Periodic Review Report

229 HOMER STREET SITE NYSDEC SITE NUMBER C905044 OLEAN, NEW YORK

May 2020

0311-018-001

Prepared For:

Homer Street Properties, LLC

Prepared By:

In Association With:

229 HOMER STREET REDEVELOPMENT SITE BCP SITE No. C905044

OLEAN, NEW YORK

May 2020 0311-018-001

Prepared for:

Homer Street Properties, LLC

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

In Association with:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635

229 Homer Street Site

Table of Contents

1.0	INT	RODUCTION	1
	1.1	Site Background	
	1.2	Purpose/Scope	
	1.2	1 ulposo/seope	
2.0	SITE	e Overview	3
	2.1	Remedial Actions	
	2.2	Site Redevelopment Activities	
3.0	SITE	E MANAGEMENT PLAN	6
	3.1	IC/EC Plan	6
		3.1.1 Institutional Controls	
		3.1.2 Engineering Controls	6
		3.1.3 Site Inspection & IC/EC Compliance	
	3.2	Monitoring and Sampling Plan	7
		3.2.1 Groundwater Sampling and Analysis	
		3.2.1.1 Groundwater Elevations	7
		3.2.1.2 Analytical Data	8
		3.2.2 AS/SVE System and Monitoring	8
		3.2.2.1 Results	
		3.2.3 Site-Wide Inspection - Cover System Monitoring	10
	3.3	O&M Plan	11
		3.3.1 SVE System	
		3.3.1.1 Routine System Operation and Maintenance	
		3.3.1.2 System Monitoring Devices and Alarms	11
4.0	Con	NCLUSIONS AND RECOMMENDATIONS	
	4.1	Conclusions	13
	4.2	Recommendations	13
5.0	DEC	CLARATION/LIMITATION	14
6.0	Dre	FERENCES	15
U.U	LLL	LINE: YOLO	13

229 Homer Street Site **Table of Contents**

FIGURES

Figure 1	Site Location and Vicinity Map								
Figure 2	Site Plan (Post-Remediation)								
Figure 3 Groundwater Isopotential Map (July 2019)									
Figure 4 Groundwater Isopotential Map (December 2019)									
Figure 5	Site Cover System and Details								
Figure 6	Air Sparge and Soil Vapor Extraction System Layout								
Figure 7	Air Sparge and Soil Vapor Extraction System Schematic and Well Details								
	TABLES								
Table 1	Summary of Groundwater Elevations (July & December 2019)								
Table 2	Summary of Groundwater Analytical Data (2011-2019)								
Table 3	Summary of SVE Vapor Analytical Data								
Table 4	Summary of Groundwater Levels and Dissolved Oxygen Concentrations								
	APPENDICIES								

Appendix A	IC/EC Certification Form, Temporary Discharge Permit
Appendix B	Site Photographic Log
Appendix C	Groundwater Sampling Field Forms and Analytical Data
Appendix D	AS/SVE OM&M Documentation
Appendix D1	SVE Periodic Inspection Log
Appendix D2	SVE Analytical Data
Appendix E	Temporary Discharge Permit Analytical Data

0311-018-001

ii

1.0 Introduction

Benchmark Environmental Engineering and Science, PLLC (Benchmark) in association with TurnKey Environmental Restoration, LLC (TurnKey) has prepared this Periodic Review Report (PRR) on behalf of Homer Street Properties, LLC (Owner) to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C905044, located in Olean, Cattaraugus County, New York (Site; see Figure 1).

This PRR has been prepared for the Site in accordance with NYSDEC DER-10/Technical Guidance for Site Investigation and Remediation (Ref. 1). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A).

This PRR and the associated inspections form have been completed for the post-remedial activities at the Site for the period from December 28, 2018 to April 28, 2020.

1.1 Site Background

The 229 Homer Street Redevelopment Site and surrounding area were originally developed in approximately 1890 for the oil industry and used for refinery purposes and as a petroleum storage tank farm. The site was historically occupied by a large tank, used for oil storage by Socony Vacuum and/or Felmont Oil, and two tank berm areas. The Site was identified as part of the Exxon/Mobil Legacy Site (EMLS) Works #3 area. EMLS operated as an oil refiner in the area under several different names from approximately 1880 to 1950s.

Benson Construction and Development, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC in October 2015 to investigate and remediate the approximate 3.34-acre property comprised of one tax parcel identified as 229 Homer Street (SBL#94.032-1-2.5) located in the City of Olean, Cattaraugus County, New York and referred to as the 229 Homer Street Site (see Figure 1). The BCA was amended in October 2017 to add Homer Street Properties, LLC as an additional Applicant (Volunteer) to the existing BCA.

1.2 Purpose/Scope

The SMP requires, among other things, periodic inspection, and certification that the IC/ECs implemented at the Site remain in place and are functioning as designed. This PRR

0311-018-001

serves that purpose as well as documenting post-remedial actions taken since the COC was issued.

2.0 SITE OVERVIEW

The approximate 3.34-acre 229 Homer Street Site is bounded by Two Mile Creek and Homer Street to the northwest, the Casella Waste Management Of New York transfer station to the northeast, Southern Tier Rail Authority rail lines to the southeast, and 251 Homer Street (a solar electric generating facility on a parcel previously remediated under the NYSDEC BCP) to the southwest. The Site is currently improved with a one-story building (approximately 7,500 square feet) in the central portion of the Site. The remainder of the Site remains undeveloped.

The Remedial Investigation/Interim Remedial Measures/Alternative Analysis Report (RI/IRM/AA) Work Plan (Ref. 2) was approved by the NYSDEC on November 25, 2015 with concurrence of the New York State Department of Health (NYSDOH). TurnKey Environmental Restoration, LLC in association with Benchmark Environmental Engineering & Science, PLLC (Benchmark-TurnKey) performed RI activities at the Site in November and December 2015. However, for various reasons as described in the revised Alternatives Analysis Report (AAR) dated June 2017 (Ref. 3), a revised remedy consisting of limited excavation of shallow grossly contaminated soil (GCS) and an air sparge (AS) and soil vapor extraction (SVE) system was proposed. Benchmark-TurnKey prepared a Work Plan for Pilot Study: Air Sparging and Soil Vapor Extraction in August 2017, which the NYSDEC approved (Ref. 4). The pilot study was undertaken to support the anticipated final design; this work was completed in October 2017 and a report submitted to the NYSDEC (Ref. 5). Using the results of the pilot study, a Remedial Action Work Plan (RAWP) (Ref. 6) was submitted to NYSDEC on February 16, 2018, approved by NYSDEC on March 5, 2018, and field activities were completed at the Site between April and October 2018. The Site was remediated to NYSDEC Part 375 Track 4 commercial soil cleanup objectives (CSCOs) for use in a commercial redevelopment capacity. The Site Management Plan (SMP; Ref. 7) and Final Engineering Report (FER; Ref. 8) were approved by the Department in December 2018. The Certificate of Completion (COC) was recorded on December 28, 2018. Remedial activities are described in the following sections.

2.1 Remedial Actions

In general, remedial activities included:

- 1. Limited excavation and off-site disposal of GCS-impacted soil.
- 2. Excavation, removal, and cleaning of abandoned subsurface piping.
- 3. In-situ treatment of GCS soil/fill using AS and SVE.
- 4. Placement of a soil cover.
- 5. Implementation of this Site Management Plan.

The following is a summary of the remedial action completed at the Site:

- Approximately 5,815.47 tons of GCS-impacted soil/fill was excavated and loaded by Benson Construction and Development, LLC, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY.
- Approximately 1,946 linear feet of subsurface metallic product piping was exposed, tapped, evacuated of contents, removed, cleaned, and recycled. Two portions of piping (Pipe 4) on the Site were not removed from the ground as they reside beneath the existing building (approximately 40 feet) and beneath a concrete pad (approximately 20 feet). The remaining piping was capped. Piping which extended beyond the property boundary was capped and/or grouted at the property line.
- Approximately 16.74 gross tons (18.75 tons) of piping was recycled as scrap metal. The scrap steel was transported by Benson Construction and Development, LLC to Metallico and Ben Weitsman in Allegheny, New York. Cleaning of the pipes generated four drums of pipe scale, oil, and water. They were transported by Environmental Services Group New York, Inc. (ESG) to American Recyclers Company in Tonawanda, New York for incineration.
- Installation of new monitoring wells MW-6 and MW-7 after excavation of impacted soil/fill was complete. Locations approved by NYSDEC.
- Installation and operation of an AS/SVE system to address GCS in the deeper soil/fill from approximately 5 to 15 fbgs and in the upper 5 ft of the water table (i.e., smear zone). The air sparge portion of the system includes 53 injection wells connected to an air compressor in a climate-controlled trailer via individual 1" polyethylene lines. The SVE system includes 14 extraction wells connected by 2" polyethylene lines to one of two blowers in a separate climate-controlled trailer. Emissions from the SVE system are controlled using a biofilter contained within an approximate 20-foot by 7-foot steel roll-off box outfitted with perforated pipe. The biofilter has an approximate 1-foot thick gravel layer at the base of the box overlain by approximately two feet of wood chip and compost filter medium, which allows naturally occurring microbes to bioremediate the air stream and control the nuisance odors from the AS/SVE system.

The efficacy of the AS/SVE system from start-up to present is summarized in Section 3.2.2 below. Procedures for operating and maintaining the AS/SVE system are documented in the SMP (Operation and Maintenance Plan, Section 5.0 and AS/SVE System Operations and Maintenance Manual, Appendix J). Figure 5 shows the location of the AS/SVE system components installed for the site and Figure 6 shows the AS/SVE system construction detail and process flow schematic.

- Construction and maintenance of a site cover system as shown on Figure 5. The site cover system was installed at the Site in April and May 2018.
- Execution and recording of an Environmental Easement to restrict land use to commercial/industrial operations and prevent future exposure to any contamination remaining at the Site. The Environmental Easement was recorded with the Cattaraugus County in October 2017.
- Development and implementation of the SMP for management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) institutional and engineering controls, (2) excavation, (3) monitoring and reporting, and (4) operation and maintenance.

2.2 Site Redevelopment Activities

The Site remains undeveloped except for the existing building.

3.0 SITE MANAGEMENT PLAN

The SMP includes an IC/EC Plan, a Monitoring and Sampling Plan, an Operation & Maintenance (O&M) Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easement. A brief description of the components of the SMP is presented below.

3.1 IC/EC Plan

As detailed in the Environmental Easement, several IC/ECs need to be maintained as a requirement of the BCA.

3.1.1 Institutional Controls

- Groundwater-Use Restriction: The use of groundwater for potable and nonpotable purposes is prohibited.
- Land-Use Restriction: The Site may be used for commercial and/or industrial use.
- Implementation of the SMP: The O&M Plan and EWP must be followed.

3.1.2 Engineering Controls

- Vapor Mitigation: There are no sub-slab depressurization systems currently. In accordance with the Decision Document, if the occupied portion of the existing building floor slab is compromised (cracked) or future building(s) are to be constructed and occupied, an evaluation of the potential for soil vapor intrusion will be completed.
- AS/SVE System: The AS/SVE system has operated and was monitored nearly continuously between September 2018 and December 2019 during times that temperatures were consistently above freezing.
- Groundwater Monitoring: Groundwater monitoring was completed in July and December 2019.
- Cover System: The cover system is intact and functioning as intended.

3.1.3 Site Inspection & IC/EC Compliance

On March 11, 2020, Benchmark's Certifying Professional Engineer performed a Site visit and assessment. During this visit, the Site covered by this PRR was found to be compliant with the IC/EC requirements. Appendix A includes the completed and P.E.-certified IC/EC Form for the Site.

0311-018-001

3.2 Monitoring and Sampling Plan

The Monitoring and Sampling Plan specifies the methods used for:

- Sampling and analysis of groundwater
- Remedial AS/SVE system monitoring
- Site-wide inspection
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment

3.2.1 Groundwater Sampling and Analysis

Groundwater sampling was conducted July 1-2, 2019 and December 3-4, 2019 at wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, and MW-7. The samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) and tentatively identified compounds (TICs) using USEPA Method 8260C. TCL semi-volatile organic compounds (SVOCs) were analyzed via USEPA Method 8270D and 8270D-SIM and TICs via USEPA Method 8270D. Appendix C includes field notes and analytical data packages for both sampling events. Table 1 summarizes current and historic groundwater elevations. Table 2 summarizes the analytical results as well as historic groundwater quality data. July and December 2019 groundwater data were submitted to the NYSDEC EQuIS database.

Appendix C includes the data usability summary report (DUSR). Table 2 has been updated to reflect the final accepted data. Several SVOCs were edited to reflect non-detection after validation review identified external contamination or low recovery issues with the data.

3.2.1.1 Groundwater Elevations

The groundwater elevations (Table 1) were contoured as shown on Figure 3 (July 2019) and Figure 4 (December 2019). Groundwater flow direction in the uppermost sand and gravel aquifer is generally toward the southeast, consistent with the prior groundwater contour maps. This indicates that wells MW-1 and MW-4 are upgradient wells, and wells MW-2, MW-3, MW-5, MW-6 and MW-7 are downgradient wells.

3.2.1.2 Analytical Data

VOCs

The July and December 2019 groundwater concentrations indicate all VOCs were either not detected or detected below the NYSDEC Class GA groundwater quality standard/guidance values (GWQS/GVs). Between December 2015 (pre-remediation) and the December 2019 (post-remediation) sampling events, total VOC concentrations decreased in wells MW-1 through MW-5. Well MW-6, installed post-remediation, also noted a decrease in total VOCs between the July and December 2019 sampling event. Well MW-7, which was also installed post-remediation, increased slightly from 9.97 ug/L to 24 ug/L total VOCs. VOC total TIC concentration ranged from 2.9 ug/L to 135.9 ug/L in all wells during the July and December 2019 sampling events.

SVOCs

Pre-remediation data (December 2015) was either non-detect or below GWQS/GVs for all wells except for MW-3. During the December 2019 sampling event three SVOCs were detected above GWQS/GVs. All seven wells had GWQS/GVs exceedances for benzo(a)pyrene and chrysene. Unlike the December 2015 event, analytes identified during the December 2019 event were analyzed using 8270D-SIM method which allows for lower detection limits. SVOC total TIC concentration ranged from 3.1 ug/L to 174.6 ug/L in all wells during the July and December 2019 sampling events.

3.2.2 AS/SVE System and Monitoring

The AS/SVE system in operation at the Site is comprised of two main components:

- 1. The AS portion of the system is constructed of a series of vertical injection wells connected individually to a 53-point manifold with solenoid valves and rotameter flow meters connected to the air compressor; thus, enabling individual operation of banks of AS wells. The AS process equipment consists of blower, motors, aftercooler, and ancillary equipment to provide the required flow rate and pressure for the injection housed inside a climate-controlled trailer.
- 2. The SVE collection system is constructed of a series of 14 vertical extraction wells and extraction well piping connected to a 14-point manifold. The SVE process equipment (blowers, motors, moisture separator, and ancillary equipment) are housed in a climate-controlled trailer separate from the AS trailer.

0311-018-001

The extracted air is treated in a biofilter prior to discharge to the atmosphere. The biofilter treatment medium consists of a mixture of compost and mulch (each approx. 50% by weight). The natural bacteria in the biofilter use the organics in the waste stream as a source of energy. The biofilter medium is maintained in a slightly wet state and periodically mixed (fluffed-up). Biofilter media requires mixing when nuisance odors become evident or a thick cake layer forms on top preventing proper venting; the top 4-6 inches of the biofilter media is mixed/raked to keep the media broken up and loose. Dates that biofilter media is mixed is noted on the field sheets. If significant odors are noted at the downgradient property line, the medium will be replenished/replaced and noted on the OM&M field sheets. Condensate water that accumulates in the moisture separator is used to maintain moisture in the biofilter, and/or pumped through filter bags, treated with carbon and then discharged under permit to the City of Olean sewer system. A temporary discharge permit with the City of Olean is required due to the volume of water (condensate) generated by the system. Condensate discharged to the sewer is measured by the in-line totalizer and logged on the OM&M field sheets. During 2019, Benchmark-TurnKey reported approximately 4,504 gallons of treated water discharged to the City of Olean Sewer system.

The AS/SVE system operates while temperatures are consistently above freezing, typically during the spring, summer, fall, and early winter. The system has operated nearly continuously in these conditions since September 2018. Figure 6 is a layout of the AS/SVE collection system and well locations. Figure 7 is a process flow schematic of the AS/SVE system.

3.2.2.1 Results

The SVE system has been successful in removing volatile organic vapors from the subsurface soil/fill. Appendix D1 includes a summary of monitoring data and a chart depicting cumulative mass of contaminant removed. The estimated mass of organic petroleum hydrocarbons removed by the system through April 27, 2020 is approximately 11,006 pounds. The average rate of removal was approximately 18 pounds per day over the first 223 days of the 2019/2020 reporting period and dropped off during the next 35 days at the start of 2020, averaging 0.5 pounds per day.

An initial soil vapor sample was collected at system start-up (9/13/2018) and an additional SVE soil vapor sample was collected on 4/15/2020, both analyzed for VOCs via a summa canister (Method TO-15). Table 3 summarizes the results of these samples. Most VOC

0311-018-001

concentrations were not detected above method detection limits. Two compounds identified in the April 2020 event but not during startup are 1,2,5-trimethylbenzene and 4-methyl-2-pentanone. Cyclohexane concentrations were reduced by over 99% from 56,500 micrograms per cubic meter (ug/m³) to 96 ug/m³. Appendix D2 includes the analytical data. The next SVE soil vapor sample will be collected in April 2021.

During start-up operations, the air sparge system was turned on and off to determine the most efficient application of oxygen to the subsurface. After adjustments, the air sparge system was programmed to run 15 minutes every day for all wells. Air sparging may be increased or operated more frequently if dissolved oxygen (DO) falls below 1.5 mg/L. Times that air sparge system was turned off are documented in the notes column of the AS/SVE OM&M summary table.

Table 4 summarizes water level and dissolved oxygen (DO) concentrations monitored monthly during system operation. In general, DO concentrations increase throughout the summer and decrease during the fall. During the fall of this first reporting period, the DO concentrations in wells MW-1, MW-3, MW-5, MW-6, and MW-7 dropped below 1.5 mg/L at least once. April 2020 start-up DO concentrations at wells MW-2, MW-3, and MW-7 are below the recommended minimum limit of 1.5 mg/L. Continued monitoring will be performed with the potential for increased air sparge system operation.

3.2.3 Site-Wide Inspection - Cover System Monitoring

The existing cover system is comprised of a minimum of 12 inches of clean gravel, an existing building pad, and concrete pads. A demarcation layer, consisting of orange plastic mesh material, provides a visual reference to the top of the remaining contamination zone, which is the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this SMP.

In accordance with the SMP, the cover system must be maintained and replaced in the event it is breached as described in the EWP (SMP Appendix B). The cover will be inspected on an annual basis and following severe storm events. The key maintenance concerns and corrective actions are provided below.

Gravel/Stone Cover Monitoring

• Ruts or erosion will be repaired by re-grading the localized area and adding additional material.

Concrete Pad Cover Monitoring

• Cracks or penetrations through the concrete pad will be sealed and/or patched.

At the time of the Site inspection the gravel/stone cover was in good condition. No erosion issues were identified within the swale at time of inspection. The building is not currently occupied. Prior to occupancy, Benchmark will assess the building foundation for potential soil vapor intrusion issues. Appendix B includes a photographic log showing Site conditions at the time of the inspection.

If the type of cover system changes from that which existed (i.e., a gravel cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the remaining contamination. A figure showing the modified surface will be included in the subsequent PRR.

3.3 O&M Plan

The O&M Plan addresses operation and maintenance for the AS/SVE System.

3.3.1 SVE System

3.3.1.1 Routine System Operation and Maintenance

The SVE system is designed to require little maintenance over the expected duration of use at the 229 Homer Street site. The blower bearings are maintenance free. Any required maintenance will be completed in compliance with the OM&M manual included in Appendix J of the SMP.

3.3.1.2 System Monitoring Devices and Alarms

Monitored system operating conditions that trigger an alarm condition include moisture separator tank high level. This alarm condition automatically shuts down the SVE blower. The SVE system includes a Siemens PLC (Programmable Logic Controller), which allows all alarm conditions to be monitored directly in the field or remotely. Based on the alarm, the remedial party will respond and/or contact the appropriate repair vendor (e.g. electrician, mechanical repair service).

There were some short-term SVE system shut-downs during the reporting period to complete routine maintenance. The system was shut down from October 21 to November 6, 2019 since the previous City of Olean temporary discharge permit expired on October 4, 2019.

On behalf of the Owner, Benchmark-TurnKey applied for a new temporary discharge permit (included in Appendix A). As part of the application, an effluent sample was collected by Benchmark-TurnKey from the SVE system and analyzed by Alpha Analytical; all parameters were below the permit limits except total suspended solids (TSS). A smaller nominal particle size bag filter was installed on November 4 and a new effluent sample was collected by the City of Olean. The new TSS result was below the discharge limits and the system was restarted November 6, 2019. Appendix E contains the temporary discharge permit and effluent sample analytical.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Based on our observation during the March 11, 2020 inspection, the Site covered by this PRR was fully compliant with the IC/EC requirements.

Long-term groundwater monitoring indicates improvement to the groundwater quality for VOCs and SVOCs. The next semi-annual groundwater monitoring is planned for June 2020.

4.2 Recommendations

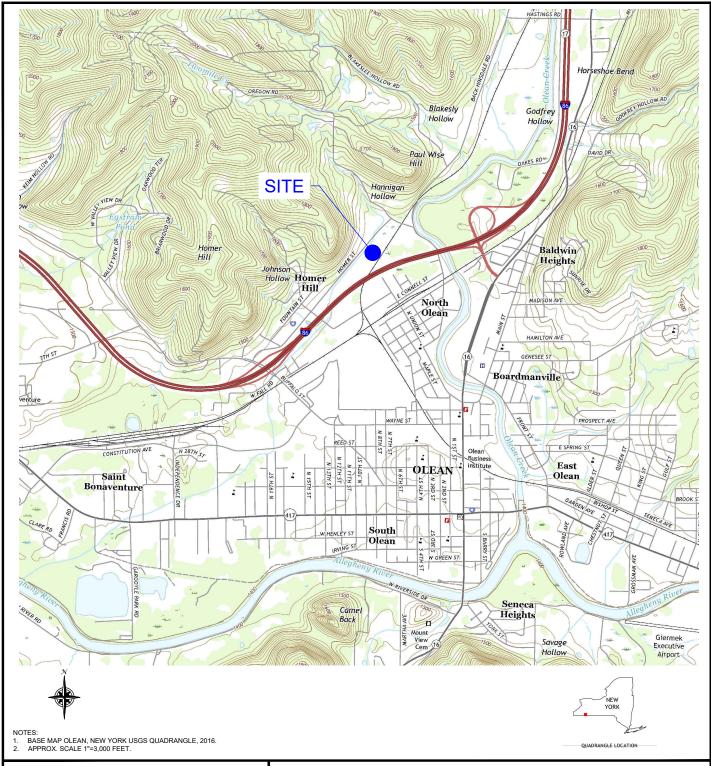
In accordance with the SMP, further monitoring of on-site wells will be completed in June and December 2020.

5.0 DECLARATION/LIMITATION

Benchmark Environmental Engineering & Science, PLLC, personnel conducted the annual site inspection for Brownfield Cleanup Program Site No. C905044, Olean, New York, according to generally accepted practices. This report complied with the scope of work provided to Homer Street Properties, LLC by Benchmark Environmental Engineering & Science, PLLC.

This report has been prepared for the exclusive use of Homer Street Properties, LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of Homer Street Properties, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark Environmental Engineering & Science, PLLC.

6.0 REFERENCES


- 1. New York State Department of Environmental Conservation. DER-10/Technical Guidance for Site Investigation and Remediation. May 2010.
- 2. TurnKey Environmental Restoration, LLC. Remedial Investigation / Interim Remedial Measures / Alternatives Analysis Work Plan, 229 Homer Street Site, Olean New York. Revised November 2015.
- 3. TurnKey Environmental Restoration, LLC in association with Benchmark Environmental Engineering & Science, PLLC. Revised Alternative Analysis Report, 229 Homer Street Site, BCP Site Number: C905044, Olean New York. June 2017.
- 4. TurnKey Environmental Restoration, LLC. 229 Homer Street Site, Site No. C905044, Work Plan for Pilot Study: Air Sparging and Soil Vapor Extraction. August 25, 2017.
- 5. TurnKey Environmental Restoration, LLC. 229 Homer Street Site, Site No. C905044, Air Sparging/Soil Vapor Extraction Pilot Study Report. October 30, 2017.
- 6. TurnKey Environmental Restoration, LLC in association with Benchmark Environmental Engineering & Science, PLLC. Remedial Action Work Plan (RAWP), 229 Homer Street Site, BCP Site No. C905044, Olean, New York. February 2018.
- 7. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. *Site Management Plan, 229 Homer Street Site, NYSDEC Site Number C905044*, *Olean, NY*. December 2018.
- 8. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. Final Engineering Report, 229 Homer Street Site, NYSDEC Site Number C905044, Olean, NY. December 2018.

FIGURES

FIGURE 1

PROJECT NO.: 0311-018-001

DATE: JANUARY 2020

DRAFTED BY: RFL-CMC

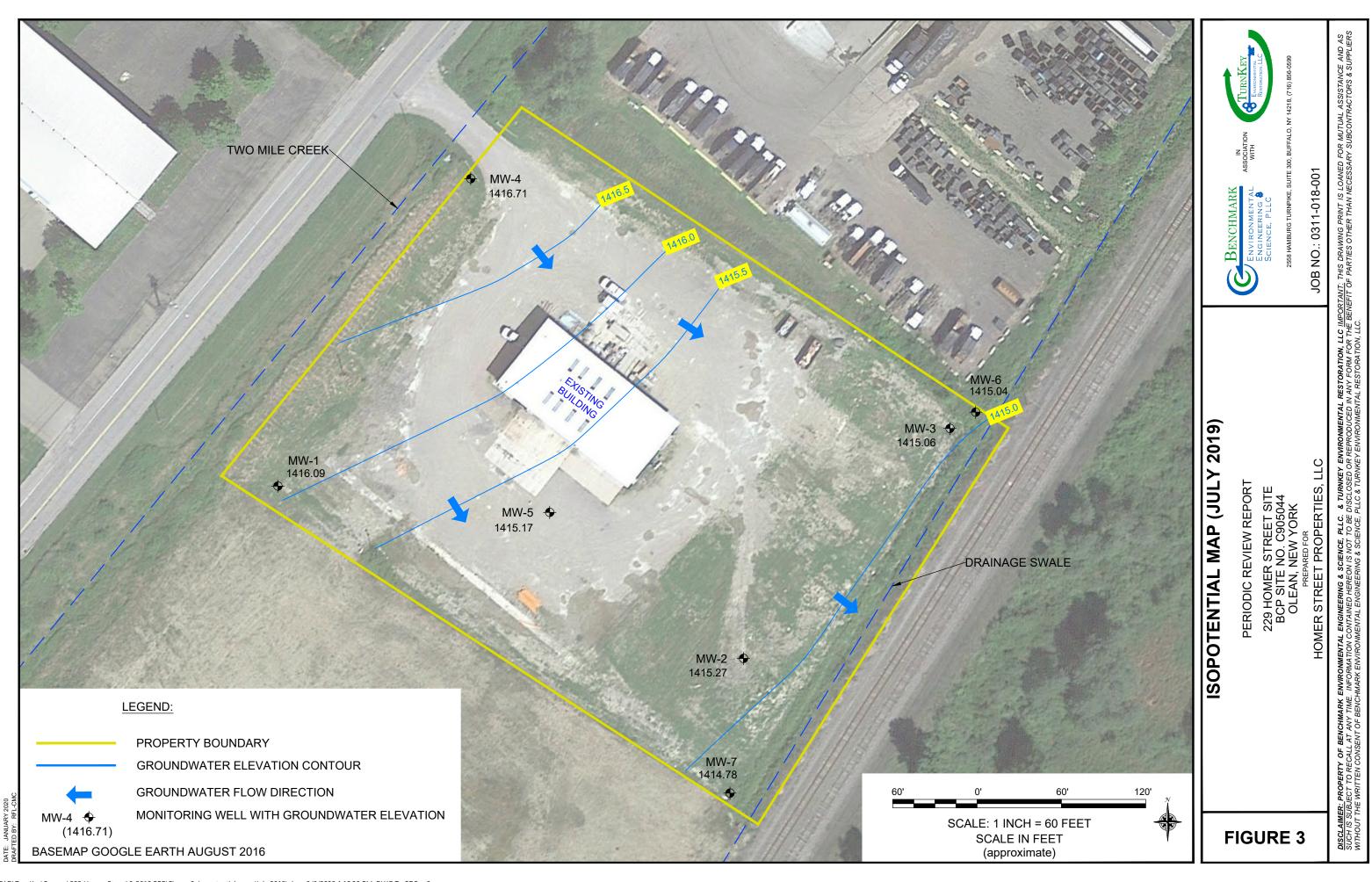
SITE LOCATION AND VICINITY MAP

PERIODIC REVIEW REPORT

229 HOMER STREET SITE BCP SITE NO. C905044 OLEAN, NEW YORK

PREPARED FOR

HOMER STREET PROPERTIES, LLC


DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.

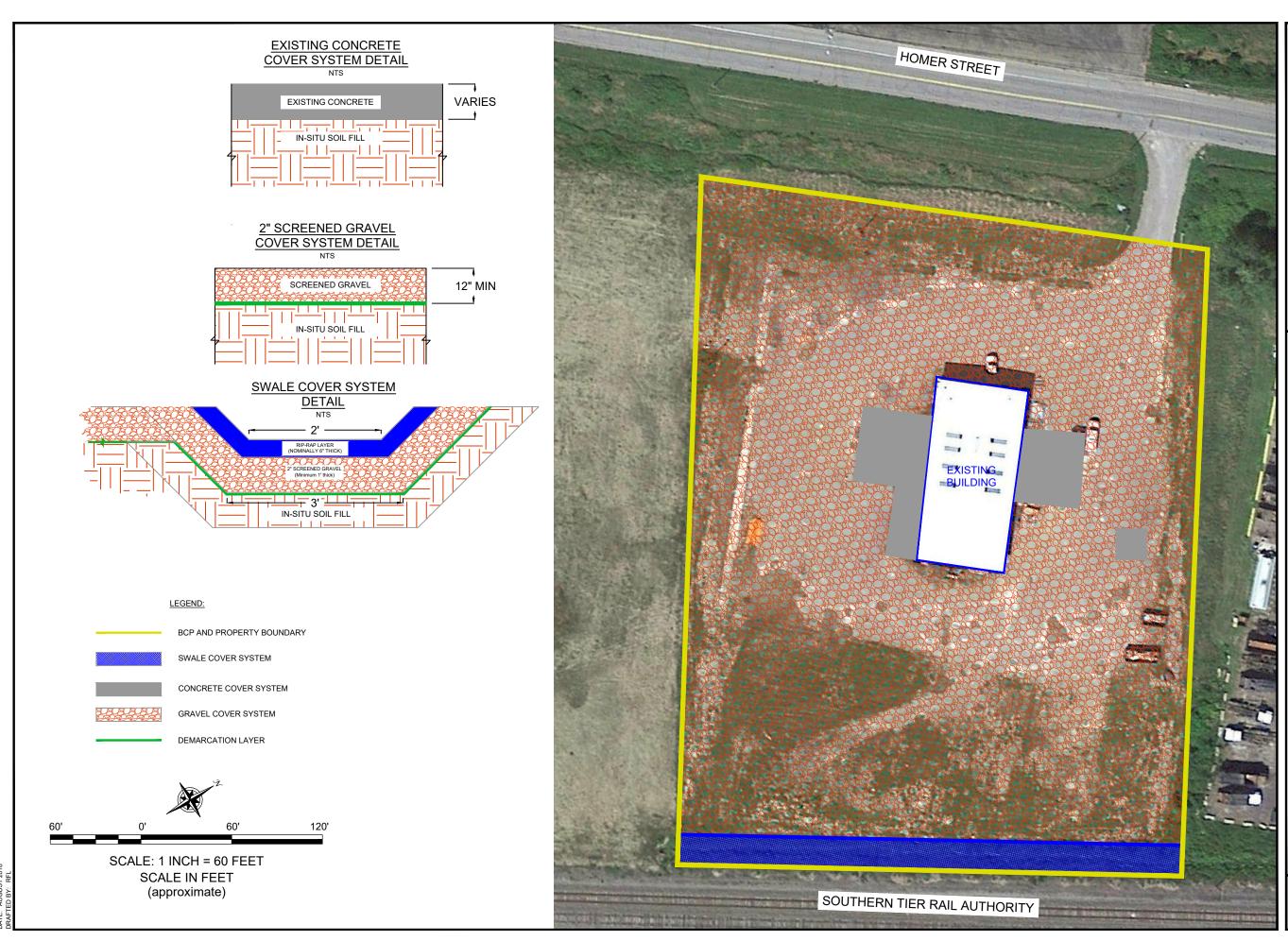
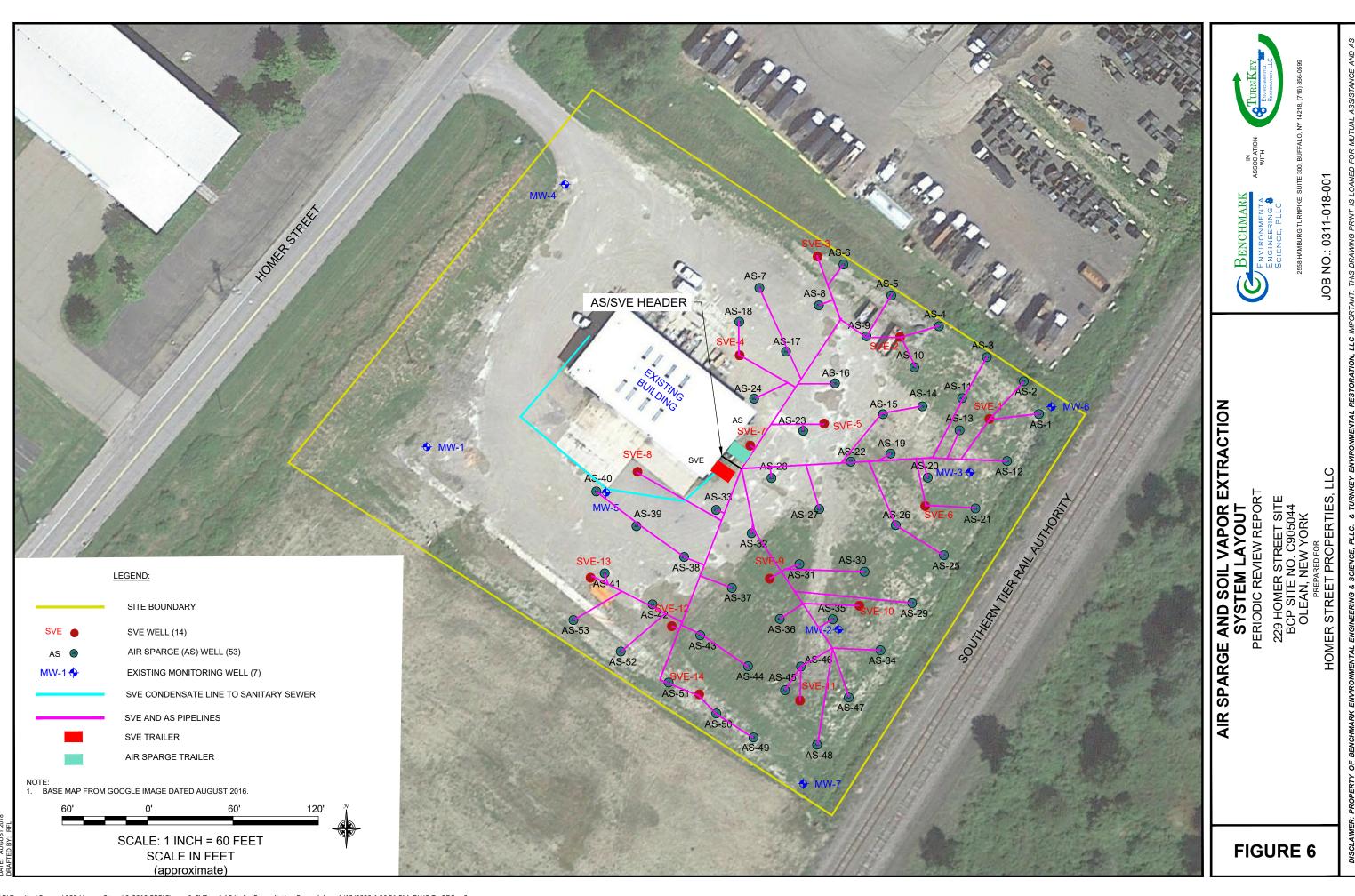
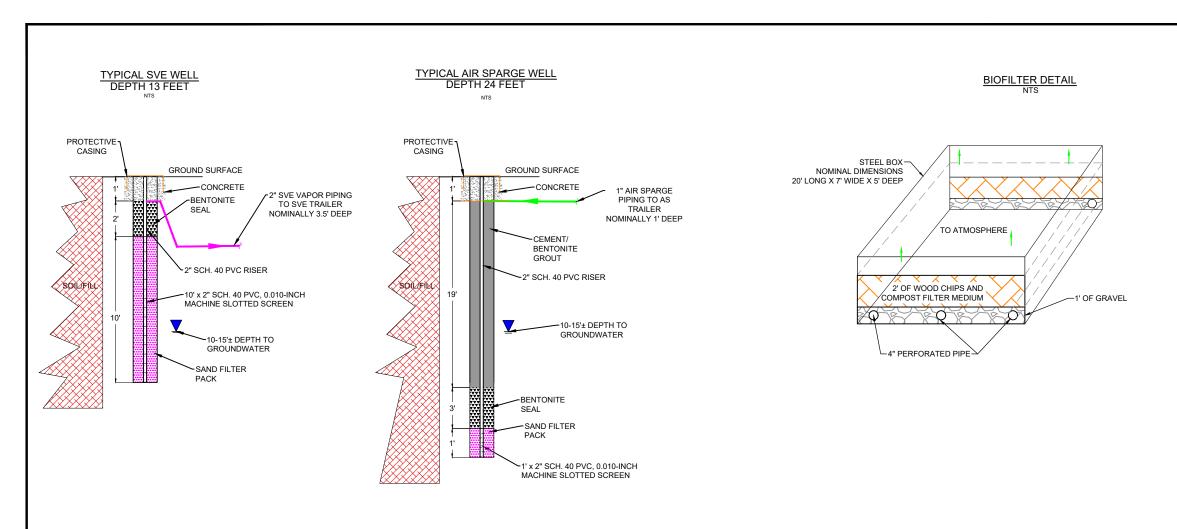
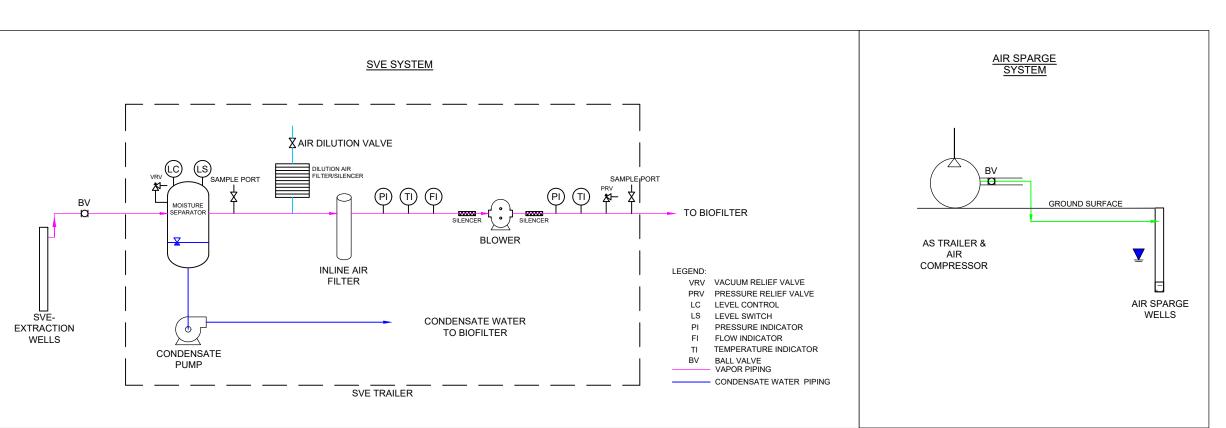

JOB NO.: 0311-018-001

FIGURE 2

F:\CAD\TurnKey\Benson\229 Homer Street\0-2019 PRR\Figure 2; Site Plan (aerial).dwg, 1/19/2020 8:32:18 AM, DWG To PDF.pc3


DETAILS COVER


PERIODIC REVIEW REPOR


0311-018-001

JOB NO.: (

FIGURE 5

CTION AILS E AND SOIL VAPOR EXTRAC CHEMATIC AND WELL DETA PERIODIC REVIEW REPORT SPARGE STEM SO AIR

BENCHMARK

229 HOMER STREET SITE BCP SITE NO. C905044 OLEAN, NEW YORK

HOMER STREET

0311-018-001

JOB NO.: (**RESTORATION, LLC IMPORTANT:** THIS DRA V ANY FORM FOR THE BENEFIT OF PARTIES AL RESTORATION, LLC. PROPERTIES, LLC PROPERTY OF BENCHMARK ECT TO RECALL AT ANY TIME WRITTEN CONSENT OF BENC

FIGURE 7

TABLES

TABLE 1 SUMMARY OF GROUNDWATER ELEVATIONS

PERIODIC REVIEW REPORT 229 HOMER STREET SITE OLEAN, NEW YORK

Location ¹	Grade Elevation	TOR Elevation ²	DTW (fbTOR)	Groundwater Elevation (ft)	DTW (fbTOR)	Groundwater Elevation (ft)	
	(ft)	(ft)	7/1/2019	& 7/2/2019	12/3/2019 & 12/4/2019		
MW-01	1424.90	1424.49	8.40	1416.09	10.80	1413.69	
MW-02	1425.16	1424.72	9.45	1415.27	12.09	1412.63	
MW-03	1424.83	1424.34	9.28	1415.06	11.40	1412.94	
MW-04	1425.67	1425.34	8.63	1416.71	11.11	1414.23	
MW-05	1426.06	1425.73	10.56	1415.17	12.98	1412.75	
MW-06	1424.25	1423.99	8.95	1415.04	11.21	1412.78	
MW-07	1424.66	1424.66	9.88	1414.78	12.08	1412.58	

Notes:

- 1. Wells MW-01, MW-02, MW-03, MW-04, & MW-05 were installed in December 2015. Wells MW-06 & MW-07 were installed in June 2018.
- 2. Elevations are referenced to NAVD 88.

Acronyms:

fbTOR = Feet below top of riser DTW = Depth to water

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL DATA PERIODIC REVIEW REPORT 229 HOMER STREET SITE OLEAN, NEW YORK

	NYSDEC									Samp	le Location and	d Date								
Parameter ¹	Class GA		MW-1			MW-2			MW-3			MW-4			MW-5		M	V-6	M\	W-7
	GWQS ²	12/8/2015	7/1/2019	12/4/2019	12/8/2015	7/2/2019	12/3/2019	12/8/2015	7/2/2019	12/4/2019	12/8/2015	7/1/2019	12/3/2019	12/8/2015	7/1/2019	12/3/2019	7/2/2019	12/3/2019	7/1/2019	12/4/2019
TCL Volatile Organic Compounds (VO	Cs) - ug/L	•		•			•													
Acetone	50	29	15 J	ND	14	13	ND	ND	11	ND	15	13	ND	37	14	ND	13	ND	9.3	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.98 J	ND	2.4 J	1.4 J	ND	1 J
Methylcyclohexane		1.2	ND	ND	4.9	ND	3.4 J	100 DL	0.98 J	1.9 J	1.8	ND	ND	52	31	3.6 J	28	11	0.67 J	23
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.64 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total TICs			2.9 J	4.15 J		66.35 J	57.4 J		27.41 J	24.2 J		2.35 J	2.93 J		135.9 J	47.7 J	107.18 J	66.4 J	50.34 J	113 J
Total VOCs		39.1 J	15 J	ND	538.9	13	ND	590 DL	11.98 J	1.9 J	94.94 J	13	ND	379	45.98 J	3.6 J	43.4 J	12.4 J	9.97 J	24 J
TCL Semi-Volatile Organic Compound	ls (SVOCs) - ι	ug/L																		
2-Methylnaphthalene ³		ND	ND	ND	ND	ND	0.06 J	ND	ND	ND	ND	ND	0.03 J	3.2 J	ND	0.03 J	ND	ND	ND	0.04 J
2-Chloronapththalene ³	10 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND	ND	ND	ND	ND	ND
Acenaphthene 3	20 *	ND	ND	ND	ND	ND	ND	ND	ND	0.04 J	ND	ND	ND	ND	0.06 J	0.18	ND	ND	0.07 J	0.06 J
Acenaphthylene ³		ND	ND	0.02 J	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND	0.05 J	ND	ND	ND	0.04 J
Anthracene 3	50 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J	ND	ND	ND	ND	ND
Benzo(a)anthracene ³	0.002 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene ³	ND	ND	ND	0.03 J	ND	ND	0.03 J	ND	ND	0.02 J	ND	ND	0.05 J	ND	ND	0.02 J	ND	0.02 J	ND	0.04 J
Benzo(b)fluoranthene3	0.002 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene ³	0.002 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(ghi)perylene ³		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	5	ND	ND	1.9 J	ND	ND	1.8 J	0.68 J	ND	ND	ND	ND	1.7 J	ND	ND	1.9 J	ND	1.7 J	ND	ND
Chrysene ³	0.002 *	ND	ND	0.04 J	ND	ND	0.03 J	ND	ND	0.02 J	ND	ND	0.04 J	ND	ND	0.02 J	ND	0.02 J	ND	0.04 J
Dibenzo(a,h)anthracene ³		ND	ND	0.02 J	ND	ND	0.03 J	ND	ND	ND	ND	ND	0.03 J	ND	ND	ND	ND	ND	ND	0.03 J
Diethyl phthalate	50 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.25 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6 J	ND	ND	ND
Di-n-octyl phthalate	50 *	ND	ND	ND	ND	ND	ND	0.73 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene ³	50 *	ND	ND	0.03 J	ND	ND	0.13	0.7 J	ND	0.1	ND	ND	0.03 J	ND	0.26	0.33	ND	0.06 J	0.04 J	0.3
Fluoranthene ³	50 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene ³	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04 J	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene ³	0.002 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene ³	10 *	ND	ND	ND	ND	ND	0.11	ND	ND	ND	ND	ND	ND	ND	0.09 J	0.07 J	ND	ND	0.09 J	0.07 J
Pentachlorophenol ³	1	ND	ND	ND	ND	ND	0.18 J	7.1 J	ND	0.17 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18 J
Phenanthrene ³	50 *	ND	ND	ND	ND	ND	ND	0.75 J	ND	ND	ND	ND	0.06 J	2.8 J	0.09 J	ND	ND	ND	ND	0.2
Pyrene ³	50 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total TICs			7.8 J	5.8 J		90.7 J	174.6 J		3.1 J	27.46 J		30.99 J	5.48 J		49.93 J	40.67 J	32.61 J	62.76 J	33.38 J	76.04 J
Total SVOCs		ND	ND	2.04 J	ND	ND	2.37 J	9.96 J	ND	0.35 J	0.25 J	ND	2.02 J	6 J	0.26 J	2.6 J	2.6 J	1.8 J	0.2 J	1 J

- 1. Only those parameters detected at a minimum of one sample location are presented in this table;
- all other compounds were reported as non-detect.

 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards (GWQS).
- 3. SVOCs results obtained using method 1,870D-SIM, during the July and December 2019 sampling events only.

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = Parameter not analyzed
 "--" = No GWQS available.
- " * " = Groundwater Quality Guidance Value
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- J- = The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- NJ = The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- UJ = The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be

inaccurate or imprecise. = Sample result exceeds NYSDEC Class GA GWQS = Samples collected pre-remediation.

