

OFF-SITE SOIL & GROUNDWATER INVESTIGATION REPORT

Standard Portable Off-Site
25 West Lake Road
Mayville, New York
Town of Chautauqua, County of Chautauqua
DEC Site No. C907030A

PREPARED FOR:

NYSDEC

270 Michigan Avenue Buffalo, New York 14203

Report Date: March 17, 2010

OP-TECH ENVIRONMENTAL SERVICES INC.

500 Commerce Drive Amherst, New York 14228 (716) 873-7680

TABLE OF CONTENTS

1.0	Intro	oduction	1
2.0	Site	Description	1
3.0	Site	Investigation Objectives	1
4.0	Scop	pe of Work	2
	4.1	Subsurface Exploration Program	2
	4.2	Groundwater Monitoring Wells	3
5.0	Find	lings and Results	7
	5.1	Site Specific Geology	7
	5.2	Hydrogeology	8
	5.3	Headspace Screening	9
	5.4	Soil Sample Results	9
	5.5	Groundwater Sample Results	10
6.0	Ana	lytical Reports	11
7.0	Sum	mary	11
8.0	Reco	ommendations	11

ATTACHMENTS:

Figures

- Figure 1 Site Base Map
- Figure 2 Sampling Location Map
- Figure 3 Generalized Micro-Well Construction Diagram
- Figure 4 Water Table Map (First Round of Water Levels)
- Figure 5 Water Table Map (Second Round of Water levels)

Tables

- Table 1 Field Identification Table
- Table 2A Soil Analytical Results Volatile Organic Compounds
- Table 2B Soil Analytical Results Semi-Volatile Organic Compounds
- Table 2C Soil Analytical Results Total Metals
- Table 2D Soil Analytical Results Pesticides

- Table 3A Groundwater Analytical Volatile Organic Compounds
- Table 3B Groundwater Analytical Total and Dissolved Metals, SVOCS, PCBs, Pesticides
- Table 4 Site Groundwater Elevations for December 7, 2010

Appendices

- Appendix A Test Boring Logs
- Appendix B Well Development Reports
- Appendix C Groundwater Sampling Reports
- Appendix D Laboratory Analytical Reports
 - 1. Soil Analytical Results
 - 2. Groundwater Analytical Results
 - 3. Waste Characterization Results

1.0 INTRODUCTION

OP-TECH was contracted by Region 9 of the New York State Department of Environmental Conservation (NYSDEC) to complete an Off-Site Soil and Groundwater Investigation at the property adjoining and adjacent to the former Standard Portable facility located at 21 Valley Street in Mayville, New York. A Work Plan dated October 30, 2009 was provided to the NYSDEC to serve as a guidance document for field work, laboratory analytical, and general project work.

This report provides a summary of the field methods, the sample analytical methods, and the sample analytical results collected as part of this investigation. This report will provide conclusions regarding the nature of subsurface conditions encountered, the field methods utilized to complete the field work, site geology and hydrogeology of the site, and a summary of the analytical results. It will also provide recommendations for additional work.

2.0 SITE DESCRIPTION

Former Standard Portable

The former Standard Portable Site is located in the Village of Mayville, New York. Jo Lyn Enterprises now owns and operates the facility, which is located at 21 Valley Street. The parcel consists of approximately 1.06 acres of land located within the lake plain directly west of Chautauqua Lake, across Route 394. The tax lot number is 262.15-2-10. The facility was reportedly operated Wappat Saw Company, and subsequently Standard Portable Products, Inc. These owners reportedly performed various metal working operations, including vapor degreasing using a Trichloroethene (TCE) degreasing unit. The spent TCE was reportedly stored in an underground septic tank adjacent to the building.

In 1996, the current owner (Jo Lyn Enterprises Ltd. d/b/a Standard Portable (Jo Lyn) purchased the facility and started manufacturing operations. Pre-purchase due diligence investigations identified the septic tank reportedly used as storage/disposal for TCE waste historically generated by the degreasing units of former manufacturers. As a result of these findings, the septic tank was removed in 1996 by Anderson International, Inc. for Jo Lyn. Waste generated from degreasers used by Jo-Lyn was containerized and transported off-site for disposal. Vapor degreasing operations ceased at the site in 2001.

In 2002, Jo Lyn sought to sell the subject site. As part of the due diligence process, a Phase II Site Investigation was performed on behalf of the potential buyer's lending institution. The results of the Phase II Site Investigation indicated significant levels of TCE contamination in the soil and groundwater in the vicinity of the former septic tank.

On July 7, 2009, OP-TECH received Call Out #118370 from NYSDEC Region 9 to, "delineate the TCE and daughter product plume off-site, and to determine if the TCE plume is posing a threat to public health or the environment." Subsequent to receipt of the call out, OP-TECH met with the NYSDEC to further discuss the project. In addition, OP-TECH personnel completed a site visit to evaluate site conditions, evaluate site access and observe general site conditions. Lastly, a work plan and cost estimate was provided to the NYSDEC to review and approve prior to the commencement of field activities.

Off-Site Adjacent Properties

Property directly south of the former Standard Portable site consists of three parcels of land as follows:

- Directly south is a 13 acre parcel with the tax lot number of 262.15-2-13;
- Adjacent to the southwest is a 2.7 acre parcel with the tax lot number 262.15-2-16; and

• The old railroad right of way consisting of 1.1 acres with the tax lot number 262.15-2-14.

These parcels are reportedly owned by the Village of Mayville and are not developed at the present time.

Across Route 394 is a 14.3 acre parcel with the tax lot number 262.16-2-10. This parcel is developed as a park with playing fields, a small beach, a boat launch (north end), and a building with changing rooms, a snack bar and restrooms.

3.0 SITE INVESTIGATION OBJECTIVES

The overall objective of the Off-Site Groundwater Investigation was to "delineate the TCE and daughter product plume off-site, and to determine if the TCE plume is posing a threat to public health or the environment." The call out requested completion of the following tasks to fulfill the project objectives:

- 1. Using a licensed surveyor, complete a site map as well as another site map which shows both the on-site, off-site and the bank of Lake Chautauqua.
- 2. Complete approximately 30 Geoprobe® borings into the water table, to a depth of approximately 12 feet below ground surface.
- 3. Complete two additional Geoprobe® borings to 30 feet below ground surface (in a clean portion of the aquifer) to evaluate the geology of the area at depth.
- 4. Using a Geoprobe®, collect at least three soil samples above the water table to confirm that the vadose zone is free of TCE (on-site work concluded that the unsaturated zone was free of contamination).
- 5. Using a Geoprobe®, collect approximately 20 soils samples from below the water table to determine if there is dense non-aqueous phase liquid (DNAPL) in the aquifer.
- 6. Install approximately 20 groundwater monitoring "Micro-wells" in the Geoprobe® borings that are advanced as part of this investigation.
- 7. Complete two synoptic rounds water levels from both on-site and off-site monitoring wells including a water elevation at Lake Chautauqua.
- 8. Complete two separate rounds of groundwater sampling for chlorinated volatile organic compounds (VOCs)
- 9. Prepare a draft summary report of findings that includes documentation of all work performed along with the appropriate tables and figures.
- 10. Upon receipt of comments from the NYSDEC, provide a revised final electronic and paper copy of the finalized report.

4.0 SCOPE OF WORK

The following activities were completed to meet the NYSDEC project objectives. This field work was completed with geologists, a hydrogeologist, technicians, laborers, drillers, and driller's assistants supplied by OP-TECH and CME Associates. The following sections of this report provide a detailed description of the activities that were required to complete this work.

Planning and Project Management Activities

The following planning and project management activities took place to prepare for the completion of field activities associated with this project.

<u>Initial Site Meeting.</u> Prior to the start of field activities, a meeting was held at NYSDEC Region 9 offices in early July of 2009 to discuss the objectives of the project, and for the NYSDEC to provide OP-TECH with

background investigative information already collected on the Jo Lyn property. This meeting was also used to discuss and layout the approach for the field investigation.

<u>Site Visit.</u> In mid July of 2009, a site visit was completed by the NYSDEC Project Manager and OP-TECH personnel to evaluate site conditions, site access to observe general site conditions, and evaluate potential changes to proposed scope of work.

<u>Work Plan Preparation.</u> A Work Plan was prepared at the request of the NYSDEC to provide an understanding of the details of the scope of work to be completed for this investigation. It also included an estimate of the amount of time and the costs that would be required to complete the scope of work. The draft work plan was submitted on September 15, 2009 and was finalized on October 30, 2009.

<u>Meeting with Village Personnel.</u> On October 13, 2009, representatives from OP-TECH and the NYSDEC met with the Village of Mayville personnel to discuss access to the work area (Village property), and to discuss the location(s) of Village water and sewer lines with respect to the work area. In addition, additional information was provided regarding the former rail bed that transects the study area.

<u>Develop Health and Safety Work Plan.</u> A site specific health and safety plan (HASP) was develop to provide guidance for the safe completion of field activities associated with this project, and to provide information for emergency medical assistance.

<u>Identification and Mark Out of Underground Utilities.</u> Approximately one week prior to the start of subsurface intrusive activities, Dig Safely New York was contacted to mark out subsurface utilities. In addition, the Village of Mayville was also contacted to mark out water lines and force main sewer lines in the project area.

<u>Mobilization of Equipment and Personnel to the Site.</u> On November 4, 2009, the Geoprobe® Model 6610DT was mobilized to the site to commence field activities. Drilling activities took place from November 4th to November 13th.

Site Survey and Base Map

A request for quotation to complete a survey of the project area was put out to four Professional Land Survey companies to:

- Survey the parcels immediately south and east of the Standard Portable property;
- Combine this information electronically with the survey already completed for the former Standard Portable facility.
- Place new soil boring and groundwater monitoring wells that were completed as part of this project on the base map.
- Provide the base map in CAD format which was used for the basis of three dimensional geologic and hydrogeologic data that was collected as part of this investigation.

Rogers Survey in Jamestown, New York was selected as the qualified lowest bidder for the survey work. On November 4th, Rogers Survey began field survey services which were completed in mid November. A second survey event took place in early February to survey in the elevations of groundwater monitoring wells on the Jo-Lyn property. Figure 1 is an attached pocket map that is the surveyed base map for the project area. Figure 2

provides the locations of the soil borings that were advanced and the groundwater micro-wells that were installed. In addition, the Lake Chautauqua surface water measuring point is noted on Figure 1 as a paint mark on top of wall.

Site Investigation

OP-TECH provided an experienced three person crew, consisting of a Hydrogeologist, a Geoprobe[®] Operator and a driller's helper to advance the soil borings and install the groundwater monitoring "micro-wells. A Geoprobe[®] Model 6610DT hydraulic push/percussion hammer soil-probing unit, mounted on rubber tracks was used to advance the boreholes and install the one-inch micro-wells. Since a portion of the work area is a town park, care was taken to preserve the integrity of the park turf by laying out the boring program in close proximity to existing roads within the Town Park.

Subsurface investigation activities were conducted under Level D personal protective equipment (PPE) with nitrile gloves. The work zone was monitored with a photo-ionization detector (PID). Sustained readings in the breathing zone of greater than 5 parts per million did not occur, thus work activities were continuous.

A temporary decontamination pad was set up to assist with decontamination of drilling and sampling equipment. Drill bits, and equipment that came into contact with subsurface soils was be decontaminated in between runs and between each borehole.

Because of the presence of known groundwater contamination immediately upgradient, any drill cuttings, PPE, decontamination water or other investigative derived waste generated during advancement of the 30 soil; borings will be containerized in 55 gallon drums.

Background Soil Borings. Two geologic borings (SBB-1 and SBB-2) were advanced to a depth of approximately 30 feet below ground surface (BGS) outside of the suspected area of the groundwater contaminant plume at the locations noted on Figure 1. Soil boring SBB – 1 was drilled to the southwest of the study area outside of the area of suspected groundwater contamination. Soil boring SBB – 2 was drilled to the northeast of the study area outside of the area of suspected groundwater contamination. The objective of this task was to evaluate the nature of subsurface materials, which are reportedly sands from ground surface to approximately 12 feet below ground surface. A clay unit is reportedly located at approximately 12 feet below ground surface; however the thickness and lateral extent of this unit is unknown. Thus, these soil borings were advanced to evaluate the thickness of the clay unit, and to evaluate the nature of the primary aquifer that is reportedly present below the clay unit.

<u>Investigative Soil Borings.</u> Twenty Geoprobe[®] borings were advanced downgradient of the former Standard Portable facility and upgradient of Chautauqua Lake along three profiles oriented generally northwest-southeast. These traverse lines are oriented perpendicular to the expected groundwater flow direction (Figure 1). Soil borings GP-3, GP-9, and GP-11 had additional soils borings associated with them (i.e. GP-3A) because extra sample volume was required for laboratory analysis, exceptionally low recovery for sample, and/or extracted sample representations was questionable. A field identification table is presented in Table 1 to assist with the review of field activities that took place. Soil borings were located as follows:

• Profile 1 –Soil borings GP - 1 to GP - 7 located approximately 50 feet southeast of the Standard Portable property boundary at its closest point. Soil borings were spaced approximately 50 feet apart. Five of the eight soil borings were converted to micro-wells as follows:

```
o GPW - 2;
```

o
$$GPW-4$$
;

o GPW - 3;

```
○ GPW – 5; and○ GPW – 6.
```

Profile 2 – Soil borings GP – 8 to GP - 14 are approximately 130 feet southeast of the Standard Portable property boundary at its furthest point along the south end of the profile, and approximately 70 feet southeast of the property boundary at the north end of the profile. Traverse 2 is sub-parallel to Profile 1. Soil borings are spaced approximately 50 feet apart. Five of the seven soil borings were converted to micro-wells as follows:

```
    GPW - 8;
    GPW - 9;
    GPW - 10;
    GPW - 13; and
    GPW - 14.
```

Profile 3 – Profile was divided into two segments by Route 394 consisting of GP – 15 through GP – 17 that were advanced to the west of Route 394; and GP – 18 through GP – 20 that were installed in a north south line parallel and east of Route 394. The western segment of the profile (GP – 15 through GP – 17) is approximately 200 feet southeast of the Standard Portable property boundary, and approximately 90 to 100 feet south of Profile 2. Soil borings on the eastern end of Profile 3 (GP – 18 through GP – 20) are approximately 170 to 270 feet from the property line. Borings on Profile 3 were spaced approximately 50 to 100 feet apart. Three of the six soil borings along Profile 3 were converted to micro-wells as follows:

```
    GPW – 17 (west of Route 394);
    GPW – 18 (east of Route 394); and
    GPW – 20 (east of Route 394).
```

Soil borings were drilled to a depth of approximately 15 feet, or two feet into the clay unit; with the exception of GP-15, GP-16, and GP-17 which were drilled to a depth of 20 feet because the presence of the clay layer was at greater depths. A Macro-Core soil sampler with acetate liners was used to advance the borings and collect soil samples. Soil samples were subdivided into two-foot intervals, and characterized with respect to predominant soil types (i.e., gravel, sand, silt, clay), color, and relative moisture content (i.e., moist, wet, saturated); and examined for characteristic chlorinated odors. These descriptions are presented on the soil boring logs that are attached as Appendix A. Sample recovery is noted in inches on the boring logs as recovered sample over the entire run length of the sample.

Soil samples were screened for volatile organic compounds (VOCs) using a PID equipped with a 11.7eV lamp. The PID screening was performed by direct-read and headspace screening methods, by placing soil samples in sealable plastic bags, and allowing the samples to warm prior to screening with the PID. The PID screening was then performed on the soil headspace of each containerized sample, to provide a general indication as to the VOC concentrations released from the soil into the sample headspace. The results of the soil sample characterization and PID screening was recorded on the Geoprobe[®] Investigation Logs for the respective borings (Appendix A). PID screening is recorded as the direct read measurement over the background value.

Soil sample splits with the highest PID headspace reading below the top of the water table at each soil boring location were placed in clean glassware supplied by the contract laboratory, labeled with a unique

sample identification (i.e.; SB-1 (8-10 feet), packed on ice and then will be submitted for laboratory analysis to the contract laboratory, (Test America) using strict chain of custody protocols.

In addition, soil sample splits from above and below the water table at three borings were also submitted for laboratory analysis using the same criteria described above plus additional analysis.

<u>Installation of Groundwater Monitoring Wells.</u> At soil boring locations where significant PID readings were noted in screened soil boring samples, a groundwater monitoring was installed. Newly installed wells were numbered according to the soil boring designation (GP) with a "W" added for those soil borings where a micro-well was installed (i.e.: GPW-2).

To install the micro-wells, the Geoprobe[®] drill unit was moved one to two feet from the soil boring, and a drive point was advanced to 13 feet BGS to install the micro-well. One-inch diameter schedule 40 PVC monitoring wells (micro-wells) were constructed with a threaded 1-inch I.D. PVC plug at the bottom, a tenfoot screen (with 0.010-inch slots) from approximately 13 to 3 feet BGS and were finished with compatible one-inch diameter schedule 40 PVC riser pipe.

Following placement of the well screen and riser pipe, the Geoprobe® casing was withdrawn from each borehole, and the annular space surrounding the screen was filled with No. 1 silica sand, extending approximately one foot above the top of the screen. A bentonite seal comprised of hydrated granular bentonite was then placed above the sand pack to grade. A generalized monitoring well construction diagram is attached as Figure 3.

The monitoring wells were finished at the surface with lockable j-plugs at the top of the PVC casings. An eight-inch diameter protective flush-mounted curb boxes, embedded in concrete (approximately two inches below the ground surface) were used to complete the micro-wells at the surface.

Soil borings where micro-wells were not installed were plugged using granular bentonite that was tremmie grouted from the bottom of the borehole to ground surface.

Monitoring Well Development. Once installed, the newly installed monitoring wells were allowed to set up for a minimum of one week. On November 23rd and 24th, the newly installed micro-wells were developed with a peristaltic pump and tubing. Due to the variable recharge rates of the micro-wells, 10 well volumes could not be removed from all of the micro-wells. Micro-wells were slow to recharge due to the low hydraulic conductivity that can be associated with fine-grained soils. Purged water was monitored for pH, temperature, conductivity and turbidity. Well development information was recorded Well Development Logs for each specific micro-well (Appendix B).

Because of the presence of known groundwater contamination immediately upgradient and PID readings on the soil samples, development water was containerized in 55 gallon drums that were clearly marked for subsequent disposal purposes. All drummed soil, purge water and investigative derived waste was staged on-site at a location mutually selected by the NYSDEC and Jo-Lyn.

<u>Groundwater Sampling</u>. On December 8th (prior to the collection of groundwater samples), a synoptic round of groundwater elevations was collected from the 13 newly installed micro-wells and 9 of the existing site monitoring wells located at the former Standard Portable site. In addition, a water elevation was noted for Lake Chautauqua by marking the water level using paint on the retaining wall at the Park beach along the lake. A second synoptic round of water levels has yet to be completed and is planned for the early spring of 2010.

Groundwater samples were collected on December 7th through the 9th and 14th from the 13 newly installed wells off-site using low flow sampling methods (a peristaltic pump and dedicated tubing) for each respective groundwater sampling point. Due to the properties of the subsurface, true low-flow sampling techniques proved to be inadequate for the collection of groundwater samples. Well drawdown could not be controlled due to the low permeability associated with the fine grained soils, lack of significant recharge of the groundwater system, and high turbidity due to ineffective sand filter packs. Standard low flow techniques were followed while attempting to purge the well prior to sampling. Water quality parameters were collected and allowed to stabilize with the exception of turbidity and in some instances oxidation reduction potential. Samples were collected as well drawdown was occurring. Groundwater sampling logs are included as Appendix C.

<u>Investigative Derived Waste.</u> Soil cuttings, water from decontamination procedures, personal protective equipment and water associated well development and groundwater sampling was drummed and stored on site until it was disposed of in early February 2010. Solids were disposed of at Modern Landfill in Lewisberry, PA, and liquids were disposed of at the DuPont Wastewater Treatment facility in DE.

<u>Laboratory Analysis</u>. A total of 24 soil samples were submitted to the contract laboratory for analysis. Twenty-one of the soil samples were from below the water table, while three of the soil samples [GP – 9 (2-4'), GP – 14 (2-4'), and GP – 3A (2-4')] were from above the water table. All of the soil samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) using USEPA Method 8260. In addition, six of these soil samples were also analyzed for TCL semi-volatile organic compounds (SVOCs) using USEPA Method 8270; TCL pesticides using USEPA Method 8081; TCL polychlorinated biphenyls (PCBs), using USEPA Method 8082, and target analyte list (TAL) metals using USEPA Method 6010.

Thirteen groundwater samples (13 from the new micro-wells, a field duplicate and trip blanks were submitted to the contract laboratory for analysis for TCL-VOCs using USEPA Method 8260. Two of the groundwater samples (GPW - 4, and GPW - 17) were also analyzed for SVOCs using USPA Method 8270, TCL pesticides using USEPA Method 8081; PCBs using USEPA Method 8082, and TAL metals using USEPA Method 6010. Test America, certified under the New York State Department of Health's Environmental Laboratory Approval Program (ELAP), completed the analyses for both the soil and groundwater samples on a standard two-week laboratory turn-around-schedule, directly contracted to the NYSDEC.

One waste sample from drummed soil and purge water was analyzed for disposal purpose. The drummed solids were analyzed as follows:

- TCLP VOCs by USEPA Method 1311/8260B;
- TCLP SVOCs by USEPA Method 1311/8270C;
- PCBs by USEPA Method 8082;
- TCLP pesticides by USEPA Method 1311/8081A;
- TCLP metals by USEPA Method 6010;
- Percent solids;
- pH;
- HCN released from waste; and
- H2S released from waste.

Drummed liquids were analyzed for the same parameters including flashpoint.

5.0 FINDINGS AND RESULTS

Subsurface Geology

Based on field observations collected from the completion of soil borings and the installation of groundwater monitoring micro-well; the subsurface conditions that exist onsite are relatively homogenous and exhibit little lateral and vertical variations. Field based soil identifications procedures followed ASTM D 2487 for the Unified Soil Classification System (USCS).

<u>Background Soil Borings.</u> Two offsite direct push soil borings SBB-1 and SBB-2 were useful in gathering subsurface data for creating reference geologic field profiles before site investigation in the potentially contaminated areas (Figure 1). SBB-1 was located to the southwest of the Former standards portable site, between the recreational nature trail and Mud Creek; SBB-2 was northeast of the site between Chautauqua Lake and State Rt. 394. Both of these borings were drilled to a depth of 30 feet BGS. The subsurface soil conditions that exist off site (south and east) of the former Standard Portable site are similar to subsurface soils already characterized on the Standard Portable site.

SBB-1 encountered an ORGANIC SOIL (OL/OH) in the upper 1.5feet of the boring. Underlying this was a FILL unit consisting of sand and gravel, with particles and fragments of brick, wood, cinder, and ash. Some of this deleterious material that was observed from 1.5 to 6 feet had characteristics of a 'Napthalene-like' odor. This odor was likely attributable to the close proximately of a past railroad transportation line that was located within the immediate area. From 7 to 12 feet BGS was a fluvial deposit consisting of fine to medium SAND with gravel. A lacustrine deposit of CLAYS and SILTS with alternating laminae of fines and some coarse partings was encountered throughout the remainder of the borehole from 12 to 30 feet BGS.

Soil conditions for SBB-2 were similar to SBB-1 with a few exceptions; deleterious fill and an alluvial unit were not present. ORGANIC SOILS and GRAVELS were observed in the upper two feet of SBB-2. From 2 to 25 feet BGS, lacustrine gray CLAY was encountered with laminae of silts and partings of sand present. At the top of the lacustrine CLAY unit, between 2 and 6 feet below ground surface, was SILT with clay, which was mottled; a representation of chemical weathering associated with the interaction of the water table and Chautauqua Lake. From 25 to 30 feet, brown predominately coarse sand was observed.

The two background soil borings that were advanced outside of the suspected area of the contaminant plume indicated that clean soils are present to a depth of approximately 30 feet at those specific locations.

<u>Investigative Soil Borings.</u> A description of the soils that were encountered during the field investigation is described below:

<u>Top Soil Unit</u> – This is the soil stratum that was encountered at the ground surface and directly beneath up to depths of 4 feet. This unit primarily consists of an ORGANIC SOIL, generally moist from the high organic content, various proportions of sand and gravel, dry to moist. At some locations the presence of an anthropogenic material was encountered, suggesting comingling of soil properties with the underlying soil unit or disturbances to the subsurface from human activities.

<u>Fill Unit</u> – This is the underlying subsurface unit beneath the Top Soil unit, varying in thickness throughout the off-site investigation. The average thickness of the fill unit was 4 feet, at some locations it was not present, and its maximum thickness was 7 feet at GP-6 (GPW-6). The soil description for this unit consisted of primarily black to brown sand and gravel with fragments, particles, and specks of brick, cinder, ash, coal, and wood, and was dry to moist.

<u>Lacustrine Unit</u> – This is the depositional unit that is encountered through the remainder of all borings that were completed. This unit consists mainly of Silts and Clays of various proportions, alternating in laminae. These fine-grained soils exhibit slow to rapid dilantency and none to medium plasticity based on manual field tests. Also, present in this unit were frequent partings and seams of fine to medium sand and randomly occurring pockets and lenticular deposits of sand and gravel. In the upper few feet of the Lacustrine Unit there is silty sand that is oxidized and mottled from the fluctuation of the groundwater table. The thickness of this unit ranges from 0.5 feet to 6.5 feet with an average 2.0 feet. In previous onsite reports a fine grained sand unit is reported existing within the upper fifteen feet of the subsurface, that is on top of the fine grained silt and clay unit. This was not readily observed in the field by manual and visual classification of the soils encountered. No soil samples were collected for soil material characteristic testing.

Hydrogeology

Site wide static water levels (SWL) were collected from the thirteen off-site newly installed micro-wells and nine existing on-site wells. One synoptic round of SWLs was been collected on December 7th, 2010. A ground water contour map is provided (Figure 4). The manual elevation collected at the Chautauqua Lake survey mark at the Village of Mayville public park was 1306.99 feet. The Chautauqua Lake elevation on December 7th 2010 was 1307.46 feet at the United States Geological Survey (USGS) 03013946 Chautauqua Lake at Bemus Point NY gauging station. The average static water level depth was 2.12 feet, with the shallowest depth to water at GPW-10 being at 0.3 feet BGS and the greatest static water level depth was 4.26 feet BGS at GPW-6. All SWL measurements were collected from the north facing side of the top of well riser. (A data summary table of groundwater elevations is provided in Table 4).

Field observations from the field sampling, well development and groundwater sampling events included slow recharge or the lack of general permeability of subsurface soils; normally associated with predominately fine grained soils.

Groundwater flow direction for the majority of the site is to the northeast. A groundwater divide exists along the southern portion of the site where groundwater flow is to the southeast. A groundwater contour map is attached as Figure 4. The onsite groundwater elevations are absolute elevations; new survey data referenced the old survey data benchmark as the operating nut on the fire hydrant whose elevation was 1323.24 feet. Groundwater elevations were then determined by calculating out the difference of the onsite reference elevations (dated June 2009) and the benchmark of 100 feet. This number was then subtracted from the current survey point of 1323.24 feet to determine an absolute elevation of the top of riser of the monitoring well.

A total VOCs iso-concentration map was created from the groundwater analytical data and is attached as Figure 5. The map indicates that there is a southwest to northeast trend of the total VOCs concentration in the groundwater. The highest VOC concentrations are at GPW-2 (65,860 ppb) and decrease along the first traverse towards GPW-6 (16,150 ppb). This most likely illustrates that the VOCs are traveling along the bedding in the underground utility corridor of the sanitary water lines for the North Chautauqua Lake Sewer District, which is likely acting as a preferential pathway for contaminants.

Headspace Field Screening Results

Soil samples were screened for VOCs using a PID equipped with a 11.7eV lamp. The PID screening was performed by direct-read and headspace screening methods, by placing soil samples in sealable plastic bags, and allowing the samples to warm prior to screening with the PID. The PID screening was then performed on the soil headspace of each containerized sample, to provide a general indication as to the VOC concentrations released from the soil into the sample headspace. The results of the headspace screening are summarized on Table 1. Fifteen of the borings had headspace screening results below 5 ppm. One boring (GP-1) had a high headspace reading between 5 and 10 ppm (6.9 ppm). GPW-14 had a high

headspace between 10 and 20 ppm at 15.3 ppm. The following borings had headspace reading greater than 20 ppm:

- GP 2 at 112 ppm;
- GP 3 at 251 ppm;
- GP 4 at 41 ppm;
- GP 5 at 808 ppm; and
- GP 6 at 173 ppm.

Most of the high readings were within the water table from nine to 13 feet BGS.

Soil Sample Results

A total of 24 soil samples were analyzed as part of this investigation.

<u>Volatile Organic Compounds in Soil.</u> Fifteen VOCs were detected in the soil samples (An analytical summary is presented in Table 2A). Two of those compounds (acetone and methylene-chloride) were detected in most of the samples at low concentrations, and are believed to be laboratory contaminants. Trichloroethene (TCE) was detected in four of the boring at levels above the soil cleanup objectives (SCOs) for restricted commercial use in 6 NYCRR – Environmental Remediation Programs:

- GP-2 (8-10') was at 490 ppm;
- GP-3 (10-12') was at 390 ppm;
- GP-3A (12-14') was at 220 ppm;
- GP-5 (8-10') was at 200ppm;
- And, GP-6 (12-14') was at 410 ppm.

<u>Semi-Volatile Organic Compounds in Soil.</u> Six soil samples were analyzed for SVOCs (An analytical data summary is presented in Table 2B). Four of the six samples had no detections of SVOCs. In two of the samples analyzed for SVOCs [GP-14 (2-4') and GP-3A (2-4')], seventeen SVOCs were detected, all below the SCOs for restricted commercial use in 6 NYCRR – Environmental Remediation Programs.

<u>Metals in Soil</u>. Six soil samples were analyzed for total metals (An analytical data summary is presented in Table 2C). Seventeen metals were detected; however, these metals were within the established range for naturally occurring metals in the Eastern U.S.A. Background published in the TAGM 4046 SCOs. No metals were detected at levels above the SCOs for restricted commercial use in 6 NYCRR – Environmental Remediation Programs.

<u>Pesticides in Soil.</u> Six soil samples were analyzed for pesticides. Pesticides were detected in only one of the six samples (Table 2D). Four different pesticides were detected in sample GP-3A (2-4') at concentrations below the soil cleanup objectives (SCOs) for restricted commercial use in 6 NYCRR – Environmental Remediation Programs.

Groundwater Sample Results

<u>Volatile Organic Compounds in Groundwater.</u> Fourteen groundwater samples were analyzed for VOCs with 16 VOCs originally detected. VOC concentrations in groundwater samples from the monitoring wells sampled ranged from non-detect to 65,680 parts per billion (ppb). The results are presented in Table 3A and are compared against the Technical and Operational Guidance Series (TOGS) 1.1.1 "Ambient Water Quality

Standards and guidance Values and Groundwater Effluent Limitations." Some of the samples were diluted because analytes of concern were at higher concentrations than the detection range of the instrumentation. Analytes that were reported at low concentrations during the original analysis run were diluted out during the reanalysis; this is because the reanalysis dilution is based on the greatest estimated analyte concentration. Acetone was detected in two of the samples and is believed to be a laboratory contaminant.

