Revised Supplemental Remedial Investigation Work Plan

Standard Portable Site 21 Valley Street Mayville, New York BCP #C907030

Prepared For: **Jo Lyn Enterprises, Ltd.** P.O. Box 147 Mayville, New York HEI Project No: 24512

Prepared By:
Hazard Evaluations, Inc.
3752 North Buffalo Road
Orchard Park, New York 14127
(716) 667-3130

March 24, 2015

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRODU	UCTION	1
1.1		Background	
1.2	Proie	ct Objectives	2
2.0	INVESTI	GATION SCOPE OF WORK	2
2.1		duction	
2.2		Investigation Activities	
2.3		tigation- Derived Waste Management	
2.4		Mapping	
3.0		ING AND SCHEDULE	6
ATTA	CHMENT	'S	
Α	Figures		
	_	Site Location Map	
		Site Plan	
	•	Proposed SRI Sample Locations	
	_	Project Schedule	
	i iguio +	1 Toject Correction	
В	Tables		
	Table 1	Historic Soil Sample Analytical Results Summary	
	Table 2	Groundwater Analytical Testing Results – October 2014	
	Table 3	Historical Groundwater Analytical Testing Results	
	Table 4	Analytical Testing Program Summary	
	Table 5	Sample Container, Volume, Preserving and Holding Time	
		Requirements	

i

1.0 INTRODUCTION

This document presents the proposed scope of work for a supplemental remedial investigation (SRI) to be performed at the Standard Portable Site located at 21 Valley Street in Mayville, New York (refer to Figure 1 in Attachment A). Jo Lyn Enterprises, Ltd. d/b/a Standard Portable, acting as a volunteer, has executed a Brownfield Cleanup Agreement (BCA) with New York State Department of Environmental Conservation (NYSDEC).

The SRI will be completed by Hazard Evaluations Inc. (HEI) on behalf of Jo Lyn Enterprises, Ltd. The work will be completed in general accordance with NYSDEC DER-10 guidelines. The scope of work planned will supplement a focused Subsurface Site Investigation (SSI) completed in 2006.

1.1 Site Background

Jo Lyn Enterprises Ltd. owns and operates a facility which is located at 21 Valley Street, Village of Mayville, Chautauqua County, New York (Figure 1, Attachment 1). This parcel consists of approximately 1.06 acres of land located within the lake plain across Route 394 along the western side of Chautauqua Lake. Historically, the facility was operated as Wappat Saw Company. Later, the facility was operated as Standard Portable Products, Inc. One or more of the prior owners reportedly performed various metal working operations, including vapor degreasing using a trichloroethene (TCE) degreasing unit. It is understood that the spent TCE solvent from this unit was disposed of or stored in an exterior underground septic tank.

The current owner, Jo Lyn Enterprises Ltd. d/b/a Standard Portable ("Jo Lyn"), purchased certain assets including the facility in 1996 and began manufacturing operations. Pre-purchase due diligence investigations identified a septic tank historically believed to be used as storage/disposal for TCE waste generated by the vapor degreasing unit. A remedial program was subsequently conducted by Anderson International, Inc. on Jo Lyn's behalf. It should be noted that the septic tank was removed in 1996 at the time of Jo Lyn's purchase. The waste that Jo Lyn generated in association with the vapor degreaser was containerized and transported off-site for disposal. In late 2002, Jo Lyn sought to sell the subject site, and as part of the due diligence process, a Phase II ESA was performed on behalf of the potential buyer's financial lending institution. The results of that Phase II ESA identified significant levels of TCE contamination in the soil and groundwater in the vicinity of former septic tank.

During May 2006, Jo Lyn retained HEI to perform a focused Subsurface Site Investigation (SSI) in order to obtain additional data and information concerning the subsurface condition of the site related to the historical, pre-purchase release of trichloroethene. The goals of the SSI included obtaining:

- 1) A more thorough characterization of Volatile Organic Compounds (VOCs) within the on-site and off-site soil profile, both vertically and laterally;
- 2) Water table elevations and the approximate on-site groundwater flow direction;

- 3) Definition of the on-site shallow contaminant plume with respect to site boundaries:
- 4) Condition of the subfloor soil/fill in the vicinity of the former degreaser; and
- 5) Identification of any "hot spots" within the soil profile in the impacted area, including any areas exhibiting dense non-aqueous phase liquid (DNAPL) product.

A summary of the results is included in Tables 1 and 2 located in Attachment B. The analytical testing results of the SSI revealed a well-defined area of groundwater contaminated with TCE. In addition, recoverable free phase DNAPL was observed offsite along the southeastern border of the subject site.

An Interim Remedial Measures (IRM) Work Plan was prepared by HEI and submitted the New York State Department of Environmental Conservation (NYSDEC) in December 2006 (Refer to "Interim Remedial Measures Report & Work Plan", dated December 2006). The proposed Interim Remedial Measures (and approved modifications to the IRM) were subsequently commenced beginning in January 2007. This Interim Remedial Measures Report details the activities related to implementation of the proposed IRM and the observed effectiveness of the IRM in meeting the Remedial Action Objectives set forth in the IRM Work Plan referenced above. An analysis of the IRM activities with regards to its suitability for implementation as a Final Remedy is presented in the "Remedial Alternatives Report" prepared by HEI, dated August 2008. Previous investigation soil boring and monitoring well locations are shown on Figure 2 in Attachment A.