TABLE 3 SUMMARY OF SVE VAPOR ANALYTICAL DATA 229 HOMER STREET SITE OLEAN, NEW YORK

Dozomotov	Initial SV ¹	Soil Vapor ¹
Parameter	9/13/2018	4/15/2020
Volatile Organics Compounds (VOCs) - ug	g/m ³	
1,1-Dichloroethane	ND (<809)	ND (<3.11)
1,1-Dichloroethene	ND (<793)	ND (<3.05)
1,1,1-trichloroethane	ND (<1090)	ND (<4.20)
1,1,2-Trichloro-1,2,2-Trichloroethane	ND (<1530)	
1,1,2-Trichloroethane	ND (<1090)	ND (<4.20)
1,1,2,2-Tetrachloroethane	ND (<1370)	ND (<5.28)
1,2,4-Trichlorobenzene	ND (<1480)	ND (<5.71)
1,2,4-Trimethylbenzene	ND (<983)	ND (<3.78)
1,3,5-Trimethylbenzene	ND (<983)	6.34
2,2,4-Trimethylpentane	ND (<934)	ND (<3.59)
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND (<1400)	
1,2-Dichlorobenzene	ND (<1200)	ND (<4.62)
1,2-Dichloroethane	ND (<809)	ND (<3.11)
1,2-Dichloropropane	ND (<924)	ND (<3.55)
1,2-Dibromoethane	ND (<1540)	ND (<5.91)
1,3-Butadiene	ND (<442)	ND (<1.70)
1,3-Dichlorobenzene	ND (<1200)	ND (<4.62)
1,4-Dichlorobenzene	ND (<1200)	ND (<4.62)
1,4-Dioxane	ND (<721)	ND (<2.77)
2-Butanone	ND (<1470)	ND (<5.66)
3-Chloropropene	ND (<626)	ND (<2.41)
4-Ethyltoluene	ND (<983)	ND (<3.78)
4-Methyl-2-pentanone	ND (<2050)	28
Acetone	ND (<2380)	ND (<9.15)
Benzene	ND (<639)	ND (<2.46)
Benzyl chloride	ND (<1040)	ND (<3.98)
Bromodichloromethane	ND (<1340)	ND (<5.15)
Bromoform	ND (<2070)	ND (<7.95)
Bromomethane	ND (<777)	ND (<2.99)
Carbon disulfide	ND (<623)	ND (<2.39)
Carbon tetrachloride	ND (<1260)	ND (<4.84)
Chlorobenzene	ND (<921)	ND (<3.54)
Chloroform	ND (<977)	ND (<3.76)
Chloromethane	ND (<413)	ND (<1.59)

TABLE 3 SUMMARY OF SVE VAPOR ANALYTICAL DATA 229 HOMER STREET SITE OLEAN, NEW YORK

Parameter	Initial SV 1	Soil Vapor ¹
	9/13/2018	4/15/2020
Volatile Organics Compounds (VOCs) - ug/	/m ³	
Chloroethane	ND (<528)	ND (<2.03)
cis-1,2-dichloroethene	ND (<793)	ND (<3.05)
cis-1,3-Dichloropropene	ND (<908)	ND (<3.49)
Cyclohexane	56,500	96
Dichlorodifluoromethane	ND (<989)	ND (<3.8)
Dibromochloromethane	ND (<1700)	ND (<6.55)
Ethanol / Ethyl Alcohol	ND (<9420)	ND (<36.2)
Ethylbenzene	ND (<869)	ND (<3.34)
Ethyl Acetate	ND (<1800)	ND (<6.92)
Freon-113		ND (<5.89)
Freon-114		ND (<5.38)
iso-Propyl Alcohol / Isopropanol	ND (<1230)	ND (<4.72)
Methyl Butyl Ketone (2-Hexanone)	ND (<820)	ND (<3.15)
Methyl tert butyl ether	ND (<721)	ND (<2.77)
Methylene Chloride	ND (<1740)	ND (<6.67)
Heptane	ND (<820)	ND (<3.15)
Hexachlorobutadiene	ND (<2130)	ND (<8.20)
n-Hexane	ND (<705)	ND (<2.71)
Styrene	ND (<852)	ND (<3.27)
tert-Butyl alcohol / tertiary butyl alcohol	ND (<1520)	ND (<5.82)
Tetrachloroethene (PCE)	ND (<1360)	ND (<5.21)
Tetrahydrofuran	ND (<1470)	ND (<5.66)
Toluene	ND (<754)	ND (<2.90)
trans-1,2-Dichloroethene	ND (<793)	ND (<3.05)
trans-1,3-Dichloropropene	ND (<908)	ND (<3.49)
Trichloroethene (TCE)	ND (<1070)	ND (<4.13)
Trichlorofluoromethane	ND (<1120)	ND (<4.32)
Vinyl Chloride	ND (<511)	ND (<1.97)
Vinyl Bromide	ND (<874)	ND (<3.36)
o-Xylene	ND (<869)	ND (<3.34)
p,m-Xylene	ND (<1740)	ND (<6.69)

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- "--" = Not analyzed for

Notes:

1. Vapor results were obtained through dilution

TABLE 4 SUMMARY OF GROUNDWATER LEVELS AND DISSOLVED OXYGEN CONCENTRATIONS 229 HOMER STREET SITE OLEAN, NEW YORK

			TOR			Dissolved	
Well	Date/Time	Grade	Elevation	DTW	Water	Oxygen	Notes
			(ft)	(fbTOR)	Elevation (ft)	(mg/L)	
	4/24/19 8:30			9.25	1415.24		
	4/26/19 9:00			7.75	1416.74	2.37	
	5/6/19 11:00			8.52	1415.97	3.31	
	5/24/19 8:00			8.45	1416.04		
	6/11/19 8:30			8.05	1416.44	1.60	
	6/19/19 10:00			8.41	1416.08	2.08	
MW-1	7/16/19 16:30	1424.90	1424.49	8.40	1416.09	2.55	
	8/1/19 10:00			10.12	1414.37	6.85	
	8/13/19 9:15			10.39	1414.10	7.02	
	9/4/19 7:30			10.46	1414.03	8.00	
	10/10/19 10:00			12.11	1412.38	1.72	
	11/27/19 8:00			11.00	1413.49	1.27	
	4/23/20 8:00			8.21	1416.28	1.79	
	4/24/19 8:30			9.25	1415.47		
	4/26/19 9:00			9.05	1415.67	2.04	
	5/6/19 11:00			9.65	1415.07	2.18	
	5/24/19 8:00		1424.72	9.81	1414.91	2.22	
	6/11/19 8:30			10.43	1414.29	2.33	
MANA/ O	6/19/19 10:00	1405.40		9.80	1414.92	1.28	
MW-2	7/16/19 16:30	1425.16		9.45	1415.27	1.60	
	8/1/19 10:00 8/13/19 9:15			11.40 11.67	1413.32 1413.05	6.88 8.02	
	9/4/19 7:30			11.78	1412.94	8.02	
	10/10/19 10:00			13.11	1411.61	1.86	
	11/27/19 8:00			12.05	1412.67	2.58	
	4/23/20 8:00			9.41	1415.31	1.35	
	4/24/19 8:30			8.91	1415.43	1.55	
	4/26/19 9:00			8.73	1415.61	2.50	
	5/6/19 11:00			9.12	1415.22	2.25	
	5/24/19 8:00			9.29	1415.05		
	6/11/19 8:30	1424.83		8.65	1415.69	2.00	
	6/19/19 10:00			9.17	1415.17	4.08	
MW-3	7/16/19 16:30		1424.34	9.28	1415.06	1.78	
	8/1/19 10:00			11.04	1413.30	6.51	
	8/13/19 9:15			11.30	1413.04	8.08	
	9/4/19 7:30			11.35	1412.99	8.07	
	10/10/19 10:00			12.70	1411.64	1.77	
	11/27/19 8:00			11.65	1412.69	1.36	
	4/23/20 8:00			9.06	1415.28	1.33	
,	4/24/19 8:30			8.40	1416.94		<u> </u>
	4/26/19 9:00			7.60	1417.74	5.36	
	5/6/19 11:00			8.19	1417.15	5.27	
	5/24/19 8:00			8.70	1416.64		
	6/11/19 8:30			8.18	1417.16	4.35	
	6/19/19 10:00			8.62	1416.72	3.71	<u> </u>
MW-4	7/16/19 16:30	1425.67	1425.34	8.63	1416.71	2.05	
	8/1/19 10:00			10.43	1414.91	5.34	
	8/13/19 9:15			10.70	1414.64	7.91	
	9/4/19 7:30			10.74	1414.60	8.02	
	10/10/19 10:00			12.34	1413.00	6.65	
	11/27/19 8:00			11.10	1414.24	3.90	
	4/23/20 8:00			8.25	1417.09	2.04	

TABLE 4 SUMMARY OF GROUNDWATER LEVELS AND DISSOLVED OXYGEN CONCENTRATIONS 229 HOMER STREET SITE OLEAN, NEW YORK

			TOR			Dissolved	
Well	Date/Time	Grade	Elevation	DTW	Water	Oxygen	Notes
Weil	Date/Time	Grado	(ft)	(fbTOR)	Elevation (ft)	(mg/L)	Notes
	4/24/19 8:30		(1.7)	10.10	1415.63	(IIIg/L)	
	4/26/19 9:00			9.85	1415.88	1.96	
	5/6/19 11:00			10.59	1415.14	2.64	
	5/24/19 8:00			10.65	1415.08		
	6/11/19 8:30			9.35	1416.38	1.86	
	6/19/19 10:00			10.49	1415.24	2.05	
MW-5	7/16/19 16:30	1426.06	1425.73	10.56	1415.17	1.27	
	8/1/19 10:00			12.26	1413.47	6.94	
	8/13/19 9:15			12.52	1413.21	7.74	
	9/4/19 7:30			12.65	1413.08	7.81	
	10/10/19 10:00			14.04	1411.69	1.03	
	11/27/19 8:00			12.97	1412.76	1.77	
	4/23/20 8:00			10.20	1415.53	2.23	
	4/24/19 8:30			8.45	1415.54		
	4/26/19 9:00	1424.25	1423.99	8.45	1415.54	3.08	
	5/6/19 11:00			8.75	1415.24	2.45	
	5/24/19 8:00			8.05	1415.94		
	6/11/19 8:30			8.43	1415.56	2.39	
	6/19/19 10:00			8.91	1415.08	1.50	
MW-6	7/16/19 16:30			8.95	1415.04	1.53	
	8/1/19 10:00			10.59	1413.40	6.34	
	8/13/19 9:15			10.91	1413.08	7.98	
	9/4/19 7:30			10.93	1413.06	8.07	
	10/10/19 10:00			12.03	1411.96	0.76	
	11/27/19 8:00			11.40	1412.59	1.48	
	4/23/20 8:00			8.80	1415.19	1.69	
	4/24/19 8:30			9.42	1415.24		
	4/26/19 9:00			9.30	1415.36	2.55	
	5/6/19 11:00			9.55	1415.11	2.08	
	5/24/19 8:00			9.90	1414.76		
	6/11/19 8:30			9.35	1415.31	2.15	
	6/19/19 10:00			10.20	1414.46	1.26	
MW-7	7/16/19 16:30	1424.66	1424.66	9.88	1414.78	1.00	
	8/1/19 10:00			11.55	1413.11	6.79	
	8/13/19 9:15			11.85	1412.81	7.95	
	9/4/19 7:30			11.88	1412.78	8.03	
	10/10/19 10:00			13.14	1411.52	1.05	
	11/27/19 8:00]		12.15	1412.51	0.77	
	4/23/20 8:00			9.54	1415.12	1.05	

Notes:

Notes.
ft = feet
fbTOR = feet below top of riser
mg/L = milligrams per liter
" -- " = Not measured
Elevation datum; NAVD 88

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Box 1 Site No. C905044 Site Name 229 Homer Street Site Address: 229 Homer Street Zip Code: 14760 City/Town: Olean County: Cattaraugus Site Acreage: 3.340 Reporting Period: December 28, 2018 to April 28, 2020 YES NO 1. Is the information above correct? If NO, include handwritten above or on a separate sheet. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence See Appendix E that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Date

Signature of Owner, Remedial Party or Designated Representative

			Box 2	A					
			YES	NO					
8.	Has any new information revealed Assessment regarding offsite con	d that assumptions made in the Qualitative Exposure tamination are no longer valid?		\checkmark					
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.								
9.	그 마셨다면 없는 어느 아이들이 하는 나는 것들은 것을 가셨다고 하는 생생님이 되어 하는 것은 사람들이 모르는 것을 하는 수 있다고 하는데	ative Exposure Assessment still valid? sment must be certified every five years)	√						
If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.									
SITE	NO. C905044		Box	c 3					
	Description of Institutional Cont	rols							
Parce	g Bar	Institutional Contro	ol						
		onstruction and Development, LLC							
		Ground Water Use		tion					
		Soil Management							
11		Landuse Restriction Monitoring Plan	on						
		Site Management	Plan						
		O&M Plan							
		IC/EC Plan							
			Box	(4					
	Description of Engineering Cont								
Parce		Engineering Control							
94.03	2-1-2.5	Cover System							
		Cover System Air Sparging/Soil Vapor Extraction							

	-		-
В	O	X	b

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	 (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C905044

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false

statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. Homer Street Properties, LLC Don Benson at 423 West Riverside Drive, Olean, NY, 14760 print business address print name Owner (Owner or Remedial Party) am certifying as _____ for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is

punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. Benchmark Environmental Engineering & Science, PLLC Lori E. Riker, P.E. at 2558 Hamburg Turnpike, Buffalo, NY 14218 print business address Owner am certifying as a Professional Engineer for the ___ (Owner or Remedial Party) 05/11/2020

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE) Date

APPENDIX B

SITE PHOTOGRAPHIC LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 1: Stone cover along the northeastern property boundary looking southeast.

Photo 2: Stone cover along the northwestern boundary looking southwest

Photo 3: Stone cover along southwestern boundary looking northwest.

Photo 4: Stone cover along the southeastern boundary looking northeast, rip rap within swale in place. No erosion

issues were noted.

SITE PHOTOGRAPHS

Photo 5:

Photo 6:

Photo 8:

- $Photo \ 5: \quad SVE/AS \ well \ field \ and \ stone \ cover \ along \ the \ northeastern \ property \ boundary \ looking \ northwest.$
- Photo 6: Stone and concrete cover northwest of existing building, looking southwest.
- Photo 7: Concrete cover on southwest side of existing building, looking east.
- Photo 8: From left to right, biofilter, SVE treatment trailer, and AS treatment trailer (looking northwest).

APPENDIX C

GROUNDWATER SAMPLING FIELD FORMS AND ANALYTICAL DATA

Project Name: 229 Homer Street Site (Homer Street Redevelopment, LLC)

Date: July 1, 2019

Location: 229 Homer St., Olean, NY

Project No.: T0311-018-001 / 005

Field Team:Conor Deubell

Well N	lo.	MW-1	Diameter (ir	nches):	Q"	Sample Dat	te / Time:	7-1-	19 / 1320	
Product D	epth (fbTOR):	-	Water Colu	mn (ft):	10.05	DTW when	sampled:	9.04	7	
DTW (sta	tic) (fbTOR):	8.40	One Well V	olume (gal):	1.6	Purpose:] Development	☐ Sample	Purge & Sample	
Total Dep	th (fbTOR):	18.45	Total Volum	ne Purged (gal):	10 gal	Purge Meth	od: Ty	Hoon		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1230	o Initial	0	6.65	17.9	443.8	871	2.55	122	Clavoy TueBIO	
1240	1 8.37	1	6.5	13.8	500.7	437	2.25	89	L LIGHT SWOOT	ODOR
1250	2 8.63	2.05	6.38	12.7	648.6	226	1074	45	н	
1255	3 9, 19	3,5	6.36	12.3	778	148	1.13	4	CLAR TUEBLO - F	NE 0
1300	4 9.19	6	6.43	11-9	953.7	71.0	1.08	<i>-</i> 2	//	
1310	5 7.20	チ	6.46	120	907	64.6	0.90	-14	IC	
1315	6 9.21	8	6.46	11.9	930	51.3	0.88	-08	Close /LIMHT OD	ore
	8									
	9									
	10									
Sample	Information:								,	
1320	\$1 9.21	9	6.65	11.8	9828	49.6	0.75	749	Clear /LINAT ODOS	
1325	52 9. 24	10	6.65	11.7		36.6	0.90	-53	11	

Well N	Well No. MW-2			Diameter (inches): 24			te / Time:	7-2-1	19 / 1000		
Product De	epth (fbTOR):	-	Water Colu	Water Column (ft): 9.95 One Well Volume (gal): 1.65%			DTW when sampled: 9, 93				
DTW (stat	c) (fbTOR):	9.45	One Well V] Development	☐ Sample	Purge & Sample		
Total Dept	h (fbTOR):	9.40	Total Volun	ne Purged (gal)	: GSAL	Purge Meth	od: 146	HOON P	ump		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
0900	o Initial	0	7.90	13.4	1038	712	-110	1.60	Cloudy TURBIO		
0915	1 9.41	1	7.38	13.0	8-99	450	-110	1.38	LILLIAT POTRO		
0925	2 9.75	Ş	7.04	12.8	883	246	-106	1.32	А		
0935	3 9.90	3	6.99	12.4	872	173	-102	1024	CLAREN TURBIN		
0950	4 9.90	4	6.94	12.0	859	126	-99	1003	Ly Lhut Pon		
1006	5 9,92	5	6.83	11.4	839	75	-93	1634	Char LIGHT Rove		
1005	6 9.93 7	6	6.68	11.3	832	23,2	-88	0,97	Chan, "		
	8										
	10										
Sample	Information:										
1000	S1										
1005	S2										

pee

REMARKS: ** MW-1 = MS/MSD & BLIND DOP

Note: All measurements are in feet, distance from top of riser.

 Volume Calculation
 Parameter

 Diam.
 Vol. (g/ft)
 pH

 1"
 0.041
 SC

Vol. (g/ft)
0.041
0,163
0.653
1.469

Stabilization Criteria

Criteria			
± 0.1 unit			
± 3%			
± 10%			
± 0.3 mg/L			
± 10 mV			

PREPARED BY:

CFO

Groundwater Field Form xlsx GWFF - TK

Project Name: 229 Homer Street Site (Homer Street Redevelopment, LLC)

Date: July 1, 2019

Location: 229 Homer St., Olean, NY

Project No.: T0311-018-001 / 005

Field Team:Conor Deubell

Well No. MW-5 Diameter (inches): 2"						Sample Date / Time: 7-1-19 / /430				
Product De	epth (fbTOR):	OTOR): Water Column (ft): 8,54					DTW when sampled: /u-74			
DTW (stat	ic) (fbTOR):	0.56	One Well Volume (gal): 1. 45mc			Purpose:	Development	☐ Sample	Ø ∠Purge & Sample	
Total Dept	h (fbTOR):	1210	Total Volum	e Purged (gal):	6.0 gol	Purge Meth	od: Typ	HUN		1
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1345	o - Initial -	INVESTL	6.87	14.2	903.4	611	1.27	-20	Clarry, Trasio, to	neo
	1 625	10.51	6-68	13.0	912.5	247	1.24	- 34	, ,	
	2 2.5	1055	6.63	12.7	914.2	134	1.21	-415	Clerry lus 40 Tire/	14m-1
	3 3.5	10.59	6.61	12.6	909	91.4	1.17	-54		1
	4 4	10.44	6.61	12.6	901.8	73.8	1.10	~54		1
	5 5.5	10.67	6.65	12.5	910	55.3	1.02	-55		
	6									1
	7									
	8									
	9									1
	10									
Sample	Information									
1425	S1 565	10.71	6.7	12.4	710	37.3	0.88	755	Clean LIGHT Por	no
1430	S2 6	10.74	6.7	12.3	911.2	25.1	6.77	-60	N.	

Well No. MW-3 MAGE			Diameter (Diameter (inches):			Sample Date / Time: 7 - 2 - 19 / 1345				
Product De	epth (fbTOR):	9.28	Water Colu	umn (ft): /0-/	2	DTW when	sampled:	10.00	/		
DTW (stati	c) (fbTOR):	17.40	One Well \	/olume (gal):	1.legal	Purpose:	Development	☐ Sample	Purge & Sample		
Total Depti	n (fbTOR):		Total Volum	ne Purged (gal)		Purge Meth	od: 74	phoon		İ	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	ρΗ (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
1235	o Initial	6	7.12	14.0	393	502	1.28	-47	Clarry Tinos		
1250	1 9.24	1.25	6.80	13.5	415	380	1.60	-48	L> floren Presi		
1315	2 9,42	2.5	6.54	13.1	448	207	1.50	-46	" 2003		
1325	3 9,65	3.75	6.32	13.0	477	165	1.44	~35	Climse Cloury	Peres opo	
1330	4 9.84	5.5	6.45	13.0	482	86	1.28	- 45	10		
	6										
	В								* Bucker Itas/ SHEEN on Ty	1445	
	9								SHEEN M MY	of was	
	10										
Sample	Information:										
1340	\$1 9.99	\$6,	6.20	12.8	486	60.4	1.26	- 44	Class, Perro	our	
1345	S2 1.0.01)	6,50	10.11	119	492	57.5	1.05	736	h	1	

REMARKS:

Note:	All measurements	are in fe	et, distance from	n top of riser.

Volume Calculation			
Vol. (g/ft)			
0.041			
0.163			
0.653			
1.469			

Stabilization Criteria					
Parameter	Criteria				
рН	± 0.1 unit				
sc	± 3%				
Turbidity	± 10%				
DO	± 0.3 mg/L				
ORP	± 10 mV				

PREPARED BY:

Groundwater Field Form.xlsx GWFF - TK

Project Name: 229 Homer Street Site (Homer Street Redevelopment, LLC)

Date: July 1, 2019

Location: 229 Homer St., Olean, NY

Project No.: T0311-018-001 / 005

Field Team:Conor Deubell

Well N	o. MW-	6 MAGS	Diameter (ii	nches):	2 ⁽¹	Sample Dat	te / Time:	7-2-19	1200	
Product De	epth (fbTOR):	-	Water Colu	Water Column (ft): 9.55			sampled:	9,99	/	
DTW (stati	c) (fbTOR): 8.9	5928	One Well V	olume (gal):	1.5	Purpose:	Development	☐ Sample	Purge & Sample	
	h (fbTOR): 18-6		Total Volum	ne Purged (gal):	9 SAL.	Purge Meth	od: Typ	ollown		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1030	o Initial	0	761	1377	377	183	1.53	-28	Closey Clansist The	BIB
1040	1 8.90	1	7.28	11374	374	239	1.54	- 39		eneo Oc
1050	2 9.10	2	7.00	" 439	404	MA	1.56	-46	' (/	
1105	39.35	3	4.98	12.3	414	NA	1.57	-55	Clone- 52, Close,	Por
1115	4 9.72	4	6.94	11.9	434	397	1.23	-54	0 '	<i>p</i>
1125	5 9.90	5	6.92	12.0	428	454	0.91	158	Cloudy, Rosec	
1140	6 992	6	4.82	11.7	449	403	0.89	-64	ii'	
1150	7 9.95	7	6.85	11.8	463	277	0.87	-67	n	
	8									
	9									
	10									
Sample	Information:				×					
1200	s1 9.99	8	6.82	11.5	463	220	0.61	~73	CLEANSH CLUDY,	Ĵ
1205	S2 45 /U.OU	9	6.82	11.4	465	214	0.61	~76	LIGHT PETRO	-

Well No. MW-4		Diameter (ir	nches): \mathcal{J}	n	Sample Date	te / Time:	7-1-19	1050]	
Product De	epth (fbTOR):	_	Water Colu	Water Column (ft): 10.67		DTW when sampled: 9, 49				
DTW (stat	ic) (fbTOR):	8.63	One Well V	olume (gal):	1.75ml	Purpose:] Development	☐ Sample	Purge & Sample	
Total Dept	h (fbTOR):	19.30	Total Volum	ne Purged (gal):		Purge Meth	od: 7	YANOON	_]
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1000	o Initial		5,47	14.9	144.3	NA	2.05	146	GREY TURBIO/N	o ooor
1010	1 1.0		5.80	13.3	275.8	887	1.72	144	6 1	
1015	2 20		5.87	13.0	296.6	814	1.64	144	TURBIO/LITE	OUL
1020	3 3.0		6.02	12.7	300.4	572	1.57	135	u *	
1030	4 4.0		6.10	124	304.7	529	1.49	122	Cloudy Tursio /	44500
1035	5 5.0		6.13	12.4	305,1	369	1.40	115	ે મ]
1040	6 6.0		6.19	123	306.7	288	1.39	116	11]
1045	7 7.0		6.22	12.4	3,3	235	1.38	116	Clemon INO O	our
	8				- C751127 - S					1
	9]
	10]
Sample	Information	:		•	•					1
1050	s1 7.25		6.23	12.4	313	141	1.33	115	Class Nu opul	1
1100	S2 7.5		6.42	12.4	312.8	80.4	1.31	115	14	1

REMARKS: * State France (Morross) for Strangerton

Note: All measurements are in feet, distance from top of riser.

Volume Calculation						
Diam.	Vol. (g/ft)					
1"	0.041					
2"	0.163					
4"	0.653					
6"	1.469					

Stabilization Criteria						
Parameter	Criteria					
pН	± 0.1 unit					
sc	± 3%					
Turbidity	± 10%					
DO	± 0.3 mg/L					
ORP	± 10 mV					

PREPARED BY:

CPT

Groundwater Field Form xlsx GWFF - TK

Project Name: 229 Homer Street Site (Homer Street Redevelopment, LLC)

Date: July 1, 2019

Location: 229 Homer St., Olean, NY

Project No.: T0311-018-001 / 005

Field Team:Conor Deubell

Well N	О.	MW-7	Diameter (i	nches): \hat{o}	7 ^	Sample Date	te / Time:	7-1-11	1545
Product Depth (fbTOR):			Water Column (ft): 9, 02			DTW when sampled: 10.70			
DTW (stat	ic) (fbTOR):	.88	One Well V	olume (gal):	1.45mL	Purpose:	Development	☐ Sample	Ø Rurge & Sample
Total Dept	h (fbTOR):	18.90	Total Volum	ne Purged (gal):		Purge Meth	od: Tu	PHUON	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1446	o Initial	0	6.94	13.7	907.0	NB	1.00	757	GROY Cloudy, TORK
1455	19.42	1.5	4.84	12.0	899.4	901	0.89	-69	L7 Chur Punco
1505	2 90.02	2.25	6.84	15.7	896.3	NE	0.82	-76	Drek Gen Tresix
1515	3 10-25	3.0	4.97	12.5	455	NA	0.82	-61	STRONG PUTED
1520	4 10.65	5.5	6.89	12.1	859	NA	0.34	-84	* Amek Twee Go
1525	5 10-65	7.0	6.85	11.8	867	NA	0.77	-89	pe
1530	6 10.67	8.6	6.82	11-2	183	NA	0.73	-97	"Charing up"
1535	7 10.68	10.0	4.76	11.0	8803	87	8 0.60	- 93	
	9								
	10								
Sample	Information:								
	S1 (0.70	11.0	6.78	11.1	878.9	584	0.88	-93	Cloudy TUBBID
1545	S2 (1)	12.0	6.76	11-0	881.2	363	1.13	- 94	PETRO GROW

Well No.			Diameter (ii	nches):		Sample Dat	Sample Date / Time:				
Product Depth (fbTOR):			Water Column (ft):			DTW when	DTW when sampled:				
DTW (sta	DTW (static) (fbTOR):			One Well Volume (gal);			Development	☐ Sample	☐ Purge & Sample		
Total Dep	oth (fbTOR):		Total Volum	ne Purged (gal):		Purge Metho	od:		_		
Time	Time Water Acc. Level Volume (fbTOR) (gallons)		pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
	o Initial										
	1										
	2										
	3										
	4										
	5										
	6										
	7										
	В										
	9										
	10					0.					
Sample	Information:		·)·		* .	<u> </u>				
	S1										
	S2										

REMARKS:

Note: All measurements are in feet, distance from top of riser.

Volume Calculation

Diam,	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1,469

Stabilization Criteria

Parameter	Criteria
рH	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

ANALYTICAL REPORT

Lab Number: L1929034

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Report Date: 07/11/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034 **Report Date:** 07/11/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1929034-01	MW-4	WATER	229 HOMER ST., OLEAN, NY	07/01/19 10:50	07/02/19
L1929034-02	MW-1	WATER	229 HOMER ST., OLEAN, NY	07/01/19 13:20	07/02/19
L1929034-03	MW-5	WATER	229 HOMER ST., OLEAN, NY	07/01/19 14:30	07/02/19
L1929034-04	MW-7	WATER	229 HOMER ST., OLEAN, NY	07/01/19 15:45	07/02/19
L1929034-05	MW-2	WATER	229 HOMER ST., OLEAN, NY	07/02/19 10:00	07/02/19
L1929034-06	MW-6	WATER	229 HOMER ST., OLEAN, NY	07/02/19 12:00	07/02/19
L1929034-07	MW-3	WATER	229 HOMER ST., OLEAN, NY	07/02/19 13:45	07/02/19
L1929034-08	BLIND DUP	WATER	229 HOMER ST., OLEAN, NY	07/01/19 13:30	07/02/19
L1929034-09	TRIP BLANK	WATER	229 HOMER ST., OLEAN, NY	07/01/19 13:30	07/02/19

Project Name:HOMER ST. REDEVELOPMENTLab Number:L1929034Project Number:0311-018-001Report Date:07/11/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:HOMER ST. REDEVELOPMENTLab Number:L1929034Project Number:0311-018-001Report Date:07/11/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1929034-09: A sample identified as "TRIP BLANK" was received but not listed on the Chain of Custody. This sample was not analyzed.

Semivolatile Organics by SIM

The WG1257198-1 Method Blank, associated with L1929034-05, -06 and -07, has concentrations above the reporting limit for Acenaphthene, Naphthalene, Fluorene, Phenanthrene and 2-Methylnaphthalene. Since the samples were non-detect to the RL for these target analytes, no further actions were taken. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/11/19

Melissa Sturgis Melissa Sturgis

ANALYTICAL

ORGANICS

VOLATILES

L1929034

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

SAMPLE RESULTS

Report Date: 07/11/19

Lab Number:

Lab ID: L1929034-01 Date Collected: 07/01/19 10:50

Client ID: Date Received: 07/02/19 MW-4 Field Prep: Sample Location: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/10/19 13:07

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-01 Date Collected: 07/01/19 10:50

Client ID: MW-4 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	13		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds				
Total TIC Compounds	2.35	J	ug/l	1
iso-Propyl Alcohol	2.35	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	103	70-130	

L1929034

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

SAMPLE RESULTS

Report Date: 07/11/19

Lab Number:

Date Collected:

L1929034-02 07/01/19 13:20 Client ID: Date Received: 07/02/19 MW-1 Field Prep: Sample Location: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/10/19 13:45

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-02 Date Collected: 07/01/19 13:20

Client ID: MW-1 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough L 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether	ND ND ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
				0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
		ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	15	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl Acetate	ND	ug/l	2.0	0.23	1
Cyclohexane	ND	ug/l	10	0.27	1
1,4-Dioxane	ND	ug/l	250	61.	1
Freon-113	ND	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	ug/l	10	0.40	1

Tentatively Identified Compounds				
Total TIC Compounds	2.90	J	ug/l	1
iso-Propyl Alcohol	2.90	NJ	ua/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	103	70-130	

L1929034

07/11/19

Project Name: HOMER ST. REDEVELOPMENT

229 HOMER ST., OLEAN, NY

L1929034-03

MW-5

Project Number: 0311-018-001

SAMPLE RESULTS

Date Collected: 07/01/19 14:30

Lab Number:

Report Date:

Date Received: 07/02/19
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/10/19 14:23

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-03 Date Collected: 07/01/19 14:30

Client ID: MW-5 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	14		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.98	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	31		ug/l	10	0.40	1

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-03 Date Collected: 07/01/19 14:30

Client ID: MW-5 Date Received: 07/02/19
Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	151	J	ug/l	1
Butane, 2,3-Dimethyl-	27.6	NJ	ug/l	1
Cyclopentane, 1,1-dimethyl-	20.6	NJ	ug/l	1
Pentane, 2,3-dimethyl-	15.1	NJ	ug/l	1
Unknown Cyclohexane	15.7	J	ug/l	1
Unknown Cyclopentane	10.4	J	ug/l	1
Butane, 2-Methyl-	12.7	NJ	ug/l	1
Cyclopentane, 1,1,3-trimethyl-	12.5	NJ	ug/l	1
Butane, 2,2-dimethyl-	12.3	NJ	ug/l	1
Unknown Cyclohexane	13.0	J	ug/l	1
Unknown Cyclopentane	10.7	J	ug/l	1

% Recovery	Acceptance Qualifier Criteria	
101	70-130	
102	70-130	
95	70-130	
96	70-130	
	101 102 95	% Recovery Qualifier Criteria 101 70-130 102 70-130 95 70-130

L1929034

07/01/19 15:45

Not Specified

07/02/19

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

SAMPLE RESULTS

07/11/19

Report Date:

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1929034-04

Client ID: MW-7

Sample Location: 229 HOMER ST., OLEAN, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/10/19 15:01

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-04 Date Collected: 07/01/19 15:45

Client ID: MW-7 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	9.3		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.67	J	ug/l	10	0.40	1

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 15:45 L1929034-04

Date Received: Client ID: 07/02/19 MW-7 Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

57.4	J	ug/l	1
6.89	J	ug/l	1
7.06	NJ	ug/l	1
5.95	J	ug/l	1
3.00	J	ug/l	1
9.64	J	ug/l	1
4.71	J	ug/l	1
3.55	NJ	ug/l	1
8.21	NJ	ug/l	1
3.21	J	ug/l	1
5.16	J	ug/l	1
	6.89 7.06 5.95 3.00 9.64 4.71 3.55 8.21 3.21	6.89 J 7.06 NJ 5.95 J 3.00 J 9.64 J 4.71 J 3.55 NJ 8.21 NJ 3.21 J	6.89 J ug/l 7.06 NJ ug/l 5.95 J ug/l 3.00 J ug/l 9.64 J ug/l 4.71 J ug/l 3.55 NJ ug/l 8.21 NJ ug/l 3.21 J ug/l

% Recovery	Acceptance Qualifier Criteria	
100	70-130	
99	70-130	
92	70-130	
98	70-130	
	100 99 92	% Recovery Qualifier Criteria 100 70-130 99 70-130 92 70-130

L1929034

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

SAMPLE RESULTS

Report Date: 07/11/19

Lab Number:

Lab ID: L1929034-05 Date Collected: 07/02/19 10:00 Client ID: Date Received: 07/02/19 MW-2

Field Prep: Sample Location: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/10/19 15:40

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-05 Date Collected: 07/02/19 10:00

Client ID: MW-2 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	13		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-05 Date Collected: 07/02/19 10:00

Client ID: MW-2 Date Received: 07/02/19
Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

74.5	J	ug/l	1
7.46	NJ	ug/l	1
8.15	NJ	ug/l	1
6.83	J	ug/l	1
11.6	NJ	ug/l	1
5.76	NJ	ug/l	1
4.19	J	ug/l	1
5.65	J	ug/l	1
8.31	NJ	ug/l	1
7.95	J	ug/l	1
8.56	J	ug/l	1
	7.46 8.15 6.83 11.6 5.76 4.19 5.65 8.31 7.95	7.46 NJ 8.15 NJ 6.83 J 11.6 NJ 5.76 NJ 4.19 J 5.65 J 8.31 NJ 7.95 J	7.46 NJ ug/l 8.15 NJ ug/l 6.83 J ug/l 11.6 NJ ug/l 5.76 NJ ug/l 4.19 J ug/l 5.65 J ug/l 8.31 NJ ug/l 7.95 J ug/l

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	95	70-130	

L1929034

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Report Date: 07/11/19

Lab Number:

SAMPLE RESULTS

Lab ID: L1929034-06 Date Collected: 07/02/19 12:00

Client ID: Date Received: 07/02/19 MW-6

Field Prep: Sample Location: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/10/19 16:18

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-06 Date Collected: 07/02/19 12:00

Client ID: MW-6 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	13		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	2.4	J	ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	28		ug/l	10	0.40	1			

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-06 Date Collected: 07/02/19 12:00

Client ID: MW-6 Date Received: 07/02/19
Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

•

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	115	J	ug/l	1
Unknown Cyclohexane	7.27	J	ug/l	1
Unknown Cyclopentane	10.1	J	ug/l	1
Pentane, 2,3-dimethyl-	7.82	NJ	ug/l	1
Unknown Cyclohexane	21.6	J	ug/l	1
Cyclopentane, 1,1-dimethyl-	13.5	NJ	ug/l	1
Unknown Cyclopentane	10.2	J	ug/l	1
Butane, 2,2-dimethyl-	6.37	NJ	ug/l	1
Butane, 2-Methyl-	15.9	NJ	ug/l	1
Butane, 2,3-Dimethyl-	13.6	NJ	ug/l	1
Cyclopentane, 1,1,3-trimethyl-	8.27	NJ	ug/l	1

% Recovery	Acceptance Qualifier Criteria	
99	70-130	
99	70-130	
93	70-130	
96	70-130	
	99 99 93	% Recovery Qualifier Criteria 99 70-130 99 70-130 93 70-130

L1929034

07/11/19

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

07/02/19 13:45

Lab Number:

Report Date:

SAMPLE RESULTS

L1929034-07 Date Collected:

Client ID: Date Received: 07/02/19 MW-3 Field Prep: Sample Location: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/10/19 16:56

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-07 Date Collected: 07/02/19 13:45

Client ID: Date Received: 07/02/19 MW-3

Field Prep: Not Specified Sample Location: 229 HOMER ST., OLEAN, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	11		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	0.98	J	ug/l	10	0.40	1			

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-07 Date Collected: 07/02/19 13:45

Client ID: MW-3 Date Received: 07/02/19
Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	31.3	J	ug/l	1
Unknown Cyclohexane	3.88	J	ug/l	1
Butane, 2,2-dimethyl-	2.69	NJ	ug/l	1
Unknown Cyclohexane	1.49	J	ug/l	1
Cyclohexane, 1,1,3-trimethyl-	3.44	NJ	ug/l	1
Unknown Cyclohexane	1.76	J	ug/l	1
Unknown Cyclopentane	2.52	J	ug/l	1
Pentane, 2,4-dimethyl-	1.83	NJ	ug/l	1
Pentane, 2,3-dimethyl-	3.89	NJ	ug/l	1
Butane, 2,3-Dimethyl-	5.04	NJ	ug/l	1
Cyclopentane, 1,1,3-trimethyl-	4.77	NJ	ug/l	1

% Recovery	Acceptance Qualifier Criteria	
98	70-130	
98	70-130	
93	70-130	
99	70-130	
	98 98 93	% Recovery Qualifier Criteria 98 70-130 98 70-130 93 70-130

L1929034

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

SAMPLE RESULTS

Report Date: 07/11/19

Lab Number:

Lab ID: L1929034-08 Date Collected: 07/01/19 13:30

Client ID: Date Received: 07/02/19 **BLIND DUP** Field Prep: Sample Location: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/10/19 17:34

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 13:30 L1929034-08

Date Received: Client ID: 07/02/19 **BLIND DUP**

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough La 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene	ND ND ND ND ND	ug/l ug/l	2.5 2.5	0.70	1
1,4-Dichlorobenzene Methyl tert butyl ether	ND ND	•		0.70	1
Methyl tert butyl ether	ND	ug/l	2.5		
· ·			2.5	0.70	1
n/m-Yylono	ND	ug/l	2.5	0.70	1
p/m-xylene		ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	10	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl Acetate	ND	ug/l	2.0	0.23	1
Cyclohexane	ND	ug/l	10	0.27	1
1,4-Dioxane	ND	ug/l	250	61.	1
Freon-113	ND	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	ug/l	10	0.40	1

Tentatively Identified Compounds				
Total TIC Compounds	1.58	J	ug/l	1
iso-Propyl Alcohol	1.58	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	100	70-130	

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/10/19 08:46

Analyst: PD

arameter	Result	Qualifier Unit	s R	L	MDL
olatile Organics by GC/MS - V	Vestborough Lal	o for sample(s):	01-08 B	atch:	WG1258025-5
Methylene chloride	ND	ug	/I 2	.5	0.70
1,1-Dichloroethane	ND	ug	/1 2	.5	0.70
Chloroform	ND	ug	/1 2	.5	0.70
Carbon tetrachloride	ND	ug	/I 0.	50	0.13
1,2-Dichloropropane	ND	ug	/I 1	.0	0.14
Dibromochloromethane	ND	ug	/I 0.:	50	0.15
1,1,2-Trichloroethane	ND	ug	/I 1	.5	0.50
Tetrachloroethene	ND	ug	/I 0.:	50	0.18
Chlorobenzene	ND	ug	/I 2	.5	0.70
Trichlorofluoromethane	ND	ug	/I 2	.5	0.70
1,2-Dichloroethane	ND	ug	/I 0.:	50	0.13
1,1,1-Trichloroethane	ND	ug	/1 2	.5	0.70
Bromodichloromethane	ND	ug	/I 0.	50	0.19
trans-1,3-Dichloropropene	ND	ug	/I 0.	50	0.16
cis-1,3-Dichloropropene	ND	ug	/I 0.	50	0.14
Bromoform	ND	ug	/I 2	.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug	/I 0.	50	0.17
Benzene	ND	ug	/I 0.	50	0.16
Toluene	ND	ug	/1 2	.5	0.70
Ethylbenzene	ND	ug	/1 2	.5	0.70
Chloromethane	ND	ug	/1 2	.5	0.70
Bromomethane	ND	ug	/1 2	.5	0.70
Vinyl chloride	ND	ug	/I 1	.0	0.07
Chloroethane	ND	ug	/1 2	.5	0.70
1,1-Dichloroethene	ND	ug	/I 0.:	50	0.17
trans-1,2-Dichloroethene	ND	ug,	/I 2	.5	0.70
Trichloroethene	ND	ug	/I 0.	50	0.18
1,2-Dichlorobenzene	ND	ug,	/I 2	.5	0.70
1,3-Dichlorobenzene	ND	ug,	/1 2	.5	0.70

L1929034

Lab Number:

Project Name: HOMER ST. REDEVELOPMENT

Project Number: Report Date: 0311-018-001 07/11/19

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/10/19 08:46

Analyst: PD

arameter	Result	Qualifier Uni	ts	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	b for sample(s):	01-08	Batch:	WG1258025-5
1,4-Dichlorobenzene	ND	uç	/I	2.5	0.70
Methyl tert butyl ether	ND	uç	/I	2.5	0.70
p/m-Xylene	ND	นดู	/I	2.5	0.70
o-Xylene	ND	uç	/I	2.5	0.70
cis-1,2-Dichloroethene	ND	uç	/I	2.5	0.70
Styrene	ND	uç	/I	2.5	0.70
Dichlorodifluoromethane	ND	uç	/I	5.0	1.0
Acetone	ND	uç	/I	5.0	1.5
Carbon disulfide	ND	uç	/I	5.0	1.0
2-Butanone	ND	uç	/I	5.0	1.9
4-Methyl-2-pentanone	ND	uç	/I	5.0	1.0
2-Hexanone	ND	uç	/I	5.0	1.0
Bromochloromethane	ND	uç	/I	2.5	0.70
1,2-Dibromoethane	ND	uç	/I	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	uç	/I	2.5	0.70
Isopropylbenzene	ND	uç	/I	2.5	0.70
1,2,3-Trichlorobenzene	ND	นดู	/I	2.5	0.70
1,2,4-Trichlorobenzene	ND	นดู	/I	2.5	0.70
Methyl Acetate	ND	uç	/I	2.0	0.23
Cyclohexane	ND	uç	/I	10	0.27
1,4-Dioxane	ND	uç	/I	250	61.
Freon-113	ND	uç	/I	2.5	0.70
Methyl cyclohexane	ND	uç	/I	10	0.40

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/10/19 08:46

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01-08Batch:WG1258025-5

		Acceptance	
Surrogate	%Recovery Qualific	er Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	100	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recov Qual Limits		RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-08 Batch: 1	WG1258025-3 WG125	8025-4		
Methylene chloride	110		110	70-130	0	20	
1,1-Dichloroethane	100		110	70-130	10	20	
Chloroform	100		100	70-130	0	20	
Carbon tetrachloride	110		110	63-132	0	20	
1,2-Dichloropropane	110		110	70-130	0	20	
Dibromochloromethane	100		100	63-130	0	20	
1,1,2-Trichloroethane	100		110	70-130	10	20	
Tetrachloroethene	100		100	70-130	0	20	
Chlorobenzene	100		100	75-130	0	20	
Trichlorofluoromethane	86		88	62-150	2	20	
1,2-Dichloroethane	97		99	70-130	2	20	
1,1,1-Trichloroethane	100		100	67-130	0	20	
Bromodichloromethane	100		100	67-130	0	20	
trans-1,3-Dichloropropene	100		100	70-130	0	20	
cis-1,3-Dichloropropene	110		120	70-130	9	20	
Bromoform	92		90	54-136	2	20	
1,1,2,2-Tetrachloroethane	97		97	67-130	0	20	
Benzene	100		110	70-130	10	20	
Toluene	98		100	70-130	2	20	
Ethylbenzene	100		100	70-130	0	20	
Chloromethane	84		77	64-130	9	20	
Bromomethane	55		47	39-139	16	20	
Vinyl chloride	91		97	55-140	6	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - V	Westborough Lab Associated	sample(s):	01-08 Batch: \	WG1258025-3	WG1258025-4			
Chloroethane	100		100		55-138	0		20
1,1-Dichloroethene	98		100		61-145	2		20
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	100		110		70-130	10		20
1,2-Dichlorobenzene	96		99		70-130	3		20
1,3-Dichlorobenzene	95		97		70-130	2		20
1,4-Dichlorobenzene	96		97		70-130	1		20
Methyl tert butyl ether	100		110		63-130	10		20
p/m-Xylene	105		110		70-130	5		20
o-Xylene	105		110		70-130	5		20
cis-1,2-Dichloroethene	110		110		70-130	0		20
Styrene	105		110		70-130	5		20
Dichlorodifluoromethane	78		80		36-147	3		20
Acetone	93		90		58-148	3		20
Carbon disulfide	94		99		51-130	5		20
2-Butanone	110		110		63-138	0		20
4-Methyl-2-pentanone	94		100		59-130	6		20
2-Hexanone	96		98		57-130	2		20
Bromochloromethane	110		120		70-130	9		20
1,2-Dibromoethane	100		100		70-130	0		20
1,2-Dibromo-3-chloropropane	99		98		41-144	1		20
Isopropylbenzene	94		96		70-130	2		20
1,2,3-Trichlorobenzene	91		99		70-130	8		20

Lab Control Sample Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	LCS %Recovery	Qual		CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-08	Batch:	WG1258025-3	WG1258025-4			
1,2,4-Trichlorobenzene	97			100		70-130	3		20
Methyl Acetate	100			100		70-130	0		20
Cyclohexane	97			100		70-130	3		20
1,4-Dioxane	112			112		56-162	0		20
Freon-113	99			100		70-130	1		20
Methyl cyclohexane	100			100		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	91	93	70-130
Toluene-d8	97	98	70-130
4-Bromofluorobenzene	93	92	70-130
Dibromofluoromethane	98	101	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number:

L1929034

Report Date:

07/11/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI Qual Four	_	⁄ Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-1	- Westborough	Lab Asso	ociated sample(s): 01-08 QC	Batch ID: WG12	58025-6 WG125	8025-7	QC Sample	e: L1929	0034-02	Client ID:
Methylene chloride	ND	10	11	110	10	100		70-130	10		20
1,1-Dichloroethane	ND	10	10	100	9.9	99		70-130	1		20
Chloroform	ND	10	9.6	96	9.4	94		70-130	2		20
Carbon tetrachloride	ND	10	10	100	10	100		63-132	0		20
1,2-Dichloropropane	ND	10	10	100	9.9	99		70-130	1		20
Dibromochloromethane	ND	10	8.8	88	11	110		63-130	22	Q	20
1,1,2-Trichloroethane	ND	10	10	100	11	110		70-130	10		20
Tetrachloroethene	ND	10	9.9	99	11	110		70-130	11		20
Chlorobenzene	ND	10	9.6	96	11	110		75-130	14		20
Trichlorofluoromethane	ND	10	9.0	90	8.5	85		62-150	6		20
1,2-Dichloroethane	ND	10	9.7	97	9.3	93		70-130	4		20
1,1,1-Trichloroethane	ND	10	10	100	9.7	97		67-130	3		20
Bromodichloromethane	ND	10	9.3	93	9.3	93		67-130	0		20
trans-1,3-Dichloropropene	ND	10	8.2	82	10	100		70-130	20		20
cis-1,3-Dichloropropene	ND	10	9.8	98	10	100		70-130	2		20
Bromoform	ND	10	7.6	76	9.8	98		54-136	25	Q	20
1,1,2,2-Tetrachloroethane	ND	10	9.4	94	12	120		67-130	24	Q	20
Benzene	ND	10	10	100	9.6	96		70-130	4		20
Toluene	ND	10	9.4	94	11	110		70-130	16		20
Ethylbenzene	ND	10	9.5	95	11	110		70-130	15		20
Chloromethane	ND	10	7.1	71	7.2	72		64-130	1		20
Bromomethane	ND	10	2.1J	21	Q 3.2	32	Q	39-139	42	Q	20
Vinyl chloride	ND	10	9.4	94	9.2	92		55-140	2		20