- 1,1,2-Trichloroethane was detected in two of the samples at concentrations above the guidance value;
- 1,1-Dichloroethane was detected in four of the samples, one which was above the guidance value;
- 1,1-Dichloroethene was detected in five samples, and four were above the guidance value;
- 1,2-Dichloroethane was detected in only one of the samples at a concentration less than the laboratory's reporting limit but above the method detection limit (j value);
- Benzene was detected in three samples at concentrations less than the laboratory's reporting limits and above their method detection limit (j value);
- Chloroethane was detected in four samples, two of which were above the guidance value;
- cis-1,2-Dichloroethene was detected in nine samples, seven of these samples were above the guidance value, and six of these samples had to be diluted and reanalyzed because of elevated concentrations;
- Ethylbenzene was detected in one sample:
- Methylcyclohexane was detected in one sample at a concentration less than the laboratory's reporting limits and above the method detection limit (j value);
- Tetrachloroethene was detected in three samples and all were above the guidance value;
- Toluene was detected in five samples, one of the samples was above the guidance value;
- Trans-1,2-Dichloroethene was detected in seven samples, five of which were above the guidance value and had to be diluted and reanalyzed because of elevated concentrations;
- Trichloroethene was detected in eleven samples, six of which were above the guidance value and had to be to be diluted and reanalyzed because of elevated concentrations;
- Vinyl Chloride was detected was detected in seven samples, six of which were above the guidance value and had to be diluted and reanalyzed because of elevated concentrations;
- Xylene was detected in only one sample and was above the guidance value.

<u>Semi-Volatile Organic Compounds in Groundwater.</u> Two groundwater samples were analyzed for SVOCs and were all non detect for all analytes (An analytical data summary is presented in Table 3B).

<u>Metals in Groundwater.</u> Two groundwater samples were analyzed for both total and dissolved metal analysis; dissolved metals were filtered in-house by the contract analytical laboratory. Metal analytes were detected and are most likely associated as naturally occurring metal in the eastern USA. (An analytical data summary is presented in Table 3B).

<u>Cyanide in Groundwater.</u> Two groundwater samples were analyzed for Cyanide and both were non detect (An analytical data summary is presented in Table 3B).

<u>Pesticides in Groundwater.</u> Two groundwater samples were analyzed for pesticides. No pesticides were detected in the samples (An analytical data summary is presented in Table 3B).

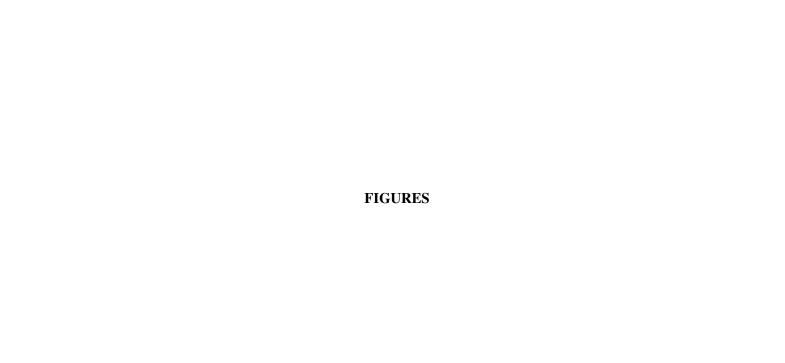
<u>Polychlorinated Biphenyls in Groundwater.</u> Two groundwater samples were analyzed for PCBS and none were detected (An analytical data summary is presented in Table 3B).

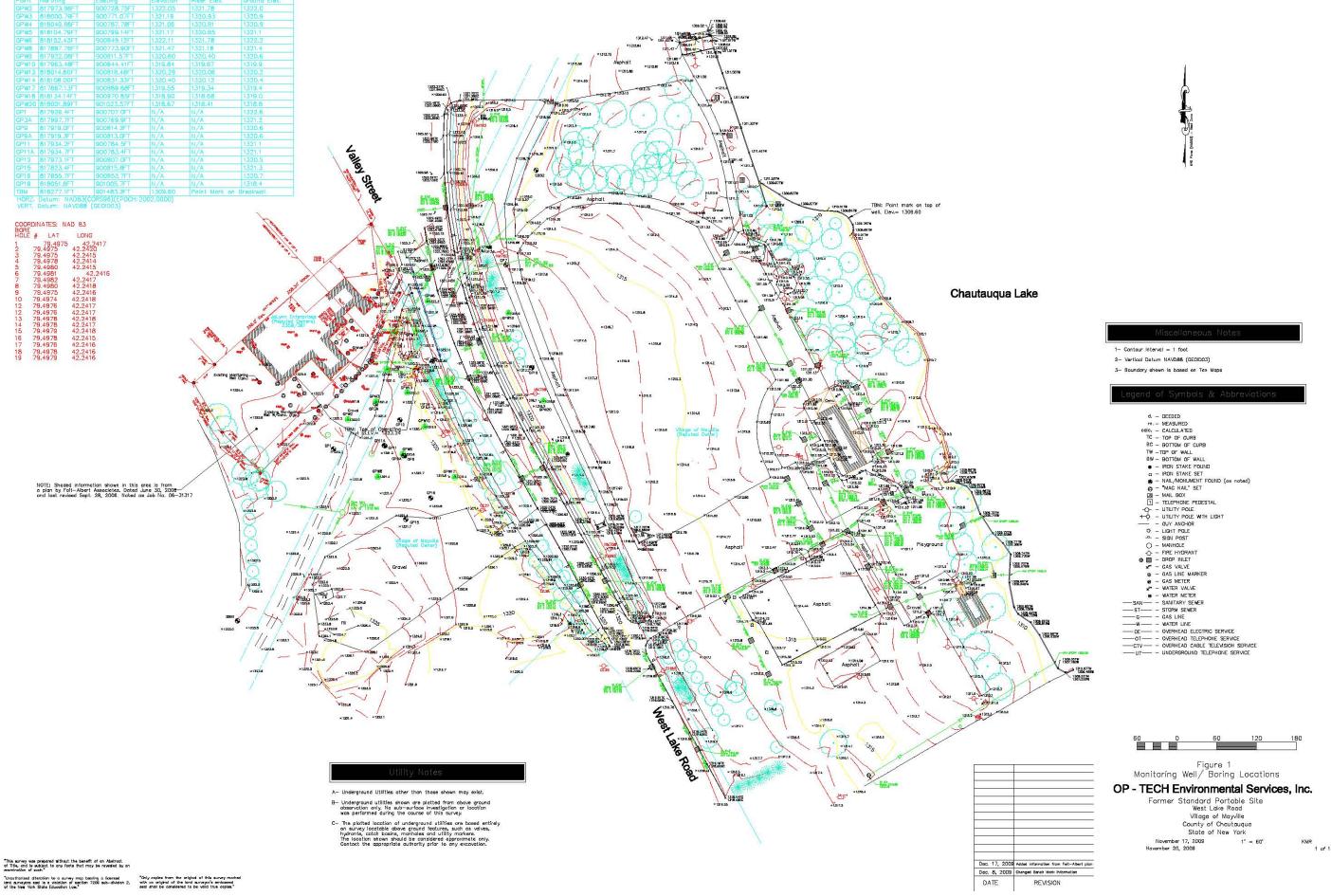
6.0 ANALYTICAL REPORTS

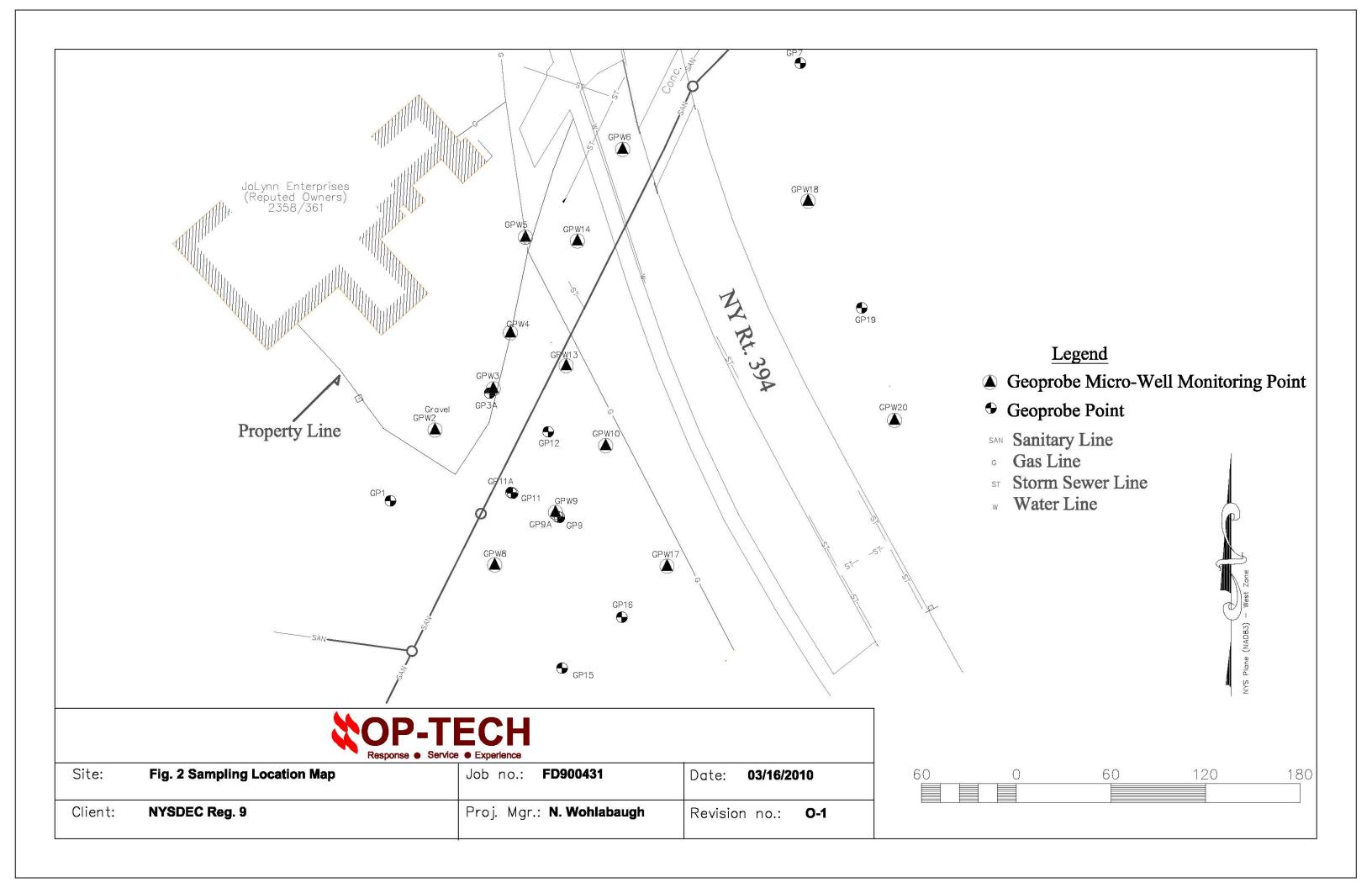
Analytical laboratory reports from Test America, the contract laboratory, have been forwarded to the NYSDEDC in advance of this report (See Appendix D – Laboratory Analytical Reports).

7.0 SUMMARY

The off-site site investigation of Former Standard Portables was completed in accordance with the NYSDEC Work Plan dated October of 2009. OP-TECH completed this work at the direction of NYSDEC Region 9 personnel. Chemical analysis of samples was completed by Test America, under direct contract to the NYSDEC. Soil and groundwater sample results from soil borings and the newly installed micro-wells indicate off-site impacts and a possible preferred migration pathway for groundwater along the utility corridor located immediately east of the site.


8.0 RECOMMENDATIONS


Additional subsurface investigative activities are recommended to evaluate potential migration of the groundwater contaminant plume northward toward Chautauqua Lake through the bedding materials associated with the utility corridor located just east of the former Standard Portable facility. Test pits along with soil and groundwater sampling is recommended northward along the utility corridor to evaluate subsurface conditions, and the presence/absence of a preferential pathway for contaminant migration.


Todd G. Bown

MK Wohle baugh

Norman K. Wohlabaugh, PG, CPG

Micro-Monitoring Well

Depth to top of Concrete (ft.): 0

Depth to top of Bentonite (ft.): -1.0

Depth to top of Sand Pack (ft.): -2.0

Ground Surface Elevation (ft.) 1322.00 Flushmount Roadbox Elevation (ft.) 1322.05 Riser Elevation (ft) 1321.78 Northing (ft.) 817973.96 Easting (ft.) 900728.75

Protective Casing (Flushmount Roadbox) Length (in.): 12

Well Riser Material: Sch. 40 PVC Diameter (in.): 1

Top of Well Screen (ft.): -2.9

Sand Pack Type: #1 Sand

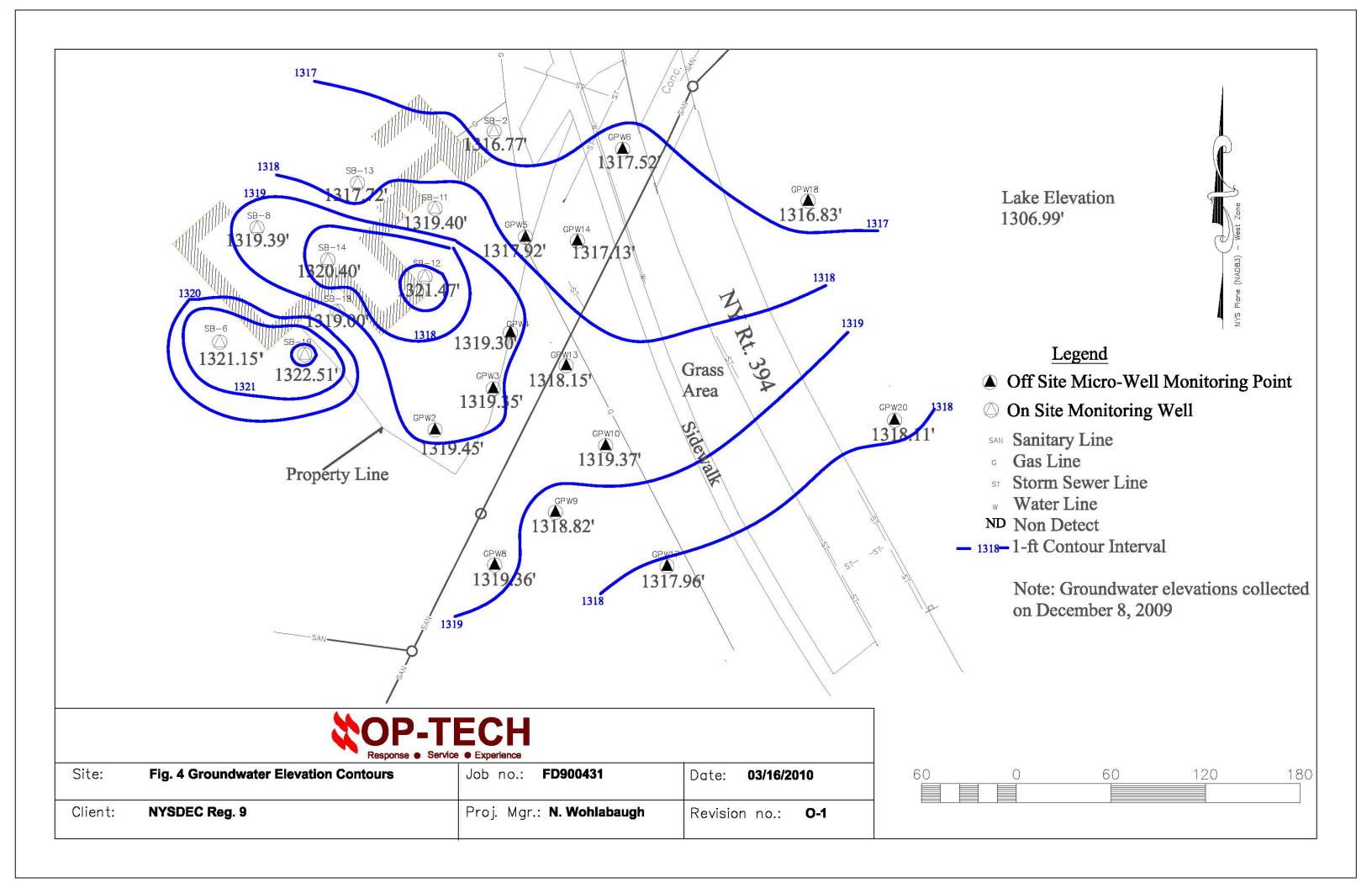
Well Screen Material: 0.010 Slot Sch. 40 PVC

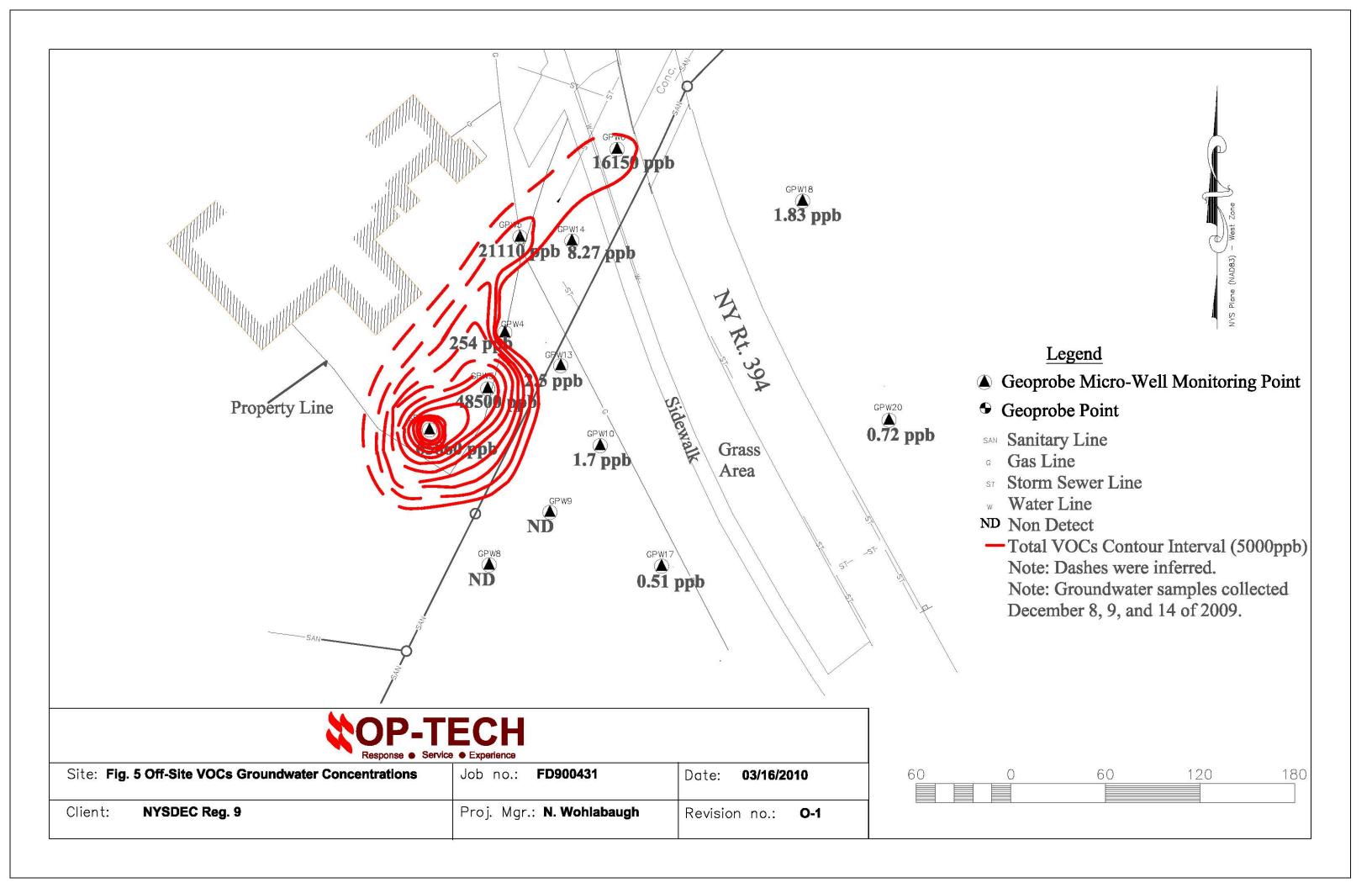
Diameter (in.): 1

Diameter (in.): 8

Borehole Diameter (in.): 3.25

Bottom of Well Screen (ft.): -12.9


Bottom of Well Sump (ft.): -13.0


Bottom of Borehole Elevation (ft.): -14.0

NOTE: All micro-monitoring wells had the same construction.

Figure 3: Well Construction Diagram	Job No.: FD900431	Micro-Monitoring Well
Client: NYSDEC Region 9	Project Manager: N. Wohlabaugh	Installation Date: November 12, 2009

TABLES

Table I: Field Identification Table Standard Portable Off Site Subsurface Investigation

Sample Location ID	GP-1	GP-2	GP-3	GP-3A	GP-4	GP-5	GP-6	GP-7	GP-8	GP-9	GP-9A	GP-10	GP-11	GP-11A	GP-12	GP-13	GP-14	GP-15	GP-16	GP-17	GP-18	GP-19	GP-20
Well Installed	NO	1	V	NO	V	√	V	NO	√	√	NO	√	NO	NO	NO	√	V	NO	NO	V	√ ·	NO	√
Well ID	NA	GPW-2	GPW-3	NA	GPW-4	GPW-5	GPW-6	NA	GPW-8	GPW-9	NA	GPW-10	NA	NA	NA	GPW-13	GPW-14	NA	NA	GPW-17	GPW-18	NA	GPW-20
Geoprobe Sampling Date	11/5/2009	11/5/2009	11/5/2009	NA	11/5/2009	11/5/2009	11/5/2009	11/9/2009	11/9/2009	11/9/2009	11/9/2009	11/9/2009	11/10/2009	11/10/2009	11/12/2009	11/12/2009	11/12/2009	11/12/2009	11/12/2009	11/12/2009	11/12/2009	11/13/2009	11/13/2009
Micro-Well installation Date	11/6/2009	11/6/2009	11/6/2009	NA	11/6/2009	11/6/2009	11/6/2009	NA	11/12/2009	11/12/2009	NA	11/12/2009	NA	NA	NA	11/12/2009	11/12/2009	NA	NA	11/12/2009	11/13/2009	NA	11/13/2009
Top of Well Screen	NA	2.9	2.9	NA	2.9	2.9	2.9	NA	2.9	2.9	NA	2.9	NA	NA	NA	2.9	2.9	NA	NA	2.9	2.9	NA	2.9
Bottom of Well Screen	NA	12.9	12.9	NA	12.9	12.9	12.9	NA	12.9	12.9	NA	12.9	NA	NA	NA	12.9	12.9	NA	NA	12.9	12.9	NA	12.9
Bottom of Well Sump	NA	13.0	13.0	NA	13.0	13.0	13.0	NA	13.0	13.0	NA	13.0	NA	NA	NA	13.0	13.0	NA	NA	13.0	13.0	NA	13.0
Bottom of Borehole	NA	14.0	14.0	NA	14.0	14.0	14.0	NA	14.0	14.0	NA	14.0	NA	NA	NA	14.0	14.0	NA	NA	14.0	14.0	NA	14.0
Highest Headspace Reading	6.9 ppm	112 ppm	257 ppm		41 ppm	808 ppm	173 ppm	0.0 ppm	0.0 ppm	0.0 ppm	0.9 ppm	0.7 ppm	0.7 ppm	0.7 ppm	2.4 ppm	0.9 ppm	15.3 ppm	3.8 ppm	3.8 ppm	0.0 ppm	0.0 ppm	0.0 ppm	0.0 ppm
Headspace Sample Interval	8 - 9 ft.	8 -9 ft.	10 - 11 ft.		10 - 11 ft.	9 - 10 ft.	12 - 13 ft.				1 - 2 ft.	10 - 11 ft.	11 - 12 ft.	10 - 11 ft.	8 - 9 ft.	10 11 ft.	12 - 13 ft.	16 - 17 ft	17 - 18 ft.			-	
	8-10'	8-10'	10-12' (**)	2-4' (*)	10-12'	8-10'	12-14'	6-8'	8-10'	2-4' (*)	10-12' (*)	10-12' (*)	NC	12-14'	12-14'	8-10'	2-4' (*)	16-18'	NC	12-14'	10-12'	10-12'	NC
Samples Collected	NC	NC	NC	8-10'	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	12-14'	NC	NC	NC	NC	NC	NC
	NC	NC	NC	12-14' (*)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

NOTES:

NO- No geoprobe micro-well was installed at that specific boring location

NA - Not Applicable

NC - Not Collected

(*) - Soil samples were analzed for EPA Methods 8260, 8270, 8081, 8082, 6010, and 9012.

*V. - Micro-Vell installed

(**) - Field Duplicate sample collected

Table 2A: Soil Analytical Results - Volatile Organic Compounds Standard Portable Off Site Subsurface Investigation

Analytes by	6 NYCRR PART 375 Soil Cleanup Objectives Restricted	GP-1 (8-10')	GP-2 (8-10')	GP-3 (10-12')	GP-4 (10-12')	GP-5 (8-10')	GP-6 (12-14')	GP-7 (6-8')	GP-8 (8-10')	GP-9 (2-4')	GP-9A (10-12')	GP-10 (10-12')
EPA Method 8260	Comercial Use (ppm)	11052009 10:05	11052009 11:10	11052009 11:35	11052009 13:05	11052009 14:25	11052009 15:25	11092009 11:05	11092009 12:25	11092009 12:45	11092009 13:40	11092009 15:05
2-butanone	NL	ND	ND	ND	0.28	ND	ND	ND	ND	0.0083	ND	ND
1,1-dichloroethene	500	0.0022	0.0062	0.0045	ND	0.0063	0.0038	ND	ND	ND	ND	ND
Acetone	500	0.0099	0.0065	0.0091	0.0099	0.01	0.007	ND	ND	0.027	ND	ND
Carbon disulfide	NL	ND	0.0049	0.0023	ND	ND	0.002	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	500	0.0027	4.7	1.3	0.06	4.4	3.2	ND	ND	ND	ND	ND
cyclohexane	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	350	ND	0.0065	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	500	0.0051	0.0053	0.005	0.006	0.0054	0.0052	0.0049	0.0089	0.0073	0.0035	0.0019
Methylcyclohexane	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	150	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	500	ND	0.0025	0.0022	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	NL	ND	0.065	0.065	0.065	0.027	0.015	ND	ND	ND	ND	
Trichloroethene	200	0.15	4 90 49	390 39	1.6	200 20	410 41	ND	ND	ND	ND	ND
Vinyl chloride	13	ND	0.031	0.058	0.01	0.11	0.14	ND	ND	ND	ND	ND
Xylenes, total	500	ND	0.025	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes

Laboratory analysis performed by Test America in Buffalo, New York.

All measurements reported in PPM (mg/kg)

Recommended soil cleanup objectives for Volatile Organic Contaminants are from 6 NYCRR Part 375 - SCOs Restricted Comercial Use.

Bold print exceeds recommended soil cleanup objectives set forth by the NYSDEC in TAGM 4046

ND - Non Detect

NL - Soil Cleanup Objective (SCO) not listed for this particular analyte in 6 NYCRR PART 375 - Environmental Remediation Programs Sunpart 375-6.8.

Table 2A: Soil Analytical Results - Volatile Organic Compounds Standard Portable Off Site Subsurface Investigation

Analytes by	6 NYCRR PART 375 Soil Cleanup Objectives Restricted	GP-11A (12-14')	GP-12 (12-14')	GP-13 (8-10')	GP-14 (2-4')	GP-14 (12-14')	GP-15 (16-18')	GP-17 (12-14')	GP-18 (10-12')	GP-19 (10-12')	GP-20 (8-10')	GP-3A (2-4')	GP-3A (8-10')	GP-3A (12-14')
EPA Method 8260	Comercial Use (ppm)	11112009 14:55	11112009 15:55	11112009 16:50	11122009 08:05	11122009 08:10	11122009 10:20	11122009 11:10	11122009 13:55	11122009 14:20	11132009 07:50	11132009 10:45	11132009 10:50	11132009 11:00
2-butanone	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	0.0079
Acetone	500	0.0078	0.01	0.019	ND	0.018	0.03	0.011	0.0089	0.013	0.019	0.021	0.02	0.0095
Carbon disulfide	NL	ND	ND	ND	0.0012	ND	ND	ND	ND	ND	ND	0.0018	0.0024	0.015
cis-1,2-Dichloroethene	500	ND	ND	ND	0.014	ND	ND	ND	ND	ND	ND	470	1.7	5.5
cyclohexane	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.98	ND	ND
Ethylbenzene	350	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	500	0.0038	0.0035	0.0079	0.0032	0.0074	0.0074	0.0033	0.0041	0.0054	0.0042	0.011	0.006	0.0054
Methylcyclohexane	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND
Tetrachloroethene	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0071	ND
Toluene	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.35	0.0038	0.0088
trans-1,2-Dichloroethene	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7	0.0085	0.021
Trichloroethene	200	ND	ND	ND	0.031	ND	ND	ND	ND	ND	ND	41	49	220
Vinyl chloride	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8	ND	0.085
Xylenes, total	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND

Notes:

Laboratory analysis performed by Test America in Buffalo, New York.

All measurements reported in PPM (mg/kg)

Recommended soil cleanup objectives for Volatile Organic Contaminants are from 6 NYCRR Part 375 - SCOs Restricted Comercial Use.

Bold print exceeds recommended soil cleanup objectives set forth by the NYSDEC in TAGM 4046

ND - Non Detect

NL - Soil Cleanup Objective (SCO) not listed for this particular analyte in 6 NYCRR PART 375 - Environmental Remediation Programs Sunpart 375-6.8.

Table 2B: Soil Analytical Results: Semi-Volatile Organic Compounds **Standard Portable Off Site Subsurface Investigation**

	6 NYCRR PART		
Analytes by	375 Soil Cleanup	GP-14 (2-4')	GP-3A (2-4')
EPA Method 8270	Objectives Restricted Comercial Use	11122009 08:10	11132009 10:45
2-Methylnaphthalene	NL	0.094	0.17
Acenapthene	500	0.084	ND
Acenapthylene	500	0.15	ND
anthracene	500	0.22	0.12
benzo(a)anthracene	5.6	0.75	0.56
Benzo(a)pyrene	1	0.67	0.41
Benzo(b)flouranthene	5.6	1.3	0.68
Benzo(ghi)perylene	500	0.57	0.33
Benzo(k)flouranthene	56	ND	0.24
Chrysene	56	0.8	0.61
Dibenzofuran	NL	0.12	0.1
Fluoranthene	500	1.5	0.95
Fluorene	500	0.098	ND
Indeno(1,2,3-cd)pyrene	5.6	0.52	0.29
Naphthalene	500	0.11	0.1
Phenanthrene	500	0.84	0.49
Pyrene	500	1.3	0.85

NOTES:
Laboratory analysis performed by Test America in Buffalo, New York.
All measurements reported in PPM (mg/kg).
ND - Non Detect
NL - Soil Cleanup Objective (SCO) not listed for this particular analyte in 6 NYCRR PART 375

Environmental Remediation Program 375-6.8

Table 2C: Soil Analytical Results: Total Metals Standard Portable Off Site Subsurface Investigation

Analytes by	Eastern USA Background	6 NYCRR PART 375 Soil Cleanup Objectives	GP-3A (2-4')	GP-3A (12-14')	GP-9 (2-4')	GP-9A (10-12')	GP-14 (2-4')	GP-20 (8-10')
SW Method 846	(ppm)	Restricted Comercial Use (ppm)	11132009 10:45	11132009 11:00	11092009 12:45	11092009 13:40	11122009 08:05	11132009 07:50
Aluminum	30,000	NL	8780	10000	6260	8840	5020	8820
Arsenic	3 - 12	16	9.2	12.4	10.7	11.5	9.2	6.3
Barium	15 - 600	400	119	61.6	35.3	43.7	46.4	41.1
Beryllium	0 - 1.75	590	0.777	0.472	0.29	0.432	0.368	0.409
Calcium	130 - 35,000	NL	32600	29100	1750	24700	48100	23400
Chromium	1.5 - 40	NL	10.7	14.3	8.34	12.6	6.37	12.6
Cobalt	2.5 - 60	NL	6.95	12.6	5.98	10.4	5.3	8.67
Copper	1 - 50	270	44.5	26.1	19.2	22.3	35.3	22.5
Iron	2,000 - 550,000	NL	26200	28400	15900	23800	18400	20500
Lead	***	1000	48	13.2	10.5	11.4	24.9	10.6
Magnesium	100 - 5,000	NL	9750	11400	2160	9430	14600	10900
Manganese	50 - 5,000	10000	708	492	236	395	931	326
Nickel	0.5 - 25	310	17.6	27.3	14.9	24	11.6	21.6
Potassium	8,500 - 43,000	NL	898	1720	562	1480	664	1360
Vanadium	1 - 3,000	NL	16.4	16.1	11.6	13.8	9.74	15.3
Zinc	9 - 50	10000	77.9	63.7	41.8	53.7	52.2	59.9
Mercury	0.001 - 0.2	2.8	0.0522	ND	ND	ND	0.0462	ND

NOTES:

Laboratory analysis performed by Test America of Buffalo, New York.