1.2 **Project Objectives**

The previous SSI completed in 2006 was done to delineate the areal and vertical extent of the chlorinated volatile organic compounds (CVOCs) in groundwater. Therefore, the primary objectives of this SRI are to:

- Collect additional subsurface soil and groundwater samples to supplement samples collected in previous investigations;
- Collect surface soil samples to evaluate requirements for cover system;
- Fill data gaps resulting from previous assessments and the on-going site remediation.

The scope of work to complete these objectives is provided below, along with discussion of supplemental field activities that may be required.

2.0 <u>INVESTIGATION SCOPE OF WORK</u>

2.1 Introduction

The investigation scope of work will focus on supplemental soil sampling and assessment. Additionally, a round of groundwater samples will be collected from existing monitoring wells.

Samples collected for analytical analysis will be analyzed in accordance with United State Environmental Protection Agency (USEPA) methodology with Category B deliverable package. Additionally, analytical results will be evaluated by a third-party data validation expert.

2.2 Field Investigation Activities

2.2.1 Utility Clearance

Prior to intrusive activities, HEI and appropriate subcontractors will contact Dig Safely New York a minimum of three business days prior to the commencement of the field work.

2.2.2 Surface Soil Investigation

The central portion of the subject site is covered with buildings. However, the northern and eastern parking areas are gravel, and the southern and western areas are undeveloped grass areas. Three (3) surface soil samples will be collected from 0 to 2 inches below ground surface (bgs) in the undeveloped areas of the site to provide sitewide characterization. The gravel area has been resurface with imported gravel recently, and therefore, will not be sampled. The three surface soil locations will be completed utilizing a shovel and hand trowel after removal of the top sod. The three surface soil samples collected from the 0 to 2 inch depth and will be analyzed for the following, as shown on Table 4 in Attachment B:

- Target Compound List (TCL) VOCs
- TCL semi-volatile organic compounds (SVOCs)
- Target Analyte List (TAL) metals
- Polychlorinated bi-phenyls (PCBs)
- Pesticides
- Herbicides

Approximate surface soil sample locations are included on Figure 3 in Attachment A. Actual sample locations will be selected in the field based on utility locations, field observations, screening results, and engineering judgment. Surface soil samples will be collected using dedicated stainless steel sampling tools. Select representative soil samples will be placed in pre-cleaned laboratory-provided sample bottles, labeled and cooled to 4°C in the field, and transported under chain-of-custody to a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified analytical laboratory.

2.2.3 Subsurface Soil Investigation

Additional subsurface investigation will be completed to further assess on-site impacts, as well provide site-wide characterization. A total of ten (10) to twelve (12) subsurface exploratory locations will be completed in target areas across the site, as shown on the Figure 3 in Attachment A. The soil borings will be completed utilizing a direct-push drilling rig. Soil samples will be collected continuously from ground surface to depths of approximately 11 to 14 feet bsg. Based on previous investigations, a grey clay and silt confining layer has been identified at the subject site. The proposed subsurface soil boring work will be terminated no more than one to two feet into the clay

and silt.

Discrete subsurface soil samples will be field screened in approximate two-foot depth intervals for VOCs with a calibrated PID. Soil samples will be selected for analytical analysis based in field screening results, visual and olfactory observations. Boring logs will be provided in the Alternative Analysis Report (AAR).

The sample interval identified as the most impacted (i.e. highest PID reading, visual/olfactory evidence of odors, staining, or product) will be selected for analysis. Should fill material be encountered, a discrete sample will be collected. In the event that no impacts were identified, the native soils directly above the clay interface will be selected for analysis. Additionally, attempt will be made to collected soil samples at vertical variations within the native soil.

Ten (10) subsurface soil samples will be selected for analysis for the following as shown on Table 4 in Attachment B:

- Target Compound List (TCL) VOCs
- TCL semi-volatile organic compounds (SVOCs)
- Target Analyte List (TAL) metals
- Polychlorinated bi-phenyls (PCBs)
- Pesticides
- Herbicides

Approximate subsurface soil sample locations are included on Figure 3 in Attachment A. Note: two interior locations are planned, however, access for interior locations may be restricted by storage within the buildings. In that case, only one location in the western portion of the building will be accessible. Actual sample locations will be selected in the field based on utility locations, field observations, screening results, and engineering judgment. Subsurface soil samples will be collected using dedicated stainless steel sampling tools. Select representative soil samples will be place in precleaned laboratory-provided sample bottles, labeled and cooled to 4°C in the field, and transported under chain-of-custody to a NYSDOH ELAP certified analytical laboratory.

2.2.4 Groundwater Investigation

Nineteen (19) one-inch monitoring wells were installed during the 2006 SSI. Additionally, twenty (20) one-inch extraction wells, and twenty (20) one-inch injection wells were installed in 2007 as part of the IRM work. Thirteen (13) on-site wells are sampled as part of the IRM monitoring program including SB1/EW14, SB2, SB6, SB8, SB11, SB12, SB13, SB14, SB16/EW2, SB18, SB19, EW7 and EW20 (note SB2 was not sampled in 2014 due to access restrictions).