Matrix Spike Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number:

L1929034

Report Date:

07/11/19

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-1	- Westborough	Lab Asso	ciated sample((s): 01-08 C	C Batch ID:	WG12580)25-6 WG1258	8025-7	QC Sample	e: L1929	034-02	Client ID:
Chloroethane	ND	10	11	110		10	100		55-138	10		20
1,1-Dichloroethene	ND	10	10	100		9.4	94		61-145	6		20
trans-1,2-Dichloroethene	ND	10	10	100		9.7	97		70-130	3		20
Trichloroethene	ND	10	10	100		9.7	97		70-130	3		20
1,2-Dichlorobenzene	ND	10	8.8	88		12	120		70-130	31	Q	20
1,3-Dichlorobenzene	ND	10	8.6	86		11	110		70-130	24	Q	20
1,4-Dichlorobenzene	ND	10	8.6	86		11	110		70-130	24	Q	20
Methyl tert butyl ether	ND	10	11	110		10	100		63-130	10		20
o/m-Xylene	ND	20	20	100		23	115		70-130	14		20
o-Xylene	ND	20	20	100		23	115		70-130	14		20
cis-1,2-Dichloroethene	ND	10	10	100		9.8	98		70-130	2		20
Styrene	ND	20	20	100		24	120		70-130	18		20
Dichlorodifluoromethane	ND	10	7.8	78		8.1	81		36-147	4		20
Acetone	15	10	23	80		17	20	Q	58-148	30	Q	20
Carbon disulfide	ND	10	10	100		9.6	96		51-130	4		20
2-Butanone	ND	10	12	120		11	110		63-138	9		20
4-Methyl-2-pentanone	ND	10	10	100		11	110		59-130	10		20
2-Hexanone	ND	10	9.7	97		12	120		57-130	21	Q	20
Bromochloromethane	ND	10	11	110		10	100		70-130	10		20
1,2-Dibromoethane	ND	10	9.9	99		11	110		70-130	11		20
1,2-Dibromo-3-chloropropane	ND	10	9.3	93		12	120		41-144	25	Q	20
Isopropylbenzene	ND	10	8.8	88		11	110		70-130	22	Q	20
1,2,3-Trichlorobenzene	ND	10	9.3	93		11	110		70-130	17		20

Matrix Spike Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number:

L1929034

Report Date:

07/11/19

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-1	- Westborough	Lab Ass	sociated sample(s	s): 01-08	C Batch ID	: WG12580)25-6 WG1258	3025-7	QC Sample	: L1929	9034-02	Client ID:
1,2,4-Trichlorobenzene	ND	10	9.0	90		11	110		70-130	20		20
Methyl Acetate	ND	10	10	100		9.5	95		70-130	5		20
Cyclohexane	ND	10	11	110		9.8J	98		70-130	12		20
1,4-Dioxane	ND	500	530	106		560	112		56-162	6		20
Freon-113	ND	10	10	100		10	100		70-130	0		20
Methyl cyclohexane	ND	10	11	110		10	100		70-130	10		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	97	96	70-130
4-Bromofluorobenzene	91	93	70-130
Dibromofluoromethane	100	95	70-130
Toluene-d8	96	103	70-130

SEMIVOLATILES

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-01 Date Collected: 07/01/19 10:50

Client ID: MW-4 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 07/07/19 11:26

Analytical Method: 1,8270D Extraction Date: 07/07/19 11:26
Analytical Date: 07/10/19 12:55

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	3.0		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-01 Date Collected: 07/01/19 10:50

Client ID: Date Received: 07/02/19 MW-4

Sample Location: Field Prep: Not Specified 229 HOMER ST., OLEAN, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

07/11/19

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: 0311-018-001

SAMPLE RESULTS

Date Collected: 07/01/19 10:50

Report Date:

Lab ID: L1929034-01

Date Received: Client ID: 07/02/19 MW-4 Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	68.4	J	ug/l	1
Unknown	1.49	J	ug/l	1
Unknown	1.74	J	ug/l	1
Unknown	2.91	J	ug/l	1
Unknown	4.04	J	ug/l	1
Unknown	2.22	J	ug/l	1
Unknown	1.82	J	ug/l	1
Unknown	2.22	J	ug/l	1
Unknown	2.87	J	ug/l	1
Unknown	4.04	J	ug/l	1
Aldol Condensates	32.0	J	ug/l	1
Unknown	2.11	J	ug/l	1
Unknown Alcohol	1.56	J	ug/l	1
Unknown	3.96	J	ug/l	1
Unknown	5.45	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	58	10-120
Nitrobenzene-d5	101	23-120
2-Fluorobiphenyl	96	15-120
2,4,6-Tribromophenol	44	10-120
4-Terphenyl-d14	116	41-149

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-01 Date Collected: 07/01/19 10:50

Client ID: MW-4 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 07/07/19 11:25
Analytical Date: 07/10/19 18:54

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Date Collected: 07/01/19 10:50

Client ID: MW-4 Date Received: 07/02/19
Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

L1929034-01

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	65	21-120
Phenol-d6	58	10-120
Nitrobenzene-d5	98	23-120
2-Fluorobiphenyl	90	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	112	41-149

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 13:20 L1929034-02

Date Received: Client ID: MW-1 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water 07/07/19 11:26 **Extraction Date:** Analytical Method: 1,8270D

Analytical Date: 07/10/19 13:20

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	2.6	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-02 Date Collected: 07/01/19 13:20

Client ID: MW-1 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Tentatively Identified Compounds				
Total TIC Compounds	35.2	J	ug/l	1
Unknown	1.71	J	ug/l	1
Unknown	1.67	J	ug/l	1
Aldol Condensates	27.4	J	ug/l	1
Unknown	2.14	J	ug/l	1
Unknown	2.29	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	61	21-120
Phenol-d6	50	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	80	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	83	41-149

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 13:20 L1929034-02

Date Received: Client ID: MW-1 07/02/19 Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/07/19 11:25 Analytical Method: 1,8270D-SIM Analytical Date: 07/10/19 18:37

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	ND		ug/l	0.10	0.05	1			
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	ND		ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	ND		ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	ND		ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	ND		ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 13:20 L1929034-02

Date Received: Client ID: 07/02/19 MW-1 Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	61	21-120
Phenol-d6	49	10-120
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	88	10-120
4-Terphenyl-d14	93	41-149

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-03 Date Collected: 07/01/19 14:30

Date Received: Client ID: MW-5 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/07/19 11:26 Analytical Method: 1,8270D

Analytical Date: 07/10/19 13:45

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1			
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1			
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1			
Isophorone	ND		ug/l	5.0	1.2	1			
Nitrobenzene	ND		ug/l	2.0	0.77	1			
NDPA/DPA	ND		ug/l	2.0	0.42	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1			
Bis(2-ethylhexyl)phthalate	3.2		ug/l	3.0	1.5	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1			
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1			
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1			
Diethyl phthalate	ND		ug/l	5.0	0.38	1			
Dimethyl phthalate	ND		ug/l	5.0	1.8	1			
Biphenyl	ND		ug/l	2.0	0.46	1			
4-Chloroaniline	ND		ug/l	5.0	1.1	1			
2-Nitroaniline	ND		ug/l	5.0	0.50	1			
3-Nitroaniline	ND		ug/l	5.0	0.81	1			
4-Nitroaniline	ND		ug/l	5.0	0.80	1			
Dibenzofuran	ND		ug/l	2.0	0.50	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1			
Acetophenone	ND		ug/l	5.0	0.53	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1			

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-03 Date Collected: 07/01/19 14:30

Client ID: Date Received: 07/02/19 MW-5

Sample Location: Field Prep: Not Specified 229 HOMER ST., OLEAN, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1			
2-Chlorophenol	ND		ug/l	2.0	0.48	1			
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1			
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1			
2-Nitrophenol	ND		ug/l	10	0.85	1			
4-Nitrophenol	ND		ug/l	10	0.67	1			
2,4-Dinitrophenol	ND		ug/l	20	6.6	1			
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1			
Phenol	ND		ug/l	5.0	0.57	1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1			
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1			
Carbazole	ND		ug/l	2.0	0.49	1			
Atrazine	ND		ug/l	10	0.76	1			
Benzaldehyde	ND		ug/l	5.0	0.53	1			
Caprolactam	ND		ug/l	10	3.3	1			
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1			

07/11/19

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: 0311-018-001

SAMPLE RESULTS

Date Collected: 07/01/19 14:30

Report Date:

Lab ID: L1929034-03 Date Received: Client ID: 07/02/19 MW-5

Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	92.1	J	ug/l	1
Aldol Condensates	36.5	J	ug/l	1
Unknown Naphthalene	5.67	J	ug/l	1
Unknown	3.24	J	ug/l	1
Unknown	5.71	J	ug/l	1
Unknown Benzene	7.71	J	ug/l	1
Unknown Ketone	3.24	J	ug/l	1
Unknown Naphthalene	3.13	J	ug/l	1
Unknown	2.62	J	ug/l	1
Unknown Organic Acid	6.36	J	ug/l	1
Unknown Indene	2.87	J	ug/l	1
Unknown Ketone	2.29	J	ug/l	1
Unknown	2.73	J	ug/l	1
Unknown Benzene	3.49	J	ug/l	1
Unknown	2.91	J	ug/l	1
Unknown Cyclohexane	3.67	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	76	21-120
Phenol-d6	64	10-120
Nitrobenzene-d5	95	23-120
2-Fluorobiphenyl	89	15-120
2,4,6-Tribromophenol	102	10-120
4-Terphenyl-d14	94	41-149

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-03 Date Collected: 07/01/19 14:30

Client ID: MW-5 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 07/07/19 11:25
Analytical Date: 07/10/19 19:10

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.06	J	ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.09	J	ug/l	0.10	0.05	1			
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	ND		ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	0.02	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	0.26		ug/l	0.10	0.01	1			
Phenanthrene	0.09	J	ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	ND		ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Date Collected: 07/01/19 14:30

Client ID: MW-5 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY

L1929034-03

Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	75	21-120
Phenol-d6	61	10-120
Nitrobenzene-d5	92	23-120
2-Fluorobiphenyl	85	15-120
2,4,6-Tribromophenol	98	10-120
4-Terphenyl-d14	100	41-149

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-04 Date Collected: 07/01/19 15:45

Client ID: MW-7 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

CB

Analyst:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 07/07/19 11:26

Analytical Date: 07/10/19 14:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	2.1	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-04 Date Collected: 07/01/19 15:45

Client ID: Date Received: 07/02/19 MW-7

Field Prep: Not Specified Sample Location: 229 HOMER ST., OLEAN, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1		
2-Chlorophenol	ND		ug/l	2.0	0.48	1		
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1		
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1		
2-Nitrophenol	ND		ug/l	10	0.85	1		
4-Nitrophenol	ND		ug/l	10	0.67	1		
2,4-Dinitrophenol	ND		ug/l	20	6.6	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1		
Phenol	ND		ug/l	5.0	0.57	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1		
Carbazole	ND		ug/l	2.0	0.49	1		
Atrazine	ND		ug/l	10	0.76	1		
Benzaldehyde	ND		ug/l	5.0	0.53	1		
Caprolactam	ND		ug/l	10	3.3	1		
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1		

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

5/till 12 1/2552

Lab ID: L1929034-04 Date Collected: 07/01/19 15:45

Client ID: MW-7 Date Received: 07/02/19
Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	64.8	J	ug/l	1
Unknown	3.09	J	ug/l	1
Unknown Alkane	5.09	J	ug/l	1
Unknown Ketone	3.56	J	ug/l	1
Aldol Condensates	28.4	J	ug/l	1
Unknown Benzene	1.93	J	ug/l	1
Unknown	1.89	J	ug/l	1
Unknown	2.62	J	ug/l	1
Unknown Alkane	2.29	J	ug/l	1
Unknown Cyclohexane	3.42	J	ug/l	1
Unknown	1.93	J	ug/l	1
Unknown	2.33	J	ug/l	1
Unknown	3.02	J	ug/l	1
Unknown	1.82	J	ug/l	1
Unknown Cyclohexane	1.74	J	ug/l	1
Unknown Naphthalene	1.71	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	51	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	66	10-120
4-Terphenyl-d14	77	41-149

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-04 Date Collected: 07/01/19 15:45

Date Received: Client ID: MW-7 07/02/19 Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/07/19 11:25 Analytical Method: 1,8270D-SIM Analytical Date: 07/10/19 19:27

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.07	J	ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.09	J	ug/l	0.10	0.05	1			
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	ND		ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	ND		ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	0.04	J	ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	ND		ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Report Date: **Project Number:** 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 15:45 L1929034-04

Date Received: Client ID: 07/02/19 MW-7 Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	59	21-120
Phenol-d6	49	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	71	10-120
4-Terphenyl-d14	80	41-149

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-05 Date Collected: 07/02/19 10:00

Date Received: Client ID: MW-2 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/08/19 16:39

Analytical Method: 1,8270D Analytical Date: 07/10/19 21:06

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1		
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1		
Isophorone	ND		ug/l	5.0	1.2	1		
Nitrobenzene	ND		ug/l	2.0	0.77	1		
NDPA/DPA	ND		ug/l	2.0	0.42	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1		
Bis(2-ethylhexyl)phthalate	3.1		ug/l	3.0	1.5	1		
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1		
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1		
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1		
Diethyl phthalate	ND		ug/l	5.0	0.38	1		
Dimethyl phthalate	ND		ug/l	5.0	1.8	1		
Biphenyl	ND		ug/l	2.0	0.46	1		
4-Chloroaniline	ND		ug/l	5.0	1.1	1		
2-Nitroaniline	ND		ug/l	5.0	0.50	1		
3-Nitroaniline	ND		ug/l	5.0	0.81	1		
4-Nitroaniline	ND		ug/l	5.0	0.80	1		
Dibenzofuran	ND		ug/l	2.0	0.50	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1		
Acetophenone	ND		ug/l	5.0	0.53	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1		

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-05 Date Collected: 07/02/19 10:00

Client ID: Date Received: 07/02/19 MW-2

Sample Location: Field Prep: Not Specified 229 HOMER ST., OLEAN, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

07/11/19

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: 0311-018-001

SAMPLE RESULTS

Date Collected: 07/02/19 10:00

Report Date:

Lab ID: L1929034-05

Date Received: Client ID: 07/02/19 MW-2 Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	266	J	ug/l	1
Aldol Condensates	43.3	J	ug/l	1
Unknown Ketone	5.27	J	ug/l	1
Unknown	3.16	J	ug/l	1
Unknown	3.56	J	ug/l	1
Unknown	4.54	J	ug/l	1
Unknown	4.04	J	ug/l	1
Unknown	6.04	J	ug/l	1
Unknown Organic Acid	8.36	J	ug/l	1
Unknown Ketone	11.0	J	ug/l	1
Unknown	5.71	J	ug/l	1
Aldol Condensates	132	J	ug/l	1
Unknown Ketone	9.49	J	ug/l	1
Unknown	5.60	J	ug/l	1
Unknown	19.1	J	ug/l	1
Unknown Indole	4.44	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	71	21-120
Phenol-d6	60	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	85	10-120
4-Terphenyl-d14	88	41-149

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/02/19 10:00 L1929034-05

Date Received: Client ID: MW-2 07/02/19 Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/08/19 16:39 Analytical Method: 1,8270D-SIM Analytical Date: 07/10/19 20:50

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.08	JB	ug/l	0.10	0.05	1			
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	ND		ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	ND		ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	ND		ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	ND		ug/l	0.10	0.02	1			
2-Methylnaphthalene	0.04	JB	ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/02/19 10:00 L1929034-05

Date Received: Client ID: 07/02/19 MW-2 Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

2-Fluorophenol 65 21-120 Phenol-d6 52 10-120 Nitrobenzene-d5 88 23-120 2-Fluorobiphenyl 84 15-120
Nitrobenzene-d5 88 23-120
2-Fluorobiphenyl 84 15-120
2,4,6-Tribromophenol 109 10-120
4-Terphenyl-d14 103 41-149

Lab Number: **Project Name:** HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/02/19 12:00 L1929034-06

Date Received: Client ID: MW-6 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/08/19 16:39 Analytical Method: 1,8270D

Analytical Date: 07/10/19 21:34

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1		
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1		
Isophorone	ND		ug/l	5.0	1.2	1		
Nitrobenzene	ND		ug/l	2.0	0.77	1		
NDPA/DPA	ND		ug/l	2.0	0.42	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1		
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1		
Di-n-butylphthalate	2.6	J	ug/l	5.0	0.39	1		
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1		
Diethyl phthalate	ND		ug/l	5.0	0.38	1		
Dimethyl phthalate	ND		ug/l	5.0	1.8	1		
Biphenyl	ND		ug/l	2.0	0.46	1		
4-Chloroaniline	ND		ug/l	5.0	1.1	1		
2-Nitroaniline	ND		ug/l	5.0	0.50	1		
3-Nitroaniline	ND		ug/l	5.0	0.81	1		
4-Nitroaniline	ND		ug/l	5.0	0.80	1		
Dibenzofuran	ND		ug/l	2.0	0.50	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1		
Acetophenone	ND		ug/l	5.0	0.53	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1		

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-06 Date Collected: 07/02/19 12:00

Client ID: Date Received: 07/02/19 MW-6

Field Prep: Not Specified Sample Location: 229 HOMER ST., OLEAN, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1		
2-Chlorophenol	ND		ug/l	2.0	0.48	1		
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1		
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1		
2-Nitrophenol	ND		ug/l	10	0.85	1		
4-Nitrophenol	ND		ug/l	10	0.67	1		
2,4-Dinitrophenol	ND		ug/l	20	6.6	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1		
Phenol	ND		ug/l	5.0	0.57	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1		
Carbazole	ND		ug/l	2.0	0.49	1		
Atrazine	ND		ug/l	10	0.76	1		
Benzaldehyde	ND		ug/l	5.0	0.53	1		
Caprolactam	ND		ug/l	10	3.3	1		
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1		

07/11/19

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: 0311-018-001

SAMPLE RESULTS

Date Collected: 07/02/19 12:00

Report Date:

Lab ID: L1929034-06 Date Received: Client ID: 07/02/19 MW-6

Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	155	J	ug/l	1
Aldol Condensates	91.5	J	ug/l	1
Unknown Benzene	3.20	J	ug/l	1
Unknown	1.71	J	ug/l	1
Unknown	2.25	J	ug/l	1
Unknown Benzene	2.00	J	ug/l	1
Unknown Alkane	1.67	J	ug/l	1
Unknown Alkene	3.05	J	ug/l	1
Unknown	1.56	J	ug/l	1
Unknown	3.09	J	ug/l	1
Unknown	1.74	J	ug/l	1
Unknown Alkane	4.33	J	ug/l	1
Unknown Alkane	6.76	J	ug/l	1
Aldol Condensates	27.8	J	ug/l	1
Unknown	2.29	J	ug/l	1
Unknown	2.33	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	71	21-120
Phenol-d6	58	10-120
Nitrobenzene-d5	92	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	70	10-120
4-Terphenyl-d14	79	41-149

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/02/19 12:00 L1929034-06

Date Received: Client ID: MW-6 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/08/19 16:39 Analytical Method: 1,8270D-SIM Analytical Date: 07/10/19 21:07

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - V	Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.07	JB	ug/l	0.10	0.05	1			
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	ND		ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	ND		ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	0.05	JB	ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	ND		ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Date Collected: 07/02/19 12:00

Client ID: MW-6 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

L1929034-06

% Recovery	Acceptance Qualifier Criteria
58	21-120
45	10-120
78	23-120
70	15-120
93	10-120
86	41-149
	58 45 78 70 93

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-07 Date Collected: 07/02/19 13:45

Date Received: Client ID: MW-3 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/08/19 16:39

Analytical Method: 1,8270D Analytical Date: 07/10/19 22:02

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1		
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1		
Isophorone	ND		ug/l	5.0	1.2	1		
Nitrobenzene	ND		ug/l	2.0	0.77	1		
NDPA/DPA	ND		ug/l	2.0	0.42	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1		
Bis(2-ethylhexyl)phthalate	2.6	J	ug/l	3.0	1.5	1		
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1		
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1		
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1		
Diethyl phthalate	ND		ug/l	5.0	0.38	1		
Dimethyl phthalate	ND		ug/l	5.0	1.8	1		
Biphenyl	ND		ug/l	2.0	0.46	1		
4-Chloroaniline	ND		ug/l	5.0	1.1	1		
2-Nitroaniline	ND		ug/l	5.0	0.50	1		
3-Nitroaniline	ND		ug/l	5.0	0.81	1		
4-Nitroaniline	ND		ug/l	5.0	0.80	1		
Dibenzofuran	ND		ug/l	2.0	0.50	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1		
Acetophenone	ND		ug/l	5.0	0.53	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1		

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-07 Date Collected: 07/02/19 13:45

Client ID: MW-3 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1		
2-Chlorophenol	ND		ug/l	2.0	0.48	1		
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1		
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1		
2-Nitrophenol	ND		ug/l	10	0.85	1		
4-Nitrophenol	ND		ug/l	10	0.67	1		
2,4-Dinitrophenol	ND		ug/l	20	6.6	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1		
Phenol	ND		ug/l	5.0	0.57	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1		
Carbazole	ND		ug/l	2.0	0.49	1		
Atrazine	ND		ug/l	10	0.76	1		
Benzaldehyde	ND		ug/l	5.0	0.53	1		
Caprolactam	ND		ug/l	10	3.3	1		
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1		

Tentatively Identified Compounds				
Total TIC Compounds	197	J	ug/l	1
Unknown	1.53	J	ug/l	1
Aldol Condensates	145	J	ug/l	1
Unknown Siloxane	1.64	J	ug/l	1
Aldol Condensates	48.9	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	40	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	59	15-120
2,4,6-Tribromophenol	58	10-120
4-Terphenyl-d14	64	41-149

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

L1929034-07

Date Collected: 07/02/19 13:45

Client ID: MW-3 Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 07/08/19 16:39
Analytical Date: 07/10/19 21:24

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.01	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	ND		ug/l	0.10	0.02	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1		
Naphthalene	ND		ug/l	0.10	0.05	1		
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1		
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1		
Chrysene	ND		ug/l	0.10	0.01	1		
Acenaphthylene	ND		ug/l	0.10	0.01	1		
Anthracene	ND		ug/l	0.10	0.01	1		
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1		
Fluorene	ND		ug/l	0.10	0.01	1		
Phenanthrene	ND		ug/l	0.10	0.02	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1		
Pyrene	ND		ug/l	0.10	0.02	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1		
Pentachlorophenol	ND		ug/l	0.80	0.01	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.06	1		

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/02/19 13:45 L1929034-07

Date Received: Client ID: 07/02/19 MW-3 Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	59	23-120
2-Fluorobiphenyl	55	15-120
2,4,6-Tribromophenol	79	10-120
4-Terphenyl-d14	71	41-149

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

SAMPLE RESULTS

Lab ID: L1929034-08 Date Collected: 07/01/19 13:30

Client ID: BLIND DUP Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 07/07/19 18:29

Analytical Method: 1,8270D Extraction Date: 07/07/19 18:29
Analytical Date: 07/10/19 14:35

Qualifier

Result

Units

RL

MDL

Dilution Factor

Analyst: CB

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	2.1	J	ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	
Dibenzofuran	ND		ug/l	2.0	0.50	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1	
Acetophenone	ND		ug/l	5.0	0.53	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1	

07/11/19

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 Report Date:

SAMPLE RESULTS

Lab ID: L1929034-08 Date Collected: 07/01/19 13:30

Client ID: BLIND DUP Date Received: 07/02/19

Sample Location: 229 HOMER ST., OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Tentatively Identified Compounds				
Total TIC Compounds	46.7	J	ug/l	1
Aldol Condensates	40.8	J	ug/l	1
Unknown	1.93	J	ug/l	1
Unknown Siloxane	1.64	J	ug/l	1
Unknown	2.29	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	61	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	77	41-149

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 13:30 L1929034-08

Date Received: Client ID: **BLIND DUP** 07/02/19

229 HOMER ST., OLEAN, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/07/19 18:31 Analytical Method: 1,8270D-SIM Analytical Date: 07/10/19 19:44

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	Vestborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	 1
Fluoranthene	ND			0.10	0.02	<u>'</u> 1
Hexachlorobutadiene	ND ND		ug/l	0.10	0.02	<u>'</u> 1
			ug/l			
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: Lab Number: HOMER ST. REDEVELOPMENT L1929034

Project Number: Report Date: 0311-018-001 07/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/19 13:30 L1929034-08

Date Received: Client ID: 07/02/19 **BLIND DUP** Sample Location: Field Prep: 229 HOMER ST., OLEAN, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	60	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	87	10-120
4-Terphenyl-d14	80	41-149

Extraction Method: EPA 3510C

L1929034

07/07/19 11:25

Lab Number:

Extraction Date:

Project Name: HOMER ST. REDEVELOPMENT

Report Date: **Project Number:** 0311-018-001 07/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 07/10/19 15:33

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SII WG1256809-1	M - Westbo	rough Lab	for sample	e(s): 01-04,08	Batch:
Acenaphthene	ND		ug/l	0.10	0.01
2-Chloronaphthalene	ND		ug/l	0.20	0.02
Fluoranthene	ND		ug/l	0.10	0.02
Hexachlorobutadiene	ND		ug/l	0.50	0.05
Naphthalene	ND		ug/l	0.10	0.05
Benzo(a)anthracene	ND		ug/l	0.10	0.02
Benzo(a)pyrene	ND		ug/l	0.10	0.02
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01
Chrysene	ND		ug/l	0.10	0.01
Acenaphthylene	ND		ug/l	0.10	0.01
Anthracene	ND		ug/l	0.10	0.01
Benzo(ghi)perylene	ND		ug/l	0.10	0.01
Fluorene	ND		ug/l	0.10	0.01
Phenanthrene	ND		ug/l	0.10	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01
Pyrene	ND		ug/l	0.10	0.02
2-Methylnaphthalene	ND		ug/l	0.10	0.02
Pentachlorophenol	ND		ug/l	0.80	0.01
Hexachlorobenzene	ND		ug/l	0.80	0.01
Hexachloroethane	ND		ug/l	0.80	0.06

L1929034

Project Name: HOMER ST. REDEVELOPMENT Lab Number:

Project Number: 0311-018-001 **Report Date:** 07/11/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/10/19 15:33 Extraction Date: 07/07/19 11:25

Analyst: DV

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-04,08Batch:WG1256809-1

		Acceptance
Surrogate	%Recovery Qua	ifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	43	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	88	41-149

L1929034

Lab Number:

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001 **Report Date:** 07/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/10/19 07:29

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 07/07/19 11:26

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-04,08 Batch: WG1256811-1	Parameter	Result	Qualifier	Units	RL	MDL	
3,3-Dichlorobenzidine ND ug/l 5.0 1.6 2,4-Dinitrotoluene ND ug/l 5.0 1.2 2,6-Dinitrotoluene ND ug/l 5.0 0.93 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 Bis(2-chloroteboxy)methane ND ug/l 5.0 0.50 Hexachlorocyclopentadiene ND ug/l 2.0 0.69 Isophorone ND ug/l 5.0 0.50 Isophorone ND ug/l 2.0 0.69 Isophorone ND ug/l 2.0 0.69 Isophorone ND ug/l 2.0 0.42 NDPA/DPA ND ug/l 2.0 0.42 NDPA/DPA ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l </td <td>Semivolatile Organics by GC/MS</td> <td>- Westborough</td> <td>Lab for s</td> <td>ample(s):</td> <td>01-04,08</td> <td>Batch: WG1256811-1</td> <td></td>	Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-04,08	Batch: WG1256811-1	
2,4-Dinitrotoluene ND ug/l 5.0 1.2 2,6-Dinitrotoluene ND ug/l 5.0 0.93 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 Hexachlorocyclopentadiene ND ug/l 20 0.69 Isophorone ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 5.0 1.2 NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 5.0 0.64 Bisyl benzyl phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.38 Diethyl ph	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	
2,6-Dinitrotoluene ND ug/l 5.0 0.93 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 Hexachlorocyclopentadiene ND ug/l 20 0.69 Isophorone ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.77 NDTA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-butylphth	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 Hexachlorocyclopentadiene ND ug/l 20 0.69 Isophorone ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.42 Di-n-butyl phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.38	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	
A-Bromophenyl phenyl ether ND ug/l 2.0 0.38	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 Hexachlorocyclopentadiene ND ug/l 20 0.69 Isophorone ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.46 4-Chloroanili	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 Hexachlorocyclopentadiene ND ug/l 20 0.69 Isophorone ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.46 4-Chloroaniline	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	
Hexachlorocyclopentadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	
ND	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	
Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 3.0 1.5 Butyl benzyl phthalate ND ug/l 5.0 1.2 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.39 Di-n-otylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	
NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 3.0 1.5 Butyl benzyl phthalate ND ug/l 5.0 1.2 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 1.3 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.80 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND	Isophorone	ND		ug/l	5.0	1.2	
n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate 1.9 J ug/l 3.0 1.5 Butyl benzyl phthalate ND ug/l 5.0 1.2 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 5.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 2,4,6-Trichlorophenol <t< td=""><td>Nitrobenzene</td><td>ND</td><td></td><td>ug/l</td><td>2.0</td><td>0.77</td><td></td></t<>	Nitrobenzene	ND		ug/l	2.0	0.77	
Bis(2-ethylhexyl)phthalate 1.9 J ug/l 3.0 1.5 Butyl benzyl phthalate ND ug/l 5.0 1.2 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 1.3 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	NDPA/DPA	ND		ug/l	2.0	0.42	
Butyl benzyl phthalate ND ug/l 5.0 1.2 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 1.3 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.38 Biphenyl ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	
Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 1.3 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 2.0 0.46 4-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.50 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Bis(2-ethylhexyl)phthalate	1.9	J	ug/l	3.0	1.5	
Di-n-octylphthalate ND ug/l 5.0 1.3 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 2.0 0.46 4-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	
Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 2.0 0.46 4-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.50 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Di-n-butylphthalate	ND		ug/l	5.0	0.39	
Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 2.0 0.46 4-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Di-n-octylphthalate	ND		ug/l	5.0	1.3	
Biphenyl ND ug/l 2.0 0.46 4-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Diethyl phthalate	ND		ug/l	5.0	0.38	
4-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Dimethyl phthalate	ND		ug/l	5.0	1.8	
2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Biphenyl	ND		ug/l	2.0	0.46	
3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	4-Chloroaniline	ND		ug/l	5.0	1.1	
4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	2-Nitroaniline	ND		ug/l	5.0	0.50	
Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	3-Nitroaniline	ND		ug/l	5.0	0.81	
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	4-Nitroaniline	ND		ug/l	5.0	0.80	
Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Dibenzofuran	ND		ug/l	2.0	0.50	
2,4,6-Trichlorophenol ND ug/l 5.0 0.61	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	
<u>-</u>	Acetophenone	ND		ug/l	5.0	0.53	
p-Chloro-m-cresol ND ug/l 2.0 0.35	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	
	p-Chloro-m-cresol	ND		ug/l	2.0	0.35	

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001 Lab Number:

L1929034

Report Date: 07/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date:

Analyst:

07/10/19 07:29

SZ

Extraction Method: EPA 3510C 07/07/19 11:26 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01-04,08	Batch: WG12	56811-1
2-Chlorophenol	ND		ug/l	2.0	0.48	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	
2-Nitrophenol	ND		ug/l	10	0.85	
4-Nitrophenol	ND		ug/l	10	0.67	
2,4-Dinitrophenol	ND		ug/l	20	6.6	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	
Phenol	ND		ug/l	5.0	0.57	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	
Carbazole	ND		ug/l	2.0	0.49	
Atrazine	ND		ug/l	10	0.76	
Benzaldehyde	ND		ug/l	5.0	0.53	
Caprolactam	ND		ug/l	10	3.3	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	

Tentatively Identified Compounds				
Total TIC Compounds	31.5	J	ug/l	
Aldol Condensates	26.1	J	ug/l	
Unknown	1.64	J	ug/l	
Unknown	1.53	J	ug/l	
Unknown Alcohol	2.25	J	ug/l	

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 07/10/19 07:29 Extraction Date: 07/07/19 11:26

Analyst: SZ

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-04,08Batch: WG1256811-1

		•	
%Recovery	Qualifier	Criteria	
46		21-120	
39		10-120	
63		23-120	
70		15-120	
54		10-120	
78		41-149	
	46 39 63 70 54	%Recovery Qualifier 46 39 63 70 54	46 21-120 39 10-120 63 23-120 70 15-120 54 10-120

L1929034

Lab Number:

Project Name: HOMER ST. REDEVELOPMENT

Report Date: Project Number: 0311-018-001 07/11/19

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	07/10/19 14:37	Extraction Date:	07/08/19 16:39
Analyst:	СВ		

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	05-07	Batch:	WG1257196-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.50
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.6
2,4-Dinitrotoluene	ND		ug/l	5.0		1.2
2,6-Dinitrotoluene	ND		ug/l	5.0		0.93
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.50
Hexachlorocyclopentadiene	ND		ug/l	20		0.69
Isophorone	ND		ug/l	5.0		1.2
Nitrobenzene	ND		ug/l	2.0		0.77
NDPA/DPA	ND		ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1.5
Butyl benzyl phthalate	ND		ug/l	5.0		1.2
Di-n-butylphthalate	ND		ug/l	5.0		0.39
Di-n-octylphthalate	ND		ug/l	5.0		1.3
Diethyl phthalate	ND		ug/l	5.0		0.38
Dimethyl phthalate	ND		ug/l	5.0		1.8
Biphenyl	ND		ug/l	2.0		0.46
4-Chloroaniline	ND		ug/l	5.0		1.1
2-Nitroaniline	ND		ug/l	5.0		0.50
3-Nitroaniline	ND		ug/l	5.0		0.81
4-Nitroaniline	ND		ug/l	5.0		0.80
Dibenzofuran	ND		ug/l	2.0		0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.44
Acetophenone	ND		ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.61
p-Chloro-m-cresol	ND		ug/l	2.0		0.35

Lab Number:

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001 **Report Date:** 07/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/10/19 14:37

Analyst: CB

Extraction Method: EPA 3510C Extraction Date: 07/08/19 16:39

L1929034

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	05-07	Batch:	WG1257196-1
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85
4-Nitrophenol	ND		ug/l	10		0.67
2,4-Dinitrophenol	ND		ug/l	20		6.6
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8
Phenol	ND		ug/l	5.0		0.57
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77
Carbazole	ND		ug/l	2.0		0.49
Atrazine	ND		ug/l	10		0.76
Benzaldehyde	ND		ug/l	5.0		0.53
Caprolactam	ND		ug/l	10		3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0		0.84

Tentatively Identified Compounds			
Total TIC Compounds	31.5	J	ug/l
Aldol Condensates	31.5	J	ug/l

Project Name: HOMER ST. REDEVELOPMENT Lab Number: L1929034

Project Number: 0311-018-001 **Report Date:** 07/11/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 07/10/19 14:37 Extraction Date: 07/08/19 16:39

Analyst: CB

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS - Westborough Lab for sample(s): 05-07Batch: WG1257196-1

Surrogate	%Recovery Qualifie	Acceptance er Criteria
2-Fluorophenol	44	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	50	23-120
2-Fluorobiphenyl	45	15-120
2,4,6-Tribromophenol	28	10-120
4-Terphenyl-d14	45	41-149

L1929034

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Report Date: 07/11/19

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 07/10/19 20:00

Analyst: DV

Extraction Method: EPA 3510C 07/08/19 16:39 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/	MS-SIM - Westbo	rough Lab	for sample	e(s): 05-07	Batch: WG125719	8-1
Acenaphthene	0.14		ug/l	0.10	0.01	
2-Chloronaphthalene	0.03	J	ug/l	0.20	0.02	
Fluoranthene	0.05	J	ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	1.0		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	0.04	J	ug/l	0.10	0.01	
Anthracene	0.03	J	ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	0.14		ug/l	0.10	0.01	
Phenanthrene	0.29		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	0.39		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

L1929034

Project Name: HOMER ST. REDEVELOPMENT Lab Number:

Project Number: 0311-018-001 **Report Date:** 07/11/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/10/19 20:00 Extraction Date: 07/08/19 16:39

Analyst: DV

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 05-07Batch: WG1257198-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	41	21-120
Phenol-d6	32	10-120
Nitrobenzene-d5	51	23-120
2-Fluorobiphenyl	46	15-120
2,4,6-Tribromophenol	58	10-120
4-Terphenyl-d14	59	41-149

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

rameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIM - We	stborough Lab A	ssociated sample(s	s): 01-04,08	Batch:	WG1256809-2	WG1256809-3	
Acenaphthene	80		98		40-140	20	40
2-Chloronaphthalene	77		92		40-140	18	40
Fluoranthene	84		101		40-140	18	40
Hexachlorobutadiene	66		79		40-140	18	40
Naphthalene	76		92		40-140	19	40
Benzo(a)anthracene	81		101		40-140	22	40
Benzo(a)pyrene	86		105		40-140	20	40
Benzo(b)fluoranthene	85		102		40-140	18	40
Benzo(k)fluoranthene	88		107		40-140	19	40
Chrysene	81		100		40-140	21	40
Acenaphthylene	79		95		40-140	18	40
Anthracene	84		104		40-140	21	40
Benzo(ghi)perylene	86		107		40-140	22	40
Fluorene	81		99		40-140	20	40
Phenanthrene	83		100		40-140	19	40
Dibenzo(a,h)anthracene	93		114		40-140	20	40
Indeno(1,2,3-cd)pyrene	90		109		40-140	19	40
Pyrene	84		102		40-140	19	40
2-Methylnaphthalene	77		92		40-140	18	40
Pentachlorophenol	89		105		40-140	16	40
Hexachlorobenzene	84		103		40-140	20	40
Hexachloroethane	70		87		40-140	22	40

Project Name: HOMER ST. REDEVELOPMENT

Lab Number:

L1929034

Project Number: 0311-018-001

Report Date:

07/11/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04,08 Batch: WG1256809-2 WG1256809-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	58	73	21-120
Phenol-d6	50	60	10-120
Nitrobenzene-d5	77	94	23-120
2-Fluorobiphenyl	71	86	15-120
2,4,6-Tribromophenol	81	106	10-120
4-Terphenyl-d14	86	104	41-149

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	LCS %Recovery	LCSE Qual %Recov	,		RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbor	ough Lab Assoc	ated sample(s): 01-04,0	8 Batch: WG1256811-2	WG1256811-3		
Bis(2-chloroethyl)ether	66	68	40-140	3	30	
3,3'-Dichlorobenzidine	64	62	40-140	3	30	
2,4-Dinitrotoluene	66	70	48-143	6	30	
2,6-Dinitrotoluene	89	91	40-140	2	30	
4-Chlorophenyl phenyl ether	76	82	40-140	8	30	
4-Bromophenyl phenyl ether	81	87	40-140	7	30	
Bis(2-chloroisopropyl)ether	65	67	40-140	3	30	
Bis(2-chloroethoxy)methane	72	75	40-140	4	30	
Hexachlorocyclopentadiene	83	87	40-140	5	30	
Isophorone	71	75	40-140	5	30	
Nitrobenzene	78	79	40-140	1	30	
NDPA/DPA	79	86	40-140	8	30	
n-Nitrosodi-n-propylamine	76	80	29-132	5	30	
Bis(2-ethylhexyl)phthalate	80	77	40-140	4	30	
Butyl benzyl phthalate	85	83	40-140	2	30	
Di-n-butylphthalate	80	83	40-140	4	30	
Di-n-octylphthalate	76	74	40-140	3	30	
Diethyl phthalate	84	89	40-140	6	30	
Dimethyl phthalate	84	85	40-140	1	30	
Biphenyl	65	68	40-140	5	30	
4-Chloroaniline	70	68	40-140	3	30	
2-Nitroaniline	79	85	52-143	7	30	
3-Nitroaniline	71	74	25-145	4	30	

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s)	: 01-04,08 Ba	tch: WG1	1256811-2 WG12	56811-3	
4-Nitroaniline	80		80		51-143	0	30
Dibenzofuran	74		80		40-140	8	30
1,2,4,5-Tetrachlorobenzene	64		65		2-134	2	30
Acetophenone	64		66		39-129	3	30
2,4,6-Trichlorophenol	83		87		30-130	5	30
p-Chloro-m-cresol	85		87		23-97	2	30
2-Chlorophenol	73		76		27-123	4	30
2,4-Dichlorophenol	83		86		30-130	4	30
2,4-Dimethylphenol	58		52		30-130	11	30
2-Nitrophenol	85		88		30-130	3	30
4-Nitrophenol	116	Q	121	Q	10-80	4	30
2,4-Dinitrophenol	95		105		20-130	10	30
4,6-Dinitro-o-cresol	122		124		20-164	2	30
Phenol	56		56		12-110	0	30
3-Methylphenol/4-Methylphenol	74		75		30-130	1	30
2,4,5-Trichlorophenol	83		86		30-130	4	30
Carbazole	81		82		55-144	1	30
Atrazine	92		93		40-140	1	30
Benzaldehyde	67		70		40-140	4	30
Caprolactam	40		41		10-130	2	30
2,3,4,6-Tetrachlorophenol	79		85		40-140	7	30

Project Name: HOMER ST. REDEVELOPMENT

Lab Number:

L1929034

Project Number: 0311-018-001

Report Date:

07/11/19

	LCS		LCSD	%Recovery				RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04,08 Batch: WG1256811-2 WG1256811-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	59	61	21-120
Phenol-d6	52	55	10-120
Nitrobenzene-d5	77	81	23-120
2-Fluorobiphenyl	73	77	15-120
2,4,6-Tribromophenol	90	93	10-120
4-Terphenyl-d14	83	83	41-149

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Qual Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	05-07	Batch:	WG1257196-2 WG1257	196-3			
Bis(2-chloroethyl)ether	68		55		40-140	21		30	
3,3'-Dichlorobenzidine	57		67		40-140	16		30	
2,4-Dinitrotoluene	70		82		48-143	16		30	
2,6-Dinitrotoluene	72		81		40-140	12		30	
4-Chlorophenyl phenyl ether	68		67		40-140	1		30	
4-Bromophenyl phenyl ether	60		65		40-140	8		30	
Bis(2-chloroisopropyl)ether	58		48		40-140	19		30	
Bis(2-chloroethoxy)methane	73		66		40-140	10		30	
Hexachlorocyclopentadiene	46		44		40-140	4		30	
Isophorone	73		65		40-140	12		30	
Nitrobenzene	72		61		40-140	17		30	
NDPA/DPA	66		67		40-140	2		30	
n-Nitrosodi-n-propylamine	78		66		29-132	17		30	
Bis(2-ethylhexyl)phthalate	66		84		40-140	24		30	
Butyl benzyl phthalate	70		97		40-140	32	Q	30	
Di-n-butylphthalate	70		88		40-140	23		30	
Di-n-octylphthalate	69		91		40-140	28		30	
Diethyl phthalate	73		83		40-140	13		30	
Dimethyl phthalate	75		81		40-140	8		30	
Biphenyl	60		58		40-140	3		30	
4-Chloroaniline	56		52		40-140	7		30	
2-Nitroaniline	69		74		52-143	7		30	
3-Nitroaniline	53		67		25-145	23		30	

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	LCS %Recovery	Qual	LCSI %Recov		9/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	05-07	Batch:	WG125719	6-2 WG125	7196-3		
4-Nitroaniline	61		76			51-143	22		30
Dibenzofuran	69		66			40-140	4		30
1,2,4,5-Tetrachlorobenzene	55		48			2-134	14		30
Acetophenone	64		53			39-129	19		30
2,4,6-Trichlorophenol	65		70			30-130	7		30
p-Chloro-m-cresol	73		78			23-97	7		30
2-Chlorophenol	72		60			27-123	18		30
2,4-Dichlorophenol	69		69			30-130	0		30
2,4-Dimethylphenol	43		66			30-130	42	Q	30
2-Nitrophenol	70		60			30-130	15		30
4-Nitrophenol	49		62			10-80	23		30
2,4-Dinitrophenol	51		64			20-130	23		30
4,6-Dinitro-o-cresol	79		88			20-164	11		30
Phenol	53		47			12-110	12		30
3-Methylphenol/4-Methylphenol	70		68			30-130	3		30
2,4,5-Trichlorophenol	65		74			30-130	13		30
Carbazole	77		84			55-144	9		30
Atrazine	85		101			40-140	17		30
Benzaldehyde	66		51			40-140	26		30
Caprolactam	34		41			10-130	19		30
2,3,4,6-Tetrachlorophenol	56		67			40-140	18		30

Project Name: HOMER ST. REDEVELOPMENT

Lab Number:

L1929034

Project Number: 0311-018-001

Report Date:

07/11/19

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 05-07 Batch: WG1257196-2 WG1257196-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	60	49	21-120
Phenol-d6	53	46	10-120
Nitrobenzene-d5	77	62	23-120
2-Fluorobiphenyl	67	61	15-120
2,4,6-Tribromophenol	51	61	10-120
4-Terphenyl-d14	64	81	41-149

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

arameter	LCS %Recovery		LCSD Recovery	Qua	%Recove I Limits	ry RPD	Qual	RPD Limits
emivolatile Organics by GC/MS-SIM -	· Westborough Lab A	associated sample(s): 05-07	Batch:	WG1257198-2	WG1257198-3		
Acenaphthene	63		85		40-140	30		40
2-Chloronaphthalene	60		80		40-140	29		40
Fluoranthene	86		86		40-140	0		40
Hexachlorobutadiene	47		72		40-140	42	Q	40
Naphthalene	55		86		40-140	44	Q	40
Benzo(a)anthracene	81		86		40-140	6		40
Benzo(a)pyrene	82		89		40-140	8		40
Benzo(b)fluoranthene	80		86		40-140	7		40
Benzo(k)fluoranthene	83		91		40-140	9		40
Chrysene	81		89		40-140	9		40
Acenaphthylene	62		82		40-140	28		40
Anthracene	86		91		40-140	6		40
Benzo(ghi)perylene	82		94		40-140	14		40
Fluorene	71		85		40-140	18		40
Phenanthrene	94		89		40-140	5		40
Dibenzo(a,h)anthracene	87		99		40-140	13		40
Indeno(1,2,3-cd)pyrene	84		94		40-140	11		40
Pyrene	85		86		40-140	1		40
2-Methylnaphthalene	57		82		40-140	36		40
Pentachlorophenol	87		77		40-140	12		40
Hexachlorobenzene	87		90		40-140	3		40
Hexachloroethane	49		80		40-140	48	Q	40

Project Name: HOMER ST. REDEVELOPMENT

Lab Number:

L1929034

Project Number: 0311-018-001

Report Date:

07/11/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 05-07 Batch: WG1257198-2 WG1257198-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	44	67	21-120
Phenol-d6	37	55	10-120
Nitrobenzene-d5	55	86	23-120
2-Fluorobiphenyl	53	75	15-120
2,4,6-Tribromophenol	79	85	10-120
4-Terphenyl-d14	85	87	41-149

