3=$ $C=Compsite$ $C=Compsite$ $(4/2.4/2.4/3 = 7)$ $(4/2.4/2.4$	talytical $4=HNO_3$ 5=Nat 1= $31=$ 3	Spectrum Analytical Low MEATAL, FALC L. ANG., FALC KAANFEE Groundwater Sample ID: Naw - F Maw - A
v-F v-F v-F -M -M -M Received b	-T = G/24/ke17 $w-F = 0$	apple ID: Date: $-T$ $G/2i/Lo17$ $u-E$ $G/2i/Lo17$ $u-F$ $u-M$ $u-M$ $u-M$ $u-M$	$\begin{array}{c} \text{C-Compsite} \\ \text{Transformation} \\ \text{Date:} \\ -\mathcal{T} \\ \text{Date:} \\ \text{Date:} \\ \text{Date:} \\ \text{Comparison} \\$	X2 = X3 = C-Compsite $T = C-Compsite$ $T = C = C-Compsite$ $T = C = C = C = C = C = C = C = C = C =$	ndwater SW-Surface Water $A=Indoor/Ambient Air SG$ X2= $C-Com$ $Z2=$ $-T$ $C-Com$ $Date:$ $-T$ $C/Li/Li$ $V-F$	ndwater SW=Surface Water A=Indoor/Ambient Air SG X2= C=Com T T T T C=Com C=Com T T T T T T T T	4=HNO3	4=HNO3 ace Water ut Air SG Date: G/L1/L Recei	4=HNO3 ace Water at Air SG C=Com Date: C/L1/L Recei	4=HNO3 ace Water u Air SG Date: G/2-1/L- Recei	4=HNO3 4=HNO3 ace Water tt Air SG C=Com Date: G/L1/L2 G/L1/L2	4=HNO ₃ 4=HNO ₃ c=Com C=Com Date: C/L1/L-	4=HNO3 4=HNO3 C=Com C=Com Date: G(L1/L) Recei
4:30 4:30 4:30 4:30 4:30 17:18 17:18 17:18 17:19	121/2017	Date: 2.1/b-17	C-Compsite Date: /L-1/L-17	X3=	sc-Com Date: L1/L-	ater SG-Com Date: L1/L	4=HNO3	4=HNO3 ace Water ut Air SG Date: C=Com	4=HNO3 ace Water tt Air SG C=Com Date: G/L1/L=	4=HNO3 ace Water at Air SG C=Com Date: G/L4/L4	$4=HNO_3 \qquad S=Na$ $1= 12$ $I =	ace Water WW=W 4=HNO ₃ S=Na 1^{1} T 1^{2} T	A=HNO3 S=P 11= 11= C=Compsite C=Compsite Date: Date: 11= 11= 11= 11= 11= 11= 11= 11
4:30 14:84 13:18 13:18 13:18 13:18 13:18		14:24 14:24 13:25 14:25	Time: 7:00 17:18 17:18 17:18 17:18 17:18 17:18 17:18 17:18 17:19 17:18	Time: Time: 9:05 9:30 17:42 17:42 17:42 17:42 17:42	I Gas Time: 7:06 7:20 17:18 17:18 17:18 17:18 17:18	V=Waste Water IGas Time: Time: Q:06 Q:06 [7:30 [7:30 [7:32]3:32]3:32]14:54]4:54	5=NaOII II= <u><i>Ticle</i></u> WW=Waste Wa =Soil Gas Sal Sal Sal Sal Sal Sal Sal Sal	P.O.N S=NaOII II= <u>T.C.C.</u> WW=Waste Wa =Soil Gas Soil Gas X3= III III III III III III III I	P.O.N 5=NaOH H= <u>T.C.R</u> WW=Waste Wa Soll Gas =Soll Gas Time: 113: 57 13: 32 14: 57 14: 57	PON 5=NaOII 11= <u><u><u><u></u></u><u><u><u></u></u><u><u></u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>	Invoice Invoice pon S=NaOH H= TCCC Time:	Invoic Invoic 5=NaOH H= - Tecc WW=Waste W WW=Waste W WW=Waste W NWW=Waste W ITacccc ITaccc ITaccc ITaccc ITaccc IT	CHA Invoio Invoio 5=NaOII II= <u>T.C.C.</u> Soil Gas Soil Gas X3= II= <u>T.C.C.</u> II= <u>I.C.C.</u> II= <u>I.C.C.</u>