2.2.5 Monitoring Well Installation

Three (3) of the ten soil borings will be converted to new monitoring wells installed using the Geoprobe borings. Boreholes will be advanced to depths of approximately 14 feet bsg or two feet into the clay and silt confining layers, whichever is encountered first. A micro-well will be installed at each boring, generally consisting of a one-inch diameter,

schedule 40 PVC casing equipped with a ten-foot screen and solid PVC riser pipe extending to the surface. The screen will be position to span the groundwater surface and will be extended to the bottom of the boring. The newly installed wells will be completed with locking j-plugs and flush mounted road boxes.

2.2.6 Monitoring Well Development

After installation, the three (3) newly installed microwells will be developed using dedicated disposable polyethylene bailers via purge methodology. Field parameters, including pH, temperature, turbidity, dissolved oxygen (DO), oxidation reduction potential (ORP) and specific conductance will be measured periodically until they become relatively stable (approximately 10% fluctuation or less). A minimum of three well volumes will be removed from each monitoring well, unless dry well conditions are encountered. Development water will be containerized and discharged to the on-site groundwater treatment system installed as part of an IRM.

2.2.6 Groundwater Sampling

Prior to sample collection, static groundwater levels will be measured at each of the existing 19 monitoring wells and the three newly installed monitoring wells, as well as EW7 and EW20 (part of the periodic monitoring program). One groundwater sample will be collected from each of the thirteen (13) wells within the periodic monitoring program as well as the three (3) newly installed wells for a total of sixteen (16) groundwater samples. Each well will be sampled using low-flow sampling techniques.

Groundwater samples from the 16 monitoring wells will be analyzed for the following:

Target Compound List (TCL) VOCs

In addition, four groundwater samples collected from SB1, SB6, SB11, and SB18 will also be analyzed for the following additional parameters, as shown on Table 4 in Attachment B:

- TCL semi-volatile organic compounds (SVOCs)
- Target Analyte List (TAL) metals (dissolved phase only)
- Polychlorinated bi-phenyls (PCBs)
- Pesticides
- Herbicides

Groundwater samples will be place in pre-cleaned laboratory-provided sample bottles, labeled and preserved in accordance with USEPA SW-846 methodology, and transported under chain-of-custody to a NYSDOH ELAP certified analytical laboratory.

2.2.7 Field Specific Quality Assurance/Quality Control Sampling

Field specific quality assurance/quality control samples will be collected and analyzed, as summarized on Table 4 in Attachment B, and to support third-party data usability assessment effort. Site-specific QA/QC samples will include blind duplicate, matrix spike/matrix spike duplicate, rinsate blank, and trip blank.

2.3 <u>Investigation- Derived Waste Management</u>

During the completion of geoprobe borings, removed materials will be placed into the borehole. The excess soil cuttings that cannot be replaced into the borehole will be containerized in 55-gallon drums. Based on analytical testing results, the excess soil may be utilized on-site, or disposed off-site. Development/purge water generated during well development and/or sampling activities will be containerized in 55-gallon drums and disposed through the on-site groundwater treatment system. Currently the system is not in operation; therefore, all waste drums will be labeled with regard to content, origin, and date of generation, and stored on-site until the system is turned on again in summer 2015.

2.4 Site Mapping

The newly completed soil borings and surface soil sample locations will be incorporated into existing figures. HEI will utilized a handheld GPS unit to identify sampling locations. Newly installed monitoring wells will be surveyed and tied into existing known monitoring well elevations.

3.0 REPORTING AND SCHEDULE

As the scope of work included in this work plan is supplemental to RI/IRM work previously completed, the findings of this work will be included within the AAR for the subject site. The AAR will be prepared in general accordance with required in DER-10 and Part 375. A schedule is included as Figure 4 in Attachment A. As this work is supplemental to previous accepted investigation, HEI expects to begin work by March 26, 2015.

Attachment

Figures

Table 1 Historical Soil Analytical Testing Results 21 Valley Street Mayville, New York

