

495 Aero Drive, Suite 3 • Cheektowaga, New York 14225 • TEL (800) 287-7857 • Fax (716) 706-0078

June 6, 2013

Mr. Chad Staniszewski NYSDEC Region 9 270 Michigan Avenue Buffalo, New York 14203

Re: Off-Site Soil Vapor Intrusion Investigation Summary

Standard Portable - OFFSITE 25 West Lake Road Mayville New York 14757 NYSDEC Site #C907030A

Dear Mr. Staniszewski:

Please find the results of the soil vapor intrusion (SVI) investigation, which was conducted by Groundwater & Environmental Services, Inc. (GES) at the request of NYSDEC. This report provides a summary of the SVI investigation methodology and results conducted in association with the Standard Portable Facility in Mayville, New York.

SVI Investigation

At the direction of NYSDEC, GES conducted an SVI investigation in accordance with the New York State Department of Health (NYSDOH) *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (October 2006) (hereto referred to as the "NYSDOH SVI Guidance"). SVI samples were collected at one home in close proximity to the Standard Portable facility, located at 25 West Lake Road in the Village of Mayville, New York. The overall goal of the vapor intrusion sampling program was to evaluate potential human exposure to volatile organic compounds (VOCs), especially chlorinated compounds, known to be present in the groundwater at the Standard Portable site.

From April 11 through April 12, 2013, GES conducted a sampling program at one home - House #1. An active approach utilizing laboratory certified canisters were used to evaluate the soil vapor conditions. Samples were collected using 6-liter stainless steel Summa Canisters, provided by the TestAmerica, Inc (a NYSDEC contracted laboratory), of Knoxville, Tennessee.

In accordance with the *NYSDOH SVI Guidance*, a temporary sub-slab sample point was installed in the basement of the home using an electric hammer drill with a ¾ inch bit to bore through the basement slab and sub-base gravel. Teflon tubing (¼ inch diameter) was inserted no greater than two inches into the sub-slab material, and sealed from the surface utilizing bentonite clay. After the installation of the tubing, the tubing was purged of any pre-existing air using a hand pump. A tracer test was performed to confirm that the bentonite seal had isolated the sub-slab environment from the basement environment. The tracer test was performed utilizing a capped 3" diameter polyvinyl chloride (PVC) pipe placed over the sample point. A sealed exit point was provided for the sample tubing. The atmosphere inside the PVC tube was enriched with helium through an entry point in the PVC tube. A Dielectric Technologies® MGD2002 Helium-Hydrogen Detector was used to confirm the absence or presence of any helium in the sub-slab environment by measuring through the sample tube. There was no helium detected in the sample tubing, confirming that there was no air communication between the basement environment and the sub-slab

Soil Vapor Intrusion Investigation Summary Standard Portable - OFFSITE Mayville, New York NYSDEC Site #C907030A

environment at the sampling point (See Table 1 for Helium Test Results). Sample collection was started after the tracer test was performed and allowed to collect over a 24 hour period utilizing a preset air intake regulator on the summa canister. The summa canisters were collected at the conclusion of the 24 hour period. After sampling was completed, the tubing from the temporary sample point was removed, and the borehole in the basement slab was backfilled with bentonite and sealed at the surface with concrete patch compound.

The indoor air sample was collected in the basement of the home, at a height of approximately three feet above the floor level, also utilizing Summa Canisters. These samples were collected over the same 24-hour period as each corresponding sub-slab sample. Outside the home an outdoor ambient air sample was collected simultaneously as the sub-slab and indoor samples. The outdoor sample was collected at a height of approximately four to five feet above the ground surface.

At the sub slab and indoor sample locations, quality assurance/quality control samples (as shown in **Table 1** and **Table 2**), in the form of field duplicates samples were collected.

In addition, for the home that was sampled, a questionnaire and product inventory was completed in accordance with Appendix B of the *NYSDOH SVI Guidance* to identify any conditions that may interfere with the sample collection, including the presence of any construction characteristics of the home, mechanical equipment that may cause interference, and/or the use or storage of chemical products containing VOCs. Due to the potentially sensitive nature of the information provided by the homeowners, the completed questionnaire will be included as an attachment to the letter that contains the key for the homeowners' address.

As part of the questionnaire, the presence and description of any odors were noted and portable vapor monitoring equipment readings (utilizing a RAE Systems[©] ppB RAE 3000 photoionization detector) were collected. In the house no elevated readings (>100 parts-per-billion [ppb]) were detected, nor were there any products that exhibited elevated readings. It should be noted that the basement receives water through the surrounding stone foundation. To help mitigate the pooled water, the homeowner has eight holes drilled through the floor along the inside perimeter of the basement. The holes are approximately 5/8" diameter and penetrate the floor to allow drainage. GES screened the holes using the photoionization detector. No readings were detected (0.0 ppb) in any of the eight holes.

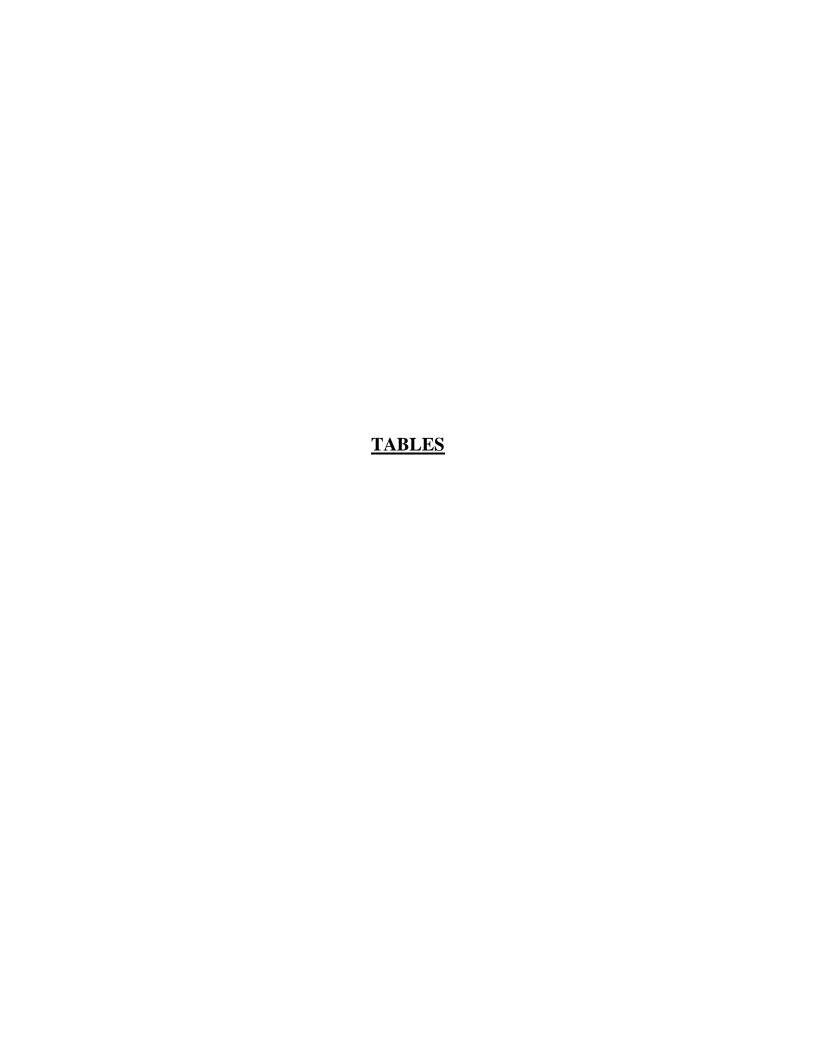
Upon collection of the sample canisters, the samples were submitted to TestAmerica under chain of custody for laboratory analysis utilizing Method TO-15. The samples were analyzed under a ten day turnaround. TestAmerica was also instructed to prepare a NYSDEC Analytical Services Protocol (ASP) Category B laboratory data package for the purpose of data validation. A summary of the analytical data is provided in **Table 2**. A third party data validator (Vali-Data of WNY, LLC) was contracted to prepare a Data Usability Summary Report (DUSR) for the laboratory results in accordance with NYSDEC Division of Environmental Remediation (DER)-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). The DUSR reports and associated validated laboratory analytical reports are provided in **Appendix A**. There were no significant observations noted in the report that would affect the validity of the laboratory data.

Soil Vapor Intrusion Investigation Summary Standard Portable - OFFSITE Mayville, New York NYSDEC Site #C907030A

If you have any questions or concerns, please contact GES at 1-800-287-7857.

Sincerely,

GROUNDWATER & ENVIRONMENTAL SERVICES, INC.


Eric D. Popken Project Manager

Attachments

Table 1 - Soil Vapor Sampling Field Data

Table 2 – Air Analytical Summary

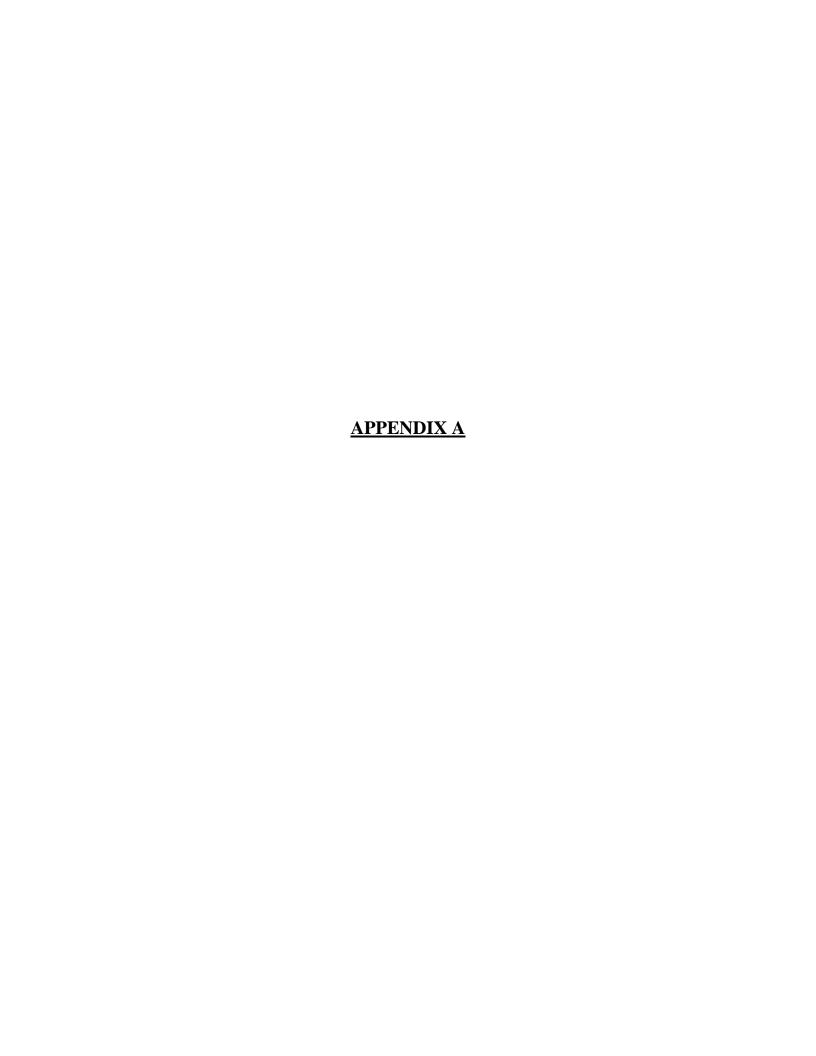
Appendix A - Laboratory Analytical Report and DUSR

Standard Portable 25 West Lake Road Mayville, New York NYSDEC Site #C907030A

Table 1 Soil Vapor Sampling Field Data April 2013

Residence #	Sample Type	Location	Reading Helium (ppm) Test	Helium Test	Canister #	Canister # Regulator # Date Start Time Start	Date Start	Time Start	Pressure Start ("Hg)	Date End	Date End Time End	Pressure End
1	SS	Basement, Center	0.0	Pass	6634	K464	4/11/2013 12:30 PM	12:30 PM	30	4/12/2013	4/12/2013 11:30 AM	5
1	SS Dupilcate	Basement, Center	0.0	Pass	1122	K167	4/11/2013 12:30 PM	12:30 PM	30	4/12/2013	4/12/2013 11:30 AM	1-1
1	Indoor	Basement, Center	NA	NA	1118	K454	4/11/2013 12:41 PM	12:41 PM	28	4/12/2013	4/12/2013 11:30 AM	5
1	Indoor Duplicate	Basement, Center	NA	NA	93145	K168	4/11/2013 12:41 PM	12:41 PM	30	4/12/2013	4/12/2013 11:30 AM	9
1	Outdoor	Yard	NA	NA	1539	K095	4/11/2013 1:03 PM	1:03 PM	28	4/12/2013	4/12/2013 11:30 AM	0

N/A = Not Applicable



Standard Portable 25 West Lake Road Mayville, New York NYSDEC Site #C907030A

Table 2 Air Analytical Summary Method TO-15 April 2013

		April 2013				
	Sample Point	SUB SLAB	SUB SLAB DUP	INDOOR	INDOOR DUP	OUTDOOR
- 25	Sample Pickup Date	4/11/2013	4/11/2013	4/11/2013	4/11/2013	4/11/2013
CAS#	COMPOUND (ug/m3)					
100-41-4	Ethylbenzene	1.3	1.8	0.83	1.3	U < 0.35
1.00	Styrene	0.42	1.7	U < 0.34	U < 0.34	U < 0.34
100-44-7	Benzyl chloride	U < 0.83	U < 0.83	U < 0.83	U < 0.83	U < 0.83
10061-01-5	cis-1,3-Dichloropropene	U < 0.36	U < 0.36	U < 0.36	U < 0.36	U < 0.36
10061-02-6	trans-1,3-Dichloropropene	U < 0.36	U < 0.36	U < 0.36	U < 0.36	U < 0.36
106-46-7	1,4-Dichlorobenzene	U < 0.48	U < 0.48	U < 0.48	U < 0.48	U < 0.48
106-93-4	1,2-Dibromoethane (EDB)	U < 0.61	U < 0.61	U < 0.61	U ≤ 0.61	U < 0.61
107-06-2	1,2-Dichloroethane	U < 0.32	U < 0.32	U < 0.32	U < 0.32	U < 0.32
108-10-1	4-Methyl-2-pentanone (MIBK)	U < 0.82	1.1	0.89	21	U < 0.82
108-67-8	1,3,5-Trimethylbenzene	U < 0.39	U < 0.39	U < 0.39	U < 0.39	U < 0.39
108-88-3	Toluene	7.6	8.7	11	14	2.2
108-90-7	Chlorobenzene	U < 0.37	U < 0.37	U < 0.37	U = 0.37	U < 0.37
110-54-3	n-Hexane	5.8	8.3	6.3	7.0	U < 0.7
110-82-7	Cyclohexane	3.2	3.4	1.5	1.4	U < 0.69
120-82-1	1,2,4-Trichlorobenzene	U < 0.39	U < 0.39	U < 0.39	U < 0.39	U < 0.39
123-91-1	1,4-Dioxane	U < 0.72	U < 0.72	U < 0.72	U < 0.72	2.7
124-48-1	Dibromochloromethane	U < 0.68	U < 0.68	U < 0.68	U < 0.68	U < 0.68
127-18-4	Tetrachloroethene	8.5	U < 0.54	9.6	U < 0.54	2.6
136777-61-2	m-Xylene & p-Xylene	4.1	7.7	3.1	5.9	U < 0.35
156-59-2	cis-1,2-Dichloroethene	U < 0.32	U < 0.32	U < 0.32	U < 0.32	U < 0.32
156-60-5	trans-1,2-Dichloroethene	U < 0.32	U < 0.32	U < 0.32	U < 0.32	U 0,32
1634-04-4	Methyl tert-butyl ether	U < 0.58	U < 0.58	U < 0.58	U < 0.58	U < 0.58
540-84-1	2,2,4-Trimethylpentane	1.0	U < 0.93	U < 0.93	1.0	U < 0.93
541-73-1	1,3-Dichlorobenzene	U < 0.48	U < 0.48	U < 0.48	U < 0.48	U < 0.48
56-23-5	Carbon tetrachloride	U < 0.25	0.27	0.56	0.56	0.56
64-17-5	Ethanol	6.8	9.1	28	26	16
67-66-3	Chloroform	11	10	U < 0.39	U < 0.39	U < 0.39
71-43-2	Benzene	1.3	1.7	2.4	2.7	37
71-55-6	1,1,1-Trichloroethane	U < 0.44	U < 0.44	U < 0.44	U < 0.44	U < 0.44
74-83-9	Bromomethane	U < 0.31	U < 0.31	U < 0.31	U < 0.31	U < 0.31
74-87-3	Chloromethane	U < 0.41	0.52	1.5	1,3	0.41
75-00-3	Chloroethane	U < 0.21	U < 0.21	U < 0.21	U < 0.21	U = 0.21
75-01-4	Vinyl chloride	U < 0.20	U < 0.20	U < 0.20	U < 0.20	U = 0.20
75-09-2	Methylene chloride	1.1	3.9	2.3	0.71	U = 0.69
75-25-2 75-27-4	Bromoform	U < 0.83	U < 0.83	U < 0.83	U < 0.83	U = 0.83
	Bromodichloromethane	2.3	U < 0.54	U < 0.54	U < 0.54	U < 0.54
75-34-3 75-35-4	1,1-Dichloroethane	U < 0.32	U = 0.32	U < 0.32	U < 0.32	U = 0.32
	1,1-Dichloroethene	U < 0.32	U < 0.32	U < 0.32	U < 0.32	U < 0.32
75-65-0	tert-Butyl alcohol Trichlorofluoromethane	2.5	2.6	U < 0.97	U = 0.97	U < 0.97
75-69-4		1.0	1.3	1.2	1.2	1.1
75-71-8	Dichlorodifluoromethane	1.6	1.6	1.3	1.3	1.3
76-13-1	1,1,2-Trichlorotrifluoroethane	U < 0.61	U < 0.61	U = 0.61	U < 0.61	U < 0.61
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	U = 0.56	U < 0.56	U < 0.56	U < 0.56	U < 0.56
78-87-5	1,2-Dichloropropane	U < 0.37	U = 0.37	U = 0.37	U < 0.37	U < 0.37
78-93-3	2-Butanone (MEK)	5.0	4.9	1.3	1.3	U < 0.94
79-00-5	1,1,2-Trichloroethane	U < 0.44	U < 0.44	U < 0.44	U < 0.44	U < 0.44
79-01-6	Trichloroethene	U < 0.21	U < 0.21	U < 0.21	U < 0.21	U < 0.21
79-34-5	1,1,2,2-Tetrachloroethane	U < 0.55	U = 0.55	U < 0.55	U < 0.55	U < 0.55
87-68-3	Hexachlorobutadiene	U < 0.85	U < 0.85	U < 0.85	U < 0.85	U < 0.85
95-47-6	o-Xylene	1.1	2.3	0.92	1.8	U < 0.35
95-50-1	1,2-Dichlorobenzene	U < 0.48	U < 0.48	U < 0.48	U < 0.48	U < 0.48
95-63-6	1,2,4-Trimethylbenzene	0.44	1.6	0.48	1.4	U < 0.39

U = below detection limit ug/m3 = micrograms per cubic meter

H3D160408 Analytical Report				
Sample Receipt Documentation	26			
Volatiles	30			
Raw Sample Data	31			
Standards Data	148			
Initial Calibration R022013I.pdf	149			
Continuing Calibration R041613.pdf	227			
Continuing Calibration R041713.pdf	242			
Raw QC Data	256			
Miscellaneous Data	296			
Sample Receipt Documentation	302			
Total Number of Pages	305			

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

Standard Portable - OFF-SITE

Lot #: H3D160408

Chad Staniszewski

New York State D.E.C. 270 Michigan Avenue Buffalo, NY 14203-2999

TESTAMERICA LABORATORIES, INC.

Jamie A. McKinney
Project Manager

April 23, 2013

ANALYTICAL METHODS SUMMARY

H3D160408

	ANALYTICAL
PARAMETER	METHOD
Volatile Organics by TO15	EPA-2 TO-15

References:

"Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air", EPA-625/R-96/010b, January 1999.

SAMPLE SUMMARY

H3D160408

WO # SAMPLE	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
MOLPM 001 MOLPQ 002 MOLPT 003 MOLPW 004 MOLP1 005	SS SS DUP INDOOR INDOOR DUP OUTDOOR	04/12/13 04/12/13 04/12/13 04/12/13 04/12/13	11:30 11:30 11:30

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

PROJECT NARRATIVE H3D160408

The results reported herein are applicable to the samples submitted for analysis only. If you have any questions about this report, please call (865) 291-3000 to speak with the TestAmerica project manager listed on the cover page.

This report shall not be reproduced except in full, without the written approval of the laboratory.

The original chain of custody documentation is included with this report.

Sample Receipt

Custody seals were not present.

The "Relinquished by" field on the chain of custody documentation did not contain a signature.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

The EPA method requires that all target analytes in the continuing calibration verification standard be within 30% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria. Even though the calibration verifications analyzed on 4/16/13 and 4/17/13 exhibited a % difference of > 30% for bromoform and/or 4-methyl-2-pentanone, the results were within the LCS acceptance limits.

For this method, the continuing calibration verification standard and the LCS are the same sample. While the result for carbon tetrachloride is flagged as being outside limits for batch 3107088, the results met the acceptance criteria which allows for three analytes to be within marginal exceedence limits.

There is a significant contribution from an interfering non-target analyte to the quantitation of tetrachloroethene in sample OUTDOOR. Therefore, the tetrachloroethene results are biased high and should be considered estimated. The result is flagged with "EST".

Quantitation ethanol was based on a minimum 5-point calibration curve. The following interim criteria are being used until the method performance for this additional analyte is fully established:

• The initial calibration acceptance criteria is set at 40% RSD. Any compound greater than 40% RSD was changed to a linear or quadratic model with an r2 ≥ 0.990 acceptance criteria.

PROJECT NARRATIVE H3D160408

- There are no criteria for second source standard verification % D. The second source standard was independently prepared from the same parent mixture (as the primary source).
- The continuing calibration verification criteria are set at 50% D. Any compound greater than 50% D must pass the LCS criteria.
- The LCS recovery criteria are set at 20% to 180%.
- A method detection limit study has not been performed. The detection of the analyte is demonstrated by detection of the calibration standard at the reporting limit. No estimated results are reported below the reporting limit.

CERTIFICATION SUMMARY

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Knoxville	ACLASS	DoD ELAP		ADE-1434
TestAmerica Knoxville	Arkansas	State Program	6	88-0688
TestAmerica Knoxville	California	State Program	9	2423
TestAmerica Knoxville	Colorado	State Program	8	N/A
TestAmerica Knoxville	Connecticut	State Program	1	PH-0223
TestAmerica Knoxville	Florida	NELAC	4	E87177
TestAmerica Knoxville	Georgia	State Program	4	906
TestAmerica Knoxville	Hawaii	State Program	9	N/A
TestAmerica Knoxville	Indiana	State Program	5	C-TN-02
TestAmerica Knoxville	Iowa	State Program	7	375
TestAmerica Knoxville	Kansas	NELAC	7	E-10349
TestAmerica Knoxville	Kentucky	State Program	4	90101
TestAmerica Knoxville	Louisiana	NELAC	6	LA110001
TestAmerica Knoxville	Louisiana	NELAC	6	83979
TestAmerica Knoxville	Maryland	State Program	3	277
TestAmerica Knoxville	Michigan	State Program	5	9933
TestAmerica Knoxville	Minnesota	NELAC	5	047-999-429
TestAmerica Knoxville	Nevada	State Program	9	TN00009
TestAmerica Knoxville	New Jersey	NELAC	2	TN001
TestAmerica Knoxville	New York	NELAC	2	10781
TestAmerica Knoxville	North Carolina	North Carolina DENR	4	64
TestAmerica Knoxville	North Carolina	North Carolina PHL	4	21705
TestAmerica Knoxville	Ohio	OVAP	5	CL0059
TestAmerica Knoxville	Oklahoma	State Program	6	9415
TestAmerica Knoxville	Pennsylvania	NELAC	3	68-00576
TestAmerica Knoxville	South Carolina	State Program	4	84001
TestAmerica Knoxville	Tennessee	State Program	4	2014
TestAmerica Knoxville	Texas	NELAC	6	T104704380-TX
TestAmerica Knoxville	USDA	USDA		P330-11-00035
TestAmerica Knoxville	Utah	NELAC	8	QUAN3
TestAmerica Knoxville	Virginia	State Program	3	165
TestAmerica Knoxville	Washington	State Program	10	C593
TestAmerica Knoxville	West Virginia	West Virginia DEP	3	345
TestAmerica Knoxville	West Virginia	West Virginia DHHR (DW)	3	9955C
TestAmerica Knoxville	Wisconsin	State Program	5	998044300

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Sample Data Summary

Client Sample ID: SS

GC/MS Volatiles

Work Order # M0LPM1AA Matrix....: Lot-Sample # H3D160408 - 001 AIR Date Sampled ...: 04/12/2013 Date Received ..: 04/15/2013 Prep Date....: 04/17/2013 04/16/2013 Analysis Date... Prep Batch #....: 3106043 Dilution Factor.: 1 Method....: TO-15 RESULTS REPORTING RESULTS REPORTING PARAMETER (ppb(v/v))LIMIT (ppb(v/v))(ug/m3) LIMIT (ug/m3) ND 0.080 ND 0.44 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane ND 0.080 ND 0.55 1,1,2-Trichlorotrifluoroethane ND 0.080 ND 0.61 ND 1,1,2-Trichloroethane ND 0.080 0.44 1,1-Dichloroethane ND 0.080 ND 0.32 ND ND 1,1-Dichloroethene 0.080 0.32 1,2,4-Trichlorobenzene ND 0.080 ND 0.59 1,2,4-Trimethylbenzene 0.089 0.080 0.44 0.39 ND ND 1,2-Dibromoethane (EDB) 0.080 0.61 1,2-Dichlorobenzene ND 0.080 ND 0.48 1,2-Dichloroethane ND 0.080 ND 0.32 1,2-Dichloropropane ND 0.080 ND 0.37 1,3,5-Trimethylbenzene ND 0.080 ND 0.39 1,4-Dichlorobenzene ND 0.080 ND 0.48 1,4-Dioxane ND 0.20 ND 0.72 0.94 2-Butanone (MEK) 1.7 0.32 5.0 1,3-Dichlorobenzene ND 0.080 ND 0.48 2,2,4-Trimethylpentane 0.20 0.22 1.0 0.93 Benzene 0.40 0.0801.3 0.26 ND Benzyl chloride ND 0.16 0.83 Bromodichloromethane 0.35 0.080 2.3 0.54 Bromoform ND 0.080 ND 0.83 ND 0.080 ND 0.31 Bromomethane 0.040 ND Carbon tetrachloride ND 0.25 Chlorobenzene ND 0.080 ND 0.37 Chloroethane ND 0.080 ND 0.21 2.2 0.080 0.39 Chloroform 11 Cyclohexane 0.94 0.20 3.2 0.69 Chloromethane ND 0.20 ND 0.41 cis-1,2-Dichloroethene ND 0.080 ND 0.32 cis-1,3-Dichloropropene ND 0.080 ND 0.36 ND Dibromochloromethane ND 0.080 0.68 Dichlorodifluoromethane 0.32 0.080 1.6 0.40 0.80 1.5 Ethanol 3.6 6.8 Ethylbenzene 0.30 0.080 1.3 0.35 1,2-Dichloro-1,1,2,2-tetrafluoroeth ND 0.080 ND 0.56 ane n-Hexane 1.6 0.20 5.8 0.70

ND

0.85

0.080

ND

Hexachlorobutadiene

Client Sample ID: SS

Lot-Sample # H3D160408 - 00	1	Work Order # MOLPM	[1AA	Matrix AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	0.32	0.20	1.1	0.69
Styrene	0.10	0.080	0.42	0.34
tert-Butyl alcohol	0.83	0.32	2.5	0.97
Tetrachloroethene	1.3	0.080	8.5	0.54
Гоluene	2.0	0.080	7.6	0.30
m-Xylene & p-Xylene	0.94	0.080	4.1	0.35
o-Xylene	0.25	0.080	1.1	0.35
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Trichlorofluoromethane	0.19	0.080	1.0	0.45
Vinyl chloride	ND	0.080	ND	0.20
		PERCENT		LABORATORY CONTROL
SURROGATE		RECOVERY		LIMITS (%)
4-Bromofluorobenzene		107		60 - 140

 $The \ ^{\mathsf{I}} Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SS DUP

GC/MS Volatiles

Lot-Sample # H3D160408 - 002 Work Order # M0LPQ1AA Matrix....: AIR

Date Sampled...: Prep Date....:

04/12/2013 04/17/2013 Date Received ..: Analysis Date...