	G Gw	C Ty E Ma	Type E Matrix	1:47 1:47 1:47 1:47 1:47 1:47 1:47 1:47	1:47	Time: Type Time: Type Trype Trype Matrix	124 I2=	P.O.No.: P.O.No	PONo PONo PONo PONo PONo PONo PONo PONo PONo PONo PONo PONo PONo PONO PO	PONo.: PONo.: PONo.: PONo.: PONo.: PONO.:	Invoice To: $\frac{5 \times 1}{2.11}$ P.O.No.: DII 6=Ascorbic DII 6=Ascorbic 12= $\frac{12}{12}$ 12	P.O P.O P.O P.O P.O P.O P.O P.O P.O P.O	HAIN OJ \square 11 Almgr Agawam, (413) 789 Invoice To: $\sum_{a \in I}$ P.O No.: P.O No.: \square P.O No.: \square \square \square \square \square \square \square \square
7.1	Gw	Se Ma	E Matrix	E Matrix	E Matrix	E Matrix				C Type C Type D T	C Type C Type C Type Ascorbic Acid D Type ATT: CLEAN ASCORDICACIÓN	11 Almgren Dri Agawam, MA 0 (413) 789-9018 211 Fitta 12= 12= 12= 12= 12= 11 12= 13 14 15 16 17 18 19 11 12= 12 13 14 15 16 17 18 19 11 11 12= 12 14 15 16 17 18 19 11 11 11 12 12 12 13 14 15 16 17 18 18 19 10 11 11 12 11 12 13 14 15 16 17 18	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Gw	E Ma	Matrix	E Matrix	Matrix	E Matrix				Matrix Matrix	A N H of VOA Viais	Matrix Matrix	
12 P	G Gw	I Ty E Ma	Type E Matrix	Type C Type Matrix	Time: Type	The Control of Type Mater	Time: Type Toos G Gw Transc Water The Matrix	P.O.No.: P.O.NO.: P.O.NO	PONo. PONo. ATT:	PONo. PONo. A77 CC $12=CC$ CC CC CC CC CC CC CC	Invoice To: $\frac{5 \times 1}{2.11}$ P.O.No.: P.O.NO.: P.O.N	P.O P.O P.O P.O P.O P.O P.O P.O P.O P.O	HAIN OF
2 2 2	121/2017 9:05 6 GW 17:30 17:30 13:06	Date: Time: F Ma 721/L+17 9:00 6 6 6 Ma 17:30 1 17:30 1 13:46	C=Compsite Date: Time: Type 721/2-17 9:06 G Gw 17:26 Hatrix 17:6	$X3=$ $C=Compsite$ $Date: Time: Type$ $L_1/L=17 $7:06 C_1 Gw$ $17:66 $17:66$ $13:66 $13:66$	ater WW=Waste Water SG=Soil Gas X3= C=Compsite Date: Trime: Type L1/L=17 9:06 Cf Gw 17:56 Cf Gw 13:46	ater WW=Waste Water SG=Soil Gas X3= C=Compsite Date: Time: Type $L_1/L=17$ $\mathcal{P}:\infty \mathcal{S}$ \mathcal{C}_1 \mathcal{G}_2 $I_17:\infty \mathcal{S}$ \mathcal{C}_1 \mathcal{G}_2 $I_17:\infty \mathcal{S}$ \mathcal{C}_1 \mathcal{G}_2 $I_22:\infty \mathcal{S}$ \mathcal{C}_1 \mathcal{G}_2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P.O No.: HNO ₃ 5=NaOI1 6=Ascorbic Acid II= \underline{TCCC} I2= ater WW=Waste Water SG=Soil Gas X3= C=Compsite Date: Time: Type 4:3c $4:3c$ 4 $417:aa$ 4 12	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Invoice To: $\sum_{i=1}^{n}$ Invoice To: $\sum_{i=1}^{n}$ P.O.No HNO3 5-NaO11 6-Ascorbic HNO3 5-NaO11 6-Ascorbic HI= <u>T.U.C</u> 12= ater WW=Waste Water SG=Soil Gas SG=Soil Gas X3= C=Compsite Date: Time: Type I7: so G G G I7: so G G G	Invoic Invoic 5=NaOH $H= \underline{TCCC}$ WW=Waste W WW=Waste W Soli Gas Soli Gas I 7 : 50 I 7 : 50 I 7 : 50 I 7 : 50	CHAIN OF II Almgren Agawam, M (413) 789-9 Invoice To: $5 \leq L \in$ $2 \leq L \leq$ $2 \leq L \in$ $2 \leq L \leq$ $2 \leq L $
0 2	121/2017 9:05 G GW 17:30 17:30	Date: Time: F Ma 721/Le17 9:005 64 Gus 17:30 17:30 1 1	C-Compsile Date: Time: Type Tut/Le17 9:06 Gus 17:36 Matrix	X3= X3= Date: Time: Type Date: Time: Type Date: Time: Type IT: So Cf Gw 17: So 1	ater WW=Waste Water SG=Soil Gas X3= X3= C=Compsite Date: Time: Type $17: \Delta_{0}$ $17: \Delta_{0}$	ater WW=Waste Water SG=Soil Gas X3= C=Compsite Date: Time: Type L_1/L_2 17 \Im \Im G G M 17: Δ_0	$4=HNO_3 S=NaO11 6=Aseorbic \ Acid \\ 11= \ \ \squareCC^2 \qquad 12= \ \ \ 12= \ \ \ 12= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	P.O No.: 4=HNO ₃ $=$ S=NaO11 $=$ G=Ascorbic Acid 11= $\underline{T_{CCC}}$ $12=$ ace Water WW=Waste Water II Air SG=Soil Gas X3= C=Compsite $X3=$ C=Compsite $Time$; $Type$ X3= G/241/L=17 $G: cos G Gw17: s_{0}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	c. Invoice To: $5 \le L$ $2 \le 11$ $2 \le 11$ $2 \le 11$ $2 \le 11$ $2 \ge 12$ $2 \ge 12$	ace Water WW=Waste W 4=HNO ₃ S=NaOII $11=$ $\underline{T.CC}$ 4=HNO ₃ S=NaOII $11=$ $\underline{T.CC}$ 1 Air SG=Soil Gas X3= C=Compsite C=Compsite C=Compsite 4:30 4:30 17:50	CHAIN OF Invoice To: $S \in L \in G$ Lalytical Invoice To: $S \in G$ Invoice To: $S \in G$ Lalytical Invoice To: $S \in G$ Invoice To: $S \in G$ Lalytical Invoice To: $S \in G$ Invoice To: $S \in G$ Lalytical Invoice To: $S \in G$ Invoice To: $S \in G$ Lalytical Invoice To: $S \in G$ Invoice To: $S \in G$