		L	CS - August 200)1							HEI - May 200	2								
Parameter	BH2 6'-8' bgs	BH3 8'-10' bgs	BH4 8'-10' bgs	BH6 8'-10' bgs	BH8 8'-10' bgs	SB5 8'-12' bgs	SB8 4'-8' bgs	SB10 8'-12' bgs	SB10 12'-14' bgs	SB11 4'-8' bgs	SB13 4'-8' bgs	SB16 8'-12' bgs	SB16 12'-14' bgs	SB17 8'-12' bgs	SB17 12'-14' bgs	SB18 8'-12' bgs	Unrestricted Use ug/kg	Restricted Residential ug/kg	Restricted Commercial ug/kg	Restricted Industrial ug/kg
Volatile Organic Compour	nds - USEPA M	lethod 8260 (ug	/L)																	
1,1,1-trichloroethene	ND	1,060	ND	ND	ND	NT	ND	NT	NT	NT	NT	NT	NT	NT	NT	ND	680	100,000	500,000	1,000,000
1,1,2-Trichloroethene	ND	13,000	4,250	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	93.8	NV	NV	NV	NV
1,1,2,2-tetrachloroethene	ND	537	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV	NV	NV	NV
Cis-1,2 Dichloroethene	ND	1,070	1,310	ND	429	ND	ND	1,240*	55.2	132	42	23.5	41.5	1,360*	6,230*	323	250	100,000	500,000	1,000,000
Ethylbenzene	ND	3,000	2,330	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000	41,000	390,000	780,000
Methylene chloride	366	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50	100,000	500,000	1,000,000
m,p-xylene	ND	11,400	9,080	1,560	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260**	100,000**	500,000**	1,000,000**
o-xylene	ND	3,710	3,570	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260**	100,000**	500,000**	1,000,000**
Tetrachloroethene	ND	30,400	15,600	ND	459	17.6	ND	ND	17.7	24.2	13.5	14.3	10.1	ND	ND	52.8	1,300	19,000	150,000	300,000
Toluene	ND	2,280	2,570	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.8	ND	21.3	700	100,000	500,000	1,000,000
Trichloroethane	74,500	10,100,100	12,100,000	730	192,000	706	1,980	4,040*	468	1,820*	2,560*	2,110*	2,670*	6,510*	592	8,720*	470	21,000	200,000	400,000
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	26.9	ND	ND	ND	ND	ND	56.7	279	16.2	20	900	13,000	27,000
Total VOCs	74,500	10,152,497	12,134,460	2,290	192,888	724	1,980	5,307	541	1,976	2,616	2,148	2,722	7,942	7,101	9,227				1

Notes:

- 1. Historical soil testing results from "Limited and Focused Subsurface Investigation, 21 Valley Street, Mayville,NY" completed by LCS, INC., dated September 23, 2002
- 2. Historical soil testing results from "Subsurface Site Investigation, Jolyn Enterprises LTD., 21 Valley Street, Mayville, NY 14757" prepared by HEI, dated July 2006.
- 3.. ug/kg = part per billion
- 4. NT = not tested
- 5. NV= no value
- 6. ND = not detected above method detection limits.
- 7. \star = Estimated value; concentration exceeded calibration range.
- 8. Analytical results compared to NYSDEC table 375-6.8; ** = Xylene (mixed) value.
 9. Grey shading indicates exceedance of NYSDEC Unrestricted Restricted Use Soil Cleanup Objectives.
- Blue shading indicates exceedance of NYSDEC Unrestricted Residential Use Soil Cleanup Objectives.

Yellow shading indicates exceedance of NYSDEC Restricted Commercial Use Soil Cleanup Objectives.

Red shading indicates exceedance of NYSDEC Restricted Industrial Use Soil Cleanup Objectives.

Table 2 Groundwater Analytical Testing Results 21 Valley Street Mayville, New York October,2014

Parameter	SB1/ EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	EW7	EW20	Class GA Criteria (ug/L)
Volatile Organic Compour	nds - USEPA I	Method 8260	(ug/L)											
1,1-Dichloroethene	39J	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2-Trichloroethene	82J	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Benzene	ND	NT	ND	29	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroform	ND	NT	ND	ND	2.5	ND	ND	ND	ND	ND	ND	ND	ND	7
Cis-1,2 Dichloroethene	29,000 DL	NT	ND	1,200	48	14,000	33	470	64	1,900	ND	31,000	4,000	5
Cyclohexane	ND	NT	ND	130	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Ethylbenzene	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methylcyclohexane	ND	NT	ND	21	0.26J	ND	ND	ND	ND	ND	ND	ND	ND	NV
Tetrachloroethene	490	NT	ND	ND	7.2	ND	3.1	ND	1.1J	ND	0.99J	ND	ND	5
trans-1,2-Dichloroethene	110	NT	ND	53	ND	ND	ND	ND	ND	18J	ND	ND	ND	5
Trichloroethene	480,000 DL	NT	0.51J	49	32	270,000	96	2,000	110	3,100 DL	25	140,000	3,500	5
Toluene	150	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Vinyl chloride	1,800	NT	ND	210	1.4	ND	ND	ND	ND	580	ND	2,100	200	2
Xylenes	140J	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5

Notes:

- 1. Analytical results from "Routine Progress Report- September October 2014; BCA # C907030, Standard Portable Site, 13 West Lake Road, Mayville, New York & completed by HEI dated October 30, 2014.
- 2. Analytical results compared to NYSDEC Class GA criteria obtained from the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1999, January 1999 errata sheet, and April 2000 addendum.
- 3. ug/L = part per billion
- 4. NT = not tested; NV = no value.
- 5. ND = not detected above method detection limits.
- 6. Shading indicates exceedance of NYSDEC Class GA Criteria
- 7. Quailifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value
- 8. DL= Diluted.