04/15/2013 04/17/2013

Prep Batch #....:

3107088

Dilution Factor.:

1

TO-15 Method....:

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	
1,1,1-Trichloroethane	ND	0.080	ND	0.44	
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55	
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61	
1,1,2-Trichloroethane	ND	0.080	ND	0.44	
1,1-Dichloroethane	ND	0.080	ND	0.32	
1,1-Dichloroethene	ND	0.080	ND	0.32	
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59	
1,2,4-Trimethylbenzene	0.32	0.080	1.6	0.39	
,2-Dibromoethane (EDB)	ND	0.080	ND	0.61	
1,2-Dichlorobenzene	ND	0.080	ND	0.48	
1,2-Dichloroethane	ND	0.080	ND	0.32	
,2-Dichloropropane	ND	0.080	ND	0.37	
,3,5-Trimethylbenzene	ND	0.080	ND	0.39	
,4-Dichlorobenzene	ND	0.080	ND	0.48	
,4-Dioxane	ND	0.20	ND	0.72	
-Butanone (MEK)	1.7	0.32	4.9	0.94	
,3-Dichlorobenzene	ND	0.080	ND	0.48	
2,2,4-Trimethylpentane	ND	0.20	ND	0.93	
Benzene	0.54	0.080	1.7	0.26	
Benzyl chloride	ND	0.16	ND	0.83	
Bromodichloromethane	0.31	0.080	2.1	0.54	
Bromoform	ND	0.080	ND	0.83	
Bromomethane	ND	0.080	ND	0.31	
Carbon tetrachloride	0.042	0.040	0.27	0.25	
Chlorobenzene	ND	0.080	ND	0.37	
Chloroethane	ND	0.080	ND	0.21	
Chloroform	2.1	0.080	10	0.39	
Cyclohexane	0.98	0.20	3.4	0.69	
Chloromethane	0.25	0.20	0.52	0.41	
is-1,2-Dichloroethene	ND	0.080	ND	0.32	
sis-1,3-Dichloropropene	ND	0.080	ND	0.36	
Dibromochloromethane	ND	0.080	ND	0.68	
Dichlorodifluoromethane	0.33	0.080	1.6	0.40	
Cthanol	4.8	0.80	9.1	1.5	
Ethylbenzene	0.40	0.080	1.8	0.35	
,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56	
ine			•		
ı-Hexane	2.4	0.20	8.3	0.70	
Hexachlorobutadiene	ND	0.080	ND	0.85	

Client Sample ID: SS DUP

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
4-Methyl-2-pentanone (MIBK)	0.26	0.20	1,1	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	1.1	0.20	3.9	0.69
Styrene	0.41	0.080	1.7	0.34
tert-Butyl alcohol	0.84	0.32	2.6	0.97
Tetrachloroethene	ND	0.080	ND	0.54
Гоluene	2.3	0.080	8.7	0.30
m-Xylene & p-Xylene	1.8	0.080	7.7	0.35
o-Xylene	0.54	0.080	2.3	0.35
rans-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Frichlorofluoromethane	0.23	0.080	1.3	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)*(Molecular \ Weight/24.45)$

Client Sample ID: INDOOR

GC/MS Volatiles

Work Order# Lot-Sample # H3D160408 - 003 M0LPT1AA Matrix....: AIR Date Sampled ...: 04/12/2013 Date Received ..: 04/15/2013 Prep Date....: 04/16/2013 04/16/2013 Analysis Date... Prep Batch #....: 3106043 Dilution Factor .: 1 Method....: TO-15 RESULTS REPORTING RESULTS REPORTING PARAMETER (ppb(v/v))LIMIT (ppb(v/v))(ug/m3)LIMIT (ug/m3) 1.1.1-Trichloroethane ND 0.080 ND 0.44 1,1,2,2-Tetrachloroethane ND 0.080 ND 0.55 1,1,2-Trichlorotrifluoroethane ND 0.080 ND 0.61 ND 0.080 ND 1,1,2-Trichloroethane 0.44 1,1-Dichloroethane ND 0.080 ND 0.32 1,1-Dichloroethene ND 0.080 ND 0.32 ND 0.080 ND 1,2,4-Trichlorobenzene 0.59 1,2,4-Trimethylbenzene 0.097 0.080 0.48 0.39 1,2-Dibromoethane (EDB) ND 0.080 ND 0.61 1,2-Dichlorobenzene ND 0.080 ND 0.48 1,2-Dichloroethane ND 0.080 ND 0.32 1,2-Dichloropropane ND 0.080 ND 0.37 1,3,5-Trimethylbenzene ND 0.080 ND 0.39 1,4-Dichlorobenzene ND 0.080 ND 0.48 1,4-Dioxane ND 0.20 ND 0.72 2-Butanone (MEK) 0.44 0.32 0.94 1.3 1,3-Dichlorobenzene ND 0.080 ND 0.48 2,2,4-Trimethylpentane ND 0.20 ND 0.93 Benzene 0.74 0.080 0.26 2.4 Benzyl chloride ND 0.16 ND 0.83 Bromodichloromethane ND 0.080 ND 0.54 Bromoform ND 0.080 ND 0.83 Bromomethane ND 0.080 ND 0.31 Carbon tetrachloride 0.089 0.040 0.56 0.25 Chlorobenzene ND 0.080 ND 0.37 Chloroethane ND 0.080 ND 0.21 ND 0.080 Chloroform ND 0.39 Cyclohexane 0.42 0.20 1.5 0.69 Chloromethane 0.71 0.20 1.5 0.41 cis-1,2-Dichloroethene ND 0.080 ND 0.32 cis-1,3-Dichloropropene ND 0.080 ND 0.36 Dibromochloromethane ND 0.080 ND 0.68 Dichlorodifluoromethane 0.27 0.080 1.3 0.40 Ethanol 15 0.8028 1.5 Ethylbenzene 0.19 0.080 0.83 0.35 1,2-Dichloro-1,1,2,2-tetrafluoroeth ND 0.080 ND 0.56

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

6.3

ND

0.70

0.85

0.20

0.080

1.8

ND

n-Hexane

Hexachlorobutadiene

Client Sample ID: INDOOR

Lot-Sample # H3D160408 - 00.	3	Work Order # M0LPT	1AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
4-Methyl-2-pentanone (MIBK)	0.22	0.20	0.89	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	0.66	0.20	2.3	0.69
Styrene	ND	0.080	ND	0.34
tert-Butyl alcohol	ND	0.32	ND	0.97
Tetrachloroethene	1.4	0.080	9.6	0.54
Toluene	2.8	0.080	11	0.30
m-Xylene & p-Xylene	0.72	0.080	3.1	0.35
o-Xylene	0.21	0.080	0.92	0.35
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Trichlorofluoromethane	0.22	0.080	1.2	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		111		60 - 140

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)*(Molecular \ Weight/24.45)$

Client Sample ID: INDOOR DUP

GC/MS Volatiles

Lot-Sample # H3D160408 - 004 Work Order # M0LPW1AA Matrix....: AIR Date Sampled ...: 04/12/2013 Date Received ..: 04/15/2013 Prep Date....: 04/16/2013 04/16/2013 Analysis Date... Prep Batch #....: 3106043 Dilution Factor .: 1 TO-15 Method....: RESULTS REPORTING RESULTS REPORTING LIMIT (ppb(v/v)) PARAMETER (ppb(v/v))(ug/m3) LIMIT (ug/m3) ND 0.080 ND 1,1,1-Trichloroethane 0.44 1,1,2,2-Tetrachloroethane ND 0.080 ND 0.55 1,1,2-Trichlorotrifluoroethane ND 0.080 ND 0.61 1.1.2-Trichloroethane ND 0.080 ND 0.44 1,1-Dichloroethane ND 0.080 ND 0.32 1,1-Dichloroethene ND 0.080 ND 0.32 1.2.4-Trichlorobenzene ND 0.080 ND 0.59 1,2,4-Trimethylbenzene 0.29 0.080 1.4 0.39 1,2-Dibromoethane (EDB) ND 0.080 ND 0.61 1,2-Dichlorobenzene ND 0.080 ND 0.48 1,2-Dichloroethane ND 0.080 ND 0.32 1,2-Dichloropropane ND 0.080 ND 0.37 1,3,5-Trimethylbenzene ND 0.080 ND 0.39 1.4-Dichlorobenzene ND 0.080 ND 0.48 1,4-Dioxane ND 0.20 ND 0.72 2-Butanone (MEK) 0.43 0.32 1.3 0.94 1,3-Dichlorobenzene ND 0.080 ND 0.48 2,2,4-Trimethylpentane 0.22 0.20 1.0 0.93 Benzene 0.83 0.080 2.7 0.26 Benzyl chloride ND 0.16 ND 0.83 Bromodichloromethane ND 0.080 ND 0.54 Bromoform ND0.080 ND 0.83 Bromomethane ND 0.080 ND 0.31 Carbon tetrachloride 0.090 0.040 0.56 0.25 Chlorobenzene ND 0.080 ND 0.37 Chloroethane ND 0.080 ND 0.21 ND Chloroform 0.080 ND 0.39 Cyclohexane 0.42 0.20 1.4 0.69 Chloromethane 0.61 0.20 1.3 0.41 cis-1,2-Dichloroethene ND 0.080 ND 0.32 cis-1,3-Dichloropropene ND 0.080 ND 0.36 Dibromochloromethane ND 0.080 ND 0.68 Dichlorodifluoromethane 0.27 0.080 1.3 0.40 Ethanol 14 0.80 26 1.5

TO-14 rev5;rpt Rev 1.0,9 09/01/2011

1.3

ND

7.0

ND

0.35

0.56

0.70

0.85

0.080

0.080

0.20

0.080

0.31

ND

2.0

ND

Ethylbenzene

Hexachlorobutadiene

ane n-Hexane

1,2-Dichloro-1,1,2,2-tetrafluoroeth

Client Sample ID: INDOOR DUP

RESULTS (ppb(v/v)) 5.1 ND 0.21 ND ND ND ND ND 3.8	0.20 0.16 0.20 0.080 0.32 0.080	RESULTS (ug/m3) 21 ND 0.71 ND ND ND ND	0.82 0.58 0.69 0.34 0.97 0.54
ND 0.21 ND ND ND	0.16 0.20 0.080 0.32 0.080	ND 0.71 ND ND	0.58 0.69 0.34 0.97
0.21 ND ND ND	0.20 0.080 0.32 0.080	0.71 ND ND	0.69 0.34 0.97
ND ND ND	0.080 0.32 0.080	ND ND	0.34 0.97
ND ND	0.32 0.080	ND	0.97
ND	0.080		
		ND	0.54
3.8	0.000		
	0.080	14	0.30
1.4	0.080	5.9	0.35
0.41	0.080	1.8	0,35
ND	0.080	ND	0.32
ND	0.080	ND	0.36
ND	0.040	ND	0.21
0.21	0.080	1.2	0.45
ND	0.080	ND	0,20
	PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
	ND ND ND 0.21	ND 0.080 ND 0.080 ND 0.040 0.21 0.080 ND 0.080 PERCENT	ND 0.080 ND ND ND 0.080 ND ND O.040 ND O.21 0.080 1.2 ND O.080 ND ND PERCENT RECOVERY

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)*(Molecular \ Weight/24.45)$

Client Sample ID: OUTDOOR

GC/MS Volatiles

Lot-Sample # H3D160408 - 005		Work Order#	M0LP11AA	Matrix: AIR
Date Sampled: 04/12/2013 Prep Date: 04/16/2013 Prep Batch #: 3106043		Date Received: Analysis Date	04/15/2013 04/16/2013	
Dilution Factor.: 1		Method:	TO-15	
PARAMETER	RESULTS (ppb(v/v))	REPORTI LIMIT (pp		REPORTING LIMIT (ug/m3)
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
1,1,2-Trichloroethane	ND	0.080	ND	0.44
1,1-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,2-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
1,4-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dioxane	0.74	0.20	2.7	0.72
2-Butanone (MEK)	ND	0.32	ND	0.94
1,3-Dichlorobenzene	ND	0.080	ND	0.48
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
Benzene	12	0.080	37	0.26
Benzyl chloride	ND	0.16	ND	0.83
Bromodichloromethane	ND	0.080	ND	0.54
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.090	0.040	0.56	0.25
Chlorobenzene	ND	0.080	ND	0.37
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Cyclohexane	ND	0.20	ND	0.69
Chloromethane	0.91	0.20	1.9	0.41
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
Dibromochloromethane	ND	0.080	ND	0.68
Dichlorodifluoromethane	0.26	0.080	1.3	0.40
Ethanol	8.5	0.80	16	1.5
Ethylbenzene	ND	0.080	ND	0.35
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane	NID	0.00	N. P.	0.70
n-Hexane	ND	0.20	ND	0.70

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

ND

0.85

0.080

ND

Hexachlorobutadiene

Client Sample ID: OUTDOOR

GC/MS Volatiles

Lot-Sample # H3D160408 - 00)5	Work Order # MOLP11	1AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	ND	0.20	ND	0.69
Styrene	ND	0.080	ND	0.34
tert-Butyl alcohol	ND	0.32	ND	0.97
Tetrachloroethene	0.38 est	0.080	2.6 est	0.54
Toluene	0.57	0.080	2.2	0.30
m-Xylene & p-Xylene	ND	0.080	ND	0.35
o-Xylene	ND	0.080	ND	0.35
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Trichlorofluoromethane	0.20	0.080	1.1	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		98		60 - 140

Qualifiers

est Estimated value. See narrative for details.

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding) * (Molecular \ Weight/24.45)$

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H3D170000 - 088B

Work Order #

M0MCP1AA

Matrix....:

ΑIR

Prep Date....:

04/12/2013 04/17/2013 Date Received..:
Analysis Date...

04/15/2013

04/17/2013

Prep Batch #....:
Dilution Factor.:

3107088

1

Method....:

TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
	(PP=(111))		(ug me)	
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
1,1,2-Trichloroethane	ND	0.080	ND	0.44
1,1-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,2-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
1,4-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dioxane	ND	0.20	ND	0.72
2-Butanone (MEK)	ND	0.32	ND	0.94
1,3-Dichlorobenzene	ND	0.080	ND	0.48
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
Benzene	ND	0.080	ND	0.26
Benzyl chloride	ND	0.16	ND	0.83
Bromodichloromethane	ND	0.080	ND	0.54
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Cyclohexane	ND	0.20	ND	0.69
Chloromethane	ND	0.20	ND	0.41
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
Dibromochloromethane	ND	0.080	ND	0.68
Dichlorodifluoromethane	ND	0.080	ND	0.40
Ethanol	ND .	0.80	ND	1.5
Ethylbenzene	ND	0.080	ND	0.35
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
n-Hexane	ND	0.20	ND	0.70

Client Sample ID: INTRA-LAB BLANK

Lot-Sample # H3D170000 - 08	8B V	Vork Order # M0MCF	PIAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Hexachlorobutadiene	ND	0.080	ND	0.85
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	ND	0.20	ND	0.69
Styrene	ND	0.080	ND	0.34
tert-Butyl alcohol	ND	0.32	ND	0.97
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
m-Xylene & p-Xylene	ND	0.080	ND	0.35
o-Xylene	ND	0.080	ND	0.35
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Trichlorofluoromethane	ND	0.080	ND	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene	***************************************	113	_	60 - 140

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: CHECK SAMPLE

Lot-Sample # H3I	D170000 -	088C	Work Ord	ler#	M0M0	CP1AC	Matrix	: AIR
Prep Date: Prep Batch #:	04/12/20 04/17/20 3107088	013	Date Rece Analysis I		04/15/ 04/17/			
Dilution Factor.:	1		Method	:	TO-15	5		
PARAMETER		SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOU (ug/m3	INT	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
1,1,1-Trichloroethane		5.00	5.52	27		30.1	110	70 - 130
1,1,2,2-Tetrachloroetha	ne	5.00	4.60	34		31.6	92	70 - 130
1,1,2-Trichlorotrifluoro		5.00	5.02	38		38.5	100	70 - 130
-,-,-		• • • • • • • • • • • • • • • • • • • •				2010	100	, 0 150
1,1,2-Trichloroethane		5.00	4.56	27		24.9	91	70 - 130
1,1-Dichloroethane		5.00	5.80	20		23.5	116	70 - 130
1,1-Dichloroethene		5.00	4.90	20		19.4	98	70 - 130
1,2,4-Trichlorobenzene		5.00	4.28	37		31.7	86	60 - 140
1,2,4-Trimethylbenzene	=	5.00	4.30	25		21.1	86	70 - 130
1,2-Dibromoethane (ED	OB)	5.00	4.46	38		34.2	89	70 - 130
1,2-Dichlorobenzene		5.00	3.95	.30		23.8	79	70 - 130
1,2-Dichloroethane		5.00	5.78	20		23.4	116	70 - 130
1,2-Dichloropropane		5.00	5.44	23		25.2	109	70 - 130
1,3,5-Trimethylbenzene	•	5.00	4.15	25		20.4	83	70 - 130
1,4-Dichlorobenzene		5.00	4.06	30		24.4	81	70 - 130
1,4-Dioxane		5.00	5.07	18		18.3	101	60 - 140
2-Butanone (MEK)		5.00	5.11	15		15.1	102	60 - 140
1,3-Dichlorobenzene		5.00	4.01	30		24.1	80	70 - 130
2,2,4-Trimethylpentane		5.00	5.67	23		26.5	113	70 - 130
Benzene		5.00	5.01	16		16.0	100	70 - 130
Benzyl chloride		5.00	4.81	26		24.9	96	70 - 130
Bromodichloromethane	;	5.00	5.61	34		37.6	112	70 - 130
Bromoform		5.00	4.26	52		44.0	85	60 - 140
Bromomethane		5.00	4.37	19		17.0	87	70 - 130
Carbon tetrachloride		5.00	6.53	31		41.1 a ME	131 a ME	70 - 130
Chlorobenzene		5.00	4.14	23		19.0	83	70 - 130
Chloroethane		5.00	4.93	13		13.0	99	70 - 130
Chloroform		5.00	5.51	24		26.9	110	70 - 130
Cyclohexane		5.00	5.21	17		17.9	104	70 - 130
Chloromethane		5.00	5.40	10		11.1	108	60 - 140
cis-1,2-Dichloroethene		5.00	5.04	20		20.0	101	70 - 130
cis-1,3-Dichloropropen		5.00	5.29	23		24.0	106	70 - 130
Dibromochloromethane		5.00	4.64	43		39.5	93	70 - 130
Dichlorodifluoromethar	ie	5.00	5.09	25		25.2	102	60 - 140
Ethanol		25.0	35.9	47		67.6	144	20 - 180
Ethylbenzene	hun Alas -	5.00	4.38	22		19.0	88	70 - 130
1,2-Dichloro-1,1,2,2-tet roethane	ıramuo	5.00	4.25	35		29.7	85	60 - 140
Toomano								

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

	SPIKE	MEASURED	SPIKE	MEASURED		
PARAMETER	AMOUNT (ppb(v/v))	AMOUNT (ppb(v/v))	AMOUNT (ug/m3)	AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
n-Hexane	5.00	5.92	18	20.9	118	70 - 130
Hexachlorobutadiene	5.00	3.56	53	38.0	71	60 - 140
4-Methyl-2-pentanone (MIBK)	5.00	6.92	20	28.3	138	60 - 140
Methyl tert-butyl ether	5.00	5.44	18	19.6	109	60 - 140
Methylene chloride	5.00	5.23	17	18.2	105	70 - 130
Styrene	5.00	4.54	21	19.3	91	70 - 130
tert-Butyl alcohol	5.00	6.00	15	18.2	120	60 - 140
Tetrachloroethene	5.00	4.12	34	27.9	82	70 - 130
Toluene	5.00	4.39	19	16.5	88	70 - 130
m-Xylene & p-Xylene	10.0	8.95	43	38.9	90	70 - 130
o-Xylene	5.00	4.41	22	19.1	88	70 - 130
trans-1,2-Dichloroethene	5.00	4.94	20	19.6	99	70 - 130
trans-1,3-Dichloropropene	5.00	4.84	23	22.0	97	70 - 130
Trichloroethene	5.00	4.58	27	24.6	92	70 - 130
Frichlorofluoromethane	5.00	5.21	28	29.3	104	60 - 140
Vinyl chloride	5.00	5.02	13	12.8	100	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTR LIMITS	OL

Qualifiers

a Spiked analyte recovery is outside stated control limits.

ME The percent recovery of the analyte is outside the control limits but within marginal exceedance limits.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H3D160000 - 043B Work Order # M0L0V1AA Matrix.....: AIR

04/11/2013

Prep Date....: 04/16/2013

Date Received..: 04/15/2013 **Analysis Date...** 04/16/2013

Prep Batch #....: 3106043

Dilution Factor.: 1 Method...... TO-15

Dilution Factor.: 1	17)	letilod 10-13		
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
1,1,2-Trichloroethane	ND	0.080	ND	0.44
1,1-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,2-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
1,4-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dioxane	ND	0.20	ND	0.72
2-Butanone (MEK)	ND	0.32	ND	0.94
1,3-Dichlorobenzene	ND	0.080	ND	0.48
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
Benzene	ND	0.080	ND	0.26
Benzyl chloride	ND	0.16	ND	0.83
Bromodichloromethane	ND	0.080	ND	0.54
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	ND	0.040	ND	0.25
Chlorobenzene	ND	0.080	ND	0.37
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Cyclohexane	ND	0.20	ND	0.69
Chloromethane	ND	0.20	ND	0.41
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
Dibromochloromethane	ND	0.080	ND	0.68
Dichlorodifluoromethane	ND	0.080	ND	0.40
Ethanol	ND	0.80	ND	1.5
Ethylbenzene	ND	0.080	ND	0.35
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
n-Hexane	ND	0.20	ND	0.70

Client Sample ID: INTRA-LAB BLANK

Lot-Sample # H3D160000 - 04	-3B	Work Order # M0L0V	1AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Hexachlorobutadiene	ND	0.080	ND	0.85
4-Methyl-2-pentanone (MIBK)	ND ND	0.20	ND ND	0.82
Methyl tert-butyl ether	ND	0.16	ND ND	0.58
Methylene chloride	ND	0.20	ND	0.69
Styrene	ND	0.080	ND ND	0.34
tert-Butyl alcohol	ND ND	0.32	ND ND	0.97
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND ND	0.30
	ND ND	0.080	ND ND	0.35
m-Xylene & p-Xylene	ND ND	0.080	ND ND	0.35
o-Xylene				
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Trichlorofluoromethane	ND	0.080	ND	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		114		60 - 140

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding) * (Molecular \ Weight/24.45)$

Client Sample ID: CHECK SAMPLE

Lot-Sample # H3D160000	- 043C	. Work Ore	der# M0	DL0V1AC	Matrix	: AIR
04/11/2 Prep Date: 04/16/2 Prep Batch #: 310604	2013	Date Rece Analysis I		/15/2013 /16/2013		
Dilution Factor.: 1		Method	тс	D-15		
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
1,1,1-Trichloroethane	5.00	5.42	27	29.5	108	70 - 130
1,1,2,2-Tetrachloroethane	5.00	4.50	34	30.9	90	70 - 130
1,1,2-Trichlorotrifluoroethane	5.00	4.91	38	37.6	98	70 - 130
1,1,2-Trichloroethane	5.00	4.46	27	24.3	89	70 - 130
1,1-Dichloroethane	5.00	5.72	20	23.1	114	70 - 130
1,1-Dichloroethene	5.00	4.77	20	18.9	95	70 - 130
1,2,4-Trichlorobenzene	5.00	4.10	37	30.4	82	60 - 140
1,2,4-Trimethylbenzene	5.00	4.25	25	20.9	85	70 - 130
1,2-Dibromoethane (EDB)	5.00	4.33	38	33.3	87	70 - 130
1,2-Dichlorobenzene	5.00	3.90	30	23.4	78	70 - 130
1,2-Dichloroethane	5.00	5.75	20	23.3	115	70 - 130
1,2-Dichloropropane	5.00	5.42	23	25.0	108	70 - 130
1,3,5-Trimethylbenzene	5.00	4.06	25	20.0	81	70 - 130
1,4-Dichlorobenzene	5.00	3.97	30	23.8	79	70 - 130
1,4-Dioxane	5.00	4.90	18	17.7	98	60 - 140
2-Butanone (MEK)	5.00	5.12	15	15.1	102	60 - 140
1,3-Dichlorobenzene	5.00	3.91	30	23.5	78	70 - 130
2,2,4-Trimethylpentane	5.00	5.60	23	26.2	112	70 - 130
Benzene	5.00	4.92	16	15.7	98	70 - 130
Benzyl chloride	5.00	4.72	26	24.4	94	70 - 130
Bromodichloromethane	5.00	5.52	34	37.0	110	70 - 130
Bromoform	5.00	3.47	52	35.8	69	60 - 140
Bromomethane	5.00	4.28	19	16.6	86	70 - 130
Carbon tetrachloride	5.00	6.40	31	40.3	128	70 - 130
Chlorobenzene	5.00	4.03	23	18.5	81	70 - 130
Chloroethane	5.00	4.88	13	12.9	98	70 - 130
Chloroform	5.00	5.45	24	26.6	109	70 - 130
Cyclohexane	5.00	5.08	17	17.5	102	70 - 130
Chloromethane	5.00	5.71	10	11.8	114	60 - 140
cis-1,2-Dichloroethene	5.00	4.97	20	19.7	99	70 - 130
cis-1,3-Dichloropropene	5.00	5.24	23	23.8	105	70 - 130
Dibromochloromethane	5.00	4.35	43	37.0	87	70 - 130
Dichlorodifluoromethane	5.00	5.12	25	25.3	102	60 - 140
Ethanol	25.0	37.5	47	70.7	150	20 - 180
Ethylbenzene	5.00	4.31	22	18.7	86	70 - 130
1,2-Dichloro-1,1,2,2-tetrafluo roethane	5.00	4.24	35	29.6	85	60 - 140

Client Sample ID: CHECK SAMPLE

Lot-Sample # H3D16000	0 - 043C	Work Ord	ler# M0L	0V1AC	Matrix	: AIR
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
n-Hexane	5.00	5.76	18	20.3	115	70 - 130
Hexachlorobutadiene	5.00	3.48	53	37.1	70	60 - 140
4-Methyl-2-pentanone (MIBK)	5.00	6.97	20	28.6	139	60 - 140
Methyl tert-butyl ether	5.00	5.42	18	19.5	108	60 - 140
Methylene chloride	5.00	5.08	17	17.6	102	70 - 130
Styrene	5.00	4.41	21	18.8	88	70 - 130
tert-Butyl alcohol	5.00	5.86	15	17.8	117	60 - 140
Tetrachloroethene	5.00	3.92	34	26.6	78	70 - 130
Гоluene	5.00	4.24	19	16.0	85	70 - 130
m-Xylene & p-Xylene	10.0	8.79	43	38.2	88	70 - 130
o-Xylene	5.00	4.32	22	18.8	86	70 - 130
trans-1,2-Dichloroethene	5.00	4.84	20	19.2	97	70 - 130
trans-1,3-Dichloropropene	5.00	4.70	23	21.3	94	70 - 130
Trichloroethene	5.00	4.43	27	23.8	89	70 - 130
Trichlorofluoromethane	5.00	5.11	28	28.7	102	60 - 140
Vinyl chloride	5.00	5.05	13	12.9	101	70 - 130
SURROGATE		PERCE RECOV			LABOR. CONTRI LIMITS	OL
4-Bromofluorobenzene		113			60 - 14	0

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding) * (Molecular \ Weight/24.45)$

Sample Receipt Documentation

(B)

Date/Time:

Samples Relinquished by:

Relinquished by:

Date/Time:

phone 865-291-3000 fax 865-584-4315

5815 Middlebrook Pike

Knoxville, TN 37921

TAL Knoxville

H3P160408
Canister Samples Chain of Custody Record

TestAmerica assumes no liability with respect to the collection and shipment of these samples.

												İ						I
Client Contact Information	Project Manager: CHAD	nager: CH	#12 ST.	STANISZ EUSKi	15.43	Sampled By: E. FOFKEN (GES	E.POP	Trick	B	3	_	ğ	\	SOCS	"			
Company: NYSDEC REGION 9	Phone: 716-851-7	-158-9	2220	SIN-	DEC													7
1 64	Site Contact: ERIC POREN	t: ERIC	BRRI	6	_				-	-	╀				-		H	Г
3	TAL Contact:	it: JAMIE	E Mc	Kinney								(u						(u
e: 716 -												oitoe						onoe
FAX.					:							s se						s sa
Project Name: STANDARD PORTABLE つみないを Analysis T	DEPOSITE.	Analysis	Turnaround Time	nd Time								ejou						ejou
Site/location: MAYUNCEE, NY	S	Standard (Specify)	Ì	10 BUSINGSS	VASS DAY	\						ui V						uı ƙ
PO# SITE # C907030.A	¥	Rush (Specify)	fy)									pecif						pecif
Sample Identification	Sample Date(s)	Time Start	Time Ston	Canister Vacuum in Field, "Hg	Canister Vacuum in Field, 'Hg	Flow Controller	Canister ID	-1e	Ap1-01	EPA 26C	9461-G MTS	Other (Please s	eqγT elqme2	ndoor Air	A Juəjdm/	sse lios	ase Ilithns.	Sther (Please s
V V	4/11-4/1/2 1230	12 1230		30	7	<i>4747</i>	4877	X			╢				,		#-	
0		1320		30	,	7.13	4627	1	+		-				1	7	+	
23 DG)	_	3	(1)	3		(6)	1100		\dashv	\dashv	4				1	\ \	-	7,4
* Accord		1941	1/30	28	5	KHSY	148	+						Х	<u>-</u> -			
INDOOR DUT	Water State of the	1401	1136	30	9	K168	SM186	ķ						Х				
OUTDOOK	>	2021	0811	38	0	K095	6251	k							×			······································
Sampled by: To 27 7 Sampled				Temperature	Temperature (Fahrenheit)			Q٧		CUSTIBLY	(AAS)	√						
F. POTK EN(DE)		Interior		Ambient				2	1 61	X		AM BIENT	7	JAMIL.			Γ_	
FORDEN B CECOSO " " CONTRACTOR	Start	1800	it-	@ 9/1 N	سر				NKO.	<u>ا</u>	-13							
TION NEW CONSTINCT. COM	Stop	4005	14	OHN	¥			<u> </u>	/	(FDXP))	H485	ان ما	Daby	1112			
				Pressure (inches of Hg)	ches of Hg)					****			1	\				
		Interior		Ambient					SCANS		S Frank	PW S	/ 1-	1/5	5.6	J.		
	Start			08 ~	" HG					į								
	Stop			OEN	1 1/4													
Special Instructions/QC Requirements & Comments:	s:				//													<u> </u>
MA CATEGOLY B (45A) DEINSCHABL	ivaspu	M			7													·
Conjecture Chipmond Pur	Date/Time				Canisters F	Canisters Received by:					-							٦
Canisters Snipped by.	Card				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		,											

TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST Lot Number: $\#3D/6040\mathcal{F}$