9:30 2	6/21/2017 5:00 C1 GW	Date: Time: F Ma Gy/2.1 /L+17 9:00 G Gui 1 7:30 1 1	$\begin{array}{c c} C=Compsite\\ \hline Date: Time: Type\\ \hline G_{1}/L_{1}/L_{2}(17) & \Im : oos & G_{1} & G_{1} \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	$\begin{array}{c c} C=Compsite\\ \hline \\ C=Compsite\\ \hline \\ Date: \\ Time: \\ Type\\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	SW=Surface Water WW=Waste Water Indoor/Ambient Air SG=Soil Gas X2=	SW=Surface Water WW=Waste Water Indoor/Ambient Air SG=Soil Gas X2= X3= C=Compsite Time: $G_{1}/L_{1}/L_{2}$ 7 : cos G_{1}/L_{2} 7 : cos $G_{2}/L_{1}/L_{2}$ 7 : cos $G_{2}/L_{1}/L_{2}$ $G_{2}/L_{1}/L_{2}$	$4=HNO_3 S=NaO11 6=Ascorbic \ Acid \\ 11= \ \ \squareCC$ as $I2= \ I2= \ I$	P.O No.: 4=HNO ₃ $S=NaO11$ $6=Ascorbic Acid$ 1= <u>T.C.</u> $12=1=$ <u>T.C.</u> $12=1=$ <u>T.C.</u> $12=1=$ <u>T.C.</u> $12=1=$ $12=12=$ $12=12=$ $12=12=$ $12=12=$ $12=12=$ $12=12=$ $12=$ $12=12=$ $12=$ $12=$ $12=12=$ $12=$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C. Invoice To: $\sum_{i=1}^{i=1}$ Invoice To: 2.11 1.2	The Water WW=Waste Water WW=Waste Water WW=Waste Waster WW=Waste Waste W The Water WW=Waste Waste Waste Water SG=Soil Gas The Water WW=Waste Waste Waste Waste Waster WW=Waste Waster WW=Waste Waste Wast	CHAIN OF II Almgren Agawam, M Agawam, M<
	G/21/2017 5:05 C/ GW	Date: Time: $\frac{12}{5}$ Mare: $\frac{12}{5}$	C=Compsite Date: Time: Type Matrix	C=Compsite C=Compsite G/2-1/2-17 9:00 G Matrix	SW=Surface Water WW=Waste Water Indoor/Ambient Air SG=Soil Gas X2= X3= C=Compsite C C=Compsite C C C C C C C C C C C C C C C C C C C	SW=Surface Water WW=Waste Water Indoor/Ambient Air SG=Soil Gas X2= X3= C=Compsite C=Compsite Type Matrix Matrix	$4=HNO_3 \qquad S=NaO11 \qquad 6=Aseorbic Acid \\ 11= \ IICC \qquad II2= \ II2= \ IICC \qquad IICC \qquad IICC \qquad IICCC \qquad IICCCCCCCC$	P.O.No.: 4=HNO ₃ $S=NaO11$ $6=Ascorbic Acid$ 11= $ICCC$ $12=ace Water WW=Waste Watertr Air SG=Soil GasX3=C=CompsiteX3=C=CompsiteX3=YppeMatrixG/L1 /L=17 \Im :oos G Gw$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C_{-} Invoice To: $\sum_{l \in I}$ 2.11	ace Water WW=Waste W t Air SG=Soil Gas t Air SG=Soil Gas t Air SG=Soil Gas t Air SG=Soil Gas	CHAIN OF II Almgren Agawam, M Agawam, M<