Matrix Spike Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery imits	RPD	Qual	RPD Limits
Semivolatile Organics by GO Client ID: MW-1	C/MS-SIM - We	stborough Lab	Associate	ed sample(s): 01	-04,08	QC Batch I	D: WG125680	9-4 WG12	56809-5	QC Sa	ample: L	1929034-02
Acenaphthene	ND	18.2	13	72		14	77	4	0-140	7		40
2-Chloronaphthalene	ND	18.2	12	66		14	77	4	0-140	15		40
Fluoranthene	ND	18.2	15	83		14	77	4	0-140	7		40
Hexachlorobutadiene	ND	18.2	8.7	48		12	66	4	0-140	32		40
Naphthalene	ND	18.2	10	55		13	72	4	0-140	26		40
Benzo(a)anthracene	ND	18.2	15	83		15	83	4	0-140	0		40
Benzo(a)pyrene	ND	18.2	16	88		16	88	4	0-140	0		40
Benzo(b)fluoranthene	ND	18.2	15	83		15	83	4	0-140	0		40
Benzo(k)fluoranthene	ND	18.2	16	88		16	88	4	0-140	0		40
Chrysene	ND	18.2	14	77		15	83	4	0-140	7		40
Acenaphthylene	ND	18.2	13	72		14	77	4	0-140	7		40
Anthracene	ND	18.2	14	77		16	88	4	0-140	13		40
Benzo(ghi)perylene	ND	18.2	15	83		15	83	4	0-140	0		40
Fluorene	ND	18.2	13	72		15	83	4	0-140	14		40
Phenanthrene	ND	18.2	14	77		14	77	4	0-140	0		40
Dibenzo(a,h)anthracene	ND	18.2	17	94		17	94	4	0-140	0		40
Indeno(1,2,3-cd)pyrene	ND	18.2	16	88		16	88	4	0-140	0		40
Pyrene	ND	18.2	15	83		14	77	4	0-140	7		40
2-Methylnaphthalene	ND	18.2	11	61		14	77	4	0-140	24		40
Pentachlorophenol	ND	18.2	16	88		18	99	4	0-140	12		40
Hexachlorobenzene	ND	18.2	14	77		16	88	4	0-140	13		40
Hexachloroethane	ND	18.2	8.5	47		13	72	4	0-140	42	Q	40

Matrix Spike Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number:

L1929034

Report Date:

07/11/19

	Native	MS	MS	MS		MSD	MSD	Recovery		F	RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery Qua	l Limits	RPD	Qual Li	imits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04,08 QC Batch ID: WG1256809-4 WG1256809-5 QC Sample: L1929034-02 Client ID: MW-1

	MS		MSD		Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	92		96		10-120	
2-Fluorobiphenyl	64		75		15-120	
2-Fluorophenol	50		65		21-120	
4-Terphenyl-d14	90		84		41-149	
Nitrobenzene-d5	62		80		23-120	
Phenol-d6	47		56		10-120	

Matrix Spike Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

	Native	MS	MS	MS	MSD	MSD		ecovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Semivolatile Organics by G Client ID: MW-1	C/MS - Westbor	ough Lab	Associated sa	mple(s): 01-04,0	8 QC Batch ID: W	/G1256811-4	WG12568	11-5 QC	Sample	e: L1929	9034-02
Bis(2-chloroethyl)ether	ND	18.2	9.4	52	13	72		40-140	32	Q	30
3,3'-Dichlorobenzidine	ND	18.2	9.8	54	6.9	38	Q	40-140	35	Q	30
2,4-Dinitrotoluene	ND	18.2	12	66	13	72		48-143	8		30
2,6-Dinitrotoluene	ND	18.2	15	83	16	88		40-140	6		30
4-Chlorophenyl phenyl ether	ND	18.2	13	72	15	83		40-140	14		30
4-Bromophenyl phenyl ether	ND	18.2	14	77	16	88		40-140	13		30
Bis(2-chloroisopropyl)ether	ND	18.2	9.7	53	12	66		40-140	21		30
Bis(2-chloroethoxy)methane	ND	18.2	12	66	14	77		40-140	15		30
Hexachlorocyclopentadiene	ND	18.2	14.J	77	18.J	99		40-140	25		30
sophorone	ND	18.2	12	66	14	77		40-140	15		30
Nitrobenzene	ND	18.2	11	61	15	83		40-140	31	Q	30
NDPA/DPA	ND	18.2	14	77	15	83		40-140	7		30
n-Nitrosodi-n-propylamine	ND	18.2	12	66	15	83		29-132	22		30
Bis(2-ethylhexyl)phthalate	2.6J	18.2	18	99	17	94		40-140	6		30
Butyl benzyl phthalate	ND	18.2	18	99	18	99		40-140	0		30
Di-n-butylphthalate	ND	18.2	17	94	18	99		40-140	6		30
Di-n-octylphthalate	ND	18.2	19	100	18	99		40-140	5		30
Diethyl phthalate	ND	18.2	15	83	16	88		40-140	6		30
Dimethyl phthalate	ND	18.2	14	77	15	83		40-140	7		30
Biphenyl	ND	18.2	11	61	13	72		40-140	17		30
4-Chloroaniline	ND	18.2	10	55	10	55		40-140	0		30
2-Nitroaniline	ND	18.2	15	83	16	88		52-143	6		30
3-Nitroaniline	ND	18.2	13	72	12	66		25-145	8		30

Matrix Spike Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034

Report Date: 07/11/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Reco Qual Lim	•	RPD	Qual	RPD Limits
Semivolatile Organics by GO Client ID: MW-1	C/MS - Westbor	ough Lab	Associated sar	mple(s): 01-04,0)8 QC E	atch ID: W	/G1256811-4	WG1256811-	5 QC	Sample	e: L1929	0034-02
4-Nitroaniline	ND	18.2	14	77		15	83	51-1	143	7		30
Dibenzofuran	ND	18.2	12	66		14	77	40-1	140	15		30
1,2,4,5-Tetrachlorobenzene	ND	18.2	10	55		12	66	2-1	34	18		30
Acetophenone	ND	18.2	9.7	53		12	66	39-1	129	21		30
2,4,6-Trichlorophenol	ND	18.2	14	77		16	88	30-1	130	13		30
p-Chloro-m-cresol	ND	18.2	15	83		17	94	23-	97	13		30
2-Chlorophenol	ND	18.2	12	66		14	77	27-1	123	15		30
2,4-Dichlorophenol	ND	18.2	14	77		16	88	30-1	130	13		30
2,4-Dimethylphenol	ND	18.2	5.2	29	Q	7.7	42	30-1	130	39	Q	30
2-Nitrophenol	ND	18.2	14	77		17	94	30-1	130	19		30
4-Nitrophenol	ND	18.2	20	110	Q	19	100	Q 10-	80	5		30
2,4-Dinitrophenol	ND	18.2	20	110		22	120	20-1	130	10		30
4,6-Dinitro-o-cresol	ND	18.2	22	120		24	130	20-1	164	9		30
Phenol	ND	18.2	9.1	50		11	61	12-1	110	19		30
3-Methylphenol/4-Methylphenol	ND	18.2	12	66		14	77	30-1	130	15		30
2,4,5-Trichlorophenol	ND	18.2	14	77		16	88	30-1	130	13		30
Carbazole	ND	18.2	15	83		16	88	55-1	144	6		30
Atrazine	ND	18.2	17	94		18	99	40-1	140	6		30
Benzaldehyde	ND	18.2	9.4	52		13	72	40-1	140	32	Q	30
Caprolactam	ND	18.2	7.6J	42		8.1J	45	10-1	130	6		30
2,3,4,6-Tetrachlorophenol	ND	18.2	14	77		16	88	40-1	140	13		30

Matrix Spike Analysis Batch Quality Control

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number:

L1929034

Report Date:

07/11/19

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual Limits	RPD	Qual Limits	i

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04,08 QC Batch ID: WG1256811-4 WG1256811-5 QC Sample: L1929034-02 Client ID: MW-1

	MS	3	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	89		99		10-120	
2-Fluorobiphenyl	68		80		15-120	
2-Fluorophenol	51		67		21-120	
4-Terphenyl-d14	86		89		41-149	
Nitrobenzene-d5	65		84		23-120	
Phenol-d6	49		60		10-120	

Serial_No:07111915:27

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Lab Number: L1929034
Report Date: 07/11/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1929034-01A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-01B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-01C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-01D	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-01E	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-02A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-02A1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-02B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-02B1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-02C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-02C1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-02D	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-02D2	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-02E	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-02E1	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-03A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-03B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-03C	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-03D	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-03E	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-04A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-04B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-04C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)

Serial_No:07111915:27

Lab Number: L1929034

Report Date: 07/11/19

Project Name: HOMER ST. REDEVELOPMENT

Project Number: 0311-018-001

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	•	Pres	Seal	Date/Time	Analysis(*)
L1929034-04D	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-04E	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-05A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-05B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-05C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-05D	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-05E	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-06A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-06B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-06C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-06D	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-06E	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-07A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-07B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-07C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-07D	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-07E	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-08A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-08B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-08C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L1929034-08D	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-08E	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1929034-09A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		HOLD-8260(14)
L1929034-09B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		HOLD-8260(14)

Project Name:HOMER ST. REDEVELOPMENTLab Number:L1929034Project Number:0311-018-001Report Date:07/11/19

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.
 LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:HOMER ST. REDEVELOPMENTLab Number:L1929034Project Number:0311-018-001Report Date:07/11/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:07111915:27

Project Name:HOMER ST. REDEVELOPMENTLab Number:L1929034Project Number:0311-018-001Report Date:07/11/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:07111915:27

Published Date: 10/9/2018 4:58:19 PM

ID No.:17873

Revision 12

Page 1 of 1

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	5	Page / of	1	1	Date R in La		7/3	3/19	ALPHA JOB# L 1929 034
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	SEL HING	AR VIE	The same	No. of	Delive	erables				Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Homon	Sr loo	EVELORMO	דינע			ASP-A		☐ AS	SP-B	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 20			Geron, N)		1 🗖	EQuIS	(1 File)	□ EC	QuIS (4 File)	PO#
Client Information			018-001		G1011, 1-7		1 🗔	Other				
Client: Tuenkoy Kos	TORATION	(Use Project name as Pro					Regu	latory R	lequiremer	nt	THE STATE OF THE S	Disposal Site Information
Address: 2558 Ha				HOUSK	1			NY TOO	s	□ NY	Part 375	Please identify below location of
BFLO, NY 142		ALPHAQuote #:						AWQ St	andards	☐ NY	CP-51	applicable disposal facilities.
Phone: (716) 856	-0599	Turn-Around Time	15000			1		NY Res	tricted Use	Ot	her	Disposal Facility:
Fax:	75151	Standard	IA.	Due Date:				NY Unre	estricted Use	9		□ NJ □ NY
Email: MLESAKOWSKI	Cturnkey Ik com	Rush (only if pre approved)		# of Days:				NYC Se	wer Dischar	rge		Other:
These samples have be	en previously analyze	ed by Alpha					ANA	LYSIS				Sample Filtration
Other project specific Please specify Metals		nents:					Vacs+(TIC)	SVOG (FILE)				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)
ALPHA Lab ID			Colle	ection	Sample	Sampler's	7					t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	72	5				Sample Specific Comments
29034-01	MW-4		7/1/19	1050	GW	CFD	X	X				
02	MW-1		7/1/19	1320	1	1	X	X				* MS/MSD
03	MW-5		7/1/19	1430			X	X				
04	MW-7		7/1/19	1545			X	X				
05	MW-2		7/3/19	1000			X	X				
66	MW-6		7/2/19	1200			V	X				
0)	MW-3		7/2/19	1345	40	1	X	X				
08	BLIND DU	P	7/1/19	1330	GW	CFD	X	X				
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type	V	A				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	By:	7/3/19	1445 15750	Stery.	Receive	ved By:	An	7/2	Date/Time	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

Date: 12-4-19 Project Name: 229 Homer St - Homer Street Redevelopment, LLC

Location: Olean, NY Project No.: T0311-018-001 Field Team: CFD

Well No). M	W - 1	Diameter (ir	iches): J"		Sample Dat	e / Time: 🛮 💋	-4-19		
Product Dep	oth (fbTOR):		Water Colu	mn (ft): ス.	47	DTW when	sampled:	11.58		
DTW (static) (fbTOR): /	0.80	One Well V	olume (gal):	1.25	Purpose: [Development	☐ Sample	Purge & Sample	
Total Depth	(fbTOR): /5	1.27	Total Volum	e Purged (gal):	5aml	Purge Metho	od: Typ	Hoom	lung	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
טבנו	o Initial	0	6.92	10.1	631.7	238	3,14	-35	BROWN-GRO	17
1230	1 /1.20	15	6.76	10.4	576.8	208	3.03	13	LIGHT DOOR	
1235	2 71.34	1.0	6.75	10.8	569.5	117	2.55	23	1	
1240	3 11.61	1175	6.73	10.8	576.6	79	2.54	27	1 ,	
1250	4 11.59	2.5	6.72	11.6	579.2	58	2.34	27	Clem/LITT	E
1300	5 11.58	3,0	6.73	11.1	57.4.7	44		27		
1310	6	3.5	6.71	11.4	523.9	37		26		
1320	7 8	4.0	6.70	11.5	57.3.2	31				
	9									
Sample I	nformation:								,	
1330	S1 11.58	4.5	6.70	11.4	561.4	29	212	27	Chan/Lihur	09
	S2 //.58	5.0	6.71	11.5	560.7	19	2.14	26		

Well No). M	W - 2	Diameter (ir	nches):	2"	Sample Dat	e / Time: <i> 6</i>	7-3-19	1045
Product Dep	oth (fbTOR):		Water Colu	mn (ft): ア	. 11	DTW when	sampled:	12.24	1
DTW (statio	;) (fbTOR): /	2.09	One Well V	olume (gal):	1016916	Purpose:] Development	☐ Sample	Purge & Sample
Total Depth	(fbTOR): /	9.20	Total Volum	e Purged (gal):	4.5 GAL	Purge Meth	od: Typ	HOON	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
0930	o Initial	0	6.47	11.0	899	454	7.18	-113	CLOUDY GRUY TUR
0940	1 12.20	1.25	6.49	13.0	911	213	4.72	-/01	Porco Ocon
0950	2 12.21	2.0	6.52	13.1	915	105	3.87	-94	- CLARLIGHT TU
1000	3 12.23	2.5	4.56	13.2	914.6	68.6	3:42	-90 -91	LIGHT POTEN
1010	4 12.2Y	3.5	6.59	13.1	908	41.7	3.14	-91	1
1020	5 12.24	3.75	6.59	13.2	902.8	45.3	2.98	- 9,	18.
1030	6 12.24	4.0	1.60	13.3	907	44	2.72	-88	Char/Porao
	7								
	8								
	9								
	10								
Sample I	nformation:								
1043	S1 /7.24	4,2	6.67	13.2	906.7	40.4	2.68	-87	Char
1045	S2 12.04	4.5	6.69	13.3	905.6	32.4	2.20	-80	PENRO DOUR

REMARKS: Note: All measurements are in feet, distance from top of riser.

Volume (Calculation
Diam	Vol. (g/ft)
1**	0.041
2"	0.163
4"	0.653
6"	1,469

Stabilization	n Criteria
Parameter	Criteria
pН	± 0.1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0,3 mg/L
ORP	± 10 mV

PREPARED BY: OFO

Project Name: 229 Homer St - Homer Street Redevelopment, LLC

Date:

Location:

Olean, NY

Project No.: T0311-018-001

Field Team: CFD

Well No	o. M	W - 3	Diameter (in	ches):	4	Sample Dat	e/Time: /2	-4-19/	1030	
Product De	pth (fbTOR):	_	Water Colur		77'	DTW when	sampled:	12.21		
DTW_(statio	c) (fbTOR): //	.40	One Well Vo	olume (gal):	1. acal	Purpose:	Development	☐ Sample	Purge & Sample	
Total Depth	(fbTOR): /	1.17	Total Volum	e Purged (gal):	5,25	Purge Metho	od: TupH	von 1	Puns	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
0920	o Initial	0	10.31	119	344.1	362	5.84	~31	Cloudy	
0930	1 //.52	15	6.55	12.8	344.5	268	5.35	-41	no Oopr	
0940	2 11,198		10.58	13.1	333.3	174	4.02	-54	Guy "the "To	RBIP
0950	3 12.15	2	6.61	13.3	328.6	124	3.77	-62	Clean 16,44	POTEO
1000	4 13.20	3	6.56	13.4	343.2	76	278	-65	1	5
1010	5 12.24	14	6.52	13.6	349.8	48.9	2.17	-67		
1090	6 12.21	4,5	6.51	13.6	366.6	46.4	2.02	-69		
	7								— —	
	9								 	
	10									
Sample I	nformation:					4			1,	
1030	S1 1).21	5	4.50	13.6	376	44,2	1.74	-71	Clan /Linito	1000
	S2 12.21	5.05	4.53	11.5	411	24.8	1.57	-71		

Well No	Well No. MW - 4			iches):	4	Sample Dat	e / Time: /2/	3/19	1330
Product Dep	oth (fbTOR):	_	Water Colur	nn (ft): 8	01	DTW when	sampled:	1.75	
DTW (static) (fbTOR): /		One Well Vo	olume (gal):	1.35+L	Purpose:	Development	☐ Sample	Purge & Sample
Total Depth	(fbTOR): /	9.12	Total Volum	e Purged (gal):		Purge Metho	od: Typ	HEDN P	Pump
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1220	o Initial	0	7,34	11.1	231.2	NA	1142	16	BRUSH TURRE
1225	1 11.34	1	7.16	11.9	202.1	888	12.52	32	[[
1235	2 11.58	2.25	7.02	12.5	210.8	439	12.27	49	LIGHT BROWN
1245	3 11.59	3,0	6.96	12.4	817.5	349	10.57	54	TIMBIO "
1255	4 11.61	3.5	6.92	12.6	224.3	250	9.68	52	LIMIT CON
170G	5 11.72	4	6.88	12.6	226,9	189	9.1	48	
1310	611.75	4.5	6.87	12.7	230.5	73	8.79	44	
	7								
	8								
	10								
	nformation:			10 0	2241	/ / / / /	/ 50	40	100
1220	S1 /1.75	3.0	4.55	12.7	230.1	48	6.72	39	Georg - LILLIET
1330	S2 11.75	55	6.85	12.5	229	42	5.85	37	·

REMARKS: ARE MW-3 - MS/MSD**

Note: All measurements are in feet, distance from top of riser.

 Diam.
 Vol. (g/ft)

 1"
 0.041

 2"
 0.163

 4"
 0.653

 6"
 1.469

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

PREPARED BY:

Project Name: 229 Homer St - Homer Street Redevelopment, LLC

Date: /3-3-/9

Location: Olean, NY

Project No.: T0311-018-001

Field Team: CFD

Well N	o. M	W - 5	Diameter (in			Sample Dat	e / Time: <i>13</i>	3-19/	1205	
Product De	epth (fbTOR):		Water Colur	mn (ft): 3	99'	DTW when	sampled:	3.04		
DTW (stat	ic) (fbTOR): /c	2.98	One Well Ve	olume (gal):	1,0	Purpose: [Development	☐ Sample	Purge & Sample	
Total Dept	h (fbTOR): /	8.97	Total Volum	e Purged (gal):	544L	Purge Method: Typhoon Pump				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1106	o Initial	0	6.59	17.5	984	488	4.12	-95	GROY TURBIO	
1105	1 12.90	.5	6.50	13.4	1007	168	3.58	-82	Poreu	
1115	2 /3.00	105	6.52	13.8	1030	71.5	3.14	-77		1
1/25	3 13.04	2	6.53	13.5	1024	5d.4	3,03	-40		
1135	4 13.04	2.5	6.59	12.6	1022	47.5	2.88	-84	CLAN VORLO	Opur
1145	5 13.06	3.25	6.59	13.0	1030	28.5	2.28	-77		
1150	6 13.05	4	6.58	13.2	1030	28		-77	l l	
	7	14						,		
	8									
	9									
	10									
	Information:								100	
1205	s1 /3.04	4.5	6.56	13.4	1/30	27	2.08	`77	CHERR. POTRE	1
	S2 / 3.04	5	6.57	13.5	1035	13-3	2.04	-73		

Well No	. М	W - 6	Diameter (in	ches):	17	Sample Dat	te / Time: /2	7-19	1500
Product Dept	th (fbTOR):		Water Colur	nn (ft): 7 · :	94	DTW when	sampled:	7.00 1	
DTW (static)	(fbTOR): //	.21	One Well Vo			Purge & Sample			
Total Depth (fbTOR): / 8.3 2 Total Volume Purged (gal):				59AL	Purge Meth	od: Typ	moon p	ump	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1350	o Initial	0	5.78	10.7	887	428	3.14	- 84	GROY / LIGHT
1400	1 11.19	150	5.88	11.6	873	862	3.05	-81	1
1410	2 11. 25	1.25	4.05	11.6	871	181	3.03	-67	
1420	3 11.7.3	2	6.10	11.7	874	148	3.01	182	Clara / LILLY
1430	4 11.94	2.5	6.18	12.2	885	98	2,52	-83	
1440	5 12.04	3.25	6.29	12.3	899	74	2.44	-86	
1450	6 12.00	4	6.34	12.4	901	43	3.36	-85	
9.7	7			31 3					
1	8								
	9								
	10							_	
Sample In	nformation:		70	v					0
1500	S1 12.00	4.5	6.47	12.5	906	41	2.92	~85	18TROUDON
	S2 12.00	5	6.5	19.5	910	37	3.01	-83	Clion/LIh129
							Stab	ollization Criteria	

REMARKS:

*** MW-5 - BLIND DUP SHOWN ON TOP OF WATER

Note: All measurements are in feet, distance from top of riser.

Volume Calculation

Diam. Vol. (g/ft)

1" 0.041

2" 0.163

4" 0.653

6" 1.469

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

PREPARED BY:

Project Name: 229 Homer St - Homer Street Redevelopment, LLC Date: 12-4-19

Location: Olean, NY Project No.: T0311-018-001 Field Team: CFD

Well No	. M	W - 7	Diameter (in	iches): 2"		Sample Date / Time: /2-7-19 / /230				
Product Dep	oth (fbTOR):	-	Water Colur	nn (ft): 7.0	9	DTW when	sampled:	12.5		
DTW (static)) (fbTOR): 15	7.08	One Well Volume (gal): 1,15			Purpose: Development Sample Furge & Samp			e Purge & Sample	
Total Depth	(fbTOR):	19.17	Total Volum	e Purged (gal):	5546	Purge Meth	od: Type	war Du	V-V3	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1120	o Initial	0	6.32	11.8	9621	73)	3.16	~80	Garay Claroy 7	
1125	1 12.22	,50	6.51	11.9	965.2	522	2.47	~ 89	STREME POTED	
1130	2 12.47	1.25	6.53	12.0	963.4	485	2.02	-97	7	
1145	3 12.50	2	6.54	12.4	9104.1	125	1.79	-94	2 1 10	
1150	4 12.50	3	10.56	12-5	964.2	63	1.66	-76	C'GAR / 1000	
1200	5 1250	3.5	6.58	12.6	964.2	47	1.37	-57	7	
1210	6 12.51	4	6.63	12.8	962.1	41	1.11	-74		
	8								,	
	nformation:									
	S1 12.50	4.5	4.68	12.5	961.7	38	1,07	-97	Class	
	S2 12-50	5	6.68	12.7.	961.5	35	1.04	-76	Pureo oper	

Well No).		Diameter (in	nches):		Sample Date	e / Time:			
Product De	oth (fbTOR):		Water Colur	mn (ft):		DTW when	sampled:			
DTW (statio) (fbTOR):		One Well Vo	olume (gal):		Purpose: Development Sample Purge & Samp			Purge & Sample	
Total Depth	Total Depth (fbTOR): Total Volume Pur			e Purged (gal):	ged (gal): Purge Method:					
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity DO ORP (NTU) (mg/L) (mV)			Appearance & Odor	
	o Initial									
	1									
	2									
	3									
	4									
	5									
	6									
	7									
	В									
	9									
	10									
Sample I	nformation:									
	S1									
	S2									

Stabilization Criteria **REMARKS:** Volume Calculation Parameter Criteria Diam. Vol. (g/ft) рΗ ± 0.1 unit 0.041 1" SC ± 3% 2" 0.163 Turbidity ± 10% 4" 0.653 DO ± 0.3 mg/L Note: All measurements are in feet, distance from top of riser. 1.469 ORP ± 10 mV

PREPARED BY:

ANALYTICAL REPORT

Lab Number: L1957918

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski
Phone: (716) 856-0599
Project Name: 229 HOMER ST

Project Number: T0311-018-001

Report Date: 12/11/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1957918 **Report Date:** 12/11/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1957918-01	MW-2	WATER	OLEAN, NY	12/03/19 10:45	12/04/19
L1957918-02	MW-5	WATER	OLEAN, NY	12/03/19 12:15	12/04/19
L1957918-03	MW-4	WATER	OLEAN, NY	12/03/19 13:30	12/04/19
L1957918-04	MW-6	WATER	OLEAN, NY	12/03/19 15:00	12/04/19
L1957918-05	MW-3	WATER	OLEAN, NY	12/04/19 10:30	12/04/19
L1957918-06	MW-7	WATER	OLEAN, NY	12/04/19 12:30	12/04/19
L1957918-07	MW-1	WATER	OLEAN, NY	12/04/19 13:30	12/04/19
L1957918-08	BLIND DUP	WATER	OLEAN, NY	12/03/19 12:45	12/04/19
L1957918-09	TRIP BLANK	WATER	OLEAN, NY	12/03/19 00:00	12/04/19

 Project Name:
 229 HOMER ST
 Lab Number:
 L1957918

 Project Number:
 T0311-018-001
 Report Date:
 12/11/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 229 HOMER ST
 Lab Number:
 L1957918

 Project Number:
 T0311-018-001
 Report Date:
 12/11/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1957918-09: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/11/19

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-01 Date Collected: 12/03/19 10:45

Client ID: MW-2 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 19:23

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-01 Date Collected: 12/03/19 10:45

Client ID: MW-2 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	3.4	J	ug/l	10	0.40	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-01 Date Collected: 12/03/19 10:45

Client ID: MW-2 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	57.4	J	ug/l	1
Unknown Cyclohexane	4.55	J	ug/l	1
Unknown	3.89	J	ug/l	1
Pentane, 2,3-dimethyl-	6.85	NJ	ug/l	1
3-Phenylbut-1-ene	3.31	NJ	ug/l	1
Unknown	3.88	J	ug/l	1
Butane, 2,2-dimethyl-	4.76	NJ	ug/l	1
Cyclohexane, 1,1-dimethyl-	10.1	NJ	ug/l	1
Unknown Cyclohexane	5.90	J	ug/l	1
Cyclopentane, 1,2,4-trimethyl-	4.52	NJ	ug/l	1
Butane, 2,3-Dimethyl-	9.68	NJ	ug/l	1

% Recovery	Acceptance Qualifier Criteria	
108	70-130	
111	70-130	
113	70-130	
105	70-130	
	108 111 113	% Recovery Qualifier Criteria 108 70-130 111 70-130 113 70-130

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-02 Date Collected: 12/03/19 12:15

Client ID: MW-5 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 19:46

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-02 Date Collected: 12/03/19 12:15

Client ID: MW-5 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	1.5	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	3.6	J	ug/l	10	0.40	1	

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-02 Date Collected: 12/03/19 12:15

Client ID: MW-5 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	47.7	J	ug/l	1
Unknown Naphthalene	3.25	J	ug/l	1
Unknown Aromatic	3.87	J	ug/l	1
Unknown	3.27	J	ug/l	1
Pentane, 2,3-dimethyl-	6.10	NJ	ug/l	1
Unknown Aromatic	3.59	J	ug/l	1
Unknown Cyclohexane	5.81	J	ug/l	1
Unknown Aromatic	4.81	J	ug/l	1
Unknown Cyclohexane	3.49	J	ug/l	1
Cyclopentane, 1,2,4-trimethyl-	4.80	NJ	ug/l	1
Cyclohexane, 1,1-dimethyl-	8.71	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	112	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	104	70-130	

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-03 Date Collected: 12/03/19 13:30

Client ID: MW-4 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 20:09

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-03 Date Collected: 12/03/19 13:30

Client ID: MW-4 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.9	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds				
Total TIC Compounds	2.93	J	ug/l	1
Sulfur Dioxide	2.93	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	103	70-130	

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-04 Date Collected: 12/03/19 15:00

Client ID: MW-6 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 20:33

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-04 Date Collected: 12/03/19 15:00

Client ID: MW-6 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	1.4	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	11		ug/l	10	0.40	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-04 Date Collected: 12/03/19 15:00

Client ID: MW-6 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	66.4	J	ug/l	1
Butane, 2,3-Dimethyl-	13.7	NJ	ug/l	1
Cyclopentane, 1,2,4-trimethyl-	4.59	NJ	ug/l	1
Unknown	6.72	J	ug/l	1
Butane, 2,2-dimethyl-	6.35	NJ	ug/l	1
Cyclohexane, 1,1-dimethyl-	5.84	NJ	ug/l	1
Pentane, 2,4-dimethyl-	4.12	NJ	ug/l	1
Unknown Cyclohexane	8.14	J	ug/l	1
Pentane, 2,3-dimethyl-	7.97	NJ	ug/l	1
Unknown Cyclohexane	4.17	J	ug/l	1
Unknown Cycloalkane	4.77	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	110	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	99	70-130	

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-05 Date Collected: 12/04/19 10:30

Client ID: MW-3 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 22:28

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-05 Date Collected: 12/04/19 10:30

Client ID: MW-3 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	1.9	J	ug/l	10	0.40	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-05 Date Collected: 12/04/19 10:30

Client ID: MW-3 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	24.2	J	ug/l	1
Cyclopentane, 1,2,4-trimethyl-	2.26	NJ	ug/l	1
Pentane, 2,4-dimethyl-	2.02	NJ	ug/l	1
Cyclohexane, 1,1-dimethyl-	2.91	NJ	ug/l	1
Cyclohexane, 1,1,3-trimethyl-	1.18	NJ	ug/l	1
Unknown Cyclohexane	1.35	J	ug/l	1
Butane, 2,3-Dimethyl-	5.45	NJ	ug/l	1
Unknown	1.38	J	ug/l	1
Unknown	2.65	J	ug/l	1
Unknown	1.41	J	ug/l	1
Pentane, 2,3-dimethyl-	3.61	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	99	70-130	

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-06 Date Collected: 12/04/19 12:30

Client ID: MW-7 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 20:56

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-06 Date Collected: 12/04/19 12:30

Client ID: MW-7 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	1.0	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	23		ug/l	10	0.40	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-06 Date Collected: 12/04/19 12:30

Client ID: MW-7 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	113	J	ug/l	1
Butane, 2,2-dimethyl-	9.60	NJ	ug/l	1
Cyclohexane, 1,1-dimethyl-	12.1	NJ	ug/l	1
Unknown Cycloalkane	12.1	J	ug/l	1
Unknown Cyclohexane	11.2	J	ug/l	1
Unknown Benzene	9.63	J	ug/l	1
Unknown Cycloalkane	9.11	J	ug/l	1
Cyclopentane, 1,2,4-trimethyl-	6.47	NJ	ug/l	1
Unknown Cyclohexane	9.17	J	ug/l	1
Pentane, 2,3-dimethyl-	12.3	NJ	ug/l	1
Butane, 2,3-Dimethyl-	21.4	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	100	70-130	

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-07 Date Collected: 12/04/19 13:30

Client ID: MW-1 Date Received: 12/04/19

Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 21:19

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 229 HOMER ST L1957918

Project Number: Report Date: T0311-018-001 12/11/19

SAMPLE RESULTS

Lab ID: Date Collected: 12/04/19 13:30 L1957918-07

Client ID: Date Received: MW-1 12/04/19 Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Styrene	ND		ug/l	2.5	0.70	1				
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1				
Acetone	2.3	J	ug/l	5.0	1.5	1				
Carbon disulfide	ND		ug/l	5.0	1.0	1				
2-Butanone	ND		ug/l	5.0	1.9	1				
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1				
2-Hexanone	ND		ug/l	5.0	1.0	1				
Bromochloromethane	ND		ug/l	2.5	0.70	1				
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1				
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl Acetate	ND		ug/l	2.0	0.23	1				
Cyclohexane	ND		ug/l	10	0.27	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
Freon-113	ND		ug/l	2.5	0.70	1				
Methyl cyclohexane	ND		ug/l	10	0.40	1				

Tentatively Identified Compounds				
Total TIC Compounds	4.15	J	ug/l	1
Unknown	4.15	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	110	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	101	70-130	

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-08 Date Collected: 12/03/19 12:45

Client ID: BLIND DUP Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 21:42

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-08 Date Collected: 12/03/19 12:45

Client ID: BLIND DUP Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Styrene	ND		ug/l	2.5	0.70	1				
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1				
Acetone	1.5	J	ug/l	5.0	1.5	1				
Carbon disulfide	ND		ug/l	5.0	1.0	1				
2-Butanone	ND		ug/l	5.0	1.9	1				
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1				
2-Hexanone	ND		ug/l	5.0	1.0	1				
Bromochloromethane	ND		ug/l	2.5	0.70	1				
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1				
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl Acetate	ND		ug/l	2.0	0.23	1				
Cyclohexane	ND		ug/l	10	0.27	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
Freon-113	ND		ug/l	2.5	0.70	1				
Methyl cyclohexane	3.4	J	ug/l	10	0.40	1				

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-08 Date Collected: 12/03/19 12:45

Client ID: BLIND DUP Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	47.0	J	ug/l	1
Unknown Aromatic	4.79	J	ug/l	1
Unknown Aromatic	3.31	J	ug/l	1
Cyclohexane, 1,1-dimethyl-	8.51	NJ	ug/l	1
Unknown Cyclohexane	5.84	J	ug/l	1
Pentane, 2,3-dimethyl-	5.93	NJ	ug/l	1
Unknown Aromatic	3.30	J	ug/l	1
Unknown Naphthalene	3.25	J	ug/l	1
Unknown Cyclohexane	3.55	J	ug/l	1
Cyclopentane, 1,2,4-trimethyl-	4.64	NJ	ug/l	1
Unknown Aromatic	3.87	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	113	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	101	70-130	

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-09 Date Collected: 12/03/19 00:00

Client ID: TRIP BLANK Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/08/19 22:05

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Wes	Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1				
Chloroform	ND		ug/l	2.5	0.70	1				
Carbon tetrachloride	ND		ug/l	0.50	0.13	1				
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1				
Dibromochloromethane	ND		ug/l	0.50	0.15	1				
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1				
Tetrachloroethene	ND		ug/l	0.50	0.18	1				
Chlorobenzene	ND		ug/l	2.5	0.70	1				
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1				
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1				
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1				
Bromodichloromethane	ND		ug/l	0.50	0.19	1				
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1				
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1				
Bromoform	ND		ug/l	2.0	0.65	1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1				
Benzene	ND		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Chloromethane	ND		ug/l	2.5	0.70	1				
Bromomethane	ND		ug/l	2.5	0.70	1				
Vinyl chloride	ND		ug/l	1.0	0.07	1				
Chloroethane	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1				
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Trichloroethene	ND		ug/l	0.50	0.18	1				
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1				

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-09 Date Collected: 12/03/19 00:00

Client ID: TRIP BLANK Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Styrene	ND		ug/l	2.5	0.70	1				
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1				
Acetone	2.0	J	ug/l	5.0	1.5	1				
Carbon disulfide	ND		ug/l	5.0	1.0	1				
2-Butanone	ND		ug/l	5.0	1.9	1				
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1				
2-Hexanone	ND		ug/l	5.0	1.0	1				
Bromochloromethane	ND		ug/l	2.5	0.70	1				
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1				
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl Acetate	ND		ug/l	2.0	0.23	1				
Cyclohexane	ND		ug/l	10	0.27	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
Freon-113	ND		ug/l	2.5	0.70	1				
Methyl cyclohexane	ND		ug/l	10	0.40	1				

Tentatively Identified Compounds				
Total TIC Compounds	4.27	J	ug/l	1
Unknown	4.27	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	100	70-130	

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/08/19 17:05

Analyst: AD

arameter	Result	Qualifier Uni	ts	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	o for sample(s):	01-09	Batch:	WG1318621-5
Methylene chloride	ND	ug	ı/I	2.5	0.70
1,1-Dichloroethane	ND	ug	ı/l	2.5	0.70
Chloroform	ND	ug	ı/l	2.5	0.70
Carbon tetrachloride	ND	ug	ı/l	0.50	0.13
1,2-Dichloropropane	ND	ug	ı/l	1.0	0.14
Dibromochloromethane	ND	ug	ı/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug	ı/l	1.5	0.50
Tetrachloroethene	ND	ug	ı/l	0.50	0.18
Chlorobenzene	ND	ug	ı/l	2.5	0.70
Trichlorofluoromethane	ND	ug	ı/l	2.5	0.70
1,2-Dichloroethane	ND	ug	ı/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug	ı/l	2.5	0.70
Bromodichloromethane	ND	ug	ı/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug	ı/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug	ı/l	0.50	0.14
Bromoform	ND	ug	ı/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug	ı/I	0.50	0.17
Benzene	ND	ug	ı/l	0.50	0.16
Toluene	ND	ug	ı/l	2.5	0.70
Ethylbenzene	ND	ug	ı/l	2.5	0.70
Chloromethane	ND	ug	ı/l	2.5	0.70
Bromomethane	ND	ug	ı/l	2.5	0.70
Vinyl chloride	ND	ug	ı/l	1.0	0.07
Chloroethane	ND	ug	ı/I	2.5	0.70
1,1-Dichloroethene	ND	ug	ı/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug	ı/I	2.5	0.70
Trichloroethene	ND	ug	ı/I	0.50	0.18
1,2-Dichlorobenzene	ND	ug	ı/I	2.5	0.70
1,3-Dichlorobenzene	ND	ug	ı/l	2.5	0.70

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/08/19 17:05

Analyst: AD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lal	o for sample(s): 01-09	Batch:	WG1318621-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/08/19 17:05

Analyst: AD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-09 Batch: WG1318621-5

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	111	70-130
4-Bromofluorobenzene	109	70-130
Dibromofluoromethane	101	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST

Project Number: T0311-018-001

Lab Number: L1957918

Report Date: 12/11/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	01-09 Batch: \	WG1318621-3	WG1318621-4			
Methylene chloride	94		95		70-130	1		20
1,1-Dichloroethane	90		92		70-130	2		20
Chloroform	91		92		70-130	1		20
Carbon tetrachloride	85		87		63-132	2		20
1,2-Dichloropropane	96		98		70-130	2		20
Dibromochloromethane	93		96		63-130	3		20
1,1,2-Trichloroethane	110		110		70-130	0		20
Tetrachloroethene	94		93		70-130	1		20
Chlorobenzene	95		97		75-130	2		20
Trichlorofluoromethane	70		70		62-150	0		20
1,2-Dichloroethane	93		92		70-130	1		20
1,1,1-Trichloroethane	87		89		67-130	2		20
Bromodichloromethane	94		93		67-130	1		20
trans-1,3-Dichloropropene	85		82		70-130	4		20
cis-1,3-Dichloropropene	89		89		70-130	0		20
Bromoform	93		96		54-136	3		20
1,1,2,2-Tetrachloroethane	110		120		67-130	9		20
Benzene	92		93		70-130	1		20
Toluene	100		100		70-130	0		20
Ethylbenzene	99		100		70-130	1		20
Chloromethane	62	Q	64		64-130	3		20
Bromomethane	76		76		39-139	0		20
Vinyl chloride	72		72		55-140	0		20

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST

Project Number: T0311-018-001

Lab Number: L1957918

Report Date: 12/11/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	01-09 Batch: \	NG1318621-3	WG1318621-4				
Chloroethane	83		86		55-138	4		20	
1,1-Dichloroethene	88		88		61-145	0		20	
trans-1,2-Dichloroethene	90		92		70-130	2		20	
Trichloroethene	84		84		70-130	0		20	
1,2-Dichlorobenzene	96		100		70-130	4		20	
1,3-Dichlorobenzene	98		100		70-130	2		20	
1,4-Dichlorobenzene	94		98		70-130	4		20	
Methyl tert butyl ether	100		98		63-130	2		20	
p/m-Xylene	100		100		70-130	0		20	
o-Xylene	100		105		70-130	5		20	
cis-1,2-Dichloroethene	96		94		70-130	2		20	
Styrene	105		110		70-130	5		20	
Dichlorodifluoromethane	44		45		36-147	2		20	
Acetone	100		110		58-148	10		20	
Carbon disulfide	79		80		51-130	1		20	
2-Butanone	100		94		63-138	6		20	
4-Methyl-2-pentanone	110		100		59-130	10		20	
2-Hexanone	92		94		57-130	2		20	
Bromochloromethane	97		100		70-130	3		20	
1,2-Dibromoethane	110		110		70-130	0		20	
1,2-Dibromo-3-chloropropane	91		99		41-144	8		20	
Isopropylbenzene	100		100		70-130	0		20	
1,2,3-Trichlorobenzene	81		98		70-130	19		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1957918

Report Date:

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-09	Batch:	WG1318621-3	WG1318621-4				
1,2,4-Trichlorobenzene	88			97		70-130	10		20	
Methyl Acetate	100			100		70-130	0		20	
Cyclohexane	94			92		70-130	2		20	
1,4-Dioxane	86			96		56-162	11		20	
Freon-113	84			84		70-130	0		20	
Methyl cyclohexane	89			89		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	102	70-130
Toluene-d8	112	112	70-130
4-Bromofluorobenzene	108	108	70-130
Dibromofluoromethane	102	103	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1957918

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-3	Westborough	Lab Ass	ociated sample(s): 01-09 (QC Batch ID	: WG13186	621-6 WG1318	8621-7	QC Sample	: L1957	7918-05	Client ID:
Methylene chloride	ND	10	10	100		11	110		70-130	10		20
1,1-Dichloroethane	ND	10	10	100		11	110		70-130	10		20
Chloroform	ND	10	9.8	98		10	100		70-130	2		20
Carbon tetrachloride	ND	10	9.3	93		10	100		63-132	7		20
1,2-Dichloropropane	ND	10	11	110		11	110		70-130	0		20
Dibromochloromethane	ND	10	9.7	97		10	100		63-130	3		20
1,1,2-Trichloroethane	ND	10	12	120		12	120		70-130	0		20
Tetrachloroethene	ND	10	10	100		11	110		70-130	10		20
Chlorobenzene	ND	10	10	100		11	110		75-130	10		20
Trichlorofluoromethane	ND	10	7.8	78		8.3	83		62-150	6		20
1,2-Dichloroethane	ND	10	9.4	94		9.8	98		70-130	4		20
1,1,1-Trichloroethane	ND	10	9.8	98		10	100		67-130	2		20
Bromodichloromethane	ND	10	9.7	97		10	100		67-130	3		20
rans-1,3-Dichloropropene	ND	10	7.9	79		8.3	83		70-130	5		20
cis-1,3-Dichloropropene	ND	10	9.0	90		9.8	98		70-130	9		20
Bromoform	ND	10	9.2	92		9.8	98		54-136	6		20
1,1,2,2-Tetrachloroethane	ND	10	12	120		12	120		67-130	0		20
Benzene	ND	10	10	100		11	110		70-130	10		20
Toluene	ND	10	11	110		12	120		70-130	9		20
Ethylbenzene	ND	10	11	110		12	120		70-130	9		20
Chloromethane	ND	10	7.4	74		8.0	80		64-130	8		20
Bromomethane	ND	10	5.9	59		6.6	66		39-139	11		20
Vinyl chloride	ND	10	9.0	90		9.5	95		55-140	5		20

Matrix Spike Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1957918

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD d %Recovery	⁄ Qual	Recovery Limits	RPD		RPD Limits
Volatile Organics by GC/MS MW-3	- Westborough	Lab Assoc	ciated sample	(s): 01-09 Q0	Batch ID: WG131	8621-6 WG13 ²	18621-7	QC Sample	e: L1957	7918-05	Client ID:
Chloroethane	ND	10	9.7	97	10	100		55-138	3		20
1,1-Dichloroethene	ND	10	10	100	11	110		61-145	10		20
trans-1,2-Dichloroethene	ND	10	10	100	11	110		70-130	10		20
Trichloroethene	ND	10	9.5	95	10	100		70-130	5		20
1,2-Dichlorobenzene	ND	10	10	100	11	110		70-130	10		20
1,3-Dichlorobenzene	ND	10	10	100	11	110		70-130	10		20
1,4-Dichlorobenzene	ND	10	9.9	99	11	110		70-130	11		20
Methyl tert butyl ether	ND	10	8.9	89	9.4	94		63-130	5		20
o/m-Xylene	ND	20	21	105	23	115		70-130	9		20
o-Xylene	ND	20	22	110	24	120		70-130	9		20
cis-1,2-Dichloroethene	ND	10	11	110	11	110		70-130	0		20
Styrene	ND	20	23	115	24	120		70-130	4		20
Dichlorodifluoromethane	ND	10	5.1	51	5.2	52		36-147	2		20
Acetone	3.1J	10	10	100	10	100		58-148	0		20
Carbon disulfide	ND	10	9.1	91	9.9	99		51-130	8		20
2-Butanone	ND	10	20	200	Q 21	210	Q	63-138	5		20
4-Methyl-2-pentanone	ND	10	11	110	12	120		59-130	9		20
2-Hexanone	ND	10	9.5	95	10	100		57-130	5		20
Bromochloromethane	ND	10	11	110	11	110		70-130	0		20
1,2-Dibromoethane	ND	10	11	110	11	110		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	9.6	96	11	110		41-144	14		20
sopropylbenzene	ND	10	11	110	12	120		70-130	9		20
1,2,3-Trichlorobenzene	ND	10	8.7	87	10	100		70-130	14		20

Matrix Spike Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1957918

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-3	- Westborough	Lab Assoc	ciated sample(s	s): 01-09 C	C Batch ID:	WG13186	621-6 WG1318	3621-7	QC Sample	: L1957	7918-05	Client ID:
1,2,4-Trichlorobenzene	ND	10	9.9	99		11	110		70-130	11		20
Methyl Acetate	ND	10	10	100		10	100		70-130	0		20
Cyclohexane	ND	10	10	100		11	110		70-130	10		20
1,4-Dioxane	ND	500	500	100		520	104		56-162	4		20
Freon-113	ND	10	9.3	93		10	100		70-130	7		20
Methyl cyclohexane	1.9J	10	12	120		13	130		70-130	8		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	99	98	70-130
4-Bromofluorobenzene	108	108	70-130
Dibromofluoromethane	100	101	70-130
Toluene-d8	111	111	70-130

SEMIVOLATILES

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-01 Date Collected: 12/03/19 10:45

Client ID: MW-2 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 12/07/19 13:35

Analytical Method: 1,8270D Extraction Date: 12/07/19 13:35
Analytical Date: 12/10/19 05:16

Analyst: JG

3,3*-Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4*-Dinitrotoluene ND ug/l 5.0 1.2 1 2,6*-Dinitrotoluene ND ug/l 5.0 0.93 1 4*-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4*-Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorosthosy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.69 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Slophoroe ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 2.0 0.77 1 NITrotophylatrialate ND ug/l 5.0 0.64 1 Bis(2-ethylatrialate ND ug/l	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND	Semivolatile Organics by GC/MS - We	estborough Lab					
ND	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Ektorophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorospropylpteher ND ug/l 2.0 0.53 1 Bis(2-chlorospropylpteher ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.59 1 Isophorone ND ug/l 5.0 0.50 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.42 1 ND ug/l 5.0 0.64 1 Isophorone ND ug/l 5.0 0.64 1 I	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Horizopane ND ug/l 5.0 0.77 1 NItrobenzene ND ug/l 2.0 0.77 1 NItrobenzene ND ug/l 2.0 0.77 1 NItrobenzene ND ug/l 2.0 0.77 1 NItrobenzene ND ug/l 5.0 1.2 1 NItrobenzene ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.8 J ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-cyclphthalate ND ug/l 5.0 0.38 1 Di-n-cyclphthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.66 1 A-Chloroaniline ND ug/l 5.0 0.50 1.1 1 Di-n-cylline ND ug/l 5.0 0.50 1.1 1 Di-n-cylline ND ug/l 5.0 0.50 1 Di-n-tylline ND ug/l 5.0 0.50 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroispropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroispropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.77 1 Invitrobenzene ND ug/l 2.0 0.77 1 Invitrobenzene ND ug/l 2.0 0.77 1 Invitrobenzene ND ug/l 2.0 0.42 1 Invitrobenzene ND ug/l 5.0 0.64 1 Invitrobenzene ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 1 Din-butyl phthalate ND ug/l 5.0 0.39 1 Din-butylphthalate ND ug/l 5.0 0.38 1 Din-butylphthalate ND ug/l 5.0 0.38 1 Din-butylphthalate ND ug/l 5.0 0.38 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.38 1 Din-cotylphthalate ND ug/l 5.0 0.38 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.38 1 Din-cotylphthalate ND ug/l 5.0 0.38 1 Din-cotylphthalate ND ug/l 5.0 0.38 1 Din-cotylphthalate ND ug/l 5.0 0.80 1 Bis(2-ethylexyl)phthalate ND ug/l 5.0 0.50 1 Bis(2-ethylexyl)ph	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroisopropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND ug/l 20 0.69 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
ND	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.8 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 1.3 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Sighenyl ND ug/l 5.0 1.8 1 Sighenyl ND ug/l 5.0 0.66 1 Sighenyl Si	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
NDPA/DPA	Isophorone	ND		ug/l	5.0	1.2	1
ND	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cotylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.46 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone ND ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	1.8	J	ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.1 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate ND ug/l 5.0 1.8 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Biphenyl	Diethyl phthalate	ND		ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
· ·	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-01 Date Collected: 12/03/19 10:45