Do sample container labels match COC7 The Nature was the proteiner of commerce actions a nature of the container labels match COC7 The Nature was the proteiner of commerce actions and the container labels match COC7 The Nature was the container of the container labels match COC7 The Nature was the container of container of containers and containers are received with correct chemical at wave cascally severative and containers? See the containers where the containers are received with correct chemical at wave cascally severative and containers? See the containers are received with correct chemical at was containers? See the containers are received with correct chemical at wave cascally severative and containers? See the containers? See the containers? See the containers? See the containers are received with correct chemical at wave cascally severative and containers? See the containers are received within bodding time? Containers are received within the containers are received within bodding time? Containers are received within bodding time? Containers are received within the containers are received withing the containers are received		-	H	TOTAL Later All and All an	most of a most a to the second
Do sample container labels match COC? Do sumple container labels match COC? Do sumple container labels match COC? Do sumple container labels match COC? Do conder temperature within limits? (~ freezing. Lat No label Date cooler temperature within limits? (~ freezing. Date conditions are cooler temperature or or or or and/or and/or containers or or cooler and/or containers or containers or containers or late or the COC received? Were all of the sample containers received inter? Date or and samples received within holding time? Were samples received within holding time? Were samples received within holding time? Were samples received within holding time? Dat you check for residual chorine, if necessary? Dat you theck for residual chorine, if necessary? Cor a samples received within holding time? To fall she water samples interd for each sample? Dat you theck for residual chorine, if necessary? To fall she internation Were samples containers and conference or and for the conference or and for the samples interd for each sample? Date internation of sample conference or and for the conference or and for the samples interd for each sample? Date internation of sample and project internation Sample Receiving Associate: Date Label Samples intermation Was the sample identified on the COC? Date Samples received within bolding time? Date Mark to sample interdified on the COC? Date Samples received within the complete information Date Mark to simple identified on the COC? Date Samples received within the complete information Sample Receiving Associate: Date Samples received within the COC?	Keview Items			II No, what was the problem:	Comments/Actions Laken
(IDs, Dates, Times) (IDS, Dates, Times, Tim	1. Do sample container labels match COC?				
14 Label tom 1.0 Label tom	(IDs, Dates, Times)				
1d tabel from 1d to No label from 1d to No lab					V
Is the cooler temperature within limits? (> freezing 12 OOC not received 13 OOC not received 14 OOC not received 15 OOC not		>		□ 1d Label torn	
In 1f COC not received Is the cooler temperature within limits? (Freezing In 1g Other In 2D Color Temp In 2D Color Temp In 2D Color Temp In 2D Color Temp In 3A Sample present we concer chemical In 3A Sample present we concer and or concert chemical Were custody seals present/intact on cooler and or considered sumples, ise present Were all of the samples listed on the COC received? Were all of the samples received without headques? Were VOA samples received in appropriate containers? Were Samples received within holding time? In 3A Sample present and or COC received? Were samples received within holding time? In 3A Sample present and or COC received? In 3B Improper containers In 3B Improper contai				□ 1e No label ——	
1g Other temperature within limits? (> freezing 1g Other Temp Blank = 2a Conloin initiate for recently 12a Temp Blank = 12c Conloin initiate for recently 12d Cooler Temp = 12c Cooling initiated for recently 12d Cooler Temp = 12c Cooling initiated for recently 12d Cooler Temp = 12d Co				□ 1f COC not received ——	
1st the cooler temperature within limits? (> freezing 1st temp Blank = 1st temp Bla				□ 1g Other:	
temp, of water to 6 °C, VOST: 10°C) Were samples received with correct chemical Were samples received with correct chemical To a Sample preservative and search or cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the samples received without headspace? Were word samples received within holding time? Were samples received on the COC. Were sample oblection noted? Were the sample oblection noted? Were the sample oblection noted? Was the sample oblection noted? Was the sample information Was the sample oblection noted? Was the sample word on the COC. Was the sample word on the COC. Was the sample word on the COC. Was the samples received with the word of the sample word of the samp	2. Is the cooler temperature within limits? (> freezing			□ 2a Temp Blank =	i,
Were samples received with correct chemical Were samples received with correct chemical Das Cooling initiated for recently Were custody seals present/intact on cooler and/or Were all of the sample stresent/intact on cooler and/or Were all of the samples is steed on the COC received? Were all of the sample containers received intact? Were all of the samples received without headspace? Were samples received without headspace? Were samples received within holding time? Was pid samples in pid-97? Was the samples onlainers intact? Was becalcing an project namely identified? Was becalcing an project namely identified? Was the sample ridentified on the COC. Were samples received within the samples rocked within the samples r	temp. of water to 6°C, VOST: 10°C)			\Box 2b Cooler Temp =	
Were samples received with correct chemical preservative excluding Encore)? Were ustody seals present/mact on cooler and/or and/or containers? Were custody seals present/mact on cooler and/or and the Not inact are all of the sample streetwind intact? Were all of the sample streetwind intact? Were all of the sample containers received intact? Were all of the sample received without headspace? Were samples received within holding time? Were samples received within holding time? Was COC relinquished? (Signed/Dated/Timed) Was COC relinduished? (Signed/Dated/Timed) Was COC relinduished? (Signed/Dated/Timed) Was COC relinduished? (Signed/Dated/Timed) Was COC relinduished? (Signed/Dated/Timed) Was the sample identified on the COC? Date: Hyper of the samples information Was the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the sample identified on the COC? Date: Hyper of the samp			_	☐ 2c Cooling initiated for recently	- 187 (III) (III)
Were camples received with correct chemical Were custody seals present/mact on cooler and/or Were all of the samples listed on the COC received? Were all of the samples isted on the COC received? Were all of the sample containers received intact? Were all of the sample streetived intact? Were all of the samples received without headspace? Were samples received within holding time? Did you check for residual chlorine, if necessary? Did you check for residual containers interced to purple information Did you check for samples interced to purple information Did you check for the direction noted? Did you check for the different check for the different noted? Did you check for the different purple information Did you check for the different purple information Did you check for the different purple information Did you check for				collected samples, ice present.	
Were custody seals present/intact on cooler and/or containers? G4a Not present	١.			☐ 3a Sample preservative =	
Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were all of the sample containers received intact? Were all of the sample steeked without headspace? Were samples received in appropriate containers? Were samples received without headspace? Were samples out check for residual checking information information is the matrix of the sample? Was COC relinquished? (SignedDated/Timed) Was COC relinquished? (SignedDated/Timed) Was the sampler identified on the COC? Was the sampler identified on the COC? Was the sampler identified on the COC? Date: \text{A-1}\frac{3}{2}\frac{3}\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2	preservative (excluding Encore)?) (
Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the samples received intact? Were VOA, samples received without headspace? Were Samples received without headspace? Were Samples received without headspace? Were samples received within holding time? Did you check for residual chlorine, if necessary? Were samples received within holding time? Were samples samples at provided? Were samples samples at provided? Were samples for each sample? Was COC relinquished? (Signed/Dated/Timed) Were samples onlection noted? Samples information Were samples onlection noted? Samples information Were samples infertified on the COC? Was the sampler identified on the COC? Date: \\ \alpha \) \\\ \alpha \) \\ \alpha \	4. Were custody seals present/intact on cooler and/or		\	4a Not present	
Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were all of the sample containers received without headspace? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, information Date: H-15s Incomplete information	containers?		_	□ 4b Not intact	
Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were all of the sample containers received intact? Were all of the sample containers received intact? Were all of the sample received without headspace? Were samples received in appropriate containers? Were samples received in appropriate containers? Were samples received in appropriate containers? Were samples received within holding time? Were samples ontain time? Was COC relinquished? (Signed/Dated/Timed) Was COC relinquished? (Signed/Dated/Timed) Was coc relinquished? (Signed/Dated/Timed) Was coc relinquished? (Signed/Dated/Timed) Was the the samples noted? Was the sample collection noted? Was the sample received within holding time? Was the sample received within holding time? Was the sample received within holding time? Was the sample with time of sample? Was the sample with time?			□ 4c Other:		
Were all of the sample containers received intact? Were vOA samples received without headspace? Were samples received without headspace? Were samples received within headspace? Were samples received in appropriate containers? Were samples received within headspace? Were samples onted? Was COC relinquished? (Signed/Dated/Timed) Was COC relinquished? (Signed/Dated/Timed) Were samples onted? Was COC relinquished? Was COC relinquished? (Signed/Dated/Timed) Was the sampler identified on the COC?		<u></u>		☐ 5a Samples received-not on COC	
Were all of the sample containers received intact? □ 6a Leaking Were VOA samples received without headspace? □ 7a Headspace (VOA only) Were samples received in appropriate containers? □ 8a Improper container Did you check for residual chlorine, if necessary? □ 10a Holding time expired Did you check for residual chlorine, if necessary? □ 10a Holding time expired I. For rad samples, was sample activity info. provided? □ 10a Holding time expired I. For 1613B water samples; b pH<0?)		☐ 5b Samples not received-on COC	
Were VOA samples received without headspace? □ 6b Broken Were samples received without headspace? □ 8a Improper container Did you check for residual chlorine, if necessary? □ 19a Could not be determined due Were samples received within holding time? □ 10a Could not be determined due Were samples, was sample activity info, provided? □ 10a Holding time expired I. For rad samples, was sample activity info, provided? □ 10a Holding time expired I. For 1613B water samples is pH<9?				□ 6a Leaking	
Were VOA samples received without headspace? □ 7a Headspace (VOA only) Were samples received in appropriate containers? □ 8a Improper container Did you check for residual chlorine, if necessary? □ 10a Holding time expired Were samples received within holding time? □ 10a Holding time expired For rad samples, was sample activity info, provided? □ 10a Holding time expired For 1613B water samples is pH<9?		١		☐ 6b Broken —	
Were samples received in appropriate containers? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Were samples received within holding time? Did you check for residual chlorine, if necessary? Were samples received within holding time? Did Holding time expired Did Holdi	7 Were VOA samples received without headsnace?			7a Headsnace (VOA only)	
Were samples received within holding time? Did you check for residual chlorine, if necessary? Did Could not be determined due Did Could not determined due Did Could not be determined due Did Could not determined due Did Could not be determined due Did Could not determined				Qa Immonar conformer	
Did you check for residual chlorine, it necessary? Were samples received within holding time? Were samples received within holding time? For rad samples, was sample activity info. provided? For fol ISB water samples is pH<9? Are the shipping containers intact? Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Are tests/parameters listed for e	-	>		a sumproper container	
Were samples received within holding time? For rad samples received within holding time? For rad samples, was sample activity info. provided? For 1613B water samples is pH<9? If no, was pH adjusted to pH 7 - 9 With sulfuric acid? If no, was pH adjusted to pH 7 - 9 Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Was the sampler identified on the COC? Was the sampler identified on the COC? Was the sampler identified on the COC? Date: H-15.13 Date: H-15			_	☐ 9a Could not be determined due	
Were samples, was sample activity info. provided? For 1613B water samples is pH<9? Are the shipping containers intact? Are the samples of each sample? Are the samples information By the date/fine of sample collection noted? By the date/fine of sample collection noted? By the date/fine of sample collection of the COC? By the date/fine of sample information By the date/fine of sample information By the date/fine of samples information By the date/fine of samples information By the date/fine of the COC? By the following of the CoC?)	willauth illerate	
For rad samples, was sample activity info. provided? For 1613B water samples is pH<9? Are the shipping containers intact? Are the shipping containers intact? Are the shipping containers intact? With sulfuric acid? Are the shipping containers intact? Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the date/time of sample identified? Was the sampler identified on the COC? Was the sampler identified on the COC? Was the sampler identified on the COC? Date: \(\frac{1}{2} \) \\		>		☐ 10a Holding time expired	
For 1613B water samples is pH<9? Are the shipping containers intact? Are the shipping containers intact? Are the shipping containers intact? Are tests/parameters listed for each sample? Bate deachime of sample collection noted? Bate deachime of sample collection noted? Bate client and project name/# identified?			}	☐ Incomplete information	
Are the shipping containers intact? Was COC relinquished? (Signed/Dated/Timed) Total Not relinquished? Was COC relinquished? (Signed/Dated/Timed) Total Not relinquished? Total Not relinduished? Total Not relinduishe				If no, was pH adjusted to pH 7 - 9 with sulfuric acid?	
Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Was the sampler identified on the COC? Date: 4-15-13 Date: 4-15-13				13a Leakino	
Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the date/time of sample collection noted? Was the sampler identified on the COC? Was the sampler identified on the COC? The date/time of sample collection noted? Was the sampler identified on the COC? The date/time of sample information The date/time of sample collection noted? The date/time of sample information The date info		>	_	□ 13b Other:	
Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the date/time of sample collection noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Was the sampler identified on the COC? Tote #: 9129 PM Instructions: Date: 4-15-13			\	E14a Not relinquished	
Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Was the sampler identified on the COC? PM Instructions: In 15a Incomplete information Date: 4-15-13 Date: 4-15-13		/		☐ 15a Incomplete information	
Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Note #: 4/28 PM Instructions: In 15a Incomplete information Date: 4-15-13		/		☐ 15a Incomplete information	
Is the client and project name/# identified? Was the sampler identified on the COC? Interpretation of the CoC?		\		□ 15a Incomplete information	
Was the sampler identified on the COC? Note #: 7/27 PM Instructions: Input Receiving Associate: Date: 4-15-13	18. Is the client and project name/# identified?			□ 15a Incomplete information	
PM Instructions: Date: 4-15-13	19. Was the sampler identified on the COC?	<u> </u>		□ 19a Other	
Menya Manasa Date: 4-15-13	tote #: 9/289				
Date: 4-15-13	ĺ				
	21.43	٤		Date: 4-15-13	QA026R23.doc, 022812
)	•

Test America - Knoxville ---- Air Canister Dilution Log Lot Number: <u>H3D160408</u>

	Comments	lo463	,			7
	Final Pres. Pf (psig)					
	Vol (mL)					
	Serial Dilution Can #					
ilutions	Third InCan Final Pres. Pf (psig)					
Subsequent Dilutions	Third Second InCan In-can Final Final Pres. Pres. Pf (psig) (psig)					
Sub	First InCan Final Pres. Pf (psig)					
	Final Pres. Pf (psig)					
	Initial Pres. Pi (in)					
	Baro					
	Analyst/Date					
	Adj. Initial Pres. (- in or + psig)		j			
,	Pres. Adj. upon Initial receipt Pres. (- (-in or in or + + psig) psig)	5.H-	0.0	200	43	0.0
e	Can#	6634	1122	1118	93145	1539
Initial Can Pressure	Sample ID	MOLPM	MOLPQ	MOLPT	MOLPW	MOLP1
	Baro ID S7- Pbarr (in)	29.05	-			>
1	Can o o o Tedlar prep Time	12.34				>
	Analyst/Date	24/11/13 12:34 29.08	_			>

Volaties

Raw Sample Data

New York State D.E.C.

Client Sample ID: SS

GC/MS Volatiles

Lot-Sample #	H3D160408 - 001		Work Order#	M0LPM1A	A	Matrix:	AIR
Date Sampled: Prep Date: Prep Batch #:	04/12/2013 04/16/2013 3106043		Date Received: Analysis Date	04/15/2013 04/17/2013			
Dilution Factor.:	1		Method:	TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTI LIMIT (p _l		RESULTS (ug/m3)	REPORTI LIMIT (uį	
			(
1,1,1-Trichloroetha	ne	ND	0.080		ND	0.44	
1,1,2,2-Tetrachloro	ethane	ND	0.080		ND ·	0.55	
1,1,2-Trichlorotriflu	uoroethane	ND	0.080		ND	0.61	
1,1,2-Trichloroetha	ne	ND	0.080		ND	0.44	
1,1-Dichloroethane		ND	0.080		ND	0.32	
1,1-Dichloroethene		ND	0.080		ND	0.32	
1,2,4-Trichlorobenz	zene	ND	0.080		ND	0.59	
1,2,4-Trimethylber	ızene	0.089	0.080		0.44	0.39	
1,2-Dibromoethane	(EDB)	ND	0.080		ND	0.61	
1,2-Dichlorobenzen	ne	ND	0.080		ND	0.48	
1,2-Dichloroethane		ND	0.080		ND	0.32	
1,2-Dichloropropan	ie	ND	0.080		ND	0.37	
1,3,5-Trimethylbens		ND	0.080		ND	0.39	
1,4-Dichlorobenzen	ie	ND	0.080		ND	0.48	
1,4-Dioxane		ND	0.20		ND	0.72	
2-Butanone (MEK))	1.7	0.32		5.0	0.94	
1,3-Dichlorobenzen	ie	ND	0.080		ND	0.48	
2,2,4-Trimethylpen	ıtane	0.22	0,20		1.0	0.93	
Benzene		0.40	0.080		1.3	0.26	
Benzyl chloride		ND	0.16		ND	0.83	
Bromodichloromet	thane	0.35	0.080		2.3	0.54	
Bromoform		ND	0.080		ND	0.83	
Bromomethane		ND	0.080		ND	0.31	
Carbon tetrachlorid	e	ND	0.040		ND	0.25	
Chlorobenzene		ND	0.080		ND	0.37	
Chloroethane		ND	0.080		ND	0.21	
Chloroform		2.2	0.080		11	0.39	
Cyclohexane		0.94	0.20		3.2	0.69	
Chloromethane		ND	0.20		ND	0.41	
cis-1,2-Dichloroeth		ND	0.080		ND	0.32	
cis-1,3-Dichloropro	_	ND	0.080		ND	0.36	
Dibromochlorometl		ND	0.080		ND	0.68	
Dichlorodifluorom	ethane	0.32	0.080		1.6	0.40	
Ethanol		3.6	0.80		6.8	1.5	
Ethylbenzene	O totaciling	0.30	0.080		1.3	0.35	
1,2-Dichloro-1,1,2,2	∠-tetrantuoroetn	ND	0.080		ND	0.56	
ane n-Hexane		1.6	0.20		5.8	0.70	
Hexachlorobutadies	ne	ND	0.080		ND	0.85	
. Ionusinoi oo uudioi	••		5,000			0.00	

TO-14_rev5.rpt Rev 1.0,9 09/01/2011

New York State D.E.C.

Client Sample ID: SS

GC/MS Volatiles

Lot-Sample # H3D160408 - 00	1	Work Order # M0LPM	IIAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	0.32	0.20	1.1	0.69
Styrene	0.10	0.080	0.42	0.34
ert-Butyl alcohol	0.83	0.32	2.5	0.97
Tetrachloroethene	1.3	0.080	8.5	0.54
oluene	2.0	0.080	7.6	0.30
n-Xylene & p-Xylene	0.94	0.080	4.1	0,35
-Xylene	0.25	0.080	1.1	0.35
rans-1,2-Dichloroethene	ND	0.080	ND	0.32
rans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Crichlorofluoromethane	0.19	0.080	1.0	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mr.i/R041613.b/m0lpm2aa.d

Lab Smp Id: MOLPM1AA

Inj Date : 17-APR-2013 09:53

Operator: 403648 Inst ID: mr.i

Smp Info : MOLPM1AA,,0,,

Misc Info: R041613, T015, to14nj.sub

Comment :

Method : /var/chem/gcms/mr.i/R041613.b/T015.m

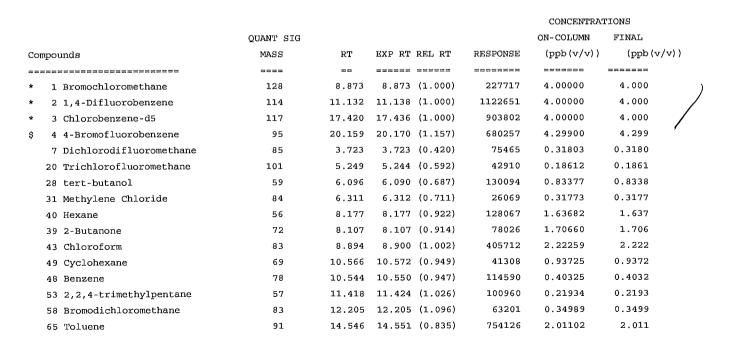
Meth Date: 16-Apr-2013 19:25 barlozha Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205.d

Als bottle: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50


Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name Value Description

DF 1.00000 Dilution Factor
Vt 500.00000 Default Calibration Volume
Vo 500.00000 Default Sample Volume

Cpnd Variable

Local Compound Variable

Data File: /var/chem/gcms/mr.i/R041613.b/m0lpm2aa.d Report Date: 17-Apr-2013 11:14

					CONCENTRA	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb (v/v))
	====	==		=======	======	======
73 Tetrachloroethene	129	16.174	16.180 (0.928)	166956	1.25704	1.257
76 Ethylbenzene	91	17.991	18.008 (1.033)	142995	0.30365	0.3036
78 m&p-Xylene	91	18.256	18.277 (1.048)	342087	0.94101	0.9410
81 Styrene	104	19.016	19.038 (1.092)	25731	0.09966	0.09966
82 o-Xylene	91	19.124	19.140 (1.098)	92948	0.24783	0.2478
94 1,2,4-Trimethylbenzene	105	22.386	22,392 (1.285)	40896	0.08927	0.08927
17 ~ ethanol	31	4.785	4.775 (0.539)	113335	3.62891	3.629

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i

Calibration Date: 16-APR-2013

Calibration Time: 10:51

Lab File ID: m0lpm2aa.d Lab Smp Id: MOLPM1AA

Level: LOW

Analysis Type: OTHER Quant Type: ISTD

Sample Type: AIR

Operator: 403648

Method File: /var/chem/gcms/mr.i/R041613.b/T015.m

Misc Info: R041613, T015, to14nj.sub

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
1 Bromochloromethan	294767	175386	414148	227717.	-22.75
2 1,4-Difluorobenze	1529291	909928	2148654	1122651	-26.59
3 Chlorobenzene-d5	1257555	748245	1766865	903802	-28.13

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
1 Bromochloromethan	8.87	8.54	9.20	8.87	0.00
2 1,4-Difluorobenze	11.14	10.81	11.47	11.13	-0.05
3 Chlorobenzene-d5	17.44	17.11	17.77	17.42	-0.09

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mr.i/R041613.b/m0lpm2aa.d Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

RECOVERY REPORT

Client Name:

Client SDG: R041613

Sample Matrix: GAS

Fraction: OTHER

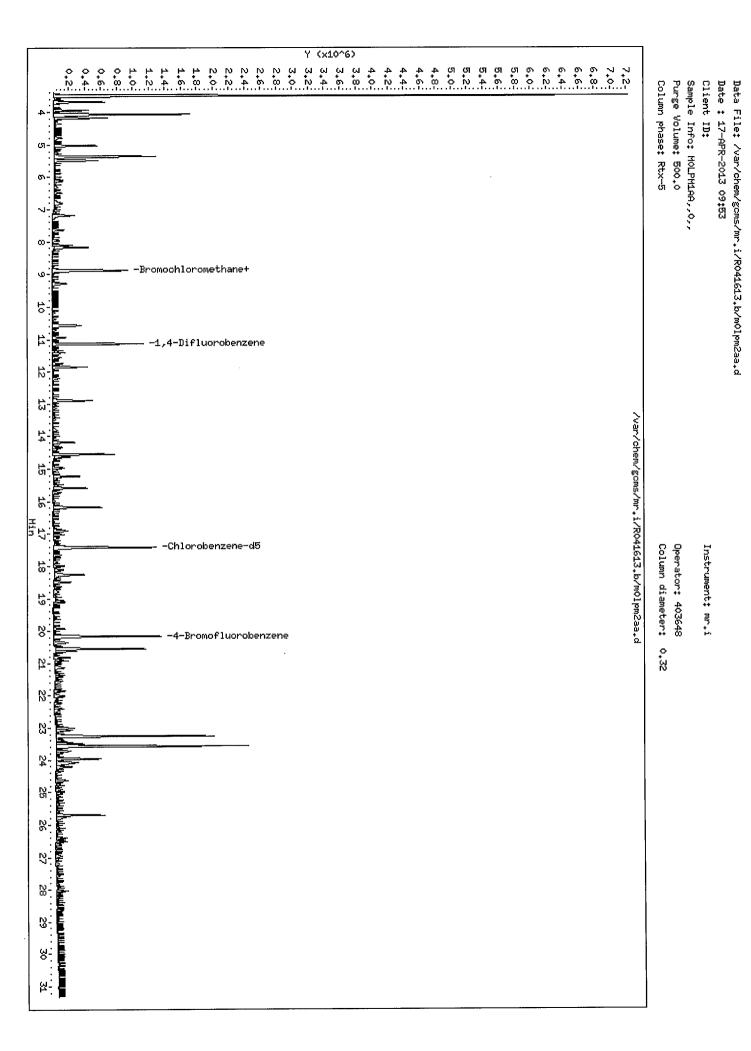
Lab Smp Id: MOLPM1AA

Level: LOW

Operator: 403648

Data Type: MS DATA

SampleType: SAMPLE


SpikeList File: allnew.spk

Quant Type: ISTD

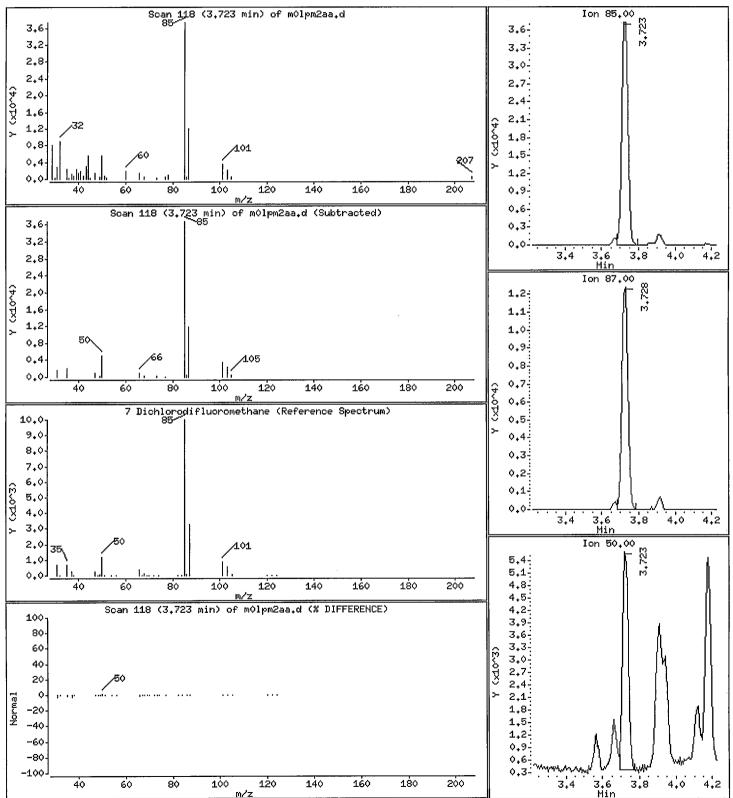
Sublist File: nysdec.sub

Method File: /var/chem/gcms/mr.i/R041613.b/T015.m Misc Info: R041613, T015, to14nj.sub

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	4.000	4.299	107.47	60-140

Date : 17-APR-2013 09:53

Client ID: Instrument; mr.i


Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

7 Dichlorodifluoromethane

Concentration: 0.3180 ppb(v/v)

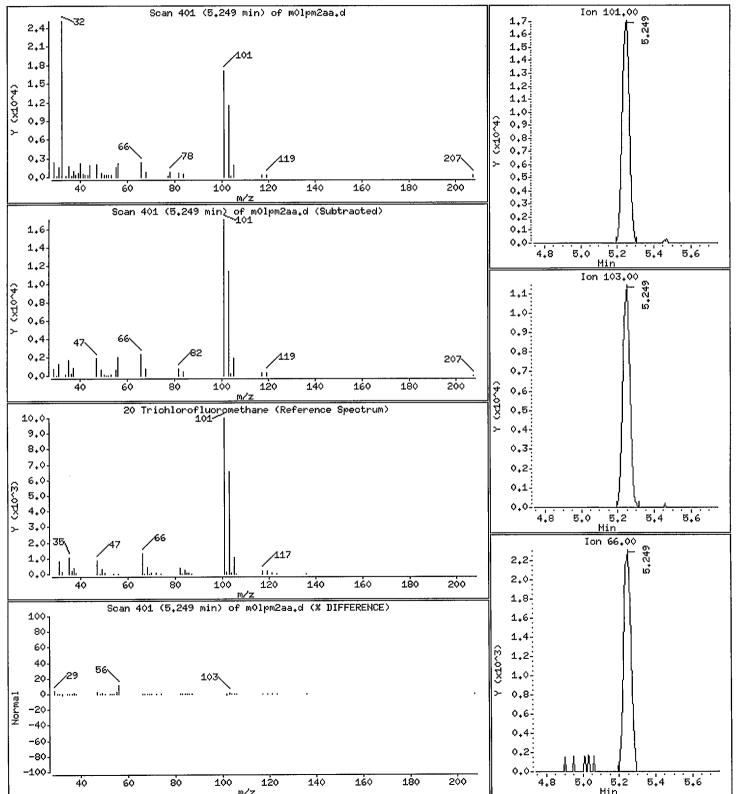
Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i

Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

20 Trichlorofluoromethane

Concentration: 0.1861 ppb(v/v)

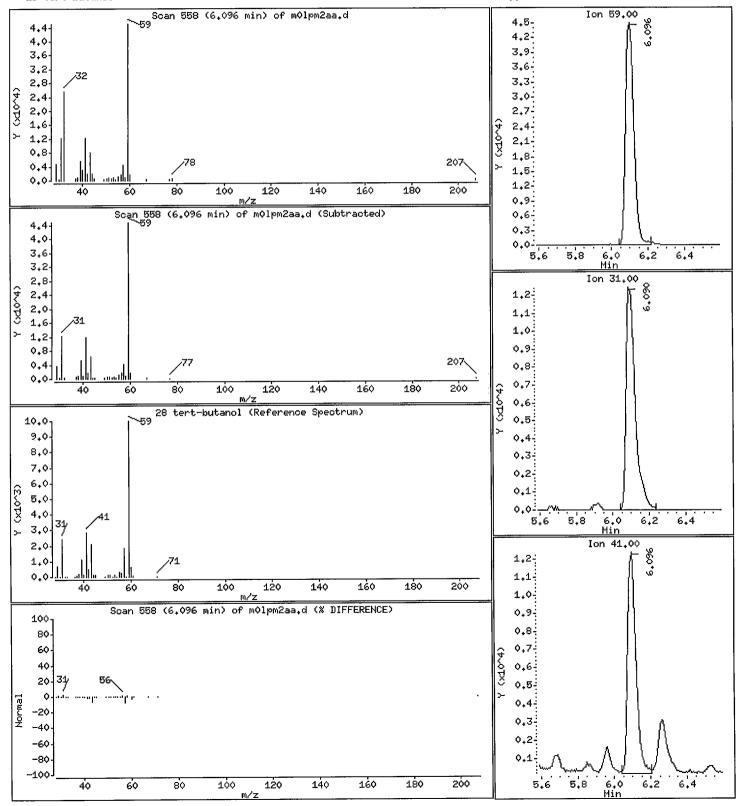
Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i

Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

28 tert-butanol

Concentration: 0.8338 ppb(v/v)

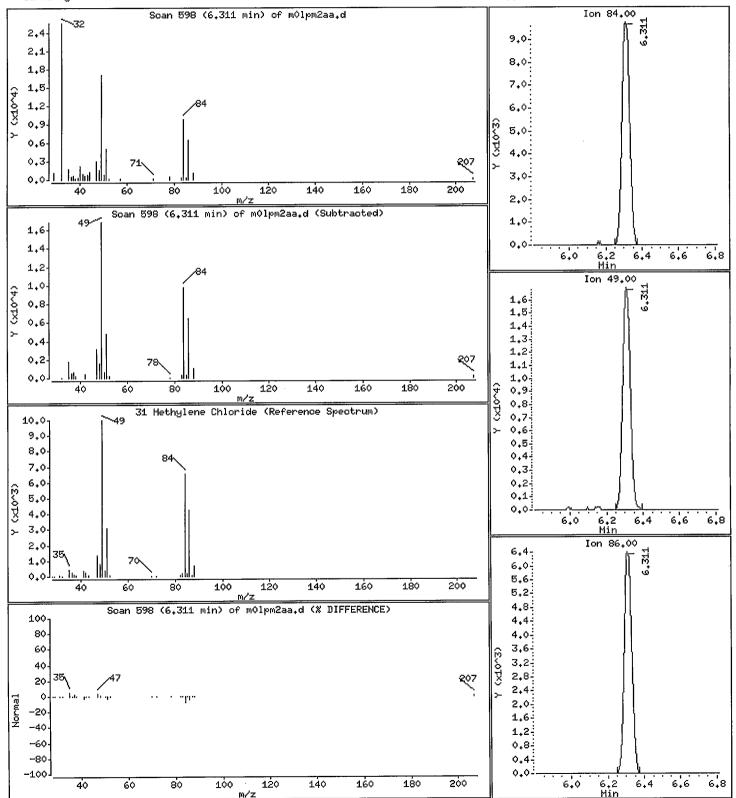
Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i

Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

31 Methylene Chloride

Concentration: 0.3177 ppb(v/v)

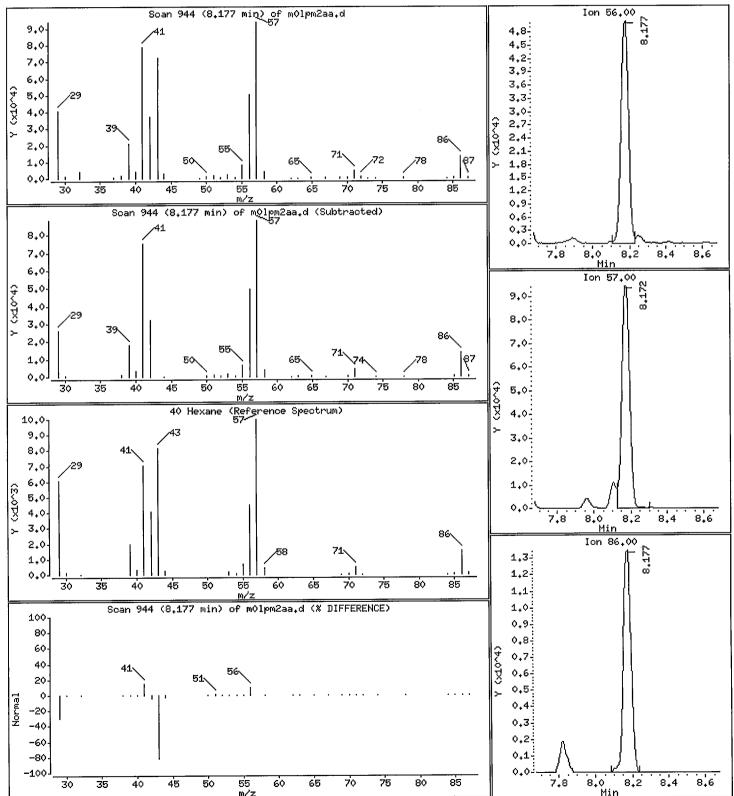
Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i

Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

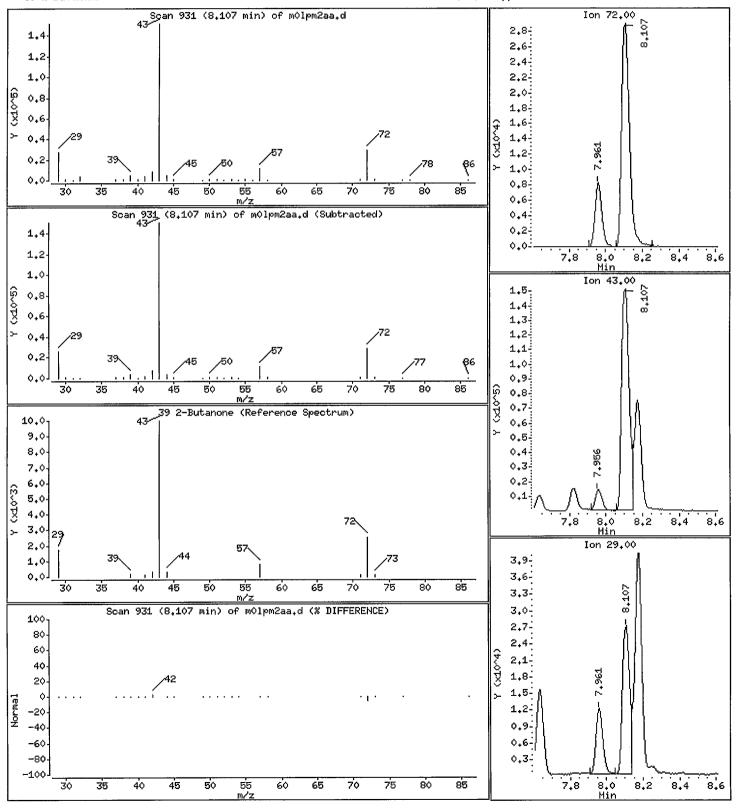
40 Hexane

Concentration: 1.637 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i


Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

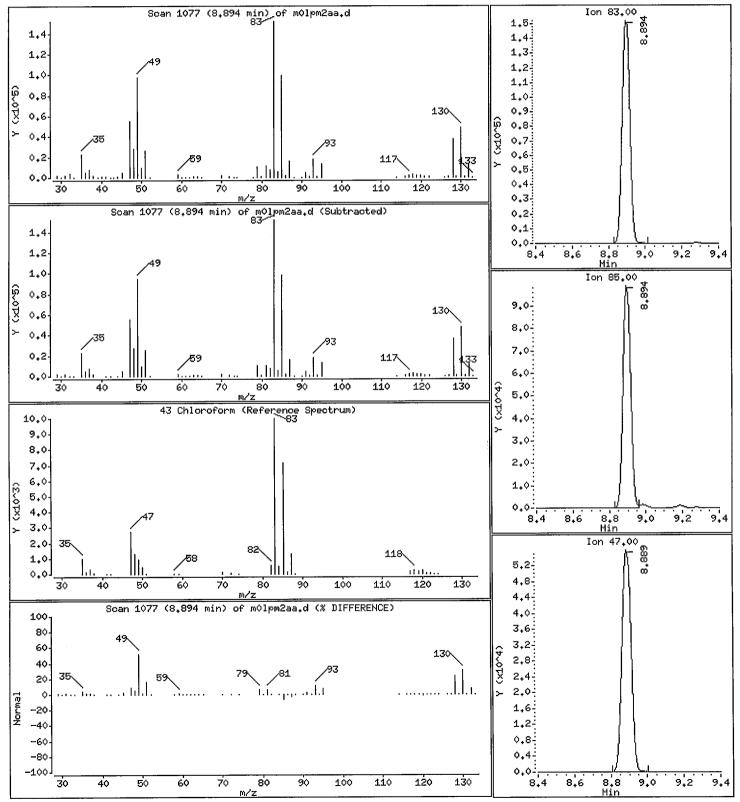
39 2-Butanone

Concentration: 1.706 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i


Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

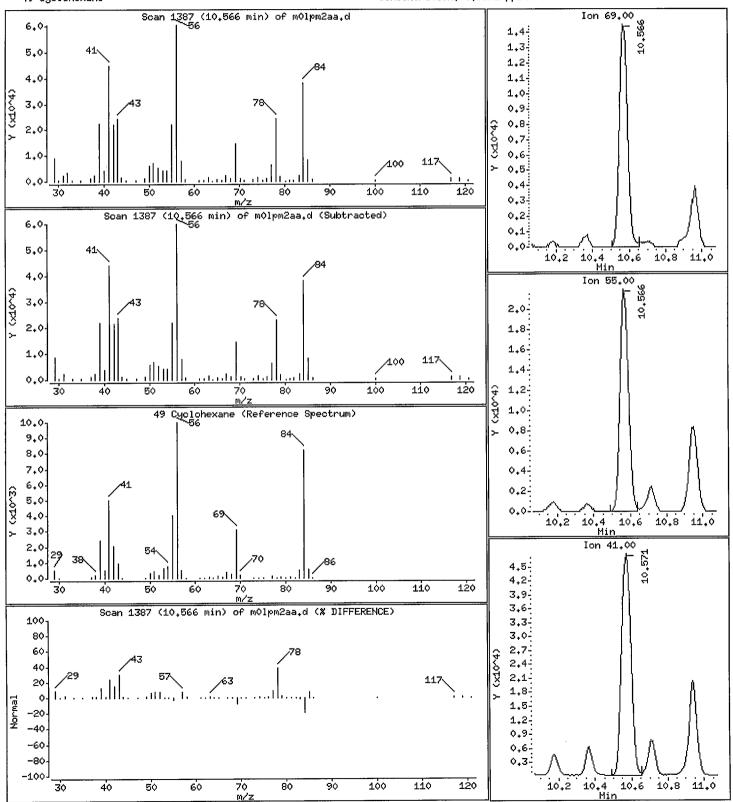
43 Chloroform

Concentration: 2.222 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID:

Sample Info: MOLPM1AA,,0,,


Purge Volume: 500.0 Operator: 403648

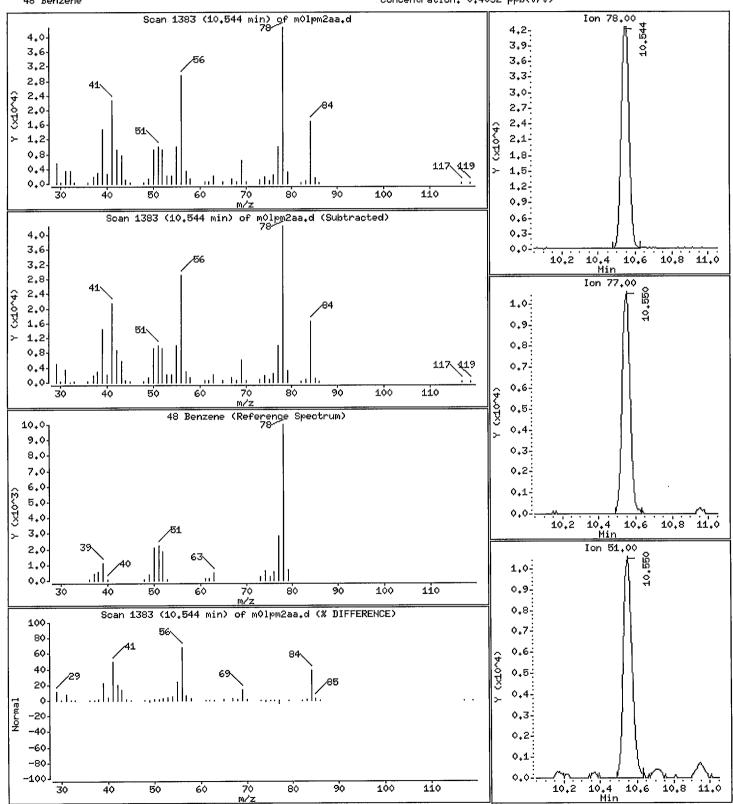
Column phase: Rtx-5 Column diameter: 0.32

49 Cyclohexane

Concentration: 0.9372 ppb(v/v)

Instrument: mr.i

Date : 17-APR-2013 09:53


Client ID: Sample Info: MOLPM1AA,,O,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

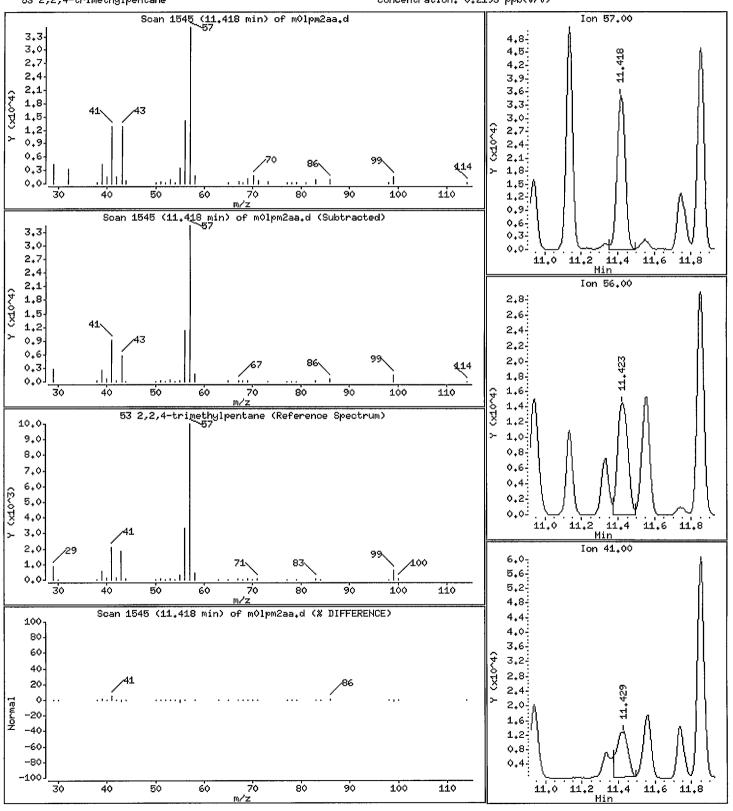
48 Benzene Concentration: 0.4032 ppb(v/v)

Instrument: mr.i

Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i


Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

53 2,2,4-trimethylpentane

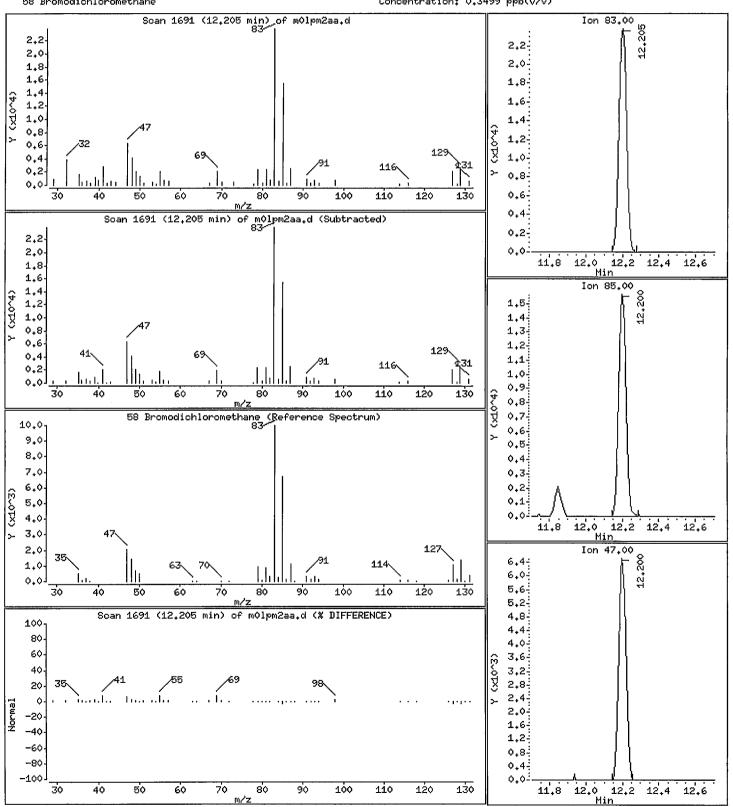
Concentration: 0.2193 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i

Sample Info: MOLPM1AA,,0,,


Purge Volume: 500.0

Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

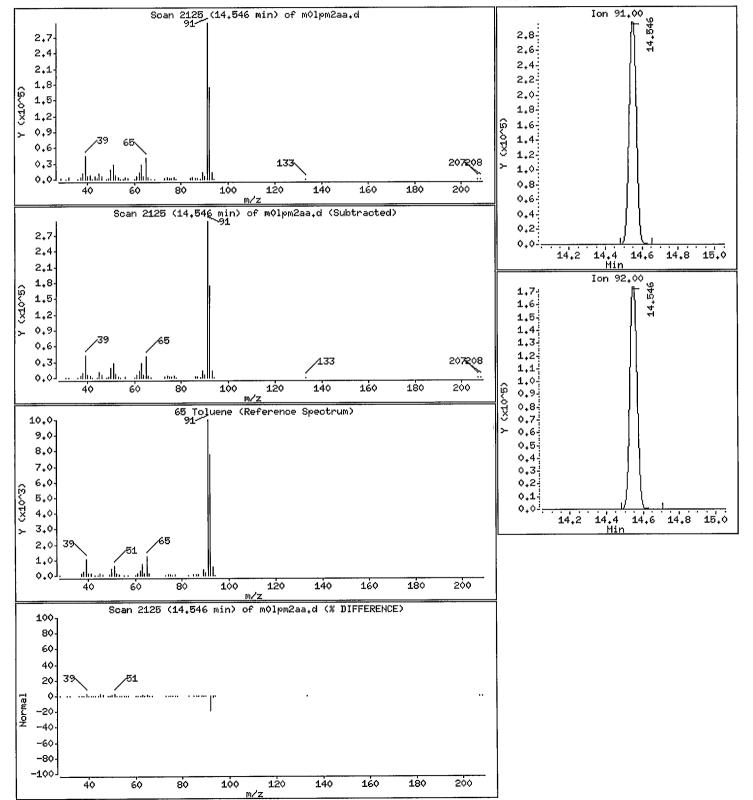
58 Bromodichloromethane

Concentration: 0.3499 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i


Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

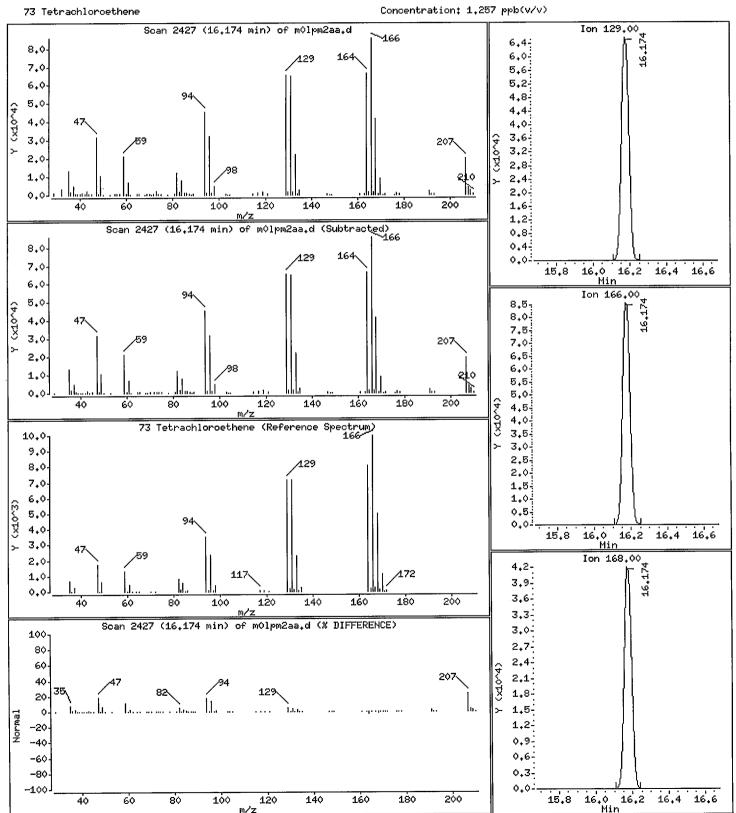
65 Toluene

Concentration: 2.011 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i


Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

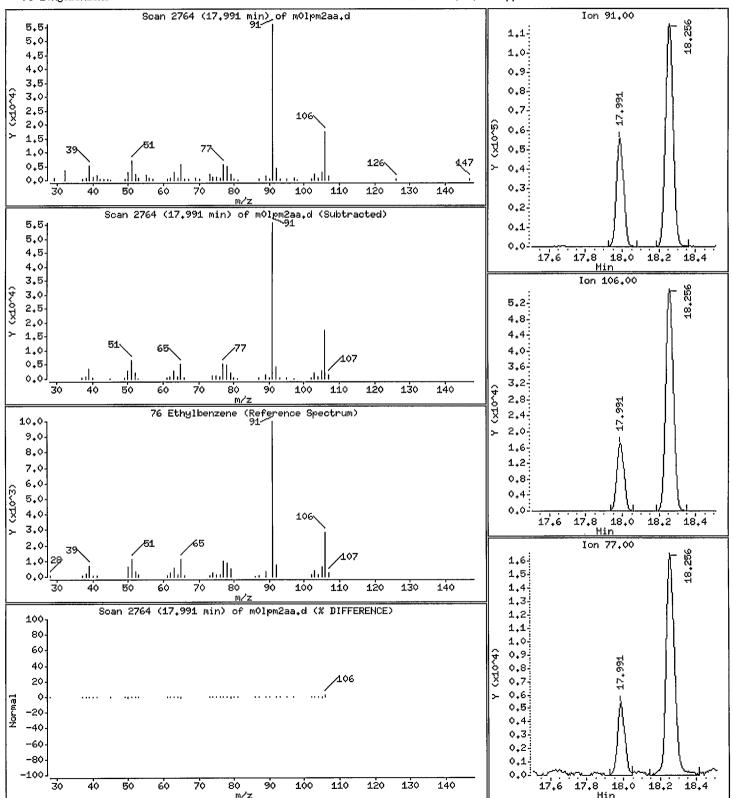
Column diameter: 0.32

73 Tetrachloroethene

Concentration: 1,257 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID: Instrument: mr.i


Sample Info: MOLPM1AA,,0,,

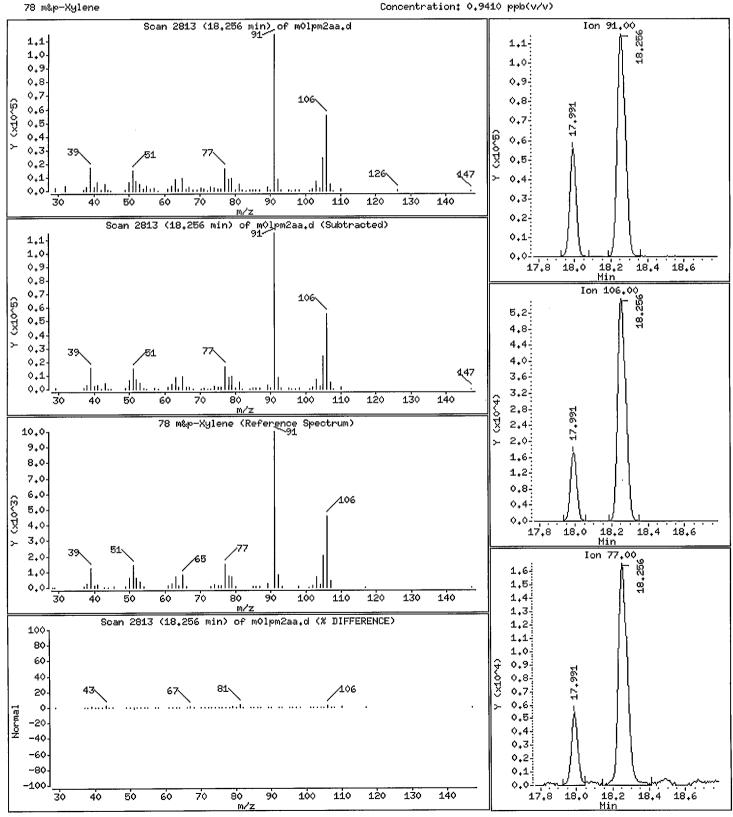
Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

76 Ethylbenzene

Concentration: 0.3036 ppb(v/v)

Date : 17-APR-2013 09:53


Client ID: Instrument: mr.i

Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

-- + 11.1

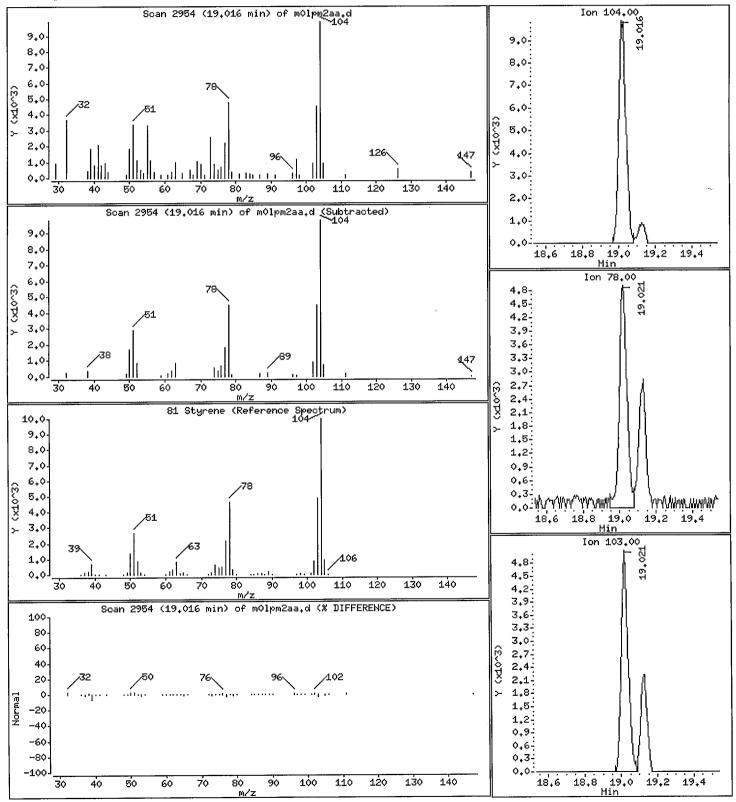
Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i

Operator: 403648

Sample Info: MOLPM1AA,,0,,


Purge Volume: 500.0

Column phase: Rtx-5

Column diameter: 0.32

81 Styrene

Concentration: 0.09966 ppb(v/v)

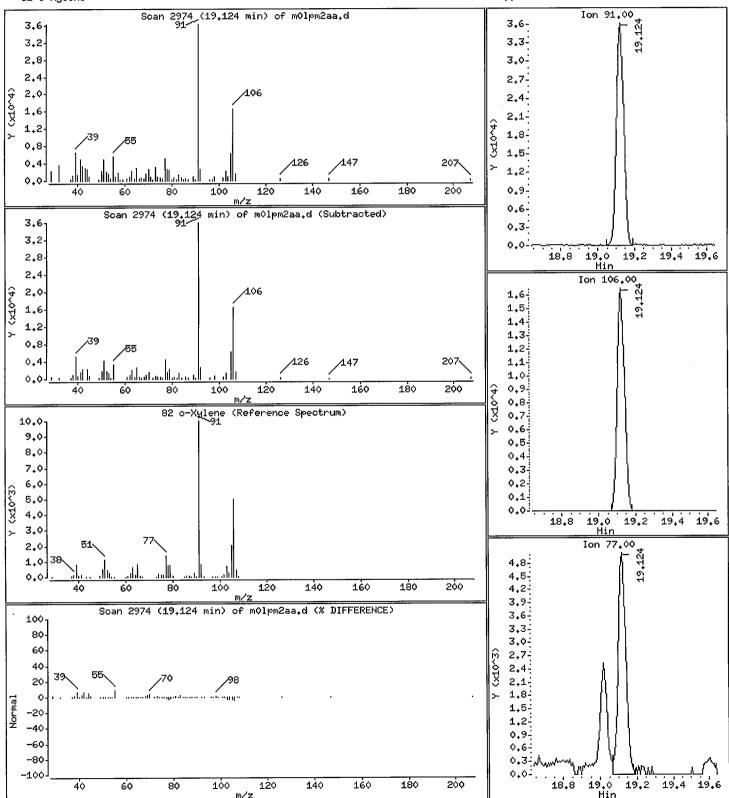
Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i

Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

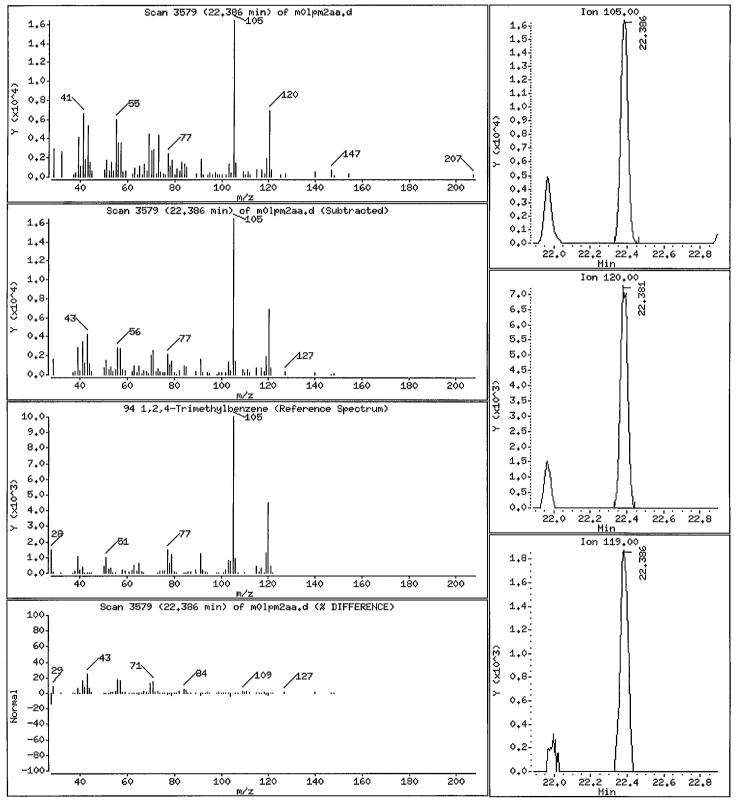
Concentration: 0.2478 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i

Sample Info: MOLPM1AA,,0,,


Purge Volume: 500.0

Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

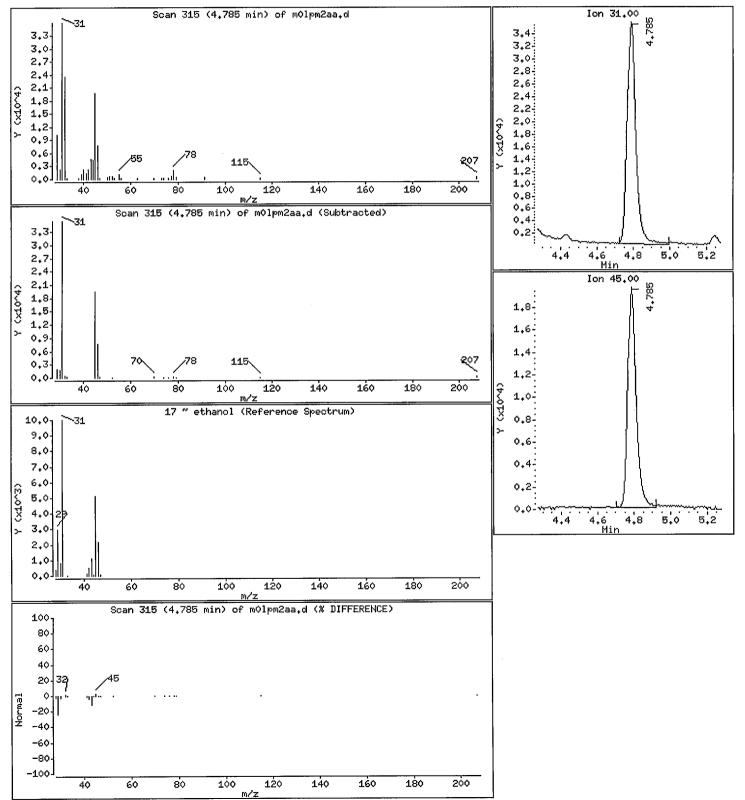
94 1,2,4-Trimethylbenzene

Concentration: 0.08927 ppb(v/v)

Date : 17-APR-2013 09:53

Client ID:

Instrument: mr.i


Sample Info: MOLPM1AA,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

17 ~ ethanol

Concentration: 3.629 ppb(v/v)

New York State D.E.C.

Client Sample ID: SS DUP

GC/MS Volatiles

Lot-Sample # H3D160408 - 002 Work Order # M0LPQ1AA Matrix....... AIR

 Date Sampled...:
 04/12/2013
 Date Received..:
 04/15/2013

 Prep Date........
 04/17/2013
 Analysis Date...
 04/17/2013

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2,2-Tetrachloroethane	ND ND	0.080	ND	0.55
* * *	ND ND	0.080	ND ND	0.61
1,1,2-Trichlorotrifluoroethane				0.44
1,1,2-Trichloroethane	ND	0.080	ND	
1,1-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,2,4-Trimethylbenzene	0.32	0.080	1.6	0.39
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,2-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
1,4-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dioxane	ND	0.20	ND	0.72
2-Butanone (MEK)	1.7	0.32	4.9	0.94
1,3-Dichlorobenzene	ND	0.080	ND	0.48
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
Benzene	0.54	0.080	1.7	0.26
Benzyl chloride	ND	0.16	ND	0.83
Bromodichloromethane	0.31	0.080	2.1	0.54
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.042	0.040	0.27	0.25
Chlorobenzene	ND	0.080	ND	0.37
Chloroethane	ND	0.080	ND	0.21
Chloroform	2.1	0.080	10	0.39
Cyclohexane	0.98	0.20	3.4	0.69
Chloromethane	0.25	0.20	0.52	0.41
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
Dibromochloromethane	ND	0.080	ND	0.68
Dichlorodifluoromethane	0.33	0.080	1.6	0.40
Ethanol	4.8	0.80	9.1	1.5
Ethylbenzene	0.40	0.080	1.8	0.35
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				
n-Hexane	2.4	0.20	8.3	0.70
Hexachlorobutadiene	ND	0.080	ND	0.85

New York State D.E.C.