Table 3
Historical Groundwater Analytical Testing Results
21 Valley Street
Mayville, New York

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/ EW2	SB18	SB19	EW7	EW16	EW20	Class GA Criteria (ug/L)
ЭC	5/12/2006	497**	ND	NT	ND	7.08	NT	3.86	NT	NT	540	4.07	NT	NT	NT	5
her	7/23/2008	NT	ND	ND	ND	ND	ND	2.99	ND	NT	ND	ND	NT	NT	NT	5
oet	10/30/2008	NT	ND	ND	ND	15.4	ND	3.96	ND	NT	ND	ND	NT	NT	NT	5
<u> </u>	6/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	NT	NT	NT	5
다 당	8/9 & 8/23/2012	ND*	ND	ND	ND	5.34	ND	2.78	ND	ND	ND	ND	NT	NT	NT	5
tra	4/10/2013	550	NT	NT	ND	7.4	ND	2.1	NT	ND***	ND	NT	59	230	51	5
Te	9/31 & 10/1/2014	490	NT	ND	ND	7.2	ND	3	ND	1.1	ND	0.99	ND	NT	ND	5

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	EW7	EW16	EW20	Class GA Criteria (ug/L)
Φ	5/12/2006	132,000**	14.6	NT	773	77.7	NT	552	NT	NT	151,000	86.6	NT	NT	NT	5
en	7/23/2008	NT	ND	ND	690	15.9	11,900	202	2,140	NT	1,230	66.4	NT	NT	NT	5
eth	10/30/2008	NT	2.17	NT	294	99.4	49,000	167	289	NT	7,360	38.2	NT	NT	NT	5
Č	6/24/2009	1,020,000	ND	ND	271	10.2	4,850	3,500	477	NT	1,330	27.7	NT	NT	NT	5
임	8/9 & 8/23/2012	432,000*	2.14	ND	21.5	13	1,790	79.2	578	35.9**	ND	52.6	NT	NT	NT	5
<u>i</u> . ≟	4/10/2013	790,000	NT	NT	44	35	260,000	170	NT	8.2***	1,110	NT	120,000	340,000	6,400	5
-	9/31 & 10/1/2014	480,000	NT	0.51	49	32	270,000	96	2,000	110	3,100	25	140,000	NT	3,500	5

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	EW7	EW16	EW20	Class GA Criteria (ug/L)
¥	5/12/2006	18,000**	ND	NT	396	164	NT	33.4	NT	NT	10,500	ND	NT	NT	NT	5
单	7/23/2008	NT	ND	ND	564	191	2,430	26.2	178	NT	2,360	6.7	NT	NT	NT	5
-4 <u>F</u>	10/30/2008	NT	3.43	ND	175	6.55	3,440	21	43.2	NT	8,450	3.54	NT	NT	NT	5
7.0	6/24/2009	12,500	7.29	ND	203	92.2	1,480	487	176	NT	2,730	ND	NT	NT	NT	5
CIS	8/9 & 8/23/2012	37,800*	3.26	ND	23.3	36	3,750	31.7	378	49.9**	4,840	4.65	NT	NT	NT	5
끙	4/10/2013	50,000	NT	NT	950	170	6,500	81	NT	2.3***	6,400	NT	26,000	40,000	2,400	5
ā	9/31 & 10/1/2014	29,000	NT	ND	1,200	48	14,000	33	470	64	1,900	ND	31,000	NT	4,000	5

Table 3 Historical Groundwater Analytical Testing Results 21 Valley Street Mayville, New York

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	EW7	EW16	EW20	Class GA Criteria (ug/L)
	5/12/2006	4660**	ND	NT	21	6.69	NT	ND	NT	NT	335	ND	NT	NT	NT	2
de	7/23/2008	NT	ND	ND	ND	8.55	ND	ND	ND	NT	375	ND	NT	NT	NT	2
Ori	10/30/2008	NT	ND	ND	11.1	ND	ND	ND	ND	NT	264	ND	NT	NT	NT	2
당	6/24/2009	ND	ND	ND	7.44	5.08	ND	ND	ND	NT	ND	ND	NT	NT	NT	2
ج ا	8/9 & 8/23/2012	ND*	ND	ND	ND	ND	356	ND	ND	ND**	423	ND	NT	NT	NT	2
j	4/10/2013	ND	NT	NT	96	4.7	ND	ND	NT	ND***	140	NT	420	3900	ND	2
	9/31 & 10/1/2014	1,800	NT	ND	210	1.4	ND	ND	ND	ND	580	210	2,100	NT	200	2

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	EW7	EW16	EW20	Class GA Criteria (ug/L)
	5/12/2006	1,210**	ND	NT	NT	ND	NT	ND	NT	NT	1,550	ND	NT	NT	NT	1
ane	7/23/2008	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	NT	NT	NT	1
jt E	10/30/2008	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	NT	NT	NT	1
,1,2 oroe	6/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	NT	NT	NT	1
L off	8/9 & 8/23/2012	ND*	ND	ND	ND	ND	ND	ND	ND	ND**	ND	ND	NT	NT	NT	1
Į į	4/10/2013	210	NT	NT	ND	ND	ND	ND	NT	ND***	ND	NT	4.2	ND	ND	1
	9/31 & 10/1/2014	82	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	1

Notes:

- 1. Analytical results from "Routine Progress Report- September October 2014; BCA # C907030, Standard Portable Site, 13 West Lake Road, Mayville, New York & completed by HEI dated October 30, 2014.
- 2. Analytical results compared to NYSDEC Class GA criteria obtained from the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1999, January 1999 errata sheet, and April 2000 addendum.
- 3. ug/L = part per billion
- 4. NT = not tested; NV = no value.
- 5. ND = not detected
- 6. Shading indicates exceedance of NYSDEC Class GA Criteria
- 7. Quailifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value
- 8. DL= Diluted.
- 9. * = sampled on August 23,2012.
- 10. **= Result does not include free product portion of sample.
- 11. *** EW-1 was sampled as a substitute for SB-16/EW-2 due to the cover being dislodged on that well upon arrival at the site; sample date (4/10/2013).