Client ID: MW-2 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1			
2-Chlorophenol	ND		ug/l	2.0	0.48	1			
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1			
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1			
2-Nitrophenol	ND		ug/l	10	0.85	1			
4-Nitrophenol	ND		ug/l	10	0.67	1			
2,4-Dinitrophenol	ND		ug/l	20	6.6	1			
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1			
Phenol	ND		ug/l	5.0	0.57	1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1			
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1			
Carbazole	ND		ug/l	2.0	0.49	1			
Atrazine	ND		ug/l	10	0.76	1			
Benzaldehyde	ND		ug/l	5.0	0.53	1			
Caprolactam	ND		ug/l	10	3.3	1			
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1			

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-01 Date Collected: 12/03/19 10:45

Client ID: MW-2 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	214	J	ug/l	1
Unknown	17.7	J	ug/l	1
Unknown	8.62	J	ug/l	1
Unknown	8.69	J	ug/l	1
Unknown	8.94	J	ug/l	1
Unknown	11.8	J	ug/l	1
Unknown	9.85	J	ug/l	1
Unknown	16.3	J	ug/l	1
Aldol Condensates (A)	39.4	J	ug/l	1
Unknown	8.65	J	ug/l	1
Unknown	9.31	J	ug/l	1
Unknown Organic Acid	11.8	J	ug/l	1
Unknown	15.5	J	ug/l	1
Unknown Ketone	18.9	J	ug/l	1
Unknown	14.2	J	ug/l	1
Unknown	14.6	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	92	21-120
Phenol-d6	77	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	97	10-120
4-Terphenyl-d14	81	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-01 Date Collected: 12/03/19 10:45

Client ID: MW-2 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/07/19 13:32
Analytical Date: 12/08/19 20:37

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.05	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.11		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.03	J	ug/l	0.10	0.01	1			
Chrysene	0.03	J	ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	0.04	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	1			
Fluorene	0.13		ug/l	0.10	0.01	1			
Phenanthrene	0.08	J	ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	0.03	J	ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	0.03	J	ug/l	0.10	0.01	1			
Pyrene	0.04	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	0.06	J	ug/l	0.10	0.02	1			
Pentachlorophenol	0.18	J	ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-01 Date Collected: 12/03/19 10:45

Client ID: MW-2 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	90		21-120
Phenol-d6	78		10-120
Nitrobenzene-d5	107		23-120
2-Fluorobiphenyl	100		15-120
2,4,6-Tribromophenol	150	Q	10-120
4-Terphenyl-d14	121		41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-02 Date Collected: 12/03/19 12:15

Client ID: MW-5 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 12/07/19 13:35

Analytical Method: 1,8270D Extraction Date: 12/07/19 13:35
Analytical Date: 12/10/19 05:42

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	1.9	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-02 Date Collected: 12/03/19 12:15

Client ID: MW-5 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1			
2-Chlorophenol	ND		ug/l	2.0	0.48	1			
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1			
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1			
2-Nitrophenol	ND		ug/l	10	0.85	1			
4-Nitrophenol	ND		ug/l	10	0.67	1			
2,4-Dinitrophenol	ND		ug/l	20	6.6	1			
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1			
Phenol	ND		ug/l	5.0	0.57	1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1			
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1			
Carbazole	ND		ug/l	2.0	0.49	1			
Atrazine	ND		ug/l	10	0.76	1			
Benzaldehyde	ND		ug/l	5.0	0.53	1			
Caprolactam	ND		ug/l	10	3.3	1			
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1			

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-02 Date Collected: 12/03/19 12:15

Client ID: MW-5 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	87.6	J	ug/l	1
Unknown	2.69	J	ug/l	1
Unknown	2.84	J	ug/l	1
Unknown Naphthalene	3.78	J	ug/l	1
Unknown Ketone	4.29	J	ug/l	1
Unknown	2.44	J	ug/l	1
Unknown Benzene	3.38	J	ug/l	1
Unknown	3.67	J	ug/l	1
Unknown Naphthalene	2.54	J	ug/l	1
Aldol Condensates (A)	8.73	J	ug/l	1
Naphthalene, 1-methyl-	2.62	NJ	ug/l	1
Unknown	2.62	J	ug/l	1
Unknown	2.73	J	ug/l	1
Aldol Condensates (A)	38.2	J	ug/l	1
Unknown	3.78	J	ug/l	1
Unknown Naphthalene	3.27	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	56	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	55	23-120
2-Fluorobiphenyl	54	15-120
2,4,6-Tribromophenol	67	10-120
4-Terphenyl-d14	58	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-02 Date Collected: 12/03/19 12:15

Client ID: MW-5 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/07/19 13:32
Analytical Date: 12/08/19 20:53

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.18		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.03	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.07	J	ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Chrysene	0.02	J	ug/l	0.10	0.01	1			
Acenaphthylene	0.05	J	ug/l	0.10	0.01	1			
Anthracene	0.05	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	0.33		ug/l	0.10	0.01	1			
Phenanthrene	0.11		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	0.03	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	0.03	J	ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-02 Date Collected: 12/03/19 12:15

Client ID: MW-5 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	79	21-120
Phenol-d6	69	10-120
Nitrobenzene-d5	102	23-120
2-Fluorobiphenyl	82	15-120
2,4,6-Tribromophenol	109	10-120
4-Terphenyl-d14	101	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-03 Date Collected: 12/03/19 13:30

Client ID: MW-4 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 12/07/19 13:35

Analytical Method: 1,8270D Extraction Date: 12/07/19 13:35
Analytical Date: 12/10/19 06:09

Analyst: JG

Bis(2-chloroethyl)ether	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
3.3-Dichloroberzidine ND ug/l 5.0 1.6 1 2.4-Dinitrotoluene ND ug/l 5.0 1.2 1 2.4-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 8-Bis(2-chloriospropyl)ether ND ug/l 2.0 0.53 1 8-Bis(2-chloriospropyl)ether ND ug/l 2.0 0.53 1 8-Bis(2-chloropethoxylmethane ND ug/l 2.0 0.50 1 8-Bis(2-chloropethoxylmethane ND ug/l 2.0 0.69 1 8-Bis(2-chloropethoxylmethane ND ug/l 2.0 0.69 1 8-Bis(2-chloropethoxylmethane ND ug/l 2.0 0.69 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.50 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.69 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.69 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.69 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.42 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.42 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.64 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.39 1 8-Bis(2-chloropethoxylmethane ND ug/l 5.0 0.39 1 8-Bis(2-chloropethalate ND ug/l 5.0 0.39 1 8-Bis(2-chloropethalate ND ug/l 5.0 0.38 1 8-Bis(2-chloropethalate ND ug/l 5.0 0.50 1 8-Bis(2-chloropethalate ND ug/	Semivolatile Organics by GC/MS - Westborough Lab									
ND	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1			
2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorosepropylether ND ug/l 2.0 0.53 1 Bis(2-chlorosethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Isophorone ND ug/l 5.0 0.50 1 Isophorone ND ug/l 5.0 0.52 1 NItrobenzene ND ug/l 5.0 0.42 1 NDPA/DPA ND ug/l 2.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-chlyfloxyl)phthalate 1.7 J ug/l 5.0 0.64 1 Butyl benzyl phthalate ND ug/l 5.0 <td>3,3'-Dichlorobenzidine</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.6</td> <td>1</td>	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1			
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hoxachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hoxachlorocyclopentadiene ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 5.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.42 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1			
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethlylhexyl)phthalate 1.7 J ug/l 5.0 0.64 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-noctylphthalate ND ug/l 5.0 0.38 1 Dibethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 4-Chloroaniline ND ug/l 5.0 0.80 1 1 4-Nitroaniline ND ug/l 5.0 0.80 1 1 4-Nitroaniline ND ug/l 5.0 0.80 1 1 4-Actophenone ND ug/l 5.0 0.53 1 Actophenone	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1			
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-chly)hexyl)phthalate 1.7 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-otylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.46 1 Bighenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1			
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1			
Hexachlorocyclopentadiene ND ug/l 20 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 In-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.7 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 4-Chloroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1			
Supphorone ND Ug/l 5.0 1.2 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1			
Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.7 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1			
NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 1.7 J ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 2-Nitroaniline ND ug/l 5.0 0.	Isophorone	ND		ug/l	5.0	1.2	1			
ND	Nitrobenzene	ND		ug/l	2.0	0.77	1			
Bis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/l	2.0	0.42	1			
Butyl benzyl phthalate ND ug/l 5.0 1.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1			
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cytylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.46 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone ND ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	1.7	J	ug/l	3.0	1.5	1			
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1			
Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1			
Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1			
Biphenyl	Diethyl phthalate	ND		ug/l	5.0	0.38	1			
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1			
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1			
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1			
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1			
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1			
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1			
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1			
	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1			
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1			
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1			

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-03 Date Collected: 12/03/19 13:30

Client ID: MW-4 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Tentatively Identified Compounds				
Total TIC Compounds	56.7	J	ug/l	1
Unknown	1.74	J	ug/l	1
Aldol Condensates (A)	4.80	J	ug/l	1
Unknown	2.62	J	ug/l	1
Unknown	3.74	J	ug/l	1
Aldol Condensates (A)	43.8	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	52	21-120
Phenol-d6	50	10-120
Nitrobenzene-d5	58	23-120
2-Fluorobiphenyl	55	15-120
2,4,6-Tribromophenol	53	10-120
4-Terphenyl-d14	63	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-03 Date Collected: 12/03/19 13:30

Client ID: MW-4 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/07/19 13:32
Analytical Date: 12/08/19 21:09

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	0.02	J	ug/l	0.20	0.02	1			
Fluoranthene	0.06	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	ND		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.06	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.05	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.07	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.04	J	ug/l	0.10	0.01	1			
Chrysene	0.04	J	ug/l	0.10	0.01	1			
Acenaphthylene	0.02	J	ug/l	0.10	0.01	1			
Anthracene	0.04	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	0.06	J	ug/l	0.10	0.01	1			
Fluorene	0.03	J	ug/l	0.10	0.01	1			
Phenanthrene	0.06	J	ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	0.03	J	ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	0.06	J	ug/l	0.10	0.01	1			
Pyrene	0.06	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	0.03	J	ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	0.04	J	ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-03 Date Collected: 12/03/19 13:30

Client ID: MW-4 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	65	21-120
Phenol-d6	68	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	85	15-120
2,4,6-Tribromophenol	93	10-120
4-Terphenyl-d14	108	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-04 Date Collected: 12/03/19 15:00

Client ID: MW-6 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 12/07/19 13:35

Analytical Method: 1,8270D Extraction Date: 12/07/19 13:35
Analytical Date: 12/10/19 06:35

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1			
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1			
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1			
Isophorone	ND		ug/l	5.0	1.2	1			
Nitrobenzene	ND		ug/l	2.0	0.77	1			
NDPA/DPA	ND		ug/l	2.0	0.42	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1			
Bis(2-ethylhexyl)phthalate	1.7	J	ug/l	3.0	1.5	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1			
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1			
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1			
Diethyl phthalate	ND		ug/l	5.0	0.38	1			
Dimethyl phthalate	ND		ug/l	5.0	1.8	1			
Biphenyl	ND		ug/l	2.0	0.46	1			
4-Chloroaniline	ND		ug/l	5.0	1.1	1			
2-Nitroaniline	ND		ug/l	5.0	0.50	1			
3-Nitroaniline	ND		ug/l	5.0	0.81	1			
4-Nitroaniline	ND		ug/l	5.0	0.80	1			
Dibenzofuran	ND		ug/l	2.0	0.50	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1			
Acetophenone	ND		ug/l	5.0	0.53	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1			

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-04 Date Collected: 12/03/19 15:00

Client ID: MW-6 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-04 Date Collected: 12/03/19 15:00

Client ID: MW-6 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	111	J	ug/l	1
Unknown Benzene	1.67	J	ug/l	1
Unknown Alkane	2.65	J	ug/l	1
Aldol Condensates (A)	42.2	J	ug/l	1
Unknown Benzene	3.42	J	ug/l	1
Unknown Cyclohexane	1.67	J	ug/l	1
Unknown Alkane	1.49	J	ug/l	1
Aldol Condensates (A)	6.04	J	ug/l	1
Unknown Benzene	1.53	J	ug/l	1
Unknown Naphthalene	1.89	J	ug/l	1
Unknown Alkane	2.87	J	ug/l	1
Cyclic Octaatomic Sulfur	34.0	NJ	ug/l	1
Unknown	2.04	J	ug/l	1
Unknown Alkane	4.94	J	ug/l	1
Unknown	1.78	J	ug/l	1
Unknown	2.44	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	57	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	56	23-120
2-Fluorobiphenyl	53	15-120
2,4,6-Tribromophenol	59	10-120
4-Terphenyl-d14	56	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-04 Date Collected: 12/03/19 15:00

Client ID: MW-6 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/07/19 13:32
Analytical Date: 12/08/19 21:25

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.03	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	ND		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Chrysene	0.02	J	ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	0.03	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	0.06	J	ug/l	0.10	0.01	1			
Phenanthrene	0.07	J	ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	0.03	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-04 Date Collected: 12/03/19 15:00

Client ID: MW-6 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	21-120
Phenol-d6	63	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	88	10-120
4-Terphenyl-d14	90	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-05 Date Collected: 12/04/19 10:30

Client ID: MW-3 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 12/07/19 13:35

Analytical Method: 1,8270D Extraction Date: 12/07/19 13:35
Analytical Date: 12/10/19 16:04

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1			
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1			
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1			
Isophorone	ND		ug/l	5.0	1.2	1			
Nitrobenzene	ND		ug/l	2.0	0.77	1			
NDPA/DPA	ND		ug/l	2.0	0.42	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1			
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1			
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1			
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1			
Diethyl phthalate	ND		ug/l	5.0	0.38	1			
Dimethyl phthalate	ND		ug/l	5.0	1.8	1			
Biphenyl	ND		ug/l	2.0	0.46	1			
4-Chloroaniline	ND		ug/l	5.0	1.1	1			
2-Nitroaniline	ND		ug/l	5.0	0.50	1			
3-Nitroaniline	ND		ug/l	5.0	0.81	1			
4-Nitroaniline	ND		ug/l	5.0	0.80	1			
Dibenzofuran	ND		ug/l	2.0	0.50	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1			
Acetophenone	ND		ug/l	5.0	0.53	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1			

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-05 Date Collected: 12/04/19 10:30

Client ID: MW-3 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Tentatively Identified Compounds				
Total TIC Compounds	79.8	J	ug/l	1
Unknown	2.44	J	ug/l	1
Unknown	3.53	J	ug/l	1
Aldol Condensates (A)	4.84	J	ug/l	1
Unknown Siloxane	2.47	J	ug/l	1
Unknown	1.64	J	ug/l	1
Unknown	2.91	J	ug/l	1
Unknown	1.45	J	ug/l	1
Unknown	6.69	J	ug/l	1
Unknown	2.36	J	ug/l	1
Unknown	1.56	J	ug/l	1
Aldol Condensates (A)	47.5	J	ug/l	1
Unknown Alcohol	2.44	J	ug/l	1

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-05 Date Collected: 12/04/19 10:30

Client ID: MW-3 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	71	21-120
Phenol-d6	58	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	109	10-120
4-Terphenyl-d14	85	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-05 Date Collected: 12/04/19 10:30

Client ID: MW-3 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/07/19 13:32
Analytical Date: 12/08/19 21:41

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.04	J	ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.03	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	ND		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1			
Chrysene	0.02	J	ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	0.03	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1			
Fluorene	0.10		ug/l	0.10	0.01	1			
Phenanthrene	0.03	J	ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1			
Pyrene	0.03	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	0.17	J	ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-05 Date Collected: 12/04/19 10:30

Client ID: MW-3 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	94		21-120
Phenol-d6	83		10-120
Nitrobenzene-d5	112		23-120
2-Fluorobiphenyl	92		15-120
2,4,6-Tribromophenol	131	Q	10-120
4-Terphenyl-d14	115		41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-06 Date Collected: 12/04/19 12:30

Client ID: MW-7 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 12/07/19 13:35

Analytical Method: 1,8270D Extraction Date: 12/07/19 13:35
Analytical Date: 12/10/19 16:29

Analyst: JG

		Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-06 Date Collected: 12/04/19 12:30

Client ID: MW-7 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1			
2-Chlorophenol	ND		ug/l	2.0	0.48	1			
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1			
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1			
2-Nitrophenol	ND		ug/l	10	0.85	1			
4-Nitrophenol	ND		ug/l	10	0.67	1			
2,4-Dinitrophenol	ND		ug/l	20	6.6	1			
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1			
Phenol	ND		ug/l	5.0	0.57	1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1			
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1			
Carbazole	ND		ug/l	2.0	0.49	1			
Atrazine	ND		ug/l	10	0.76	1			
Benzaldehyde	ND		ug/l	5.0	0.53	1			
Caprolactam	ND		ug/l	10	3.3	1			
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1			

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-06 Date Collected: 12/04/19 12:30

Client ID: MW-7 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	124	J	ug/l	1
Unknown Naphthalene	5.89	J	ug/l	1
Unknown Organic Acid	26.5	J	ug/l	1
Unknown	2.84	J	ug/l	1
Aldol Condensates (A)	5.56	J	ug/l	1
Unknown	3.13	J	ug/l	1
Aldol Condensates (A)	42.4	J	ug/l	1
Unknown Organic Acid	4.47	J	ug/l	1
Unknown	3.67	J	ug/l	1
Unknown	4.36	J	ug/l	1
Unknown Benzene	3.96	J	ug/l	1
Unknown Benzene	8.07	J	ug/l	1
Unknown Naphthalene	3.20	J	ug/l	1
Unknown Naphthalene	3.49	J	ug/l	1
Unknown	3.45	J	ug/l	1
Unknown Organic Acid	2.73	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	68		21-120
Phenol-d6	56		10-120
Nitrobenzene-d5	71		23-120
2-Fluorobiphenyl	77		15-120
2,4,6-Tribromophenol	121	Q	10-120
4-Terphenyl-d14	85		41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-06 Date Collected: 12/04/19 12:30

Client ID: MW-7 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/07/19 13:32
Analytical Date: 12/08/19 21:56

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.06	J	ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.06	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.07	J	ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.04	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.05	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.04	J	ug/l	0.10	0.01	1			
Chrysene	0.04	J	ug/l	0.10	0.01	1			
Acenaphthylene	0.04	J	ug/l	0.10	0.01	1			
Anthracene	0.05	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	0.04	J	ug/l	0.10	0.01	1			
Fluorene	0.30		ug/l	0.10	0.01	1			
Phenanthrene	0.20		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	0.03	J	ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	0.04	J	ug/l	0.10	0.01	1			
Pyrene	0.05	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	0.04	J	ug/l	0.10	0.02	1			
Pentachlorophenol	0.18	J	ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-06 Date Collected: 12/04/19 12:30

Client ID: MW-7 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	79		21-120
Phenol-d6	69		10-120
Nitrobenzene-d5	98		23-120
2-Fluorobiphenyl	94		15-120
2,4,6-Tribromophenol	135	Q	10-120
4-Terphenyl-d14	116		41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-07 Date Collected: 12/04/19 13:30

Client ID: MW-1 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D Extraction Date: 12/07/19 13:35
Analytical Date: 12/10/19 16:55

Analyst: JG

Semivolatile Organics by GC/MS - Westbord Bis(2-chloroethyl)ether 3,3'-Dichlorobenzidine	ND ND ND ND		ug/l	2.0	0.50	
	ND		ug/l	2.0	0.50	
3,3'-Dichlorobenzidine					0.00	1
	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene			ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	1.9	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-07 Date Collected: 12/04/19 13:30

Client ID: MW-1 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Tentatively Identified Compounds				
Total TIC Compounds	50.5	J	ug/l	1
Aldol Condensates (A)	40.7	J	ug/l	1
Unknown Alcohol	2.62	J	ug/l	1
Unknown Alcohol	1.53	J	ug/l	1
Aldol Condensates (A)	4.00	J	ug/l	1
Unknown Organic Acid	1.67	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	43	10-120
Nitrobenzene-d5	59	23-120
2-Fluorobiphenyl	66	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	73	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-07 Date Collected: 12/04/19 13:30

Client ID: MW-1 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/07/19 13:32
Analytical Date: 12/08/19 22:12

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.07	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	ND		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.05	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.03	J	ug/l	0.10	0.01	1			
Chrysene	0.04	J	ug/l	0.10	0.01	1			
Acenaphthylene	0.02	J	ug/l	0.10	0.01	1			
Anthracene	0.03	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	1			
Fluorene	0.03	J	ug/l	0.10	0.01	1			
Phenanthrene	0.06	J	ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	0.02	J	ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	0.04	J	ug/l	0.10	0.01	1			
Pyrene	0.06	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-07 Date Collected: 12/04/19 13:30

Client ID: MW-1 Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	21-120
Phenol-d6	63	10-120
Nitrobenzene-d5	97	23-120
2-Fluorobiphenyl	87	15-120
2,4,6-Tribromophenol	88	10-120
4-Terphenyl-d14	101	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-08 Date Collected: 12/03/19 12:45

Client ID: BLIND DUP Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D Extraction Date: 12/07/19 13:35
Analytical Date: 12/10/19 08:21

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	1.7	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-08 Date Collected: 12/03/19 12:45

Client ID: BLIND DUP Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-08 Date Collected: 12/03/19 12:45

Client ID: BLIND DUP Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	96.6	J	ug/l	1
Unknown Naphthalene	4.33	J	ug/l	1
Unknown	3.09	J	ug/l	1
Unknown	2.91	J	ug/l	1
Unknown Benzene	4.25	J	ug/l	1
Unknown	3.20	J	ug/l	1
Unknown Ketone	4.87	J	ug/l	1
Unknown Naphthalene	3.45	J	ug/l	1
Naphthalene, 1-methyl-	3.02	NJ	ug/l	1
Unknown Naphthalene	3.20	J	ug/l	1
Unknown Naphthalene	3.96	J	ug/l	1
Unknown	3.31	J	ug/l	1
Unknown	4.76	J	ug/l	1
Unknown Naphthalene	3.38	J	ug/l	1
Aldol Condensates (A)	6.54	J	ug/l	1
Aldol Condensates (A)	42.3	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	21-120
Phenol-d6	57	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	73	10-120
4-Terphenyl-d14	68	41-149

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-08 Date Collected: 12/03/19 12:45

Client ID: BLIND DUP Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 12/07/19 13:32
Analytical Date: 12/08/19 22:28

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.23		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.07	J	ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.08	J	ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.05	J	ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.03	J	ug/l	0.10	0.01	1			
Chrysene	0.04	J	ug/l	0.10	0.01	1			
Acenaphthylene	0.06	J	ug/l	0.10	0.01	1			
Anthracene	0.06	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	1			
Fluorene	0.40		ug/l	0.10	0.01	1			
Phenanthrene	0.14		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	0.02	J	ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	0.04	J	ug/l	0.10	0.01	1			
Pyrene	0.05	J	ug/l	0.10	0.02	1			
2-Methylnaphthalene	0.04	J	ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Project Name: 229 HOMER ST Lab Number: L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

SAMPLE RESULTS

Lab ID: L1957918-08 Date Collected: 12/03/19 12:45

Client ID: BLIND DUP Date Received: 12/04/19
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	88		21-120
Phenol-d6	78		10-120
Nitrobenzene-d5	116		23-120
2-Fluorobiphenyl	94		15-120
2,4,6-Tribromophenol	122	Q	10-120
4-Terphenyl-d14	119		41-149

Project Name:229 HOMER STLab Number:L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 12/09/19 14:36 Extraction Date: 12/07/19 06:03

Analyst: SZ

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-08	Batch:	WG1317936-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.50
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.6
2,4-Dinitrotoluene	ND		ug/l	5.0		1.2
2,6-Dinitrotoluene	ND		ug/l	5.0		0.93
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.50
Hexachlorocyclopentadiene	ND		ug/l	20		0.69
Isophorone	ND		ug/l	5.0		1.2
Nitrobenzene	ND		ug/l	2.0		0.77
NDPA/DPA	ND		ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1.5
Butyl benzyl phthalate	ND		ug/l	5.0		1.2
Di-n-butylphthalate	ND		ug/l	5.0		0.39
Di-n-octylphthalate	ND		ug/l	5.0		1.3
Diethyl phthalate	ND		ug/l	5.0		0.38
Dimethyl phthalate	ND		ug/l	5.0		1.8
Biphenyl	ND		ug/l	2.0		0.46
4-Chloroaniline	ND		ug/l	5.0		1.1
2-Nitroaniline	ND		ug/l	5.0		0.50
3-Nitroaniline	ND		ug/l	5.0		0.81
4-Nitroaniline	ND		ug/l	5.0		0.80
Dibenzofuran	ND		ug/l	2.0		0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.44
Acetophenone	ND		ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.61
p-Chloro-m-cresol	ND		ug/l	2.0		0.35

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 12/09/19 14:36 Extraction Date: 12/07/19 06:03

Analyst: SZ

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01-08	Batch:	WG1317936-1
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85
4-Nitrophenol	ND		ug/l	10		0.67
2,4-Dinitrophenol	ND		ug/l	20		6.6
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8
Phenol	ND		ug/l	5.0		0.57
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77
Carbazole	ND		ug/l	2.0		0.49
Atrazine	ND		ug/l	10		0.76
Benzaldehyde	ND		ug/l	5.0		0.53
Caprolactam	ND		ug/l	10		3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0		0.84

Tentatively Identified Compounds				
Total TIC Compounds	40.6	J	ug/l	
Unknown Organic Acid	1.53	J	ug/l	
Aldol Condensates (A)	3.85	J	ug/l	
Aldol Condensates (A)	33.4	J	ug/l	
Unknown	1.82	J	ug/l	

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 12/09/19 14:36 Extraction Date: 12/07/19 06:03

Analyst: SZ

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-08 Batch: WG1317936-1

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
2-Fluorophenol	66	21-120
Phenol-d6	54	10-120
Nitrobenzene-d5	47	23-120
2-Fluorobiphenyl	47	15-120
2,4,6-Tribromophenol	63	10-120
4-Terphenyl-d14	50	41-149

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM
Analytical Date: 12/07/19 19:59

Analyst: CB

Extraction Method: EPA 3510C Extraction Date: 12/07/19 06:04

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-	SIM - Westbo	orough Lab	for sampl	le(s): 01-08	Batch:	WG1317937-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	0.02	J	ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	
Benzo(k)fluoranthene	0.01	J	ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	0.01	J	ug/l	0.10	0.01	
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	0.03	J	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	
Pyrene	0.02	J	ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: 229 HOMER ST **Lab Number:** L1957918

Project Number: T0311-018-001 **Report Date:** 12/11/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 12/07/19 19:59 Extraction Date: 12/07/19 06:04

Analyst: CB

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-08 Batch: WG1317937-1

Surrogate	%Recovery Qu	Acceptance ualifier Criteria	
2-Fluorophenol	76	21-120	
Phenol-d6	77	10-120	
Nitrobenzene-d5	76	23-120	
2-Fluorobiphenyl	72	15-120	
2,4,6-Tribromophenol	143	Q 10-120	
4-Terphenyl-d14	96	41-149	

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST

Project Number: T0311-018-001

Lab Number: L1957918

Report Date: 12/11/19

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recove Qual Limits	-	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s):	01-08	Batch:	WG1317936-2 WG	1317936-3	
Bis(2-chloroethyl)ether	80		79		40-140	1	30
3,3'-Dichlorobenzidine	53		70		40-140	28	30
2,4-Dinitrotoluene	82		85		48-143	4	30
2,6-Dinitrotoluene	81		82		40-140	1	30
4-Chlorophenyl phenyl ether	78		79		40-140	1	30
4-Bromophenyl phenyl ether	88		83		40-140	6	30
Bis(2-chloroisopropyl)ether	76		73		40-140	4	30
Bis(2-chloroethoxy)methane	82		81		40-140	1	30
Hexachlorocyclopentadiene	60		66		40-140	10	30
Isophorone	88		88		40-140	0	30
Nitrobenzene	77		76		40-140	1	30
NDPA/DPA	83		86		40-140	4	30
n-Nitrosodi-n-propylamine	88		82		29-132	7	30
Bis(2-ethylhexyl)phthalate	84		88		40-140	5	30
Butyl benzyl phthalate	79		84		40-140	6	30
Di-n-butylphthalate	78		84		40-140	7	30
Di-n-octylphthalate	84		88		40-140	5	30
Diethyl phthalate	84		84		40-140	0	30
Dimethyl phthalate	81		80		40-140	1	30
Biphenyl	82		82		40-140	0	30
4-Chloroaniline	52		60		40-140	14	30
2-Nitroaniline	74		79		52-143	7	30
3-Nitroaniline	54		67		25-145	21	30

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L195

L1957918

Report Date:

12/11/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	iated sample(s):	01-08 Batcl	h: WG1317936-2 WG13179	36-3	
4-Nitroaniline	72		75	51-143	4	30
Dibenzofuran	78		77	40-140	1	30
1,2,4,5-Tetrachlorobenzene	79		76	2-134	4	30
Acetophenone	86		83	39-129	4	30
2,4,6-Trichlorophenol	76		76	30-130	0	30
p-Chloro-m-cresol	83		86	23-97	4	30
2-Chlorophenol	86		86	27-123	0	30
2,4-Dichlorophenol	92		87	30-130	6	30
2,4-Dimethylphenol	77		75	30-130	3	30
2-Nitrophenol	83		81	30-130	2	30
4-Nitrophenol	77		72	10-80	7	30
2,4-Dinitrophenol	74		75	20-130	1	30
4,6-Dinitro-o-cresol	82		79	20-164	4	30
Phenol	66		67	12-110	2	30
3-Methylphenol/4-Methylphenol	83		84	30-130	1	30
2,4,5-Trichlorophenol	80		76	30-130	5	30
Carbazole	80		83	55-144	4	30
Atrazine	96		92	40-140	4	30
Benzaldehyde	77		81	40-140	5	30
Caprolactam	44		44	10-130	0	30
2,3,4,6-Tetrachlorophenol	82		80	40-140	2	30

Lab Control Sample Analysis

Project Name: 229 HOMER ST

Batch Quality Control

Lab Number: L1957918

Report Date:

12/11/19

Project Number: T0311-018-001

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 Batch: WG1317936-2 WG1317936-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	76	78	21-120
Phenol-d6	66	65	10-120
Nitrobenzene-d5	64	61	23-120
2-Fluorobiphenyl	57	59	15-120
2,4,6-Tribromophenol	90	87	10-120
4-Terphenyl-d14	59	61	41-149

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST

Lab Number: L1957918

Project Number: T0311-018-001

Report Date: 12/11/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ry RPD	Qual	RPD Limits
emivolatile Organics by GC/MS-SIM	- Westborough Lab A	ssociated samp	ole(s): 01-08	Batch: \	NG1317937-2	WG1317937-3		
Acenaphthene	76		81		40-140	6		40
2-Chloronaphthalene	71		77		40-140	8		40
Fluoranthene	92		96		40-140	4		40
Hexachlorobutadiene	69		76		40-140	10		40
Naphthalene	70		77		40-140	10		40
Benzo(a)anthracene	82		84		40-140	2		40
Benzo(a)pyrene	96		98		40-140	2		40
Benzo(b)fluoranthene	95		103		40-140	8		40
Benzo(k)fluoranthene	89		89		40-140	0		40
Chrysene	76		80		40-140	5		40
Acenaphthylene	71		76		40-140	7		40
Anthracene	81		86		40-140	6		40
Benzo(ghi)perylene	95		99		40-140	4		40
Fluorene	80		84		40-140	5		40
Phenanthrene	77		82		40-140	6		40
Dibenzo(a,h)anthracene	112		107		40-140	5		40
Indeno(1,2,3-cd)pyrene	101		104		40-140	3		40
Pyrene	93		98		40-140	5		40
2-Methylnaphthalene	72		79		40-140	9		40
Pentachlorophenol	105		117		40-140	11		40
Hexachlorobenzene	73		79		40-140	8		40
Hexachloroethane	71		76		40-140	7		40

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST

Lab Number:

L1957918

Project Number: T0311-018-001

Report Date:

12/11/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-08 Batch: WG1317937-2 WG1317937-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2-Fluorophenol	75		80		21-120	
Phenol-d6	66		72		10-120	
Nitrobenzene-d5	74		80		23-120	
2-Fluorobiphenyl	70		76		15-120	
2,4,6-Tribromophenol	147	Q	153	Q	10-120	
4-Terphenyl-d14	102		105		41-149	

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1957918

Report Date:

12/11/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC ID: MW-3	C/MS - Westbor	ough Lab	Associated sa	mple(s): 01-08	QC Batch ID: WG	1317936-4 W	G1317936-5 QC Sa	ample: I	L1957918-05 Client
Bis(2-chloroethyl)ether	ND	18.2	13	72	12	66	40-140	8	30
3,3'-Dichlorobenzidine	ND	18.2	3.8J	21	Q 5.3	29	Q 40-140	33	Q 30
2,4-Dinitrotoluene	ND	18.2	14	77	16	88	48-143	13	30
2,6-Dinitrotoluene	ND	18.2	15	83	15	83	40-140	0	30
4-Chlorophenyl phenyl ether	ND	18.2	13	72	14	77	40-140	7	30
4-Bromophenyl phenyl ether	ND	18.2	14	77	14	77	40-140	0	30
Bis(2-chloroisopropyl)ether	ND	18.2	12	66	12	66	40-140	0	30
Bis(2-chloroethoxy)methane	ND	18.2	14	77	13	72	40-140	7	30
Hexachlorocyclopentadiene	ND	18.2	11.J	61	12.J	66	40-140	9	30
sophorone	ND	18.2	15	83	15	83	40-140	0	30
Nitrobenzene	ND	18.2	14	77	13	72	40-140	7	30
NDPA/DPA	ND	18.2	14	77	15	83	40-140	7	30
n-Nitrosodi-n-propylamine	ND	18.2	15	83	13	72	29-132	14	30
Bis(2-ethylhexyl)phthalate	ND	18.2	15	83	15	83	40-140	0	30
Butyl benzyl phthalate	ND	18.2	15	83	15	83	40-140	0	30
Di-n-butylphthalate	ND	18.2	14	77	14	77	40-140	0	30
Di-n-octylphthalate	ND	18.2	15	83	15	83	40-140	0	30
Diethyl phthalate	ND	18.2	14	77	15	83	40-140	7	30
Dimethyl phthalate	ND	18.2	14	77	15	83	40-140	7	30
Biphenyl	ND	18.2	14	77	14	77	40-140	0	30
4-Chloroaniline	ND	18.2	7.9	43	12	66	40-140	41	Q 30
2-Nitroaniline	ND	18.2	16	88	17	94	52-143	6	30
3-Nitroaniline	ND	18.2	8.9	49	9.3	51	25-145	4	30

Project Name: 229 HOMER ST
Project Number: T0311-018-001

Lab Number:

L1957918

Report Date:

12/11/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC ID: MW-3	C/MS - Westbor	ough Lab	Associated sa	mple(s): 01-08	QC Batch ID: WG1	317936-4 WO	G1317936-5 QC Sa	ımple:	L1957918-05 Client
4-Nitroaniline	ND	18.2	12	66	13	72	51-143	8	30
Dibenzofuran	ND	18.2	14	77	14	77	40-140	0	30
1,2,4,5-Tetrachlorobenzene	ND	18.2	13	72	13	72	2-134	0	30
Acetophenone	ND	18.2	15	83	14	77	39-129	7	30
2,4,6-Trichlorophenol	ND	18.2	14	77	15	83	30-130	7	30
p-Chloro-m-cresol	ND	18.2	16	88	16	88	23-97	0	30
2-Chlorophenol	ND	18.2	14	77	14	77	27-123	0	30
2,4-Dichlorophenol	ND	18.2	16	88	15	83	30-130	6	30
2,4-Dimethylphenol	ND	18.2	9.9	54	8.5	47	30-130	15	30
2-Nitrophenol	ND	18.2	14	77	13	72	30-130	7	30
4-Nitrophenol	ND	18.2	16	88	Q 17	94	Q 10-80	6	30
2,4-Dinitrophenol	ND	18.2	17.J	94	17.J	94	20-130	0	30
4,6-Dinitro-o-cresol	ND	18.2	15	83	16	88	20-164	6	30
Phenol	ND	18.2	13	72	11	61	12-110	17	30
3-Methylphenol/4-Methylphenol	ND	18.2	15	83	14	77	30-130	7	30
2,4,5-Trichlorophenol	ND	18.2	15	83	16	88	30-130	6	30
Carbazole	ND	18.2	14	77	14	77	55-144	0	30
Atrazine	ND	18.2	20	110	17	94	40-140	16	30
Benzaldehyde	ND	18.2	13	72	13	72	40-140	0	30
Caprolactam	ND	18.2	14	77	11	61	10-130	24	30
2,3,4,6-Tetrachlorophenol	ND	18.2	15	83	16	88	40-140	6	30

Project Name: 229 HOMER ST
Project Number: T0311-018-001

Lab Number:

L1957918

Report Date:

12/11/19

	Native	MS	MS	MS		MSD	MSD		Recovery	•		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG1317936-4 WG1317936-5 QC Sample: L1957918-05 Client ID: MW-3

	MS	MSD	Acceptance
Surrogate	% Recovery Qual	ifier % Recovery Qualifier	Criteria
2,4,6-Tribromophenol	90	84	10-120
2-Fluorobiphenyl	56	57	15-120
2-Fluorophenol	77	67	21-120
4-Terphenyl-d14	56	58	41-149
Nitrobenzene-d5	59	56	23-120
Phenol-d6	68	57	10-120

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1957918

Report Date: 12/11/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	r RPD	RPD Qual Limits
Semivolatile Organics by Client ID: MW-3	GC/MS-SIM - We	stborough Lab	Associate	ed sample(s): 01-	08 QC Batch ID:	WG1317937-4	WG1317937-5	QC Sam	ple: L1957918-05
Acenaphthene	0.04J	18.2	15	83	17	94	40-140	13	40
2-Chloronaphthalene	ND	18.2	14	77	15	83	40-140	7	40
Fluoranthene	0.03J	18.2	17	94	18	99	40-140	6	40
Hexachlorobutadiene	ND	18.2	13	72	14	77	40-140	7	40
Naphthalene	ND	18.2	14	77	16	88	40-140	13	40
Benzo(a)anthracene	0.03J	18.2	16	88	18	99	40-140	12	40
Benzo(a)pyrene	0.02J	18.2	19	100	21	120	40-140	10	40
Benzo(b)fluoranthene	0.02J	18.2	20	110	21	120	40-140	5	40
Benzo(k)fluoranthene	0.02J	18.2	18	99	18	99	40-140	0	40
Chrysene	0.02J	18.2	15	83	16	88	40-140	6	40
Acenaphthylene	ND	18.2	15	83	16	88	40-140	6	40
Anthracene	0.03J	18.2	16	88	18	99	40-140	12	40
Benzo(ghi)perylene	0.02J	18.2	18	99	20	110	40-140	11	40
Fluorene	0.10	18.2	16	88	17	94	40-140	6	40
Phenanthrene	0.03J	18.2	15	83	16	88	40-140	6	40
Dibenzo(a,h)anthracene	ND	18.2	20	110	22	120	40-140	10	40
Indeno(1,2,3-cd)pyrene	0.02J	18.2	21	120	23	130	40-140	9	40
Pyrene	0.03J	18.2	17	94	18	99	40-140	6	40
2-Methylnaphthalene	ND	18.2	15	83	16	88	40-140	6	40
Pentachlorophenol	0.17J	18.2	22	120	23	130	40-140	4	40
Hexachlorobenzene	ND	18.2	14	77	15	83	40-140	7	40
Hexachloroethane	ND	18.2	15	83	16	88	40-140	6	40

Project Name: 229 HOMER ST
Project Number: T0311-018-001

Lab Number:

L1957918

Report Date:

12/11/19

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG1317937-4 WG1317937-5 QC Sample: L1957918-05 Client ID: MW-3

	MS		MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	118		126	Q	10-120	
2-Fluorobiphenyl	76		81		15-120	
2-Fluorophenol	89		92		21-120	
4-Terphenyl-d14	97		101		41-149	
Nitrobenzene-d5	91		100		23-120	
Phenol-d6	86		83		10-120	

Project Name: 229 HOMER ST **Lab Number:** L1957918 **Project Number:** T0311-018-001

Report Date: 12/11/19

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1957918-01A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-01B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-01C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-01D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-01E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-02A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-02B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-02C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-02D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-02E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-03A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-03B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-03C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-03D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-03E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-04A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-04B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-04C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-04D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-04E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-05A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-05A1	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-05B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Serial_No:12111912:35 *Lab Number:* L1957918

Report Date: 12/11/19

Project Name: 229 HOMER ST*Project Number:* T0311-018-001

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1957918-05B1	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-05C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-05C1	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-05D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-05D1	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-05D2	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-05D3	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-06A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-06B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-06C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-06D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-06E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-07A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-07B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-07C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-07D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-07E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-08A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-08B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-08C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-08D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-08E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1957918-09A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L1957918-09B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: 229 HOMER ST L1957918 **Project Number:** T0311-018-001 **Report Date:** 12/11/19

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 229 HOMER ST
 Lab Number:
 L1957918

 Project Number:
 T0311-018-001
 Report Date:
 12/11/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:12111912:35

 Project Name:
 229 HOMER ST
 Lab Number:
 L1957918

 Project Number:
 T0311-018-001
 Report Date:
 12/11/19

Data Qualifiers

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:12111912:35

 Project Name:
 229 HOMER ST
 Lab Number:
 L1957918

 Project Number:
 T0311-018-001
 Report Date:
 12/11/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12111912:35

ID No.:17873 Revision 15

Published Date: 8/15/2019 9:53:42 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-598-9220	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information Project Name:	Vay oper Ave, Suite 1		Pag	e of (Deliv	Date Re in Lat		15/1	NO.		ALPHA Job # L\95798 Billing Information	
FAX: 508-896-9193 Client Information	FAX: 508-822-3288	Project Location:	1 Home Lean, N 1-018-		37%			ASP-A EQuIS (* Other	file)		ASP-B EQuIS (4 File)	Same as Client Info	
Client Tuenkey		(Use Project name as Pr	roject #)			V (42.5	Reg	ulatory Re	quireme	ent	STEEL ST	888	Disposal Site Information	京号
Address: 2558 Aflo, NY Phone: (716) 850 Fax: Email Ocubell(14918	Project Manager: MI ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved	N.	Due Date:				NY TOGS AWQ Star NY Restric NY Unrest NYC Sewe	idards cled Use ricted U	se \Box	NY Part 3 NY CP-5 Other		Please identify below location applicable disposal facilities. Disposal Facility: NJ NY	of
	been previously analyze			ii di baya.			ANA	LYSIS	n Chach	aiye			Sample Filtration	
Other project specifi	c requirements/comm	ents:					VOCS (TICS)	-					Done Lab to do Preservation Lab to do (Please Specify below)	o t a l
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ection	Sample	Sampler's	12	Z					(Freder openity Below)	t
57918-01			Date	Time	Matrix	Initials	15	۴					Sample Specific Comments	е
-OZ	MW-3		12-3-4	1045	GW	CFD	X	X	_					2
-8 -8	MW-5 MW-6		12-3-19	1330			X	X						+
-05 -06	MW-3 MW-7		12-4-19	1030			X	X	-				* MS/MSD	
-08	BLIND	Dup	12-4-19	1330	1	1	X	X					4 30	-
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type	V	A					Please print clearly, legit and completely. Samples not be logged in and turnaround time clock wi	s can
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3)	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished E		Date/1 13/4/6 12/4/19	Time 1545 16:00	andr	Receiv	ed By:	AL CO	12/4	Date/Tir 1/19 / 1/19 /	5:45	start until any ambiguitie resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPI TERMS & CONDITIONS (See reverse side.)	NG T ES HA'S

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

March 5, 2020; Revised May 20, 2020

Charlotte Clark Turnkey Environmental Restoration 2558 Hamburg Turnpike Suite 300 Buffalo, NY 14218

RE: Validation of the 229 Homer Street Site Analytical Laboratory Data Alpha Analytical SDG Nos. L1929034 and L1957918 Data Usability Summary Report (DUSR)

Dear Ms. Clark:

Review has been completed for the data packages generated by Alpha Analytical that pertain to samples collected between 07/01/19 and 12/04/19 the 229 Homer Street site. Seven aqueous samples and a field duplicate in each of two sampling events were processed for TCL volatiles and TCL semivolatiles and Tentatively Identified Compounds (TICs). Analytical methodologies utilized are USEPA SW846.

The data packages submitted by the laboratory contain full deliverables for validation, and this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents, and in consideration for the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Method/ Preparation Blanks
- * Matrix Spike Recoveries/Duplicate Correlations
- * Blind Field Duplicate Correlations
- * Laboratory Control Sample (LCS)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS DER-10 Appendix B Section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data package.

In summary, results for the samples are usable either as reported or with minor qualification or Edit, with the exception of those for 1,4-dioxane. The results for 1,4-dioxane are rejected due to poor responses inherent in the methodology.

Data completeness, representativeness, reproducibility, sensitivity, comparability, and accuracy and precision are acceptable.

Validation qualifier definitions and the client sample identification summaries are attached to this text. Also submitted are Alpha EQuIS EDDs with recommended qualifiers/edits applied in red.

Blind Field Duplicate Correlations

The field duplicate evaluations were performed on MW-1 (July) and MW-5 (December), and show correlations within validation guidelines.

TCL Volatile Analyses by EPA 8260C

The detected results for acetone in samples collected in December are considered external contamination and edited to reflect non-detection due to presence in the associated trip blank. No trip blank was processed with the samples collected in July.

Matrix spikes of MW-1 (July) and MW-3 (December) are within validation guidelines, with the following exceptions, results for which are qualified as estimated in the indicated parent sample:

		Outlying %	<u>Outlying</u>
Parent Sample	<u>Analyte</u>	Recoveries	%RPD
MW-1 (July)	bromomethane	21,32	42
	acetone	20	30

Results for 1,4-dioxane in the samples and trip blank are rejected due to low responses in the calibration standards. Other calibration standard responses meet validation guidelines, with the exception of the following, results for which have been qualified as estimated in the indicated associated samples:

- Bromomethane (43%D) in samples reported in SDG L1929034
- Bromomethane, dichlorodifluoromethane, and vinyl chloride (23%D to 56%D) in the samples reported in SDG L1957918

Holding times were met. Surrogate and internal standard responses are acceptable.

A trip blank that was received and processed in December had not been entered onto the custody form.

TCL Semivolatile Analyses by EPA 8270D

The detected results for bis(2-ethylhexyl)phthalate in the samples collected in July are considered external contamination and edited to reflect non-detection due to presence in the associated method blank.

The method blanks also show numerous low level detections of PAHs that are also present in the associated samples. Those associated sample detections are considered external contamination and edited to reflect non-detection. All sample PAH detections for nine analytes in the December event except one value are considered external contamination due to the method blank. The laboratory should have flagged the affected results for the samples collected in December as "B".

Holding times were met. Surrogate and internal standard responses are acceptable.

Matrix spikes of MW-1 (July) and MW-3 (December) are within validation guidelines, with the following exceptions, results for which are qualified as estimated in the indicated parent samples:

		Outlying	
		<u>%</u>	Outlying
Parent Sample	<u>Analyte</u>	Recoveries	%RPD
MW-1(July)	3,3'-dichlorobenzidine	38	35
	2,4-dimethylphenol	29	39
MW-3 (Dec)	3,3'-dichlorobenzidine	21,29	33

Results for 4-nitrophenol in the samples MW-1, MW-4, MW-5, MW-7, and BLIND DUP (all collected in July) have been qualified as estimated due to low recovery in the associated LCS.