Client Sample ID: SS DUP

GC/MS Volatiles

H3D160408 - 002	,	Work Order#	M0LPQ1AA	Matrix AIR
	RESULTS (ppb(v/v))			REPORTING LIMIT (ug/m3)
none (MIBK)	0.26	0.20	1.1	0.82
ether	ND	0.16	ND	0.58
de	1.1	0.20	3.9	0.69
	0.41	0.080	1.7	0.34
	0.84	0.32	2.6	0.97
	ND	0.080	ND	0.54
	2.3	0.080	8.7	0.30
lene	1.8	0.080	7.7	0.35
	0.54	0.080	2.3	0.35
ethene	ND	0.080	ND	0.32
propene	ND	0.080	ND	0.36
	ND	0.040	ND	0.21
ethane	0.23	0.080	1.3	0.45
	ND	0.080	ND	0.20
		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
	none (MIBK) ether de	RESULTS (ppb(v/v))	RESULTS (ppb(v/v)) LIMIT (ppt Limit (p	RESULTS (ppb(v/v))

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 17-Apr-2013 19:56

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mr.i/R041713.b/m0lpqlaa.d

Lab Smp Id: MOLPQ1AA Client Smp ID: SS DUP

Inj Date : 17-APR-2013 16:39

Operator: 403648 Inst ID: mr.i

Smp Info : ,,0,,,

Misc Info: R041713, T015, nysdec.sub

Comment :

Method : /var/chem/gcms/mr.i/R041713.b/T015.m

Meth Date: 17-Apr-2013 19:55 barlozha Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205.d

Als bottle: 7

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

Local Compound Variable

CONCENTRATIONS

						CONCENTRA	LIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v)))
	====	==	=====	=====	=======	======	======	
* 1 Bromochloromethane	128	8.867	8.868	(1.000)	209580	4.00000	4.000	,
* 2 1,4-Difluorobenzene	114	11.127	11,132	(1.000)	1121907	4.00000	4.000	
* 3 Chlorobenzene-d5	1.17	17.414	17.431	(1.000)	992227	4.00000	4.000	
\$ 4 4-Bromofluorobenzene	95	20.154	20.165	(1.157)	744045	4.28308	4.283	
7 Dichlorodifluoromethane	85	3.718	3.718	(0.419)	72334	0.33121	0.3312	
8 Chloromethane	52	3.901	3.896	(0.440)	6697	0.25087	0.2509	
20 Trichlorofluoromethane	101	5.238	5.239	(0.591)	47828	0.22541	0.2254	
28 tert-butanol	59	6.085	6.085	(0.686)	120895	0.84187	0.8419	
31 Methylene Chloride	84	6.306	6.306	(0.711)	84139	1.11424	1.114	
40 Hexane	56	8.166	8.172	(0.921)	169623	2.35557	2.356	
39 2-Butanone	72	8.096	8.102	(0.913)	6.9759	1.65782	1.658	
43 Chloroform	83	8.889	8.895	(1.002)	351109	2.08992	2.090	
49 Cyclohexane	69	10.561	10.566	(0.949)	43120	0.97901	0.9790	
48 Benzene	78	10.539	10.545	(0.947)	152293	0.53628	0.5363	
50 Carbon Tetrachloride	117	10.582	10.582	(0.951)	6192	0.04221	0.04221	
58 Bromodichloromethane	83	12.194	12.200	(1.096)	55621	0.30813	0.3081	

Data File: /var/chem/gcms/mr.i/R041713.b/m0lpq1aa.d Report Date: 17-Apr-2013 19:56

					CONCENTRA	PIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
	====	==	======		======	======
62 4-Methyl-2-pentanone	43	13.386	13.381 (1.203)	51853	0.25866	0.2586
65 Toluene	91	14.546	14.546 (0.835)	950784	2.30949	2.309
76 Ethylbenzene	91	17.986	18,002 (1.033)	208661	0.40360	0.4036
78 m&p-Xylene	91	18.255	18.272 (1.048)	708809	1.77602	1.776
81 Styrene	104	19.021	19.032 (1.092)	114963	0.40559	0.4056
82 o-Xylene	91	19.118	19.129 (1.098)	222471	0.54032	0.5403
94 1,2,4-Trimethylbenzene	105	22.381	22.386 (1.285)	158656	0.31547	0.3155
17 ~ ethanol	31	4.769	4.769 (0.538)	139196	4.84267	4.843

Report Date: 17-Apr-2013 19:56

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i

Lab File ID: m0lpq1aa.d

Lab Smp Id: MOLPQIAA

Analysis Type: OTHER

Quant Type: ISTD Operator: 403648

Operator: 403648
Method File: /var/chem/gcms/mr.i/R041713.b/T015.m

Misc Info: R041713, T015, nysdec.sub

Calibration Date: 17-APR-2013

Calibration Time: 12:45 Client Smp ID: SS DUP

Level: LOW

Sample Type: AIR

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
1 Bromochloromethan	281891	167725	396057	209580	-25.65
2 1,4-Difluorobenze	1460036	868721	2051351	1121907	-23.16
3 Chlorobenzene-d5	1172674	697741	1647607	992227	-15.39

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
1 Bromochloromethan	8.87	8.54	9.20	8.87	0.00
2 1,4-Difluorobenze	11.13	10.80	11.46	11.13	-0.05
3 Chlorobenzene-d5	17.43	17.10	17.76	17.41	-0.09

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 17-Apr-2013 19:56

TestAmerica Knoxville

RECOVERY REPORT

Client SDG: H3D160408 Client Name: New York State D.E.C15-APR-2013 00:00

Sample Matrix: GAS

Fraction: OTHER

Lab Smp Id: MOLPQ1AA

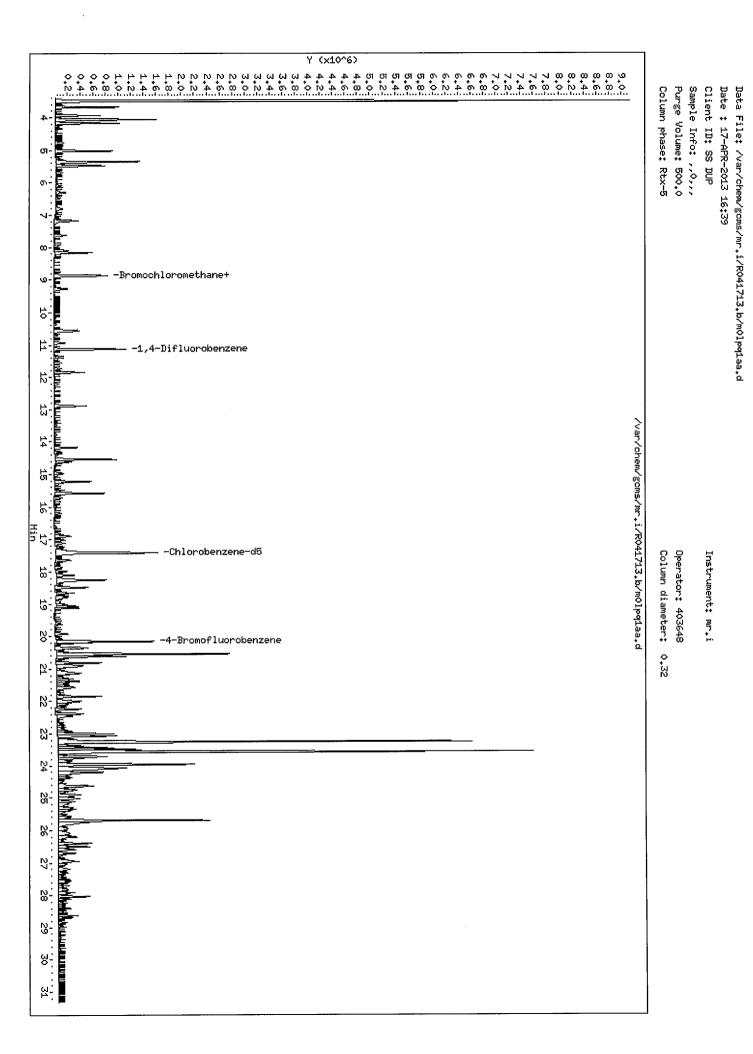
Client Smp ID: SS DUP

Level: LOW

Operator: 403648

Data Type: MS DATA

SampleType: SAMPLE


SpikeList File: allnew.spk

Quant Type: ISTD

Sublist File: nysdec.sub

Method File: /var/chem/gcms/mr.i/R041713.b/T015.m Misc Info: R041713, T015, nysdec.sub

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	4.000	4.283	107.08	60-140

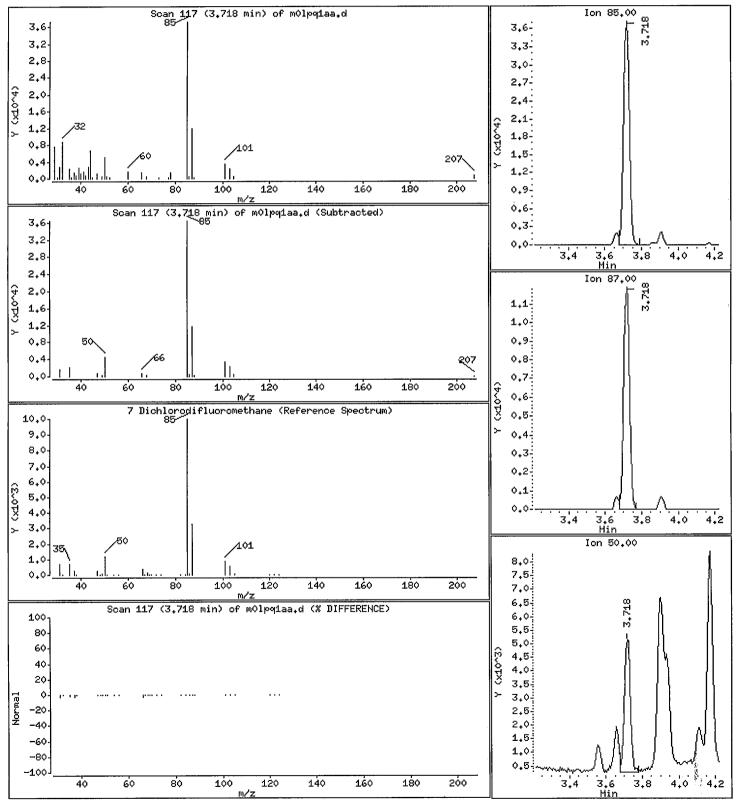
Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

7 Dichlorodifluoromethane

Concentration: 0.3312 ppb(v/v)

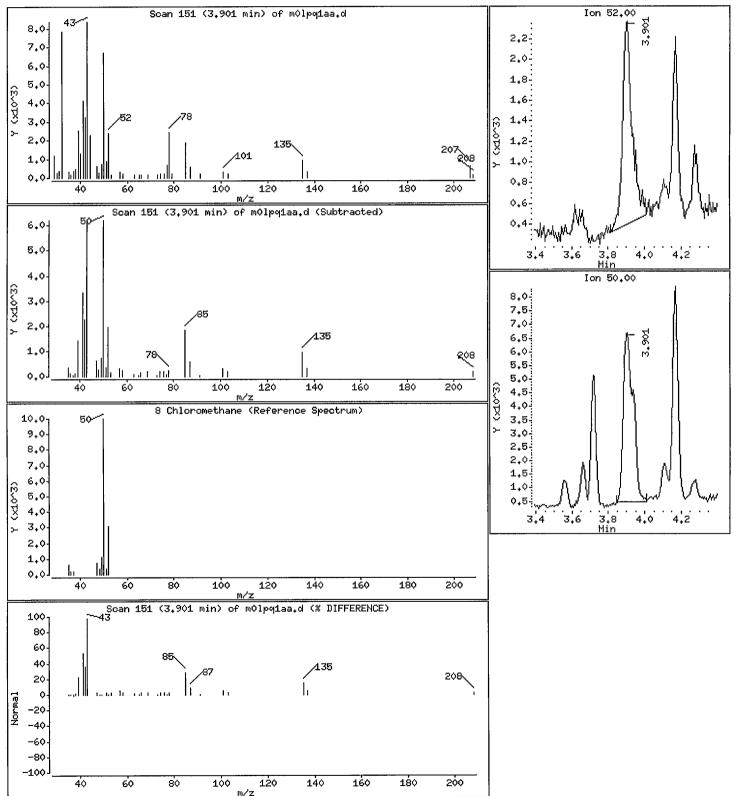
Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

8 Chloromethane

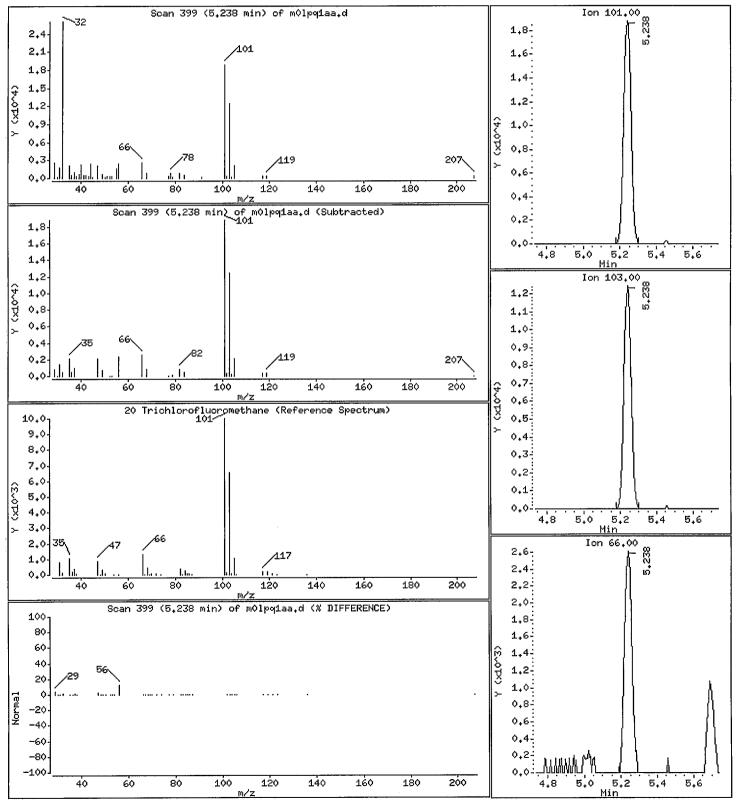
Concentration: 0.2509 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info: ,,0,,,


Purge Volume: 500.0

Operator: 403648

Column phase: Rtx-5 Column diameter: 0,32

20 Trichlorofluoromethane

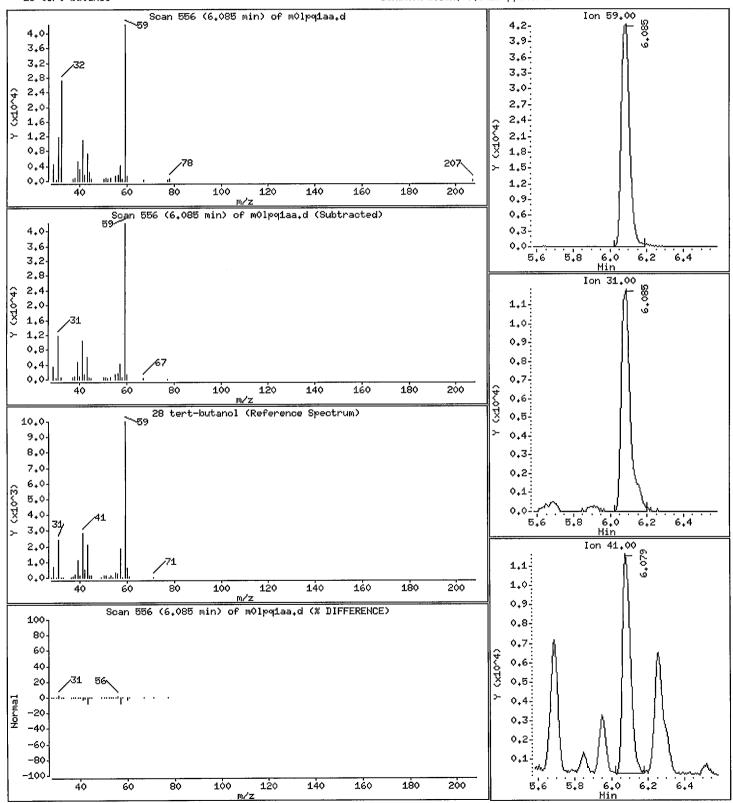
Concentration: 0,2254 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Infot ,,0,,,


Purge Volume: 500.0

Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

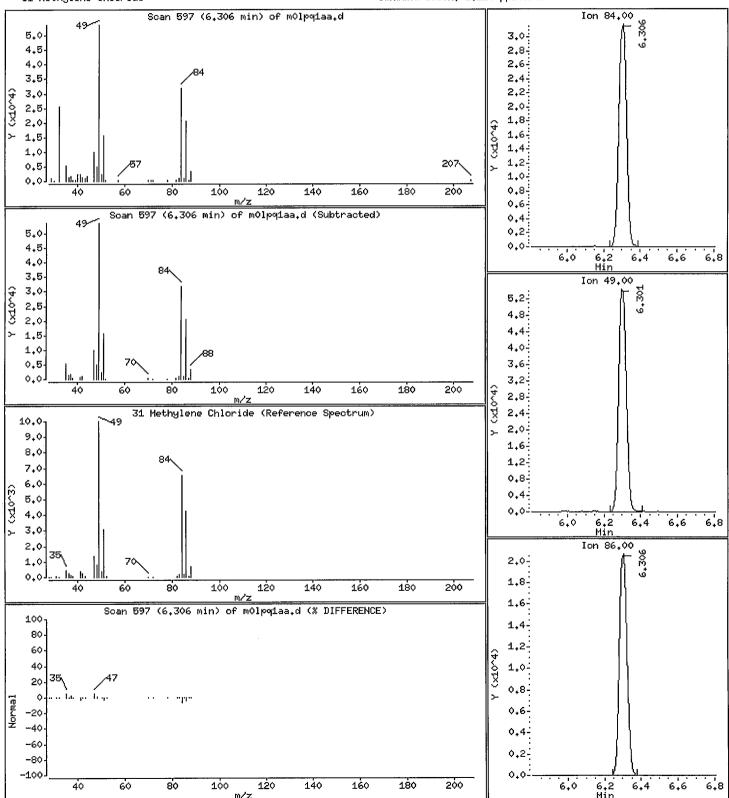
28 tert-butanol

Concentration: 0.8419 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

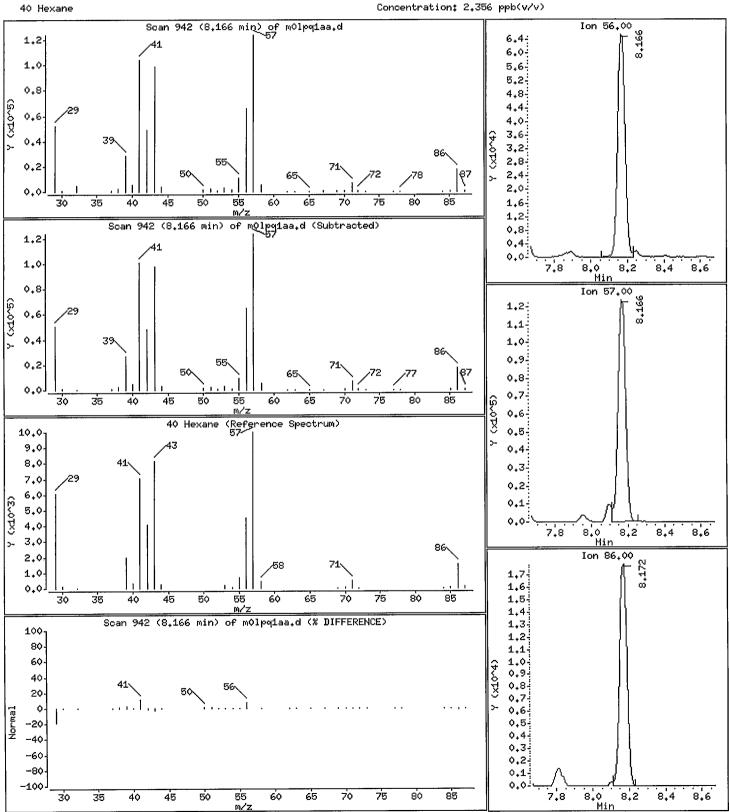

Sample Info: ,,0,,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

31 Methylene Chloride

Concentration: 1.114 ppb(v/v)


Date : 17-APR-2013 16:39

Client ID: SS DUP Instrument: mr.i

Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

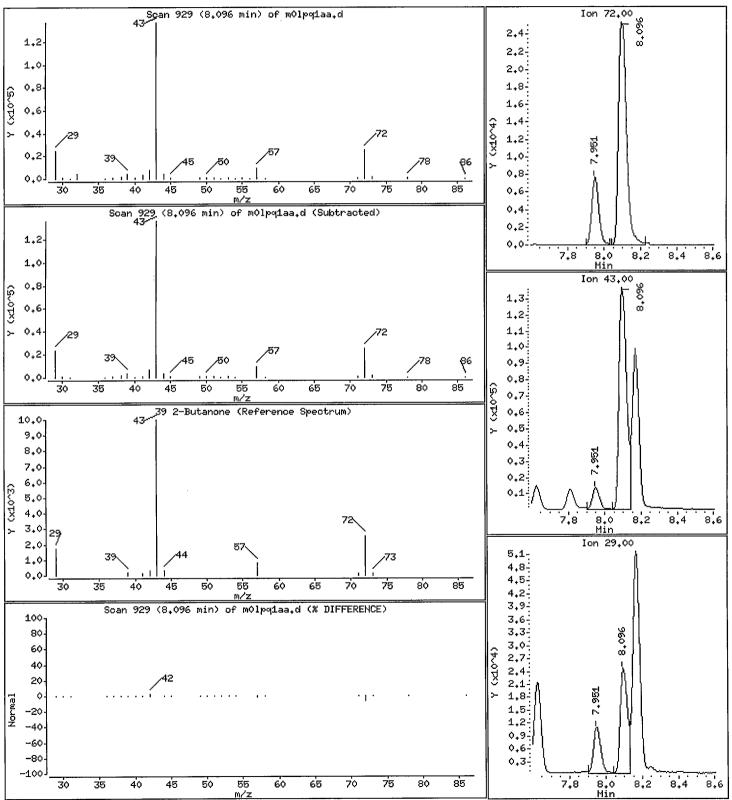
Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

39 2-Butanone

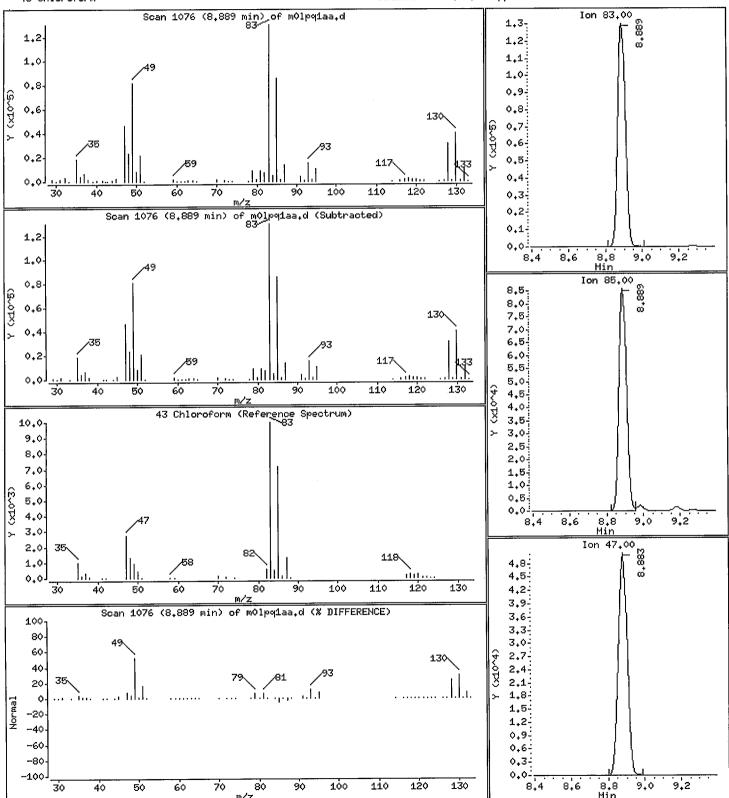
Concentration: 1.658 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

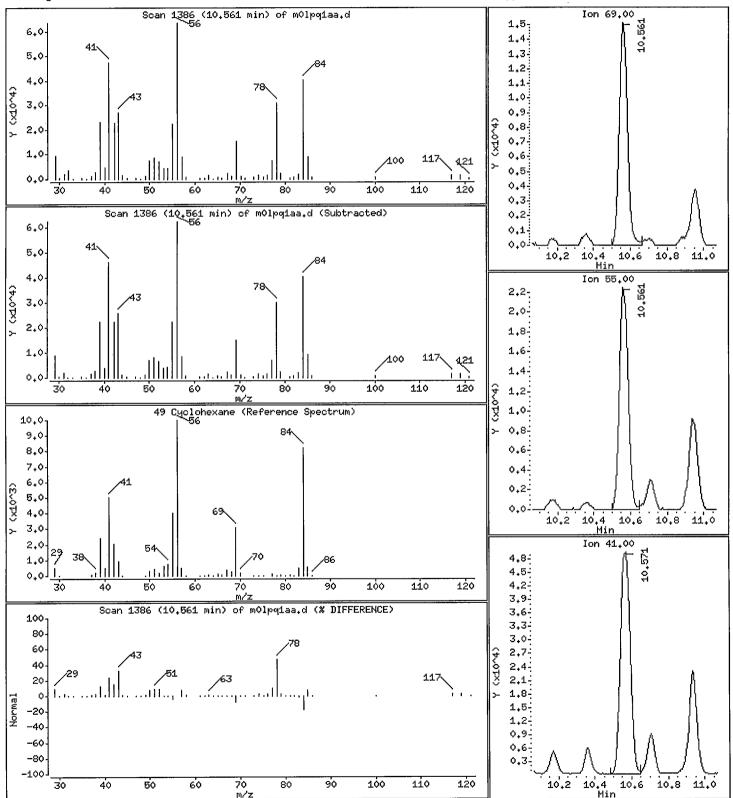
43 Chloroform

Concentration: 2.090 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i


Sample Info: ,,0,,, Purge Volume: 500.0

Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

49 Cyclohexane

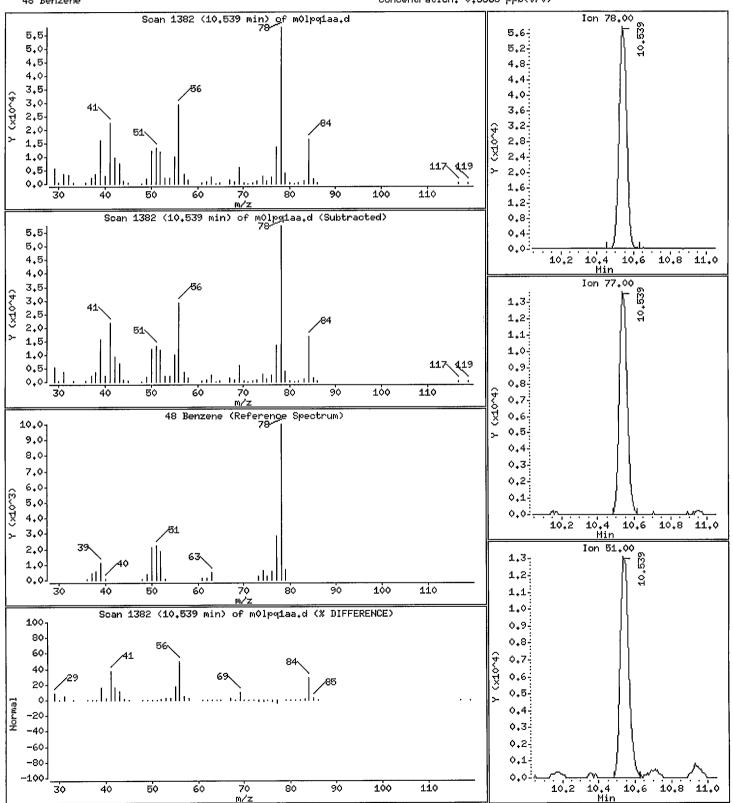
Concentration: 0.9790 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

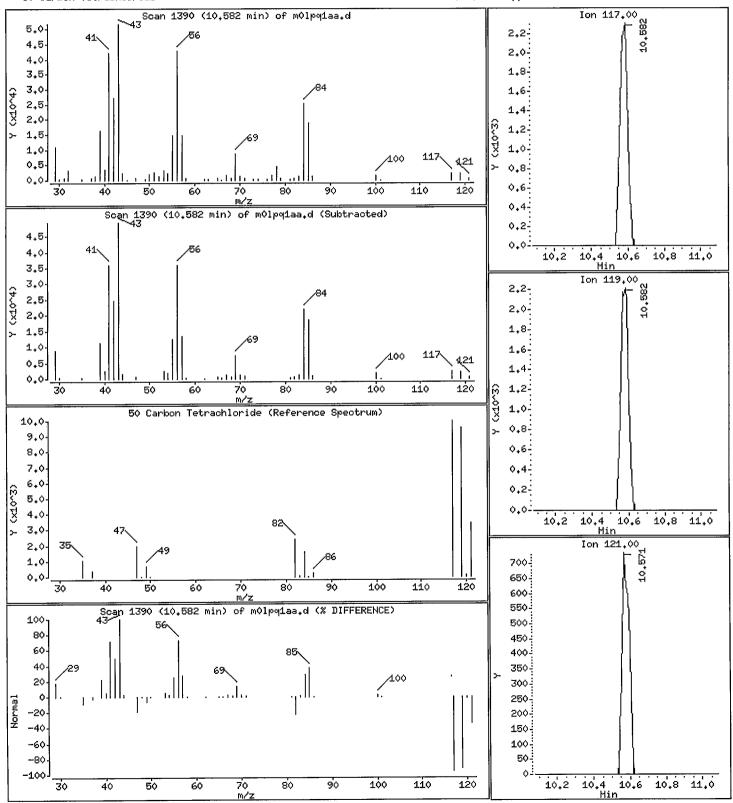
48 Benzene

Concentration: 0.5363 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP Instrument: mr.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

50 Carbon Tetrachloride

Concentration: 0.04221 ppb(v/v)

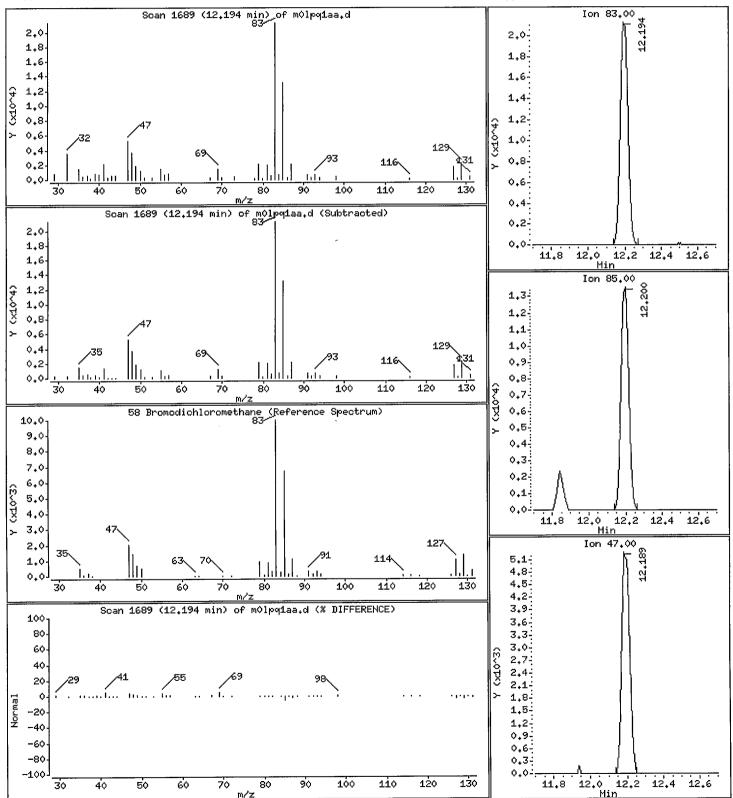
Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info: ,,0,,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

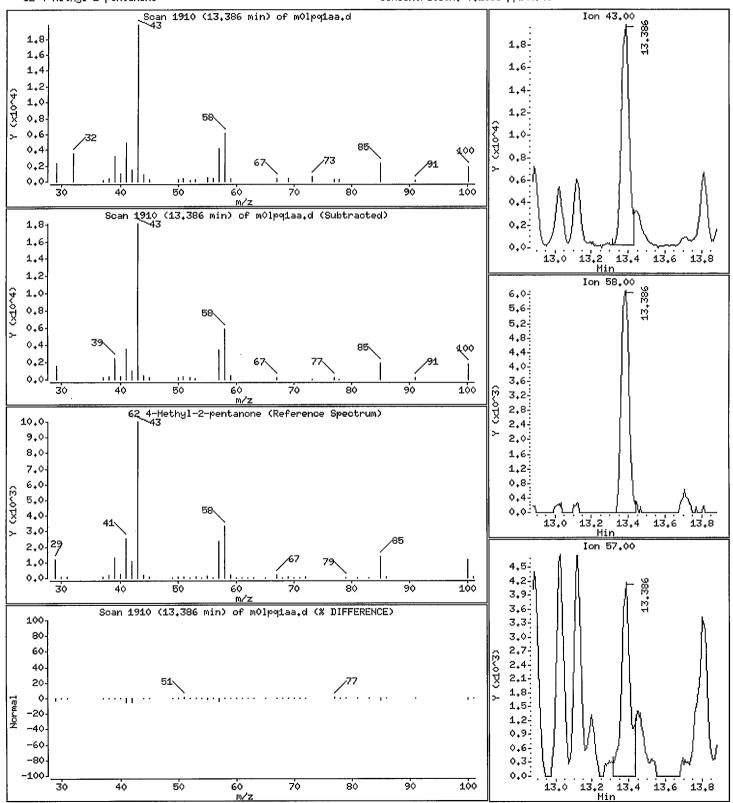
Column diameter: 0.32

58 Bromodichloromethane

Concentration: 0.3081 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP Instrument: mr.i