10

Tem Tem Corrector
X X Temp °C Observed 2, 4 Concentration
X X X X X X X X X X X X X X X X X X X
Temp
×
X
TE Met
LV
00 1 4
در
 646 Camp Avenue N. Kingstown, RI 02852 (401) 732-3400
ECORD

		"Super Cupter	54/11 6	Relinquished by:					L V MW-	MW-	- WW	3632707 MW-	Lab ID: Sample ID:	G= Grab	XI=	O=Oil SO=Soil SL=Sludge	DW=Dinking Water GW=Groundwater	F=Field Filtered 1=Na ₂ S2O ₁ 2= 7=CH3OH 8=NaHSO ₄ 9=Deionized	Project Mgr: 12 Ky KA	The second	CHEST	Report To: DAY GAJYZRON		eurofins	
1	(MU.	- Contat	Received by:					A S-	7	J	-J 6/21/2017	le ID: Date:	C=Compsite	X2= X3=	A=Indoor/Ambient Air SG=Soil Gas	SW=Surface Water	S2O ₄ 2=HCl 3=H ₂ SO ₄ 4=HNO ₄ 9 9=Deionized Water 10=H ₄ PO ₄ 11=	AMPER		NY 14656	MENTHL, INC.	Spectrum Analytical		
			much	by:					11:32 4	11:21	11+11 - 1	11:07 60		ype		il Gas	WW=Waste Water	= I CC 12=	P.O No.:	ATT	OLGA	Invoice To: Sal	11 Almgren Drive Agawam, MA 010 (413) 789-9018	CHAIN OF CUSTODY RECORD	
	1.1	4/12/1	C123/17	Date:				2	*	-	1 1	Gw 2.	# of ' # of .	Ambe	Vials er Glass	5	Con	Acid	Que	F. JEFFENY	W, NY	EPOXY ,	11 Almgren Drive Agawam, MA 01001 (413) 789-9018	FCUSTO	
1018		1310	Time: 0					-				# of 1	Plasti			Containers	-	Quote #:	Y ISELT	14766	INC.	 646 Camp Avenue N. Kingstown, RI 02852 (401) 732-3400 	DDY RE		
36/20/7		Orection Factor	2.4	Temp °C	-					X	×	×	TC		SVEC			2 I				1	enue , RI 02852 0	CORI	
Ambient Iced	Condition upon receipt:		E-mail to:	EDD format:	1	,			×				Mel Cr.1	ta Is Asi, N	: 56 3,71	, BL	Analysis	List Preservative Code below:	Sampler(s);	Location:	Site Name:	Project No:		0	
ed Q Refrigerated	ipt: Custody Seals:		PHAN PHO	NUSPEC														de below:	C. HAMPTUN		FR	48945	All TATs su Min. 24-hr t Samples disp	TAT - Date Needed:	
ed 🔲 DI VOA Frozen 🔲 Soil Jar Frozen	s: Present 🔲 Intact 🗍 Broken	-	DAYMATL.NET	EQUES											T	Level II Level II	QA/QC Reporting Level	QA/QC Reporting Notes:	TUN Z. TENNIES		ANKLEN ST.	1 W	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	re Needed: 54J	

U

Batch Summary

<u>1710848</u>

Semivolatile Organic Compounds by GCMS 1710848-BLK1 1710848-BS1 1710848-BSD1 1710848-DUP1 1710848-MS1 1710848-MS1 1710848-MSD1 SC36327-01 (MW-I) SC36327-02 (MW-L) SC36327-03 (MW-F) SC36327-03 (MW-F) SC36327-04 (MW-M) SC36327-05 (FB 062117) SC36327-07 (MW-J)

<u>1710863</u>

<u>Total Metals by EPA 200/6000 Series Methods</u> SC36327-01 (MW-I) SC36327-02 (MW-L) SC36327-03 (MW-F) SC36327-04 (MW-M) SC36327-05 (FB 062117) SC36327-07 (MW-J)

<u>1710998</u>

<u>Total Metals by EPA 6000/7000 Series Methods</u> 1710998-BLK1 1710998-BS1

1710998-BSD1 1710998-BSD1 1710998-DUP1 1710998-MSD1 1710998-MSD1 1710998-PS1 SC36327-01 (MW-I) SC36327-02 (MW-L) SC36327-03 (MW-F) SC36327-04 (MW-M) SC36327-05 (FB 062117) SC36327-07 (MW-J)

<u>1711014</u>

<u>Volatile Organic Compounds</u> 1711014-BLK1 1711014-BS1 1711014-BSD1 SC36327-01 (MW-I) SC36327-02 (MW-L) SC36327-03 (MW-F) SC36327-04 (MW-M) SC36327-05 (FB 062117) SC36327-06 (TB) SC36327-07 (MW-J)