All measurements reported in PPM (mg/kg).

NL - Soil Cleanup Objective (SCO) not listed for this particular analyte in 6 NYCRR PART 375 - Environmental Remediation Programs Sunpart 375-6.8.

ND - Non Detect

 *** - No reported background value estsablished for the eastern USA.

Table 2D: Soil Analytical Results - Pesticides Standard Portable Off Site Subsurface Investigation

Analytes by	6 NYCRR PART 375 Soil Cleanup	GP-3A (2-4')	GP-3A (12-14')	GP-9 (2-4')	GP-9A (10-12')	GP-14 (2-4')	GP-20 (8-10')
EPA Method 8081	Objectives Restricted Comercial Use (ppm)		11132009 11:00	11092009 12:45	11092009 13:40	11122009 08:05	11132009 07:50
4,4'-DDT	47	0.0041	ND	ND	ND	ND	ND
delta-BHC	NL	0.0015	ND	ND	ND	ND	ND
Endosulfan II	200	0.00045	ND	ND	ND	ND	ND
Endrin	89	0.0043	ND	ND	ND	ND	ND

NOTES:

Laboratory analysis performed by Test America in Buffalo, New York.

All measurements reported in PPM (mg/kg).

Recommended soil cleanup objectives for Pesticide Contaminants are from 6 NYCRR Part 375 - SCOs Restricted Comercial Use.

ND - Non Detect

NL - Soil Cleanup Objective (SCO) not listed for this particular analyte in 6 NYCRR PART 375 - Environmental Remediation Programs Sunpart 375-6.8.

Table 3A: Groundwater Analytical Results - Volatile Organic Compounds Standard Portable Off Site Subsurface Investigation

	Sample Location	GPW - 2	GPW - 2 RE1	GPW - 3	GPW - 3 RE1	FD - 120809	FD -120809 RE1	GPW - 4	GPW - 4 RE1	GPW - 5	GPW - 5 RE1	GPW - 6	GPW - 6 RE1
Analyte by	Date	12/8/2009	12/8/2009	12/8/2009	12/8/2009	12/8/2009	12/8/2009	12/8/2009	12/8/2009	12/8/2009	12/8/2009	12/14/2009	12/14/2009
EPA Method 8260	Time	9:05	9:05	10:15	10:15	10:15	10:15	11:45	11:45	13:40	13:40	13:30	13:30
	TOGS Value (µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
1,1,2-Trichloroethane	1	ND	ND	3	ND	2.6	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	1.7	ND	0.71 J	ND	0.72 J	ND	ND	ND	5.2	ND	ND	ND
1,1-Dichloroethene	5	25	ND	44	ND	43	ND	ND	ND	38	ND	15	ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	0.53 J	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	0.61 J	ND	0.73 J	ND	0.74 J	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	5.7	ND	9.1	ND	7.6	ND	ND	ND	3.9	ND	ND	ND
cis-1,2-Dichloroethene	5	3700 E	26000	3100 E	13000	3100 E	13000	140 E	150	3200 E	15000	2900	7000
Ethylbenzene	5	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	12	ND	8.4	ND	8.5	ND	ND	ND	ND	ND	ND	ND
Toulene	5	7.4	ND	3.2	ND	3.3	ND	ND	ND	ND	ND	1.2	ND
trans-1,2-Dichloroethene	5	330 E	330	150 E	ND	140 E	ND	3.4	3.3	140 E	110	78	ND
Trichloroethene	5	5300 E	39000	5300 E	34000	5400 E	30000	100 E	99	2300 E	4100	3300	8800
Vinyl Chloride	2	450 E	530	1300 E	1500	1300 E	1500	4.5	5	1500 E	1900	460	350
Xylenes, total	5	8.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs	NA	9843.01	65860	9919.14	48500	10006.46	44500	247.9	257.3	7187.63	21110	6754.2	16150

Notes:

Laboratory analysis performed by Test America in Buffalo, New York.

All measurements in PPB (μg/l

Groundwater guidance values are from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1)

BOLD types exceeds NYSDEC TOGS 1.1.1 Guidance Values.

RE1 - Dilution required due to high concentration of target analyte(s).

J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

E - Concentration exceeds the calibration range and therefore result is semi-quantitative.

ND - Non Detect

NA - Not Applicable

FD-120809 - Field Duplicate collected at GPW-3

Table 3A: Groundwater Analytical Results - Volatile Organic Compounds **Standard Portable Off Site Investigation**

	Sample Location	GPW - 8	GPW - 9	GPW- 10	GPW - 13	GPW - 14	GPW - 17	GPW - 18	GPW - 20
Analyte by	Date	12/9/2009	12/9/2009	12/9/2009	12/14/2009	12/8/2009	12/9/2009	12/9/2009	12/9/2009
EPA Method 8260	Time	14:35	13:35	12:30	14:30	14:40	11:45	8:30	9:00
	TOGS Value (µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	4.1	ND	ND	ND	ND	ND	15	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	1.2	5.9	ND	0.85	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	NA	ND	ND	0.56 J	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Toulene	5	ND	ND	0.54 J	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	0.51 J	ND	ND
Trichloroethene	5	ND	ND	0.6 J	1.3	0.57	ND	0.98	0.72
Vinyl Chloride	2	ND	ND	ND	ND	1.8	ND	ND	ND
Xylenes, total	5	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs	NA	4.1	ND	1.7	2.5	8.27	0.51	16.83	0.72

Laboratory analysis performed by Test America in Buffalo, New York.

All measurements in PPB (µg/l)

Groundwater guidance values are from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1)

BOLD type exceeds NYSDEC TOGS 1.1.1 Guidance Values.

RE1 - Dilution required due to high concentration of target analyte(s).

J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

E - Concentration exceeds the calibration range and therefore result is semi-quantitative. ND - Non Detect

NA - Not Applicable

FD-120809 - Field Duplicate collected at GPW-3

Table 3B: Groundwater Analytical Results SVOCs, PCBs, Pesticides, Total and Dissolved Metals, and CN Standard Portable Off Site Subsurface Investigation

Analytes by EPA Method 8270	No semivolatile analytes were detected for GPW - 4	No semivolatile analytes were detected for GPW - 17
Analytes by EPA Method 8082	No Polychlorinated Biphenyls were detected for GPW - 4	No Polychlorinated Biphenyls were detected for GPW - 17
Analytes by EPA Method 8081A	GPW - 4	GPW - 17
Analytes by EPA Method 8081A	12/8/09 11:45	12/9/09 11:45
gamma-Chlorodane [2C]*	0.012 J	ND

Analytes by SW	TOGS Guidance		/2009	GPW-17 12/9/2009				
846 Series Method	Values (µg/l)	Total Metals (µg/l)	:45 Dissolved Metals (µg/l)	Total Metals (µg/l)	Dissolved Metals (µg/l)			
Aluminum	100	3,070	ND	12,900	ND			
Antimony	3	ND	ND	ND	ND			
Arsenic	25	ND	ND	15.8	16.4			
Barium	1,000	88.7	68.2	365	120			
Beryllium	3	ND	ND	ND	ND			
Cadium	5	ND	ND	ND	ND			
Calcium	NA	151,000	143,000	543,000	214,000			
Chromium	50	4.5	ND	14.8	ND			
Cobalt	5	ND	ND	15.7	ND			
Copper	200	ND	ND	21.1	ND			
Iron	300	5,550	ND	18,300	ND			
Lead	25	ND	ND	12.3	ND			
Magnesium	35,000	12,900	11,200	91,500	75,200			
Maganese	300	852	727	2,110	310			
Nickle	100	ND	ND	36.4	ND			
Potassium	NA	2,950	1,760	7,440	1,610			
Selenium	10	ND	ND	ND	ND			
Silver	50	ND	ND	ND	ND			
Sodium	20,000	15,800	16,300	44,300	39,500			
Thallium	0.5	ND	ND	ND	ND			
Vanadium	14	5.8	ND	21.8	ND			
Zinc	2,000	27.6	ND	48.4	ND			
Mercury	0.7	ND	ND	ND	ND			

Cyanide 200 ND ND

Notes:
Total and Dissolved Metal analysis by SW 843 Series Method. Cyanide analysis done by general chemistry parameters.
Dissolved Metals filtered by the analytical laboratory.
Bold type exceeds NYSDEC TOGS Guidance Values
ND - Non Detect
* - A NYSDEC TOGS Guidance Value is not established for this analyte

Table 4: Groundwater Elevation - December 7, 2010 Standard Portable Off Site Subsurface Investigation

Location	Reference Elevation (ft)	Static Water Level (ft)	Time	Elevation (ft)	
GPW-2	1321.78	2.33	14:12	1319.45	
GPW-3	1320.93	2.33	14:15	1318.6	
GPW-4	1320.81	1.51	14:16	1319.3	
GPW-5	1320.85	2.93	14:19	1317.92	
GPW-6	1321.78	4.26	13:35	1317.52	
GPW-8	1321.18	1.82	14:00	1319.36	
GPW-9	1320.4	1.58	14:04	1318.82	
GPW-10	1319.67	0.3	14:08	1319.37	
GPW-13	1320.06	1.91	13:51	1318.15	
GPW-14	1320.12	2.99	13:49	1317.13	
GPW-17	1319.34	1.38	13:24	1317.96	
GPW-18	1318.68	1.85	13:31	1316.83	
GPW-20	1318.41	0.3	13:27	1318.11	
SB-2	1320.84	4.07	14:39	1316.77	
SB-6	1324.49	3.34	14:58	1321.15	
SB-8	1321.51	2.12	15:35	1319.39	
SB-11	1321.22	1.82	14:44	1319.4	
SB-12	1322.8	1.33	14:49	1321.47	
SB-13	1320.43	2.71	15:37	1317.72	
SB-14	1322.92	2.52	15:40	1320.4	
SB-18	1320.84	1.84	14:51	1319	
SB-19	1324.49	1.98	15:07	1322.51	
Lake	1309.6	2.61	14:25	1306.99	

NOTE:

1.) All groundwater measurements collect on the 7th of December 2010.

2.) Reference elevations provided for geoprobe wells by Rodgers Surveying of Jamestown, NY

^{3.)} Soil boring well referenced elevations for on-site well determined by aboslute values from hisorical reports and survey point elevation provided by Rodgers.
4.0 All measurements taken from the top of well riser on the north side.

APPENDIX A TEST BORING LOGS

SUBSURFACE BORING LOG

Start Date: 11042009

Boring No. SBB-2

End Date: 11042009

Northing:

Project Number: FD900431

Geologist: T. Bown Project Manager: T. Bown Weather: ~55 °F, Overcast, slight breeze.I Dat.: NAVD88

Location (City, State): Mayville, New York

Client: NYSDEC

Driller: Beau Fletcher

Easting: Elev.:

		ie, New York	Driller: Beau Fletcher Eastir		Elev.:		
Drill Rig Type: GeoProbe 6610 (Track Mounted)				Borehole Diameter (ft.): 0.25			
Type of Sampling Device: GeoProbe Macro-Core Samp			ore Sampler Type of Casing: SOIL DESCRIPTION		PID Screening		
Depth (feet)	Sample ID	STRATUM	(Unified Soil Classification System)	USCS Symbol	(ppm)		
0			Brown, ORGANIC SOIL with fine gravel, moist, trace roots.	OL/OH			
1	G1	1					
		1	Brown, small GRAVEL , some coarse sand, moist.	GP	3.8 / 2.9		
2	(46 / 60)	2					
3			Gray-brown, SILT with clay, moist, mottled.	ML			
					6.7 / 2.2		
4							
5					40/00		
5	G2	6			4.0 / 2.2		
	- GL	6	L				
7	(34 / 60)		Gray, CLAY, wet.	CL			
					5.3 / 2.2		
8							
9					6.5 / 2.2		
3					0.5 / 2.2		
10							
10							
11	G3				6.1 / 2.0		
12	(40 / 60)		Gray, CLAY , wet.	CL			
12	(40 / 60)		Gray, GLAT, Wel.	- OL			
13					5.9 / 2.4		
14							
15					5.6 / 2.0		
15					3.0 / 2.0		
16							
	G4		Gray, CLAY, wet.	CL			
17	(00 / 00)		NOTE: Comple years and a second secon		4.3 / 2.3		
18	(26 / 60)		NOTE: Sample recovery was possible borehole slough.				
10							
19					4.0 / 2.5		
20							
20 21					51/06		
۷۱	G5		Gray, CLAY, trace silt, wet, seams of fine sand.	CL	5.1 / 2.6		
22			and, and the man and the second of the second				
	(55 / 60)						
23			10		Davins N-		
Depth to Water	(ft) D	ate & Time	Comments:		Boring No. SBB-2		
Depth to Water	(ft) [ate & Time					

SUBSURFACE BORING LOG

Start Date: 11042009

Boring No. SBB-2

End Date: 11042009

Northing:

Project Number: FD900431

Client: NYSDEC

Depth to Water

Depth to Water

(ft) Date & Time

(ft) Date & Time

Geologist: T. Bown

Project Manager: T. Bown

Weather: ~55°F, Overcast, slight breeze.l

light breeze.l Dat.: NAVD88

SBB-2

Location (City, State): Mayville, New York Driller: Beau Fletcher Easting: Elev.: Drill Rig Type: GeoProbe 6610 (Track Mounted) Borehole Diameter (ft.): 0.25 Type of Sampling Device: GeoProbe Macro-Core Sampler Type of Casing: Sample ID SOIL DESCRIPTION PID Screening **USCS Symbol** Depth (feet) STRATUM (Recovery) (Unified Soil Classification System) (ppm) CL 24 Gray, CLAY, trace silt, wet, seams of fine sand. 6.4 / 2.225 25 25 25 SP Brown, fine to medium SAND, wet. 26 G6 6.4 / 2.227 (28 / 60)Brown, coarse SAND, trace silt, wet. SP 28 4.2 / 2.7Brown, fine to medium SAND, wet. SP 29 30 4.9 / 2.2 Bottom of Exploration 30.0 ft. Comments: Boring No.

Client: NYSDEC

SUBSURFACE BORING LOG

Start Date: 11042009 End Date: 11042009

Boring No. SBB-1

Project Number: FD900431 Geologist: T. Bown

Project Manager: T. Bown

Weather: ~55°F, Overcast, slight breeze.l

Location (City, State): Mayville, New York Driller: Beau Fletcher

Dat.: NAVD88 Northing: Easting: Elev.:

Type of Sampin	ng Device: Geo	Probe Macro-C			
Depth (feet) Sample ID (Recovery) STRATE		STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screening (ppm)
0			Brown, ORGANIC SOIL with small gravel, moist, trace roots.	OL/OH	
1	G1				
		1.5			11 / 10.4
2	(44 / 60)	1.5			
_			Brown, medium to coarse SAND with small gravel, some particles and		
3			fragments of brick and wood, creosote odor.		
4					5.9 / 3.3
4					
5					
5			Black, particles and fragments of cinder and ash, moist, creosote.		8.30/.8.1
6	G2	6			0.007.0.1
		6	Brown, SILT with coarse gravel, wet, organic odor.	ML	·
7	(38 / 60)	7			
		7			9.3 / 7.6
8					
			Yellow brown/gray, fine to medium SAND, trace large gravel, wet, no odor.	SW	
9					11 / 9.3
10					
10					
11	G3				11.9 / 9
12	(42 / 60)	12			
12	(42 / 60)	12	Gray, fine SAND , little silt, wet.	SM	
13		13		OW	10.8 / 7
		13			
14					
			Gray, CLAY with silt, wet, alternating laminae.	CL	
15					10.1 / 7
15					
16					
	G4				10 /
17	(40 / 00)		Gray, CLAY with silt, wet, alternating laminae.	CL	10 / 9.9
10	(48 / 60)				
18					
19					8.3 / 7.6
13					5.5 / 1.0
20					
20					
21					9 / 7.9
	G5		Gray, CLAY with silt, wet.	CL	
22					
	(37 / 60)				
23			15		
Depth to Water		ate & Time	Comments:		Boring No. SBB-1

Client: NYSDEC

SUBSURFACE BORING LOG

Start Date: 11042009 End Date: 11042009

Boring No. SBB-1

Project Number: FD900431 Geologist: T. Bown

Project Manager: T. Bown

Weather: ~55°F, Overcast, slight breeze.l

Location (City, State): Mayville, New York Driller: Beau Fletcher

Dat.: NAVD88 Northing: Easting: Elev.:

Drill Rig Type:		6610 (Track Mo		ehole Diameter (ft.): 0.25	
Type of Sampli Depth (feet)	Sample ID	oProbe Macro-C	SOIL DESCRIPTION	USCS Symbol	PID Screening
	(Recovery)		(Unified Soil Classification System)	2223	(ppm)
24			Gray, CLAY, trace silt, wet.	CL	8.3 / 7.6
25 25		25 25			
26	G6		Gray, medium to coarse SAND , little fine gravel, wet.	SP	9 / 7.9
27	(60 / 60)	27			
21	(60 / 60)	27	L		
28					8.7 / 8
29			Gray, CLAY with silt, wet.	CL	
30					11.1 / 9.6
			Bottom of Exploration 30.0 ft.		
			Commonto		Dovins N-
Depth to Water	(ft) D	ate & Time	Comments:		Boring No. SBB-1
epth to Water	(ft) [Date & Time			

Start Date: 11132009 End Date: 11132009

Boring No. GP-20

Project Number: FD900431

Client: NYSDEC

Geologist: T. Bown

Weather: ~55°F, Overcast, slight breeze.l Northing: 818001.89

Dat.: NAVD88

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Project Manager: T. Bown

Easting: 901023.57 Elev.: 1318.8

Orill Rig Type:	GeoProbe	6610 (Track Mo	punted) Bore	Borehole Diameter (ft.): 0.25		
ype of Samplir	ng Device: Ge	Probe Macro-C	Core Sampler Type of Casing:			
Depth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screening (ppm)	
		0.4	Dark brown, ORGANIC SOIL, moist, roots.	OL/OH		
1	G1	0.4				
			Brown, medium to fine SAND with large gravel, dry.	SW	0.0 / 0.0	
2	(50 / 60)	2	+			
			Black, coarse to medium SAND , moist.	SP		
3		2.6 3	Gray-brown, ORGANIC SOIL, moist, roots.	OL/OH		
		3			0.0 / 0.0	
4			Gray-brown, SILT with medium sand, some small gravel, moist.	ML		
5						
;			0 1 007 11 11 11 11 11 11 11		0.0 / 0.0	
6	G2		Gray-brown, SILT with very fine sand, wet, mottled. Some seams of	ML		
7	(00 / 00)		orange-brown, medium to fine, silty sand.			
7	(39 / 60)				00/00	
0					0.0 / 0.0	
8						
9					0.0 / 0.0	
					0.0 / 0.0	
10		10				
0		10	<u> </u>			
11	G3				0.0 / 0.0	
			Gray-brown, CLAY with silt, wet, laminated.	CL		
12	(28 / 60)					
13					0.0 / 0.0	
14						
15						
			Bottom of Exploration 15.0 ft.			
-						
	/a =		Comments:	l	Boring No.	
epth to Water	(ft) D	ate & Time			GP-20	

Start Date: 11113009 End Date: 11113009

Boring No. GP-19

Project Number: FD900431

Client: NYSDEC

Depth to Water

(ft) Date & Time

Geologist: T. Bown

Project Manager: T. Bown

Weather: ~55 °F, Overcast, slight breeze.l Northing: 818051.6

Dat.: NAVD88

ocation (City,	O4-4-1. M:				
	State): Mayviii	le, New York	Driller: Beau Fletcher	Easting: 901005.7	Elev.: 1318.4
rill Rig Type:	GeoProbe	6610 (Track Mo	nunted)	Borehole Diameter (ft.): 0.25	
		•		Dorenole Diameter (11.). 0.23	,
pe of Sampli		Probe Macro-C			
Depth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screenin (ppm)
		0.6	Dark brown, ORGANIC SOIL, wet, roots.	OL/OH	
1	G1	0.6			
			Brown, small GRAVEL with medium to fine sand, dry.	GP	0.0 / 0.0
2	(53 / 60)				
		2.7			
3		2.7	Dark brown, ORGANIC SOIL, moist, trace roots, sulphur odor.	OL/OH	
		3.5			0.0 / 0.0
4		3.5			
·			Dark brown, medium SAND , trace silt, wet.	SP	
5			bank brown, modium CARD, trade ont, wet.		
		5.4			0.0 / 0.0
	<u></u>				0.0 / 0.0
6	G2	5.4	Out To the Country of		
	(10 (00)		Orange-brown,/gray-brown, SILT with very fine sand, wet, mottled.	ML	
7	(46 / 60)				
					0.0 / 0.0
8					
			Gray, SILT, some very fine sand, wet.	ML	
9					0.0 / 0.0
10					
)			Gray-brown/light brown, SILT, some very fine sand, wet.	ML	
11	G3	11			0.0 / 0.0
		11	Dark brown, coarse to medium SAND , wet.	SP	
12	(42 / 60)	12			
		12			
13					0.0 / 0.0
			Gray, CLAY, some silt, wet, laminated	CL	0.07 0.0
14			Citay, SEAT, Some Silt, Wet, Idminated	OL .	
14					
15					
13					
			Pottom of Evaloration 15.0 ft		
			Bottom of Exploration 15.0 ft.		
		1			
	I .	1	Comments:	1	Boring No.
epth to Water		ate & Time			GP-19

Start Date: 11112009 End Date: 11112009

Boring No. GP-18

Project Number: FD900431

Client: NYSDEC

Geologist: T. Bown

Northing: 817134.14

Easting: 900970.85

Weather: ~55°F, Overcast, slight breeze.l Dat.: NAVD88

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Project Manager: T. Bown

Elev.: 1319.0

Type of Sampli	ng Device: Ge	Probe Macro-C			
Depth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screening (ppm)
)		0.5	Brown, ORGANIC SOIL with small gravel, moist, roots.	OL/OH	
1	G1	0.5			
			Gray/black, large GRAVEL with silt, dry, sulphur odor, roots present.	GP-GM	0.0 / 0.0
2	(52 / 60)	2	+		
		2	Orange-brown/gray, SAND with silt, moist to wet.	SM	
3					
		3.6			0.0 / 0.0
4		3.6			
_			Brown/gray, SILT, some fine sand, wet.	ML	
- -					0.0/0.0
5	<u></u>				0.0 / 0.0
6	G2	6.7			
7	(55 / 60)	6.7	Orange-brown, medium to fine SAND with silt, moist.	SM	
1	(33 / 30)	7.4		Sivi	0.0 / 0.0
8		7.4	Brown/gray, SILT with fine sand, moist, mottled. Few seams of medium to	ML	0.0 / 0.0
			fine sand.		
9					0.0 / 0.0
10					
10			Gray-brown, SILT with very fine sand, wet.	ML	
11	G3				0.0 / 0.0
12	(29 / 60)	12			
		12			
13					0.0 / 0.0
			Gray, CLAY, little silt, wet.	CL	
14					
15					
15					
			Bottom of Exploration 15.0 ft.		
			Bottom of Exploration 15.0 ft.		
			<u> </u>		
Depth to Water	(ft) D	ate & Time	Comments:		Boring No. GP-18
epth to Water	(ft) D	ate & Time			

Start Date: 11112009 End Date: 11112009

Boring No. GP-17

Project Number: FD900431 Geologist: T. Bown

Weather: ~55°F, Overcast, slight breeze.l

Client: NYSDEC

Depth to Water

(ft) Date & Time

Northing: 817887.13 Project Manager: T. Bown

Dat.: NAVD88

countries (Only)	State) · Mayvill	le, New York	Driller: Beau Fletcher Eas	sting: 900889.88	Elev.: 1319.4
Orill Rig Type:	-	6610 (Track Mo		rehole Diameter (ft.): 0.25	
		•		renoie Diameter (it.). 0.25	
	Sample ID	oProbe Macro-C	Core Sampler Type of Casing: SOIL DESCRIPTION		PID Screening
Depth (feet)	(Recovery)	STRATUM	(Unified Soil Classification System)	USCS Symbol	(ppm)
0			Brown, ORGANIC SOIL with small gravel, moist, roots.	OL/OH	
1	G1	0.5			
			Gray/black, large GRAVEL with silt, dry, sulphur odor, roots present.	GP-GM	0.0 / 0.0
2	(57 / 60)	2	+		
2		2	Orange-brown/gray, SAND with silt, moist to wet.	SM	
3		3.6			0.0 / 0.0
4		3.6			0.0 / 0.0
		3.0	Brown/gray, SILT, some fine sand, wet.	ML	
5			Elowing ray, Ole 1, some mile said, wet.		
5					0.0 / 0.0
6	G2				
			Brown/gray, SILT with very fine sand, moist to wet, mottled.	ML	
7	(30 / 60)				
					0.0 / 0.0
8					
			Gray, SILT, some very fine sand, wet.	ML	
9					0.0 / 0.0
10					
10					
11	G3		O. O. T. 'll.		0.0 / 0.0
10	(20 / 60)		Gray, SILT with very fine sand, trace clay, wet, few laminations.	ML	
12	(38 / 60)				
13					0.0 / 0.0
10					0.0 / 0.0
14					
15					0.0 / 0.0
15			Gray, SILT with very fine sand, wet. Few seams of medium to fine sand.	ML	
16					
	G4				
17		17	' 		0.0 / 0.0
	(39 / 60)	17			
18			Core OLAV little city and		
10			Gray, CLAY, little silt, wet.	CL	
19					
20					
			Bottom of Exploration 20.0 ft.		
			F =		
			Comments:		Boring No.

Start Date: 11112009 End Date: 11112009

Boring No. GP-16

Project Number: FD900431

Client: NYSDEC

Depth to Water

(ft) Date & Time

Geologist: T. Bown

Northing: 817855.7

Easting: 900853.7

Weather: ~55°F, Overcast, slight breeze.l Dat.: NAVD88

Elev.: 1320.7

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Project Manager: T. Bown

Borehole Diameter (ft.): 0.25

Drill Rig Type:	GeoProbe 6610 (Track Mounted)	Borehole Diameter (ft.): 0.25
Type of Samplin	n Dovice: GeoProbe Magre-Core Sampler	Type of Casing:

rill Rig Type:	GeoProbe 6610 (Track Mounted)		punted) Bore	Borehole Diameter (ft.): 0.25		
ype of Sampli	of Sampling Device: GeoProbe Macro-Core Sampler		Core Sampler Type of Casing:	Type of Casing:		
Depth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screenin (ppm)	
		0.5	Brown, ORGANIC SOIL, moist, roots.	OL/OH		
1	G1	0.5				
			Brown, large and small GRAVEL, some medium to fine sand, trace silt, dry	GW	0.0 / 0.0	
2	(46 / 60)	2				
		2 2.4	Dark brown, ORGANIC SOIL, moist.	OL/OH		
3		2.4 3	Brown, large GRAVEL with medium to fine sand, moist.	GP		
		3	Brown/gray, SILT with very fine sand, moist, mottled.	ML	0.0 / 0.0	
4						
5						
					0.0 / 0.0	
6	G2					
7	(50 / 60)		Brown/gray, SILT with very fine sand, moist to wet, mottled.	ML		
7	(50 / 60)				0.0 / 0.0	
8					0.3 / 0.0	
			Gray, SILT, some very fine sand, wet.	ML		
9					0.0 / 0.0	
10						
10 0						
11	G3				0.0 / 0.0	
			Gray, SILT, some very fine sand, wet.	ML		
12	(22 / 60)					
13					3.6 / 0.0	
14						
15					3.8 / 2.6	
5			Gray, SILT, some very fine sand, wet. Few seams of medium to fine sand.	ML	3.0 / 2.0	
16			anay, oler, some very mile saile, from souther of medianite into saile.			
	G4					
17					3.8 / 0.0	
	(34 / 60)	17.6				
18		17.6				
			Gray, CLAY, little silt, wet.	CL		
19						
20						
20						
			Bottom of Exploration 20.0 ft.			
onth to Water	(#\ 5	ato & Time	Comments:	1	Boring No.	
epth to Water	(π) D	ate & Time			GP-16	

Start Date: 11112009 End Date: 11112009

Boring No. GP-15

Project Number: FD900431

Client: NYSDEC

Geologist: T. Bown

Northing: 817823.4

Weather: ~55 °F, Overcast, slight breeze.l Dat.: NAVD88

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Project Manager: T. Bown

Elev.: 1321.3 Easting: 900815.8

Drill Rig Type:	GeoProbe	6610 (Track Mo	ounted) Boreho	e Diameter (ft.): 0.25	
		oProbe Macro-C		` ,	
Depth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screening (ppm)
0			Brown, large and small GRAVEL , some medium to fine sand, dry.	GW	
1	G1	1.5			0.0 / 0.0
2	(51 / 60)	1.5			0.0 / 0.0
			Dark brown, ORGANIC SOIL, trace small gravel, moist, wood (rail road tie)	OL/OH	
3			fragments, creosote odor.		
		3.5			0.0 / 0.0
4		3.5			
			Light brown/gray, fine SAND woth silt, moist.	SM	
5		5			
5		5			0.0 / 0.0
6	G2				
			Light brown/gray, SILT with very fine sand, moist to wet, mottled.	ML	
7	(55 / 60)				
_					0.0 / 0.0
8					
			Gray, SILT with very fine sand, wet.	ML	0.0.1.0.0
9					0.0 / 0.0
10					
10					
11	G3				0.0 / 0.0
11	<u> </u>		Gray, SILT with very fine sand, wet.	ML	0.0 / 0.0
12	(38 / 60)		Ciray, Siel With Very line Sand, wet.	IVIL	
12	(00 / 00)				
13					3.6 / 0.0
					0.0 / 0.0
14					
15		15			3.8 / 2.6
15		15			
16					
	G4		Gray, CLAY, little silt, wet, laminated.	CL	
17					3.8 / 0.0
	(35 / 60)				
18					
19					
20					
			Deltana of Fundametica 00.0 ft		
			Bottom of Exploration 20.0 ft.		
Depth to Water	(ft) D	ate & Time	Comments:		Boring No. GP-15
					GP-15
Depth to Water	(ft) C	Date & Time			

Project Number: FD900431

Client: NYSDEC

Depth to Water

(ft) Date & Time

SUBSURFACE BORING LOG

Start Date: 11112009

Boring No. GP-14

End Date: 11112009

Geologist: T. Bown Project Manager: T. Bown

Northing: 818108.00

Weather: ~55 °F, Overcast, slight breeze.l Dat.: NAVD88

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Elev.: 1320.4 Easting: 900831.33 Borehole Diameter (ft.): 0.25

Drill Rig Type: GeoProbe 6610 (Track Mounted)

pe of Samplii	ng Device: Ge	Probe Macro-C		Type of Casing:	
epth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screenin (ppm)
			Brown, ORGANIC SOIL, moist, roots.	OL/OH	
1	G1	0.8			
		0.8 1.6	Brown, coarse to medium SAND , some small gravel, dry.	SW	0.0 / 0.0
2	(60 / 60)	1.6			
			Black, coarse SAND , some large and small gravel, dry to wet.	SP	
3					
					9.5 / 2.0
4		3.9			3.5 / 2.0
			Brown, medium SAND with silt, moist.	SM	
-			 		
5		4.3	Gray-brown/orange-brown, SILT, some very fine sand, moist, mottled	ML	= - /
					5.8 / 3.3
6	G2		Gray-brown/orange-brown, SILT , some very fine sand, moist, mottled	ML	
7	(41 / 60)				
					8.6 / 2.0
8					
9			Gray, SILT, some very fine sand, wet.	ML	10.2 / 4.6
			anay, sizi, some very mic cana, nea		10.27 110
10					
)					
11	G3		Gray, SILT, some very fine sand, wet.	ML	11.6 / 3
12	(35 / 60)				
		12.5			
13		12.5	Gray, CLAY, trace silt, wet, laminated.	CL	15.3 / 7.8
14					
15					
			Bottom of Exploration 15.0 ft.		
			Bottom of Exploration 10.0 ft.		
			Comments:		Boring No
			Comments:		

Start Date: 11112009 End Date: 11112009

Boring No. **GP-13**

Project Number: FD900431

Client: NYSDEC

Geologist: T. Bown

Northing: 818014.60 Easting: 900818.48

Weather: ~55 °F, Overcast, slight breeze.I Dat.: NAVD88

Elev.: 1320.2

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Project Manager: T. Bown

GeoProbe 6610 (Track Mounted) Borehole Diameter (ft.): 0.25 Drill Rig Type: Type of Sampling Device: GeoProbe Macro-Core Sampler Type of Casing: Sample ID SOIL DESCRIPTION **PID Screening USCS Symbol** Depth (feet) STRATUM (Recovery) (Unified Soil Classification System) (ppm) 0 Brown, ORGANIC SOIL, little small gravel, moist, roots present. OL/OH G1 0.0 / 0.0 1.3 2 (50 / 60)1.3 2 Black, medium to coarse SAND, little small gravel, wet SW 2 2.6 Dark brown,/gray, ORGANIC SOIL, moist, roots OL/OH 3 2.6 0.0 / 0.04 SM Light gray, fine **SAND** with silt, moist. 5 5 5 5 0.0 / 0.0 6 G2 Gray-brown/orange-brown, SILT, some very fine sand, trace small gravel, ML wet, mottled. (47 / 60)0.0 / 0.0 8 9 Gray, SILT, some very fine sand, wet. ML 0.0 / 0.0 10 10 11 G3 0.9 / 0.011.5 12 (42 / 60)11.5 13 Gray, CLAY, trace silt, wet, laminated. CL 0.7 / 0.014 15 Bottom of Exploration 15.0 ft.