Sample Info; ,,0,,,

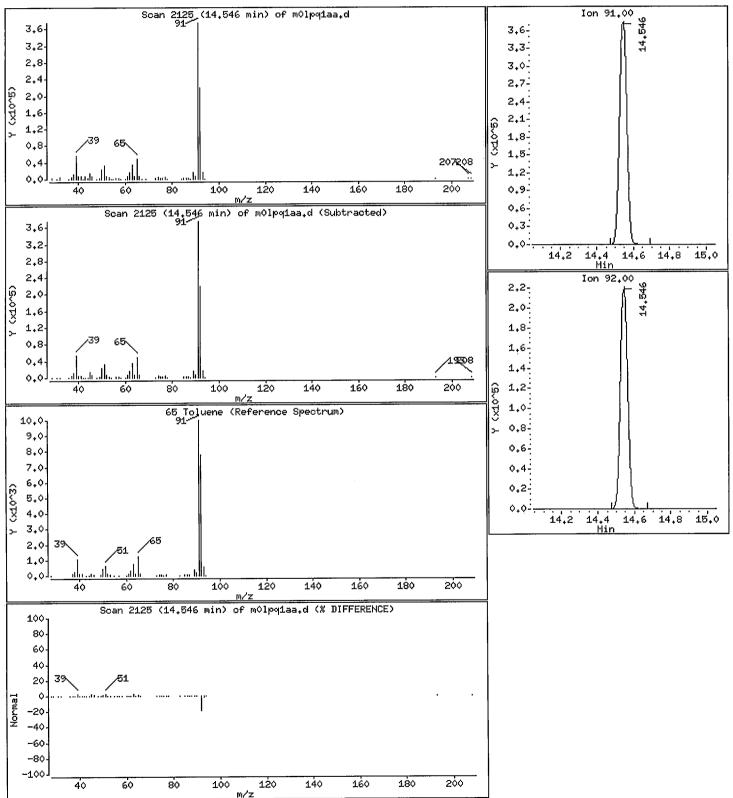
Purge Volume: 500,0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

62 4-Methyl-2-pentanone

Concentration: 0.2586 ppb(v/v)

Date : 17-APR-2013 16:39


Client ID: SS DUP Instrument: mr.i

Sample Info: ,,0,,,

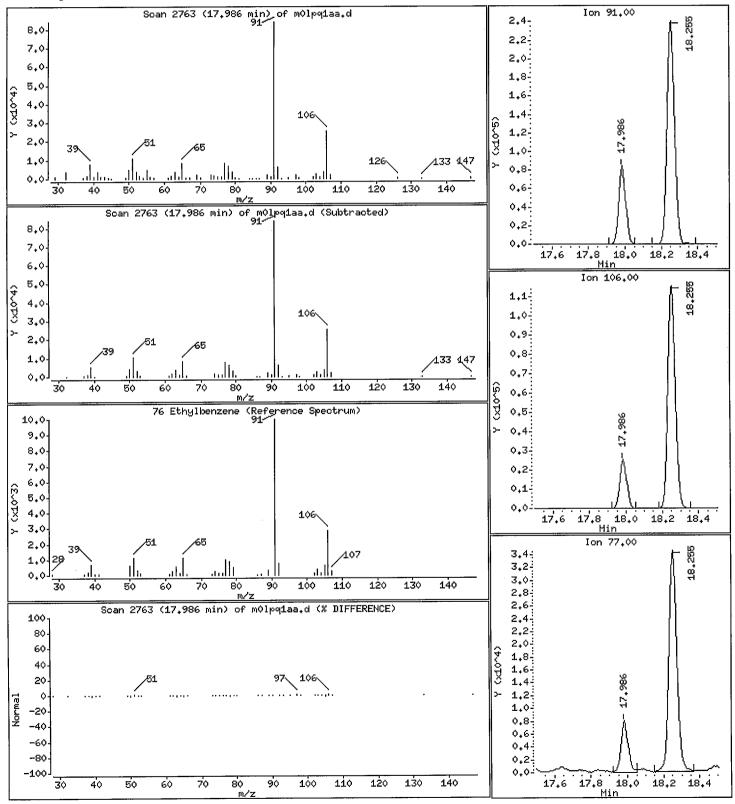
Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

65 Toluene Concentration: 2.309 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP Instrument: mr.i


Sample Info: ,,0,,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

76 Ethylbenzene

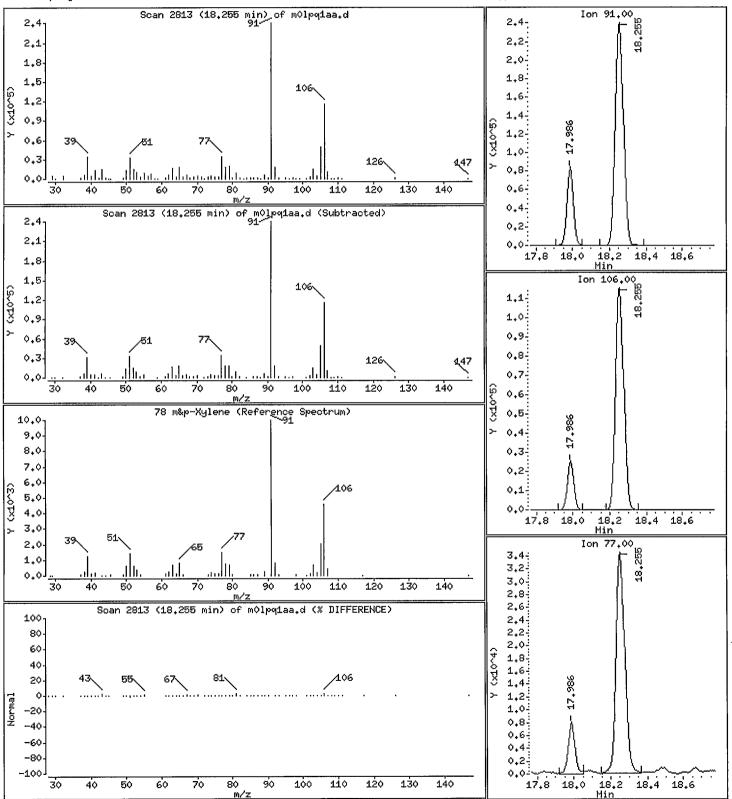
Concentration: 0.4036 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info; ,,0,,,
Purge Volume: 500.0


Operator: 403648

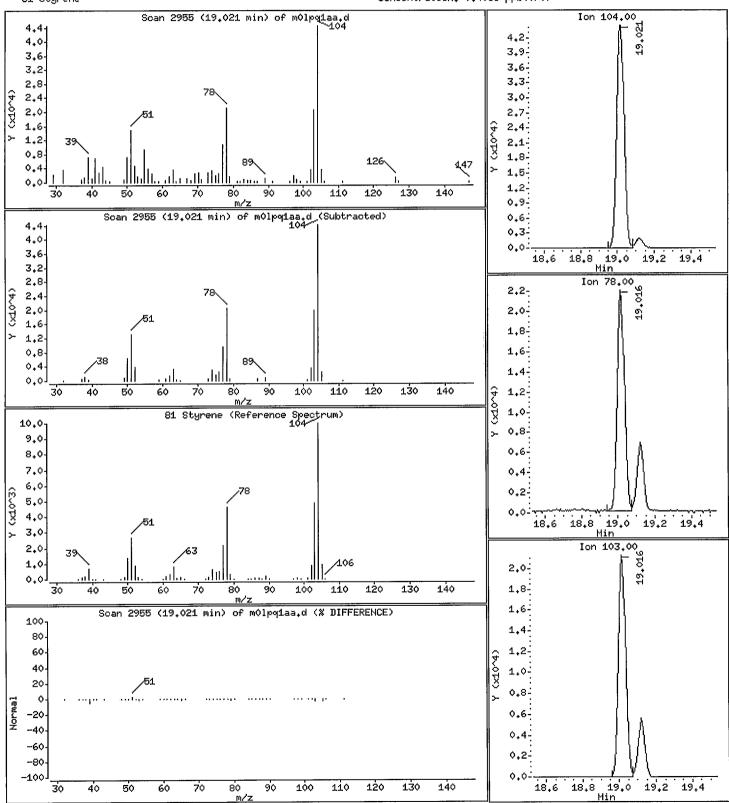
Column phase: Rtx-5

Column diameter: 0.32

78 m&p-Xylene

Concentration: 1.776 ppb(v/v)

Date : 17-APR-2013 16:39


Client ID: SS DUP Instrument: mr.i

Sample Info: ,,0,,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

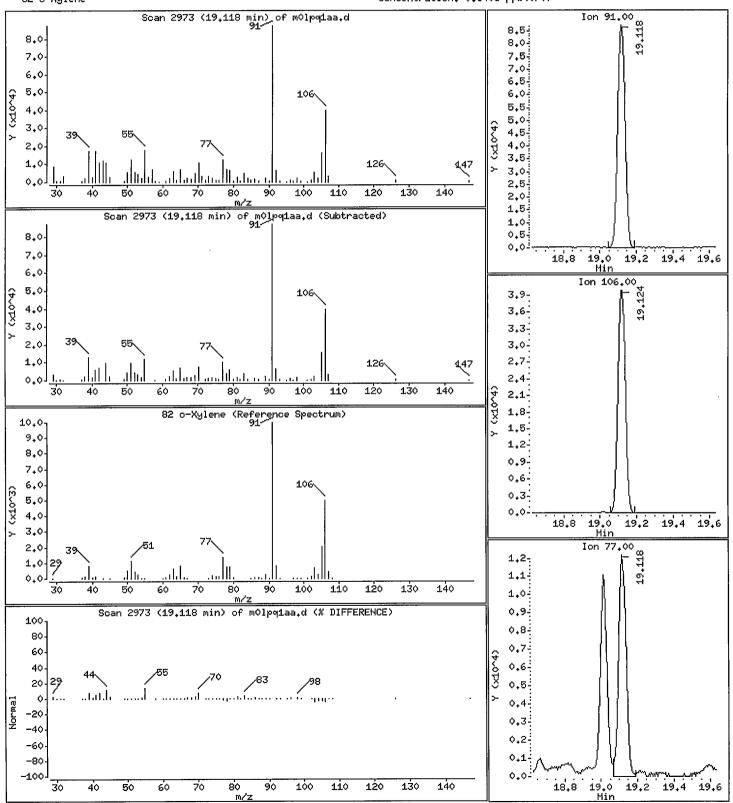
81 Styrene Concentration: 0.4056 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Instrument: mr.i

Sample Info: ,,0,,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

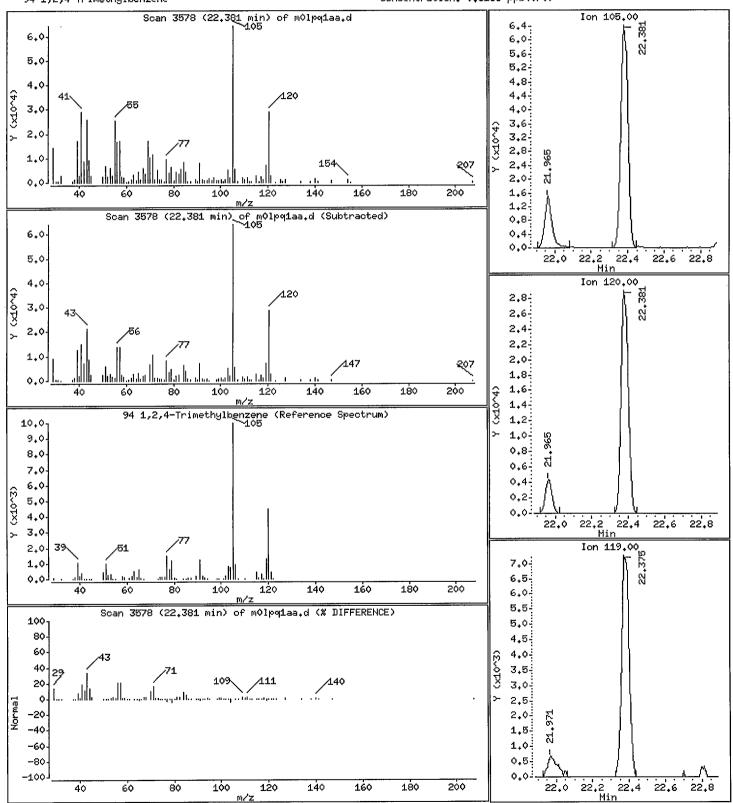
Column diameter: 0.32

82 o-Xylene

Concentration: 0.5403 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP Instrument: mr.i


Sample Info: ,,0,,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

94 1,2,4-Trimethylbenzene

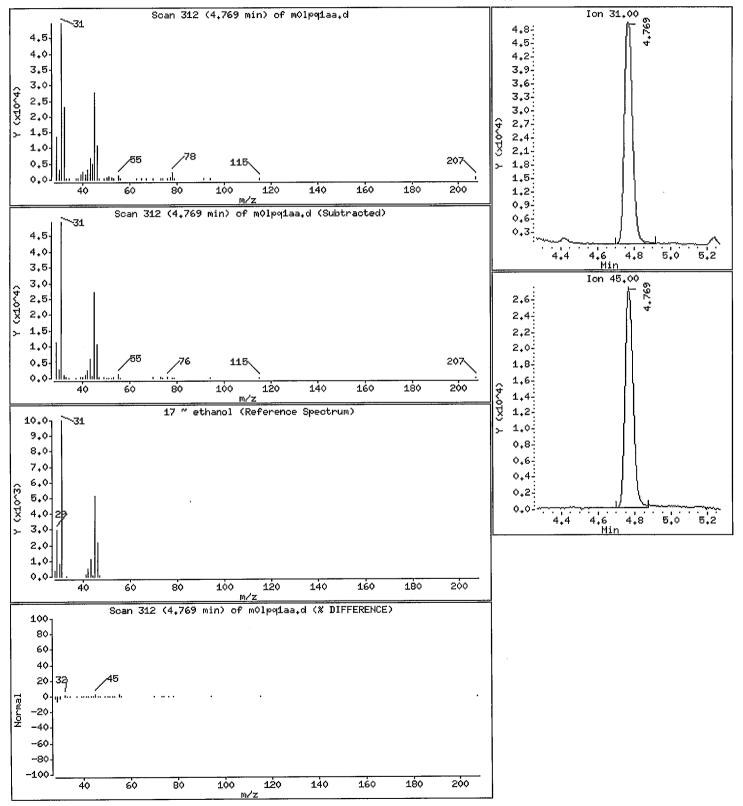
Concentration: 0.3155 ppb(v/v)

Date : 17-APR-2013 16:39

Client ID: SS DUP

Sample Info; ,,0,,,

Purge Volume: 500.0


Column phase: Rtx-5

Instrument: mr.i

Operator: 403648

Column diameter: 0.32

17 ~ ethanol Concentration: 4.843 ppb(v/v)

New York State D.E.C.

Client Sample ID: INDOOR

GC/MS Volatiles

04/15/2013

04/16/2013

Lot-Sample # H3D160408 - 003 **Work Order #** M0LPT1AA **Matrix.....:** AIR

Date Received..:

Analysis Date...

 Date Sampled...:
 04/12/2013

 Prep Date......:
 04/16/2013

 Prep Batch #....:
 3106043

Dilution Factor.: 1 Method...... TO-15

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61
1,1,2-Trichloroethane	ND	0.080	ND	0.44
1,1-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,2,4-Trimethylbenzene	0.097	0.080	0.48	0.39
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,2-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0,080	ND	0.37
1,3,5-Trimethylbenzene	.ND	0.080	ND	0.39
1,4-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dioxane	ND	0.20	ND	0.72
2-Butanone (MEK)	0.44	0.32	1.3	0.94
1,3-Dichlorobenzene	ND	0.080	ND	0.48
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
Benzene	0.74	0.080	2.4	0.26
Benzyl chloride	ND	0.16	ND	0.83
Bromodichloromethane	ND	0.080	ND	0.54
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.089	0.040	0.56	0.25
Chlorobenzene	ND	0.080	ND	0.37
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Cyclohexane	0.42	0.20	1.5	0.69
Chloromethane	0.71	0.20	1.5	0.41
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
Dibromochloromethane	ND	0.080	ND	0.68
Dichlorodifluoromethane	0.27	0.080	1.3	0.40
Ethanol	15	0.80	28	1.5
Ethylbenzene	0.19	0.080	0.83	0.35
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane n-Hexane	1.8	0.20	6.3	0.70
n-Hexane Hexachlorobutadiene	ND	0.20	ND	0.70
TICACHIOIODUIAUICHE	MD	0,000	לווא	0.03

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

New York State D.E.C.

Client Sample ID: INDOOR

GC/MS Volatiles

Lot-Sample # H3D160408 - 003	3	Work Order # MOLPT	Matrix: AIR	
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
4-Methyl-2-pentanone (MIBK)	0.22	0.20	0.89	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	0.66	0.20	2.3	0.69
Styrene	ND	0.080	ND	0.34
tert-Butyl alcohol	ND	0.32	ND	0.97
Tetrachloroethene	1.4	0.080	9.6	0.54
Foluene	2.8	0.080	11	0.30
m-Xylene & p-Xylene	0.72	0.080	3.1	0.35
o-Xylene	0.21	0.080	0.92	0.35
rans-1,2-Dichloroethene	ND	0.080	ND	0.32
rans-1,3-Dichloropropene	ND	0.080	ND	0.36
Гrichloroethene	ND	0.040	ND	0.21
Frichlorofluoromethane	0.22	0.080	1.2	0.45
Vinyl chloride	ND	0.080	ND	0.20
		PERCENT		LABORATORY CONTROL
SURROGATE		RECOVERY		LIMITS (%)
4-Bromofluorobenzene		111	_	60 - 140

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Data File: /var/chem/gcms/mr.i/R041613.b/m0lpt1aa.d Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mr.i/R041613.b/m0lpt1aa.d

Lab Smp Id: MOLPT1AA / Client Smp ID: INDOOR

Inj Date : 16-APR-2013 17:32

Operator: 403648 Inst ID: mr.i

Smp Info : ,,0,,

Misc Info: R041613, T015, nysdec.sub

Comment :

Method : /var/chem/gcms/mr.i/R041613.b/T015.m

Meth Date: 16-Apr-2013 19:25 barlozha Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205.d

Als bottle: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name Value Description

DF / 1.00000 Dilution Factor
Vt / 500.00000 Default Calibration Volume
Vo 500.00000 Default Sample Volume

Cpnd Variable

Local Compound Variable

					CONCENTRA	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb (v/v))
********	====	==			======	======
* 1 Bromochloromethane	128	8.873	8.873 (1.000)	225805	4.00000	4.000
* 2 1,4-Difluorobenzene	114	11,132	11.138 (1.000)	1174174	4.00000	4.000
* 3 Chlorobenzene-d5	117	17,420	17.436 (1.000)	903668	4.00000	4.000
\$ 4 4-Bromofluorobenzene	95	20.159	20.170 (1.157)	705314	4.45801	4.458
7 Dichlorodifluoromethane	85	3,723	3.723 (0.420)	62630	0.26617	0.2662 /
8 Chloromethane	52	3.901	3.907 (0.440)	20467	0.71160	0.7116
20 Trichlorofluoromethane	101	5.244	5.244 (0.591)	50628	0.22146	0.2215
31 Methylene Chloride	84	6.311	6.312 (0.711)	54099	0.66495	0.6649
40 Hexane	56	8.177	8.177 (0.922)	139115	1.79308	1.793
39 2-Butanone	72	8.113	8.107 (0.914)	20104	0.44344	0.4434
49 Cyclohexane	69	10.571	10.572 (0.950)	19468	0.42233	0.4223
48 Benzene	78	10.545	10.550 (0.947)	220884	0.74319	0.7432
50 Carbon Tetrachloride	117	10.588	10.588 (0.951)	13615	0.08868	0.08868
62 4-Methyl-2-pentanone	43	13.392	13.386 (1.203)	45620	0.21744	0.2174 (M)
65 Toluene	91	14.551	14.551 (0.835)	1053161	2.80887	2.809
73 Tetrachloroethene	129	16.174	16.180 (0.928)	188299	1.41794	1.418

Data File: /var/chem/gcms/mr.i/R041613.b/m0lpt1aa.d Report Date: 17-Apr-2013 11:14

				CONCENTRATIONS		
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb (v/v))
	====	==	=======================================	2220000	======	======
76 Ethylbenzene	91	17.986	18,008 (1.032)	90104	0.19136	0.1914
78 m&p-Xylene	91	18.256	18.277 (1.048)	260101	0.71559	0.7156
82 o-Xylene	91	19.118	19.140 (1.097)	79065	0.21084	0.2108
94 1,2,4-Trimethylbenzene	105	22.386	22,392 (1.285)	44476	0.09710	0.09710
17 ~ ethanol	31	4.780	4.775 (0.539)	455434	14.7062	14.71

QC Flag Legend

M - Compound response manually integrated.

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i Lá

Analysis Type: OTHER

Quant Type: ISTD

Operator: 403648

Method File: /var/chem/gcms/mr.i/R041613.b/T015.m

Misc Info: R041613, T015, nysdec.sub

Lab File ID: m0lpt1aa.d	Calibration Time: 10:51
Lab Smp Id: MOLPT1AA	Client Smp ID: INDOOR
Analysis Type: OTHER	Level: LOW

Calibration Date: 16-APR-2013/

Sample Type: AIR

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========	========	======
1 Bromochloromethan	294767	175386	414148	225805	-23.40
2 1,4-Difluorobenze	1529291	909928	2148654	1174174	-23.22
3 Chlorobenzene-d5	1257555	748245	1766865	903668	-28.14

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
1 Bromochloromethan	8.87	8.54	9.20	8.87	0.00
2 1,4-Difluorobenze	11.14	10.81	11.47	11.13	-0.05
3 Chlorobenzene-d5	17.44	17.11	17.77	17.42	-0.09

AREA UPPER LIMIT = +40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

RECOVERY REPORT

Client Name: New York State D.E.C15-APR-2013 00:00

Client SDG: H3D160408

Sample Matrix: GAS

Fraction: OTHER

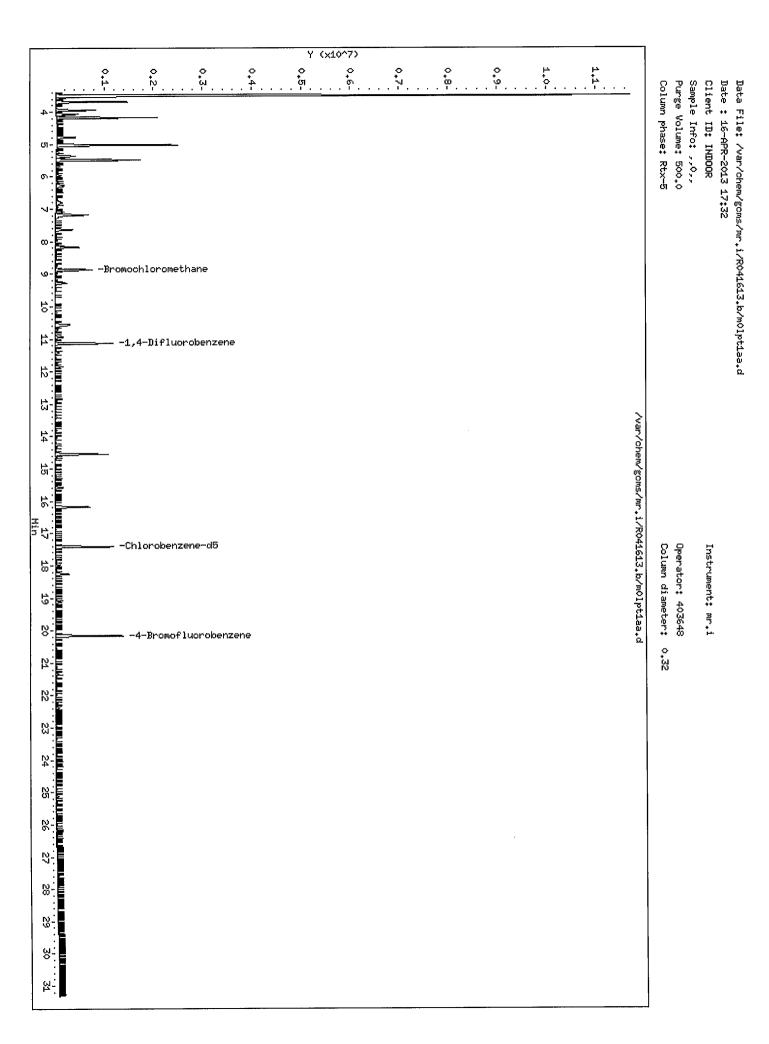
Lab Smp Id: MOLPTIAA

Client Smp ID: INDOOR

Level: LOW

Operator: 403648 SampleType: SAMPLE

Data Type: MS DATA


Quant Type: ISTD

SpikeList File: allnew.spk

Sublist File: nysdec.sub
Method File: /var/chem/gcms/mr.i/R041613.b/T015.m

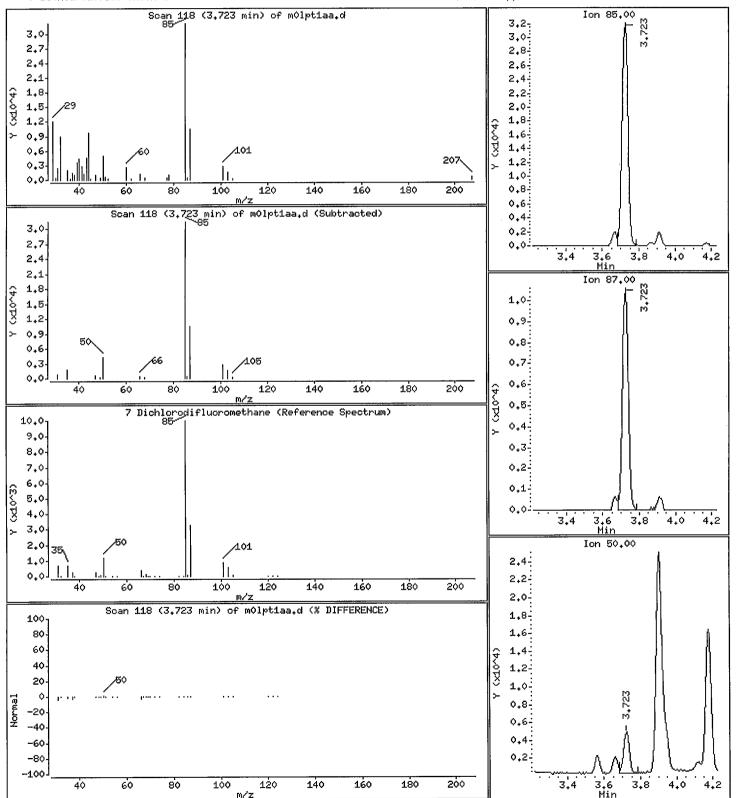
Misc Info: R041613, T015, nysdec.sub

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	4.000	4.458	111.45	60-140

Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

7 Dichlorodifluoromethane

Concentration: 0.2662 ppb(v/v)

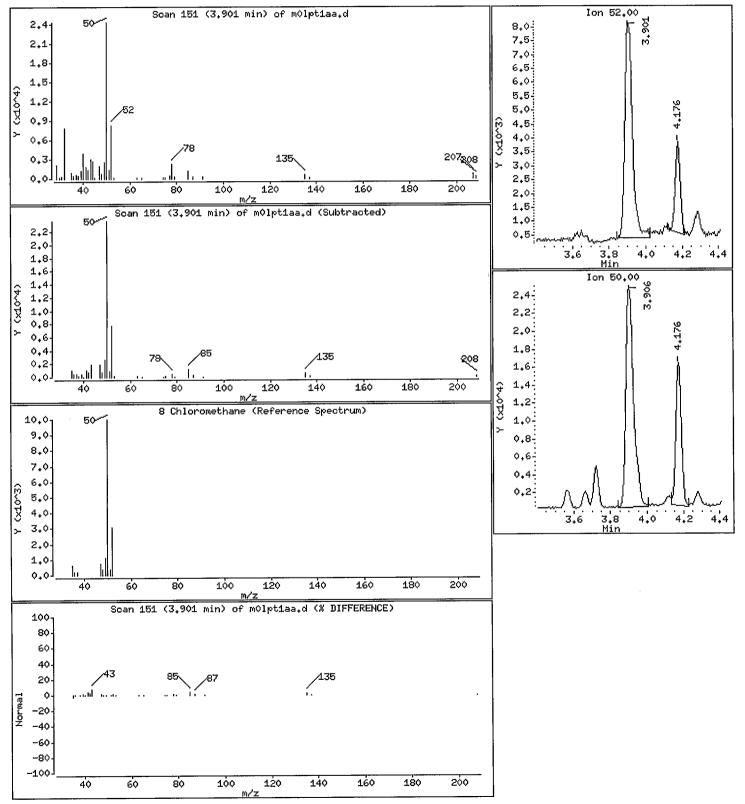
Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info: ,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

8 Chloromethane

Concentration: 0.7116 ppb(v/v)

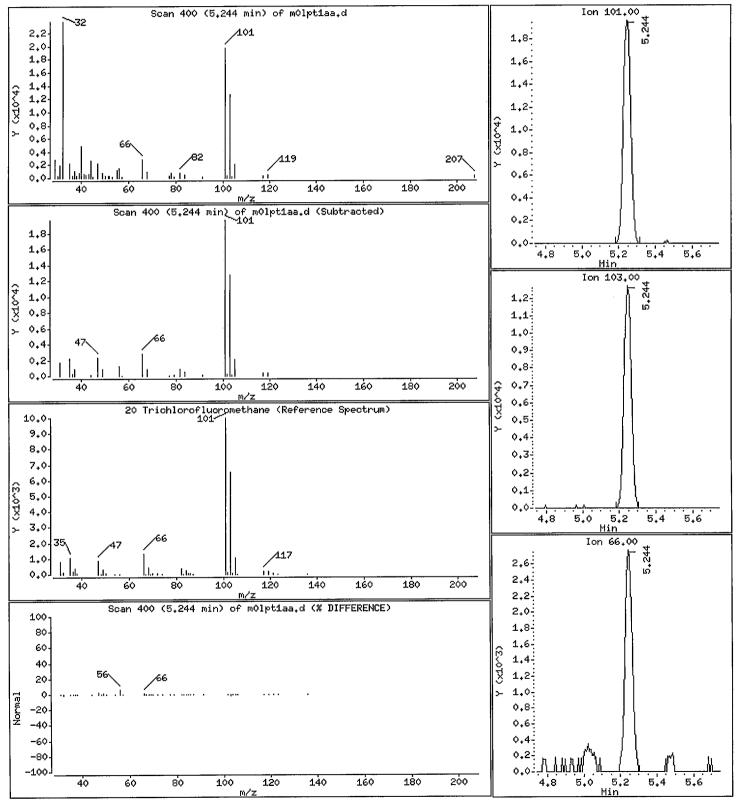
Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info: ,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

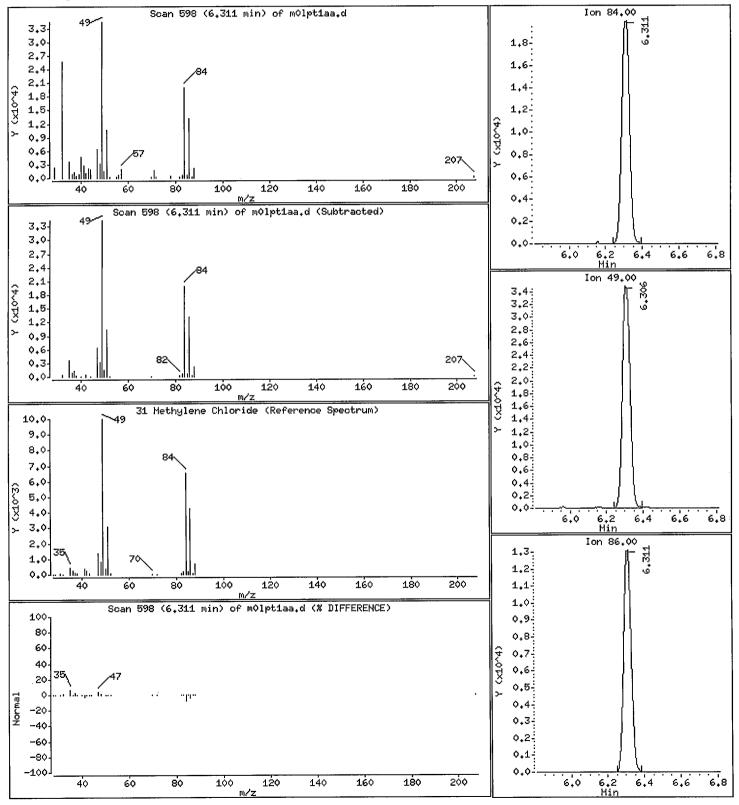
20 Trichlorofluoromethane

Concentration: 0.2215 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR Instrument: mr.i