Calibration standard responses meet validation guidelines, with the exception of the following, results for which have been qualified as estimated in the indicated associated samples: 2,4-dimethylphenol (42%D) in MW-2, MW-4, MW-5, and MW-6.

Holding times were met. Surrogate and internal standard responses are acceptable.

Results for TICs that are identified as aldol condensates are extraction artifacts and have been removed from consideration as sample components. Several additional TICs that were also detected in associated method blanks have been similarly edited. Those detections should have been flagged as "B" by the laboratory.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Judy Harry

Attachments: Validation Qualifier Definitions

Sample Identifications

Qualified Laboratory EQuIS EDDs

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

Sample Summaries

Project Name:

HOMER ST. REDEVELOPMENT

Project Number: 0311-

0311-018-001

Lab Number:

Report Date:

L1929034 07/11/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1929034-01	MVV-4	WATER	229 HOMER ST., OLEAN, NY	07/01/19 10:50	07/02/19
L1929034-02	MVV-1	WATER	229 HOMER ST., OLEAN, NY	07/01/19 13:20	07/02/19
L1929034-03	MW-5	WATER	229 HOMER ST., OLEAN, NY	07/01/19 14:30	07/02/19
L1929034-04	MW-7	WATER	229 HOMER ST., OLEAN, NY	07/01/19 15:45	07/02/19
L1929034-05	MW-2	WATER	229 HOMER ST., OLEAN, NY	07/02/19 10:00	07/02/19
L1929034-06	MW-6	WATER	229 HOMER ST., OLEAN, NY	07/02/19 12:00	07/02/19
L1929034-07	MW-3	WATER	229 HOMER ST., OLEAN, NY	07/02/19 13:45	07/02/19
L1929034-08	BLIND DUP	WATER	229 HOMER ST., OLEAN, NY	07/01/19 13:30	07/02/19
-L1929034-09	TRIP BLANK	WATER	229 HOMER ST., OLEAN, NY	07/01/19 13:30	07/02/19

Project Name: Project Number:

229 HOMER ST

T0311-018-001

Lab Number: Report Date: L1957918 12/11/19

Alpha			Sample	Collection	
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L1957918-01	MW-2	WATER	OLEAN, NY	12/03/19 10:45	12/04/19
L1957918-02	MW-5	WATER	OLEAN, NY	12/03/19 12:15	12/04/19
L1957918-03	MW-4	WATER	OLEAN, NY	12/03/19 13:30	12/04/19
L1957918-04	MW-6	WATER	OLEAN, NY	12/03/19 15:00	12/04/19
L1957918-05	MW-3	WATER	OLEAN, NY	12/04/19 10:30	12/04/19
L1957918-06	MW-7	WATER	OLEAN, NY	12/04/19 12:30	12/04/19
L1957918-07	MW-1	WATER	OLEAN, NY	12/04/19 13:30	12/04/19
L1957918-08	BLIND DUP	WATER	OLEAN, NY	12/03/19 12:45	12/04/19
L1957918-09	TRIP BLANK	WATER	OLEAN, NY	12/03/19 00:00	12/04/19

APPENDIX D

AS / SVE OM&M DOCUMENTATION

APPENDIX D1

SVE PERIODIC INSPECTION LOG

Table 1 - Summary of SVE System VOC Mass Removal Site Management Plan 229 Homer Street Site NYSDEC BCP Site No. C905044 Olean, New York

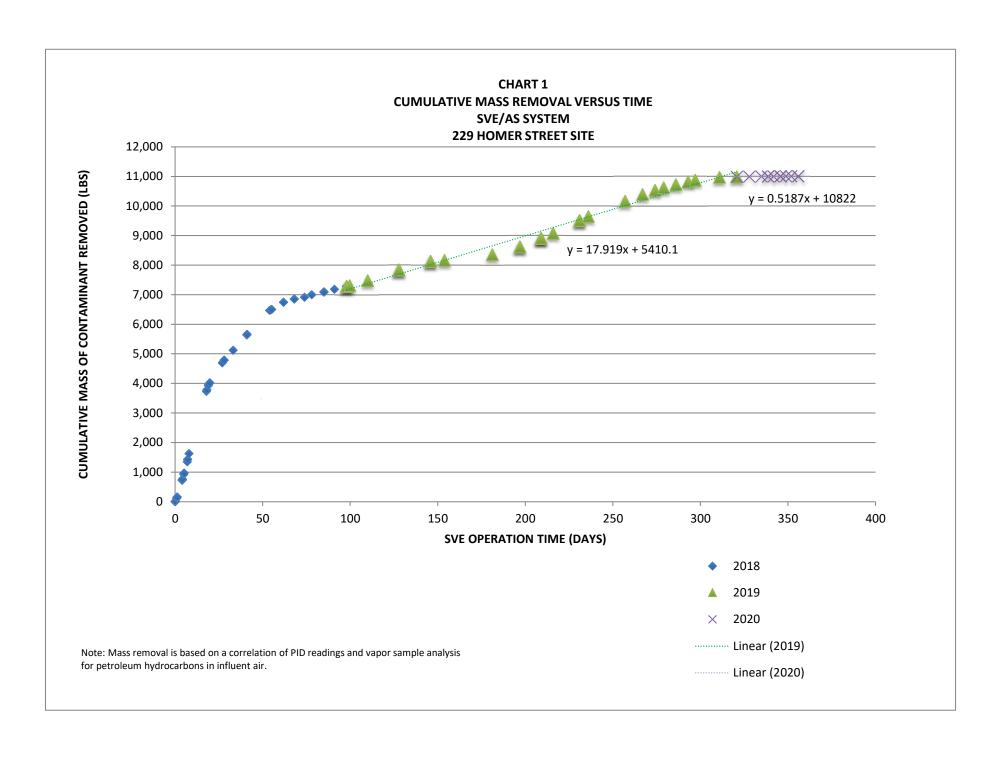

Dete	SVE Operation	Influent (Untreated) PID	Effluent PID	Corrected Influent	Vacuum	Air Flo	w Rate	Process	e of Air ed Since Reading	Rate of VC	OC Removal	Last Mo	oved Since onitoring riod	Total VOC		Nesse
Date	Time (days)	Reading (ppm)	Reading Biofilter (ppm)	Concentration ¹ (mg/m³)	(in of H ₂ O)	(ACFM)	(SCFM)	(CF)	(m³)	(kg/day)	(lb/day)	(kg)	(lb)	(kg)	(lb)	Notes
09/13/18	0.0	86	1.4	1237	52.0	490	401	0	0.00E+00	0.0	0.0	0.0	0.0	0.0	0	
09/13/18	0	105 119	28 35	1511 1712	52.0 51.0	490 495	401 405	0 8095	0.00E+00 2.29E+02	0.0 28.3	0.0 62.3	0.0	0.0	0.0	0	
09/13/18	0	118	122	1698	51.0	495	405	8095	2.29E+02	28.0	61.8	0.4	0.9	0.6	1	
09/13/18	0	175	146	2518	52.0	490	401	10017	2.84E+02	41.1	90.7	0.6	1.3	1.2	3	
09/13/18	0	180	65	2590	50.0	500	409	6133	1.74E+02	43.2	95.2	0.4	1.0	1.6	4	
09/13/18	0	182	25	2619	52.0	490	401	24041	6.81E+02	42.8	94.3	1.8	3.9	3.4	8	
09/13/18 09/13/18	0	192 185	11 13	2762 2662	52.0 52.0	490 490	401 401	12020 10017	3.40E+02 2.84E+02	45.1 43.5	99.5 95.9	0.9	2.0	4.3 5.1	10	
09/13/18	0	215	14	3093	52.0	490	401	14024	3.97E+02	50.5	111.4	1.1	2.5	6.2	14	
09/13/18	0	209	17	3007	51.0	495	405	20238	5.73E+02	49.6	109.4	1.7	3.8	8.0	18	
09/14/18	1	294	69	4230	50.0	500	409	433384	1.23E+04	70.5	155.5	44.2	97.5	52.2	115	
09/14/18	1	350	17	5036	48.0	510	417	25022	7.09E+02	85.6	188.8	3.3	7.2	55.5	122	
09/14/18	1	312 347	9 28	4489 4993	51.0 51.0	495 495	405 405	16191 16191	4.58E+02 4.58E+02	74.1 82.4	163.4 181.7	2.2	4.9 4.8	57.7 59.9	127 132	
09/14/18	1	236	15	3396	50.0	500	409	53151	1.51E+03	56.6	124.8	6.3	13.8	66.1	146	
09/14/18	1	352	11	5064	49.0	505	413	12388	3.51E+02	85.3	188.0	1.5	3.3	67.6	149	
09/14/18	1	374	17	5381	50.0	500	409	12266	3.47E+02	89.7	197.8	1.8	4.0	69.4	153	
09/14/18	1	351	18	5050	49.0	505	413	12388	3.51E+02	85.0	187.5	1.8	4.0	71.2	157	
09/17/18	4	401	14	5769	49.0	505	413	1668282	4.72E+04	97.1	214.2	255.6	563.5	326.8	721	
09/17/18	4	382 356	13 23	5496 5122	50.0 49.0	500 505	409 413	28620 24776	8.10E+02 7.02E+02	91.6 86.2	202.0 190.2	4.6 3.7	10.1 8.2	331.4 335.1	731 739	
09/17/18	4	400	37	5755	48.0	510	417	25022	7.09E+02	97.9	215.8	3.8	8.5	338.9	747	
09/17/18	4	388	21	5582	49.0	505	413	37165	1.05E+03	94.0	207.3	6.0	13.2	344.9	761	
09/18/18	5	389	11	5597	50.0	500	409	453826	1.29E+04	93.3	205.7	72.2	159.2	417.1	920	
09/18/18	5	380	14	5467	49.0	505	413	86718	2.46E+03	92.1	203.0	13.5	29.8	430.6	950	
09/18/18	5 5	400 384	21 14	5755 5525	50.0 50.0	500 500	409 409	24531 12266	6.95E+02 3.47E+02	95.9 92.1	211.6 203.1	3.9 2.0	8.6 4.3	434.6 436.5	958 963	
09/18/18	5	392	18	5640	50.0	500	409	12266	3.47E+02	94.0	207.3	1.9	4.3	438.5	967	
09/20/18	7	450	17	6474	50.0	500	409	1018043	2.88E+04	107.9	238.0	174.6	385.0	613.1	1,352	
09/20/18	7	575	20	8273	38.0	560	458	162560	4.60E+03	154.5	340.6	32.3	71.3	645.4	1,423	
09/20/18	7	517	19	7438	40.0	550	450	13492	3.82E+02	136.4	300.8	3.0	6.7	648.4	1,430	
09/21/18 10/01/18	8 18	326 450	21 3.9	4695 6474	42.0 51.0	540 495	442 405	505587 5816459	1.43E+04 1.65E+05	84.5 106.9	186.4 235.6	87.8 955.0	193.7 2105.8	736.3 1691.3	1,624 3,729	
10/01/18	18	360	3.9 14	5180	49.0	505	413	148659	4.21E+03	87.2	192.3	24.3	53.5	1715.5	3,729	
10/02/18	19	337	8	4849	50.0	500	409	466092	1.32E+04	80.8	178.2	66.5	146.7	1782.1	3,929	
10/02/18	19	177	3	2547	52.0	490	401	120203	3.40E+03	41.6	91.7	12.8	28.1	1794.8	3,958	
10/03/18	20	198	4	2849	52.0	490	401	384648	1.09E+04	46.5	102.6	29.4	64.8	1824.2	4,022	
10/10/18	27 28	165 173	NM 4	2374 2489	52.0 52.0	490 490	401 401	4110931 534902	1.16E+05 1.51E+04	38.8 40.7	85.5 89.7	304.0 36.8	670.3 81.2	2128.2 2165.0	4,693 4,774	
10/11/18	28	152	4	2187	45.0	525	429	64394	1.82E+03	38.3	84.4	4.1	9.1	2169.1	4,783	Remove water blockage in vapor piping from SVE wells SVE-6, 10, 12 and -14
10/11/18	28	124	3	1784	46.0	520	425	19134	5.42E+02	30.9	68.2	1.1	2.4	2170.2	4,785	
10/16/18	33	116	NM	1669	46.0	520	425	3112513	8.81E+04	28.9	63.8	152.2	335.5	2322.4	5,121	
10/24/18	41 41	137	ND ND	1971 2863	54.0 47.0	480 515	392 421	4403832 44217	1.25E+05 1.25E+03	31.5 49.2	69.6 108.4	235.6	519.6 6.5	2558.0 2561.0	5,640 5,647	Measure PID on individual SVE wells Turn off wells 1. 2. 11 & 14
																Air sparge on. 1 hour each
10/24/18	41	119	ND	1712	49.0	505	413	18582	5.26E+02	28.8	63.6	1.2	2.7	2562.2	5,650	Zones 1 and 2
10/24/18	41	197	ND ND	2834 2662	49.0 51.0	505 495	413 405	37165 24286	1.05E+03 6.88E+02	47.7 43.9	105.2 96.9	1.9	5.3 4.2	2564.6 2566.5	5,655 5,659	Shut sparge off at 12:30 Adjust sparge to 15 minutes all
11/06/18	54	56.5	1	813	53.0	485	397	7340825	2.08E+05	13.1	29.0	366.8	808.9	2933.3	6,468	wells per day
11/07/18	55	47	0	676	53.0	485	397	547290	1.55E+04	10.9	24.1	11.5	25.4	2944.9	6,493	
11/07/18	55	68	0	978	50.0	500	409	134921	3.82E+03	16.3	36.0	3.1	6.9	2948.0	6,500	
11/14/18	62	68	0	978	50.0	500	409	3961781	1.12E+05	16.3	36.0	109.8	242.0	3057.7	6,742	System shut down due to freezing temperatures
11/15/18	62	68	0	978	50.0	500	409	0	0.00E+00	0.0	0.0	0.0	0.0	3057.7	6,742	Restart system
11/21/18	68	68	0	978	50.0	500	409	3630611	1.03E+05	16.3	36.0	50.3	110.9	3108.0	6,853	System shut down due to freezing temperatures
11/24/18	68 74	68 39	0	978 561	50.0 53.0	500 485	409 397	0 3343228	0.00E+00 9.47E+04	0.0 9.1	0.0 20.0	0.0 26.6	0.0 58.6	3108.0 3134.6	6,853 6,912	Restart system
12/04/18	78	34	0	489	33.0	585	478	2855794	8.09E+04	9.5	21.0	38.6	85.1	3173.2	6,997	
12/11/18	85	10	0	144	36.0	570	466	4586344	1.30E+05	2.7	6.0	41.9	92.5	3215.1	7,089	
12/11/18	85	24	0	347	53.0	485	397	154669	4.38E+03	5.6	12.4	1.1	2.5	3216.3	7,092	
12/17/18	91 98	35 21	0	501 302	53.0 55.0	485 475	397 388	3343228 3833606	9.47E+04 1.09E+05	8.1 4.8	17.9 10.6	40.1	88.4 97.3	3256.4 3300.5	7,180 7,278	System shut down due to freezing temperatures
04/24/19	98	21	0	302	40.0	550	450	0	0.00E+00	0.0	0.0	0.0	0.0	3300.5	7,278	Sparge off
04/24/19	98	21	0	302	45.0	525	429	83713	2.37E+03	5.3	11.7	0.4	0.0	3300.9	7,278	
04/26/19	100	37	0	527	50.0	500	409	1060972	3.00E+04	8.8	19.4	12.7	28.0	3313.6	7,306	
05/06/19	110	28	0	397	52.0	490	401	5871899	1.66E+05	6.5	14.3	77.7	171.3	3391.3	7,478	

Table 1 - Summary of SVE System VOC Mass Removal Site Management Plan 229 Homer Street Site NYSDEC BCP Site No. C905044 Olean, New York

	SVE Operation	Influent (Untreated) PID	Effluent PID	Corrected Influent	Vacuum	Air Flo	w Rate	Process	e of Air ed Since Reading	Rate of VO	C Removal	VOCs Removed Since Last Monitoring Period				
Date	Time (days)	Reading (ppm)	Reading Biofilter (ppm)	Concentration ¹ (mg/m³)	(in of H ₂ O)	(ACFM)	(SCFM)	(CF)	(m³)	(kg/day)	(lb/day)	(kg)	(lb)	(kg)	(lb)	Notes
05/24/19	128	52	0	751	56.0	470	384	9863608	2.79E+05	11.8	26.0	162.7	358.8	3554.0	7,836	
05/24/19	128	49	0	708	54.0	480	392	74575	2.11E+03	11.3	25.0	1.5	3.4	3555.5	7,840	
06/11/19	146	14	0	196	58.0	460	376	9689478	2.74E+05	3.0	6.6	128.2	282.6	3683.7	8,122	
06/11/19	146	14	0	201	54.0	480	392	100087	2.83E+03	3.2	7.1	0.6	1.2	3684.2	8,124	
06/19/19	154	5	0	71	57.0	465	380	4317544	1.22E+05	1.1	2.4	17.0	37.5	3701.2	8,161	
07/16/19	181	24	0	341	56.0	470	384	15092301	4.27E+05	5.3	11.8	87.8	193.5	3789.0	8,355	
08/01/19	197	44	0	626	56.0	470	384	8704879	2.46E+05	9.8	21.6	119.2	262.8	3908.2	8,618	
08/01/19	197	54	0	773	46.0	520	425	38269	1.08E+03	13.4	29.5	0.7	1.6	3908.9	8,619	
08/13/19	209	32	0	456	41.0	545	446	7640657	2.16E+05	8.3	18.3	129.1	284.6	4038.0	8,904	
08/13/19	209	33	0	478	37.0	565	462	76231	2.16E+03	9.0	19.8	1.0	2.2	4039.0	8,906	
08/13/19	209	41	0	588	39.0	555	454	61267	1.73E+03	10.9	24.0	0.9	2.1	4039.9	8,908	
08/20/19	216	48	0	692	51.0	495	405	3964664	1.12E+05	11.4	25.2	75.9	167.3	4115.8	9,075	
09/04/19	231	62	0	888	52.0	490	401	8654591	2.45E+05	14.5	32.0	194.4	428.7	4310.2	9,504	
09/04/19	231	51	0	738	42.0	540	442	105975	3.00E+03	13.3	29.3	2.3	5.1	4312.5	9,509	
09/09/19	236	46	0.4	662	42.0	540	442	3165991	8.97E+04	11.9	26.3	62.8	138.4	4375.3	9,648	
09/30/19	257	44	0.8	633	51.0	495	405	12264350	3.47E+05	10.4	23.0	235.3	518.8	4610.6	10,166	
10/10/19	267	43	0.6	617	50.0	500	409	5862945	1.66E+05	10.3	22.7	103.3	227.7	4713.9	10,394	
10/17/19	274	32	0.7	458	50.0	500	409	4170296	1.18E+05	7.6	16.8	63.5	139.9	4777.3	10,534	System shut down on 10-22-19
11/07/19	279	33	0.3	469	51.0	495	405	2865729	8.11E+04	7.7	17.1	37.8	83.3	4815.1	10,617	System restarted, sparge off
11/14/19	286	25	0.1	355	50.0	500	409	4121234	1.17E+05	5.9	13.1	47.8	105.5	4862.9	10,723	
11/21/19	293	28.5	0.1	410	50.0	500	409	4121234	1.17E+05	6.8	15.1	44.7	98.5	4907.6	10,821	
11/25/19	297	22	0	311	50.0	500	409	2354991	6.67E+04	5.2	11.4	24.0	53.0	4931.6	10,874	
12/09/19	311	5.2	0	75	52.0	490	401	8053577	2.28E+05	1.2	2.7	44.7	98.5	4976.3	10,973	
12/19/19	321	0.8	0	12	56.0	470	384	5441991	1.54E+05	0.2	0.4	6.9	15.2	4983.2	10,988	System off for the winter
03/23/20	321	2.6	0	7	54.0	480	392	23550	6.67E+02	0.1	0.3	0.0	0.0	4983.2	10,988	Sparge off
03/30/20	328	6.9	0	19	55.0	475	388	3938477	1.12E+05	0.3	0.7	1.5	3.3	4984.7	10,991	
04/06/20	335	6.0	0	17	56.0	470	384	3873960	1.10E+05	0.3	0.6	2.0	4.4	4986.7	10,996	
04/10/20	339	6.9	0.2	19	56.0	470	384	2075335	5.88E+04	0.3	0.7	1.1	2.3	4987.7	10,998	
04/10/20	339	7.4	0.1	21	52.0	490	401	48081	1.36E+03	0.3	0.7	0.0	0.1	4987.8	10,998	
04/13/20	342	5.1	0	14	55.0	475	388	1747845	4.95E+04	0.2	0.5	0.9	1.9	4988.6	11,000	
04/17/20	346	3.8	0.1	11	55.0	475	388	2120718	6.01E+04	0.2	0.4	0.7	1.6	4989.4	11,002	
04/17/20	346	4.2	0.1	12	46.0	520	425	127562	3.61E+03	0.2	0.4	0.0	0.1	4989.4	11,002	
04/20/20	349	5.8	0.1	16	55.0	475	388	1701235	4.82E+04	0.3	0.6	0.7	1.5	4990.1	11,003	
04/23/20	352	3.1	0	9	53.0	485	397	1713256	4.85E+04	0.1	0.3	0.6	1.3	4990.7	11,004	
04/27/20	356	3.4	0	9	53.0	485	397	2260546	6.40E+04	0.2	0.3	0.6	1.3	4991.3	11,006	
04/27/20	356	4.2	0	12	53.0	485	397	23795	6.74E+02	0.2	0.4	0.0	0.0	4991.3	11,006	

- 3. The ratio for 2020 is 2.78 milligrams per cubic meter for each 1 part per million on the PID.

APPENDIX D2

SVE ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L1836968

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Ray Laport
Phone: (716) 856-0599
Project Name: 229 HOMER ST

Project Number: T0311-018-001

Report Date: 09/27/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: 229 HOMER ST
Project Number: T0311-018-001

Lab Number: L1836968 **Report Date:** 09/27/18

Alpha Sample ID Client ID Matrix SOIL_VAPOR SAMPLE SOIL_VAPOR OLEAN, NY Collection Date/Time Receive Date

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

	Please contact C	Client Services	at 800-624-9220	with any	questions.
--	------------------	-----------------	-----------------	----------	------------

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

Case Narrative (continued)

Report Submission

This report replaces the one previously issued on September 24, 2018. The report has been revised to add data for APH at the request of the client.

Volatile Organics in Air

Canisters were released from the laboratory on August 30, 2018. The canister certification results are provided as an addendum.

L1836968-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Petroleum Hydrocarbons in Air

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/27/18

Christopher J. Anderson

ALPHA

AIR

09/13/18 13:48

Not Specified

09/17/18

Date Collected:

Date Received:

Field Prep:

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

SAMPLE RESULTS

Lab ID: L1836968-01 D

Client ID: INITIAL SOIL VAPOR SAMPLE

Sample Location: OLEAN, NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/22/18 03:57

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Dichlorodifluoromethane	ND	200.		ND	989			1000
Chloromethane	ND	200.		ND	413			1000
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	200.		ND	1400			1000
Vinyl chloride	ND	200.		ND	511			1000
1,3-Butadiene	ND	200.		ND	442			1000
Bromomethane	ND	200.		ND	777			1000
Chloroethane	ND	200.		ND	528			1000
Ethyl Alcohol	ND	5000		ND	9420			1000
Vinyl bromide	ND	200.		ND	874			1000
Acetone	ND	1000		ND	2380			1000
Trichlorofluoromethane	ND	200.		ND	1120			1000
iso-Propyl Alcohol	ND	500		ND	1230			1000
1,1-Dichloroethene	ND	200.		ND	793			1000
tert-Butyl Alcohol	ND	500.		ND	1520			1000
Methylene chloride	ND	500.		ND	1740			1000
3-Chloropropene	ND	200.		ND	626			1000
Carbon disulfide	ND	200.		ND	623			1000
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	200.		ND	1530			1000
trans-1,2-Dichloroethene	ND	200.		ND	793			1000
1,1-Dichloroethane	ND	200.		ND	809			1000
Methyl tert butyl ether	ND	200.		ND	721			1000
2-Butanone	ND	500.		ND	1470			1000
cis-1,2-Dichloroethene	ND	200.		ND	793			1000

Project Name:229 HOMER STProject Number:T0311-018-001

 Lab Number:
 L1836968

 Report Date:
 09/27/18

SAMPLE RESULTS

Lab ID: L1836968-01 D

Client ID: INITIAL SOIL VAPOR SAMPLE

Sample Location: OLEAN, NY

Date Collected: 09/13/18 13:48

Date Received: 09/17/18
Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Ethyl Acetate	ND	500.		ND	1800			1000
Chloroform	ND	200.		ND	977			1000
Tetrahydrofuran	ND	500		ND	1470			1000
1,2-Dichloroethane	ND	200.		ND	809			1000
n-Hexane	ND	200.		ND	705			1000
1,1,1-Trichloroethane	ND	200.		ND	1090			1000
Benzene	ND	200.		ND	639			1000
Carbon tetrachloride	ND	200.		ND	1260			1000
Cyclohexane	16400	200		56500	688			1000
1,2-Dichloropropane	ND	200.		ND	924			1000
Bromodichloromethane	ND	200.		ND	1340			1000
1,4-Dioxane	ND	200.		ND	721			1000
Trichloroethene	ND	200.		ND	1070			1000
2,2,4-Trimethylpentane	ND	200.		ND	934			1000
Heptane	ND	200.		ND	820			1000
cis-1,3-Dichloropropene	ND	200.		ND	908			1000
4-Methyl-2-pentanone	ND	500.		ND	2050			1000
trans-1,3-Dichloropropene	ND	200.		ND	908			1000
1,1,2-Trichloroethane	ND	200.		ND	1090			1000
Toluene	ND	200.		ND	754			1000
2-Hexanone	ND	200.		ND	820			1000
Dibromochloromethane	ND	200.		ND	1700			1000
1,2-Dibromoethane	ND	200.		ND	1540			1000
Tetrachloroethene	ND	200.		ND	1360			1000
Chlorobenzene	ND	200.		ND	921			1000
Ethylbenzene	ND	200.		ND	869			1000

Project Name: 229 HOMER ST
Project Number: T0311-018-001

 Lab Number:
 L1836968

 Report Date:
 09/27/18

SAMPLE RESULTS

Lab ID: L1836968-01 D

Client ID: INITIAL SOIL VAPOR SAMPLE

Sample Location: OLEAN, NY

Date Collected: 09/13/18 13:48

Date Received: 09/17/18
Field Prep: Not Specified

Sample Depth:

odinpio Dopin.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
p/m-Xylene	ND	400.		ND	1740			1000
Bromoform	ND	200.		ND	2070			1000
Styrene	ND	200.		ND	852			1000
1,1,2,2-Tetrachloroethane	ND	200.		ND	1370			1000
o-Xylene	ND	200.		ND	869			1000
4-Ethyltoluene	ND	200.		ND	983			1000
1,3,5-Trimethylbenzene	ND	200.		ND	983			1000
1,2,4-Trimethylbenzene	ND	200.		ND	983			1000
Benzyl chloride	ND	200.		ND	1040			1000
1,3-Dichlorobenzene	ND	200.		ND	1200			1000
1,4-Dichlorobenzene	ND	200.		ND	1200			1000
1,2-Dichlorobenzene	ND	200.		ND	1200			1000
1,2,4-Trichlorobenzene	ND	200.		ND	1480			1000
Hexachlorobutadiene	ND	200.		ND	2130			1000

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	96		60-140

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1159536-	-4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

.

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1159536-	4			
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1159536-	4			
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
	110	0.200		110	1.00			

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	le(s): 01	Batch:	WG1159536-4				
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1836968

Report Da Report Da	ate:	09/27/18	
---------------------	------	----------	--

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s)	: 01 Batch: WG1159536-	-3			
Chlorodifluoromethane	75	-	70-130	-		
Propylene	79	-	70-130	-		
Propane	71	-	70-130	-		
Dichlorodifluoromethane	77	-	70-130	-		
Chloromethane	72	-	70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	84	-	70-130	-		
Vinyl chloride	81	-	70-130	-		
1,3-Butadiene	90	-	70-130	-		
Bromomethane	80	-	70-130	-		
Chloroethane	76	-	70-130	-		
Ethyl Alcohol	73	-	70-130	-		
Vinyl bromide	77	-	70-130	-		
Acrolein	78	-	70-130	-		
Acetone	72	-	70-130	-		
Acetonitrile	70	-	70-130	-		
Trichlorofluoromethane	71	-	70-130	•		
iso-Propyl Alcohol	71	-	70-130	-		
Acrylonitrile	77	-	70-130	-		
Pentane	78	-	70-130	-		
1,1-Dichloroethene	81	-	70-130	-		
tert-Butyl Alcohol	79	-	70-130	-		
Methylene chloride	75	-	70-130	-		
3-Chloropropene	80	-	70-130	-		

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1836968

Report Date:

09/27/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics in Air - Mansfield Lab	Associated sample(s)	: 01 Bat	ch: WG1159536-3					
Carbon disulfide	76		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	78		-		70-130	-		
trans-1,2-Dichloroethene	80		-		70-130	-		
1,1-Dichloroethane	78		-		70-130	-		
Methyl tert butyl ether	72		-		70-130	-		
Vinyl acetate	75		-		70-130	-		
2-Butanone	70		-		70-130	-		
cis-1,2-Dichloroethene	95		-		70-130	-		
Ethyl Acetate	77		-		70-130	-		
Chloroform	83		-		70-130	-		
Tetrahydrofuran	72		-		70-130	-		
2,2-Dichloropropane	75		-		70-130	-		
1,2-Dichloroethane	74		-		70-130	-		
n-Hexane	111		-		70-130	-		
Isopropyl Ether	92		-		70-130	-		
Ethyl-Tert-Butyl-Ether	88		-		70-130	-		
1,1,1-Trichloroethane	98		-		70-130	-		
1,1-Dichloropropene	99		-		70-130	-		
Benzene	102		-		70-130	-		
Carbon tetrachloride	100		-		70-130	-		
Cyclohexane	102		-		70-130	-		
Tertiary-Amyl Methyl Ether	94		-		70-130	-		
Dibromomethane	92		-		70-130	-		

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1836968

Report Date: 09/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01 Batch	: WG1159536-3					
1,2-Dichloropropane	95		-		70-130	-		
Bromodichloromethane	106		-		70-130	-		
1,4-Dioxane	101		-		70-130	-		
Trichloroethene	102		-		70-130	-		
2,2,4-Trimethylpentane	104		-		70-130	-		
Methyl Methacrylate	86		-		70-130	-		
Heptane	101		-		70-130	-		
cis-1,3-Dichloropropene	110		-		70-130	-		
4-Methyl-2-pentanone	101		-		70-130	-		
trans-1,3-Dichloropropene	96		-		70-130	-		
1,1,2-Trichloroethane	104		-		70-130	-		
Toluene	90		-		70-130	-		
1,3-Dichloropropane	90		-		70-130	-		
2-Hexanone	90		-		70-130	-		
Dibromochloromethane	101		-		70-130	-		
1,2-Dibromoethane	95		-		70-130	-		
Butyl Acetate	87		-		70-130	-		
Octane	86		-		70-130	-		
Tetrachloroethene	90		-		70-130	-		
1,1,1,2-Tetrachloroethane	88		-		70-130	-		
Chlorobenzene	92		-		70-130	-		
Ethylbenzene	94		-		70-130	-		
p/m-Xylene	95		-		70-130	-		

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1836968

Report Date: 09/27/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Ass	sociated sample(s)	: 01 Batch	: WG1159536-3					
Bromoform	103		-		70-130	-		
Styrene	96		-		70-130	-		
1,1,2,2-Tetrachloroethane	100		-		70-130	-		
o-Xylene	99		-		70-130	-		
1,2,3-Trichloropropane	92		-		70-130	-		
Nonane (C9)	86		-		70-130	-		
Isopropylbenzene	93		-		70-130	-		
Bromobenzene	91		-		70-130	-		
o-Chlorotoluene	86		-		70-130	-		
n-Propylbenzene	86		-		70-130	-		
p-Chlorotoluene	86		-		70-130	-		
4-Ethyltoluene	117		-		70-130	-		
1,3,5-Trimethylbenzene	81		-		70-130	-		
tert-Butylbenzene	90		-		70-130	-		
1,2,4-Trimethylbenzene	103		-		70-130	-		
Decane (C10)	91		-		70-130	-		
Benzyl chloride	104		-		70-130	-		
1,3-Dichlorobenzene	99		-		70-130	-		
1,4-Dichlorobenzene	95		-		70-130	-		
sec-Butylbenzene	92		-		70-130	-		
p-Isopropyltoluene	86		-		70-130	-		
1,2-Dichlorobenzene	97		-		70-130	-		
n-Butylbenzene	93		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1836968

Report Date:

09/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ciated sample(s):	01 Batch:	WG1159536-3					
1,2-Dibromo-3-chloropropane	96		-		70-130	-		
Undecane	98		-		70-130	-		
Dodecane (C12)	101		-		70-130	-		
1,2,4-Trichlorobenzene	100		-		70-130	-		
Naphthalene	88		-		70-130	-		
1,2,3-Trichlorobenzene	88		-		70-130	-		
Hexachlorobutadiene	98		-		70-130	-		

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1836968

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
platile Organics in Air - Mansfield Lab Asse	ociated sample(s): 01 QC	Batch ID: WG1159536-5	QC Sample:	L1836966-02	Client ID:	DUP Sample
Propylene	ND	ND	ppbV	NC		25
Dichlorodifluoromethane	ND	ND	ppbV	NC		25
Chloromethane	ND	ND	ppbV	NC		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethyl Alcohol	ND	ND	ppbV	NC		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	ND	ND	ppbV	NC		25
Trichlorofluoromethane	ND	ND	ppbV	NC		25
iso-Propyl Alcohol	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
Methyl tert butyl ether	ND	ND	ppbV	NC		25

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1836968

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01 QC	Batch ID: WG1159536-5	QC Sample:	L1836966-02	Client ID: DUP Sample	
Vinyl acetate	ND	ND	ppbV	NC	25	
2-Butanone	ND	ND	ppbV	NC	25	
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
Ethyl Acetate	ND	ND	ppbV	NC	25	
Chloroform	ND	ND	ppbV	NC	25	
Tetrahydrofuran	ND	ND	ppbV	NC	25	
1,2-Dichloroethane	ND	ND	ppbV	NC	25	
n-Hexane	ND	ND	ppbV	NC	25	
1,1,1-Trichloroethane	12.3	12.2	ppbV	1	25	
Benzene	ND	ND	ppbV	NC	25	
Carbon tetrachloride	ND	ND	ppbV	NC	25	
Cyclohexane	ND	ND	ppbV	NC	25	
1,2-Dichloropropane	ND	ND	ppbV	NC	25	
Bromodichloromethane	ND	ND	ppbV	NC	25	
1,4-Dioxane	ND	ND	ppbV	NC	25	
Trichloroethene	803	792	ppbV	1	25	
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25	
Heptane	ND	ND	ppbV	NC	25	
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25	
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25	
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25	

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1836968

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01 QC Ba	atch ID: WG1159536-5	QC Sample:	L1836966-02	Client ID: DUP Sample
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	ND	ND	ppbV	NC	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	8.56	8.46	ppbV	1	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
p/m-Xylene	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25

Project Name: 229 HOMER ST Batch Q
Project Number: T0311-018-001

Lab Number:

L1836968

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air - Mansfield Lab As	sociated sample(s): 01 QC Batc	th ID: WG1159536-5	QC Sample:	L1836966-02	Client ID: DUP Sample	
Naphthalene	ND	ND	ppbV	NC	25	
Hexachlorobutadiene	ND	ND	ppbV	NC	25	

Project Name: Lab Number: 229 HOMER ST L1836968

Project Number: Report Date: T0311-018-001 09/27/18

SAMPLE RESULTS

Lab ID: D Date Collected: L1836968-01 09/13/18 13:48

Client ID: INITIAL SOIL VAPOR SAMPLE Date Received: 09/17/18 Field Prep: Not Specified

OLEAN, NY Sample Location:

Sample Depth:

Matrix: Soil_Vapor Analytical Method: 96,APH

Analytical Date: 09/22/18 03:57

Analyst: MB

Quality Control Information

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab					
1,3-Butadiene	ND		ug/m3	500		1000
Methyl tert butyl ether	ND		ug/m3	700		1000
Benzene	ND		ug/m3	600		1000
C5-C8 Aliphatics, Adjusted	2500000		ug/m3	10000		1000
Toluene	ND		ug/m3	900		1000
Ethylbenzene	ND		ug/m3	900		1000
p/m-Xylene	ND		ug/m3	900		1000
o-Xylene	ND		ug/m3	900		1000
Naphthalene	ND		ug/m3	1100		1000
C9-C12 Aliphatics, Adjusted	320000		ug/m3	10000		1000
C9-C10 Aromatics Total	ND		ug/m3	10000		1000

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		50-200
Bromochloromethane	99		50-200
Chlorobenzene-d5	88		50-200

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

Method Blank Analysis Batch Quality Control

Analytical Method: 96,APH

Analytical Date: 09/21/18 18:02

Analyst: RY

Parameter	Result	Qualifier Units	RL	MDL	
Petroleum Hydrocarbons in Air	Mansfield Lab f	or sample(s): 01	Batch: WG	G1159535-4	
1,3-Butadiene	ND	ug/m3	0.50		
Methyl tert butyl ether	ND	ug/m3	0.70		
Benzene	ND	ug/m3	0.60		
C5-C8 Aliphatics, Adjusted	ND	ug/m3	10		
Toluene	ND	ug/m3	0.90		
Ethylbenzene	ND	ug/m3	0.90		
p/m-Xylene	ND	ug/m3	0.90		
o-Xylene	ND	ug/m3	0.90		
Naphthalene	ND	ug/m3	1.1		
C9-C12 Aliphatics, Adjusted	ND	ug/m3	10		
C9-C10 Aromatics Total	ND	ug/m3	10		

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number:

L1836968

Report Date:

09/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Petroleum Hydrocarbons in Air - Mansfield La	b Associated sa	ample(s): C	1 Batch: WG11	59535-3					
1,3-Butadiene	101		-		70-130	-			
Methyl tert butyl ether	84		-		70-130	-			
Benzene	118		-		70-130	-			
C5-C8 Aliphatics, Adjusted	120		-		70-130	-			
Toluene	97		-		70-130	-			
Ethylbenzene	100		-		70-130	-			
p/m-Xylene	96		-		70-130	-			
o-Xylene	102		-		70-130	-			
Naphthalene	117		-		50-150	-			
C9-C12 Aliphatics, Adjusted	102		-		70-130	-			
C9-C10 Aromatics Total	91		-		70-130	-			

Project Name: 229 HOMER ST Project Number: T0311-018-001

Lab Number: L1836968

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
etroleum Hydrocarbons in Air - Mansfield Lab	•	QC Batch ID: WG1159	535-5 QC Sam	nple: L1836	6966-02 Cli	ent ID: DUP San	nple
1,3-Butadiene	ND	ND	ug/m3	NC		30	
Methyl tert butyl ether	ND	ND	ug/m3	NC		30	
Benzene	ND	ND	ug/m3	NC		30	
C5-C8 Aliphatics, Adjusted	130	150	ug/m3	14		30	
Toluene	ND	ND	ug/m3	NC		30	
Ethylbenzene	ND	ND	ug/m3	NC		30	
p/m-Xylene	ND	ND	ug/m3	NC		30	
o-Xylene	ND	ND	ug/m3	NC		30	
Naphthalene	ND	ND	ug/m3	NC		30	
C9-C12 Aliphatics, Adjusted	ND	ND	ug/m3	NC		30	
C9-C10 Aromatics Total	ND	ND	ug/m3	NC		30	

Project Name: 229 HOMER ST Lab Number: L1836968

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)			Flow In mL/min	% RPD
L1836968-01	INITIAL SOIL VAPOR SAMPLE	2072	2.7L Can	09/13/18	274332	L1835365-01	Pass	-28.8	-2.2	-	-	-	-

L1835365

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/27/18

Air Canister Certification Results

Lab ID: L1835365-01 Date Collected: 09/06/18 16:00

Client ID: CAN 209 SHELF 2 Date Received: 09/07/18

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 09/07/18 18:23

Analyst: MB

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield L	_ab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1	
Propylene	ND	0.500		ND	0.861			1	
Propane	ND	0.500		ND	0.902			1	
Dichlorodifluoromethane	ND	0.200		ND	0.989			1	
Chloromethane	ND	0.200		ND	0.413			1	
Freon-114	ND	0.200		ND	1.40			1	
Methanol	ND	5.00		ND	6.55			1	
Vinyl chloride	ND	0.200		ND	0.511			1	
1,3-Butadiene	ND	0.200		ND	0.442			1	
Butane	ND	0.200		ND	0.475			1	
Bromomethane	ND	0.200		ND	0.777			1	
Chloroethane	ND	0.200		ND	0.528			1	
Ethanol	ND	5.00		ND	9.42			1	
Dichlorofluoromethane	ND	0.200		ND	0.842			1	
Vinyl bromide	ND	0.200		ND	0.874			1	
Acrolein	ND	0.500		ND	1.15			1	
Acetone	ND	1.00		ND	2.38			1	
Acetonitrile	ND	0.200		ND	0.336			1	
Trichlorofluoromethane	ND	0.200		ND	1.12			1	
Isopropanol	ND	0.500		ND	1.23			1	
Acrylonitrile	ND	0.500		ND	1.09			1	
Pentane	ND	0.200		ND	0.590			1	
Ethyl ether	ND	0.200		ND	0.606			1	
1,1-Dichloroethene	ND	0.200		ND	0.793			1	

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/27/18

Air Canister Certification Results

Lab ID: L1835365-01
Client ID: CAN 209 SHELF 2

Sample Location:

Date Collected:

Lab Number:

09/06/18 16:00

Date Received: Field Prep: 09/07/18 Not Specified

L1835365

оапри вории.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/27/18

Air Canister Certification Results

Lab ID: L1835365-01
Client ID: CAN 209 SHELF 2

Sample Location:

Date Collected:

Lab Number:

09/06/18 16:00

Date Received:

09/07/18

L1835365

Field Prep:

Not Specified

оапрю верии.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1

L1835365

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/27/18

Air Canister Certification Results

Lab ID: L1835365-01
Client ID: CAN 209 SHELF 2

Sample Location:

Date Collected: 09/06/18 16:00 Date Received: 09/07/18

Lab Number:

Date Received: 09/07/18
Field Prep: Not Specified

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfie	ld Lab								
Nonane	ND	0.200		ND	1.05			1	
Isopropylbenzene	ND	0.200		ND	0.983			1	
Bromobenzene	ND	0.200		ND	0.793			1	
2-Chlorotoluene	ND	0.200		ND	1.04			1	
n-Propylbenzene	ND	0.200		ND	0.983			1	
4-Chlorotoluene	ND	0.200		ND	1.04			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	
ert-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1	
Decane	ND	0.200		ND	1.16			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
sec-Butylbenzene	ND	0.200		ND	1.10			1	
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
n-Butylbenzene	ND	0.200		ND	1.10			1	
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1	
Undecane	ND	0.200		ND	1.28			1	
Dodecane	ND	0.200		ND	1.39			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Naphthalene	ND	0.200		ND	1.05			1	
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1835365

Project Number: CANISTER QC BAT Report Date: 09/27/18

Air Canister Certification Results

Lab ID: L1835365-01

Client ID: CAN 209 SHELF 2

Sample Location:

Date Collected:

09/06/18 16:00

Date Received:

09/07/18

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Results Qualifier Units RDL Dilution Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	92		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	94		60-140

L1835365

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/27/18

Air Canister Certification Results

Lab ID: L1835365-01 Date Collected: 09/06/18 16:00

Client ID: CAN 209 SHELF 2 Date Received: 09/07/18
Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 09/07/18 18:23

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1835365

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/27/18

Air Canister Certification Results

Lab ID: L1835365-01
Client ID: CAN 209 SHELF 2

Sample Location:

Date Collected: 09/06/18 16:00 Date Received: 09/07/18

Field Prep: Not Specified

cample Depth.		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - I	Mansfield Lab								
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Trichloroethene	ND	0.020		ND	0.107			1	
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.050		ND	0.188			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
1,2-Dibromoethane	ND	0.020		ND	0.154			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
Chlorobenzene	ND	0.100		ND	0.461			1	
Ethylbenzene	ND	0.020		ND	0.087			1	
o/m-Xylene	ND	0.040		ND	0.174			1	
Bromoform	ND	0.020		ND	0.207			1	
Styrene	ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
o-Xylene	ND	0.020		ND	0.087			1	
sopropylbenzene	ND	0.200		ND	0.983			1	
4-Ethyltoluene	ND	0.020		ND	0.098			1	
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1	
sec-Butylbenzene	ND	0.200		ND	1.10			1	

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1835365

Project Number: CANISTER QC BAT Report Date: 09/27/18

Air Canister Certification Results

 Lab ID:
 L1835365-01
 Date Collected:
 09/06/18 16:00

 Client ID:
 CAN 209 SHELF 2
 Date Received:
 09/07/18

Client ID: CAN 209 SHELF 2 Date Received: 09/07/18
Sample Location: Field Prep: Not Specified

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	91		60-140

AIR Petro Can Certification

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1835365

Project Number: Report Date: CANISTER QC BAT 09/27/18

AIR CAN CERTIFICATION RESULTS

Lab ID: L1835365-01 Date Collected: 09/06/18 16:00

Client ID: Date Received: CAN 209 SHELF 2 09/07/18 Not Specified

Sample Location: Not Specified Field Prep:

Matrix: Air Analytical Method: 96,APH

Analytical Date: 09/07/18 18:23

Analyst: MB

Parameter	Result	Qualifier U	nits RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air					
1,3-Butadiene	ND	ug	/m3 0.50		1
Methyl tert butyl ether	ND	ug	/m3 0.70		1
Benzene	ND	ug	/m3 0.60		1
C5-C8 Aliphatics, Adjusted	ND	ug	/m3 10		1
Toluene	ND	ug	/m3 0.90		1
Ethylbenzene	ND	ug	/m3 0.90		1
p/m-Xylene	ND	ug	/m3 0.90		1
o-Xylene	ND	ug	/m3 0.90		1
Naphthalene	ND	ug	/m3 1.1		1
C9-C12 Aliphatics, Adjusted	ND	ug	/m3 10		1
C9-C10 Aromatics Total	ND	ug	/m3 10		1

Lab Number: L1836968

Report Date: 09/27/18

Sample Receipt and Container Information

Sample Receipt and Container Information

Were project specific reporting limits specified?

229 HOMER ST

YES

Cooler Information

Project Name:

Cooler Custody Seal

N/A Absent

Project Number: T0311-018-001

Container Info	rmation		Initial	Final	Temp	Temp		Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1836968-01A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		APH-10(30).TO15-LL(30)

Project Name: Lab Number: 229 HOMER ST L1836968 **Project Number:** T0311-018-001 **Report Date:** 09/27/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

MS which an independent estimate of target analyte concentration is available.

- Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

MSD

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 229 HOMER ST
 Lab Number:
 L1836968

 Project Number:
 T0311-018-001
 Report Date:
 09/27/18

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAMIXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ΔLPH	AIR A	NALY	/SIS	1	PAGE	_OF	Date	Rec'd in L	ab:	91	8/18						4183	36968
320 Forbes Blvd,	Mansfield, MA 02048		Informa				Rep	ort Inforn	nation	- Data	Deliver	ables				formati		
	00 FAX: 508-822-3288			1 Homes	4711441		O FA						1	⊒ Sar	ne as	Client inf	fo PO#:	10
Client Informat	*****	Project L	ocation:	Olean	NY		O AI	DEX Criteria Cl	hecker:				- 1					
Client: Benchm	neak & Tuenkey	Project #	T0311	-018-	100			(Default bas		gulatory Cr	iteria Indica	ted)				101		
Address: 2558	Hamburg Tuenpike	Project M	Manager: Quote #:	Roy L	apor	t		MAIL (stand ditional De	dard pd		1	Ď,		Regi		ry Requ		s/Report Limit
Phone: 716	856 0635	Turn-A	round Ti	me			Repo	t to: or differe	ed than Proj	ect Manager)			- [- Nour Comm
	856 0583	☐ Standa	ard (RUSH (only	confirmed if pre-	approved!)												
Other Project	nave been previously analyzed by Alpha Specific Requirements/Comr ic Target Compound List:			s Bel	Time:	Must							/	Month and	D STATE OF	ASIS OF 10-16		
ALPHA Lab ID (Lab Use Only)	Sample ID		CO	LLECTIO	M		Sample	Sampler's	Can	ID	ID-Flow	70.75	70.15 SIM	Fixed C	Lathering & Alley	/ /		
1.968,01	Initial Soil vapor supple	Annual Control of the		1:48:30		- į	SV	MLJ	Size	Can Alfina Cast 207	None	X						nments (i.e. PID)
															- Marie		3 E 191	
*SAMPLI	E MATRIX CODES SV	= Ambient = Soil Vapo	Air (Indoor	Outdoor)														
Page 42 of 42	Oth	Relinquish	Specify	rall	Date 9/3/2	Time 9 17 9 17 9 17 17 17	8 /2	Receiv	ed By:	Type	190	12/3	gate/T	ime: /5	in the same	logge clock guities subm Terms	oletely. Sam ed in and turn will not star es are resolv	

ANALYTICAL REPORT

Lab Number: L2016038

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599
Project Name: 229 HOMER ST

Project Number: T0311-018-001

Report Date: 04/23/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

 Lab Number:
 L2016038

 Report Date:
 04/23/20

Alpha Sample ID Client ID Matrix Soll_VAPOR Soll_VAPOR Clean NY Collection Date/Time Receive Date

 Project Name:
 229 HOMER ST
 Lab Number:
 L2016038

 Project Number:
 T0311-018-001
 Report Date:
 04/23/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:04232013:02

 Project Name:
 229 HOMER ST
 Lab Number:
 L2016038

 Project Number:
 T0311-018-001
 Report Date:
 04/23/20

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 10, 2020. The canister certification results are provided as an addendum.

L2016038-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

The continuing calibration standard, associated with L2016038-01, is outside the %D criteria for 1,3-Butadiene (33%D); however, it is within overall acceptance criteria.

Petroleum Hydrocarbons in Air

L2016038-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/23/20

Christopher J. Anderson

AIR

Project Name: 229 HOMER ST
Project Number: T0311-018-001

 Lab Number:
 L2016038

 Report Date:
 04/23/20

SAMPLE RESULTS

Lab ID: L2016038-01 D
Client ID: HOMER ST.- SVE

Date Collected: 04/15/20 14:46 Date Received: 04/16/20

Sample Location: OLEAN, NY

Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 04/21/20 06:02

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	0.769		ND	3.80			3.846
Chloromethane	ND	0.769		ND	1.59			3.846
Freon-114	ND	0.769		ND	5.38			3.846
Vinyl chloride	ND	0.769		ND	1.97			3.846
1,3-Butadiene	ND	0.769		ND	1.70			3.846
Bromomethane	ND	0.769		ND	2.99			3.846
Chloroethane	ND	0.769		ND	2.03			3.846
Ethanol	ND	19.2		ND	36.2			3.846
Vinyl bromide	ND	0.769		ND	3.36			3.846
Acetone	ND	3.85		ND	9.15			3.846
Trichlorofluoromethane	ND	0.769		ND	4.32			3.846
Isopropanol	ND	1.92		ND	4.72			3.846
1,1-Dichloroethene	ND	0.769		ND	3.05			3.846
Tertiary butyl Alcohol	ND	1.92		ND	5.82			3.846
Methylene chloride	ND	1.92		ND	6.67			3.846
3-Chloropropene	ND	0.769		ND	2.41			3.846
Carbon disulfide	ND	0.769		ND	2.39			3.846
Freon-113	ND	0.769		ND	5.89			3.846
trans-1,2-Dichloroethene	ND	0.769		ND	3.05			3.846
1,1-Dichloroethane	ND	0.769		ND	3.11			3.846
Methyl tert butyl ether	ND	0.769		ND	2.77			3.846
2-Butanone	ND	1.92		ND	5.66			3.846
cis-1,2-Dichloroethene	ND	0.769		ND	3.05			3.846

Project Name: 229 HOMER ST
Project Number: T0311-018-001

 Lab Number:
 L2016038

 Report Date:
 04/23/20

SAMPLE RESULTS

Lab ID: L2016038-01 D
Client ID: HOMER ST.- SVE

R ST.- SVE Date Receiv

Sample Location: OLEAN, NY

Date Received: 04/16/20 Field Prep: Not Specified

04/15/20 14:46

Date Collected:

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	1.92		ND	6.92			3.846
Chloroform	ND	0.769		ND	3.76			3.846
Tetrahydrofuran	ND	1.92		ND	5.66			3.846
1,2-Dichloroethane	ND	0.769		ND	3.11			3.846
n-Hexane	ND	0.769		ND	2.71			3.846
1,1,1-Trichloroethane	ND	0.769		ND	4.20			3.846
Benzene	ND	0.769		ND	2.46			3.846
Carbon tetrachloride	ND	0.769		ND	4.84			3.846
Cyclohexane	27.9	0.769		96.0	2.65			3.846
1,2-Dichloropropane	ND	0.769		ND	3.55			3.846
Bromodichloromethane	ND	0.769		ND	5.15			3.846
1,4-Dioxane	ND	0.769		ND	2.77			3.846
Trichloroethene	ND	0.769		ND	4.13			3.846
2,2,4-Trimethylpentane	ND	0.769		ND	3.59			3.846
Heptane	ND	0.769		ND	3.15			3.846
cis-1,3-Dichloropropene	ND	0.769		ND	3.49			3.846
4-Methyl-2-pentanone	6.84	1.92		28.0	7.87			3.846
trans-1,3-Dichloropropene	ND	0.769		ND	3.49			3.846
1,1,2-Trichloroethane	ND	0.769		ND	4.20			3.846
Toluene	ND	0.769		ND	2.90			3.846
2-Hexanone	ND	0.769		ND	3.15			3.846
Dibromochloromethane	ND	0.769		ND	6.55			3.846
1,2-Dibromoethane	ND	0.769		ND	5.91			3.846
Tetrachloroethene	ND	0.769		ND	5.21			3.846
Chlorobenzene	ND	0.769		ND	3.54			3.846
Ethylbenzene	ND	0.769		ND	3.34			3.846

L2016038

Project Name:229 HOMER STLab Number:Project Number:T0311-018-001Report Date:

Report Date: 04/23/20

SAMPLE RESULTS

Lab ID: L2016038-01 D
Client ID: HOMER ST.- SVE
Sample Location: OLEAN, NY

Date Collected: 04/15/20 14:46
Date Received: 04/16/20
Field Prep: Not Specified

odinpio Doptii.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
p/m-Xylene	ND	1.54		ND	6.69			3.846
Bromoform	ND	0.769		ND	7.95			3.846
Styrene	ND	0.769		ND	3.27			3.846
1,1,2,2-Tetrachloroethane	ND	0.769		ND	5.28			3.846
o-Xylene	ND	0.769		ND	3.34			3.846
4-Ethyltoluene	ND	0.769		ND	3.78			3.846
1,3,5-Trimethylbenzene	1.29	0.769		6.34	3.78			3.846
1,2,4-Trimethylbenzene	ND	0.769		ND	3.78			3.846
Benzyl chloride	ND	0.769		ND	3.98			3.846
1,3-Dichlorobenzene	ND	0.769		ND	4.62			3.846
1,4-Dichlorobenzene	ND	0.769		ND	4.62			3.846
1,2-Dichlorobenzene	ND	0.769		ND	4.62			3.846
1,2,4-Trichlorobenzene	ND	0.769		ND	5.71			3.846
Hexachlorobutadiene	ND	0.769		ND	8.20			3.846

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					
Hexane, 2,5-dimethyl-	49	NJ	ppbV		3.846
Pentane, 2,2-dimethyl-	80	NJ	ppbV		3.846
unknown cycloalkane	95	J	ppbV		3.846
unknown cycloalkane	55	J	ppbV		3.846
Cyclopentane, 1,1-dimethyl-	82	NJ	ppbV		3.846
Hexane, 2,4-dimethyl-	97	NJ	ppbV		3.846
Pentane, 2,4-dimethyl-	110	NJ	ppbV		3.846
unknown cycloalkane	62	J	ppbV		3.846
Cyclohexane, methyl-	270	NJ	ppbV		3.846

L2016038

Project Name: 229 HOMER ST Lab Number:

T0311-018-001 *Report Date:*

Report Date: 04/23/20

SAMPLE RESULTS

Lab ID: L2016038-01 D
Client ID: HOMER ST.- SVE

Sample Location: OLEAN, NY

Date Collected: 04/15/20 14:46

Date Received: 04/16/20

Field Prep: Not Specified

Sample Depth:

Project Number:

Parameter Per PopbV ug/m3 Dilution Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					
unknown cycloalkane	100	J	ppbV		3.846
Pentane, 2,3-dimethyl-	93	NJ	ppbV		3.846
Butane, 2-Methyl-	47	NJ	ppbV		3.846
unknown alkane	56	J	ppbV		3.846
unknown alkane	110	J	ppbV		3.846

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	106		60-140
Bromochloromethane	103		60-140
chlorobenzene-d5	114		60-140

Serial_No:04232013:02

 Project Name:
 229 HOMER ST
 Lab Number:
 L2016038

 Project Number:
 T0311-018-001
 Report Date:
 04/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/20/20 14:33

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1362750-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

 Project Name:
 229 HOMER ST
 Lab Number:
 L2016038

 Project Number:
 T0311-018-001
 Report Date:
 04/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/20/20 14:33

		ppbV				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	_ab for samp	ole(s): 01	Batch:	WG1362750-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
1. Viene	ND	0.400		ND	1.74			'

Project Name: Lab Number: 229 HOMER ST L2016038 Project Number: T0311-018-001

Report Date: 04/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/20/20 14:33

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	le(s): 01	Batch:	WG1362750-	4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L2016038

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	sociated sample(s)	: 01 Batch	: WG1362750-3					
Dichlorodifluoromethane	96		-		70-130	-		
Chloromethane	104		-		70-130	-		
Freon-114	110		-		70-130	-		
Vinyl chloride	102		-		70-130	-		
1,3-Butadiene	116		-		70-130	-		
Bromomethane	100		-		70-130	-		
Chloroethane	106		-		70-130	-		
Ethanol	78		-		40-160	-		
Vinyl bromide	99		-		70-130	-		
Acetone	82		-		40-160	-		
Trichlorofluoromethane	116		-		70-130	-		
Isopropanol	80		-		40-160	-		
1,1-Dichloroethene	111		-		70-130	-		
Tertiary butyl Alcohol	92		-		70-130	-		
Methylene chloride	101		-		70-130	-		
3-Chloropropene	123		-		70-130	-		
Carbon disulfide	99		-		70-130	-		
Freon-113	103		-		70-130	-		
trans-1,2-Dichloroethene	105		-		70-130	-		
1,1-Dichloroethane	110		-		70-130	-		
Methyl tert butyl ether	102		-		70-130	-		
2-Butanone	106		-		70-130	-		
cis-1,2-Dichloroethene	108		-		70-130	-		

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L2016038

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	sociated sample(s):	01 Batc	h: WG1362750-3					
Ethyl Acetate	115		-		70-130	-		
Chloroform	102		-		70-130	-		
Tetrahydrofuran	106		-		70-130	-		
1,2-Dichloroethane	107		-		70-130	-		
n-Hexane	103		-		70-130	-		
1,1,1-Trichloroethane	102		-		70-130	-		
Benzene	98		-		70-130	-		
Carbon tetrachloride	110		-		70-130	-		
Cyclohexane	104		-		70-130	-		
1,2-Dichloropropane	108		-		70-130	-		
Bromodichloromethane	104		-		70-130	-		
1,4-Dioxane	102		-		70-130	-		
Trichloroethene	101		-		70-130	-		
2,2,4-Trimethylpentane	105		-		70-130	-		
Heptane	107		-		70-130	-		
cis-1,3-Dichloropropene	106		-		70-130	-		
4-Methyl-2-pentanone	110		-		70-130	-		
trans-1,3-Dichloropropene	90		-		70-130	-		
1,1,2-Trichloroethane	103		-		70-130	-		
Toluene	106		-		70-130	-		
2-Hexanone	111		-		70-130	-		
Dibromochloromethane	112		-		70-130	-		
1,2-Dibromoethane	101		-		70-130	-		

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L2016038

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	associated sample(s):	01 Batch:	WG1362750-3					
Tetrachloroethene	106		-		70-130	-		
Chlorobenzene	108		-		70-130	-		
Ethylbenzene	108		-		70-130	-		
p/m-Xylene	107		-		70-130	-		
Bromoform	108		-		70-130	-		
Styrene	100		-		70-130	-		
1,1,2,2-Tetrachloroethane	110		-		70-130	-		
o-Xylene	106		-		70-130	-		
4-Ethyltoluene	99		-		70-130	-		
1,3,5-Trimethylbenzene	102		-		70-130	-		
1,2,4-Trimethylbenzene	101		-		70-130	-		
Benzyl chloride	110		-		70-130	-		
1,3-Dichlorobenzene	102		-		70-130	-		
1,4-Dichlorobenzene	107		-		70-130	-		
1,2-Dichlorobenzene	102		-		70-130	-		
1,2,4-Trichlorobenzene	108		-		70-130	-		
Hexachlorobutadiene	101		-		70-130	-		

Project Name: 229 HOMER ST Lab Number: L2016038

Project Number: T0311-018-001 **Report Date:** 04/23/20

SAMPLE RESULTS

Lab ID: L2016038-01 D Date Collected: 04/15/20 14:46

Client ID: HOMER ST.- SVE Date Received: 04/16/20 Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Analytical Method: 96,APH

Analytical Date: 04/21/20 23:31

Analyst: RY

Quality Control Information

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab				
1,3-Butadiene	ND	ug/m3	1.9		3.8
Methyl tert butyl ether	ND	ug/m3	2.7		3.8
Benzene	ND	ug/m3	2.3		3.8
C5-C8 Aliphatics, Adjusted	16000	ug/m3	38		3.8
Toluene	ND	ug/m3	3.4		3.8
Ethylbenzene	ND	ug/m3	3.4		3.8
p/m-Xylene	ND	ug/m3	3.4		3.8
o-Xylene	ND	ug/m3	3.4		3.8
Naphthalene	ND	ug/m3	4.2		3.8
C9-C12 Aliphatics, Adjusted	5400	ug/m3	38		3.8
C9-C10 Aromatics Total	ND	ug/m3	38		3.8

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		50-200
Bromochloromethane	86		50-200
Chlorobenzene-d5	97		50-200

Project Name:229 HOMER STLab Number:L2016038

Project Number: T0311-018-001 **Report Date:** 04/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 96,APH
Analytical Date: 04/21/20 14:31

Analyst: RY

Parameter	Result	Qualifier Units	RL	MDL	
Petroleum Hydrocarbons in Air - Ma	ansfield Lab	for sample(s): 01	Batch: Wo	G1363095-4	
1,3-Butadiene	ND	ug/m3	0.50		
Methyl tert butyl ether	ND	ug/m3	0.70		
Benzene	ND	ug/m3	0.60		
C5-C8 Aliphatics, Adjusted	ND	ug/m3	10		
Toluene	ND	ug/m3	0.90		
Ethylbenzene	ND	ug/m3	0.90		
p/m-Xylene	ND	ug/m3	0.90		
o-Xylene	ND	ug/m3	0.90		
Naphthalene	ND	ug/m3	1.1		
C9-C12 Aliphatics, Adjusted	ND	ug/m3	10		
C9-C10 Aromatics Total	ND	ug/m3	10		

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L2016038

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Petroleum Hydrocarbons in Air - Mansfield La	b Associated s	ample(s): 0°	1 Batch: WG13	63095-3					
1,3-Butadiene	71		-		70-130	-			
Methyl tert butyl ether	86		-		70-130	-			
Benzene	94		-		70-130	-			
C5-C8 Aliphatics, Adjusted	105		-		70-130	-			
Toluene	112		-		70-130	-			
Ethylbenzene	125		-		70-130	-			
p/m-Xylene	116		-		70-130	-			
o-Xylene	120		-		70-130	-			
Naphthalene	128		-		50-150	-			
C9-C12 Aliphatics, Adjusted	109		-		70-130	-			
C9-C10 Aromatics Total	98		-		70-130	-			

Lab Duplicate Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L2016038

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
etroleum Hydrocarbons in Air - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1363	095-5 QC San	nple: L2016	6500-02 CI	ent ID: DUP San	nple
1,3-Butadiene	ND	ND	ug/m3	NC		30	
Methyl tert butyl ether	ND	ND	ug/m3	NC		30	
Benzene	ND	ND	ug/m3	NC		30	
C5-C8 Aliphatics, Adjusted	190	190	ug/m3	0		30	
Toluene	ND	ND	ug/m3	NC		30	
Ethylbenzene	ND	ND	ug/m3	NC		30	
p/m-Xylene	ND	ND	ug/m3	NC		30	
o-Xylene	ND	ND	ug/m3	NC		30	
Naphthalene	ND	ND	ug/m3	NC		30	
C9-C12 Aliphatics, Adjusted	23	19	ug/m3	19		30	
C9-C10 Aromatics Total	ND	ND	ug/m3	NC		30	

Lab Number: L2016038

Project Number: T0311-018-001

Report Date: 04/23/20

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	% RPD
L2016038-01	HOMER ST SVE	119	2.7L Can	04/10/20	318846	L2011727-01	Pass	-28.9	0.0	-	-	-	-

Project Name:

229 HOMER ST

Project Name: BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Lab Number:

L2011727

Report Date: 04/23/20

Air Canister Certification Results

Lab ID: L2011727-01
Client ID: CAN 502 SHELF 3

Sample Location:

Project Number:

Date Collected:

03/19/20 16:00

Date Received:

03/20/20

Field Prep:

Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,

Analytical Method: 48,TO-15 Analytical Date: 03/21/20 17:31

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab	1							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2011727

03/19/20 16:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/23/20

Air Canister Certification Results

Lab ID: L2011727-01 Date Collected:
Client ID: CAN 502 SHELF 3

Sample Location:

Date Received: 03/20/20 Field Prep: Not Specified

		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield Lab)								
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1	
Methylene chloride	ND	0.500		ND	1.74			1	
3-Chloropropene	ND	0.200		ND	0.626			1	
Carbon disulfide	ND	0.200		ND	0.623			1	
Freon-113	ND	0.200		ND	1.53			1	
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
1,1-Dichloroethane	ND	0.200		ND	0.809			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
Vinyl acetate	ND	1.00		ND	3.52			1	
Xylenes, total	ND	0.600		ND	0.869			1	
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
Ethyl Acetate	ND	0.500		ND	1.80			1	
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	ND	0.500		ND	1.47			1	
2,2-Dichloropropane	ND	0.200		ND	0.924			1	
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	ND	0.200		ND	0.705			1	
Diisopropyl ether	ND	0.200		ND	0.836			1	
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1	
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1	
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1	
1,1-Dichloropropene	ND	0.200		ND	0.908			1	
Benzene	ND	0.200		ND	0.639			1	
Carbon tetrachloride	ND	0.200		ND	1.26			1	
Cyclohexane	ND	0.200		ND	0.688			1	
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1	

L2011727

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/23/20

Air Canister Certification Results

Lab ID: L2011727-01
Client ID: CAN 502 SHELF 3

Sample Location:

Date Collected: 03/19/20 16:00 Date Received: 03/20/20

Field Prep: Not Specified

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
richloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
leptane	ND	0.200		ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2011727

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/23/20

Air Canister Certification Results

Lab ID: L2011727-01
Client ID: CAN 502 SHELF 3

Sample Location:

Date Collected: 03/19/20 16:00 Date Received: 03/20/20

Field Prep: Not Specified

•	ppbV ug/m3							Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
1-Chlorotoluene	ND	0.200		ND	1.04			1
I-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Oodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number: L2011727

Project Number: CANISTER QC BAT Report Date: 04/23/20

Air Canister Certification Results

Lab ID: L2011727-01

Client ID: CAN 502 SHELF 3

Sample Location:

Date Collected:

03/19/20 16:00

Date Received:

03/20/20

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Results Qualifier Units RDL Dilution Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	88		60-140

L2011727

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/23/20

Air Canister Certification Results

Lab ID: Date Collected: 03/19/20 16:00

Client ID: CAN 502 SHELF 3 Date Received: 03/20/20 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/21/20 17:31

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2011727

03/19/20 16:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/23/20

Air Canister Certification Results

Lab ID: L2011727-01 Date Collected:
Client ID: CAN 502 SHELF 3

Sample Location:

Date Received: 03/20/20 Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	sfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/23/20

Air Canister Certification Results

Lab ID: L2011727-01

Client ID: CAN 502 SHELF 3 Date Collected: Date Received:

Lab Number:

03/19/20 16:00

L2011727

03/20/20

Field Prep: Not Specified

Sample Depth:

Sample Location:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	88		60-140

AIR Petro Can Certification

Project Name:BATCH CANISTER CERTIFICATIONLab Number:L2011727

Project Number: CANISTER QC BAT Report Date: 04/23/20

AIR CAN CERTIFICATION RESULTS

Lab ID: L2011727-01 Date Collected: 03/19/20 16:00

Client ID: CAN 502 SHELF 3 Date Received: 03/20/20

Sample Location: Not Specified Field Prep: Not Specified

Matrix: Air
Analytical Method: 96,APH

Analytical Date: 03/21/20 17:31

Analyst: RY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air						
1,3-Butadiene	ND		ug/m3	0.50		1
Methyl tert butyl ether	ND		ug/m3	0.70		1
Benzene	ND		ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	ND		ug/m3	10		1
Toluene	ND		ug/m3	0.90		1
Ethylbenzene	ND		ug/m3	0.90		1
p/m-Xylene	ND		ug/m3	0.90		1
o-Xylene	ND		ug/m3	0.90		1
Naphthalene	ND		ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	ND		ug/m3	10		1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Lab Number: L2016038

Report Date: 04/23/20

Sample Receipt and Container Information

. . .

YES

Cooler Information

Project Name:

Cooler Custody Seal

Were project specific reporting limits specified?

229 HOMER ST

NA Absent

Project Number: T0311-018-001

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2016038-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		APH-10(30) TO15-LL(30)

 Project Name:
 229 HOMER ST
 Lab Number:
 L2016038

 Project Number:
 T0311-018-001
 Report Date:
 04/23/20

GLOSSARY

Acronyms

EDL

EPA

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from anutions, concentrations of moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

inst (TCL) for the method and/or program. All TICs are quantitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

 Project Name:
 229 HOMER ST
 Lab Number:
 L2016038

 Project Number:
 T0311-018-001
 Report Date:
 04/23/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

 Project Name:
 229 HOMER ST
 Lab Number:
 L2016038

 Project Number:
 T0311-018-001
 Report Date:
 04/23/20

Data Qualifiers

than 5x the RL. (Metals only.)

 ${f R}$ - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

 Project Name:
 229 HOMER ST
 Lab Number:
 L2016038

 Project Number:
 T0311-018-001
 Report Date:
 04/23/20

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAMIXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

No: 101-02 Rev: (25-Sep age 37 of 37	p-15)	T. Hu	Relinquishe	bely	,	9/15/19/19/19/19/19/19/19/19/19/19/19/19/19/	Time 7330 7330 0000	STA	Receive	d By:		4	12/	ate/Ti	15	roco	clock will not start until any ambi
*SAMPLE	MATRIX CODE	Othe	= Ambient A = Soil Vapor/ r = Please Sp	Landfill Ga secify	Outdoor) s/SVE				Cor	ntainer 1	уре		5 5	2	SY	3	Please print clearly, legibly and completely. Samples can not be
													0				
6058-01	Homen St.	-SVE	4-15-D	Start Time	End Time	Nacuum Nacuum	Final Vacuum	Matrix*	Initials	Size	Can	I D - Flor Controlle		Z X		/ William	Sample Comments (i.e.
Project-Specific ALPHA Lab ID (Lab Use Only)	Target Compo	A	I Col	COL	s Be	low i	Must		Fille (70.75 SIM	Fixed Camera Non-	CHSBS By & Abores	COLUMN OF TOTAL
These samples ha Other Project S	ave been previously ar	nalyzed by Alpha	Date Due	22		Time:									7	ANA	ALYSIS
Email: BGreen	e (OBM-TK.	con	Standa	rd [RUSH	ly continued if pre-	surrived)	-							-		
Phone: 7/4-	856-06	35	STATE WAY	round Ti	me	9		_	ort to: (rans			8		-	State		Program Res / C
			Project M ALPHA C	lanager:	BROCK	Gen	NE	ONE DA	Other For MAJL (stan dditional D	mats; dard pd	f report		-	-	Reg	ulato	ry Requirements/Report L
	ENV. 1	Resturne	Project #	ocation:	OLETA	18-00		U.A	DEx Criteria C (Default ba			Filminia kushi	at al	-			1000
TEL: 508-822-93	00 FAX: 508-822-	3288	Project N	Name: 2	29 Hon	nea 5	T	OF	AX		Date	Delive	rable	200	8 6-27110	AL SELECTION	Client info PO#
320 Forbes Blvd,	Mansfield, MA 020	CUSTODY	Project	t Informa	ation	NO TO	OF_		Rec'd in i	_	ALC: TO SE		rable				Job#: L201603
4		AIRA	NALY	SIS		PAGE	5984										

APPENDIX E

TEMPORARY DISCHARGE PERMIT & ANALYTICAL DATA

PERMIT NO. Temporary 10-18-BC

City of Olean

Industrial Pretreatment Program

WASTEWATER DISCHARGE PERMIT

In accordance with all terms and conditions of the City Code of Ordinances, Chapter 27, et. seq., and with any applicable provisions of Federal or State law or regulation, permission for the contribution of wastewaters containing regulated pollutants into the City of Olean sewage system.is hereby granted to:

Homer Street Properties, LLC 11 211102 Istraebuses mayor 229 Homer Street Site is a semicim to etaminile to Olean, NY 14760

Responsible Person: Michael Lesakowski

Title: Corporate Official

Telephone: 716-818-3954

E-mail: mlesakowski@turnkeyllc.com

STANDARD INDUSTRIAL CLASSIFICATION CODE: NA

This permit is granted in accordance with the application filed in 2018 and in conformity with any plans, specifications and other data submitted in support of the above application, all of which are filed with and considered a part of this permit. In addition, the following general and special conditions are a part of this permit. Any part of this permit, may be modified at any time during the period it is in force.

Effective: October 4, 2018
Expires: October 4, 2019

Approved by:	Mayor, City of Olean	nihid Ave obti	WWTP Chief Operator
Name:	William Aiello	OR	Brad Camp
Signature:			Seller
Date:	and the second second second		10/3/18

GENERAL PROVISIONS

G-1. CORRESPONDENCE

All submittals and correspondence should be addressed to :

Wastewater Treatment Plant Chief Operator City of Olean Wastewater Treatment Plant 174 S. 19th Street Olean, New York 14760

G-2. SPILL PREVENTION CONTROL PROGRAM

The industrial user shall take all reasonable precautions to prevent accidental spills in order to eliminate or minimize the accidental or slug discharge of pollutants into the sewer system.

The industrial user shall notify the City immediately upon any accidental or slug discharge to the sanitary sewer. Formal written notification discussing circumstances and remedies shall be submitted to the City within 5 days of the occurrence.

G-3. DILUTION

No industrial user shall increase the use of potable or process water or, in any way, attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve compliance with the limitations contained in this permit.

G-4. PROPER DISPOSAL OF PRETREATMENT SLUDGES AND SPENT CHEMICALS

The disposal of sludges and spent chemicals generated shall be done in accordance with Section 405 of the Clean Water Act and Subtitles C and D of the Resource Conservation and Recovery Act and any other applicable statutes or regulations pertaining to disposal of sludges and spent chemicals.

All industrial users must notify in writing the POTW, the New York State Department of Environmental Conservation and the United States Environmental Protection Agency of any discharge that would be considered a hazardous waste if disposed of in a different manner.

G-5. PROHIBITIONS

No industrial user may discharge any pollutant that may create an explosive hazard including but not limited to wastestreams with a closed cup flash point of less than 140° F or 60° C using testing methods specified in 40 CFR 261.21.

No industrial user shall discharge petroleum oil, non- biodegradable cutting oil, products of mineral oil origin in amounts that will cause interference or pass through.

No industrial user shall discharge any pollutant that may result in the presence of toxic gases, vapors or fumes in a quantity that may cause acute worker health and/or safety problems.

G-6. SIGNATORY REQUIREMENTS

All reports required by this permit shall be signed by a principal executive officer of the user, or his designee. Electronic submittal of permit applications, reports and other correcpondence shall be documented in a letter bearing an appropriate signature.

G-7. CHANGE IN DISCHARGE

The industrial user shall promptly and as soon as possible notify the City in advance of the introduction of new wastewater or pollutants or any substantial change in the volume or characteristics of the wastewater being introduced into the public sewers from the user's industrial processes including listed or characteristic hazardous wastes. The notification shall be in conformance with 40CFR Part 122.41(I)(i) and 40CFR 403.12(p). Formal written notification shall follow within 30 days of such introduction.

G-8. FAILURE TO REAPPLY

The City may seek temporary restraining orders, plug or disconnect service or permanent injunctions if there is an imminent danger to health, safety or property when after inspection, monitoring or analysis it is determined that the discharge or wastewater to the sanitary sewer is in violation of Federal, State or local laws, ordinances or regulations.

G-9. LIMITATION OF PERMIT TRANSFER

Wastewater discharge permits are issued to a specific user for a specific operation and are not assignable to another user or transferable to any other location without the prior written approval of the City. Sale of a user shall obligate the purchaser to seek prior written approval of the City for continued discharge to the sewage system.

G-10. FALSIFYING INFORMATION OR TAMPERING WITH MONITORING EQUIPMENT

Knowingly making any false statement on any report or other document required by this permit or knowingly rendering any monitoring device or method inaccurate, may result in punishment under the criminal laws of the City, as well as being subjected to civil penalties and relief.

G-11. MODIFICATION OR REVISION OF THE PERMIT

- a) The terms and conditions of this permit may be subject to modification by the City at any time as limitations or requirements as identified by the City's Ordinance, are modified or other just cause exists.
- b) This permit may also be modified to incorporate special conditions resulting from the issuance of a special order.
 - b) The terms and conditions may be modified as a result of EPA promulgating a new Federal pretreatment standard.

G-12. DUTY TO REAPPLY

Within ninety (90) days of the notification, the user shall reapply for reissuance of the permit on a form provided by the City.

G-13. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

SAMPLING and ANALYSES

S-1. SAMPLE METHODS

Wastewater discharge samples and analyses and flow measurements taken as required in this permit shall be representative of the volume and character of the permitted discharge. Sampling and analytical methods shall be in accordance with accepted National Environmental Laboratory Approval Program (NELAP) protocol. Contracted laboratories must be NELAP certified by the New York State Department of Health.

S-2. SAMPLING MANHOLE

The industrial user shall construct a sampling manhole if the Wastewater Treatment Plant Senior Operator, or the Director of Public Works, determines such sampling point is required.

S-3. SAMPLING - NOTIFICATION

The permittee shall notify the Wastewater Treatment Plant Senior Operator, at least one week prior to conducting self-monitoring for the purpose of taking wastewater discharge samples for analysis.

S-4. SAMPLE ANALYSES- REQUIREMENTS

The industrial user is required to monitor the parameters listed for each sample point.

SAMPLE POINT: 7 th St PARAMETER	DISCHARGE LIMITS	SAMPLE TYPE	
рН	6.0-9.0	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)	
Oil and Grease	50 mg/l (Avg.DAILY MAXIMUM)	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)	
1,1,1-Trichloroethane	0.049 mg/l (DAILY MAXIMUM)	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)	
Trichloroethylene	1.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Chromium (Hex)	1.5mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Copper (Total)	2.1 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Lead (Total)	5.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Nickel (Total)	0.9 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Zinc (Total)	3.5 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Cadmium (Total)	1.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Arsenic (Total)	0.02 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Silver (Total)	5.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
Mercury (Total)	0.05 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)	
BOD ₅	250 mg/l	24 Hour Composite (Flow based)	
TSS	250 mg/l	24 Hour Composite (Flow based)	
Flow (MGD)	Monitor	24 Hr. Total	

^{*}Five (5) day Biochemical Oxygen Demand and Total Suspended Solids discharges greater than 250 mg/l shall be subject to review and approval by the WWTP Chief Operator or the Director of Public Works.

Other pollutants, as specified by the City, shall be sampled on a schedule determined by the City if said additional monitoring is deemed necessary by the City in order to assure compliance with City, State and Federal standards.

S-5 SAMPLE ANALYSES - REPORTING

The industrial user is required to submit to the City a self monitoring report on the analytical results of its sampling May 15 and October 15 of each year.

A statement shall be included in all monitoring reports pertaining to the protocols used during the sampling and/or analyses. A proper monitoring report shall contain the following information:

- Dates of sample
- Dates analyses were performed
- Person performing sampling and/or analyses
- Exact time and place of sample
 Analytical techniques or methods used
 - Analytical results including proper units
 - A map indicating sampling location
 - Chain of Custody Log Submit baseline monitoring report

If sampling by the industrial user indicates a violation, the user must notify the City within 24 hours of becoming aware of the violation. The industrial user must also resample and submit results of this resampling to the City within thirty (30) days.

INSPECTION

I-1. RIGHT OF ENTRY

The industrial user shall, after reasonable notification by the City, allow the City or its representative, exhibiting proper credentials and identification, to enter upon the premises of the user, at all reasonable hours, for the purposes of inspection, sampling, or records inspection. Reasonable hours in the context of inspection and sampling includes any time the industrial user is operating any process which results in a process wastewater discharge to the City's sewage system.

I-2. RECORDS RETENTION

- a) The industrial user shall retain and preserve for no less than three (3) years, any records, books, documents, memoranda, reports, correspondence and any and all summaries thereof, relating to monitoring, sampling and chemical analyses made by or in behalf of the user in connection with its discharge.
 - c) All records that pertain to matters that are the subject of special orders or any other enforcement or litigation activities brought by the City shall be retained and preserved by the industrial user until all enforcement activities have concluded and all periods of limitation with respect to any and all appeals have expired.

COMPLIANCE

C-1. CITY ORDINANCE

The industrial user shall comply will all the general discharge standards of the City Sewer Use Ordinance (Chapter 27, City Code).

C-2. COMPLIANCE SCHEDULE

In order to meet the wastewater discharge limitations specified elsewhere in this permit, the industrial user may be required to make in-plant process modifications and install a treatment facility. The following construction schedule, if applicable, shall be adhered to and reports on progress shall be submitted to the City, as outlined below:

TASK	COMPLIANCE DATE	APPLICABILITY
Submit baseline monitoring report	NA	Not Applicable at time of issue
Investigate in-plant process modifications and treatment options.	NA	Not Applicable at time of issue
Complete preliminary engineering	NA MARIANTE	Not Applicable at time of issue
Go out to bid	NA	Not Applicable at time of issue
Secure equipment and begin construction	NA	Not Applicable at time of issue
Complete installation	NA NA	Not Applicable at time of issue
Pretreatment system start-up	NA	Not Applicable at time of issue
Achieve final compliance	NA	Not Applicable at time of issue

C-3. PROGRESS REPORT

Not later than fourteen (14) days following each date in the compliance schedule, the industrial user shall submit a progress report to the City. This report must indicate whether or not the increment of progress was met on the date, the reason(s) for any delay, and what steps are being taken by the user to return to the schedule established. In no event shall more than nine (9) months elapse between such progress reports to the City.

C-4. FINAL COMPLIANCE REPORT

Within 90 days following the final compliance date, the industrial user shall submit a final compliance report. The industrial user will be required to sample its wastewater for the pollutants specified in S-4, and report compliance. Any reasons for not complying and any steps being taken by the user to comply shall be part of the report.

C-5. PRETREATMENT FAILURE

Any upset experienced by the industrial user of its treatment that places it in a temporary state of non-compliance with wastewater discharge limitations contained in this permit or other limitations specified in the City's Ordinance shall be reported to the City within 24 hours of first awareness of the commencement of the upset. A detailed report shall be filed within 5 days. Additionally any violation for any reason, including but not limited to routine monitoring shall be reported within 24 hours of violation detection and the permittee must conduct resampling within 30 days.

C-6. CIVIL AND CRIMINAL PENALTIES

By resolution the Common Council has adopted an Enforcement Response Plan which was previously mailed to permit holders on March 28, 1990 and which is made part of this permit by reference.

Any industrial user who fails to comply with any provisions of the City of Olean sewer use ordinance or this permit may be liable to monetary forfeitures. Fines for significant noncompliance shall be \$1,000.00 per day. The continued violation of any provision shall constitute a separate offense for each and every day such violation shall continue.

The City may hold hearings regarding violations and depending upon the outcome of the

hearings the director may revoke or suspend the industrial user's permit to discharge.

C-7. SIGNIFICANT NONCOMPLIANCE

Significant noncompliance involving discharge violations will be calculated on the basis of "rolling quarters". Significant noncompliance shall be based upon data for the previous six (6) months. Quarters shall end on March 31, June 30, September 30 and December 31 of each calendar year.

Significant noncompliance means any violation or group of violations that meets one or more of the following criteria:

- Chronic violations of wastewater discharge limits, defined here as those in which sixty-six (66) percent or more of all of the measurements taken for the same pollutant parameter during a six (6) month period exceed (by any magnitude) a numeric pretreatment standard or requirement, including instantaneous limits, as defined by 40 CFR 403.3(I);
- Technical Review Criteria (TRC) violations, defined here as those in which thirty-three (33) percent or more of all of the measurements for each pollutant parameter taken during a six (6) month period equal or exceed the product of the numeric pretreatment standard or requirement, including instantaneous limits, as defined by 40 CFR 403.3(I) multiplied by the applicable TRC (TRC=1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH);
- Any other violation of a pretreatment effluent limit (daily maximum or longer-term average, instantaneous limit, or narrative standard) that the City of Olean determines has caused, alone or in combination with other discharges, interference or pass through (including endangering the health of Wastewater Treatment Plant personnel or the general public);
- Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or to the environment or has resulted in the Wastewater Treatment Plant's exercise of its emergency authority to halt or prevent any such discharge;
- Failure to meet, within ninety (90) days after the schedule date, a compliance schedule milestone contained in a local control mechanism or enforcement order for starting construction, completing construction, or attaining final compliance.
- Failure to provide, within thirty (30) days after the due date, required report such as baseline monitoring reports, ninety (90) day compliance reports, periodic selfmonitoring reports, and reports on compliance with compliance schedules;
- Failure to accurately report noncompliance;
- Any other violation or group of violations, which may include a violation of Best Management Practices, which the City of Olean determines will adversely affect the operation or implementation of the City's pretreatment program.

ANALYTICAL REPORT

Lab Number: L1841323

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski
Phone: (716) 856-0599
Project Name: 229 HOMER ST

Project Number: T0311-018-001

Report Date: 10/18/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1841323 **Report Date:** 10/18/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1841323-01	DISCHARGE	WATER	OLEAN, NY	10/11/18 11:00	10/11/18
L1841323-02	TRIP BLANK	WATER	OLEAN, NY	10/11/18 00:00	10/11/18

 Project Name:
 229 HOMER ST
 Lab Number:
 L1841323

 Project Number:
 T0311-018-001
 Report Date:
 10/18/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800	-624-9220) with a	nv (nuestions
lease	Contact	CIICIT	OCI VICES	at 000	-024-322() WILLI O	ну с	questions.

 Project Name:
 229 HOMER ST
 Lab Number:
 L1841323

 Project Number:
 T0311-018-001
 Report Date:
 10/18/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

L1841323-02: A sample identified as "TRIP BLANK" was received but not listed on the Chain of Custody. This sample was not analyzed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Wichelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

-

Date: 10/18/18

ORGANICS

VOLATILES

Project Name: 229 HOMER ST Lab Number: L1841323

Project Number: T0311-018-001 **Report Date:** 10/18/18

SAMPLE RESULTS

Lab ID: L1841323-01 Date Collected: 10/11/18 11:00

Client ID: DISCHARGE Date Received: 10/11/18
Sample Location: OLEAN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/16/18 12:14

Analyst: PK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	₋ab					
Trichloroethene	ND		ug/l	0.50	0.18	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	109		70-130
Toluene-d8	85		70-130
4-Bromofluorobenzene	91		70-130
Dibromofluoromethane	114		70-130

Project Name: 229 HOMER ST Lab Number: L1841323

Project Number: T0311-018-001 **Report Date:** 10/18/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/16/18 08:29

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - V	Vestborough Lab	for sample	e(s): 01	Batch:	WG1168677-5	
Trichloroethene	ND		ug/l	0.50	0.18	

		Acceptance	
Surrogate	%Recovery Q	ualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	87	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	105	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1841323

Report Date: 10/18/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	<u> </u>
Volatile Organics by GC/MS - Westborough I	_ab Associated s	ample(s):	01 Batch: WG110	68677-3	WG1168677-4			
Trichloroethene	100		100		70-130	0	20	

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	102	70-130
Toluene-d8	87	87	70-130
4-Bromofluorobenzene	91	91	70-130
Dibromofluoromethane	105	105	70-130

METALS

 Project Name:
 229 HOMER ST
 Lab Number:
 L1841323

 Project Number:
 T0311-018-001
 Report Date:
 10/18/18

SAMPLE RESULTS

Lab ID:L1841323-01Date Collected:10/11/18 11:00Client ID:DISCHARGEDate Received:10/11/18Sample Location:OLEAN, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00724		mg/l	0.00050	0.00016	1	10/17/18 13:42	10/18/18 11:02	EPA 3005A	1,6020B	AM
Cadmium, Total	0.00027		mg/l	0.00020	0.00005	1	10/17/18 13:42	10/18/18 11:02	EPA 3005A	1,6020B	AM
Chromium, Total	0.00459		mg/l	0.00100	0.00017	1	10/17/18 13:42	10/18/18 11:02	EPA 3005A	1,6020B	AM
Copper, Total	0.02608		mg/l	0.00100	0.00038	1	10/17/18 13:42	10/18/18 11:02	EPA 3005A	1,6020B	AM
Lead, Total	0.04327		mg/l	0.00100	0.00034	1	10/17/18 13:42	10/18/18 11:02	EPA 3005A	1,6020B	AM
Mercury, Total	0.00007	J	mg/l	0.00020	0.00006	1	10/16/18 16:00	10/17/18 16:27	EPA 7470A	1,7470A	MG
Nickel, Total	0.01338		mg/l	0.00200	0.00055	1	10/17/18 13:42	10/18/18 11:02	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	10/17/18 13:42	10/18/18 11:02	EPA 3005A	1,6020B	AM
Zinc, Total	0.2170		mg/l	0.01000	0.00341	1	10/17/18 13:42	10/18/18 11:02	EPA 3005A	1,6020B	AM

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1841323 **Report Date:** 10/18/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	ld Lab for sample(s):	01 Batc	h: WG11	68703-	1				
Mercury, Total	ND	mg/l	0.00020	0.00006	5 1	10/16/18 16:00	10/17/18 15:56	1,7470A	MG

Prep Information

Digestion Method: EPA 7470A

					Dilution	Date		Analytical	
Parameter	Result Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Bato	h: WG11	69150-	1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	10/17/18 13:42	10/18/18 09:53	1,6020B	AM
Cadmium, Total	ND	mg/l	0.00020	0.00005	5 1	10/17/18 13:42	10/18/18 09:53	1,6020B	AM
Chromium, Total	ND	mg/l	0.00100	0.00017	7 1	10/17/18 13:42	10/18/18 09:53	1,6020B	AM
Copper, Total	ND	mg/l	0.00100	0.00038	3 1	10/17/18 13:42	10/18/18 09:53	1,6020B	AM
Lead, Total	ND	mg/l	0.00100	0.00034	1	10/17/18 13:42	10/18/18 09:53	1,6020B	AM
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	10/17/18 13:42	10/18/18 09:53	1,6020B	AM
Silver, Total	ND	mg/l	0.00040	0.00016	5 1	10/17/18 13:42	10/18/18 09:53	1,6020B	AM
Zinc, Total	ND	mg/l	0.01000	0.00341	1	10/17/18 13:42	10/18/18 09:53	1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1841323

Report Date: 10/18/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1168703	-2					
Mercury, Total	110		-		80-120	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1169150	-2					
Arsenic, Total	102		-		80-120	-		
Cadmium, Total	112		-		80-120	-		
Chromium, Total	102		-		80-120	-		
Copper, Total	103		-		80-120	-		
Lead, Total	102		-		80-120	-		
Nickel, Total	105		-		80-120	-		
Silver, Total	104		-		80-120	-		
Zinc, Total	110		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1841323

Report Date: 10/18/18

Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits		Qual	RPD Limits
Associated sam	ple(s): 01	QC Batch II	D: WG1168703	3-3 WG	1168703-4	QC Sample:	L18413	867-01 (Client ID:	MS S	ample
0.00109	0.005	0.00626	103		0.00609	100		75-125	3		20
Associated sam	ple(s): 01	QC Batch II	D: WG1169150)-3 Q	C Sample:	L1840676-01	Client	ID: MS S	Sample		
ND	0.12	0.1241	103		-	-		75-125	-		20
ND	0.051	0.05648	111		-	-		75-125	-		20
0.0004J	0.2	0.2018	101		-	-		75-125	-		20
0.0004J	0.25	0.2525	101		-	-		75-125	-		20
ND	0.51	0.5878	115		-	-		75-125	-		20
ND	0.5	0.5163	103		-	-		75-125	-		20
ND	0.05	0.05127	102		-	-		75-125	-		20
ND	0.5	0.5362	107		-	-		75-125	-		20
	Sample Associated sam 0.00109 Associated sam ND ND 0.0004J 0.0004J ND ND ND ND ND	Sample Added Associated sample(s): 01 0.00109 0.00109 0.005 Associated sample(s): 01 ND ND 0.051 0.0004J 0.2 ND 0.51 ND 0.5 ND 0.05 ND 0.05	Sample Added Found Associated sample(s): 01 QC Batch II 0.00109 0.005 0.00626 Associated sample(s): 01 QC Batch II ND 0.12 0.1241 ND 0.051 0.05648 0.0004J 0.2 0.2018 0.0004J 0.25 0.2525 ND 0.51 0.5878 ND 0.5 0.5163 ND 0.05 0.05127	Sample Added Found %Recovery Associated sample(s): 01 QC Batch ID: WG1168703 0.00109 0.005 0.00626 103 Associated sample(s): 01 QC Batch ID: WG1169150 ND 0.12 0.1241 103 ND 0.051 0.05648 111 0.0004J 0.2 0.2018 101 ND 0.51 0.5878 115 ND 0.5 0.5163 103 ND 0.05 0.05127 102	Sample Added Found %Recovery Qual Associated sample(s): 01 QC Batch ID: WG1168703-3 WG 0.00109 0.005 0.00626 103 Associated sample(s): 01 QC Batch ID: WG1169150-3 Q ND 0.12 0.1241 103 ND 0.051 0.05648 111 0.0004J 0.2 0.2018 101 ND 0.51 0.5878 115 ND 0.5 0.5163 103 ND 0.05 0.05127 102	Sample Added Found %Recovery Qual Found Associated sample(s): 01 QC Batch ID: WG1168703-3 WG1168703-4 0.00109 0.005 0.00626 103 0.00609 Associated sample(s): 01 QC Batch ID: WG1169150-3 QC Sample: ND 0.12 0.1241 103 - ND 0.051 0.05648 111 - 0.0004J 0.2 0.2018 101 - ND 0.51 0.5878 115 - ND 0.5 0.5163 103 - ND 0.05 0.05127 102 -	Sample Added Found %Recovery Qual Found %Recovery Associated sample(s): 01 QC Batch ID: WG1168703-3 WG1168703-4 QC Sample: Convergence of the c	Sample Added Found %Recovery Qual Found %Recovery Qual Associated sample(s): 01 QC Batch ID: WG1168703-3 WG1168703-4 QC Sample: L18413 0.00109 0.005 0.00626 103 0.00609 100 Associated sample(s): 01 QC Batch ID: WG1169150-3 QC Sample: L1840676-01 Client ND 0.12 0.1241 103 - - ND 0.051 0.05648 111 - - 0.0004J 0.2 0.2018 101 - - ND 0.51 0.5878 115 - - ND 0.5 0.5163 103 - - ND 0.05 0.05127 102 - -	Sample Added Found %Recovery Qual Found %Recovery Qual Limits Associated sample(s): 01 QC Batch ID: WG1168703-3 WG1168703-4 QC Sample: L1841367-01 0.00109 0.005 0.00626 103 0.00609 100 75-125 Associated sample(s): 01 QC Batch ID: WG1169150-3 QC Sample: L1840676-01 Client ID: MS Sample MS Sample ND 0.12 0.1241 103 - - 75-125 ND 0.051 0.05648 111 - - 75-125 0.0004J 0.2 0.2018 101 - - 75-125 ND 0.51 0.5878 115 - - 75-125 ND 0.5 0.5163 103 - - 75-125 ND 0.5 0.5163 103 - - 75-125 ND 0.05 0.05127 102 - - - 75-125	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Associated sample(s): 01 QC Batch ID: WG1168703-3 WG1168703-4 QC Sample: L1841367-01 Client ID: MS 0.00109 0.005 0.00626 103 0.00609 100 75-125 3 Associated sample(s): 01 QC Batch ID: WG1169150-3 QC Sample: L1840676-01 Client ID: MS Sample ND 0.12 0.1241 103 - - 75-125 - ND 0.051 0.05648 111 - - 75-125 - 0.0004J 0.2 0.2018 101 - - 75-125 - ND 0.51 0.5878 115 - - 75-125 - ND 0.5 0.5163 103 - - 75-125 - ND 0.05 0.05127 102 - - 75-125 -	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Qual Associated sample(s): 01 QC Batch ID: WG1168703-3 WG1168703-4 QC Sample: L1841367-01 Client ID: MS Sample 0.00109 0.00109 0.005 0.00626 103 0.00609 100 75-125 3 Associated sample(s): 01 QC Batch ID: WG1169150-3 QC Sample: L1840676-01 Client ID: MS Sample ND 0.12 0.1241 103 - - 75-125 - ND 0.051 0.05648 111 - - 75-125 - 0.0004J 0.2 0.2018 101 - - 75-125 - ND 0.51 0.5878 115 - - 75-125 - ND 0.5 0.5163 103 - - 75-125 - ND 0.05 0.05127 102 - - - 75-125 -