TABLE 4 Analytical Testing Program Summary Jo Lyn Standard Portable Mayville, NY NYSDEC Brownfield Cleanup Program

Location	Number of Proposed Locations	Matrix	TCL VOCS	TCL SVOCs	TAL METALS Total	PCBs	Pest/ Herbs
Surface Soil Samples (0-2")						
Soil Boring	3	Soil	3	3	3	3	3
Duplicate		Soil	-	-	-	-	-
MS/MSD		Soil	-	-	-	-	-
Rinsate		Water	1	1	1	1	1
Total			4	4	4	4	4
Soil Borings - Subsurfa	ice Samples						
Soil Boring	10	Soil	13	13	13	13	13
Duplicate		Soil	1	1	1	1	1
MS/MSD		Soil	2	2	2	2	2
Rinsate		Water	1	1	1	1	1
Total			17	17	17	17	17
Monitoring Wells - 3 n	ew plus 13 exis	ting (monitoring	program)				
Monitoring Well	16	Groundwater	16	4	4	4	4
Duplicate		Groundwater	1	1	1	1	1
MS/MSD		Groundwater	2	2	2	2	2
Rinsate		Water	1	1	1	1	1
Trip Blank		Water	1	-	-	-	-
Total			21	8	8	8	8
			VOCs	SVOCs	METALS	PCBs	Pest/ Herbs
	TO	TAL SAMPLES	42	29	29	29	29

Notes:

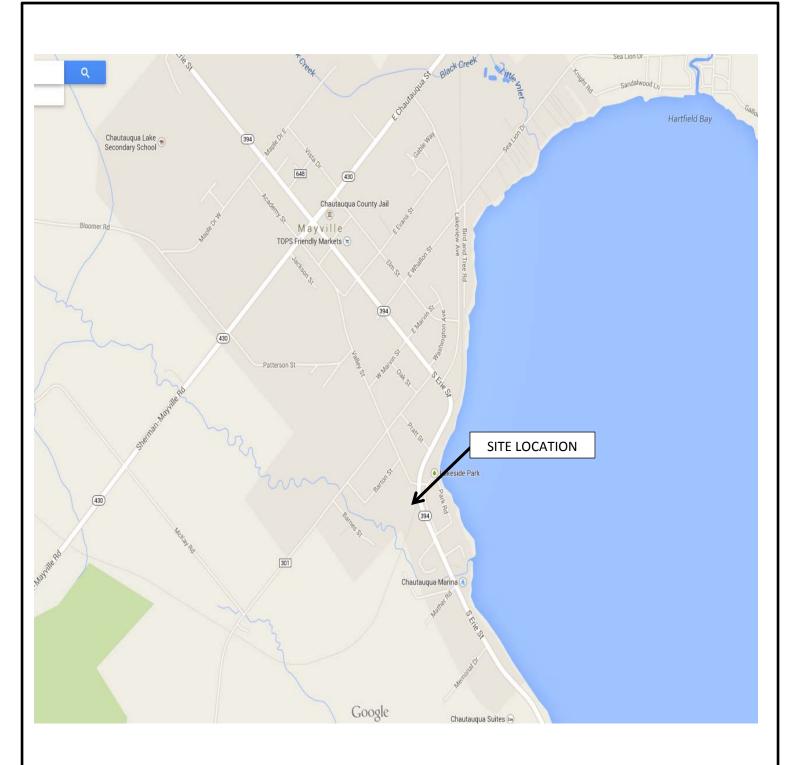

- TCL VOCs Target Compound List Volatile Organic Compounds.
- TCL SVOCs Target Compound List Semi-volatile Organic Compounds.
- TAL Metals Target Analyte List Metals.
- TCL PCBs Target Compound List Polychlorinated Biphenyls.
- GW Mon includes Redox potential, methane, ferrous iron, sulfates, nitrates, chlorides, and TOC