Comments: Boring No. Depth to Water (ft) Date & Time **GP-13** Depth to Water (ft) Date & Time

Start Date: 11112009 End Date: 11112009

Boring No. GP-12

Project Number: FD900431

Client: NYSDEC

Depth to Water

(ft) Date & Time

Geologist: T. Bown

Weather: ~55°F, Overcast, slight breeze.l Northing: 817973.1

Easting: 900807.0

Dat.: NAVD88 Elev.: 1320.5

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Project Manager: T. Bown

Borehole Diameter (ft.): 0.25

Drill Rig Type:	GeoProbe 6610 (Track Mounted)	Borehole Diameter (ft.): 0.25

Orill Rig Type:	GeoProbe 6610 (Track Mounted)		punted) Bo	Borehole Diameter (ft.): 0.25		
ype of Samplin	ng Device: Ge	oProbe Macro-C	Core Sampler Type of Casing:			
Depth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screening (ppm)	
)			Brown, large GRAVEL, some coarse to medium sand, dry, roots present.	OL/OH		
1	G1					
		1.5			1.7 / 1.2	
2	(54 / 60)	1.5	Black, medium to coarse SAND , little silt, wet, roots.	SW		
		2.6	<u> </u>			
3			Dark brown, ORGANIC SOIL, moist.	OL/OH		
		3.1	Gray-brown, medium to fine SAND , little silt, moist.	SP	1.9 / 1.7	
4		4	+			
_		4	Orange-brown/gray-brown, SILT, some very fine sand, moist, mottled.	ML		
- -					10/00	
5			Cycly bysum/sycans bysum CH T with year, fine cond wat mottled	- Au	1.9 / 2.0	
6	G2		Gray-brown/orange-brown, SILT with very fine sand, wet, mottled.	ML		
7	(55 / 60)					
/	(33 / 60)				1.7 / 1.9	
8					1.7 / 1.9	
9			Gray, SILT, some very fine sand, wet, homogenous.	ML	2.4 / 2.0	
10						
10			Gray, SILT, little very fine sand, trace clay, wet.	ML		
11	G3				2.2 / 1.9	
		11.8				
12	(38 / 60)	11.8				
13			Gray, CLAY, trace silt, wet.	CL	1.8 / 1.4	
14						
15						
			Della de Company de Co			
			Bottom of Exploration 15.0 ft.			
Depth to Water	(ft) D	ate & Time	Comments:		Boring No. GP-12	
Donth to Water		Oato & Timo			Ç. 12	

Start Date: 11102009 End Date: 11102009

Boring No. GP-11A

Project Number: FD900431

Depth to Water

Depth to Water

(ft) Date & Time

(ft) Date & Time

Geologist: T. Bown

Weather: ~55 °F, Overcast, slight breeze.I Northing: 817934.7

Boring No.

GP-11A

Client: NYSDEC			Project Manager: T. Bown	lorthing: 817934.7	Dat.: NAVD88
Location (City, State): Mayville, New York		le, New York	Driller: Beau Fletcher	asting: 900783.4	Elev.: 1321.1
Drill Rig Type:	GeoProbe	6610 (Track Mo	ounted) B	orehole Diameter (ft.): 0.25	5
Type of Samplir					
Depth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screening (ppm)
0			Brown, sandy ORGANIC SOIL, little small gravel, rounded, ,moist to dry	, OL/OH	
1	G1		roots present.		
					0.0 / 0.0
2	(53 / 60)	2.3	+		
		2.3	Gray-brown/black, silty SAND , some small gravel, coal and cinder partic	les SM	
3		3.4	and fragments, moist.		00/00
4			Gray-brown, medium to fine SAND , moist.		0.0 / 0.0
7		3.8	Orange-brown/gray-brown, SILT, some very fine sand, moist, mottled.	ML	
5		0.0	orange blown/gray blown, bler, some very line sand, most, mottled.	INIL	
5					0.0 / 0.0
6	G2				
			Gray-brown/orange-brown, SILT, some very fine sand, wet, mottled, oxid	dized. ML	
7	(48 / 60)				
					0.6 / 0.0
8					
9			Gray, SILT with very fine sand, wet.	ML	0.6 / 0.0
40					
10 10			Gray, SILT with very fine sand, wet, mottled.	ML	
11	G3		Ciray, Siel with very line Sand, wet, mothed.	IVIL	0.7 / 0.0
					0.7 7 0.0
12	(46 / 60)				
		11.7			
13		11.7			0.2 / 0.0
14			Gray, CLAY with silt, wet, laminated.	CL	
45					
15					
			Bottom of Exploration 15.0 ft.		
			Dottom of Exploration 15.6 ft.		

Comments:

Start Date: 11102009 End Date: 11102009

Boring No. **GP-11**

Project Number: FD900431

Depth to Water

Depth to Water

(ft) Date & Time

(ft) Date & Time

Geologist: T. Bown

Weather: ~55 °F, Overcast, slight breeze.I

Dat.: NAVD88

Boring No.

GP-11

Client: NYSDEC Northing: 817934.2 Project Manager: T. Bown Location (City, State): Mayville, New York Driller: Beau Fletcher Easting: 900784.5 Elev.: 1321.1 Borehole Diameter (ft.): 0.25 Drill Rig Type: GeoProbe 6610 (Track Mounted) Type of Sampling Device: GeoProbe Macro-Core Sampler Type of Casing: SOIL DESCRIPTION Sample ID **PID Screening** Depth (feet) STRATUM **USCS Symbol** (Unified Soil Classification System) (Recovery) (ppm) 0 Brown, fine to coarse SAND, little fine gravel, dry. SP G1 SM Gray-brown, fine to medium **SAND** with silt, dry 0.0 / 0.02 (60 / 60)2 Black/dark brown, medium to coarse SAND, small to large gravel, particles SW 2 3 and fragments of ash and cinder, dry to wet. 3.5 0.0 / 0.0OL/OH 4 3.5 4 Dark brown, ORGANIC SOIL, moist, roots present. 4 SM Gray-brown, fine to medium SAND with silt, little clay, moist, trace roots. 5 5 5 5 0.0 / 0.0 6 G2 ML Gray-brown/orange-brown, SILT, some very fine sand, trace coarse sand (46 / 60)and small gravel, wet, mottled, trace roots, oxidized. 0.6 / 0.08 9 Gray, SILT with very fine sand, wet. ML 0.6 / 0.0 10 10 Gray-brown, SILT with very fine sand, wet, oxidized. ML 0.7 / 0.0 11 G3 12 (46 / 60)Gray, SILT, little fine sand, trace clay, laminated. ML 13 0.2 / 0.014 15 Bottom of Exploration 15.0 ft.

Comments:

Start Date: 11092009 End Date: 11092009

Boring No. GP-10

Project Number: FD900431

Client: NYSDEC

Depth to Water

(ft) Date & Time

Geologist: T. Bown

Weather: ~55 °F, Overcast, slight breeze.l Northing: 817963.48

Dat.: NAVD88

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Project Manager: T. Bown

Elev.: 1319.9 Easting: 900844.41

Type of Samplin	ng Device: Ge	oProbe Macro-C	Core Sampler Type of Casing:		
Depth (feet)	Sample ID (Recovery) STRATUM STRATUM (Unified Soil Classification System)			USCS Symbol	PID Screening (ppm)
0		0.5	Brown, ORGANIC SOIL with gravel, moist.	OL/OH	
1	G1	0.5	Brown, SILT, particles and fragments of wood and cinders.		
					0.0 / 0.0
2	2 (54 / 60) 1.5		+		
0		1.5 2.5 2.5	Orange-brown, fine to medium SAND with silt, moist.	SM	
3		2.5	Gray-brown/orange-brown, SILT with fine to medium sand, moist, mottled,	ML	0.0 / 0.0
4			few thin seams of silty sand.		0.0 / 0.0
5					
5			Gray-brown/orange -brown, SILT, some clay, little very fine sand, mottled,	ML	0.0 / 0.0
6	G2		moist to wet.		
7	(58 / 60)		Crow brown/light brown CH T with yory fine cond troop small group wet	ML	
- 1	(36 / 60)		Gray-brown/light brown, SILT with very fine sand, trace small gravel, wet, oxidized with streaks.	IVIL	0.6 / 0.0
8			ONGIZED WITH STIGUIS.		0.07 0.0
9					0.6 / 0.0
			Gray, SILT with very fine sand, wet.	ML	
10					
10	G3		Cray SII T with your fine cond. wet	ML	0.7 / 0.0
11	<u> </u>		Gray, SILT with very fine sand, wet.	IVIL	0.7 / 0.0
12	(42 / 60)				
13		13			0.2 / 0.0
		13			
14			Gray, CLAY with silt, trace fine sand laminae.	CL	
15					
			Bottom of Exploration 15.0 ft.		
		1	Comments:	1	Boring No.

Start Date: 11092009 End Date: 11092009

Northing: 817919.3

Boring No. GP-9A

Project Number: FD900431

Client: NYSDEC

Geologist: T. Bown

Weather: ~55°F, Overcast, slight breeze.l

Dat.: NAVD88

Location (City, State): Mayville, New York

Driller: Beau Fletcher

Project Manager: T. Bown

Easting: 900813.0 Elev.: 1320.6

	Sample ID	Probe Macro-C	SOIL DESCRIPTION	Heod C	PID Screening
Depth (feet)	(Recovery)	STRATUM	(Unified Soil Classification System)	USCS Symbol	(ppm)
)			Brown, ORGANIC SOIL with sand, wet, roots present.	OL/OH	
1	G1	0.5			
0	/FO / CO)		Gray-brown, large GRAVEL , little medium to coarse sand, dry.	GW	0.9 / 0.0
2	(52 / 60)				
3		3			
			Dark brown, ORGANIC SOIL, organic odor, dry, mottled, roots present.	OL/OH	0.0 / 0.0
4		3.5			
			Gray-brown, fine SAND with silt, moist, mottled.	SM	
5					
5					0.0 / 0.0
6	G2		Light brown/orange-brown, fine SAND with silt, moist to wet, alternating by	SM	
7	(42 / 60)		color and composition, mottling, some seams of fine to medium sand.		
- 1	(42 / 60)				0.0 / 0.0
8					0.07 0.0
9					0.0 / 0.0
10		10			
10		10			00/00
11	G3		Gray, CLAY with silt, wet, laminated.	CL	0.0 / 0.0
12	(33 / 60)		Ciray, OLAT with Siit, Wet, laminateu.	OL .	
	(007 00)				
13					0.0 / 0.0
14					
15					
15					
			Bottom of Exploration 15.0 ft.		
		<u> </u>			
			Comments:		Boring No.
epth to Water	(m) B	ate & Time	Comments.		GP-9A

Client: NYSDEC

SUBSURFACE BORING LOG

Project Manager: T. Bown

Start Date: 11092009 End Date: 11092009

Boring No. GP-9

Project Number: FD900431 Geologist: T. Bown

Weather: ~55°F, Overcast, slight breeze.l Northing: 817922.06

Dat.: NAVD88

Client: NYSD	EG		Project Manager: 1. Bown Nor	tning: 81/922.06	Dat.: NAVD88	
Location (City, State): Mayville, New York Driller: Bea			Driller: Beau Fletcher Eas	ting: 900811.57	Elev.: 1320.60	
Drill Rig Type	: GeoProbe	6610 (Track Mo	ounted) Bor	ehole Diameter (ft.): 0.25		
	ling Device: Ge	,				
Type of Samp		OFTODE Macro-C	SOIL DESCRIPTION		PID Screening	
Depth (feet)	Sample ID (Recovery)	STRATUM	(Unified Soil Classification System)	USCS Symbol	(ppm)	
0						
1	I G1					
			Brown, small to large GRAVEL with medium to coarse sand, dry, roots pre	sent. GW	0.2 / 0.0	
2	2 (60 / 60)					
		2.5				
3	3	2.5 3	Dark brown, ORGANIC SOIL , organic odor, dry, mottled, roots present.	OL/OH		
		3 3.5	Gray, medium SAND , moist, mottled	SP	0.0 / 0.0	
4	1	3.5	Orange-brown, fine SAND with silt, moist, mottled.	SM		
5	5					
5					0.0 / 0.0	
	G2					
	·	6.5				
-	7 (32 / 60)	6.5				
	(02 / 00)	0.5	Gray, SILT with very fine sand, moist to wet, seams of orange-brown, very	fine ML	0.0 / 0.0	
	<u> </u>		to fine sand.	IIIIC IVIL	0.0 / 0.0	
	3		to fine sand.			
					0.0/0.0	
	9				0.0 / 0.0	
	_					
10)					
10						
11	I G3				0.0 / 0.0	
			Gray, SILT with fine sand, some clay, wet.	ML		
12	2 (12 / 60)					
			NOTE: Sample volume was disturbed and incomplete upon extraction.			
13	3					
14	1					
15	5					
			Bottom of Exploration 15.0 ft.			
			•			
			Borehole collapsed at 5.0ft upon completion			
	-					
Depth to Wate	er (ft) D	ate & Time	Comments:		Boring No. GP-9	
					- •	
Depth to Water	er(ft) [Date & Time				

Start Date: 11092009 End Date: 11092009

Northing:

Easting:

Boring No. GP-8

Project Number: FD900431

Client: NYSDEC

Depth to Water

(ft) Date & Time

Geologist: T. Bown

Weather: ~55 °F, Overcast, slight breeze.I

Datum:

Location (City, State): Mayville, New York

Project Manager: T. Bown Driller: Beau Fletcher

ype of Sampli		Probe Macro-C	Core Sampler Type of Casing:		
Depth (feet)	Sample ID (Recovery) STRATUM		SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screening (ppm)
			Light brown, ORGANIC SOIL with medium to fine sand, some small gravel,	OL/OH	
1	G1	1	dry, roots present.		
		1 1.5	Dark brown, ORGANIC SOIL, trace wood fragments, moist.	OL/OH	0.0 / 0.0
2	(54 / 60)	1.5			
		2.5	Gray, SILT, little fine sand, moist.	ML	
3		2.5	Black, coarse to medium SAND , little small gravel, moist.	SW	
		3.5			0.0 / 0.0
4		3.5 4	Gray, coarse to fine SAND , some silt, moist.	SM	
		4			
5			Gray brown, SILT with very fine sand, moist.	ML	
					0.0 / 0.0
6	G2				
			Gray bown / orange brown, SILT with very fine sand, trace clay, moist to wet,	ML	
7	(56 / 60)		mottled.		
					0.0 / 0.0
8		8			
		8			
9			Gray, fine SAND with silt, wet. Some seams of medium sand.	SM	0.0 / 0.0
			,		
10		10			
0		10			
11	G3		Gray, SILT with very fine sand, wet. Some seams of medium to fine sand.	ML	0.0 / 0.0
			Sitay, GIET that very line scalar, their source scalars of inscalarities line scalar.		0.07 0.0
12	(37 / 60)	12			
	(0. / 00)	12			
13					0.0 / 0.0
10			Gray, CLAY, little silt, wet, laminated.	CL	0.0 / 0.0
14			aray, other, national, weit, farinitated.	- OL	
17					
15					
_					
			Bottom of Exploration 15.0 ft.		
		1	1	1	

Client: NYSDEC

Depth to Water

(ft) Date & Time

SUBSURFACE BORING LOG

Start Date: 11092009

Boring No. GP-7

Datum:

End Date: 11092009

Northing:

Easting:

Project Number: FD900431 Geologist: T. Bown

Project Manager: T. Bown

Weather: ~55°F, overcast, breezy.

Location (City, State): Mayville, New York Driller: Beau Fletcher

Borehole Diameter (ft.): 0.25

Drill Rig Type: GeoProbe 6610 (Track Mounted)

1	ig bevice. acc	Probe Macro-C	ore Sampler Type of Casing:		
Depth (feet) Sample ID (Recovery) STRATUM				USCS Symbol	PID Screening (ppm)
)		0.5	Brown, ORGANIC SOIL, some medium sand, moist, roots present.	OL/OH	
1	G1	0.5			
					0.0 / 0.0
2	(52 / 60)		Brown, medium to fine SAND with silt, some large to small gravel, dry to moist.	SM	
		2.5			
3		2.5	Black / dark brown, ORGANIC SOIL , moist, roots present.	OL/OH	
		3.5			0.0 / 0.0
4		3.5			
_			Gray brown / orange brown, SILT with fine sand, moist, mottled.	ML	
5					
5			Gray brown / orange brown, SILT with fine sand, trace clay, moist.	ML	0.0 / 0.0
6	G2				
	(FO / CO)	6.5			
7	(58 / 60)	6.5	Down (Cand Davids a city and	014	0.0/0.0
0		8	Brown, fine SAND with silt, moist to wet.	SM	0.0 / 0.0
8		8			
9		0	Gray, CLAY with silt, wet, laminated. Some seams of orange brown silt with	CL	0.0 / 0.0
9			fine sand.	OL .	0.0 / 0.0
10			illie sailu.		
10					
11	G3				
11	G		No recovery.		
12	(0 / 60)		Two recovery.		
12	(0 / 00)		NOTE: Attempted second sample recovery of disturbed soil but no recovery		
13			TOTE. Autompted second sample reservery of distarbed son but no reservery		
14					
15					
			Bottom of Exploration 15.0 ft.		
]			
			Comments:		Boring No.

Start Date: 11052009

Boring No. GP-6

GP-6

Datum:

Project Number: FD900431

Geologist: T. Bown

Project Manager: T. Bown

End Date: 11052009 Weather: ~45 °F, Windy, rain, hail.

Northing:

Client: NYSDEC

Depth to Water

(ft) Date & Time

Driller: Beau Fletcher Easting:

Location (City, State): Mayville, New York GeoProbe 6610 (Track Mounted) Borehole Diameter (ft.): 0.25 Drill Rig Type: Type of Sampling Device: GeoProbe Macro-Core Sampler Type of Casing: Sample ID SOIL DESCRIPTION **PID Screening** USCS Symbol Depth (feet) STRATUM (Recovery) (Unified Soil Classification System) (ppm) 0 Brown, ORGANIC SOIL with coarse sand, little small gravel, dry to moist, OL/OH G1 1 roots present, 1.5 Brown, large to small GRAVEL, some medium to fine sand, moist. GW 7.6 / 0.72 (39 / 60)1.5 3 Black, coarse to medium SAND, some small gravel, particles and fragments SW of cinder, coal, ash, dry. 6.4 / 0.74 5 5 Black, coarse to medium SAND, some small gravel, moist, sub-rounded. SW 5.2 / 0.7 6 G2 6.5 (59 / 60)6.5 7 Brown, medium to fine **SAND** with silt, moist. SM 7 3.5 / 0.78 Light brown/orange brown, SILT with fine sand, trace small gravel, moist, ML 9 oxidized. 9.0 / 0.0 10 10 G3 ML 11 Gray, SILT, little fine sand, wet. 92.6 / 0.7 (30 / 60)12 12 12 13 163 / 0.7 CL Gray, CLAY, some silt, wet, laminated. 14 15 Bottom of Exploration 15.0 ft. Comments: Boring No. Depth to Water (ft) Date & Time

Start Date: 11052009

Boring No. GP-5

Datum:

Project Number: FD900431 Geologist: T. Bown End Date: 11052009 Weather: ~45 °F, Windy, rain, hail.

Client: NYSDEC Northing: Project Manager: T. Bown

ation (City State): Mayville New York Factin

ocation (City,	State): Mayvil	le, New	York	Driller: Beau Fletcher Ea	sting:	
Drill Rig Type: GeoProbe 6610 (Track Mounted)			rack Mo	ounted) Bo	orehole Diameter (ft.): 0.25	
ype of Sampli	ng Device: Ge	oProbe	Macro-C	Fore Sampler Type of Casing:		
Depth (feet)	Depth (feet) Sample ID (Recovery) STRATUM		ATUM	SOIL DESCRIPTION (Unified Soil Classification System)	USCS Symbol	PID Screening (ppm)
			0.5	Brown, ORGANIC SOIL with large gravel, moist, roots present.	OL/OH	
1	G1	0.5				
						3.1 / 0.3
2	(48 / 60)			Black, coarse to medium SAND with small gravel, particles and fragments	s of	
				coal, ash, slag, moist.		
3			3.1			FF C / O F
4		3.1		Brown, fine SAND , little small gravel, moist.	SP	55.6 / 0.5
		3.6	3.0	blown, line Salto, little small graver, moist.		
5		0.0		Gray brown, medium to fine SAND with silt, moist, mottled.	SM	
						66.8 / 0.0
6	G2		6			
		6		Light brown / yellow brown, SILT with fine sand, trace small gravel, wet,	ML	
7	(53 / 60)			oxidized.		
						468 / 0.7
8						
		-				
9		-		O L SUT III C		808 / 1.1
10				Gray brown, SILT with fine sand, wet. Few seams of medium to fine sand	. ML	
0						
11	G3			Gray brown, SILT with fine sand, wet.	ML	434 / 1.0
12	(53 / 60)		12.2			
·-	(00 / 00)	12.2				
13			13.6	Gray, medium to fine SAND with silt, wet.	SM	187 / 1.0
14		13.6				
				Gray, CLAY with silt, wet, laminated.	CL	21 / 1.0
15						
				Bottom of Exploration 15.0 ft.		
epth to Water	(ft) [Date & T	ime	Comments:		Boring No. GP-5
epth to Water		Date & T				

Start Date: 11052009

Boring No. GP-4

End Date: 11052009

Project Number: FD900431

Depth to Water

(ft) Date & Time

Geologist: T. Bown

Weather: ~45 °F, Windy, rain, hail.

Client: NYSDEC Location (City, State): Mayville, New York			Project Manager: T. Bown Northing: Driller: Beau Fletcher Easting:			Datum:
Drill Rig Type: GeoProbe 6610 (Track Mou					meter (ft.): 0.25	
		oProbe Macro-C		Borenole Dia	imeter (II.). 0.25	
Depth (feet)	Sample ID (Recovery)	STRATUM	SOIL DESCRIPTION (Unified Soil Classification System) USCS Symb			
0			Brown, large GRAVEL , some coarse to medium sand, moist, roots	oresent.	GP	
1	G1	1				
		1	Black, coarse to fine SAND with small gravel, wet.		SW	4.1 / 0.3
2	(55 / 60)	2				
			Brown, large to small GRAVEL , some silt, trace coarse sand, wet.		GW	
3		2.5				
			O. h. O. T.			7.2 / 0.5
4			Gray brown, SILT, some coarse to fine sand, wet, roots present.		ML	
5						
5			Gray, SILT, some medium to fine sand, wet, roots present.		ML	2.7 / 0.5
6	G2		ana), C.21, como modiam to into cana, vici, rocto procenti			2.7 7 0.0
7	(57 / 60)		Light brown / orange brown, SILT, little clay, trace small gravel, wet,	mottled,	ML	
			oxidized.			6.1 / 0.5
8						
9						9.0 / 0.5
			Gray, SILTwith very fine sand, trace fine gravel, wet.		ML	
10						
10						40.0 / 0.5
11	G3		Gray, SILT with very fine sand, wet. Few seams of yellow brown, me	odium	ML	40.9 / 0.5
12	(37 / 60)		to fine sand.	- Cululli	IVIL	
	(01 / 00)	12.5				
13		12.5	+			16.3 / 0.5
			Gray, CLAY, little silt, wet, laminated.		CL	
14						
15						
			D.H (F 4 F. 0 f)			
			Bottom of Exploration 15.0 ft.			
l			Comments:			Boring No.

Start Date: 11052009 End Date: 11052009

Northing:

Boring No. GP-3

Project Number: FD900431

Geologist: T. Bown

Project Manager: T. Bown

Weather: ~45°F, Windy, rain, hail.

Datum:

Client: NYSDEC

Depth to Water

(ft) Date & Time

6 G2 5.5 Brown, ORGANIC SOIL, moist,organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenou		PID Seroenine
Depth (feet) Sample ID (Recovery) STRATUM SOIL DESCRII (Unified Soil Classific)	PTION USCS Symbo	
Company Comp		
1 G1 Brown, fine GRAVEL, some coarse to fine s 1.4 2 (52 / 60) 1.4 Black, GRAVEL, particles and fragments of 3 3.6 4 3.6 4 Brown, coarse to fine GRAVEL, some medic 4 Brown, SILT with clay, little fine sand, moist, 5 5 5.5 Brown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist, organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenou 10 Gray, SILT, little fine sand, wet, homogenou		(ppiii)
1.4 2 (52 / 60) 1.4 Black, GRAVEL, particles and fragments of 3 3.6 4 3.6 4 Brown, coarse to fine GRAVEL, some mediu 4 Brown, SILT with clay, little fine sand, moist, 5 5 5.5 Brown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist, organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenouse.		
1.4 2 (52 / 60) 1.4 Black, GRAVEL, particles and fragments of 3 3.6 4 3.6 4 Brown, coarse to fine GRAVEL, some mediu 4 Brown, SILT with clay, little fine sand, moist, 5 5 5.5 Brown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist, organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenouse.	and, dry, no odor. GP	
Black, GRAVEL, particles and fragments of 3 3.6 4 3.6 4 Brown, coarse to fine GRAVEL, some medic 4 Brown, SILT with clay, little fine sand, moist, 5 5 5.5 Brown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist, organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenou		6.8 / 0.0
3.6 4 3.6 4 Brown, coarse to fine GRAVEL, some media 4 Brown, SILT with clay, little fine sand, moist, 5 5.5 Brown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist, organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenouse.		
3.6 4 3.6 4 Brown, coarse to fine GRAVEL, some media 4 Brown, SILT with clay, little fine sand, moist, 5 5.5 Brown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist, organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenouse.	cinder, ash, coal, and brick, dry.	
4 3.6 4 Brown, coarse to fine GRAVEL, some media 4 Brown, SILT with clay, little fine sand, moist, 5 5 5.5 Brown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist, organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenous 10		
4 Brown, SILT with clay, little fine sand, moist, 5 5 5 5 5 5 5 6 6 6 7 6 9 6 9 6 9 6 9 9 6 6 9 9 6 6 9 9 6 9 9 6 9		19.5 / 0.0
5 Serown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist, organic odor 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenous 10		
5 5.5 Brown, SILT, some fine gravel, dry. 6 G2 5.5 Brown, ORGANIC SOIL, moist,organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenouse for sand stands and set of sand stands are said to said the sand stands are said to said the sand stands are said to said the said stands are said the said stands are said to said the said stands are said the said stands are said to said the said stands are said the said stands are said to	, mottled. ML	<u> </u>
6 G2 5.5 Brown, ORGANIC SOIL, moist,organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenou		
6 G2 5.5 Brown, ORGANIC SOIL, moist,organic odor 6.5 7 (59 / 60) 6.5 Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenou	ML	18.5 / 0.0
7 (59 / 60) Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenou	C. OL/OH	
Gray brown / yellow brown, SILT, some fine mottled. 9 Gray, SILT, little fine sand, wet, homogenou 10		
8 mottled. 9 Gray, SILT, little fine sand, wet, homogenou		
9 Gray, SILT, little fine sand, wet, homogenou 10	sand, little clay, moist to wet, ML	180 / 0.0
Gray, SILT, little fine sand, wet, homogenou 10 10		
Gray, SILT, little fine sand, wet, homogenou 10 10		
10 10		135 / 0.0
10	IS. ML	
11 G3 <u>11</u>		257 / 0.0
11		
12 (32 / 60)		
Gray, CLAY, little silt, wet, laminated.	CL	
13		187 / 0.0
14		
15		
Datters of Firelevation 45.0 ft		
Bottom of Exploration 15.0 ft.		
		-
		1
Depth to Water (ft)	Comments:	Boring No. GP-3

Client: NYSDEC

SUBSURFACE BORING LOG

Start Date: 11052009 End Date: 11052009

Boring No. GP-2

Project Number: FD900431 Geologist: T. Bown

Project Manager: T. Bown

Weather: ~45 °F, Windy, rain, hail. Datum: Northing:

Location (City, State): Mayville, New York Driller: Beau Fletcher

Easting: GeoProbe 6610 (Track Mounted) Borehole Diameter (ft.): 0.25 Drill Rig Type: Type of Sampling Device: GeoProbe Macro-Core Sampler Type of Casing: PID Screening Sample ID SOIL DESCRIPTION **USCS Symbol** Depth (feet) STRATUM (Recovery) (Unified Soil Classification System) (ppm) 0 Brown, coarse to medium SAND, some coarse to fine gravel, moist SW G1 0.0 / 0.02 (46 / 60)Black, particles and fragments of ash, coal, cinder, and bricks, moist. 3 **3.5** Gray, fine **GRAVEL**, some coarse sand, moist. GP 0.0 / 0.04 3.5 Brown, fine SAND, some silt, wet. SM 5 5 5 Yellow brown, SILT, some fine sand, wet, mottled. ML 1.7 / 0.0 6 G2 (44 / 60)ML Gray, SILT, some clay, wet, laminated. Small black organic particles. 17.5 / 0.0 8 9 112 / 0.0 10 10 ML Gray, SILT with very fine sand, wet. Few seams of fine to medium sand. 11 G3 88.9 / 0.0 11 CL 12 (40 / 60)Gray, CLAY, little silt, wet. 13 8.0 / 0.0 14 15 Bottom of Exploration 15.0 ft. Boring No.