1711224

Volatile Organic Compounds 1711224-BLK1 1711224-BS1 1711224-BSD1 1711224-MS1 1711224-MSD1

1711234

Total Metals by EPA 6000/7000 Series Methods

1711234-BLK1 1711234-BS1 1711234-BSD1 1711234-DUP1 1711234-MS1 1711234-MSD1 1711234-MSD1 1711234-PS1 SC36327-01 (MW-I) SC36327-02 (MW-L) SC36327-03 (MW-F) SC36327-04 (MW-M) SC36327-05 (FB 062117) SC36327-07 (MW-J)

S705262

Semivolatile Organic Compounds by GCMS S705262-CAL1 S705262-CAL2 S705262-CAL3 S705262-CAL4 S705262-CAL5 S705262-CAL6 S705262-CAL7 S705262-CAL8 S705262-CAL9 S705262-CALA S705262-ICV1 S705262-LCV1 S705262-LCV2 S705262-LCV3 S705262-TUN1

<u>S705668</u>

Volatile Organic Compounds S705668-CAL1 S705668-CAL2 S705668-CAL3 S705668-CAL4 S705668-CAL5 S705668-CAL6 S705668-CAL7 S705668-CAL8 S705668-CAL9 S705668-CALA S705668-CALB S705668-ICV1 S705668-LCV1 S705668-LCV2 S705668-LCV3 S705668-TUN1

<u>8705685</u>

 Volatile Organic Compounds

 S705685-CAL1

 S705685-CAL2

 S705685-CAL3

 S705685-CAL4

 S705685-CAL5

 S705685-CAL6

 S705685-CAL7

 S705685-CAL8

 S705685-CAL9

 S705685-CAL9

 S705685-CAL9

 S705685-LCV1

 S705685-LCV2

 S705685-LCV3

 S705685-LCV3

<u>8705855</u>

Volatile Organic Compounds S705855-CCV1 S705855-TUN1

<u>8705945</u>

Volatile Organic Compounds S705945-CCV1 S705945-TUN1

<u>8705947</u>

Semivolatile Organic Compounds by GCMS S705947-CCV1 S705947-TUN1

<u>S705948</u>

<u>Semivolatile Organic Compounds by GCMS</u> S705948-CCV1 S705948-TUN1

<u>8706043</u>

Semivolatile Organic Compounds by GCMS S706043-CCV1 S706043-TUN1

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

211 Franklin St. (Solepox) Eurofins/Spectrum Analytical SDG#SC36327 August 28, 2017 Sampling date: 6/21/2017

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package, for Day Environmental, project located at 211 Franklin St. (Solepox), Eurofins/Spectrum Analytical (Eurofins) SDG#SC36327 submitted to Vali-Data of WNY, LLC on August 18, 2017. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocols and USEPA National Functional Guidelines. The laboratory performed the analyses using USEPA method Volatile Organics (8260C), Semi-Volatile Organics (8270D) and Inorganics (6010C).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

-Data Completeness -Narrative and Data Reporting Forms -Chain of Custody and Traffic Reports -Holding Times -Internal Standard (IS) Area Performance -Surrogate Spike Recoveries -Method Blank -Field Duplicate Sample Precision -Laboratory Control Samples -MS/MSD -Compound Quantitation -Initial Calibration -Continuing Calibration -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Method Blank, Laboratory Control Samples, MS/MSD, Compound Quantitation and Continuing Calibration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met. Results were not recorded to three significant figures. This does not affect the usability of the data.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES All holding times were met.