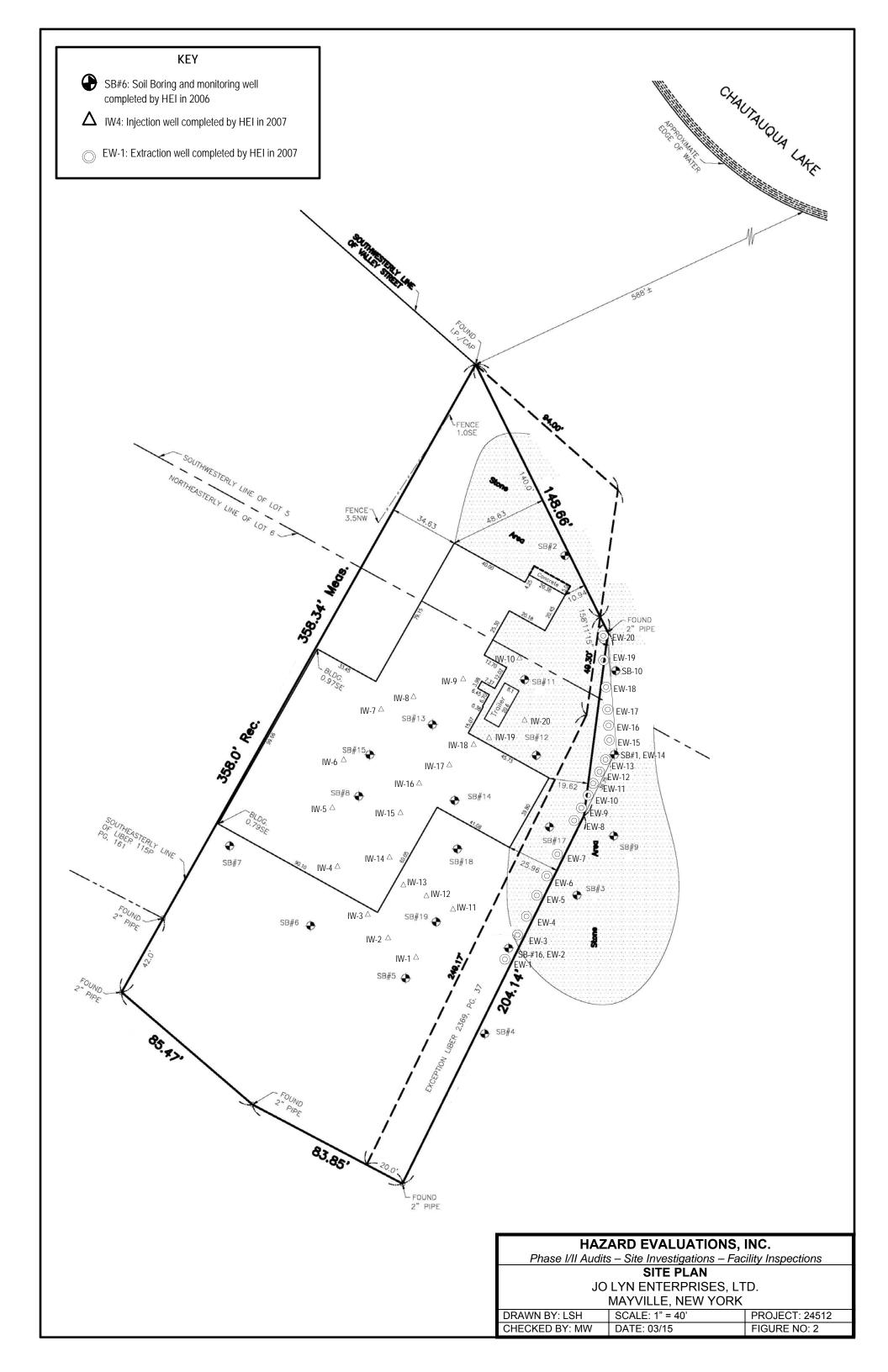
TABLE 5 Sample Container, Volume, Preserving and Holding Time Requirements Jo Lyn Standard Portable Mayville, NY NYSDEC Brownfield Cleanup Program

			Quantity/		
PARAMETER DESCRIPTION	MATRIX	METHOD NO.	Bottle Type	Preservation	Holding Time
Soil Samples					
Volatiles, TCL list	Soil	5030/8260	(1) 2oz glass jar	Cool, 4 C	14 days / Zero Headspace
Semi-Volatiles, TCL list	Soil	8270	(1) 4oz glass jar	Cool, 4 C	14 days
Metals, TAL (no CN)	Soil	6010/7000	(1) 4oz glass jar	Cool, 4 C	14 days
PCBs	Soil	8082	(1) 4oz glass jar	Cool, 4 C	14 days
Pesticides	Soil	8081	(1) 4oz glass jar	Cool, 4 C	14 days
Herbicides	Soil	8151	(1) 4oz glass jar	Cool, 4 C	14 days
Monitoring Wells					
Volatiles, TCL list	Water	8260	(3) 40ml vial	Cool, 4 C, HCL	14 days
Semi-Volatiles, TCL list	Water	8270	(2) 1 liter amber	Cool, 4 C	14 days
PCBs	Water	8082	(2) 1 liter amber	Cool, 4 C	14 days
Pesticides	Water	8081	(2) 500ml amber	Cool, 4 C	14 days
Herbicides	Water	8151	(2) 1 liter amber	Cool, 4 C	14 days
Metals, TAL	Water	6010	(1) 250ml plastic	HNO3	365 days
Mercury, Total	Water	7000	(1) 250ml plastic	HNO3	365 days
Metals, TAL (dissolved) field filtered	Water	6010	(1) 250ml plastic	HNO3	365 days
Mercury, Dissolved	Water	7000	(1) 250ml plastic	HNO3	365 days

Attachment B

Tables

THIS DRAWING IS FOR ILLUSTRATIVE AND INFORMATIONAL PURPOSES ONLY AND WAS ADAPTED FROM GOOGLE MAPS.