Sample Info: ,,0,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

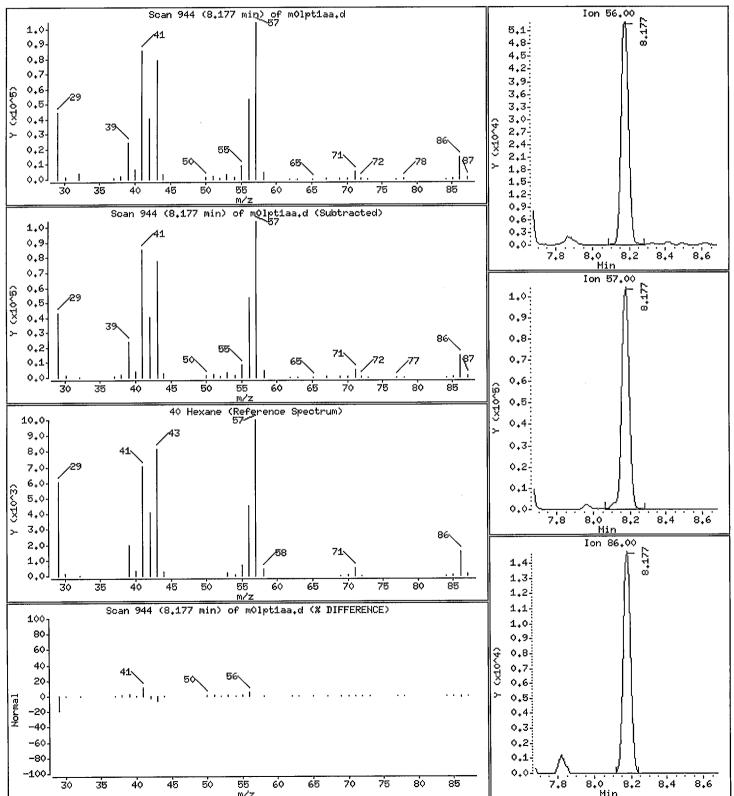
31 Methylene Chloride

Concentration: 0.6649 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i


Sample Info: ,,◊,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

40 Hexane

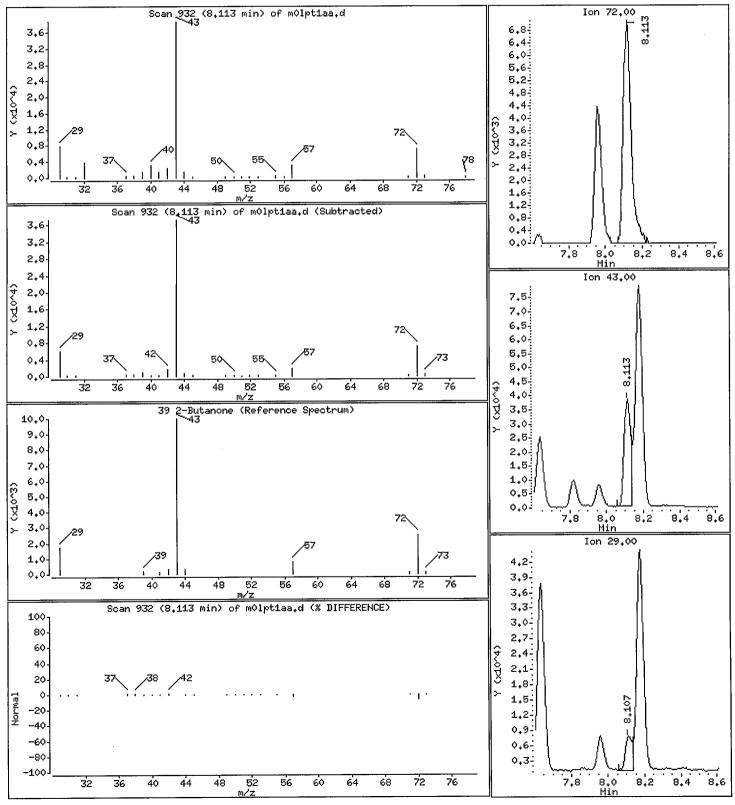
Concentration: 1.793 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info: ,,0,,


Purge Volume: 500.0

Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

39 2-Butanone

Concentration: 0.4434 ppb(v/v)

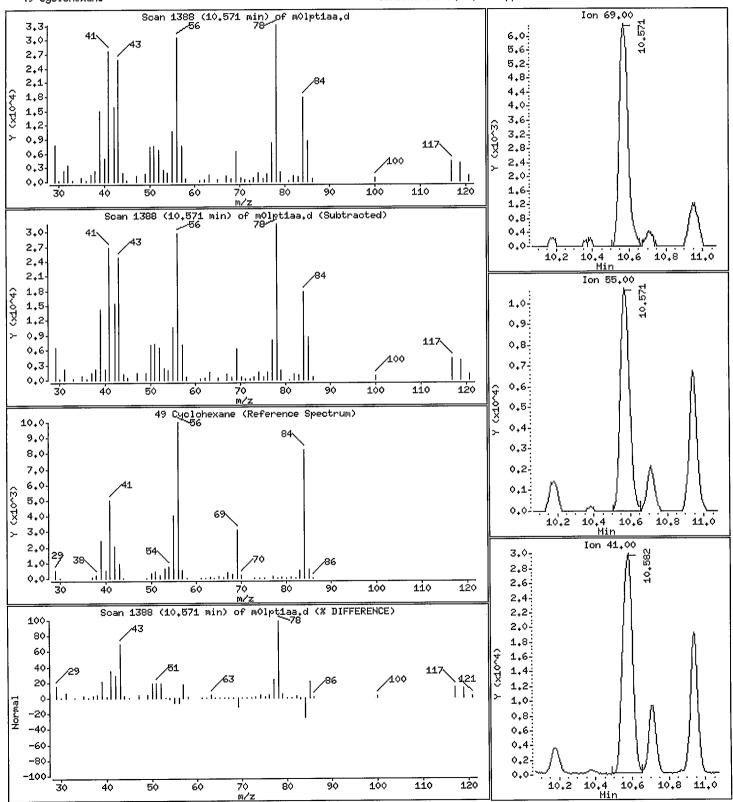
Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info: ,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

49 Cyclohexane

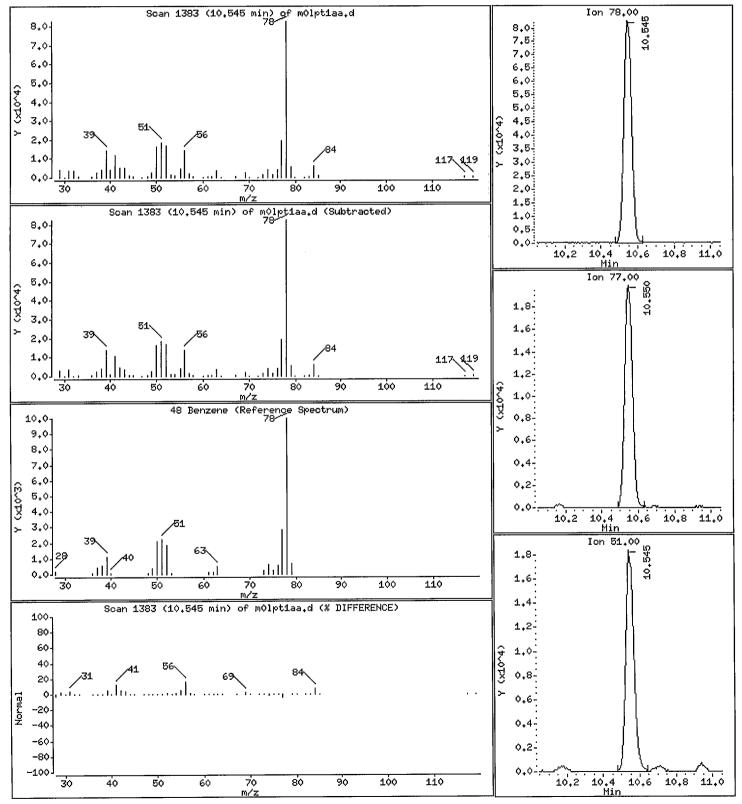
Concentration: 0.4223 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info: ,,0,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

48 Benzene

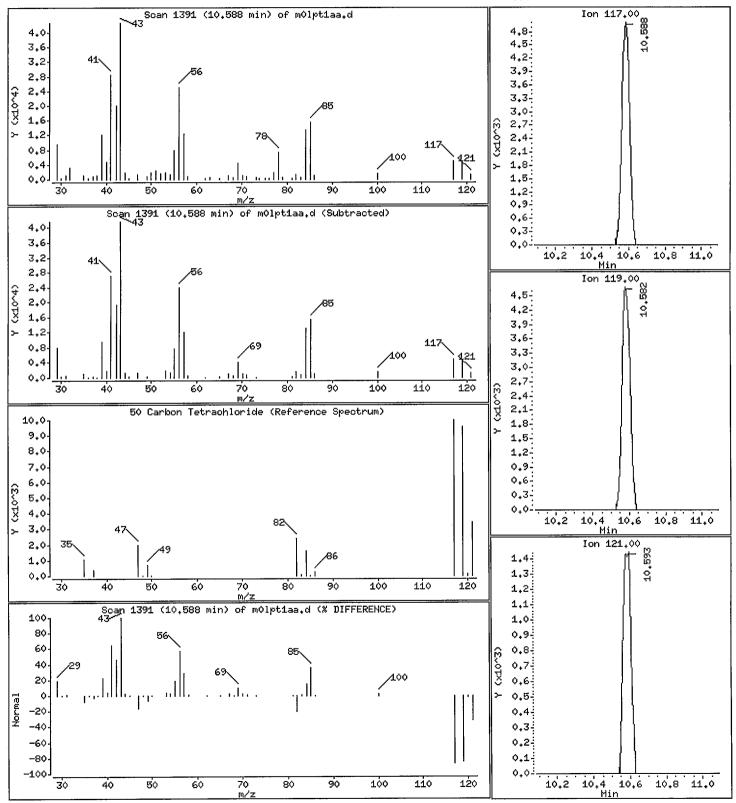
Concentration: 0.7432 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info: ,,0,, Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

50 Carbon Tetrachloride

Concentration: 0.08868 ppb(v/v)

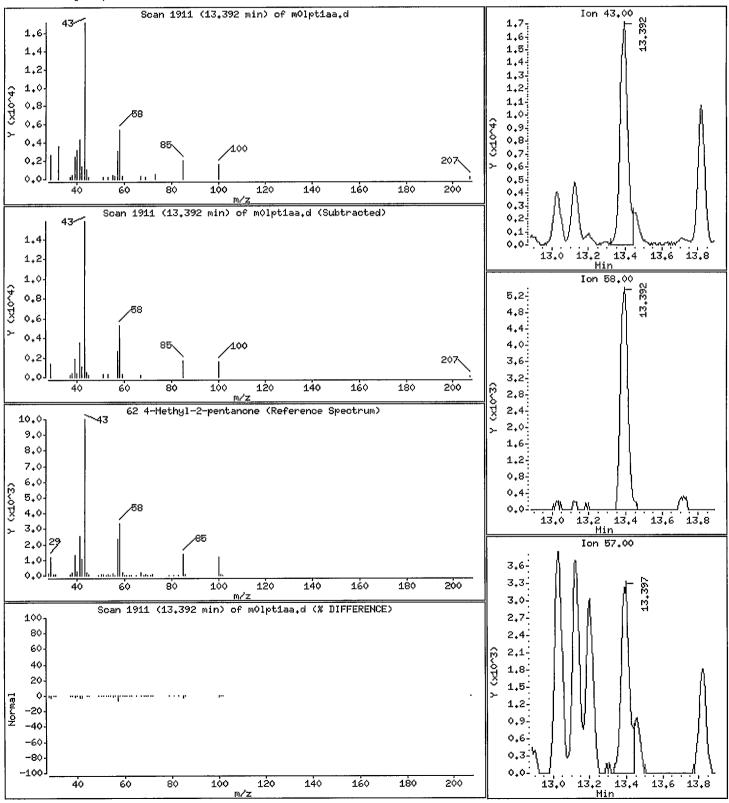
Date : 16-APR-2013 17:32

Client ID: INDOOR

Sample Info: ,,0,,
Purge Volume: 500.0

Column phase: Rtx-5

Instrument: mr.i


Operator: 403648

Column diameter: 0.32

My 12/13

62 4-Methyl-2-pentanone

Concentration: 0.2174 ppb(v/v)

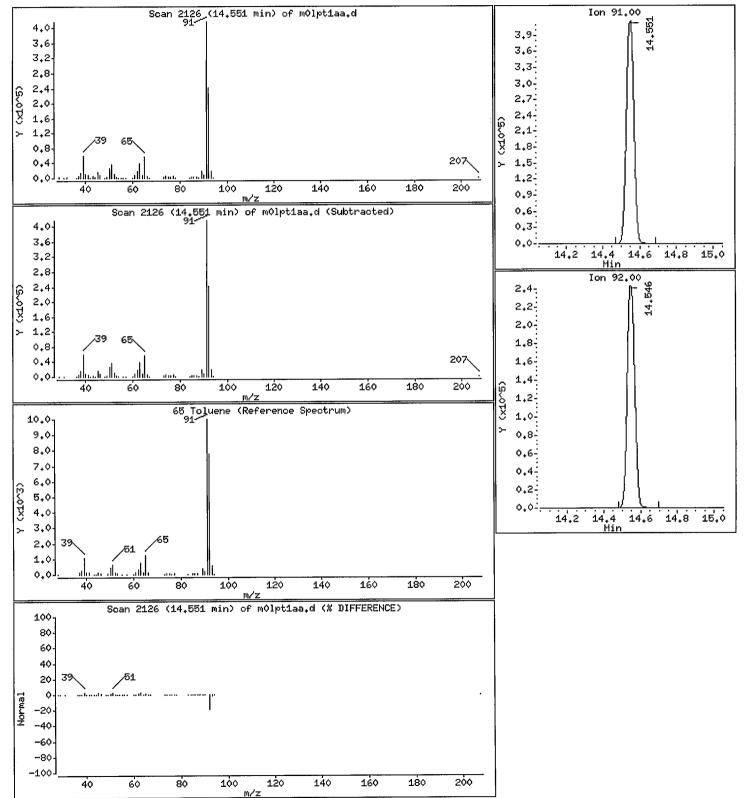
Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info: ,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

65 Toluene

Concentration: 2.809 ppb(v/v)

Data File: /var/chem/gcms/mr.i/R041613.b/m0lpt1aa.d

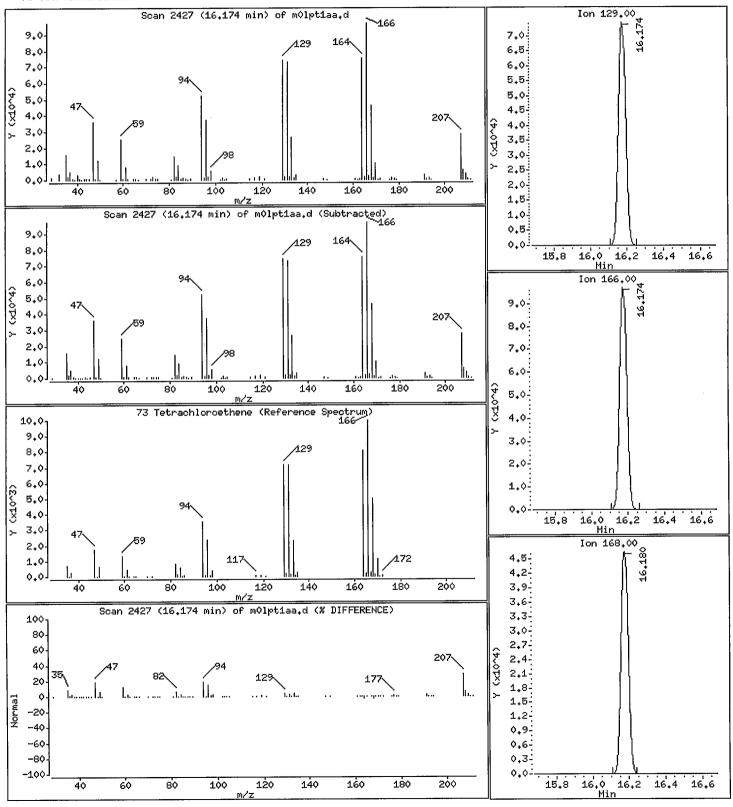
Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info; ,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

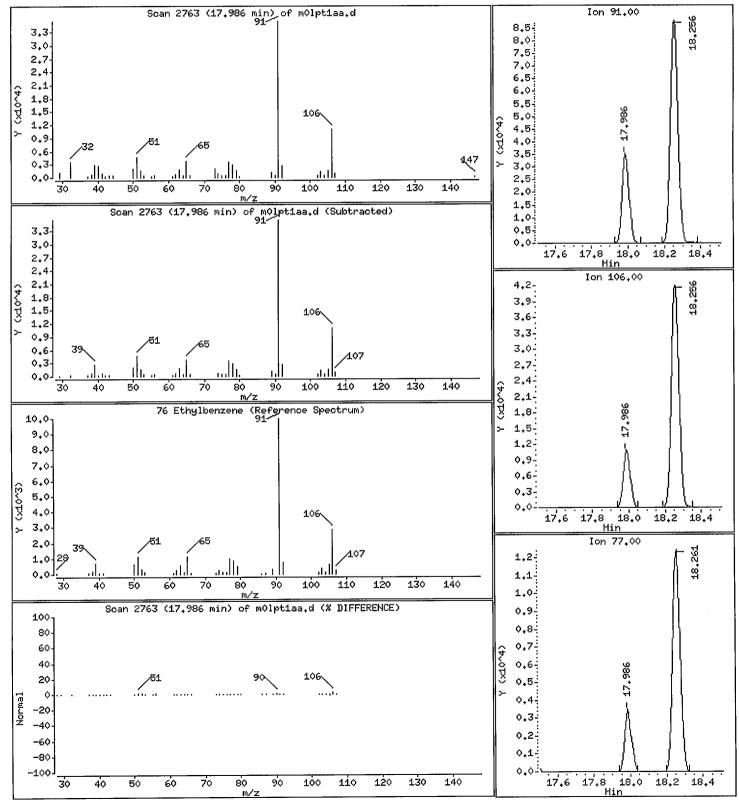
73 Tetrachloroethene

Concentration: 1,418 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR Instrument: mr.i

Sample Info: ,,0,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

76 Ethylbenzene

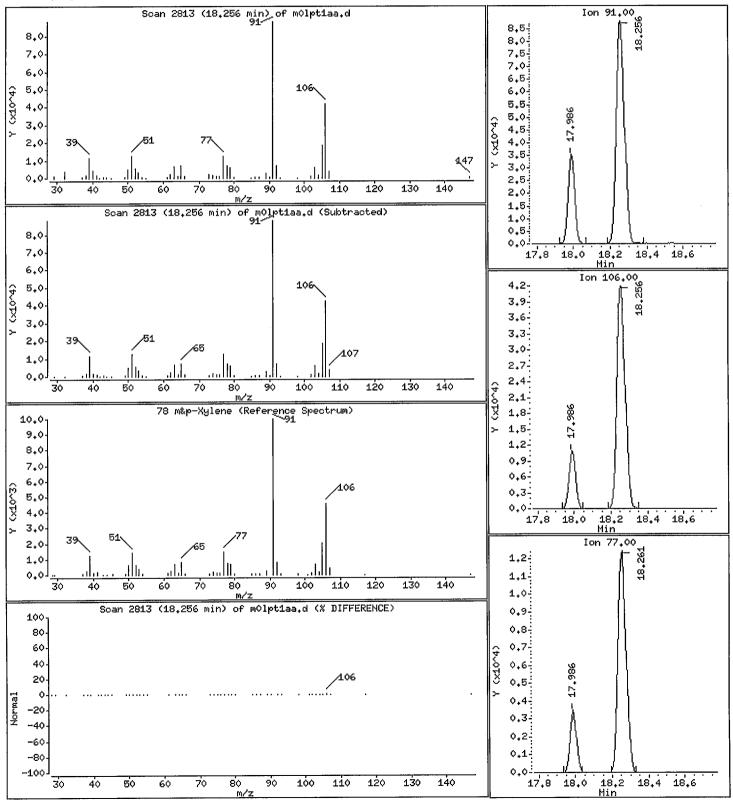
Concentration: 0.1914 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR

Sample Info: ,,0,,

Purge Volume: 500.0


Column phase: Rtx-5

Instrument: mr.i

Operator: 403648

Column diameter: 0.32

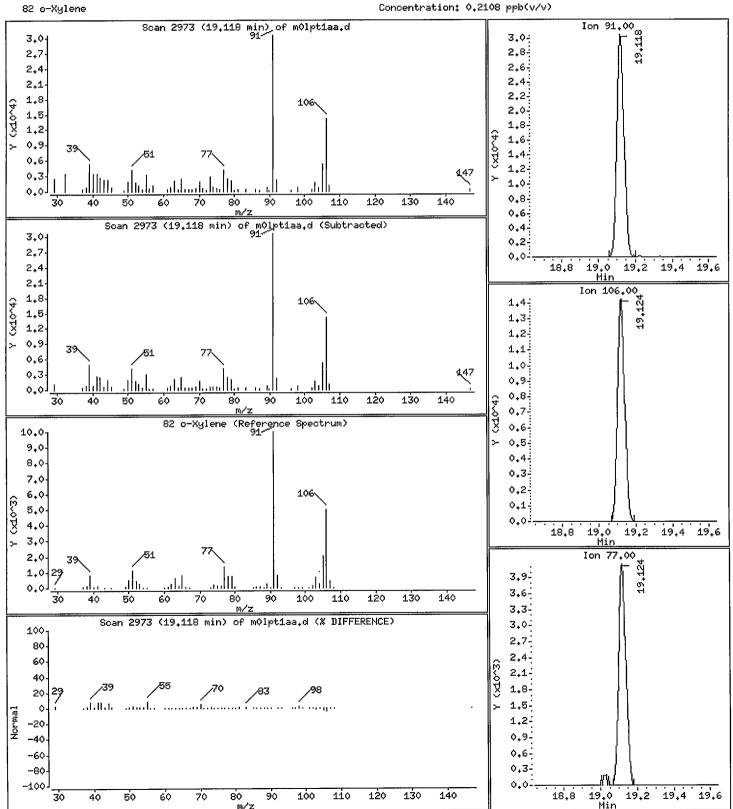
78 m&p-Xylene Concentration: 0.7156 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i

Sample Info: ,,0,,


Operator: 403648

Purge Volume: 500.0 Column phase: Rtx-5

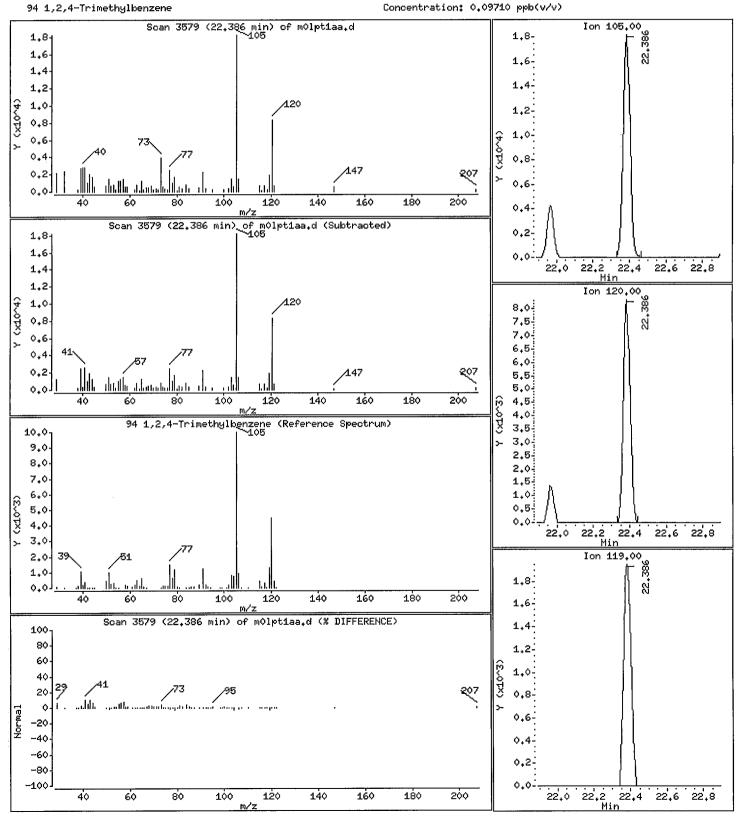
Column diameter: 0.32

82 o-Xylene

Concentration: 0.2108 ppb(v/v)

Date : 16-APR-2013 17:32

Instrument: mr.i Client ID: INDOOR


Sample Info: ,,0,,

Operator: 403648 Purge Volume: 500.0

Column diameter: 0.32 Column phase: Rtx-5

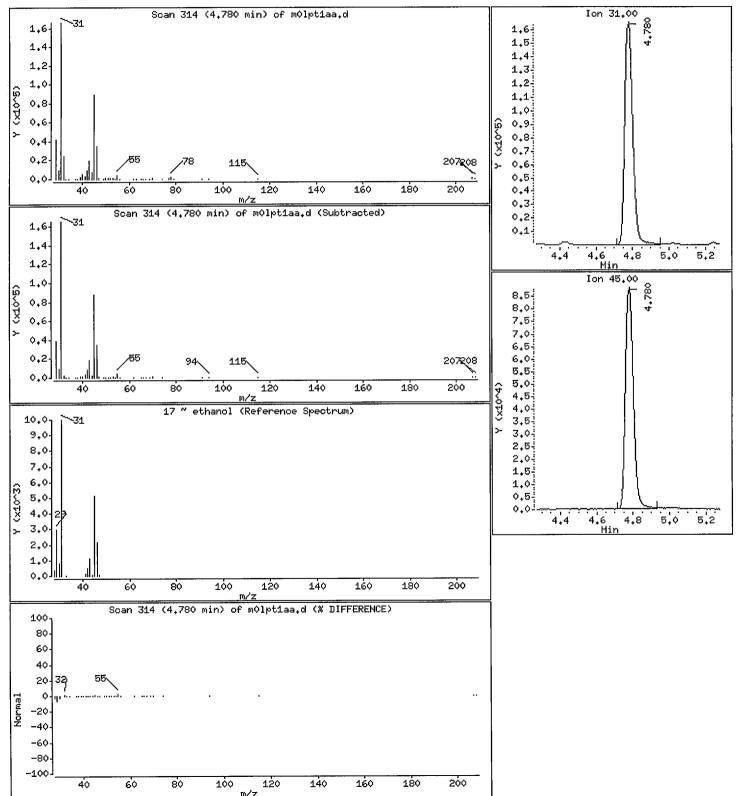
94 1,2,4-Trimethylbenzene

Concentration: 0.09710 ppb(v/v)

Date : 16-APR-2013 17:32

Client ID: INDOOR

Instrument: mr.i


Sample Infot ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

17 ~ ethanol

Concentration: 14.71 ppb(v/v)

New York State D.E.C.

Client Sample ID: INDOOR DUP

GC/MS Volatiles

Lot-Sample # H3D160408 - 004 Work Order # M0LPW1AA Matrix....... AIR

 Date Sampled...:
 04/12/2013
 Date Received..:
 04/15/2013

 Prep Date.........:
 04/16/2013
 Analysis Date...
 04/16/2013

Prep Batch #....: 3106043

Dilution Factor.: 1 Method...... TO-15

D A D A MITTED	RESULTS	REPORTING	RESULTS	REPORTING
PARAMETER	(ppb(v/v))	LIMIT (ppb(v/v))	(ug/m3)	LIMIT (ug/m3)
1,1,1-Trichloroethane	ND	0.080	ND	0.44
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55
1,1,2-Trichlorotrifluoroethane	ND	0,080	ND	0.61
1,1,2-Trichloroethane	ND	0.080	ND	0.44
1,1-Dichloroethane	ND	0.080	ND	0.32
1,1-Dichloroethene	ND	0.080	ND	0.32
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,2,4-Trimethylbenzene	0.29	0.080	1.4	0.39
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,2-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
1,4-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dioxane	ND	0.20	ND	0.72
2-Butanone (MEK)	0.43	0.32	1.3	0.94
1,3-Dichlorobenzene	ND	0.080	ND	0.48
2,2,4-Trimethylpentane	0.22	0.20	1.0	0.93
Benzene	0.83	0.080	2.7	0.26
Benzyl chloride	ND	0.16	ND	0.83
Bromodichloromethane	ND	0.080	ND	0.54
Bromoform	ND	0.080	ND	0.83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.090	0.040	0.56	0.25
Chlorobenzene	ND	0.080	ND	0.37
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Cyclohexane	0.42	0.20	1.4	0.69
Chloromethane	0.61	0.20	1.3	0.41
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
Dibromochloromethane	ND	0.080	ND	0.68
Dichlorodifluoromethane	0.27	0.080	1.3	0.40
Ethanol	14	0.80	26	1.5
Ethylbenzene	0.31	0.080	1.3	0.35
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane				0.70
n-Hexane	2.0	0.20	7.0	0.70
Hexachlorobutadiene	ND	0.080	ND	0.85

New York State D.E.C.