INTERNAL STANDARD (IS) All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met except Naphthalene was detected above the MDL, below the reporting limit and is qualified as estimated in 1711014-BLK1. This target analyte should be recorded as 'undetected' at the reporting limit if it is detected above the MDL and below the reporting limit in the associated samples. Associated samples in which this target analyte was detected above the reporting limit should be qualified as estimated high.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was acquired.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of Bromoform was outside QC limits, high in 1711224-BS1/BSD1. The %RPD of tert-Butanol was outside QC limits, between 1711014-BS1 and 1711014-BSD1. These target analytes should be qualified as estimated in the associated laboratory control sample and duplicate.

Several target analytes were outside QC limits in the laboratory control sample or the duplicate but not both, so no further action is required.

MS/MSD

All criteria were met except the %RPD of 1,4-Dioxane and Dichlorodifluoromethane was outside QC limits between MW-MMS and MW-MMSD. These target analytes should be qualified as estimated in MW-MMS/MSD and MW-M.

Several target analytes were outside QC limits in either the Matrix spike or the Matrix spike duplicate but not both. These target analytes were labeled with an '*', but no further action is required.

COMPOUND QUANTITATION

All criteria were met except Toluene, 1,2,4-Trimethylbenzene and m&p-Xylene were detected in FB 062117 above the MDL, below the reporting limit and are qualified as estimated. Methylene Chloride was detected in TB above the MDL, below the reporting limit and is qualified as estimated. These target analytes should be recorded as 'undetected' at the reporting limit if they are detected above the MDL and below the reporting limit in the

associated samples. Associated samples in which these target analytes were detected above the reporting limit should be qualified as estimated high.

Methylene Chloride was detected above the reporting limit in FB 062117. This target analyte should be recorded as 'undetected' at the reporting limit if it is detected above the MDL and below the reporting limit in the associated samples. Associated samples in which this target analyte was detected above the reporting limit but below the FB 062117 concentration should be qualified as 'undetected'. Associated samples in which this target analyte was detected above the FB 062117 concentration should be qualified as estimated high.

INITIAL CALIBRATION

All criteria were met except the RRF of 1,4-Dioxane and Ethanol was outside outer ASP QC limits in the initial calibrations and should be qualified as estimated in the blanks, spikes and samples.

The RRF of Trichloroethene was outside ASP QC limits in the initial calibrations performed on HPV7. ASP allows for up to two target analytes to be outside QC limits without further action. Alternate forms of regression were performed on all target analytes whose %RSD >20%, with acceptable results.

CONTINUING CALIBRATION

All criteria were met except the RRF of 1,4-Dioxane and Ethanol was outside outer ASP QC limits in all of the continuing calibrations. The %D of Bromoform and Carbon tetrachloride was outside outer ASP QC limits in S705945-CCV1. The %D of Bromodichloromethane, Dibromochloromethane and 1,3-Dichlorobenzene was outside QC limits in S705945-CCV1. These target analytes should be qualified as estimated in the associated blanks, spikes and samples.

The RRF of Trichloroethene was outside QC limits in S705855-CCV1. ASP allows for up to two target analytes to be outside QC limits without further action.

GC/MS PERFORMANCE CHECK

All criteria were met.

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain of Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Surrogate Spike Recoveries
- Method Blank
- Laboratory Control Samples

211 Franklin St. (Solepox)

SDG# SC36327

- MS/MSD
- Duplicate
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Surrogate Spike Recoveries, Laboratory Control Samples, MS/MSD, Duplicate, Compound Quantitation and Continuing Calibration.

Sample; MW-F was diluted due to high target analyte concentration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times for the sample were met.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met except the %Rec of 2-Fluorobiphenyl, 2-Fluorophenol and Nitrobenzene-d₅ was outside QC limits, low in FB 062117. Associated target analytes in this sample should be qualified as estimated.

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was acquired.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of Benzidine was outside QC limits, high in 171088-BS1/BSD1 and should be qualified as estimated.

MS/MSD

All criteria were met except the %Rec of Benzoic acid and Pyridine were outside QC limits, low in MW-MMS/MSD. These target analytes should be qualified as estimated in MW-M and MW-MMS/MSD.