HAZARD EVALUATIONS, INC.

Phase I/II Audits - Site Investigations - Facility Inspections

JOLYN ENTERPRISES LTD.

21 VALLEY STREET MAYVILLE, NEW YORK 14757

DRAWN BY: LSH SCALE: NOT TO SCALE PROJECT: 24512
CHECKED BY: MW DATE: 3/15 FIGURE NO: 1

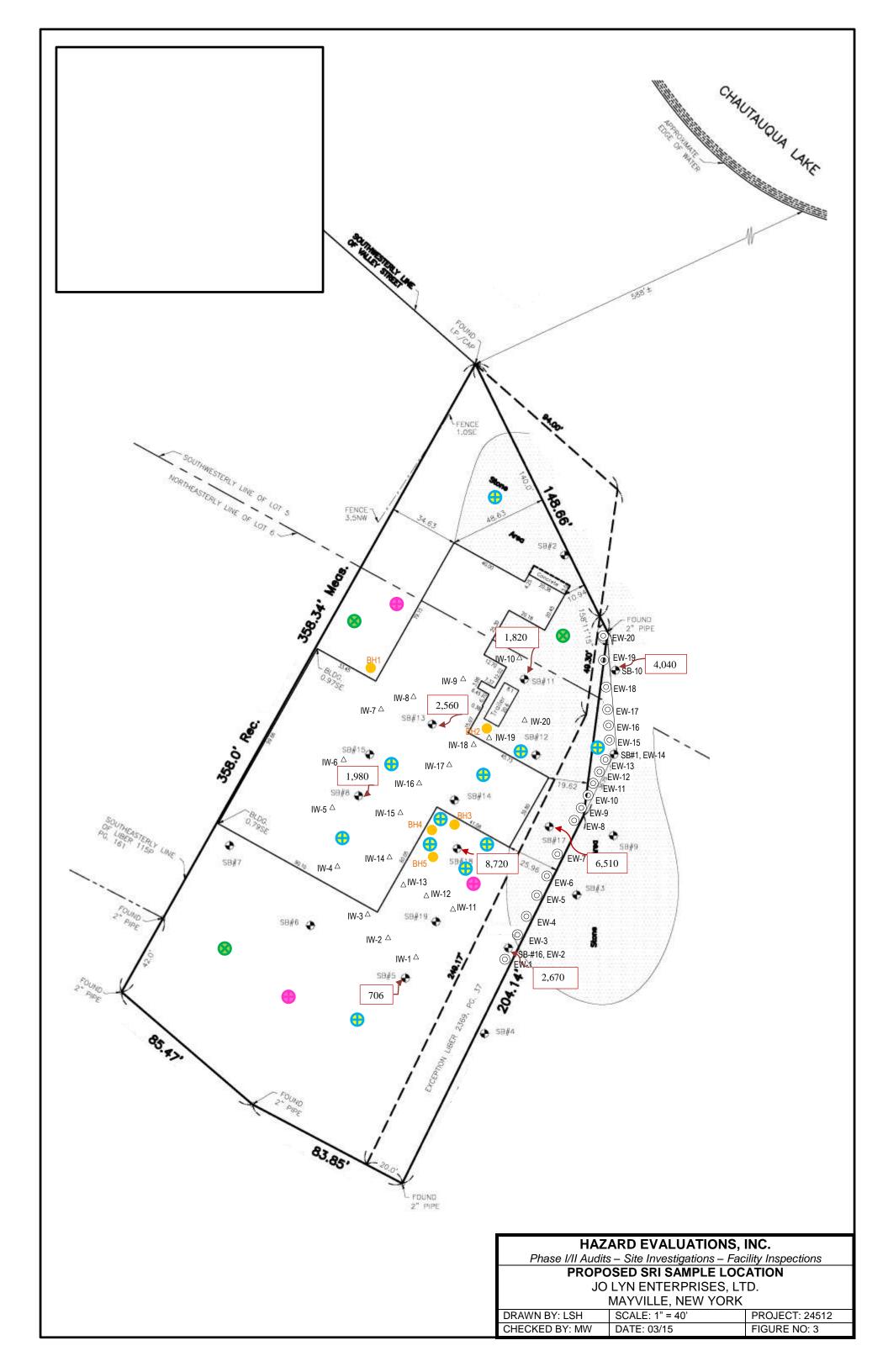


Figure 4
Estimated Project Schedule - Standard Portable, Mayville, NY

Task Name	Ma	rch :	2-6	March	9-13	N	larch 16-2	20	Ma	arch 2	3-27	Ma	rch	30-	April	Apr	il 6-1)	April :	13-17
Submittal of Supplemental Remedial Investigation (SRI)																				
SRI Field Work																				
Analytical Testing																				
Preparation of Alternatives Analysis Report (AAR)																				
Submittal of AAR																				