Depth to Water	(ft)	Date & Time	
Depth to Water	(ft)	Date & Time	

Comments:

GP-2

Start Date: 11052009 End Date: 11052009 Boring No. GP-1

Datum:

Project Number: FD900431

Geologist: T. Bown

Weather: ~45°F, Windy, rain, hail.

Client: NYSDEC

Depth to Water

(ft) Date & Time

Project Manager: T. Bown

Northing:

Ciletti. NTSDE	· ·		Froject Manager. 1. Bown	Northing:		Datum.
Location (City,	State): Mayvil	le, New York	Driller: Beau Fletcher	Easting:		
Drill Rig Type:	GeoProbe	6610 (Track Mo	nunted)	Borehole Dia	meter (ft.): 0.25	
		oProbe Macro-C		Boronole Blu	1110101 (11.)1 0.20	
	Sample ID	OPTODE Macro-C	SOIL DESCRIPTION			PID Screening
Depth (feet)	(Recovery) STRATUM (Unified Soil Classification System)				USCS Symbol	(ppm)
0	Light brown, ORGANIC SOIL, some fine gravel, trace coarse sand, dry to				OL/OH	
1	G1		moist, organic odor.			0.3 / 0.0
		1.3	+			
2	(55 / 60)	1.3	Black, coarse to fine SAND , trace fine gravel, particles and fragments of	of brick,		
			cinder, coal,and wood, dry.			
3		2.4				0.4 / 0.0
4			Yellow brown, fine SAND , some silt, little fine gravel, moist to wet, mott	led.	SM	
5		5				0.0 / 0.0
5		5	Brown, SILT , some fine sand, wet, mottled.		ML	0.0 / 0.0
6	G2	5	Brown, Steff, Some line Sand, wet, mottled.		IVIL	
7	(43 / 60)					4.5 / 0.0
8			Gray, SILT, some clay, trace fine sand, wet. Small particles of black or	nanics	ML	
· · · · · · · · · · · · · · · · · · ·			homogenous.	ga:1100,		
9			Tomogenede.			6.9 / 0.0
10						
10		10.5				0.0 / 0.0
11	G3	10.5				
12	(18 / 60)		Gray, fine SAND , some silt, wet.		SM	
13						
14						
15						
			Bottom of Exploration 15.0ft.			
			Comments:			Boring No.

APPENDIX B WELL DEVELOPMENT REPORTS

MONITORING WELL DEVELOPMENT REPORT

Geologist: T. Bown

WELL No. GPW-20

SOIL BORING ID GP-20

Ground El.: 1318.41

Client: NYSDEC	,			Project Manager: T. Bo	El. Datum: NAVD88				
Location (City, S	State): Mayville, NY	1		Development Date: 11/	24/2009	Stick-up			
Contractor: Not	Applicable			Water Level: 0.70 Flushmount □X					
Driller: Not App	licable			Note: All water level measure	ements shall be from the top	of the well riser.			
Depth to Water bef Comments: Depth to Bottom of Comments: Volume of Water to Method of Well Dev	licable fore Development (feet f Well prior to Develop b be removed (gallons) velopment: Peristaltic	ment (feet): 13.0): 5.6 pump with 1/4-in.		Note: All water level measure	ements shall be from the top	of the well riser.			
Serial Number	,	, •	ater Quality, LaMotte 2020	Equipment Calibration: Ye	s X No 🗆	Date & Time: 112	232009 1330		
TIME	VOLUME (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)		
11:54	0.5	6.87	12.5	898.1	-32	NA	High		
	1	6.74	13	988.2	-30	NA	High		
	2	6.72	13.2	1061	-37	NA NA	High		
	3.5				-41	NA NA	_		
		6.75	13.2	1118			High		
	4.5	6.75	13.2	827.8	-51	NA 	High		
	5.5	6.8	13	1115	-53	NA	High		
		+							
		+							
		1							
		1							
		1							
	-	+							
		+							
		-							
		-							
	ater Removed from We		ent water, silt particles flowir	ng through well					

MONITORING WELL DEVELOPMENT REPORT

Geologist: T. Bown

WELL No. GPW-17 SOIL BORING ID

Ground El.: 1319.34

SOIL BORING ID GP-17

Client: NYSDEC	;			Project Manager: T. Bo	wn	El. Datum: NA	VD88
Location (City,	State): Mayville, N	Υ		Development Date: 11/	24/2009	Stick-up	
Contractor: Not				Water Level: 0.71		Flushmount	□X
Driller: Not App	licable			Note: All water level measure	ements shall be from the top	o of the well riser.	
Comments:	fore Development (feet	ment (feet): 13.0					
	o be removed (gallons)						
Mathad of Wall Day	laumant. Daviatakia						
	velopment: Peristaltic						
Serial Number			ater Quality, LaMotte 2020	Equipment Calibration: Ye	sX No □	Date & Time: 11	232009 1330
TIME	VOLUME (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)
	1						
11:10		6.75	11.5	1364	-49	NA	High
	2	6.86	11.1	1528	33	NA	High
	2.5	6.83	11.5	1063	-42	NA	High
		1					
		1					
							
		1					1
					l	<u>l</u>	1
	ater Removed from Well we			velopment water, silt particles	flowing through well		

MONITORING WELL DEVELOPMENT REPORT

Geologist: T. Bown

WELL No. GPW-

SOIL BORING ID GP-8

Ground El.: 1321.18

lient: NYSDEC	<u>,</u>			Project Manager: T. Bo	wn	El. Datum: NA	VD88
ocation (City,	State): Mayville, NY	,		Development Date: 11/2	24/2009	Stick-up	
Contractor: Not	Applicable			Water Level: 2.26		Flushmount	□X
riller: Not App				Water Level: 2.26 Flushmount X Note: All water level measurements shall be from the top of the well riser.			
epth to Bottom of	f Well prior to Develop	ment (feet): 13.0					
lethod of Well Dev	velopment: Peristaltic p	pump with 1/4-in			s X No 🗆	Date & Time: 112	232009 1330
	I	mg/l) NA Turbi	idity (NTUs) 0.0 Conduc	T			
TIME	VOLUME (gal)	рН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)
10:32	0.5	6.99	9.9	753.9	-1	NA	High
	1	6.86	11.4	1061	-36	NA	High
	1.5	6.79	11.3				
	1.5	0.73	11.0	1130	11	TVA	riigii
		-					
		+					
	ater Removed from We			velopment water, silt particles t	flowing through well		

MONITORING WELL DEVELOPMENT REPORT

Geologist: T. Bown

WELL No. GPW-9

SOIL BORING ID

Ground El.: 1320.40

Client: NYSDEC Project Manager: T. Bown El. Datum: NAVD88					VD88			
Location (City,	State): Mayville, NY	1		Development Date: 11/		Stick-up		
Contractor: Not	Applicable			Water Level: 1.56		Flushmount	□X	
Driller: Not App	licable			Note: All water level measure	ements shall be from the top	of the well riser.		
Depth to Water before Development (feet): 1.56 Comments: Depth to Bottom of Well prior to Development (feet): 13.0 Comments: Volume of Water to be removed (gallons): 5.0								
Method of Well Dev	velopment: Peristaltic	pump with 1/4-in.						
Serial Number			ater Quality, LaMotte 2020	Equipment Calibration: Ye	s X No □	Date & Time: 112	232009 1330	
TIME	VOLUME (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)	
10:00	1	6.61	11.1	1478	42	NA	High	
	2	6.81	11.5	1428	4	NA	High	
	2.5	6.64		1377	69	NA	2672	
			11.2					
	3	6.59	11.2	1412	46	NA	High	
		+						
		+						
		+						
		+						
		+ +						
		1						
		† †						
	 	+						
		+ +						
		+						
		1						
		+						
		1						
		<u> </u>						
		1						
	ater Removed from We			velopment water, silt particles	flowing through well			

MONITORING WELL DEVELOPMENT REPORT

WELL No. GPW-10

SOIL BORING ID GP-10

Project Number	: FD900431 - Offsite	e Former Star	ndard Portables	Geologist: T. Bown Ground El.: 1319.67			319.67	
Client: NYSDEC				Project Manager: T. Bown El. Datum: NAVD88				
	State): Mayville, NY			Development Date: 11/		Stick-up		
Contractor: Not	Applicable			Water Level: 0.88		Flushmount	□X	
Driller: Not App	licable			Note: All water level measure	ements shall be from the top	o of the well riser.		
_	ore Development (feet)							
Depth to Bottom of	Well prior to Developn	nent (feet): 13.0						
· -	· · · · · · · · · · · · · · · · · · ·	` ,						
								
Volume of Water to	be removed (gallons):	5.3						
Method of Well Dev	relopment: Peristaltic p	oump with 1/4-in	. polyethylene tubing					
Method of Well Development: Peristaltic pump with 1/4-in. polyethylene tubing Comments: Type of Water Quality Meter (Make & Model): Myron 6P Water Quality, LaMotte 2020 Serial Number Equipment Calibration: Yes X No Date & Time: 11232009 1330 Calibration: pH 7.0 Dissolve Oxygen (mg/l) NA Turbidity (NTUs) 0.0 Conductivity (mS/cm) 4.46								
TIME	VOLUME (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)	
9:33	0.5	7.02	10.1	696.9	-64	NA	68.8	
	1.5	6.89	10.7	702.1	43	NA	1799	
	2	6.91	10.8	670.6	64	NA	438	
	3	6.69	10.7	676.4	64	NA	345	
		0.09	10.7	070.4	04	INA	545	
	<u> </u>							
			i					
	ater Removed from Well Development: Well we	.= .		velopment water, silt particles	flowing through well			

MONITORING WELL DEVELOPMENT REPORT

Geologist: T. Bown

WELL No. GPW-13

SOIL BORING ID GP-13

Ground El.: 1320.06

Client: NYSDEC Project Manager: T. Bown El. Datum: NAVD88					VD88			
Location (City, S	State): Mayville, NY	1		Development Date: 11/2	24/2009	Stick-up		
Contractor: Not				Water Level: 1.49		Flushmount	□X	
Driller: Not App	licable			Note: All water level measure	ements shall be from the top	of the well riser.		
Driller: Not Applicable Note: All water level measurements shall be from the top of the well riser. Depth to Water before Development (feet): 1.49 Comments: Depth to Bottom of Well prior to Development (feet): 13.0 Comments: Volume of Water to be removed (gallons): 5.1 Method of Well Development: Peristaltic pump with 1/4-in. polyethylene tubing Comments: Type of Water Quality Meter (Make & Model): Myron 6P Water Quality, LaMotte 2020								
Type of Water Qua	lity Meter (Make & Mod	tel): Myron 6P W:	ater Quality I aMotte 2020					
Serial Number		, ,	•	Equipment Calibration: Ye	s X No □	Date & Time: 112	232009 1330	
TIME	VOLUME (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)	
8:45	0.25	7.31	10.9	450.4	-89	NA	High	
	1.5	7.09	11.7	636.3	-58	NA	High	
	2.5	6.98	12.2	529.1	-70	NA	High	
	3.5	7.05	12.5	428.5	-86	NA	High	
			-					
		+						
	ater Removed from We		elopment, heavy fines in dev	velopment water, silt particles t	flowing through well			

MONITORING WELL DEVELOPMENT REPORT

WELL No. GPW-

SOIL BORING ID

Project Number: FD900431 - Offsite Former Standard Portables Geologist: T. Bown Ground El.: 1321.78						321.78					
Client: NYSDEC		<u> </u>	- Idara i ortabioo	Project Manager: T. Bown El. Datum: NAVD88							
Location (City (State): Mayville, NY	,		Development Date: 11/2							
Contractors Not	State): Mayville, NT		_		24/2009	Stick-up					
Contractor: Not	Applicable			Water Level: 5.06		Flushmount	□X				
Driller: Not App	licable			Note: All water level measure	ements shall be from the top	o of the well riser.					
_	Depth to Water before Development (feet): 5.06 Comments:										
	f Well prior to Developm										
Volume of Water to	o be removed (gallons):	3.5									
	velopment: Peristaltic p										
Serial Number			ater Quality, LaMotte 2020	Equipment Calibration: Ye	s X No 🗆	Date & Time: 112	232009 1330				
TIME	VOLUME (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)				
8:25	0.5	7.57	10.8	1644	-85	NA	4225				
	1	7.05	11.7	2003	33	NA	High				
	ater Removed from Well I Development: Well wer		elopment, heavy fines in dev	velopment water, silt particles t	lowing through well						

MONITORING WELL DEVELOPMENT REPORT

WELL No. GPW-

Response	e • Service • Experience						GP-14
Project Number	r: FD900431 - Offsit	e Former Sta	ndard Portables	Geologist: T. Bown		Ground El.: 13	320.12
Client: NYSDEC	;			Project Manager: T. Bo	wn	El. Datum: NA	VD88
Location (City,	State): Mayville, NY	7		Development Date: 11/	24/2009	Stick-up	
Contractor: Not	t Applicable			Water Level: 3.18		Flushmount	□Х
Driller: Not App	licable			Note: All water level measure	ements shall be from the to	p of the well riser.	
-	fore Development (feet)						
l -	f Well prior to Develop						
Volume of Water to	o be removed (gallons)	: 4.30					
Method of Well De	velopment: Peristaltic	pump with 1/4-in	n. polyethylene tubing				
Comments:							
Serial Number Calibration: pH 7	7.0 Dissolve Oxygen (ater Quality, LaMotte 2020	Equipment Calibration: Ye		Date & Time: 11:	
TIME	VOLUME (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)
8:00	1	7.27	10.9	668.8	26	NA	High
	1.25	7.43	11.7	893.8	-61	NA	High
	 					1	
	 					1	
	 					1	
	1					1	
	ļ					1	
						_]
Total Values of "	otor Domested for the ''	II (mallama) 4 3	ie –	1	ı	1	'
	ater Removed from We			evelopment water, silt particles	flowing through well		

MONITORING WELL DEVELOPMENT REPORT

Geologist: T. Bown

WELL No. GPW-5

SOIL BORING ID

Ground El.: 1320.85

Client: NYSDEC Project Manager: T. Bown El. Datum: NAVD8				VD88			
Location (City, S	State): Mayville, NY	1		Development Date: 11/2	23/2009	Stick-up	
Contractor: Not				Water Level: 3.19		Flushmount	□X
Driller: Not App	licable			Note: All water level measure	ements shall be from the top	of the well riser.	
Driller: Not Applicable Note: All water level measurements shall be from the top of the well riser. Depth to Water before Development (feet): 3.19 Comments:							
Serial Number		, -	ater Quality, LaMotte 2020	Equipment Calibration: Ye	s X No 🗆	Date & Time: 112	232009 1330
		· · · · · · · · · · · · · · · · · · ·			<u> </u>		I
TIME	VOLUME (gal)	pH	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)
16:50	0.25	6.87	11.3	1028	-32	NA	High
	0.75	6.94	11.5	1030	-56	NA	163
	1	7.11	12.1	1013	-77	NA	1764
	1.5	6.61	13.6	974.7	149	NA	2185
	2	6.89	12.7	983.8	58	NA	High
	2.5	7.21	11.5	846.5	-25	NA	954
		<u> </u>					
	ater Removed from We		elopment, heavy fines in dev	velopment water, silt particles l	lowing through well		

MONITORING WELL DEVELOPMENT REPORT

WELL No. GPW-

SOIL BORING ID

Project Number	: FD900431 - Offsite	e Former Star	ndard Portables	Geologist: T. Bown Ground El.: 1320.81			320.81			
Client: NYSDEC				Project Manager: T. Bown El. Datum: NAVD88						
	State): Mayville, NY			Development Date: 11/		Stick-up				
Contractor: Not	Applicable			Water Level: 1.78		Flushmount	□X			
Driller: Not App	licable			Note: All water level measure	ements shall be from the top	of the well riser.				
	ore Development (feet)									
-	f Well prior to Developn									
	Volume of Water to be removed (gallons): 4.90									
	velopment: Peristaltic p	-								
Type of Water Qual Serial Number		el): Myron 6P Wa	ater Quality, LaMotte 2020	Equipment Calibration: Ye	s X No 🗆	Date & Time: 112	232009 1330			
TIME	VOLUME (gal)	рН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)			
14:25	1	6.99	12.1	866.4	82	NA	31.9			
	2	6.87	12.1	876.4	-30	NA	34			
	3	6.95	11.9	885.2	20	NA NA	High			
	4									
	4	6.86	12	886.9	49	NA	122			
			<u> </u>							
		-								
	ater Removed from Wel		ent water, silt particles flowir	ng through well						

MONITORING WELL DEVELOPMENT REPORT

Geologist: T. Bown

WELL No. GPW-

SOIL BORING ID

Ground El.: 1320.93

Hent Nigoet				Project Manager: 1. Bo		EI. Datuili. NA	V D00
ocation (City,	State): Mayville, NY	•		Development Date: 11/	23/2009	Stick-up □	
Contractor: Not							⊓Х
Priller: Not App				Water Level: 2.18 Flushmount □X Note: All water level measurements shall be from the top of the well riser.			
epth to Water bet	fore Development (feet)						
-	f Well prior to Developn						
lethod of Well De	o be removed (gallons): velopment: Peristaltic p		. polyethylene tubing				
omments:							
erial Number			ater Quality, LaMotte 2020	Equipment Calibration: Ye	s X No 🗆	Date & Time: 11	232009 1330
TIME	VOLUME (gal)	рН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)
14:00	0.5	7	14.7	1218	-47	NA	1129
	1	7.03	12	1232	19	NA	188
	2	7.05	11.4	1215	-44	NA	4958
	2.5	7.04	11.3	1227	-26	NA	2263
	ater Removed from Well		relopment, heavy fines in de	evelopment water, silt particles	flowing through well		

MONITORING WELL DEVELOPMENT REPORT

WELL No. GPW-

SOIL BORING ID

	: FD900431 - Offsite	e Former Star	ndard Portables	Geologist: T. Bown Ground El.: 1321.78			321.78			
Client: NYSDEC				Project Manager: T. Bo	wn	El. Datum: NA	VD88			
	State): Mayville, NY	·		Development Date: 11/	23/2009	Stick-up				
Contractor: Not				Water Level: 3.14		Flushmount	□X			
Priller: Not App	licable			Note: All water level measure	ements shall be from the top	o of the well riser.				
Comments:	epth to Water before Development (feet): 3.14 comments: epth to Bottom of Well prior to Development (feet): 13.0 comments:									
olume of Water to be removed (gallons): 4.34 lethod of Well Development: Peristaltic pump with 1/4-in. polyethylene tubing omments:										
Gerial Number Calibration: pH 7	.0 Dissolve Oxygen (r		ater Quality, LaMotte 2020	Equipment Calibration: Yetivity (mS/cm) 4.46		Date & Time: 112				
TIME	VOLUME (gal)	pН	Temperature (°C)	Conductivity (mS/cm)	Redox Potential (mV)	D.O. (mg/l)	Turbidity (NTUs)			
13:10	0.5	6.33	15.3	822.1	42	NA	308			
	1	7.13	14.9	717.9	55	NA	989			
	1.5	7.15	15.8	717.1	26	NA	968			
	1.5	7.18	12.2	720.1	-42	NA	44.3			
13:50	2	7.14	12.4	707.4	-11	NA	2134			
13.50	۷	7.14	12.4	707.4	-11	IVA	2134			
otal Values - 124	nton Domessed for an 197	II (mallana)		1	1	<u> </u>	1			
	ater Removed from Well Development: Well we		relopment, heavy fines in de	evelopment water, silt particles	flowing through well					

APPENDIX C GROUNDWATER SAMPLING REPORTS

GPW-2

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

Date: December 9, 2009

				Groundw	ater Sampling In	formation				
	Well No.				GPW-20					
	Time				8:35					
9	Static Water Level (ft) (1)		16:48							
	Product (ft) (1)	NA								
	Depth of Well (ft) (1)	13								
	Well Diameter (in)		1							
Li	inear Feet of Water (ft) (2)		12.3							
Volu	ume of Water in Well (gal) (3)				0.54243					
Volume	e of Well to be Purged (gal) (4)				1.63					
	Purging Device		GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing							
	Water Quality Meter				Horiba U-22					
	Sampling Method				Bailer					
	Time	9:00								
	Water Level (ft.)									
	рН	6.87								
ters	Temperature (°C)	12.5								
Water Quality Parameters	Conductivity (mS/cm)	1075.000								
у Ра	Redox Potential (mV)	-51								
ualit	Turbidity (NTUs)	-5								
je Q	Dissolved Oxygen (mg/l)	0.23								
Na.	Total Dissolved Solids (ppm)	1								
	Salinity									
	Color									
	Odor									
11	1				1	l .	1	i contract of the contract of		

Sample Collection Time

(1) All measurements are to be taken from the reference point on the top of the well riser.

9:00

(2) Linear Feet of Water = Depth of Well - Static Water Level

vocs

SVOCs
Total Metals

Dissolved Metals (5)

Cyanide

(3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical laboratory.

Sampling Observation	is: Used baile	er to purge wel	II and collect	a water sample.

GPW-18

Page of

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

Location	(City, State). Mayville, New York	1								
Date: De	cember 9, 2009			O	votov Commilia a In	formatic -				
	Wall No			Groundy	vater Sampling Ir	itormation				
	Well No.				GPW-18					
	Time				7:55					
	Static Water Level (ft) (1)				1.59					
	Product (ft) (1)				NA					
	Depth of Well (ft) (1)				13					
	Well Diameter (in)	1								
Li	near Feet of Water (ft) (2)	11.41								
Volu	me of Water in Well (gal) (3)				0.503181					
Volume	e of Well to be Purged (gal) (4)				0.50					
	Purging Device	GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing								
	Water Quality Meter	Horiba U-22								
	Sampling Method				Bailer					
	Time	8:00	8:06							
	Water Level (ft.)	1.29	2.1							
	рН	6.34	6.53							
ē.	Temperature (°C)	6.21	6.95							
Water Quality Parameters	Conductivity (mS/cm)	1.840	1.740							
y Par	Redox Potential (mV)	54	23							
ualit	Turbidity (NTUs)	-5	-5							
ja Q	Dissolved Oxygen (mg/l)	0.64	0.00							
Wat	Total Dissolved Solids (ppm)	1.2	1.1							
	Salinity									
	Color									
	Odor									
	vocs	8:30								
	SVOCs									
	Total Metals									
Sample Collection Time	Dissolved Metals (5)									
tion	Cyanide									
) ec										
ŏ										
m E										
ιχ										

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical laboratory.

Sampling Observations: Battery on peristaltic pump died out, used bailer to finish purging well and collect a water sample.

GPW-17

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

	(City, State): Mayville, New York ember 9, 2009									
				Groundw	ater Sampling In	formation				
	Well No.				GPW-17					
	Time		10:00							
5	Static Water Level (ft) (1)				1.59					
	Product (ft) (1)				NA					
	Depth of Well (ft) (1)	13								
	Well Diameter (in)	1								
Li	near Feet of Water (ft) (2)	11.41								
Volu	me of Water in Well (gal) (3)	0.503181								
Volume	of Well to be Purged (gal) ⁽⁴⁾	0.50								
	Purging Device		G	eoPump (Perist	altic) with 1/4-in.	Polyethylene Tu	bing			
	Water Quality Meter		Horiba U-22							
	Sampling Method		Low-Flow							
	Time	10:07	10:13	10:20	10:24	10:28	10:34			
	Water Level (ft.)	3.34	5.79	7.5	7.43	7.53	7.72			
	рН	6.94	6.75	6.74	6.74	6.76	6.77			
ters	Temperature (°C)	8.01	8.31	7.34	7.61	7.86	7.95			
ame	Conductivity (mS/cm)	1.490	1.440	1.350	1.330	1.340	1.340			
y Par	Redox Potential (mV)	32	17	-15	-30	-39	-47			
nalit	Turbidity (NTUs)	-5	-5	0/ER	0/ER	0/ER	0/ER			
Water Quality Parameters	Dissolved Oxygen (mg/l)	3.40	1.03	0.31	0.00	0.00	0.00			
Wat	Total Dissolved Solids (ppm)	1	0.9	0.9	0.9	0.9	0.9			
	Salinity									
	Color									
	Odor									
	vocs	14:40								
	SVOCs									
•	Total Metals									
Time	Dissolved Metals (5)									
tion	Cyanide									
Sample Collection Time										
ole C										
Samp										
٠,										

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical

Sampling Observations: Well was submerged with surface water, bailed out surface water and attached coupled tubing (18-in. length).

GPW-14

Page of

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

	(City, State): Mayville, New York	į								
Date:Dec	cember 9, 2009			Groundw	vater Sampling In	formation				
	Well No.				GPW-14					
	Time				14:05					
	Static Water Level (ft) (1)				3.09					
	Product (ft) (1)				NA					
	Depth of Well (ft) (1)				13					
	Well Diameter (in)				1					
Li	near Feet of Water (ft) (2)	9.91								
Volu	me of Water in Well (gal) (3)	0.437031								
Volume	e of Well to be Purged (gal) (4)	0.44								
	Purging Device	GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing								
	Water Quality Meter				Horiba U-22					
	Sampling Method		Low-Flow							
	Time	14:10	14:15	14:21	14:28	14:32	14:43			
	Water Level (ft.)	4.46	5.67	6.64	7.67	8.39	9.95			
	рН	7.34	7.31	7.32	7.27	7.27	7.28			
ters	Temperature (°C)	7.11	8.23	8.01	7.93	7.95	7.59			
rame	Conductivity (mS/cm)	0.803	0.859	0.879	0.902	0.898	0.714			
ty Pa	Redox Potential (mV)	-52	-15	-14	-55	-71	-84			
Qualit	Turbidity (NTUs)	-5	-5	-5	417	0/ER	0/ER			
Water Quality Parameters	Dissolved Oxygen (mg/l)	1.20	3.05	0.48	0.67	0.00	0.00			
Wa	Total Dissolved Solids (ppm)	0.52	0.55	0.56	0.58	0.57	0.46			
	Salinity									
	Color									
	Odor									
	vocs	14:40								
	SVOCs									
Φ	Total Metals									
Ĕ	Dissolved Metals (5)									
Sample Collection Time	Cyanide									
Soller										
ple (
Sam										

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical laboratory.

Sampling Observations: Well was submerged with surface water, bailed out surface water and attached coupled tubing (18-in. length).

GPW-13

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

Date:Dec	ember 14, 2009										
	Groundwater Sampling Information										
	Well No.				GPW-13						
	Time				13:50						
,	Static Water Level (ft) (1)				2.51						
	Product (ft) (1)				NA						
	Depth of Well (ft) (1)				13						
	Well Diameter (in)				1						
Li	near Feet of Water (ft) (2)	10.49									
Volu	me of Water in Well (gal) (3)	0.462609									
Volume	e of Well to be Purged (gal) (4)	0.46									
	Purging Device		GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing								
	Water Quality Meter		Horiba U-22								
	Sampling Method				Low-Flow						
	Time	13:53	13:57	14:03	14:09	14:14					
	Water Level (ft.)	4.93	5.61	6.49	7.22	7.31					
	рН	7.32	7.02	6.95	6.97	7.00					
ters	Temperature (°C)	8.97	9.85	10.11	10.36	10.48					
ame	Conductivity (mS/cm)	0.789	0.752	0.660	0.663	0.597					
/ Par	Redox Potential (mV)	27	10	-7	-18	-28					
uality	Turbidity (NTUs)	50.8	62.8	0/ER	0/ER	0/ER					
Water Quality Parameters	Dissolved Oxygen (mg/l)	0.48	0.00	0.00	0.00	0.00					
Wat	Total Dissolved Solids (ppm)	0.49	0.48	0.42	0.42	0.37					
	Salinity										
	Color										
	Odor										
	vocs	12:25									
	SVOCs										
_	Total Metals										
Time	Dissolved Metals (5)										
Sample Collection Time	Cyanide										
ollec											
e Č											
Samp											
0)											

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical

Sampling Observations: Well was submerged with surface water, bailed out surface water and attached coupled tubing (18-in. length).

GPW-10

Page of

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

	(City, State): Mayville, New York									
Date:Dec	cember 9, 2009			Groundw	ater Sampling Ir	formation				
	Well No.			3.0441	GPW-10					
	Time									
:	Static Water Level (ft) (1)				12:05 1.03					
	Product (ft) (1)				NA					
	Depth of Well (ft) (1)				13					
	Well Diameter (in)				1					
Li	near Feet of Water (ft) (2)				11.97					
	ime of Water in Well (gal) (3)	0.527877								
	e of Well to be Purged (gal) (4)	0.53								
	Purging Device	GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing								
	Water Quality Meter		Horiba U-22							
	Sampling Method		Low-Flow							
	Time	12:12	12:15	12:20	12:27	12:33				
	Water Level (ft.)	2.3	3.25	3.35	3.74	4.41				
	рН	6.90	6.80	6.78	6.84	6.77				
ters	Temperature (°C)	7.15	8.6	8.36	7.83	8.07				
'ame	Conductivity (mS/cm)	0.688	0.670	0.668	0.669	0.668				
y Par	Redox Potential (mV)	76	65	50	50	43				
ualit	Turbidity (NTUs)	-5	-5	-5	-5	-5				
Water Quality Parameters	Dissolved Oxygen (mg/l)	0.23	0.23	0.00	0.00	0.00				
Wai	Total Dissolved Solids (ppm)	0.43	0.43	0.43	0.43	0.43				
	Salinity									
	Color									
	Odor									
	vocs	12:25								
	SVOCs									
m	Total Metals									
ij	Dissolved Metals (5)									
Sample Collection Time	Cyanide									
Soller										
ple C										
Sam										

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical labo

Sampling Observations: Well was submerged with surface water, bailed out surface water and attached coupled tubing (18-in. length).

GPW-9

Page of

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

	(City, State): Mayville, New York	<u>.</u>								
Date:Dec	ember 9, 2009			Groundw	ater Sampling Ir	formation				
	Well No.				GPW-9					
	Time				13:00					
	Static Water Level (ft) (1)				0.8					
	Product (ft) (1)				NA					
	Depth of Well (ft) (1)	13								
	Well Diameter (in)	1								
Li	near Feet of Water (ft) (2)	12.2								
Volu	me of Water in Well (gal) (3)	0.53802								
Volume	e of Well to be Purged (gal) (4)				0.54					
	Purging Device		G	eoPump (Perist		Polyethylene Ti	ubing			
	Water Quality Meter		GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing Horiba U-22							
	Sampling Method		Low-Flow							
	Time	13:10	13:13	13:19	13:24	13:30				
	Water Level (ft.)	2.18	3.21	2.68	2.59	3.59				
	рН	6.73	6.77	6.61	6.59	6.57				
ters	Temperature (°C)	8.34	8.58	7.84	7.87	9				
amei	Conductivity (mS/cm)	1.530	1.590	1.610	1.590	1.580				
Water Quality Parameters	Redox Potential (mV)	83	57	46	41	30				
ualit	Turbidity (NTUs)	578	-5	-5	-5	-5				
je O	Dissolved Oxygen (mg/l)	2.94	0.00	0.00	0.00	0.00				
Wat	Total Dissolved Solids (ppm)	1	1	1	1	1				
	Salinity									
	Color									
	Odor									
	vocs	13:35								
	SVOCs									
•	Total Metals									
Sample Collection Time	Dissolved Metals (5)									
tion	Cyanide									
ollec										
ple C										
Sam										
II .			1	1	1	1	1	1		

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical

Sampling Observations: Well was submerged with surface water, bailed out surface water and attached coupled tubing (18-in. length).