Lab Duplicate Analysis

Batch Quality Control

Batch Quality Control

Lab Number: L1841323

Report Date: 10/18/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG11691	50-4 QC Sample:	L1840676-01	Client ID:	DUP Sample	
Arsenic, Total	ND	0.00018J	mg/l	NC		20

Project Name:

Project Number: T0311-018-001

229 HOMER ST

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: 229 HOMER ST L1841323 Project Number: T0311-018-001

Report Date: 10/18/18

SAMPLE RESULTS

Lab ID: Date Collected: L1841323-01 10/11/18 11:00 Client ID: DISCHARGE Date Received: 10/11/18 Not Specified Sample Location: OLEAN, NY Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough La	b								
Cyanide, Total	ND		mg/l	0.005	0.001	1	10/15/18 14:20	10/16/18 10:25	1,9010C/9012B	LH
Oil & Grease, Hem-Grav	3.0		mg/l	2.0	0.46	1	10/17/18 15:00	10/17/18 18:00	74,1664A	DR
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	10/12/18 05:15	10/12/18 05:52	1,7196A	MA

Project Name: 229 HOMER ST
Project Number: T0311-018-001

Lab Number: L1841323 **Report Date:** 10/18/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab	for sam	ple(s): 01	Batch:	WG11	67288-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	10/12/18 05:15	10/12/18 05:51	1,7196A	MA
General Chemistry - W	estborough Lab	for sam	ple(s): 01	Batch:	WG11	68155-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	10/15/18 14:20	10/16/18 10:14	1,9010C/9012E	3 LH
General Chemistry - W	estborough Lab	for sam	ple(s): 01	Batch:	WG11	69235-1				
Oil & Grease, Hem-Grav	0.53	J	mg/l	2.0	0.46	1	10/17/18 15:00	10/17/18 18:00	74,1664A	DR

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1841323

Report Date: 10/18/18

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1167288-2				
Chromium, Hexavalent	93	-	85-115	-	20	
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1168155-2	WG1168155-3			
Cyanide, Total	92	91	85-115	1	20	
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1169235-2				
Oil & Grease, Hem-Grav	87	-	78-114	-	18	

Matrix Spike Analysis Batch Quality Control

Project Name: 229 HOMER ST **Project Number:** T0311-018-001

Lab Number: L1841323

Report Date: 10/18/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery imits	RPD		RPD imits
General Chemistry - Westboro	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1167	288-4 C	QC Sample: L1	841323-01	Client I	D: DIS	CHARG	E
Chromium, Hexavalent	ND	0.1	0.101	101		-	-	8	35-115	-		20
General Chemistry - Westborot Sample	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1168	155-4 W0	G1168155-5(QC Sample:	: L184136	67-01	Client ID): MS
Cyanide, Total	0.003J	0.2	0.179	90		0.180	90	8	30-120	1		20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1169	235-3	QC Sample: L1	841321-02	Client I	D: MS	Sample	
Oil & Grease, Hem-Grav	ND	43.5	19	44	Q	-	-	-	78-114	-		18

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1841323

Report Date:

10/18/18

Parameter	Native Sample	Duplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1167288-3	QC Sample: L1841	323-01 C	lient ID: DI	SCHARGE
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1169235-4 C	QC Sample: L1841	321-01 C	lient ID: DI	JP Sample
Oil & Grease, Hem-Grav	ND	ND	mg/l	NC		18

Project Name:

Project Number: T0311-018-001

229 HOMER ST

Lab Number: L1841323

Report Date: 10/18/18

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

229 HOMER ST

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Project Number: T0311-018-001

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1841323-01A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L1841323-01B	Vial HCI preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L1841323-01C	Vial HCI preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L1841323-01D	Plastic 250ml NaOH preserved	Α	>12	>12	3.4	Υ	Absent		TCN-9010(14)
L1841323-01E	Plastic 250ml unpreserved	Α	7	7	3.4	Υ	Absent		HEXCR-7196(1)
L1841323-01F	Plastic 250ml HNO3 preserved	A	<2	<2	3.4	Υ	Absent		CR-6020T(180),NI-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28)
L1841323-01G	Amber 1000ml HCl preserved	Α	NA		3.4	Υ	Absent		NY-OG-1664-LOW(28)
L1841323-01H	Amber 1000ml HCl preserved	Α	NA		3.4	Υ	Absent		NY-OG-1664-LOW(28)
L1841323-02A	Vial HCI preserved	Α	N/A	N/A	3.4	Υ	Absent		ARCHIVE()
L1841323-02B	Vial HCl preserved	Α	N/A	N/A	3.4	Υ	Absent		ARCHIVE()

Project Name: Lab Number: 229 HOMER ST L1841323 **Project Number:** T0311-018-001 **Report Date:** 10/18/18

GLOSSARY

Acronyms

EPA

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

- Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 229 HOMER ST
 Lab Number:
 L1841323

 Project Number:
 T0311-018-001
 Report Date:
 10/18/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 229 HOMER ST
 Lab Number:
 L1841323

 Project Number:
 T0311-018-001
 Report Date:
 10/18/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10181813:43

ID No.:17873 Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name: 229 Project Location: Olde	day oper Ave, Suite 10: Homer St		Page of	1	Delive	Date F in L rables ASP-/ EQuis	ab			ASP-E	18 3 5 (4 File)	ALPHA Job # 18 11 323 Billing Information Same as Client Info	
Client Information		Project #						Other							
Client: Benchmark	A THENVEN	(Use Project name as Pr	roject#)	No. 7 e.C			Regul	atory I	Requir	emen	t	200		Disposal Site Information	
Address: 255% H	ambures Turnpike	Project Manager: A Lag		markers.c	EM MLESS	konski@	~ _	NY TO		ds		NY Par NY CP		Please identify below location of applicable disposal facilities.	of
Phone: 116 856 Fax: 716 850 Email:		Turn-Around Time Standard Rush (only if pre approved		Due Date: # of Days:	A FREE				restrict	Use ed Use discharg		Other		Disposal Facility: NJ NY Other:	
These samples have b	een previously analyze	ed by Alpha	Vide-elle-	The state of the s			ANAL	YSIS						Sample Filtration	T
Other project specific	c requirements/comm	nents:					BROC	1664	SM 3500	EP# 9010 c/9010 B	C0109	7470A		☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID	Sa	imple ID	Colle	ection	Sample	Sampler's	EPN 8	EPA	13	6 #	ES C	4			1
(Lab Use Only)	-	imple to	Date	Time	Matrix	Initials	_		Name and Address of the Owner, where	-	Q	G		Sample Specific Comments	е
41323-01	Dischoese		schiles.	IROOA	GIW	MIT	*	×	*	×					
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification M			2 = =	tainer Type								Please print clearly, legi and completely. Sample not be logged in and turnaround time clock w start until any ambiguitie	es can vill not
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 1962 27 Of 27	C = Cube O = Other E = Encore D = BOD Bottle	Relipquished allowing Tiles	By:	Date/ 16/11 19. 10/11/18	2:00	guchi		Jil	u	anc >		118	Time 15:30	resolved. BY EXECUTION THIS COC, THE CLIEN HAS READ AND AGRE	ING NT EES PHA'S

PERMIT NO. Temporary 11-19-BC

City of Olean

Industrial Pretreatment Program

WASTEWATER DISCHARGE PERMIT

In accordance with all terms and conditions of the City Code of Ordinances, Chapter 27, et. seq., and with any applicable provisions of Federal or State law or regulation, permission for the contribution of wastewaters containing regulated pollutants into the City of Olean sewage system.is hereby granted to:

Homer Street Properties, LLC 229 Homer Street Site Olean, NY 14760

Responsible Person: Michael Lesakowski

Title: Corporate Official

Telephone: 716-818-3954 E-mail: mlesakowski@turnkeyllc.com

STANDARD INDUSTRIAL CLASSIFICATION CODE: NA

This permit is granted in accordance with the application filed in 2019 and in conformity with any plans, specifications and other data submitted in support of the above application, all of which are filed with and considered a part of this permit. In addition, the following general and special conditions are a part of this permit. Any part of this permit, may be modified at any time during the period it is in force.

Effective: November 6, 2019 Expires: November 6, 2020

Approved by:	Mayor, City of Olean	ted fine e	WWTP Chief Operator
Name:	William Aiello	OR	Brad Camp
Signature:			Mas
Date:	sinned by a principal every beautive	eri Jaria ti	11/6/19

GENERAL PROVISIONS

G-1. CORRESPONDENCE

All submittals and correspondence should be addressed to :

Wastewater Treatment Plant Chief Operator City of Olean Wastewater Treatment Plant 174 S. 19th Street Olean, New York 14760

G-2. SPILL PREVENTION CONTROL PROGRAM

The industrial user shall take all reasonable precautions to prevent accidental spills in order to eliminate or minimize the accidental or slug discharge of pollutants into the sewer system.

The industrial user shall notify the City immediately upon any accidental or slug discharge to the sanitary sewer. Formal written notification discussing circumstances and remedies shall be submitted to the City within 5 days of the occurrence.

G-3. DILUTION

No industrial user shall increase the use of potable or process water or, in any way, attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve compliance with the limitations contained in this permit.

G-4. PROPER DISPOSAL OF PRETREATMENT SLUDGES AND SPENT CHEMICALS

The disposal of sludges and spent chemicals generated shall be done in accordance with Section 405 of the Clean Water Act and Subtitles C and D of the Resource Conservation and Recovery Act and any other applicable statutes or regulations pertaining to disposal of sludges and spent chemicals.

All industrial users must notify in writing the POTW, the New York State Department of Environmental Conservation and the United States Environmental Protection Agency of any discharge that would be considered a hazardous waste if disposed of in a different manner.

G-5. PROHIBITIONS

No industrial user may discharge any pollutant that may create an explosive hazard including but not limited to wastestreams with a closed cup flash point of less than 140° F or 60° C using testing methods specified in 40 CFR 261.21.

No industrial user shall discharge petroleum oil, non- biodegradable cutting oil, products of mineral oil origin in amounts that will cause interference or pass through.

No industrial user shall discharge any pollutant that may result in the presence of toxic gases, vapors or fumes in a quantity that may cause acute worker health and/or safety problems.

G-6. SIGNATORY REQUIREMENTS

All reports required by this permit shall be signed by a principal executive officer of the user, or his designee. Electronic submittal of permit applications, reports and other correspondence shall be documented in a letter bearing an appropriate signature.

G-7. CHANGE IN DISCHARGE

The industrial user shall promptly and as soon as possible notify the City in advance of the introduction of new wastewater or pollutants or any substantial change in the volume or characteristics of the wastewater being introduced into the public sewers from the user's industrial processes including listed or characteristic hazardous wastes. The notification shall be in conformance with 40CFR Part 122.41(I)(i) and 40CFR 403.12(p). Formal written notification shall follow within 30 days of such introduction.

G-8. FAILURE TO REAPPLY

The City may seek temporary restraining orders, plug or disconnect service or permanent injunctions if there is an imminent danger to health, safety or property when after inspection, monitoring or analysis it is determined that the discharge or wastewater to the sanitary sewer is in violation of Federal, State or local laws, ordinances or regulations.

G-9. LIMITATION OF PERMIT TRANSFER

Wastewater discharge permits are issued to a specific user for a specific operation and are not assignable to another user or transferable to any other location without the prior written approval of the City. Sale of a user shall obligate the purchaser to seek prior written approval of the City for continued discharge to the sewage system.

G-10. FALSIFYING INFORMATION OR TAMPERING WITH MONITORING EQUIPMENT

Knowingly making any false statement on any report or other document required by this permit or knowingly rendering any monitoring device or method inaccurate, may result in punishment under the criminal laws of the City, as well as being subjected to civil penalties and relief.

G-11. MODIFICATION OR REVISION OF THE PERMIT

- a) The terms and conditions of this permit may be subject to modification by the City at any time as limitations or requirements as identified by the City's Ordinance, are modified or other just cause exists.
- b) This permit may also be modified to incorporate special conditions resulting from the issuance of a special order.
 - The terms and conditions may be modified as a result of EPA promulgating a new Federal pretreatment standard.

G-12. DUTY TO REAPPLY

Within ninety (90) days of the notification, the user shall reapply for reissuance of the permit on a form provided by the City.

G-13. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

SAMPLING and ANALYSES

S-1. SAMPLE METHODS

Wastewater discharge samples and analyses and flow measurements taken as required in this permit shall be representative of the volume and character of the permitted discharge. Sampling and analytical methods shall be in accordance with accepted National Environmental Laboratory Approval Program (NELAP) protocol. Contracted laboratories must be NELAP certified by the New York State Department of Health.

S-2. SAMPLING MANHOLE

The industrial user shall construct a sampling manhole if the Wastewater Treatment Plant Senior Operator, or the Director of Public Works, determines such sampling point is required.

S-3. SAMPLING - NOTIFICATION

The permittee shall notify the Wastewater Treatment Plant Senior Operator, at least one week prior to conducting self-monitoring for the purpose of taking wastewater discharge samples for analysis.

S-4. SAMPLE ANALYSES- REQUIREMENTS

The industrial user is required to monitor the parameters listed for each sample point.

SAMPLE POINT: Imm	SAMPLE POINT: Immediately after treatment									
PARAMETER	DISCHARGE LIMITS	SAMPLE TYPE								
pH	6.0-9.0	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)								
Oil and Grease	50 mg/l (Avg.DAILY MAXIMUM)	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)								
1,1,1-Trichloroethane	0.049 mg/l (DAILY MAXIMUM)	4 Grabs (TAKEN WITHIN 24 HOUR PERIOD)								
Trichloroethylene	1.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Chromium (Hex)	1.5mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Copper (Total)	2.1 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Lead (Total)	5.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Nickel (Total)	0.9 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Zinc (Total)	3.5 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Cadmium (Total)	1.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Arsenic (Total)	0.02 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Silver (Total)	5.0 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
Mercury (Total)	0.05 mg/l (DAILY MAXIMUM)	24 Hour Composite (Flow based)								
BOD ₅	250 mg/l	24 Hour Composite (Flow based)								
TSS	250 mg/l	24 Hour Composite (Flow based)								
Flow (GPD)	Monitor	24 Hr. Total								

^{*}Five (5) day Biochemical Oxygen Demand and Total Suspended Solids discharges greater than 250 mg/l shall be subject to review and approval by the WWTP Chief Operator or the Director of Public Works.

Other pollutants, as specified by the City, shall be sampled on a schedule determined by the City if said additional monitoring is deemed necessary by the City in order to assure compliance with City, State and Federal standards.

S-5 SAMPLE ANALYSES - REPORTING

The industrial user is required to submit to the City a self monitoring report on the analytical results of its sampling **May 15** and **October 15** of each year.

A statement shall be included in all monitoring reports pertaining to the protocols used during the sampling and/or analyses. A proper monitoring report shall contain the following information:

- Exact time and place of sample
- Dates of sample
- Dates analyses were performed
- Person performing sampling and/or analyses
- Analytical techniques or methods used
- Analytical results including proper units
- A map indicating sampling location
- · Chain of Custody Log

If sampling by the industrial user indicates a violation, the user must notify the City within 24 hours of becoming aware of the violation. The industrial user must also resample and submit results of this resampling to the City within thirty (30) days.

INSPECTION

I-1. RIGHT OF ENTRY

The industrial user shall, after reasonable notification by the City, allow the City or its representative, exhibiting proper credentials and identification, to enter upon the premises of the user, at all reasonable hours, for the purposes of inspection, sampling, or records inspection. Reasonable hours in the context of inspection and sampling includes any time the industrial user is operating any process which results in a process wastewater discharge to the City's sewage system.

I-2. RECORDS RETENTION

- a) The industrial user shall retain and preserve for no less than three (3) years, any records, books, documents, memoranda, reports, correspondence and any and all summaries thereof, relating to monitoring, sampling and chemical analyses made by or in behalf of the user in connection with its discharge.
 - c) All records that pertain to matters that are the subject of special orders or any other enforcement or litigation activities brought by the City shall be retained and preserved by the industrial user until all enforcement activities have concluded and all periods of limitation with respect to any and all appeals have expired.

COMPLIANCE

C-1. CITY ORDINANCE

The industrial user shall comply will all the general discharge standards of the City Sewer Use Ordinance (Chapter 27, City Code).

C-2. COMPLIANCE SCHEDULE

In order to meet the wastewater discharge limitations specified elsewhere in this permit, the industrial user may be required to make in-plant process modifications and install a treatment facility. The following construction schedule, if applicable, shall be adhered to and reports on progress shall be submitted to the City, as outlined below:

TASK	COMPLIANCE DATE	APPLICABILITY
Submit baseline monitoring report	NA	Not Applicable at time of issue
Investigate in-plant process modifications and treatment options.	NA	Not Applicable at time of issue
Complete preliminary engineering	NA	Not Applicable at time of issue
Go out to bid	NA NA	Not Applicable at time of issue
Secure equipment and begin construction	NA	Not Applicable at time of issue
Complete installation	NA	Not Applicable at time of issue
Pretreatment system start-up	NA	Not Applicable at time of issue
Achieve final compliance	NA	Not Applicable at time of issue

C-3. PROGRESS REPORT

Not later than fourteen (14) days following each date in the compliance schedule, the industrial user shall submit a progress report to the City. This report must indicate whether or not the increment of progress was met on the date, the reason(s) for any delay, and what steps are being taken by the user to return to the schedule established. In no event shall more than nine (9) months elapse between such progress reports to the City.

C-4. FINAL COMPLIANCE REPORT

Within 90 days following the final compliance date, the industrial user shall submit a final compliance report. The industrial user will be required to sample its wastewater for the pollutants specified in S-4, and report compliance. Any reasons for not complying and any steps being taken by the user to comply shall be part of the report.

C-5. PRETREATMENT FAILURE

Any upset experienced by the industrial user of its treatment that places it in a temporary state of non-compliance with wastewater discharge limitations contained in this permit or other limitations specified in the City's Ordinance shall be reported to the City within 24 hours of first awareness of the commencement of the upset. A detailed report shall be filed within 5 days. Additionally any violation for any reason, including but not limited to routine monitoring shall be reported within 24 hours of violation detection and the permittee must conduct resampling within 30 days.

C-6. CIVIL AND CRIMINAL PENALTIES

By resolution the Common Council has adopted an Enforcement Response Plan which was previously mailed to permit holders on March 28, 1990 and which is made part of this permit by reference.

Any industrial user who fails to comply with any provisions of the City of Olean sewer use ordinance or this permit may be liable to monetary forfeitures. Fines for significant noncompliance shall be \$1,000.00 per day. The continued violation of any provision shall constitute a separate offense for each and every day such violation shall continue.

The City may hold hearings regarding violations and depending upon the outcome of the

hearings the director may revoke or suspend the industrial user's permit to discharge.

C-7. SIGNIFICANT NONCOMPLIANCE

Significant noncompliance involving discharge violations will be calculated on the basis of "rolling quarters". Significant noncompliance shall be based upon data for the previous six (6) months. Quarters shall end on March 31, June 30, September 30 and December 31 of each calendar year.

Significant noncompliance means any violation or group of violations that meets one or more of the following criteria:

- Chronic violations of wastewater discharge limits, defined here as those in which sixty-six (66) percent or more of all of the measurements taken for the same pollutant parameter during a six (6) month period exceed (by any magnitude) a numeric pretreatment standard or requirement, including instantaneous limits, as defined by 40 CFR 403.3(I);
- Technical Review Criteria (TRC) violations, defined here as those in which thirty-three (33) percent or more of all of the measurements for each pollutant parameter taken during a six (6) month period equal or exceed the product of the numeric pretreatment standard or requirement, including instantaneous limits, as defined by 40 CFR 403.3(I) multiplied by the applicable TRC (TRC=1.4 for BOD, TSS, fats, oil and grease, and 1.2 for all other pollutants except pH);
- Any other violation of a pretreatment effluent limit (daily maximum or longer-term average, instantaneous limit, or narrative standard) that the City of Olean determines has caused, alone or in combination with other discharges, interference or pass through (including endangering the health of Wastewater Treatment Plant personnel or the general public);
- Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or to the environment or has resulted in the Wastewater Treatment Plant's exercise of its emergency authority to halt or prevent any such discharge;
- Failure to meet, within ninety (90) days after the schedule date, a compliance schedule milestone contained in a local control mechanism or enforcement order for starting construction, completing construction, or attaining final compliance.
- Failure to provide, within thirty (30) days after the due date, required report such as baseline monitoring reports, ninety (90) day compliance reports, periodic selfmonitoring reports, and reports on compliance with compliance schedules;
- Failure to accurately report noncompliance;
- Any other violation or group of violations, which may include a violation of Best Management Practices, which the City of Olean determines will adversely affect the operation or implementation of the City's pretreatment program.

ANALYTICAL REPORT

Lab Number: L1948168

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Ray Laport Phone: (716) 856-0599

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Report Date: 10/21/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10211914:55

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Lab Number:

L1948168

Report Date:

10/21/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1948168-01	DISCHARGE	WATER	Not Specified	10/14/19 15:00	10/15/19

Serial No:10211914:55

Project Name:229 HOMER STREETLab Number:L1948168Project Number:T0311-018-001Report Date:10/21/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.					

 Project Name:
 229 HOMER STREET
 Lab Number:
 L1948168

 Project Number:
 T0311-018-001
 Report Date:
 10/21/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

Hexavalent Chromium

L1948168-01 was analyzed with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative Date: 10/21/19

ДІРНА

ORGANICS

VOLATILES

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

SAMPLE RESULTS

Lab Number: L1948168

Report Date: 10/21/19

Lab ID: L1948168-01 Date Collected: 10/14/19 15:00

Client ID: Date Received: 10/15/19 DISCHARGE Field Prep: Sample Location: Not Specified Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/19/19 09:45

Analyst: PD

Methylene chloride ND ug/l 2.5 0.70 1,1-Dichloroethane ND ug/l 2.5 0.70 Chloroform ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 2.5 0.70 1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13	Dilution Factor
1,1-Dichloroethane ND ug/l 2.5 0.70 Chloroform ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	
Chloroform ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
1,1,1-Trichloroethane ND ug/l 2.5 0.70	1
· · · · · · · · · · · · · · · · · · ·	1
Bromodichloromethane ND ug/l 0.50 0.19	1
	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14	1
Bromoform ND ug/l 2.0 0.65	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17	1
Benzene ND ug/l 0.50 0.16	1
Toluene ND ug/l 2.5 0.70	1
Ethylbenzene ND ug/l 2.5 0.70	1
Chloromethane ND ug/l 2.5 0.70	1
Bromomethane ND ug/l 2.5 0.70	1
Vinyl chloride ND ug/l 1.0 0.07	1
Chloroethane ND ug/l 2.5 0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70	1
Trichloroethene ND ug/l 0.50 0.18	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70	1

Project Name: 229 HOMER STREET Lab Number: L1948168

Project Number: T0311-018-001 **Report Date:** 10/21/19

SAMPLE RESULTS

Lab ID: Date Collected: 10/14/19 15:00

Client ID: DISCHARGE Date Received: 10/15/19
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	5.1		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	102	70-130	

Project Name: 229 HOMER STREET **Lab Number:** L1948168

Project Number: T0311-018-001 **Report Date:** 10/21/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/19/19 09:23

Analyst: MKS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	· Westborough La	b for sample(s): 01	Batch:	WG1298691-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 229 HOMER STREET Lab Number: L1948168

Project Number: T0311-018-001 **Report Date:** 10/21/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/19/19 09:23

Analyst: MKS

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	o for sample(s): 01	Batch:	WG1298691-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 229 HOMER STREET **Lab Number:** L1948168

Project Number: T0311-018-001 **Report Date:** 10/21/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/19/19 09:23

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough La	ab for sampl	e(s): 01	Batch: Wo	G1298691-5	

		Acceptance
Surrogate	%Recovery Qualit	fier Criteria
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	103	70-130

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Lab Number: L1948168

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	_ab Associated	sample(s): 0	1 Batch: WG12	298691-3	WG1298691-4			
Methylene chloride	110		100		70-130	10	20	
1,1-Dichloroethane	120		110		70-130	9	20	
Chloroform	100		97		70-130	3	20	
Carbon tetrachloride	86		79		63-132	8	20	
1,2-Dichloropropane	120		100		70-130	18	20	
Dibromochloromethane	96		92		63-130	4	20	
1,1,2-Trichloroethane	110		110		70-130	0	20	
Tetrachloroethene	100		96		70-130	4	20	
Chlorobenzene	100		97		75-130	3	20	
Trichlorofluoromethane	85		79		62-150	7	20	
1,2-Dichloroethane	99		94		70-130	5	20	
1,1,1-Trichloroethane	96		89		67-130	8	20	
Bromodichloromethane	95		90		67-130	5	20	
trans-1,3-Dichloropropene	93		90		70-130	3	20	
cis-1,3-Dichloropropene	94		90		70-130	4	20	
Bromoform	98		95		54-136	3	20	
1,1,2,2-Tetrachloroethane	110		100		67-130	10	20	
Benzene	110		98		70-130	12	20	
Toluene	110		100		70-130	10	20	
Ethylbenzene	100		97		70-130	3	20	
Chloromethane	120		110		64-130	9	20	
Bromomethane	38	Q	38	Q	39-139	0	20	
Vinyl chloride	120		110		55-140	9	20	

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Lab Number: L1948168

Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene	110 110 100	sample(s): 01 Batch: WG1 88 100	298691-3 WG1298691-4 55-138	00		
1,1-Dichloroethene	110 100		55-138	20		
,	100	100		22	Q	20
trans-1,2-Dichloroethene			61-145	10		20
		97	70-130	3		20
Trichloroethene	100	90	70-130	11		20
1,2-Dichlorobenzene	100	97	70-130	3		20
1,3-Dichlorobenzene	110	98	70-130	12		20
1,4-Dichlorobenzene	100	97	70-130	3		20
Methyl tert butyl ether	89	88	63-130	1		20
p/m-Xylene	105	100	70-130	5		20
o-Xylene	105	95	70-130	10		20
cis-1,2-Dichloroethene	120	110	70-130	9		20
Styrene	100	95	70-130	5		20
Dichlorodifluoromethane	95	88	36-147	8		20
Acetone	110	120	58-148	9		20
Carbon disulfide	110	100	51-130	10		20
2-Butanone	100	120	63-138	18		20
4-Methyl-2-pentanone	98	100	59-130	2		20
2-Hexanone	100	100	57-130	0		20
Bromochloromethane	110	110	70-130	0		20
1,2-Dibromoethane	100	98	70-130	2		20
1,2-Dibromo-3-chloropropane	100	100	41-144	0		20
Isopropylbenzene	100	95	70-130	5		20
1,2,3-Trichlorobenzene	96	93	70-130	3		20

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Lab Number: L1948168

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1298691-3	WG1298691-4			
1,2,4-Trichlorobenzene	94		88		70-130	7		20
Methyl Acetate	130		130		70-130	0		20
Cyclohexane	110		100		70-130	10		20
1,4-Dioxane	134		128		56-162	5		20
Freon-113	100		94		70-130	6		20
Methyl cyclohexane	94		89		70-130	5		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	88	93	70-130
Toluene-d8	97	96	70-130
4-Bromofluorobenzene	93	91	70-130
Dibromofluoromethane	105	105	70-130

METALS

Project Name: 229 HOMER STREET Lab Number: L1948168

Project Number: T0311-018-001 **Report Date:** 10/21/19

SAMPLE RESULTS

Lab ID:L1948168-01Date Collected:10/14/19 15:00Client ID:DISCHARGEDate Received:10/15/19Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.02262		mg/l	0.00050	0.00016	1	10/18/19 16:48	10/21/19 12:26	EPA 3005A	1,6020B	AM
Calcium, Total	173.		mg/l	0.100	0.0394	1	10/18/19 16:48	10/21/19 12:26	EPA 3005A	1,6020B	AM
Chromium, Total	0.00616		mg/l	0.00100	0.00017	1	10/18/19 16:48	10/21/19 12:26	EPA 3005A	1,6020B	AM
Copper, Total	0.1438		mg/l	0.00100	0.00038	1	10/18/19 16:48	10/21/19 12:26	EPA 3005A	1,6020B	AM
Lead, Total	0.02086		mg/l	0.00100	0.00034	1	10/18/19 16:48	10/21/19 12:26	EPA 3005A	1,6020B	AM
Mercury, Total	ND		mg/l	0.00020	0.00009	1	10/18/19 12:18	10/18/19 18:12	EPA 7470A	1,7470A	AL
Nickel, Total	0.04379		mg/l	0.00200	0.00055	1	10/18/19 16:48	10/21/19 12:26	EPA 3005A	1,6020B	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	10/18/19 16:48	10/21/19 12:26	EPA 3005A	1,6020B	AM
Zinc, Total	1.048		mg/l	0.01000	0.00341	1	10/18/19 16:48	10/21/19 12:26	EPA 3005A	1,6020B	AM

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Lab Number:

L1948168

Report Date: 10/21/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG12	297953-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	9 1	10/18/19 12:18	10/18/19 17:58	1,7470A	AL

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01 Batc	h: WG12	298045-	1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	5 1	10/18/19 16:48	10/21/19 11:54	1,6020B	AM
Calcium, Total	ND	mg/l	0.100	0.0394	1	10/18/19 16:48	10/21/19 11:54	1,6020B	AM
Chromium, Total	ND	mg/l	0.00100	0.00017	1	10/18/19 16:48	10/21/19 11:54	1,6020B	AM
Copper, Total	ND	mg/l	0.00100	0.00038	3 1	10/18/19 16:48	10/21/19 11:54	1,6020B	AM
Lead, Total	ND	mg/l	0.00100	0.00034	1	10/18/19 16:48	10/21/19 11:54	1,6020B	AM
Nickel, Total	ND	mg/l	0.00200	0.00055	5 1	10/18/19 16:48	10/21/19 11:54	1,6020B	AM
Silver, Total	ND	mg/l	0.00040	0.00016	5 1	10/18/19 16:48	10/21/19 11:54	1,6020B	AM
Zinc, Total	ND	mg/l	0.01000	0.00341	1	10/18/19 16:48	10/21/19 11:54	1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

10/21/19

Lab Control Sample Analysis Batch Quality Control

Project Name: 229 HOMER STREET

Project Number: T0311-018-001 Lab Number: L1948168 **Report Date:**

LCS LCSD %Recovery %Recovery %Recovery Limits **RPD RPD Limits** Qual **Parameter** Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1297953-2 80-120 Mercury, Total 84 Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1298045-2 Arsenic. Total 102 80-120 Calcium, Total 102 80-120 Chromium, Total 98 80-120 Copper, Total 92 80-120 Lead. Total 106 80-120 Nickel, Total 80-120 95 Silver, Total 96 80-120 Zinc, Total 100 80-120

Matrix Spike Analysis Batch Quality Control

Project Name: 229 HOMER STREET

Lab Number: L1948168

Project Number: T0311-018-001 Report Date:

ate: 10/21/19

arameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recover Limits	y RPD	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch ID): WG129795	3-3 WG	61297953-4	QC Sample	: L1948	3207-02	Client ID:	MS Sample
Mercury, Total	0.01548	0.005	0.02000	90		0.02200	130	Q	75-125	10	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch ID): WG129804	5-3 WG	61298045-4	QC Sample	: L1948	3207-02	Client ID:	MS Sample
Arsenic, Total	0.01604	0.12	0.1400	103		0.1499	112		75-125	7	20
Calcium, Total	45.9	10	58.2	123		58.1	122		75-125	0	20
Chromium, Total	0.00203	0.2	0.2056	102		0.2036	101		75-125	1	20
Copper, Total	0.04230	0.25	0.2898	99		0.2926	100		75-125	1	20
Lead, Total	0.03820	0.51	0.6046	111		0.6065	111		75-125	0	20
Nickel, Total	0.01246	0.5	0.5297	103		0.5176	101		75-125	2	20
Silver, Total	ND	0.05	0.04945	99		0.04930	99		75-125	0	20
Zinc, Total	0.04308	0.5	0.5797	107		0.5742	106		75-125	1	20

INORGANICS & MISCELLANEOUS

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Lab Number:

L1948168

Report Date: 10/21/19

SAMPLE RESULTS

Lab ID: L1948168-01

DISCHARGE

Date Collected:

10/14/19 15:00

Client ID: Sample Location: Not Specified Date Received: Field Prep:

10/15/19 Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	430		mg/l	10	NA	10	-	10/16/19 19:40	121,2540D	CW
Cyanide, Total	ND		mg/l	0.005	0.001	1	10/16/19 13:00	10/16/19 16:31	1,9010C/9012B	JO
pH (H)	7.6		SU	-	NA	1	-	10/16/19 06:40	121,4500H+-B	JA
BOD, 5 day	7.8		mg/l	5.0	NA	2.5	10/16/19 06:30	10/21/19 10:30	121,5210B	TE
Oil & Grease, Hem-Grav	0.93	J	mg/l	2.2	0.51	1.1	10/17/19 11:15	10/17/19 12:00	74,1664A	JO
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	10/16/19 06:00	10/16/19 06:21	121,3500CR-B	JA

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Lab Number: L1948168

Report Date: 10/21/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG12	96739-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	10/16/19 06:00	10/16/19 06:20	121,3500CR-B	JA
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG12	96776-1				
BOD, 5 day	ND		mg/l	2.0	NA	1	10/16/19 06:30	10/21/19 10:30	121,5210B	TE
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG12	96791-1				
Solids, Total Suspended	ND		mg/l	1.0	NA	1	-	10/16/19 19:40	121,2540D	CW
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG12	96929-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	10/16/19 13:00	10/16/19 16:18	1,9010C/9012E	в јо
General Chemistry - V	Vestborough Lab	for sam	ple(s): 01	Batch:	WG12	97364-1				
Oil & Grease, Hem-Grav	0.50	J	mg/l	2.0	0.46	1	10/17/19 11:15	10/17/19 12:00	74,1664A	JO

Project Name: 229 HOMER STREET

Project Number: T0311-018-001

Lab Number: L1948168 **Report Date:** 10/21/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s)): 01	Batch: WG1296739-2						
Chromium, Hexavalent	104		-		85-115	-		20	
General Chemistry - Westborough Lab	Associated sample(s)): 01	Batch: WG1296743-1						
рН	100		-		99-101	-		5	
General Chemistry - Westborough Lab	Associated sample(s)): 01	Batch: WG1296776-2						
BOD, 5 day	91		-		85-115	-		20	
General Chemistry - Westborough Lab	Associated sample(s)): 01	Batch: WG1296929-2	WG12	296929-3				
Cyanide, Total	95		92		85-115	3		20	
General Chemistry - Westborough Lab	Associated sample(s)): 01	Batch: WG1297364-2						
Oil & Grease, Hem-Grav	84		-		78-114	-		18	

Matrix Spike Analysis Batch Quality Control

Project Name: 229 HOMER STREET

Lab Number:

L1948168

Project Number: T0311-018-001

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westbord	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG12967	739-4	QC Sample: L1	948168-	01 Client	ID: DIS	SCHAR	GE
Chromium, Hexavalent	ND	0.1	0.105	105		-	-		85-115	-		20
General Chemistry - Westbord	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG12967	776-4	QC Sample: L1	948168-	01 Client	ID: DIS	SCHAR	GE
BOD, 5 day	7.8	100	110	102		-	-		50-145	-		35
General Chemistry - Westbord Sample	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG12969	929-4 W	/G1296929-5 C	QC Sam	ple: L19481	85-01	Client	ID: MS
Cyanide, Total	0.001J	0.2	0.072	36	Q	0.185	92		80-120	87	Q	20
General Chemistry - Westbord	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG12973	364-3	QC Sample: L1	947810-	01 Client	ID: MS	Samp	le
Oil & Grease, Hem-Grav	16	40	37	53	Q	-	-		78-114	-		18

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1948168

Report Date:

10/21/19

Parameter	Native Sample	Duplicate Samp	le Units	RPD	Qual RPD Lim	its
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	: WG1296739-3 (QC Sample: L1948	168-01	Client ID: DISCHARGE	
Chromium, Hexavalent	ND	ND	mg/l	NC	20	
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	: WG1296743-2	QC Sample: L1948	272-01	Client ID: DUP Sample	
рН	8.1	8.0	SU	1	5	
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	: WG1296776-3	QC Sample: L1948	168-01	Client ID: DISCHARGE	
BOD, 5 day	7.8	9.1	mg/l	15	35	
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	: WG1296791-2 (QC Sample: L1947	382-01	Client ID: DUP Sample	
Solids, Total Suspended	80.	79	mg/l	1	29	
General Chemistry - Westborough Lab Associated	d sample(s): 01 QC Batch ID:	: WG1297364-4 (QC Sample: L1948	168-01	Client ID: DISCHARGE	
Oil & Grease, Hem-Grav	0.93J	1.3J	mg/l	NC	18	

Project Name:

Project Number: T0311-018-001

229 HOMER STREET

Lab Number: L1948168

Report Date: 10/21/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

229 HOMER STREET

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: T0311-018-001

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1948168-01A	Vial HCl preserved	Α	NA		5.0	Υ	Absent		NYTCL-8260-R2(14)
L1948168-01B	Vial HCl preserved	Α	NA		5.0	Υ	Absent		NYTCL-8260-R2(14)
L1948168-01C	Vial HCl preserved	Α	NA		5.0	Υ	Absent		NYTCL-8260-R2(14)
L1948168-01D	Plastic 250ml HNO3 preserved	A	<2	<2	5.0	Υ	Absent		CA-6020T(180),CR-6020T(180),NI- 6020T(180),CU-6020T(180),ZN-6020T(180),PB- 6020T(180),AS-6020T(180),AG- 6020T(180),HG-T(28)
L1948168-01E	Plastic 250ml NaOH preserved	Α	>12	>12	5.0	Υ	Absent		TCN-9010(14)
L1948168-01F	Plastic 950ml unpreserved	Α	7	7	5.0	Υ	Absent		HEXCR-3500(1),PH-4500(.01),BOD-5210(2)
L1948168-01G	Plastic 950ml unpreserved	Α	7	7	5.0	Υ	Absent		TSS-2540-LOW(7)
L1948168-01H	Amber 1000ml HCl preserved	Α	NA		5.0	Υ	Absent		NY-OG-1664-LOW(28)
L1948168-01I	Amber 1000ml HCl preserved	Α	NA		5.0	Υ	Absent		NY-OG-1664-LOW(28)

Project Name:229 HOMER STREETLab Number:L1948168Project Number:T0311-018-001Report Date:10/21/19

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 229 HOMER STREET
 Lab Number:
 L1948168

 Project Number:
 T0311-018-001
 Report Date:
 10/21/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- $E \qquad \hbox{-Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.}$
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 229 HOMER STREET
 Lab Number:
 L1948168

 Project Number:
 T0311-018-001
 Report Date:
 10/21/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10211914:55

ID No.:17873 Revision 15

Page 1 of 1

Published Date: 8/15/2019 9:53:42 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 0158	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	1 05 2					Rec Lab	'd	010	610			ALPHA JOB# L1948168
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd	Project Information				15.63	Deli	verabi	es	S					Billing Information
FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 26	29 Hon	ner Stree	t			ASP	P-A			ASF	Р-В		Same as Client Info
	CONTRACTOR SANCTOR	Project Location:						EQu	IS (1	File)	Г	EQ	ulS (4	File)	PO#
Client Information	AS PART OF ST	Project# To:	311-018	- 001				Othe	эг						
Client: Ivrakey En	v- Restoration uc	(Use Project name as P	Project #)				Reg	ulatory	y Requ	uireme	ent	188	0 7 10	100	Disposal Site Information
Address: 2558 1	lamburg Turnpike	Project Manager:					-	NYT	AND DESCRIPTION OF THE PARTY OF		1	NYF	art 375	5	The manual control of the control of
Buffalo NY	14218	ALPHAQuote #:					AWQ Standards NY CP-51								Please identify below location of applicable disposal facilities.
Phone: (114) 856-	0635	Turn-Around Time		NOTE OF		18 0 18			estricte		F	Othe			Disposal Facility:
Fax: (716) 856-	- 0583	Standar	d X	Due Date			1 7		nrestric			1 ouic			
Email: RLaport @	benchmarkees, com	Rush (only if pre approved	d) [# of Days:			1 =		Sewer						□ NJ □ NY
hese samples have been previously analyzed by Alpha ther project specific requirements/comments: EPA (0010) Analysis = total chromium, total copper, total total arsenic, total lead, to: lease specify Metals or TAL.							ANA	LYSIS	_	Discria	ige				Other:
Other project specifi	mail: RLaport (a) benchmerkees, com Rush (only if pre approved) mese samples have been previously analyzed by Alpha ther project specific requirements/comments: EPA (0010D) Analysis = total chromium, total copper, total total arsenic, total lead, to mase specify Metals or TAL. ALPHA Lab ID (Lab Use Only) Sample ID Date of the sample ID Date of the sample ID				_		ANA		-	1		_	_	_	Sample Filtration
	total i	romium, total copper arsenic, total lead	, tutal cada	nium, tetal silver	Zinc, to	tal nickel,	BZGOC	1664 - Oil r	3500 - Hex	6/	C 0109	-	4500 - pH	2540 - TSS	☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)
	Sar	mole ID	Col	Collection Sample Sampler						100.0	3	17	7	4	(Flease Specify below)
	Sai	riple ib	Time	Matrix	Initials	EPA	EPA	3	EPA	EPA	EPA	S	S	Sample Specific Comments	
1868-01	Discharge		10/14	1500		certs		3		w	-	-	-4	Α,	Sample Specific Comments
MERCHAN	1		1	1		COLO			_		_	-		\vdash	
									_	-		-		\vdash	
							1				-	-	-	-	
											-	-			
								-		-	-	-	-	\vdash	
											_			-	
											_	-		-	
					-				-	-	_	_	3 - 3	_	
									-		_				
reservative Code:	Container Code	Westboro: Certification N	n: MAORE											_	
\ = None 3 = HCl	1 - 1 Idauc	Mansfield: Certification N	No. of Control of Street, Control of Control	- 1	Con	tainer Type	1/	A	P	P	0	0	P	_	Please print clearly, legibly
C = HNO ₃	V = Viat	mananelo, certification N	0: MAU15	- 1		77.6-5	V	71	r	1	P	P	F	P	and completely. Samples can
) = H ₂ SO ₄ : = NaOH	G = Glass B = Bacteria Cup			- 1	P	reservative	B	В	A	E	1	C	A	A	not be logged in and turnaround time clock will not
= MeOH	C = Cube	/	40.00					O	n	-	C	C	COSE.	190	start until any ambiguities are
= NaHSO ₄	O = Other	Relinquished B	By:	Date/T			Receiv	ed By	1			Date	Time	1	resolved. BY EXECUTING
I = Na ₂ S ₂ O ₃ /E = Zn Ac/NaOH	E ≃ Encore D = BOD Bottle	011		1 //	8Am	Jan	2	4			10/15	/19	10	250	THIS COC, THE CLIENT
D = Other			11-1			www.				10/16/902:05				HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
			300000				_>	5			-			TERMS & CONDITIONS.	
orm No: 01-25 HC (rev. 30-Sept-2013)							-	/						(See reverse side.)	

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	105	Pag 2 G	of Z	D	ate Rec'd in Lab	10	161	P	ALPHA Job # L.19'18168		
8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	ton i				Deliver	ables	SRETTE	TIE	THE REAL	Billing Information		
TEL: 508-898-9220 FAX: 508-896-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 220	1 Home	r Street				SP-A		ASP-	В	Same as Client Info		
	***************************************	Project Location:					DE	QuIS (1 Fil	le)	EQui	S (4 File)	PO#		
Client Information		Project # T03II-	100 -810					Other	VAT		20 20			
Client: Turnkey Env.	Restoration LLC						Regula	tory Requir	ement	Total Control	19118	Disposal Site Information		
Address: 2558 Ha		Project Manager:						Y TOGS	The second second	NY Pa	nt 375	Please identify below location of		
Buffalo NY		ALPHAQuote #:					ПА	WQ Standard	ds [NYCE		applicable disposal facilities.		
Phone: (716) 856-	0635	Turn-Around Time		SALE BUILD	1	A POST		Y Restricted	Use	Other		Disposal Facility:		
Fax: (710) 856-		Standar	d 🛛	Due Date				Y Unrestricte	d Use			□ NJ □ NY		
		Rush (only if pre approved	D 🗆	# of Days			_	YC Sewer Di				Other:		
Control of the Contro	ese samples have been previously analyzed by Alpha						ANALY	-	a criming in			Sample Filtration	Т	
Other project specific	requirements/comm	nents:										Done	0	
Please specify Metals	s or TAL.						5210 - 80D 5-0xy					Lab to do Preservation Lab to do (Please Specify below)	a B o .	
ALPHA Lab ID		mele ID	nple ID Collection S										i	
(Lab Use Only)	- Sa	mple to	Date	Time	Matrix	Sampler's Initials	S.					Sample Specific Comments		
49169 -01	Discharge	10/14 1500				ave					_		8	
	1		/					\dashv					-	
													_	
				-				\rightarrow	_		-		_	
									_				_	
													_	
			17					\rightarrow	-				-	
								\rightarrow					_	
								_	\rightarrow		_		_	
								\rightarrow	_	\vdash			-	
	P = Plastic Westboro: Certification No: MA935 A = Amber Glass Wansfield: Certification No: MA015 V = Vial G = Glass B = Bacteria Cup					ntainer Type Preservative	P A					Please print clearly, legibly and completely. Samples ca not be logged in and turnaround time clock will no	ot	
F = MeOH	MeOH C = Cube	Relinquished	Date/	Time	1	Received	By	_	Date/	Time	start until any ambiguities a resolved. BY EXECUTING	re		
The state of the s	E ≃ Encore	lang 10/5	-	1	SAM		/ LOUIVEL	, cy.	10/15			THE COLUMN		
R = NB ₂ S ₂ O ₃ K/E = Zn Ac/NaOH D = BOD Bottle O = Other		Stant			1310	m	us	u			1250	HAS READ AND AGREES TO BE BOUND BY ALPHA		
Form No: 01-25 HC (rev. 30)-Sept-2013)				-	/		<i>D</i>				TERMS & CONDITIONS. (See reverse side.)		