The %Rec of Benzidine was 0% in MW-MMS/MSD. Benzidine should be qualified as estimated, if detected, in MW-M. Benzidine should be qualified as unusable, if undetected, in MW-M and MW-MMS/MSD.

Other target analytes were outside QC limits in either the Matrix spike or the Matrix spike duplicate but not both. These target analytes were labeled with an '*', but no further action is required.

DUPLICATE

All criteria were met except Benzo(k)fluoranthene, Benzoic acid, Bis(2-ethylhexyl)phthalate, Butyl benzyl phthalate, Di-n-Butyl phthalate and Di-n-Octyl phthalate were detected in MW-IDU but not in MW-I.

COMPOUND QUANTITATION

All criteria were met except Bis (2-ethylhexyl)phthalate was detected in FB 062117 above the reporting limit. This target analyte should be recorded as 'undetected' at the reporting limit if it is detected above the MDL and below the reporting limit in the associated samples. Associated samples in which this target analyte was detected above the reporting limit but below the FB 062117 concentration should be qualified as 'undetected'. Associated samples in which this target above the FB 062117 concentration should be qualified as 'undetected'. Associated samples in which this target above the FB 062117 concentration should be qualified as estimated high.

Di-n-Octyl phthalate was detected above the MDL, below the reporting limit in FB 062117. This target analyte should be recorded as 'undetected' at the reporting limit if it is detected above the MDL and below the reporting limit in the associated samples. Associated samples in which this target analyte was detected above the reporting limit should be qualified as estimated high.

INITIAL CALIBRATION

All criteria were met except the RRF of N-Nitrosodi-n-propylamine was outside QC limits in the initial calibration. ASP allows for up to four target analytes to be outside QC limits without further action.

Alternate forms of regression were performed on all target analytes whose %RSD >20%, with acceptable results.

CONTINUING CALIBRATION

All criteria were met except the RRF of 2-Chlorophenol, 2-Methylphenol and N-Nitrosodi-n-propylamine was outside QC limits in the S705947-CCV1. The RRF of Bis(2-chloroethyle)ether,

2-Methylphenol and N-Nitrosodi-n-propylamine was outside QC limits in the S705948-CCV1. The RRF of Bis(2-chloroethyl) ether, 2-Chlorophenol, 2-Methylphenol and N-Nitrosodi-npropylamine was outside QC limits in the S706043-CCV1. ASP allows for up to four target analytes to be outside QC limits without further action.

The %D of Benzidine was outside the outer ASP QC limits in S705947-CCV1 and S705948-CCV1. The %D of Carbazole was outside the outer ASP QC limits in S706043-CCV1. These target analytes should be qualified as estimated in the associated samples, blanks and spikes.

GC/MS PERFORMANCE CHECK

All criteria were met.

METALS

The following items/criteria were reviewed for this analytical suite:

-Data Completeness -Narrative and Data Reporting Forms -Chain of Custody and Traffic Reports -Holding Times -Blanks -Laboratory Control Sample -MS/MSD -Duplicate -Field Duplicate -Serial Dilution -Compound Quantitation -Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Blanks and MS/MSD.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

BLANKS

All criteria were met except Sb was detected above the MDL, below the reporting limit and is qualified as estimated in S707134-CCB1, -CCB2, -CCB3, -CCB4 and 1710998-BLK1. Associated samples in which this target analyte was detected above the MDL and below the reporting limit should be reported with the reporting limit and 'undetected'. Associated samples in which this target above the reporting limit should be qualified as estimated high.

LABORATORY CONTROL SAMPLE

All criteria were met.

MS/MSD

All criteria were met except the %Rec of Mg was outside QC limits, low in MW-MMS/MSD and should be qualified as estimated in MW-M, MW-MDUP and MW-MMS/MSD.

DUPLICATE All criteria were met.

FIELD DUPLICATE No field duplicate was acquired.

SERIAL DILUTION All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

CALIBRATION

All criteria were met.