GPW-8

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

Date:Dec	ember 9, 2009			Graind	vater Sampling Ir	formation				
	Well No.			Groundy		nomanon				
	Time				GPW-8					
	Static Water Level (ft) (1)				13:45					
	Product (ft) (1)				1.68					
	Depth of Well (ft) (1)	NA 12								
	Well Diameter (in)				13					
11	near Feet of Water (ft) (2)				1					
	me of Water in Well (gal) (3)	11.32								
	e of Well to be Purged (gal) (4)	0.499212								
Voiding	Purging Device	0.50								
	Water Quality Meter	GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing								
	Sampling Method		Horiba U-22							
	Time	14:10	14:15	14:18	Low-Flow 14:28					
	Water Level (ft.)	3.6	4.12	4.95	5.64					
	рН	6.79	6.77	6.75	6.76					
S	Temperature (°C)	6.8	5.8	7.02	8.08					
mete	Conductivity (mS/cm)	1.240	1.270	1.220	1.160					
Para	Redox Potential (mV)	-24	-24	-24	-22					
ality	Turbidity (NTUs)	-5	-5	-5	-5					
Water Quality Parameters	Dissolved Oxygen (mg/l)	3.64	1.06	0.00	0.00					
Wat	Total Dissolved Solids (ppm)	0.8	0.8	0.8	0.7					
	Salinity									
	Color									
	Odor									
	vocs	14:35								
	SVOCs									
_	Total Metals									
Time	Dissolved Metals (5)									
tion	Cyanide									
ollec										
ole C										
Sample Collection Time										
"										

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical

Sampling Observations: Well was submerged with surface water, bailed out surface water and attached coupled tubing (18-in. length).

GPW-6

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

	ember 14, 2009									
24.0.00				Groundw	ater Sampling In	formation				
	Well No.				GPW-6					
	Time				13:00					
	Static Water Level (ft) (1)				3.18					
	Product (ft) (1)				NA					
	Depth of Well (ft) (1)				13					
	Well Diameter (in)				1					
Li	near Feet of Water (ft) (2)	9.82								
Volu	me of Water in Well (gal) (3)	0.433062								
Volume	e of Well to be Purged (gal) ⁽⁴⁾	0.43								
	Purging Device	GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing								
	Water Quality Meter	Horiba U-22								
	Sampling Method			T	Low-Flow					
	Time	13:03	13:09	13:14	13:19					
	Water Level (ft.)	5.5	7.15	8.82	12					
	pH	7.76	7.64	7.64	7.56					
ters	Temperature (°C)	8.83	8.84	9.09	9.83					
rame	Conductivity (mS/cm)	2.110	1.930	1.850	1.980					
y Pa	Redox Potential (mV)	-122	-141	-118	-120					
ualit	Turbidity (NTUs)	-5	-5	-5	-5					
Water Quality Parameters	Dissolved Oxygen (mg/l)	1.24	0.00	0.00	0.00					
Wa	Total Dissolved Solids (ppm)	1.4	1.2	1.2	1.2					
	Salinity									
	Color									
	Odor									
	vocs	13:30								
	SVOCs									
ø.	Total Metals									
Ĕ	Dissolved Metals (5)									
Sample Collection Time	Cyanide									
) S										
ple C										
Sam										

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical laboratory.

Sampling Observations: Well drawdown occurred with pump at lowest setting. Empty flow cell for fines removal.

GPW-5

Page of

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

	(City, State): Mayville, New York									
Date:Dec	ember 8, 2009			Groundu	ater Sampling In	formation				
	Well No.			Groundw		normation				
	Time				GPW-5					
					13:00					
,	Static Water Level (ft) (1)				2.99					
	Product (ft) (1)				NA					
	Depth of Well (ft) (1)	13								
	Well Diameter (in)	1								
-	Linear Feet of Water (ft) (2) Volume of Water in Well (gal) (3)		10.01							
Volu	me of Water in Well (gal) (3)				0.441441					
Volume	e of Well to be Purged (gal) (4)	0.44								
	Purging Device		G	eoPump (Perist	altic) with 1/4-in.	Polyethylene Tu	ıbing			
	Water Quality Meter				Horiba U-22					
	Sampling Method				Low-Flow					
	Time	13:03	13:10	13:15	13:22	13:33	13:35			
	Water Level (ft.)	4.28	6.01	6.81	7.74	8.71	9.13			
	рН	7.09	6.98	6.97	6.97	6.98	6.99			
ers	Temperature (°C)	8.72	9.4	9.32	9.44	9.93	10			
ame	Conductivity (mS/cm)	0.944	1.000	1.000	0.990	0.980	0.980			
Water Quality Parameters	Redox Potential (mV)	74	-17	-40	-52	-59	-65			
uality	Turbidity (NTUs)	-5	-5	745	686	-5	-5			
ğ	Dissolved Oxygen (mg/l)	0.77	0.00	0.00	0.00	0.00	0.00			
Wat	Total Dissolved Solids (ppm)	0.6	0.6	0.6	0.6	0.6	0.6			
	Salinity									
	Color									
	Odor									
	vocs	13:40								
	SVOCs									
	Total Metals									
Sample Collection Time	Dissolved Metals (5)									
io i	Cyanide									
lect										
S S										
mr jd mr										
Š										

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical laboratory.

Sampling Observations: Well drawdown occurred with pump at lowest setting. Empty flow cell for fines removal.

GPW-4

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

	i (City, State): Mayville, New York cember 8, 2009										
Date.Det	Jennoer 0, 2003			Groundw	ater Sampling In	formation					
	Well No.				GPW-4						
	Time				10:40						
	Static Water Level (ft) (1)				1.51						
	Product (ft) (1)				NA NA						
	Depth of Well (ft) (1)				13						
	Well Diameter (in)				1						
Li	inear Feet of Water (ft) (2)	11.49									
Volu	ume of Water in Well (gal) (3)	0.506709									
Volum	e of Well to be Purged (gal) (4)	0.51									
	Purging Device		GeoPump (Peristaltic) with 1/4-in. Polyethylene Tubing								
	Water Quality Meter	Horiba U-22									
	Sampling Method		Low-Flow								
	Time	10:45	10:58	11:02	11:09	11:14	11:29	11:37			
	Water Level (ft.)	2.06	2.18	2.24	2.27	2.29	2.38	2.44			
	рН	7.51	7.03	6.93	6.69	6.90	6.88	6.88			
ters	Temperature (°C)	7.36	8.68	8.6	8.74	8.32	8.44	8.63			
ame	Conductivity (mS/cm)	0.688	0.723	0.726	0.720	0.726	0.726	0.731			
y Par	Redox Potential (mV)	70	79	77	86	73	61	53			
Water Quality Parameters	Turbidity (NTUs)	-5	-5	-5	-5	-5	785	807			
er O	Dissolved Oxygen (mg/l)	5.71	3.03	0.00	1.21	0.00	0.25	0.00			
Wat	Total Dissolved Solids (ppm)	0.46	0.46	0.46	0.46	0.46	0.47	0.47			
	Salinity										
	Color										
	Odor										
	vocs	11:45									
	SVOCs	11:45									
4	Total Metals	11:45									
Time	Dissolved Metals (5)	11:45									
tion	Cyanide	11:45									
Sample Collection Time											
ole C											
Samp											

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical laboratory.

Sampling Observations: Well drawdown occurred with pump at lowest setting. Empty flow cell twice for fines removal. Full suite of samples collected.

GPW-3

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location	(City, State): Mayville, New York	(
Date:Dec	cember 8, 2009							
				Groundw	ater Sampling In	formation		
	Well No.				GPW-3			
	Time				9:35			
:	Static Water Level (ft) (1)				1.85			
	Product (ft) (1)				NA			
	Depth of Well (ft) (1)				13			
	Well Diameter (in)				1			
Li	near Feet of Water (ft) (2)				11.15			
Volu	ıme of Water in Well (gal) (3)				0.491715			
Volum	e of Well to be Purged (gal) (4)				0.49			
	Purging Device		G	eoPump (Perist	altic) with 1/4-in.	Polyethylene Tu	bing	
	Water Quality Meter				Horiba U-22			
	Sampling Method				Low-Flow			
	Time	9:39	9:46	9:50	9:56	10:02	10:06	10:12
	Water Level (ft.)	3.22	4.11	5.08	5.92	6.77	7.51	8.64
	рН	6.95	6.97	6.95	6.96	6.94	6.93	6.91
ters	Temperature (°C)	8.16	8.93	8.6	8.8	9.69	9.78	9.97
ame	Conductivity (mS/cm)	1.190	1.160	1.200	1.200	1.180	1.190	1.190
Water Quality Parameters	Redox Potential (mV)	69	67	42	18	13	14	13
ualit	Turbidity (NTUs)	-5	799	787	420	425	407	756
ier Q	Dissolved Oxygen (mg/l)	3.27	4.50	0.05	0.00	0.00	0.00	0.00
Wat	Total Dissolved Solids (ppm)	0.8	0.7	0.8	0.8	0.8	0.8	0.8
	Salinity							
	Color							
	Odor							
	vocs	10:15						
	SVOCs							
	Total Metals							
Time	Dissolved Metals (5)							
Sample Collection Time	Cyanide							
ollec								
ē Č								
) amp								
0,								

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical

Sampling Observations: Well drawdown occurred with pump at lowest setting. Empty flow cell after first reading

FIELD DUPLICATE collected (FD-12082009)

GPW-2

Project Number: FD900431 Former Standard Portables Off-Site

Client: New York State Department of Environmental Conservation

Location (City, State): Mayville, New York

	n (City, State): Mayville, New York	(
Date:De	cember 8, 2009			Groundw	vater Sampling In	formation		
	Well No.			Groundw		io mation		
	Time				GPW-2			
	Static Water Level (ft) (1)				8:15			
	Product (ft) (1)				2.36			
	Depth of Well (ft) (1)				NA			
	Well Diameter (in)				13			
1:	inear Feet of Water (ft) (2)				1			
	ume of Water in Well (gal) (3)				10.64			
					0.469224			
voium	e of Well to be Purged (gal) (4)				0.47			
	Purging Device		G	eoPump (Perist	altic) with 1/4-in.	Polyethylene Tu	ıbing	
	Water Quality Meter				Horiba U-22			
	Sampling Method				Low-Flow			
	Time	8:30	8:37	8:44	8:48	8:53	8:57	9:02
	Water Level (ft.)	4.93	5.23	6.02	6.94	7.66	8.34	8.82
"	pH	6.48	6.35	6.40	6.49	6.67	6.80	6.89
eters	Temperature (°C)	10.51	10.46	10.48	10.67	10.54	10.68	10.73
aram	Conductivity (mS/cm)	0.831	0.843	0.901	0.895	0.878	0.830	0.772
ty R	Redox Potential (mV)	214	114	5	-20	-37	-47	-55
Quali	Turbidity (NTUs)	33.6	368	281	264	195	188	160
Water Quality Parameters	Dissolved Oxygen (mg/l)	0.93	0.00	0.00	0.00	0.00	0.00	0.00
×	Total Dissolved Solids (ppm)	0.53	0.54	0.58	0.57	0.56	0.53	0.49
	Salinity							
	Color							
	Odor							
	vocs	9:05						
	SVOCs							
•	Total Metals							
Sample Collection Time	Dissolved Metals (5)							
tion	Cyanide							
ollec								
je Č								
samp								
U)								
			1		1	1		

- (1) All measurements are to be taken from the reference point on the top of the well riser.
- (2) Linear Feet of Water = Depth of Well Static Water Level
- (3) Volume of Water in Well = Linear Feet of Water in Well * Gallons Per Foot of Depth

Well Diameter (ID) = Gallons per Foot of Depth: 1 = 0.0441 2 = 0.163 4 = 0.653 6 = 1.469 8 = 2.611 10 = 4.080 12 = 5.875

- (4) Volume of Well to be Purged = (3 to 5x) Volume of Water in Well
- (5) Dissolved Metal samples are to be either filtered in the field and indicated on field forms/COCs or within 24-hours after collection by analytical laboratory.

Sampling Observations: Well drawdown occurred with pump at lowest setting.

APPENDIX D LABORATORY ANALYTICAL REPORTS

SDG Number: RSK0711

Received: 12/11/09 16:56 Reported:

1.00 11/14/09 18:48 JR 9K14006 Dry Weight

11/13/09

270 Michigan Avenue Buffalo, NY 14203

Percent Solids

Project: Standard Portable: Site# C907030

118071 Project Number:

			Executiv	e Summa	ry - Detect	ions				
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: GP-3A (12-14)	(RSK0711-03	- Solid)			Samp	led: 11	/13/09 11:00	Rec	/d: 11/13/0	9 16:00
Volatile Organic Compo	unds by EPA	8260B								
1,1-Dichloroethene	7.9		6.7	0.82	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
Acetone	9.5	J	34	1.5	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
Carbon disulfide	15		6.7	0.58	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
cis-1,2-Dichloroethene	2200	Ε	6.7	0.33	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
Methylene Chloride	5.4	B, J	6.7	1.3	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
Toluene	8.8		6.7	0.51	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
trans-1,2-Dichloroethene	21		6.7	0.69	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
Trichloroethene	6000	Ε	6.7	0.46	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
Vinyl chloride	85		13	0.82	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
Total Metals by SW 846	Series Metho	ods .								
Aluminum	10000		14.4	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Areonic	12 A		20	NP	ma/ka day	1.00	11/18/00 05:02	1 8 41 1	QK16078	6010B

Vinyi chionae	85	13	0.82	ug/kg dry	1.00	11/25/09 15:58	PQ	9K25015	8260B
Total Metals by SW	846 Series Methods								
Aluminum	10000	14.4	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Arsenic	12.4	2.9	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Barium	61.6	0.720	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Beryllium	0.472	0.288	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Calcium	29100	72.0	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Chromium	14.3	0.720	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Cobalt	12.6	0.720	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Copper	26.1	1.4	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Iron	28400	14.4	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Lead	13.2	1.4	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Magnesium	11400	28.8	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Manganese	492	0.3	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Nickel	27.3	7.20	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Potassium	1720	43.2	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Vanadium	16.1	0.720	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
Zinc	63.7	2.9	NR	mg/kg dry	1.00	11/18/09 05:02	LMH	9K16078	6010B
General Chemistry F	Parameters								

Client ID: GP-3A (12-14)	(RSK0711-03	RE1 - Solid)			Samp	led: 11	/13/09 11:00	Recvd: 11/13/09 16:00		
Volatile Organic Compo	unds by EPA	<u> 8260B</u>								
cis-1,2-Dichloroethene	5500	D08, W1	2600	130	ug/kg dry	20.0	11/27/09 14:32	DHC	9K25095	8260B
Trichloroethene	220000	D08, W1	2600	180	ug/kg dry	20.0	11/27/09 14:32	DHC	9K25095	8260B
Client ID: GD.3A (2-4) (DS	SK0744-02 - 1	Solid)			C	11- 44	149100 40.45	D		. 40-00

NR

0.010

CHERT ID. GF-3A (2-4) (N3	K0111-02 - 6	oonu,			Samp	nea: 11	/13/09/10:45	Kec	va: 11/13/09	00:01
Volatile Organic Compou	nds by EPA	8260B								
1,1-Dichloroethene	14		6.9	0.84	ug/kg dry	1.00	11/25/09 15:33	PQ	9K25015	8260B
Acetone	21	J	34	1.5	ug/kg dry	1.00	11/25/09 15:33	PQ	9K25015	8260B
Carbon disulfide	1.8	J	6.9	0.59	ug/kg dry	1.00	11/25/09 15:33	PQ	9K25015	8260B
cis-1,2-Dichloroethene	420	E	6.9	0.34	ug/kg dry	1.00	11/25/09 15:33	PQ	9K25015	8260B
Methylene Chloride	11	В	6.9	1.4	ug/kg dry	1.00	11/25/09 15:33	PQ	9K25015	8260B
trans-1,2-Dichloroethene	11		6.9	0.71	ug/kg dry	1.00	11/25/09 15:33	PQ	9K25015	8260B
Trichloroethene	93		6.9	0.47	ug/kg dry	1.00	11/25/09 15:33	PQ	9K25015	8260B
Vinyl chloride	12	J	14	0.84	ua/ka dry	1.00	11/25/09 15:33	PQ	9K25015	8260B

270 Michigan Avenue Buffalo, NY 14203 SDG Number: RSK0711

Received:

11/13/09

Reported:

12/11/09 16:56

Project: Standard Portable: Site# C907030

Project Number: 118071

	_		Executive	5 Sullillia	ry - Detect					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: GP-3A (2-4) (R	****	THE PERSON NAMED AND POST OF THE PERSON NAMED IN COLUMN			SANIES DE L'ANNE		/13/09 10:45	The state of the s	vd: 11/13/0	
Semivolatile Organics b	y GC/MS									
2-Methylnaphthalene	170	D10,J	2400	28	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Anthracene	120	D10,J	2400	60	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Benzo(a)anthracene	560	D10,J	2400	40	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Benzo(a)pyrene	410	D10,J	2400	56	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Benzo(b)fluoranthene	680	D10,J	2400	45	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Benzo(ghi)perylene	330	D10,J	2400	28	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Benzo(k)fluoranthene	240	D10,J	2400	26	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Chrysene	610	D10,J	2400	23	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Dibenzofuran	100	D10,J	2400	24	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
luoranthene	950	D10,J	2400	34	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
ndeno(1,2,3-cd)pyrene	290	D10,J	2400	65	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
laphthalene	100	D10,J	2400	39	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
Phenanthrene	490	D10,J	2400	49	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
yrene	850	D10,J	2400	15	ug/kg dry	10.0	11/19/09 14:48	MAF	9K13100	8270C
<u> Irganochlorine Pesticio</u>	des by EPA N	lethod 8081A								
-,4'-DDT	4.1		2.3	0.52	ug/kg dry	1.00	11/18/09 21:53	MAN	9K15016	8081A
elta-BHC	1.5	J	2.3	0.30	ug/kg dry	1.00	11/18/09 21:53	MAN	9K15016	8081A
ndosulfan II	0.45	J	2.3	0.41	ug/kg dry	1.00	11/18/09 21:53	MAN	9K15016	8081A
ndrin	4.3		2.3	0.74	ug/kg dry	1.00	11/18/09 21:53	MAN	9K15016	8081A
otal Metals by SW 846	Series Metho	<u>ds</u>								
Numinum -	8780		14.2	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
rsenic	9.2		2.8	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
arium	119		0.708	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
eryllium	0.777		0.283	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
alcium	32600		70.8	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
Chromium	10.7		0.708	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
obalt	6.95		0.708	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
opper	44.5		1.4	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
on	26200		14.2	NR	mg/kg dry	1.00	11/18/09 04:57		9K16078	6010B
ead	48.0		1.4	NR	mg/kg dry	1.00	11/18/09 04:57	-1417	9K16078	6010B
eau 1agnesium	9750		28.3	NR	mg/kg dry	1.00	11/18/09 04:57		9K16078	6010B
-	708		0.3	NR	mg/kg dry	1.00	11/18/09 04:57	LMH	9K16078	6010B
fanganese lickel	17.6		7.08	NR		1.00	11/18/09 04:57		9K16078	
					mg/kg dry					6010B
otassium	898		42.5	NR	mg/kg dry	1.00	11/18/09 04:57		9K16078	6010B
anadium	16.4		0.708	NR	mg/kg dry	1.00	11/18/09 04:57		9K16078	6010B
inc	77.9		2.8	NR	mg/kg dry	1.00	11/18/09 04:57		9K16078	6010B
ercury	0.0522		0.0287	NR	mg/kg dry	1.00	11/19/09 18:43	MXM	9K19050	7471A
eneral Chemistry Para										
ercent Solids	71		0.010	NR	%	1.00	11/14/09 18:46	JR	9K14006	Dry Weight
lient ID: GP-3A (2-4) (RS	SK0711-02RE	1 - Solid)			Sampl	led: 11/	13/09 10:45	Recv	d: 11/13/09	9 16:00
<u> /olatile Organic Compo</u>	unds by EPA	8260B								
,1-Dichloroethene	1400	H, D08,	680	83	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B

SDG Number: RSK0711

Received:

11/13/09

270 Michigan Avenue Buffalo, NY 14203

Project: Standard Portable: Site# C907030

Project Number: 118071

Reported: 12/11/09 16:56

			-XCCR II A	e Julillia	ny - Detect	IVIIS				
	Sample	Data		0.55%		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: GP-3A (2-4) (RS	K0711-02R	E1 - Solid) - co	ont.		Samp	oled: 11	/13/09 10:45	Rec	vd: 11/13/0	9 16:00
Volatile Organic Compo	unds by EP	4 8260B - cont	<u>t.</u>							
cis-1,2-Dichloroethene	47000	H, D08, W1, N1	680	34	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B
Cyclohexane	980	H, D08, W1, N1	680	31	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B
Methylcyclohexane	2500	H, D08, W1, N1	680	44	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B
Toluene	350	H, D08, W1, N1,J	680	52	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B
trans-1,2-Dichloroethene	1700	H, D08, W1, N1	680	71	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B
Trichloroethene	41000	H, D08, W1, N1	680	46	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B
Vinyl chloride	800	H, D08, W1, N1,J	1400	83	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B
Xylenes, total	1000	H, D08, W1, N1,J	1400	110	ug/kg dry	5.00	11/30/09 13:02	RJ	9K27033	8260B
Client ID: GP-3A (8-10) (R	SK0711-04				Samo	led: 11	/13/09 10:50	Rec	vd: 11/13/0	9 16:00
Volatile Organic Compou	inde hv ED/	V 8260B								
	20		29	4.0	и .	4.00	11/05/00 10:00	D0	01/05045	00000
Acetone Carbon disulfide	2.4	J	2.9 5.8	1.3 0.50	ug/kg dry ug/kg dry	1.00 1.00	11/25/09 16:23 11/25/09 16:23	PQ PQ	9K25015 9K25015	8260B 8260B
cis-1.2-Dichloroethene	1000	E	5.8	0.29	ug/kg dry ug/kg dry	1.00	11/25/09 16:23	PQ	9K25015	8260B
Methylene Chloride	6.0	B	5.8	1.2	ug/kg dry	1.00	11/25/09 16:23	PQ	9K25015	8260B
Tetrachloroethene	7.1	_	5.8	0.78	ug/kg dry	1.00	11/25/09 16:23	PQ	9K25015	8260B
Toluene	3.8	J	5.8	0.44	ug/kg dry	1.00	11/25/09 16:23	PQ	9K25015	8260B
trans-1,2-Dichloroethene	8.5		5.8	0.60	ug/kg dry	1.00	11/25/09 16:23	PQ	9K25015	8260B
Trichloroethene	3600	Е	5.8	0.40	ug/kg dry	1.00	11/25/09 16:23	PQ	9K25015	8260B
General Chemistry Paran	neters									
Percent Solids	83		0.010	NR	%	1.00	11/21/09 13:51	JR	9K21006	Dry Weight
Client ID: GP-3A (8-10) (R	SK0711-04F	RE1 - Solid)			Samp	led: 11/	13/09 10:50	Recv	rd: 11/13/0	9 16:00
Volatile Organic Compou	nds by EPA	8260B								
cis-1,2-Dichloroethene	1700	D08, W1	600	30	ug/kg dry	5.00	11/27/09 14:54	DHC	9K25095	8260B
Trichloroethene	49000	D08, W1	600	41	ug/kg dry	5.00	11/27/09 14:54	DHC	9K25095	8260B
Client ID: TRIP BLANK 11	132009 (RS	K0711-06 - Wa	ter)		Samp	led: 11/	13/09	Recv	d: 11/13/0	9 16:00
Volatile Organic Compou	nds by EPA	8260B								
Cyclohexane	2.2		1.0	0.53	ug/L	1.00	11/25/09 13:00	PQ	9K25017	8260B
Methylene Chloride	2.3	В	1.0	0.44	ug/L	1.00	11/25/09 13:00	PQ	9K25017	8260B
Toluene	3.0		1.0	0.51	ug/L	1.00	11/25/09 13:00	PQ	9K25017	8260B

270 Michigan Avenue Buffalo, NY 14203

Percent Solids

SDG Number: RSK0443

Received:

11/07/09-11/13/09

Reported:

12/11/09 15:37

Project: Standard Portable: Site# C907030

Project Number: 118071

			-verning	, yuillisid	ry - Detect		ma	_		
Analysta	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	88-41
Analyte			1 \ &	14 1 10 00		AND DESCRIPTION OF THE PARTY OF			outtoes many and a second	Method
Client ID: GP14 (2-4) (R	(2K0003-01 -	Solia)			Samp	oled: 11	/12/09 08:05	Rec	vd: 11/13/(9 09:10
Volatile Organic Compo	ounds by EP	A 8260B								
Carbon disulfide	1.2	J	5.1	0.44	ug/kg dry	1.00	11/20/09 14:42	PQ	9K20029	8260B
cis-1,2-Dichloroethene	14		5.1	0.25	ug/kg dry	1.00	11/20/09 14:42	PQ	9K20029	8260B
Methylene Chloride	3.2	J, B	5.1	1.0	ug/kg dry	1.00	11/20/09 14:42	PQ	9K20029	8260B
Trichloroethene	31		5.1	0.35	ug/kg dry	1.00	11/20/09 14:42	PQ	9K20029	8260B
Semivolatile Organics b	y GC/MS									
2-Methylnaphthalene	94	D10,J	1800	21	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Acenaphthene	84	D10,J	1800	21	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Acenaphthylene	150	D10,J	1800	14	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Anthracene	220	D10,J	1800	45	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Benzo(a)anthracene	750	D10,J	1800	30	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Benzo(a)pyrene	670	D10,J	1800	43	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Benzo(b)fluoranthene	1300	D10,ID4, J	1800	34	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Benzo(ghi)perylene	570	D10,J	1800	21	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Chrysene	800	D10,J	1800	18	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Dibenzofuran	120	D10,J	1800	18	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Fluoranthene	1500	D10,J	1800	26	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Fluorene	98	D10,J	1800	41	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
ndeno(1,2,3-cd)pyrene	520	D10,J	1800	49	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
laphthalene	110	D10,J	1800	29	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Phenanthrene	840	D10,J	1800	37	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
Pyrene	1300	D10,J	1800	11	ug/kg dry	10.0	11/19/09 12:48	MAF	9K13100	8270C
otal Metals by SW 846	Series Metho	<u>ods</u>								
Aluminum	5020		11.1	NR	mg/kg dry	1.00	11/18/09 03:55	LMH	9K16078	6010B
\rsenic	9.2		2.2	NR	mg/kg dry	1.00	11/18/09 03:55	LMH	9K16078	6010B
Barium	46.4		0.554	NR	mg/kg dry	1.00	11/18/09 03:55	LMH	9K16078	6010B
Beryllium	0.368		0.222	NR	mg/kg dry	1.00	11/18/09 03:55	LMH	9K16078	6010B
Calcium	48100		55.4	NR	mg/kg dry	1.00	11/18/09 03:55	LMH	9K16078	6010B
Chromium	6.37		0.554	NR	mg/kg dry	1.00	11/18/09 03:55	LMH	9K16078	6010B
Cobalt	5.30		0.554	NR	mg/kg dry	1.00	11/18/09 03:55	LMH	9K16078	6010B
Copper	35.3		1.1	NR	mg/kg dry	1.00	11/18/09 03:55	LMH	9K16078	6010B
ron	18400		11.1	NR	mg/kg dry	1.00	11/18/09 03:55		9K16078	6010B
.ead	24.9		1.1	NR	mg/kg dry	1.00	11/18/09 03:55		9K16078	6010B
leau /lagnesium	14600		22.2	NR	mg/kg dry	1.00	11/18/09 03:55		9K16078	6010B
-	931		0.2	NR	mg/kg dry			LMH		
flanganese	11.6					1.00	11/18/09 03:55	LMH	9K16078	6010B
lickel			5.54	NR	mg/kg dry	1.00	11/18/09 03:55	LMH		6010B
otassium	664		33.3	NR	mg/kg dry	1.00	11/18/09 03:55	LMH		6010B
anadium	9.74		0.554	NR	mg/kg dry	1.00	11/18/09 03:55		9K16078	6010B
linc	52.2		2.2	NR	mg/kg dry	1.00	11/18/09 03:55		9K16078	6010B
/lercury	0.0462		0.0225	NR	mg/kg dry	1.00	11/17/09 19:25	MXM	9K16053	7471A
ieneral Chemistry Para	meters									
	2.0		0.040		0/	4.00	44444004040		01444000	

93

0.010

NR

%

1.00 11/14/09 16:16 JR 9K14006

Dry Weight

SDG Number: RSK0443

Received: Reported:

11/07/09-11/13/09 12/11/09 15:37

270 Michigan Avenue Buffalo, NY 14203

Project: Standard Portable: Site# C907030

Project Number: 118071

Sampled: 11/12/09 10:20 Recvd: 11/13/09 09:10				Executive	e Summa	ıry - Detect	ions				
Client ID: GP-15 (16-18) (RSK0669-06 - Solid) Sampled: 11/12/09 10:20 Recvd: 11/13/09 09:10	Analyte	=		RL	MDL	Units				Batch	Method
Acatone 30		RSK0669-06	The second secon		and the second s	Samp	oled: 11		Rec	vd: 11/13/	· · · · · · · · · · · · · · · · · · ·
Methylene Chloride	Volatile Organic Compo	unds by EPA	8260B								
Semeral Chemistry Parameters Percent Solids 80	Acetone	30	J	31	1.4	ug/kg dry	1.00	11/20/09 16:48	PQ	9K20029	8260B
Percent Solids 80 0.010 NR % 1.00 11/21/09 13:43 JR 9K21006 Dry Weight Client ID; GP-17 (12-14) (RSK0669-07 - Solid) Sampled: 11/12/09 11:10 Recvd: 11/13/09 09:10 Recvd: 11/13/09 Recvd: 11/1	Methylene Chloride	7.4	В	6.2	1.2	ug/kg dry	1.00	11/20/09 16:48	PQ	9K20029	8260B
Sampled: 11/12/09 11:10 Recvd: 11/13/09 09:10 Re	General Chemistry Para	meters									
Marchanic Compounds by EPA 8260B Acetone 11 J 31 1.4 ug/kg dry 1.00 11/20/09 17:13 PQ 9K20029 8260B	Percent Solids	80		0.010	NR	%	1.00	11/21/09 13:43	JR	9K21006	Dry Weight
Acetone 11 J J 31 1.4 ug/kg dry 1.00 11/20/09 17:13 PQ 9K20029 8260B Methylene Chloride 3.3 J.B 6.1 1.2 ug/kg dry 1.00 11/20/09 17:13 PQ 9K20029 8260B SGeneral Chemistry Parameters Percent Solids 81 0.010 NR % 1.00 11/21/09 13:45 JR 9K21006 Dry Weigh Scheme Chloride 4.1 J.B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Scheme Chloride 4.1 J.B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Methylene Chloride 4.1 J.B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Scheme Chloride 4.1 J.B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Scheme Chloride 4.1 J.B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Scheme Chloride 4.1 J.B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Scheme Chloride 4.1 J.B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Scheme Chloride 4.1 J.B 6.3 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 5.4 J.B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 5.4 J.B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 5.4 J.B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 5.4 J.B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 5.4 J.B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 5.4 J.B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 5.4 J.B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 5.4 J.B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 6.2 Scheme 6.5 J 9Z 9Z 1.3 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Scheme Chloride 6.2 Scheme 6.5 J 9Z 9Z 1.3 ug/kg dry 1.00 11/20/09 13:39 DC 9K11106 8260B Scheme Gholide 4.9 J 5.7 0.2 ug/kg dry 1.00 11/20/09 02:33 CDC 9K11106 8260B Scheme Gholide 6.3 J B 5.7 0.4 ug/kg dry 1.00 11/20/09 02:33 CDC 9K11106 8260B Scheme Chloride 6.5 J 9Z 0.4 ug/kg dry 1.00 11/20/09 02:33 CDC 9K11106 8260B Scheme Chloride 6.5 J 9Z 0.4 ug/kg dry 1.00 11/120/09 02:33 CDC 9K11106 8260B Scheme Chloride 6.5 J 9Z 0.4 ug/kg d	Client ID: GP-17 (12-14) (RSK0669-07	- Solid)			Samp	led: 11	/12/09 11:10	Rec	vd: 11/13/	09 09:10
Methylene Chloride 3.3 J. B 6.1 1.2 ug/kg dry 1.00 11/20/09 17:13 PQ 9K20029 8260B	Volatile Organic Compo	unds by EPA	8260B						,		
Command Chemistry Parameters Percent Solids 81 0.010 NR % 1.00 11/21/09 13:45 JR 9K21006 Dry Weight Chient ID: GP-18 (10-12) (RSK0669-08 - Solid) Sampled: 11/12/09 13:55 Recvd: 11/13/09 09:10	Acetone	11	J	31	1.4	ug/kg dry	1.00	11/20/09 17:13	PQ	9K20029	8260B
Percent Solids	Methylene Chloride	3.3	J, B	6.1	1.2	ug/kg dry	1.00	11/20/09 17:13	PQ	9K20029	8260B
Sampled: 11/12/09 13:55 Recvd: 11/13/09 09:10	General Chemistry Para	meters									
Volatile Organic Compounds by EPA 8260B Acetone 8.9 J 31 1.4 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Methylene Chloride 4.1 J, B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Seneral Chemistry Parameters	Percent Solids	81		0.010	NR	%	1.00	11/21/09 13:45	JR	9K21006	Dry Weight
Acetone 8.9 J 31 1.4 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B Methylene Chloride 4.1 J, B 6.3 1.2 ug/kg dry 1.00 11/20/09 17:39 PQ 9K20029 8260B General Chemistry Parameters Percent Solids 77 0.010 NR % 1.00 11/21/09 13:47 JR 9K21006 Dry Weight Sampled: 11/12/09 13:47 JR 9K21006 Dry Weight Sampled: 11/12/09 14:20 Recvd: 11/13/09 09:10 PO	Client ID: GP-18 (10-12) (RSK0669-08	- Solid)			Samp	led: 11	/12/09 13:55	Rec	vd: 11/13/0	9 09:10
Methylene Chloride	Volatile Organic Compo	unds by EPA	8260B								
Commonweight Comm	Acetone	8.9	J	31	1.4	ug/kg dry	1.00	11/20/09 17:39	PQ	9K20029	8260B
Percent Solids 77 0.010 NR % 1.00 11/21/09 13:47 JR 9K21006 Dry Weight	Methylene Chloride	4.1	J, B	6.3	1.2	ug/kg dry	1.00	11/20/09 17:39	PQ	9K20029	8260B
Sampled: 11/12/09 14:20 Recvd: 11/13/09 09:10	General Chemistry Parar	meters									
Volatile Organic Compounds by EPA 8260B Acetone	Percent Solids	77		0.010	NR	%	1.00	11/21/09 13:47	JR	9K21006	Dry Weight
Acetone 13 J 30 1.3 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Methylene Chloride 5.4 J, B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Methylene Chloride 5.4 J, B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B Methylene Chloride 83 0.010 NR % 1.00 11/21/09 13:49 JR 9K21006 Dry Weigh Methylene Chloride 83 0.010 NR % 1.00 11/21/09 13:49 JR 9K21006 Dry Weigh Methylene Chloride 6.2 5.7 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 4.9 J 5.7 0.49 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.3 J, B 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.3 J, B 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.3 J, B 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.3 J, B 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.3 J, B 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.3 J, B 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 31 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 31 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 31 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 31 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106	Client ID: GP-19 (10-12) (I	RSK0669-09	- Solid)			Samp	led: 11	12/09 14:20	Rec	/d: 11/13/0	9 09:10
Methylene Chloride 5.4 J, B 6.0 1.2 ug/kg dry 1.00 11/20/09 18:04 PQ 9K20029 8260B General Chemistry Parameters	Volatile Organic Compou	unds by EPA	8260B								
Client ID: GP-2(8-10) (RSK0443-02 - Solid) Sampled: 11/05/09 11:10 Recvd: 11/07/09 09:00	Acetone	13	J	30	1.3	ug/kg dry	1.00	11/20/09 18:04	PQ	9K20029	8260B
Percent Solids 83 0.010 NR % 1.00 11/21/09 13:49 J _R 9K21006 Dry Weigh Client ID: GP-2(8-10) (RSK0443-02 - Solid) Volatile Organic Compounds by EPA 8260B 1,1-Dichloroethene 6.2 5.7 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Acetone 6.5 J 29 1.3 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Carbon disulfide 4.9 J 5.7 0.49 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 5.7 0.28 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-thylbenzene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cethylbenzene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cethylbenzene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cethylbenzene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cetrachloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cetrachloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cetrachloroethene 65 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09	Methylene Chloride	5.4	J, B	6.0	1.2	ug/kg dry	1.00	11/20/09 18:04	PQ	9K20029	8260B
Sampled: 11/05/09 11:10 Recvd: 11/07/09 09:00	General Chemistry Parar	meters									
Volatile Organic Compounds by EPA 8260B 1,1-Dichloroethene 6.2 5.7 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Acetone 6.5 J 29 1.3 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Carbon disulfide 4.9 J 5.7 0.49 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 3700 E 5.7 0.28 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Ethylbenzene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.3 J, B 5.7 1.1 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Tetrachloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Toluene 2.5 J 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 65 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B	Percent Solids	83		0.010	NR	%	1.00	11/21/09 13:49	JR	9K21006	Dry Weight
1,1-Dichloroethene 6.2 5.7 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Acetone 6.5 J 29 1.3 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Carbon disulfide 4.9 J 5.7 0.49 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 3700 E 5.7 0.28 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 8.9 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 J 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 6.5 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 6.5 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5.500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5.500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5.500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5.500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5.500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5.500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5.500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 6.5 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 6.5 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 6.5 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 6.5 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 6.5 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 6.5 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82	Client ID: GP-2(8-10) (RSI	K0443-02 - S	olid)			Samp	led: 11/	05/09 11:10	Recv	/d: 11/07/0	9 09:00
Acetone 6.5 J 29 1.3 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Carbon disulfide 4.9 J 5.7 0.49 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 3700 E 5.7 0.28 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 65 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 65 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09	<u>Volatile Organic Compoι</u>	unds by EPA	8260B								
Acetone 6.5 J 29 1.3 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Carbon disulfide 4.9 J 5.7 0.49 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 3700 E 5.7 0.28 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B cis-1,2-Dichloroethene 65 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 65 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09	1,1-Dichloroethene	6.2		5.7	0.70	ug/kg dry	1.00	11/12/09 02:33	CDC	9K11106	8260B
Carbon disulfide 4.9 J 5.7 0.49 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 cis-1,2-Dichloroethene 3700 E 5.7 0.28 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 cis-1,2-Dichloroethene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 cis-1,2-Dichloroethene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 cis-1,2-Dichloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 cis-1,2-Dichloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 65 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 82608 crans-1,2-Dichloroethene 5500 E 5.7 0.40	Acetone	6.5	J	29	1.3		1.00	11/12/09 02:33	CDC	9K11106	
Eis-1,2-Dichloroethene	Carbon disulfide	4.9	J	5.7	0.49		1.00	11/12/09 02:33	CDC	9K11106	8260B
Ethylbenzene 6.5 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Methylene Chloride 5.3 J, B 5.7 1.1 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Tetrachloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Toluene 2.5 J 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B rans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Trichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Vinyl chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Kylenes, total 25 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B General Chemistry Parameters	cis-1,2-Dichloroethene	3700	Ε	5.7	0.28		1.00	11/12/09 02:33	CDC	9K11106	8260B
Methylene Chloride 5.3 J, B 5.7 1.1 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Tetrachloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Foluene 2.5 J 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B rans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Frichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Vinyl chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Kylenes, total 25 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B	Ethylbenzene	6.5		5.7	0.40		1.00	11/12/09 02:33	CDC	9K11106	8260B
Fetrachloroethene 89 5.7 0.77 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Foluene 2.5 J 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B rans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Frichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Vinyl chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Kylenes, total 25 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B	Methylene Chloride	5.3	J, B	5.7	1.1		1.00	11/12/09 02:33	CDC	9K11106	8260B
Foluene 2.5 J 5.7 0.43 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B rans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Frichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Vinyl chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Kylenes, total 25 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B General Chemistry Parameters	Tetrachloroethene	89		5.7	0.77		1.00	11/12/09 02:33	CDC	9K11106	8260B
rans-1,2-Dichloroethene 65 5.7 0.59 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Frichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Vinyl chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Kylenes, total 25 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B	Toluene	2.5	J	5.7			1.00	11/12/09 02:33	CDC	9K11106	8260B
Frichloroethene 5500 E 5.7 0.40 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B /inyl chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Kylenes, total 25 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B General Chemistry Parameters	trans-1,2-Dichloroethene	65			0.59					9K11106	
Vinyl chloride 31 11 0.70 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B Kylenes, total 25 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B General Chemistry Parameters	Trichloroethene	5500	E					11/12/09 02:33	CDC	9K11106	
Kylenes, total 25 11 0.96 ug/kg dry 1.00 11/12/09 02:33 CDC 9K11106 8260B General Chemistry Parameters	Vinyl chloride	31		11	0.70		1.00	11/12/09 02:33	CDC	9K11106	
	Xylenes, total	25		11						9K11106	
Percent Solids 85 0.010 NR % 1.00 11/18/09 15:40 JRR 9K18036 Dry Weight	General Chemistry Paran	neters									
	Percent Solids	85		0.010	NR	%	1.00	11/18/09 15:40	JRR	9K18036	Dry Weight

270 Michigan Avenue Buffalo, NY 14203 SDG Number: RSK0443

Received:

11/07/09-11/13/09

Reported:

12/11/09 15:37

Project: Standard Portable: Site# C907030

Project Number: 118071

			WVC COREIA	5 Juiiiii C	ry - Detect	10110				
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: GP-2(8-10) (RSI	THE RESERVE THE PERSON NAMED OF TAXABLE PARTY.		THE PARTY OF THE P	CONTROL DE	OSCIONARIO INC.		/05/09 11:10		vd: 11/07/	
Volatile Organic Compou	inds by EPA	8260B								
cis-1,2-Dichloroethene	4700	W1, D08	1100	53	ug/kg dry	10.0	11/19/09 16:15	DHC	9K16042	8260B
Tetrachloroethene	1600	W1, D08	1100	140	ug/kg dry	10.0	11/19/09 16:15	DHC	9K16042	8260B
Trichloroethene	49000	W1, D08	1100	72	ug/kg dry	10.0	11/19/09 16:15	DHC	9K16042	8260B
Client ID: GP-3(10-12) (RS	SK0443-03 -	Solid)			Samp	led: 11	/05/09 11:35	Rec	vd: 11/07/(09:00
Volatile Organic Compou	ınds by EPA	8260B								
1,1-Dichloroethene	4.5	J	5.8	0.72	ug/kg dry	1.00	11/12/09 02:59	CDC	9K11106	8260B
Acetone	9.1	J	29 .	1.3	ug/kg dry	1.00	11/12/09 02:59	CDC	9K11106	.8260B
Carbon disulfide	2.3	j	5.8	0.50	ug/kg dry	1.00	11/12/09 02:59	CDC	9K11106	8260B
cis-1,2-Dichloroethene	1700	E	5.8	0.29	ug/kg dry	1.00	11/12/09 02:59	CDC	9K11106	8260B
Methylene Chloride	5.0	J, B	5.8	1.2	ug/kg dry	1.00	11/12/09 02:59	CDC	9K11106	8260B
Toluene	2.2	Ĵ	5.8	0.44	ug/kg dry	1.00	11/12/09 02:59		9K11106	8260B
trans-1,2-Dichloroethene	13	•	5.8	0.60	ug/kg dry	1.00	11/12/09 02:59		9K11106	8260B
Trichloroethene	5300	E	5.8	0.40	ug/kg dry	1.00	11/12/09 02:59		9K11106	8260B
√inyl chloride	58	<u>-</u>	12	0.71	ug/kg dry ug/kg dry	1.00	11/12/09 02:59		9K11106	8260B
General Chemistry Paran	neters				3 3 3					
Percent Solids	86		0.010	NR	%	1.00	11/18/09 15:42	JRR	9K18036	Dry Weigl
lient ID: GP-3(10-12) (RS	K0443-03RE	E1 - Solid)			Samp	led: 11	/05/09 11:35	Recv	/d: 11/07/0	9 09:00
Volatile Organic Compou	inds by EPA	8260B								
cis-1,2-Dichloroethene	1300	W1, D08	420	21	ug/kg dry	4.00	11/17/09 12:35	TRB	9K16042	8260B
Trichloroethene	39000	W1, D08	420	29	ug/kg dry	4.00	11/17/09 12:35	TRB	9K16042	8260B
lient ID: GP-4(10-12) (RS	K0443-06 - \$	Solid)			Samp	led: 11/	/05/09 13:05	Recv	/d: 11/07/0	9 09:00
/olatile Organic Compou	nds by EPA	8260B								
Acetone	9.9	 J	29	1.3	ug/kg dry	1.00	11/12/09 04:16	CDC	9K11106	8260B
cis-1,2-Dichloroethene	68	-	5.8	0.28	ug/kg dry	1.00	11/12/09 04:16		9K11106	8260B
Methylene Chloride	6.0	В	5.8	1.1	ug/kg dry	1.00	11/12/09 04:16		9K11106	8260B
rans-1,2-Dichloroethene	2.0	J	5.8	0.60	ug/kg dry	1.00		CDC	9K11106	8260B
Frichloroethene	400	E	5.8	0.40		1.00		CDC	9K11106	8260B
/inyl chloride	10	J	12	0.70	ug/kg dry ug/kg dry	1.00	11/12/09 04:16		9K11106	8260B
Seneral Chemistry Param	neters				<i>ag.</i> 1.9 a. 7					
Percent Solids	85		0.010	NR	%	1.00	11/18/09 15:44	JRR	9K18036	Dry Weigh
lient ID: GP-4(10-12) (RS	K0443-06RE	1 - Solid)			Sampl	ed: 11/	05/09 13:05	Recv	d: 11/07/0	9 09:00
/olatile Organic Compou	nds by EPA	8260B								
?-Butanone	280	W1,J, B	530	38	ug/kg dry	1.00	11/17/09 13:45	TRB	9K16042	8260B
sis-1,2-Dichloroethene	60	W1,J	110	5.3	ug/kg dry ug/kg dry	1.00	11/17/09 13:45	TRB	9K16042	8260B
richloroethene	1600	W1,3	110	7.2	ug/kg ary ug/kg dry	1.00	11/17/09 13:45		9K16042	8260B
lient ID: GP-5(8-10) (RSK		olid)					05/09 14:25		d: 11/07/0	
, , ,		•			,					
Alatile Organic Compou										
Volatile Organic Compou 1,1-Dichloroethene	6.3	020UD	6.0	0.73	ug/kg dry	1.00	11/12/09 04:42	CDC	9K11106	8260B

SDG Number: RSK0443

Received: Reported: 11/07/09-11/13/09 12/11/09 15:37

270 Michigan Avenue Buffalo, NY 14203

Project: Standard Portable: Site# C907030

Project Number:

118071

ROMERO AND STATE OF THE STATE O	ach Hope and a sould by his oct to the bottom to		Executive	Summa	ry - Detect	ions		Control Contro	- Carpy of Water State Control of	i tana kangang mangakan dalah pana anyan pengelapan dalah
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: GP-5(8-10) (RS	K0443-07 - S	olid) - cont.			Samp	led: 11	/05/09 14:25	Rec	vd: 11/07/0	9 09:00
Volatile Organic Compo	unds by EPA	8260B - con	<u>t.</u>							
cis-1,2-Dichloroethene	2900	E	6.0	0.29	ug/kg dry	1.00	11/12/09 04:42	CDC	9K11106	8260B
Methylene Chloride	5.4	J, B	6.0	1.2	ug/kg dry	1.00	11/12/09 04:42	CDC	9K11106	8260B
trans-1,2-Dichloroethene	27		6.0	0.62	ug/kg dry	1.00	11/12/09 04:42		9K11106	8260B
Trichloroethene	5100	E	6.0	0.41	ug/kg dry	1.00	11/12/09 04:42		9K11106	8260B
Vinyl chloride	110		12	0.73	ug/kg dry	1.00	11/12/09 04:42	CDC	9K11106	8260B
General Chemistry Parar	<u>meters</u>									
Percent Solids	83		0.010	NR	%	1.00	11/18/09 15:46	JRR	9K18036	Dry Weight
Client ID: GP-5(8-10) (RSI	K0443-07RE	1 - Solid)			Samp	led: 11	/05/09 14:25	Rec	vd: 11/07/0	9 09:00
Volatile Organic Compou	inds by EPA	8260B								
cis-1,2-Dichloroethene	4400	W1, D08	430	22	ug/kg dry	4.00	11/17/09 14:09	TRB	9K16042	8260B
Trichloroethene	20000	W1, D08	430	29	ug/kg dry	4.00	11/17/09 14:09		9K16042	8260B
Client ID: GP-6(12-14) (RS	6K0443-08 -	Solid)			Samp	led: 11/	/05/09 15:25	Rec	vd: 11/07/0	9 09:00
Volatile Organic Compou	inds by EPA	8260B								
1,1-Dichloroethene	3.8	J	6.3	0.77	ualka dai	1.00	11/12/09 05:07	cnc	9K11106	8260B
Acetone	7.0	J	31	1.4	ug/kg dry ug/kg dry	1.00	11/12/09 05:07		9K11106	8260B
Carbon disulfide	2.0	J	6.3	0.54	ug/kg dry ug/kg dry	1.00	11/12/09 05:07		9K11106	8260B
cis-1,2-Dichloroethene	1400	Ē	6.3	0.31	ug/kg dry	1.00	11/12/09 05:07		9K11106	8260B
Methylene Chloride	5.2	J, B	6.3	1.2	ug/kg dry ug/kg dry	1.00	11/12/09 05:07		9K11106	8260B
trans-1,2-Dichloroethene	15	0, D	6.3	0.65	ug/kg dry ug/kg dry	1.00	11/12/09 05:07		9K11106	8260B
Trichloroethene	4800	Е	6.3	0.43	ug/kg dry ug/kg dry	1.00	11/12/09 05:07		9K11106	8260B
Vinyl chloride	140	<u></u>	13	0.77	ug/kg dry ug/kg dry	1.00	11/12/09 05:07		9K11106	8260B
General Chemistry Paran	neters									
Percent Solids	79		0.010	NR	%	1.00	11/18/09 15:48	JRR	9K18036	Dry Weight
Client ID: GP-6(12-14) (RS	K0443-08RE	E1 - Solid)			Samp	led: 11/	05/09 15:25	Recv	/d: 11/07/0	9 09:00
Volatile Organic Compou										
cis-1.2-Dichloroethene	3200	W1, D08	480	24	ua/ka day	4.00	11/17/09 14:32	TRB	9K16042	8260B
Trichloroethene	41000	W1, D08	480	33	ug/kg dry ug/kg dry	4.00	11/17/09 14:32	TRB	9K16042	8260B
Client ID: GP-7 (6-8) (RSK	0564-03 - Sc	olid)				led: 11/	09/09 11:05	Recv	/d: 11/11/0	9 09:00
Volatile Organic Compou					- 8-					
Methylene Chloride	4.9	<u>0200D</u> J	6.1	1.2	ug/kg dry	1.00	11/17/09 16:42	PQ	9K17034	8260B
•					aging ary					
General Chemistry Paran Percent Solids	80		0.010	NR	%	1.00	11/21/09 13:25	JR	9K21006	Dry Weight
Client ID: GP-8 (8-10) (RS		(hild)	0.010							, ,
					Sampi	eu. 11/	09/09 12:25	recv	d: 11/11/09	7 09:00
Volatile Organic Compou		8260B	50	1 1	ا حالت عاد ا	1.00	11/17/00 04:20	CDC	0V16105	doaco
Methylene Chloride	8.9		5.8	1.1	ug/kg dry	1.00	11/17/09 04:39	CDC	9K 10105	8260B
General Chemistry Paran										
Percent Solids	85		0.010	NR	%	1.00	11/21/09 13:27	JR	9K21006	Dry Weight

270 Michigan Avenue

Buffalo, NY 14203

SDG Number: RSK0443

Received:

11/07/09-11/13/09

Reported:

12/11/09 15:37

Project: Standard Portable: Site# C907030

118071 Project Number:

			Executive	, outilitie	ny Doloot					
	Sample	Data	Di	MDL		Dil	Date	Lab	- ·	
Analyte	Result	Qualifiers	RL	MIDL	Units	Fac	Analyzed	Tech		Method
Client ID: GP-9 (2-4) (R	RSK0564-01 - S	olid)			Samp	oled: 11	/09/09 12:45	Rec	vd: 11/11/0	9 09:00
Volatile Organic Com _l	pounds by EPA	8260B								
2-Butanone	8.3	J	30	2.2	ug/kg dry	1.00	11/17/09 03:22		9K16105	8260B
Acetone	27	J	30	1.3	ug/kg dry	1.00	11/17/09 03:22		9K16105	8260B
Methylene Chloride	7.3		6.0	1.2	ug/kg dry	1.00	11/17/09 03:22	CDC	9K16105	8260B
Total Metals by SW 84	6 Series Metho	<u>ods</u>								
Aluminum	6260		11.8	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
Arsenic	10.7		2.4	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
Barium	35.3		0.589	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
Beryllium	0.290		0.236	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
Calcium	1750		58.9	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
Chromium	8.34		0.589	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
Cobalt	5.98		0.589	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
Copper	19.2		1.2	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
ron	15900		11.8	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
.ead	10.5		1.2	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
// Aagnesium	2160		23.6	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
/langanese	236		0.2	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
lickel	14.9		5.89	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
otassium	562		35.3	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
/anadium	11.6		0.589	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
inc	41.8		2.4	NR	mg/kg dry	1.00	11/17/09 13:55	LMH	9K16028	6010B
1ercury	0.0333		0.0232	NR	mg/kg dry	1.00	11/17/09 18:59	MXM		7471A
Seneral Chemistry Par	rameters									
Percent Solids	81		0.010	NR	%	1.00	11/12/09 14:30	СхМ	9K12070	Dry Weigh
lient ID: GP-9A (10-12) (RSK0564-02	- Solid)			Sampl	led: 11/	09/09 13:40	Recv	rd: 11/11/0	9 09:00
/olatile Organic Comp	ounds by EPA	8260B								
/lethylene Chloride	3.5	J	5.9	1.2	ug/kg dry	1.00	11/17/09 03:47	CDC	9K16105	8260B
Total Metals by SW 84	6 Series Metho	ds								
duminum	8840		12.3	NR	mg/kg dry	1.00	11/17/09 14:00	LMH	9K16028	6010B
rsenic	11.5		2.5	NR	mg/kg dry	1.00	11/17/09 14:00	Lat VIII	9K16028	6010B
Barium	43.7		0.615	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
Beryllium	0.432		0.246	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
alcium	24700		61.5	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
hromium	12.6		0.615	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
obalt	10.4		0.615	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
opper	22.3		1.2	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
on	23800		12.3	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
ead	11.4		1.2	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
	9430		24.6	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
lagnesium	3450 395		0.2	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
fanganese	24.0									
lickel			6.15	NR	mg/kg dry	1.00	11/17/09 14:00		9K16028	6010B
otassium	1480		36.9	NR	mg/kg dry	1.00	11/17/09 14:00	LMH	9K16028	6010B

270 Michigan Avenue Buffalo, NY 14203

SDG Number: RSK0443

Received:

11/07/09-11/13/09

Reported:

12/11/09 15:37

Project: Standard Portable: Site# C907030

Project Number: 118071

		1	Executive	Summa	ry - Detect	ions				
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: GP-9A (10-12)	(RSK0564-02	- Solid) - con	ıt.		Samp	led: 11	/09/09 13:40	Rec	vd: 11/11/0	9 09:00
Total Metals by SW 846	Series Metho	ds - cont.								
Vanadium	13.8		0.615	NR	mg/kg dry	1.00	11/17/09 14:00	LMH	9K16028	6010B
Zinc	53.7		2.5	NR	mg/kg dry	1.00	11/17/09 14:00	LMH	9K16028	6010B
General Chemistry Para	<u>ameters</u>									
Percent Solids	82		0.010	NR	%	1.00	11/12/09 14:32	CxM	9K12070	Dry Weight
Client ID: TRIP BLANK	110909 (RSK0	564-06 - Wate	er)		Samp	led: 11	09/09	Rec	vd: 11/11/0	9 09:00
Volatile Organic Compo	ounds by EPA	8260B					r			
Cyclohexane	1.4		1.0	0.53	ug/L	1.00	11/16/09 21:50	CDC	9K16110	8260B
Toluene	2.1		1.0	0.51	ug/L	1.00	11/16/09 21:50	CDC	9K16110	8260B
Client ID: TRIP BLANK	11122009 (RSI	<0669-10 - Wa	ater)		Samp	led: 11/	12/09	Rec	/d: 11/13/0	9 09:10
Volatile Organic Compo	ounds by EPA	8260B								
Cyclohexane	1.8		1.0	0.53	ug/L	1.00	11/20/09 14:16	PQ	9K20035	8260B
Methylene Chloride	3.4	В	1.0	0.44	ug/L	1.00	11/20/09 14:16	PQ	9K20035	8260B
Toluene	1.5		1.0	0.51	ug/L	1.00	11/20/09 14:16	PQ	9K20035	8260B
Client ID: TRIP BLANK (RSK0443-09 -	Water)			Samp	led: 11/	05/09	Recv	/d: 11/07/0	9 09:00
Volatile Organic Compo	ounds by EPA	8260B								
Methylene Chloride	2.8		1.0	0.44	ug/L	1.00	11/12/09 14:05	PQ	9K12044	8260B

270 Michigan Avenue Buffalo, NY 14203 SDG Number: RSL0546

Received:

12/10/09-12/15/09

Reported:

01/11/10 17:35

Project: Standard Portable: Site# C907030

Project Number: 118071

Executive Summary - Detections											
	Sample	Data				Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Client ID: GPW14-1440	(RSL0546-07	- Water)			Sam	pled: 12	/08/09 14:40	Rec	vd: 12/10/0	9 10:05	
Volatile Organic Comp	ounds by EPA	8260B									
cis-1,2-Dichloroethene	5.9	P11, S13, P-HS	1.0	0.38	ug/L	1.00	12/20/09 17:25	NMD	9L19019	8260B	
Trichloroethene	0.57	P11, S13, P-HS,J	1.0	0.46	ug/L	1.00	12/20/09 17:25	NMD	9L19019	8260B	
Vinyl chloride	1.8	P11, S13, P-HS	1.0	0.24	ug/L	1.00	12/20/09 17:25	NMD	9L19019	8260B	
Client ID: GPW17-1145 ((RSL0546-14 -	- Water)			Samı	oled: 12	/09/09 11:45	Rec	vd: 12/10/09	10:05	
Volatile Organic Compo	ounds by EPA	8260B									
Toluene	0.51	J	1.0	0.51	ug/L	1.00	12/19/09 20:10	TRB	9L19018	8260B	
Total Metals by SW 846	Series Metho	<u>ods</u>									
Aluminum	12.9		0.200	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Arsenic	0.0158		0.0100	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Barium	0.365		0.0020	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Calcium	543		0.5	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Chromium	0.0148		0.0040	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Cobalt	0.0157		0.0040	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Copper	0.0211		0.0100	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Iron	18.3		0.050	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Lead	0.0123		0.0050	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Magnesium	91.5		0.200	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Manganese	2.11		0.0030	NR	mg/L	1.00	12/16/09 02:04	АМН	9L14051	6010B	
Nickel	0.0364		0.0100	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Potassium	7.44		0.500	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Sodium	44.3		1.0	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
√anadium	0.0218		0.0050	NR	mg/L	1.00	12/16/09 02:04	АМН	9L14051	6010B	
Zinc	0.0484		0.0100	NR	mg/L	1.00	12/16/09 02:04	AMH	9L14051	6010B	
Dissolved Metals by SW	V 846 Series N	<u>flethods</u>									
Arsenic	0.0164	P7	0.0100	NR	mg/L	1.00	12/16/09 00:21	LMH	9L14025	6010B	
Barium	0.120	P7	0.0020	NR	mg/L	1.00	12/16/09 00:21	LMH	9L14025	6010B	
Calcium	214	P7	0.5	NR	mg/L	1.00	12/16/09 00:21	LMH	9L14025	6010B	
Vlagnesium	75.2	P7	0.200	NR	mg/L	1.00	12/16/09 00:21	LMH	9L14025	6010B	
Manganese	0.310	P7	0.0030	NR	mg/L	1.00	12/16/09 00:21	LMH	9L14025	6010B	
Potassium	1.61	P7	0.500	NR	mg/L	1.00	12/16/09 00:21	LMH	9L14025	6010B	
Sodium	39.5	P7	1.0	NR	mg/L	1.00	12/16/09 00:21	LMH	9L14025	6010B	

270 Michigan Avenue Buffalo, NY 14203

SDG Number: RSL0546

Received:

12/10/09-12/15/09

Reported:

01/11/10 17:35

Project: Standard Portable: Site# C907030

Project Number: 118071

	Sample	Data			y - Detec	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: GPW18-0830 (F	RSL0546-08	· Water)			Sam	pled: 12	/09/09 08:30		vd: 12/10/0	THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED
Volatile Organic Compo	unds by EPA	8260B								
Acetone	15	P11	5.0	1.3	ug/L	1.00	12/19/09 17:52	TRB	9L19018	8260B
cis-1,2-Dichloroethene	0.85	P11,J	1.0	0.38	ug/L	1.00	12/19/09 17:52	TRB	9L19018	8260B
Trichloroethene	0.98	P11,J	1.0	0.46	ug/L	1.00	12/19/09 17:52	TRB	9L19018	8260B
Client ID: GPW20-0900 (R	SL0546-09 -	Water)			Samı	pled: 12	/09/09 09:00	Rec	vd: 12/10/09	9 10:05
Volatile Organic Compo	unds by EPA	8260B								
Trichloroethene	0.72	S13, P11,J	1.0	0.46	ug/L	1.00	12/19/09 18:15	TRB	9L19018	8260B
Client ID: GPW2-0905 (RS	SL0546-01 - \	Nater)			Samı	pled: 12	/08/09 09:05	Rec	vd: 12/10/09	9 10:05
Volatile Organic Compou	unds by EPA	8260B								
1,1-Dichloroethane	1.7		1.0	0.38	ug/L	1.00	12/19/09 15:10	TRB	9L19018	8260B
1,1-Dichloroethene	25		1.0	0.29	ug/L	1.00	12/19/09 15:10	TRB	9L19018	8260B
Benzene	0.61	J	1.0	0.41	ug/L	1.00	12/19/09 15:10		9L19018	8260B
Chloroethane	5.7	-	1.0	0.32	ug/L ug/L	1.00	12/19/09 15:10		9L19018	8260B
cis-1,2-Dichloroethene	3700	Ε	1.0	0.38	ug/L	1.00	12/19/09 15:10	TRB	9L19018	8260B
Ethylbenzene	2.4	_	1.0	0.18	ug/L	1.00	12/19/09 15:10		9L19018	8260B
Tetrachloroethene	12		1.0	0.36	ug/L ug/L	1.00	12/19/09 15:10	TRB	9L19018	8260B
foluene	7.4		1.0	0.51		1.00	12/19/09 15:10	TRB	9L19018	8260B
roluerie rans-1,2-Dichloroethene	330	E	1.0	0.31	ug/L	1.00	12/19/09 15:10		9L19018	
,	5300	E	1.0	0.42	ug/L					8260B
Trichloroethene					ug/L	1.00	12/19/09 15:10	TRB	9L19018	8260B
/inyl chloride	450	E	1.0	0.24	ug/L	1.00	12/19/09 15:10	TRB	9L19018	8260B
Kylenes, total	8.2	d 188-4	2.0	0.66	ug/L	1.00	12/19/09 15:10	TRB	9L19018	8260B
Client ID: GPW2-0905 (RS	LU546-U1KE	1 - vvater)			Samp	oled: 12/	08/09 09:05	Recv	d: 12/10/09	10:05
Volatile Organic Compou	inds by EPA	8260B								
cis-1,2-Dichloroethene	26000	D08	400	150	ug/L	400	12/20/09 15:52	NMD	9L19019	8260B
rans-1,2-Dichloroethene	330	D08,J	400	170	ug/L	400	12/20/09 15:52	NMD	9L19019	8260B
Trichloroethene	39000	D08	400	180	ug/L	400	12/20/09 15:52	NMD	9L19019	8260B
/inyl chloride	530	D08	400	97	ug/L	400	12/20/09 15:52	NMD	9L19019	8260B
lient ID: GPW3-1015 (RS	L0546-02 - V	Vater)			Samp	led: 12/	08/09 10:15	Recv	d: 12/10/09	10:05
Volatile Organic Compou	inds by EPA	8260B								
1,1,2-Trichloroethane	3.0		1.0	0.23	ug/L	1.00	12/19/09 15:33	TRB	9L19018	8260B
1,1-Dichloroethane	0.71	J	1.0	0.38	ug/L	1.00	12/19/09 15:33		9L19018	8260B
1,1-Dichloroethene	44		1.0	0.29	ug/L	1.00	12/19/09 15:33		9L19018	8260B
Benzene	0.73	J	1.0	0.41	ug/L	1.00	12/19/09 15:33		9L19018	8260B
Chloroethane	9.1		1.0	0.32	ug/L	1.00	12/19/09 15:33		9L19018	8260B
is-1,2-Dichloroethene	3100	E	1.0	0.38	ug/L	1.00	12/19/09 15:33		9L19018	8260B
etrachloroethene	8.4		1.0	0.36	ug/L	1.00	12/19/09 15:33		9L19018	8260B
oluene	3.2		1.0	0.51	ug/L	1.00	12/19/09 15:33		9L19018	8260B
ans-1,2-Dichloroethene	150	Ε	1.0	0.42	ug/L	1.00	12/19/09 15:33		9L19018	8260B
Frichloroethene	5300	E	1.0	0.42		1.00			9L19018	8260B
HOLINOLOGI ICLIC	1300	E	1.0	0.40	ug/L ug/L	1.00			9L19018	8260B
/inyl chloride										

Volatile Organic Compounds by EPA 8260B

270 Michigan Avenue Buffalo, NY 14203 SDG Number: RSL0546

Received:

12/10/09-12/15/09

Reported:

01/11/10 17:35

Project: Standard Portable: Site# C907030

Project Number: 118071

			Executive	Summary	- Detect	tions				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Metho
Client ID: GPW3-1015 (R	SL0546-02RE	E1 - Water) - c	ont.		Sam	pled: 12	/08/09 10:15	Rec	vd: 12/10/0	9 10:05
Volatile Organic Compo	unds by EPA	8260B - cont	<u>t.</u>							
cis-1,2-Dichloroethene	13000	D08	400	150	ug/L	400	12/20/09 16:15		9L19019	8260E
Trichloroethene	34000	D08	400	180	ug/L	400	12/20/09 16:15		9L19019	8260E
Vinyl chloride	1500	D08	400	97	ug/L	400	12/20/09 16:15	NMD	9L19019	8260E
Client ID: GPW4-1145 (RS	SL0546-13 - \	Water)			Sam	pled: 12	/08/09 11:45	Rec	vd: 12/10/0	9 10:05
Volatile Organic Compo	unds by EPA	<u> 8260B</u>								
cis-1,2-Dichloroethene	140	E	1.0	0.38	ug/L.	1.00	12/19/09 19:47	TRB	9L19018	8260E
trans-1,2-Dichloroethene	3.4		1.0	0.42	ug/L	1.00	12/19/09 19:47	TRB	9L19018	8260E
Trichloroethene	100	E	1.0	0.46	ug/L	1.00	12/19/09 19:47	TRB	9L19018	8260E
Vinyl chloride	4.5		1.0	0.24	ug/L	1.00	12/19/09 19:47	TRB	9L19018	8260E
Organochlorine Pesticid	es by EPA N	lethod 8081A				•				
gamma-Chlordane [2C]	0.012	J	0.056	0.012	ug/L	1.00	12/14/09 15:16	MAN	9L10098	8081A
Total Metals by SW 846 S	Series Metho	<u>ods</u>								
Aluminum	3.07		0.200	NR	mg/L	1.00	12/16/09 01:59	AMH	9L14051	6010B
Barium	0.0887		0.0020	NR	mg/L	1.00	12/16/09 01:59	АМН	9L14051	6010B
Calcium	151		0.5	NR	mg/L	1.00	12/16/09 01:59	AMH	9L14051	6010B
Chromium	0.0045		0.0040	NR	mg/L	1.00	12/16/09 01:59	АМН	9L14051	6010B
ron	5.55		0.050	NR	mg/L	1.00	12/16/09 01:59		9L14051	6010B
Vlagnesium	12.9		0.200	NR	mg/L	1.00	12/16/09 01:59		9L14051	6010B
Vlanganese	0.852		0.0030	NR	mg/L	1.00	12/16/09 01:59		9L14051	6010B
Potassium	2.95		0.500	NR	mg/L	1.00	12/16/09 01:59		9L14051	6010B
Sodium	15.8		1.0	NR	mg/L	1.00	12/16/09 01:59		9L14051	6010B
Vanadium	0.0058		0.0050	NR	mg/L	1.00	12/16/09 01:59		9L14051	6010B
Zinc	0.0276		0.0100	NR	mg/L	1.00	12/16/09 01:59	AMH		6010B
Dissolved Metals by SW	846 Series N	flethods .								
Barium	0.0682	P7	0.0020	NR	mg/L	1.00	12/15/09 23:56	LMH	9L14025	6010B
Calcium	143	P7	0.5	NR	mg/L	1.00	12/15/09 23:56	LMH	9L14025	6010B
Vagnesium	11.2	P7	0.200	NR	mg/L	1.00	12/15/09 23:56	LMH	9L14025	6010B
Vlanganese	0.727	P7	0.0030	NR	mg/L	1.00	12/15/09 23:56	LMH	9L14025	6010B
Potassium	1.76	P7	0.500	NR	mg/L	1.00	12/15/09 23:56	LMH	9L14025	6010B
Sodium	16.3	P7	1.0	NR	mg/L	1.00	12/15/09 23:56		9L14025	6010B
Client ID: GPW4-1145 (RS					-		08/09 11:45		d: 12/10/09	
Volatile Organic Compou		,			2 min	•				,
cis-1,2-Dichloroethene	150	D08	2.0	0.77	ug/L	2.00	12/20/09 17:48	VIVID	9L19019	8260B
trans-1,2-Dichloroethene	3.3	D08	2.0	0.77	ug/L ug/L	2.00	12/20/09 17:48		9L19019	8260B
Trichloroethene	99	D08	2.0	0.92	ug/L ug/L	2.00	12/20/09 17:48		9L19019	8260B
√inyl chloride	5.0	D08	2.0	0.49	ug/L	2.00	12/20/09 17:48		9L19019	8260B
Client ID: GPW5-1340 (RS	L0546-04 - V	Vater)			Samp	led: 12/	08/09 13:40	Recv	d: 12/10/09	10:05
Volatile Organic Compou	nds bv EPA	8260B								
1,1-Dichloroethane	5.2	A STANISH AND	1.0	0.38	ug/L	1.00	12/19/09 16:20	TRB	9L19018	8260B
1,1-Dichloroethene	38		1.0	0.29	ug/L	1.00	12/19/09 16:20		9L19018	8260B

270 Michigan Avenue Buffalo, NY 14203 SDG Number: RSL0546

Received:

12/10/09-12/15/09

Reported:

01/11/10 17:35

Project: Standard Portable: Site# C907030

Project Number: 118071

Executive Summary - Detections										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: GPW5-1340 (RS	SL0546-04 -	Water) - cont.			Sam	pled: 12	/08/09 13:40	Rec	vd: 12/10/0	9 10:05
Volatile Organic Compo	unds by EP/	A 8260B - cont	• •3							
1,2-Dichloroethane	0.53	J	1.0	0.21	ug/L	1.00	12/19/09 16:20	TRB	9L19018	8260B
Chloroethane	3.9		1.0	0.32	ug/L	1.00	12/19/09 16:20	TRB	9L19018	8260B
cis-1,2-Dichloroethene	3200	E	1.0	0.38	ug/L	1.00	12/19/09 16:20	TRB	9L19018	8260B
trans-1,2-Dichloroethene	140	E	1.0	0.42	ug/L	1.00	12/19/09 16:20	TRB	9L19018	8260B
Trichloroethene	2300	E	1.0	0.46	ug/L	1.00	12/19/09 16:20	TRB	9L19018	8260B
Vinyl chloride	1500	E	1.0	0.24	ug/L	1.00	12/19/09 16:20	TRB	9L19018	8260B
Client ID: GPW5-1340 (RS	SL0546-04RI	E1 - Water)			Sam	pled: 12	/08/09 13:40	Rec	vd: 12/10/0	9 10:05
Volatile Organic Compou	unds by EPA	\ 8260B								
cis-1,2-Dichloroethene	15000	D08	200	77	ug/L	200	12/21/09 12:52	LH	9L21018	8260B
trans-1.2-Dichloroethene	110	D08,J	200	84	ug/L	200	12/21/09 12:52	LH	9L21018	8260B
Trichloroethene	4100	D08	200	92	ug/L	200	12/21/09 12:52	LH	9L21018	8260B
Vinyl chloride	1900	D08	200	49	ug/L	200	12/21/09 12:52		9L21018	8260B
Client ID: GPW6-1330 (RS	L0664-01 -	Water)			-	pled: 12	/14/09 13:30	Rec	vd: 12/15/09	12:20
Volatile Organic Compou	inds by EPA	\ 8260B								
1,1-Dichloroethene	15	S13, P11	1.0	0.29	ug/L	1.00	12/22/09 02:38	NMD	9L21096	8260B
cis-1,2-Dichloroethene	2900	S13, P11,E	1.0	0.38	ug/L	1.00	12/22/09 02:38		9L21096	8260B
Toluene	1.2	S13, P11	1.0	0.51	ug/L	1.00	12/22/09 02:38		9L21096	8260B
trans-1,2-Dichloroethene	78	S13, P11	1.0	0.42	ug/L	1.00	12/22/09 02:38	NMD	9L21096	8260B
Trichloroethene	3300	S13, P11,E	1.0	0.46	ug/L	1.00	12/22/09 02:38	NMD	9L21096	8260B
Vinyl chloride	460	S13, P11,E	1.0	0.24	ug/L	1.00	12/22/09 02:38		9L21096	8260B
Client ID: GPW6-1330 (RS	L0664-01RE	≣1 - Water)			Samı	oled: 12/	14/09 13:30	Rec	vd: 12/15/09	12:20
Volatile Organic Compou	ınds by EPA	8260B								
cis-1,2-Dichloroethene	7000	D08, P11,	120	48	ug/L	125	12/22/09 12:42	DHC	9L22007	8260B
Trichloroethene	8800	S13 D08, P11,	120	57	ug/L	125	12/22/09 12:42	DHC	9L22007	8260B
Vinyl chloride	350	S13 D08, P11,	120	30	ug/L	125	12/22/09 12:42	DHC	9L22007	8260B
		S13			•					
Client ID: GPW8-1435 (RS	L0546-12 - \	Nater)			Samp	oled: 12/	09/09 14:35	Recv	/d: 12/10/09	10:05
Volatile Organic Compou	es (combateles es el vicio de la combatele es es el vicio de la combatele es es el vicio de la combatele es es		_							
Acetone	4.1	P11,J	5.0	1.3	ug/L	1.00	12/19/09 19:24	TRB	9L19018	8260B

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

www.testamericainc.com

SDG Number: RSK0443

Received:

11/07/09-11/13/09

Reported:

12/11/09 15:37

Project: Standard Portable: Site# C907030

Project Number: 118071

			Executive	Summa	ry - Detect	ions				
	Sample	Data	D .	BAENI		Dil	Date	Lab	ET 4 1	
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: GP-1(8-10) (RS	K0443-01 - S	Solid)			Samp	oled: 11	/05/09 10:05	Rec	vd: 11/07/0	9 09:00
<u>Volatile Organic Compo</u>	unds by EPA	<u> 8260B</u>								
1,1-Dichloroethane	2.2	J	6.0	0.30	ug/kg dry	1.00	11/12/09 02:08	CDC	9K11106	8260B
Acetone	9.9	J	30	1.3	ug/kg dry	1.00	11/12/09 02:08	CDC	9K11106	8260B
cis-1,2-Dichloroethene	2.7	J	6.0	0.30	ug/kg dry	1.00	11/12/09 02:08	CDC	9K11106	8260B
Methylene Chloride	5.1	J, B	6.0	1.2	ug/kg dry	1.00	11/12/09 02:08	CDC	9K11106	8260B
Trichloroethene	150		6.0	0.42	ug/kg dry	1.00	11/12/09 02:08	CDC	9K11106	8260B
General Chemistry Para	<u>meters</u>									
Percent Solids	82		0.010	NR	%	1.00	11/18/09 15:38	JRR	9K18036	Dry Weigh
Client ID: GP-10 (10-12) (RSK0564-05	- Solid)			Samp	led: 11	/09/09 15:05	Rec	vd: 11/11/0	9 09:00
Volatile Organic Compo	unds by EPA	8260B								
Methylene Chloride	1.9	J	5.7	1.1	ug/kg dry	1.00	11/17/09 17:07	PQ ·	9K17034	8260B
General Chemistry Para	meters									
Percent Solids	84		0.010	NR	%	1.00	11/21/09 13:29	JR	9K21006	Dry Weigh
Client ID: GP-11A (12-14)	(RSK0669-0	2 - Solid)			Samp	led: 11	/11/09 14:55	Recv	vd: 11/13/0	9 09:10
Volatile Organic Compo	unds by EPA	8260B								
	7.8	J	29	1.3	on the on solon .	1.00	11/20/09 15:07	PQ	9K20029	8260B
Acetone Methylene Chloride	7.6 3.8	J, B	5.9	1.2	ug/kg dry	1.00	11/20/09 15:07	PQ	9K20029	8260B
Methylerie Chloride	3.0	J, D	5.5	1 - 5	ug/kg dry	1.00	11/20/09 15:07	ΓQ	31/20023	02000
General Chemistry Para										
Percent Solids	82		0.010	NR	%	1.00	11/21/09 13:35	JR	9K21006	Dry Weigh
Client ID: GP-12 (12-14) (RSK0669-03	- Solid)			Samp	led: 11/	/11/09 15:55	Recv	/d: 11/13/0	9 09:10
Volatile Organic Compo	unds by EPA	8260B								
Acetone	10	J	30	1.3	ug/kg dry	1.00	11/20/09 15:32	PQ	9K20029	8260B
Methylene Chloride	3.5	J, B	6.0	1.2	ug/kg dry	1.00	11/20/09 15:32	PQ	9K20029	8260B
General Chemistry Para	meters									
Percent Solids	79		0.010	NR	%	1.00	11/21/09 13:37	JR	9K21006	Dry Weigh
Client ID: GP-13 (8-10) (R	SK0669-04 -	Solid)			Samp	led: 11/	11/09 16:50	Recv	rd: 11/13/0	9 09:10
Volatile Organic Compo	unds by EPA	8260B								
Acetone	19	J	30	1.3	ug/kg dry	1.00	11/20/09 15:57	PQ	9K20029	8260B
Methylene Chloride	7.9	В	5.9	1.2	ug/kg dry	1.00	11/20/09 15:57	PQ	9K20029	8260B
General Chemistry Para	neters									
Percent Solids	84		0.010	NR	%	1.00	11/21/09 13:39	JR	9K21006	Dry Weight
Client ID: GP-14 (12-14) (I	RSK0669-05	- Solid)			Sampl	led: 11/	12/09 08:10	Recv	d: 11/13/0	9 09:10
Volatile Organic Compo	ınds bv EPA	8260B			•					
Acetone	18	J	29	1.3	ug/kg dry	1.00	11/20/09 16:23	PQ	9K20029	8260B
Methylene Chloride	7.4	В	5.8	1.1	ug/kg dry ug/kg dry	1.00	11/20/09 16:23		9K20029	8260B
<u>General Chemistry Parar</u>	neters									
Percent Solids	84		0.010	NR	%	1.00	11/21/09 13:41	JR	9K21006	Dry Weight
TestAmerica Buffalo - 10								710		wiy sveight

270 Michigan Avenue

Buffalo, NY 14203

www.testamericainc.com

SDG Number: RSL0546

Received:

12/10/09-12/15/09

Reported:

01/11/10 17:35

Project: Standard Portable: Site# C907030

Project Number:

118071

			Executive	Summar	y - Detec	tions	- Marian Costa Propia a vidili Alama (Politica) di Piperio Costa			A PORTOTORY ELEVANOR (SWAPP) CO COM A PORTOTOR SAME AND A SWAPP AN
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: DRUMS WATE	R (RSL0546-	15 - Water)			Sam	pled: 12	/09/09 15:30	Rec	vd: 12/10/	09 10:05
TCLP Volatile Organic C	ompounds l	by EPA Meth	od 1311/826	<u>0B</u>						
1,1-Dichloroethene	1.1		1.0	0.29	ug/L	1.00	12/20/09 18:11	NMD	9L19019	8260B TCLP
Trichloroethene	620	E	1.0	0.46	ug/L	1.00	12/20/09 18:11	NMD	9L19019	8260B TCLP
Vinyl chloride	33		1.0	0.24	ug/L	1.00	12/20/09 18:11	NMD	9L19019	8260B TCLP
TCLP Metals										
Barium	0.117		0.0020	NR	mg/L	1.00	12/16/09 03:28	LMH	9L15032	6010B TCLP
General Chemistry Para	meters									
Flashpoint	>176		50.0	50.0	°F	1.00	12/17/09 18:39	RJP	9L17107	1010
рН	7.49	HFT	NR	0.00	su	1.00	12/10/09 21:59		9L10121	9040
Client ID: DRUMS WATER	R (RSL0546-	15RE1 - Wate	er)		Sam	pled: 12	/09/09 15:30	Rec	vd: 12/10/(9 10:05
•	•			10						
TCLP Volatile Organic C						40.0	10104100 40 45		0104040	20000 7010
Trichloroethene	630	D08, P6	10	4.6	ug/L	10.0	12/21/09 13:15	LH	9L21018	8260B TCLP
Vinyl chloride	35	D08, P6	10	2.4	ug/L	10.0	12/21/09 13:15	LH	9L21018	8260B TCLP
Client ID: FD-120809 (RS	L0546-03 - W	/ater)			Sam	pled: 12	/08/09	Rec	vd: 12/10/0	9 10:05
Volatile Organic Compo	unds by EPA	8260B								
1,1,2-Trichloroethane	2.6		1.0	0.23	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
1,1-Dichloroethane	0.72	J	1.0	0.38	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
1,1-Dichloroethene	43		1.0	0.29	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Benzene	0.74	J	1.0	0.41	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Chloroethane	7.6		1.0	0.32	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
cis-1,2-Dichloroethene	3100	Ε	1.0	0.38	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Tetrachloroethene	8.5		1.0	0.36	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Toluene	3.3		1.0	0.51	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
trans-1,2-Dichloroethene	140	E	1.0	0.42	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Trichloroethene	5400	Ε	1.0	0.46	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Vinyl chloride	1300	E	1.0	0.24	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Client ID: FD-120809 (RSI	_0546-03RE	I - Water)			Sam	oled: 12/	08/09	Recv	/d: 12/10/0	9 10:05
Volatile Organic Compou	inds by EPA	8260B								
cis-1,2-Dichloroethene	13000	D08	400	150	uall	400	12/20/09 16:39	VIVID	9L19019	8260B
Trichloroethene	30000	D08	400	180	ug/L ug/L	400	12/20/09 16:39		9L19019	8260B
Vinyl chloride	1500	D08	400	97	ug/L	400	12/20/09 16:39	NMD	9L19019	8260B
Client ID: GPW10-1230 (R	SL0546-10 -	Water)			Ü		09/09 12:30		d: 12/10/0	
		,				J. 00. 121	00.00 12.00	11001	W. 12/10/0	0 10.00
Volatile Organic Compou	INGS DY EPA 0.56	J	1.0	0.50	ug/L	1.00	12/19/09 18:38	TRR	9L19018	8260B
Toluene	0.54	J	1.0	0.50	ug/L ug/L	1.00	12/19/09 18:38		9L19018	8260B
Trichloroethene	0.60	J	1.0	0.46	ug/L	1.00	12/19/09 18:38		9L19018	8260B
Client ID: GPW13-1430 (R		-			•		14/09 14:30		d: 12/15/0	
					Saint	/15u. 1 <i>4l</i>	14100 14.00	VecA	u. 12/15/U	∂ 1
Volatile Organic Compou										
cis-1,2-Dichloroethene	1.2	S13, P11	1.0	0.38	ug/L	1.00	12/22/09 13:07		9L22007	8260B
Trichloroethene	1.3	S13, P11	1.0	0.46	ug/L	1.00	12/22/09 13:07	DHC	9L22007	8260B

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

New York State D.E.C. - Buffalo, NY 270 Michigan Avenue

Buffalo, NY 14203

SDG Number: RSK0711

Received:

11/13/09

Reported:

12/11/09 16:56

Project: Standard Portable: Site# C907030

Project Number: 118071

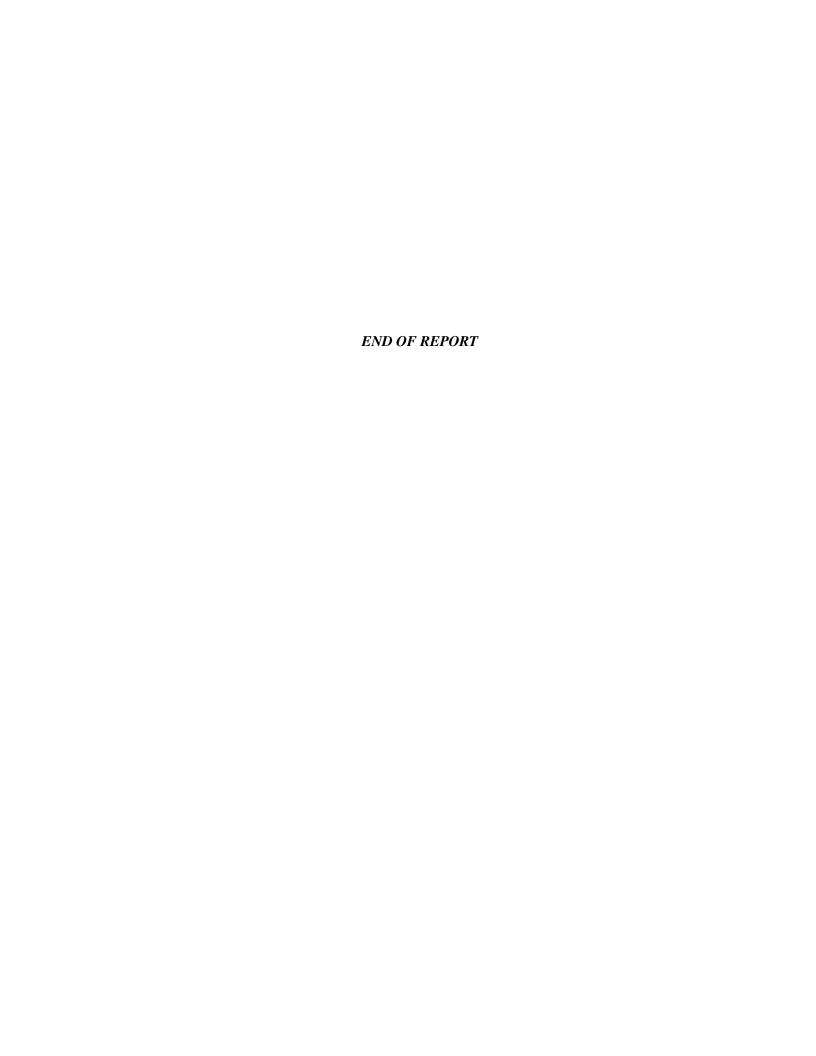
Executive Summary - Detections										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: DRUMS 111309	RSK0711-0	05 - Solid)			Samp	led: 11	/13/09 12:00	Rec	vd: 11/13/0	9 16:00
TCLP Volatile Organic C	ompounds b	oy EPA Metho	d 1311/8260	<u>)B</u>						
Trichloroethene	200	D07	10	4.6	ug/L	10.0	11/23/09 12:01	RJ	9K20071	8260B TCLP
TCLP Metals										
Barium	0.560	B1, B	0.0020	NR	mg/L	1.00	11/18/09 09:14	LMH	9K17032	6010B TCLP
General Chemistry Para	meters									
Percent Solids	85		0.010	NR	%	1.00	11/16/09 19:28	JRR	9K16084	Dry Weight
рН	7.79		NR	NR	SU	1.00	11/17/09 12:55	RJP	9K17061	9045
Client ID: GP-20 (8-10) (R	SK0711-01 -	Solid)			Samp	led: 11	13/09 07:50	Rec	vd: 11/13/0	9 16:00
Volatile Organic Compo	unds by EPA	8260B								
Acetone	19	J	31	1.4	ug/kg dry	1.00	11/25/09 15:07	PQ	9K25015	8260B
Methylene Chloride	4.2	B, J	6.1	1.2	ug/kg dry	1.00	11/25/09 15:07	PQ	9K25015	8260B
Total Metals by SW 846	Series Metho	ods .								
Aluminum	8820		12.1	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Arsenic	6.3		2.4	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Barium	41.1		0.603	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Beryllium	0.409		0.241	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Calcium	23400		60.3	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Chromium	12.6		0.603	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Cobalt	8.67		0.603	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Copper	22.5		1.2	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Iron	20500		12.1	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Lead	10.6		1.2	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Magnesium	10900		24.1	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Manganese	326		0.2	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Nickel	21.6		6.03	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Potassium	1360		36.2	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Vanadium	15.3		0.603	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
Zinc	59.9		2.4	NR	mg/kg dry	1.00	11/18/09 04:52	LMH	9K16078	6010B
General Chemistry Parar	<u>neters</u>									
Percent Solids	79		0.010	NR	%	1.00	11/14/09 18:44	JR	9K14006	Dry Weight

270 Michigan Avenue Buffalo, NY 14203

SDG Number: RSL0546

Received:

12/10/09-12/15/09


Reported:

01/11/10 17:35

Project: Standard Portable: Site# C907030

Project Number: 118071

			Executive	Summai	ry - Detec	tions				
A 1.	Sample	Data	D.	MDL	11.74.	Dil	Date	Lab	5	
Analyte	Result	Qualifiers	RL	IAIDE	Units	Fac	Analyzed	Tech		Method
Client ID: DRUMS WATE	K (KSLU546	-15 - vvater)			Sam	ipled: 12	2/09/09 15:30	Rec	vd: 12/10/	09 10:05
TCLP Volatile Organic C	ompounds	by EPA Metho								
1,1-Dichloroethene	1.1		1.0	0.29	ug/L	1.00	12/20/09 18:11	NMD	9L19019	8260B TCLP
Trichloroethene	620	E	1.0	0.46	ug/L	1.00	12/20/09 18:11		9L19019	8260B TCLP
Vinyl chloride	33		1.0	0.24	ug/L	1.00	12/20/09 18:11	NMD	9L19019	8260B TCLP
TCLP Metals										
Barium	0.117		0.0020	NR	mg/L	1.00	12/16/09 03:28	LMH	9L15032	6010B TCLP
General Chemistry Para	<u>meters</u>									
Flashpoint	>176		50.0	50.0	· °F	1.00	12/17/09 18:39	RJP	9L17107	1010
рН	7.49	HFT	NR	0.00	SU	1.00	12/10/09 21:59	JFR	9L10121	9040
· Client ID: DRUMS WATE	R (RSL0546-	·15RE1 - Wate	er)		Sam	pled: 12	/09/09 15:30	Rec	vd: 12/10/0	09 10:05
TCLP Volatile Organic C	'amnaunde l	ov EPA Metho	nd 1311/8261	JB		•				
Trichloroethene	630	D08, P6	10	4.6	ua II	10.0	12/21/09 13:15	LH	9L21018	8260B TCLP
Vinyl chloride	35	D08, P6	10	2.4	ug/L	10.0	12/21/09 13:15		9L21018	8260B TCLP
Client ID: FD-120809 (RS		•	10	Z.**	ug/L					
-					Sam	pled: 12	/08/09	Kec.	vd: 12/10/0	9 10:05
Volatile Organic Compo	unds by EPA	<u> 8260B</u>								
1,1,2-Trichloroethane	2.6		1.0	0.23	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
1,1-Dichloroethane	0.72	J	1.0	0.38	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
1,1-Dichloroethene	43		1.0	0.29	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Benzene	0.74	J	1.0	0.41	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Chloroethane	7.6		1.0	0.32	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
cis-1,2-Dichloroethene	3100	E	1.0	0.38	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Tetrachloroethene	8.5		1.0	0.36	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Toluene	3.3		1.0	0.51	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
trans-1,2-Dichloroethene	140	E	1.0	0.42	ug/L	1.00	12/19/09 15:57		9L19018	8260B
Trichloroethene	5400	E	1.0	0.46	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Vinyl chloride	1300	E	1.0	0.24	ug/L	1.00	12/19/09 15:57	TRB	9L19018	8260B
Client ID: FD-120809 (RSI	L0546-03RE ⁴	1 - Water)			Sam	pled: 12	/08/09	Recv	/d: 12/10/0	9 10:05
Volatile Organic Compou	unds by EPA	8260B								
cis-1,2-Dichloroethene	13000	D08	400	150	ug/L	400	12/20/09 16:39	NMD	9L19019	8260B
Trichloroethene	30000	D08	400	180	ug/L	400	12/20/09 16:39	NMD		8260B
Vinyl chloride	1500	D08	400	97	ug/L	400	12/20/09 16:39	NMD	9L19019	8260B
Client ID: GPW10-1230 (R	RSL0546-10 -	Water)			Sam	pled: 12/	09/09 12:30	Recv	/d: 12/10/0	9 10:05
Volatile Organic Compou	unds by EPA	8260B								
Methylcyclohexane	0.56	J	1.0	0.50	ug/L	1.00	12/19/09 18:38	TRB	9L19018	8260B
Toluene	0.54	J	1.0	0.51	ug/L	1.00	12/19/09 18:38		9L19018	8260B
Trichloroethene	0.60	J	1.0	0.46	ug/L	1.00		TRB	9L19018	8260B
Client ID: GPW13-1430 (R	SL0664-02 -	Water)			Samı	oled: 12/	14/09 14:30	Recv	d: 12/15/0	9 12:20
Volatile Organic Compou		•								we seem 47
			1.0	0.30	ue II	1.00	12/22/00 12:07	חחס	01.22007	02600
cis-1,2-Dichloroethene	1.2 1.3	S13, P11	1.0	0.38	ug/L.	1.00	12/22/09 13:07			8260B
Trichloroethene	1.5	S13, P11	1.0	0.46	ug/L	1.00	12/22/09 13:07	DHC	9LZZUU/	8260B