Client Sample ID: INDOOR DUP

GC/MS Volatiles

Lot-Sample # H3D160408 - 004	4	Work Order # M0LPW	1AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
4-Methyl-2-pentanone (MIBK)	5.1	0.20	21	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	0.21	0.20	0.71	0.69
Styrene	ND	0.080	ND	0.34
ert-Butyl alcohol	ND	0.32	ND	0.97
Tetrachloroethene	ND	0.080	ND	0.54
Гoluene	3,8	0.080	14	0.30
n-Xylene & p-Xylene	1.4	0.080	5.9	0.35
-Xylene	0.41	0.080	1.8	0.35
rans-1,2-Dichloroethene	ND	0.080	ND	0.32
rans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Frichlorofluoromethane	0.21	0.080	1.2	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
SURROGATE 4-Bromofluorobenzene		109	_	60 - 140

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mr.i/R041613.b/m0lpw1aa.d

Lab Smp Id: MOLPW1AA / Client Smp ID: INDOOR DUP

Inj Date : 16-APR-2013 18:25

Operator: 403648 / Inst ID: mr.i

Smp Info : ,,0,,

Misc Info: R041613, T015, nysdec.sub

Comment :

Method : /var/chem/gcms/mr.i/R041613.b/T015.m

Meth Date: 16-Apr-2013 19:25 barlozha Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205.d

Als bottle: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF Vt.	1.00000	Dilution Factor Default Calibration Volume
V C Vo	500.00000	Default Sample Volume

Cpnd Variable

Local Compound Variable

CONCENTRATIONS

								CONCENTRA	FIONS	
			QUANT SIG					ON-COLUMN	FINAL	
(Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v	7))
=	====		====	==	=====		=======	=======	======	
+	٠ 1	Bromochloromethane	128	8.867	8.873	(1.000)	236295	4.00000	4.000	
+	2	1,4-Difluorobenzene	114	11.132	11.138	(1.000)	1212941	4.00000	4.000	
1	• з	Chlorobenzene-d5	117	17,414	17.436	(1.000)	990698	4.00000	4.000	
Ş	\$ 4	4-Bromofluorobenzene	95	20.159	20.170	(1.158)	757354	4.36642	4.366	
	7	Dichlorodifluoromethane	85	3.723	3.723	(0.420)	66818	0.27136	0.2714	
	8	Chloromethane	52	3,901	3.907	(0.440)	18332	0.60907	0.6091	
	20	Trichlorofluoromethane	101	5.244	5.244	(0.591)	50346	0.21045	0.2104	
	31	Methylene Chloride	84	6.306	6.312	(0.711)	17488	0.20541	0.2054	
	40	Hexane	56	8,172	8.177	(0.922)	162328	1.99940	1.999	
	39	2-Butanone	72	8.112	8.107	(0.915)	20524	0.43261	0.4326	
	49	Cyclohexane	69	10.566	10.572	(0.949)	19788	0.41555	0.4156	
	48	Benzene	78	10.544	10.550	(0.947)	255745	0.83298	0.8330	
	50	Carbon Tetrachloride	117	10.582	10.588	(0.951)	14236	0.08976	0.08976	
	53	2,2,4-trimethylpentane	57	11.418	11.424	(1.026)	108781	0.21874	0.2187	
	62	2 4-Methyl-2-pentanone	43	13.381	13.386	(1.202)	1100340	5.07686	5.077	
	65	Toluene	91	14.551	14.551	(0.836)	1571784	3.82381	3.824	

Data File: /var/chem/gcms/mr.i/R041613.b/m0lpw1aa.d Report Date: 17-Apr-2013 11:14

					CONCENTRATIONS		
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))	
	====	==		======	======		
76 Ethylbenzene	91	17.986	18.008 (1.033)	159581	0.30915	0.3091	
78 m&p-Xylene	91	18.255	18.277 (1.048)	539429	1.35370	1.354	
82 o-Xylene	91	19.118	19.140 (1.098)	169064	0.41124	0.4112	
94 1,2,4-Trimethylbenzene	105	22.381	22,392 (1.285)	145955	0.29066	0.2907	
17 ~ ethanol	31	4.775	4.775 (0.538)	447035	13.7941	13.79	

Calibration Date: 16-APR-2013

Calibration Time: 10:51 Client Smp ID: INDOOR DUP

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mr.i/R041613.b/m0lpw1aa.d

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i Lab File ID: m0lpw1aa.d Lab Smp Id: M0LPW1AA

Analysis Type: OTHER

Quant Type: ISTD Operator: 403648

Method File: /var/chem/gcms/mr.i/R041613.b/T015.m

Misc Info: R041613, T015, nysdec.sub

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=======	========	======
1 Bromochloromethan	294767	175386	414148	236295	-19.84
2 1,4-Difluorobenze	1529291	909928	2148654	1212941	-20.69
3 Chlorobenzene-d5	1257555	748245	1766865	990698	-21.22

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
= ==== ===============================	========	========	========	========	======
<pre>1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5</pre>		8.54 10.81 17.11	9.20 11.47 17.77	8.87 11.13 17.41	-0.06 -0.05 -0.12

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

RECOVERY REPORT

Client Name: New York State D.E.C15-APR-2013 00:00

Client SDG: H3D160408

Sample Matrix: GAS

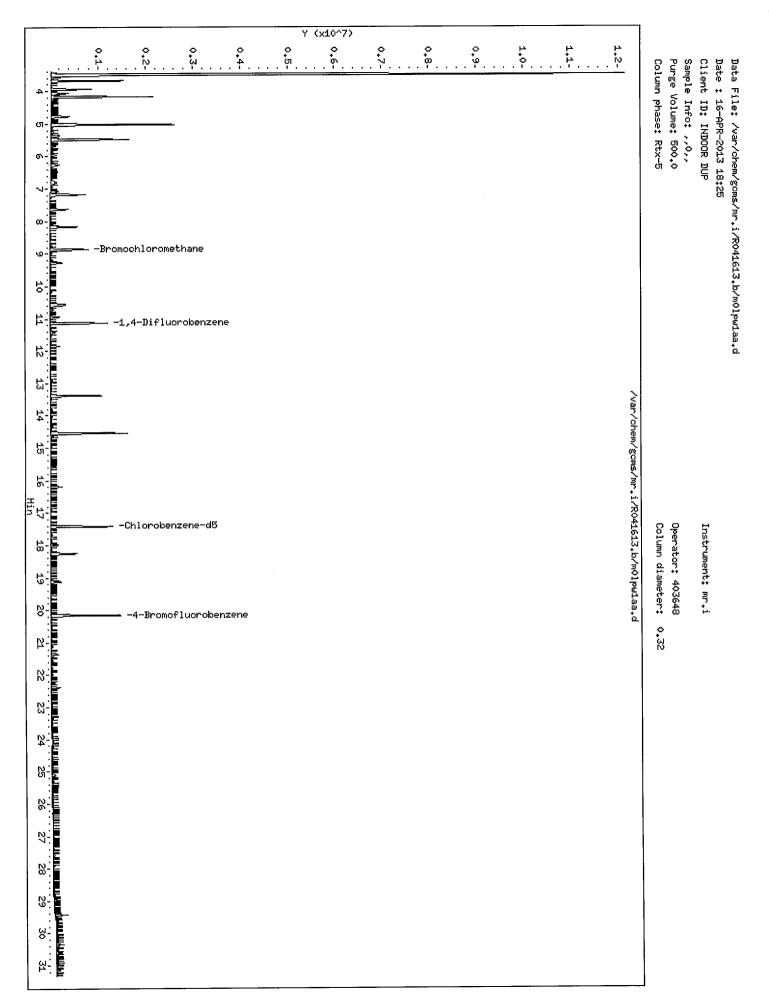
Fraction: OTHER

Lab Smp Id: MOLPWIAA

Client Smp ID: INDOOR DUP

Level: LOW

Operator: 403648


SampleType: SAMPLE Quant Type: ISTD

Data Type: MS DATA SpikeList File: allnew.spk

Sublist File: nysdec.sub

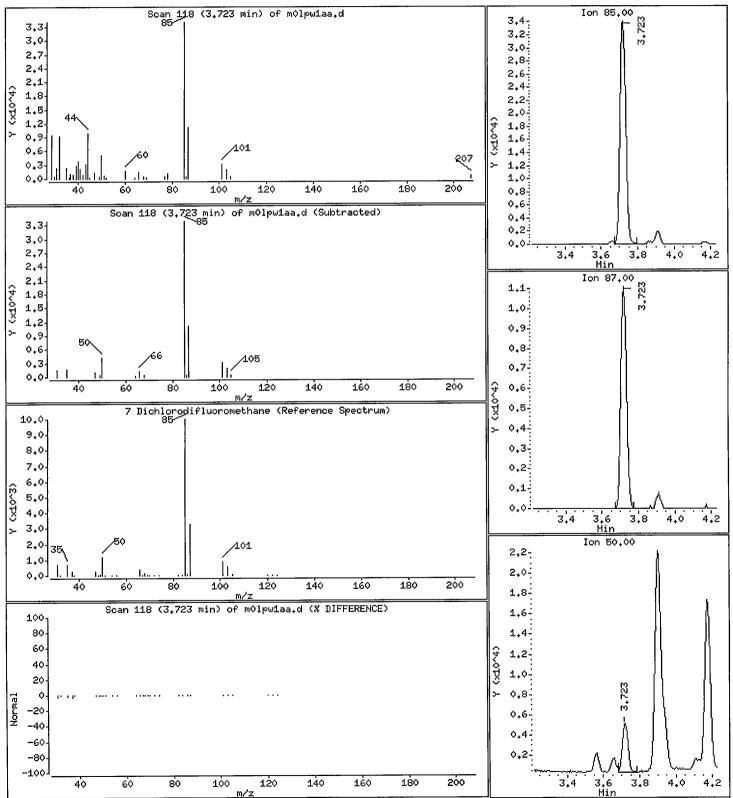
Method File: /var/chem/gcms/mr.i/R041613.b/T015.m Misc Info: R041613, T015, nysdec.sub

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	4.000	4.366	109.16	60-140

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

7 Dichlorodifluoromethane

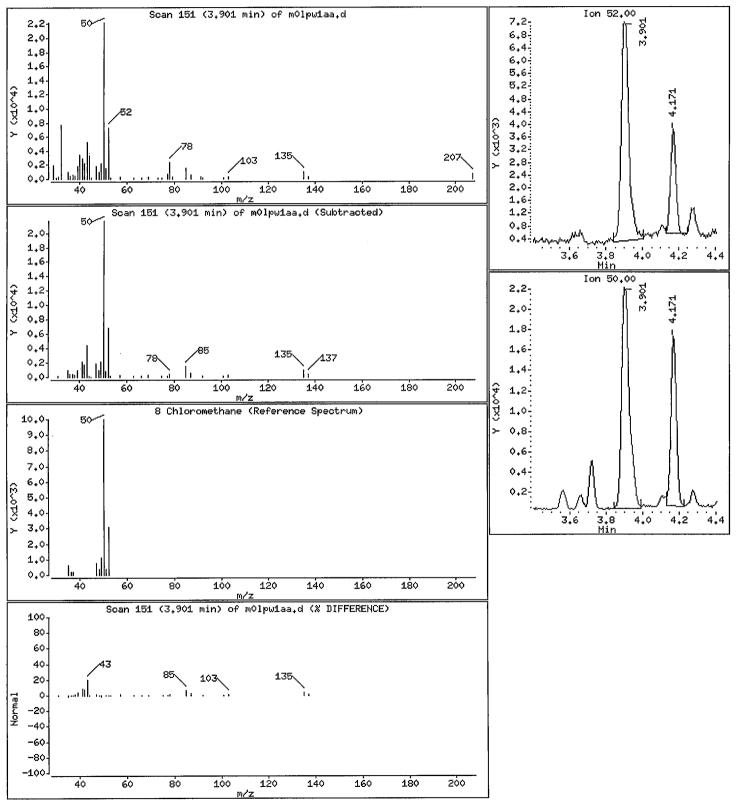
Concentration: 0.2714 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i

Sample Info: ,,0,,


Operator: 403648

Purge Volume: 500.0 Column phase: Rtx-5

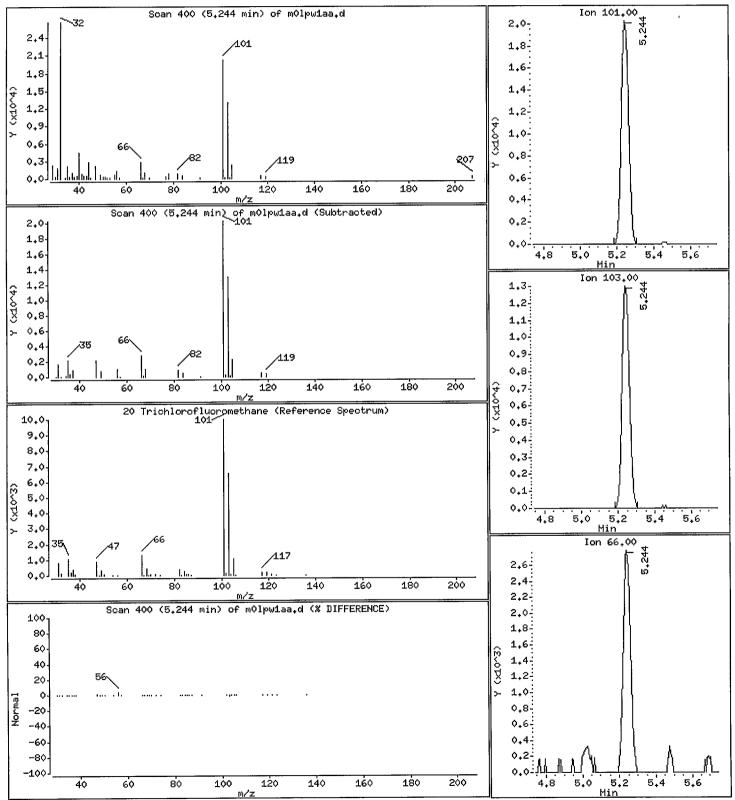
Column diameter: 0.32

8 Chloromethane

Concentration: 0.6091 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

20 Trichlorofluoromethane

Concentration: 0.2104 ppb(v/v)

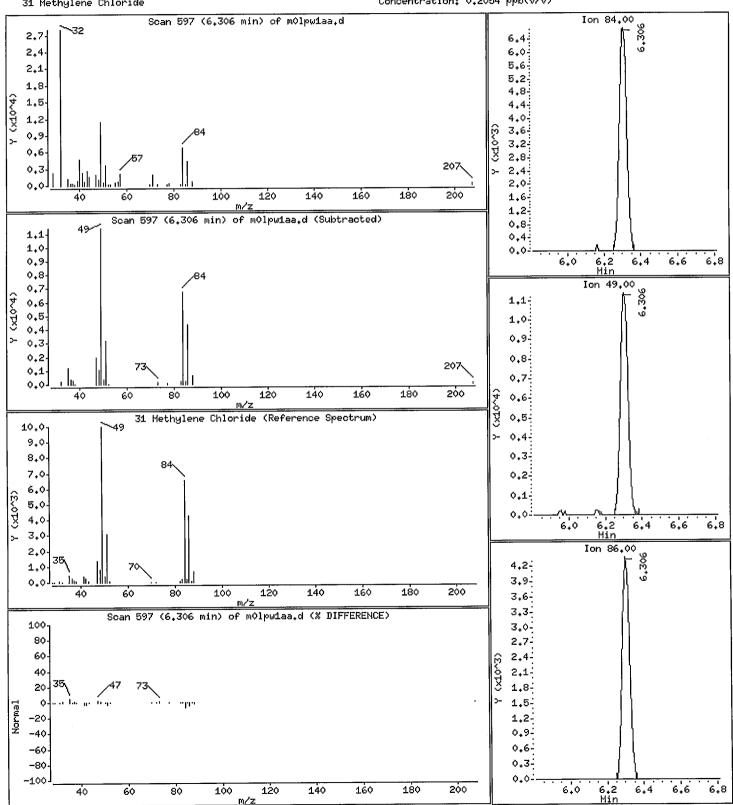
Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i

Sample Info; ,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

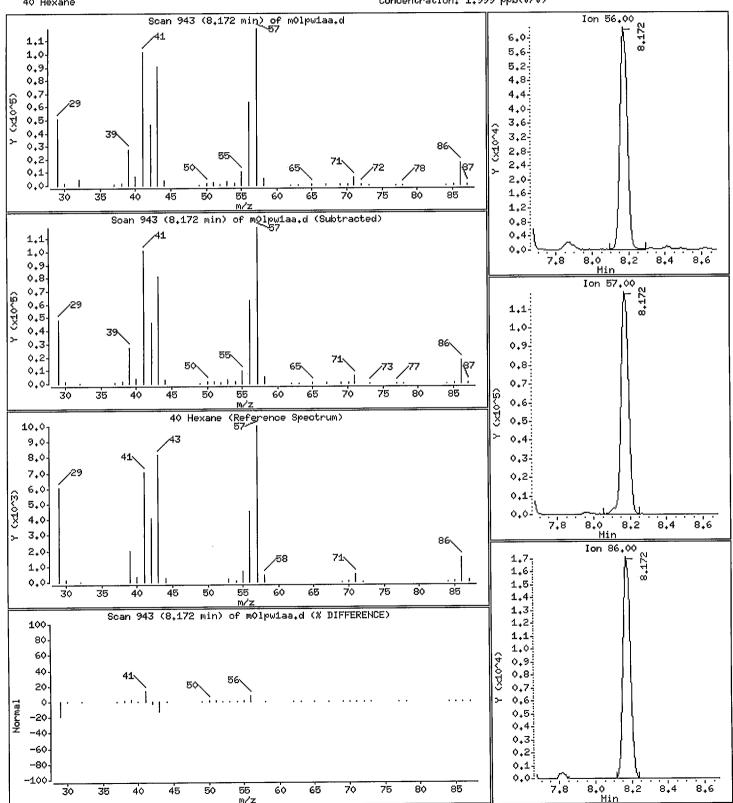
31 Methylene Chloride

Concentration: 0.2054 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i


Sample Info; ,,0,,

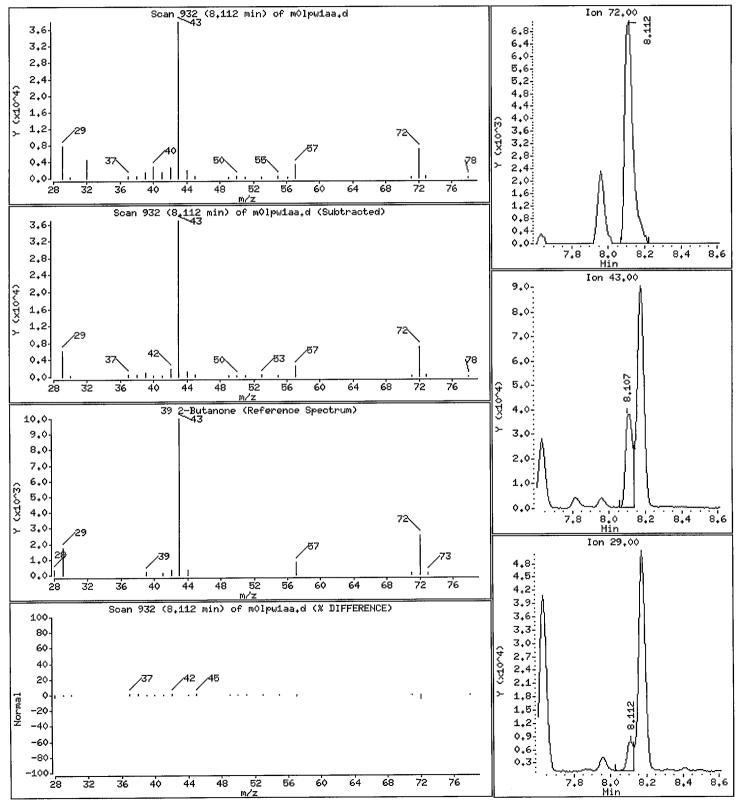
Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

40 Hexane

Concentration: 1.999 ppb(v/v)

Date : 16-APR-2013 18:25


Client ID: INDOOR DUP Instrument: mr.i

Sample Info: ,,0,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

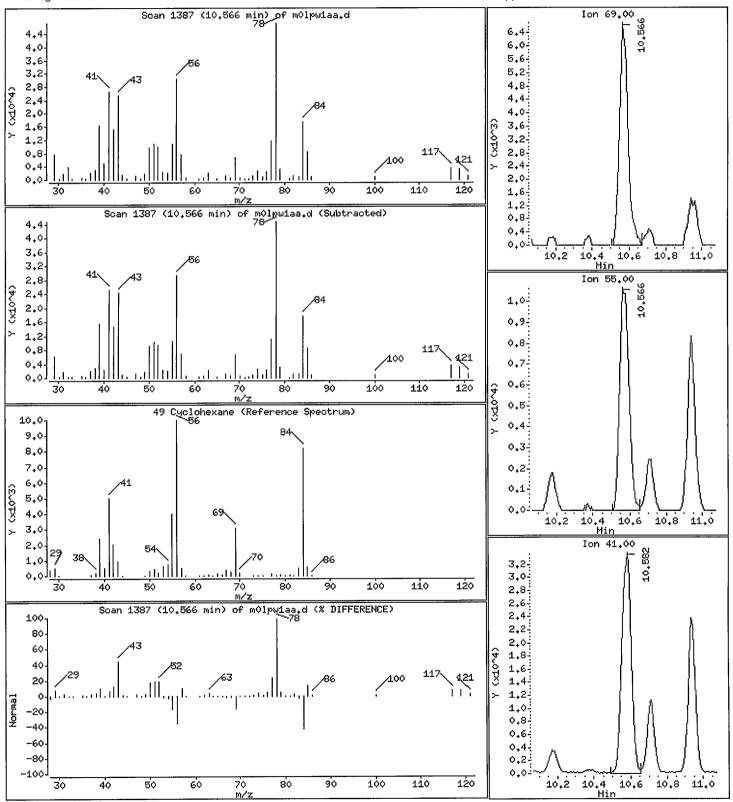
39 2-Butanone Concentration: 0.4326 ppb(v/v)

Date : 16-APR-2013 18:25 Client ID: INDOOR DUP

Sample Info: ,,0,,

Purge Volume: 500.0

Column phase: Rtx-5


Instrument: mr.i

Operator: 403648

Column diameter: 0.32

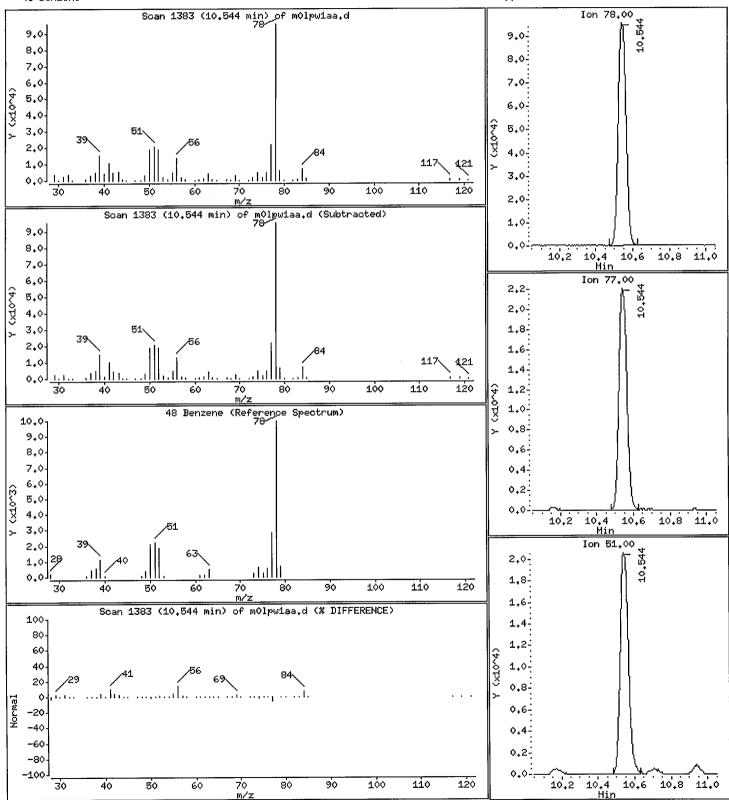
49 Cyclohexane

Concentration: 0.4156 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

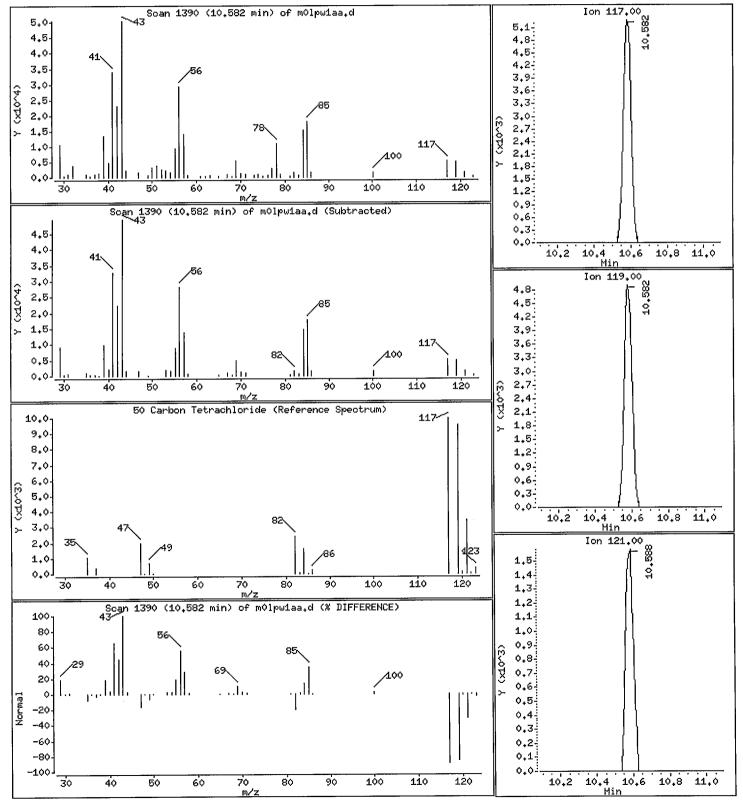
Column diameter: 0.32

48 Benzene

Concentration: 0.8330 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

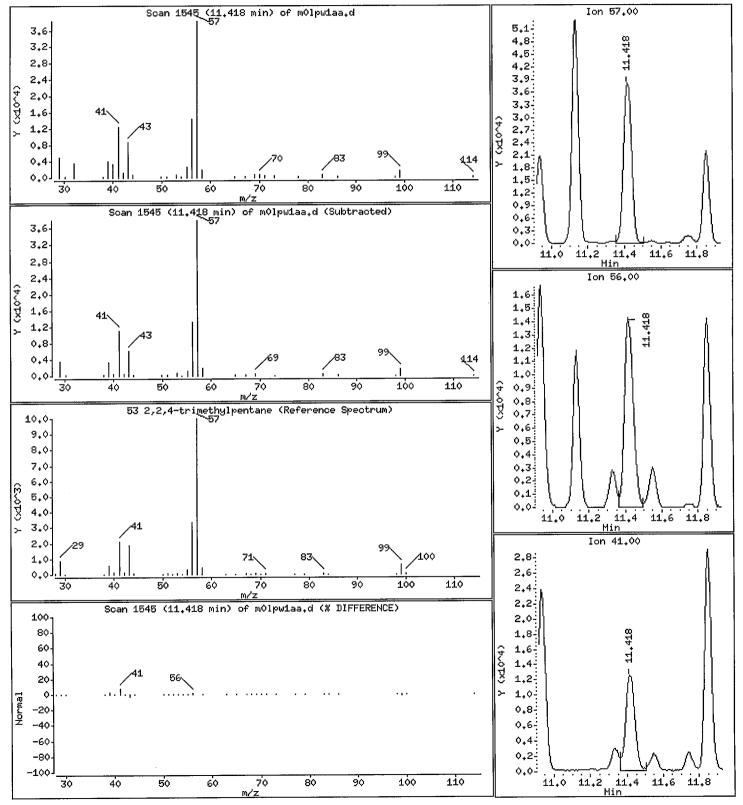
50 Carbon Tetrachloride

Concentration: 0.08976 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

53 2,2,4-trimethylpentane

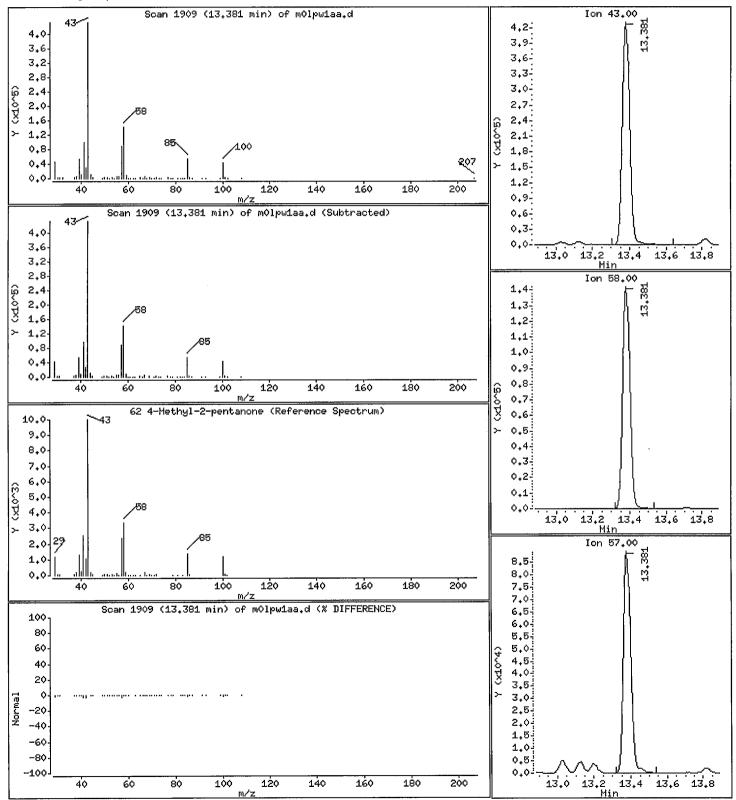
Concentration: 0.2187 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i

Sample Info: ,,0,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

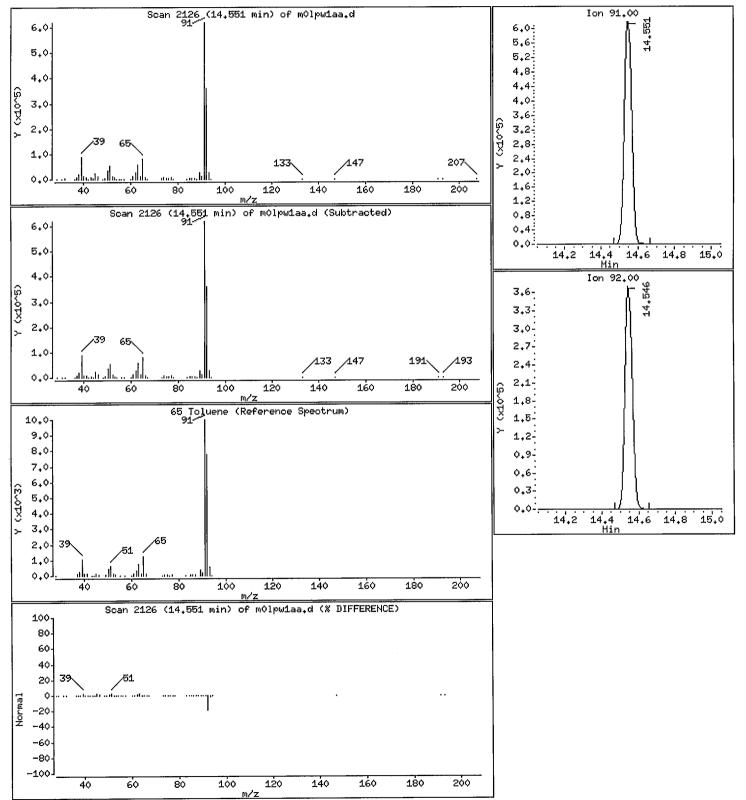
62 4-Methyl-2-pentanone

Concentration: 5.077 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

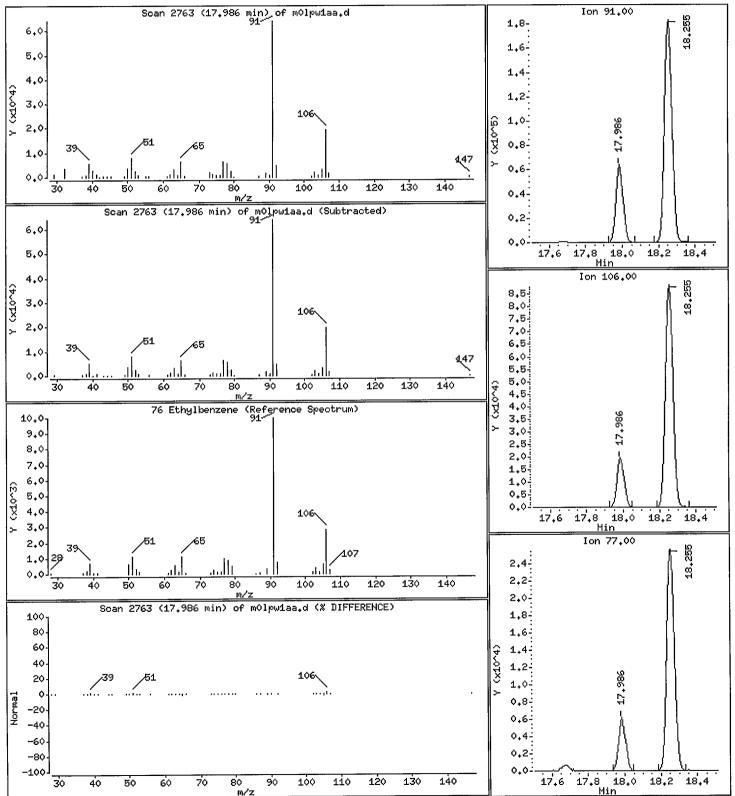
Column diameter: 0.32

65 Toluene

Concentration: 3.824 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP Instrument: mr.i


Sample Info: ,,◊,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

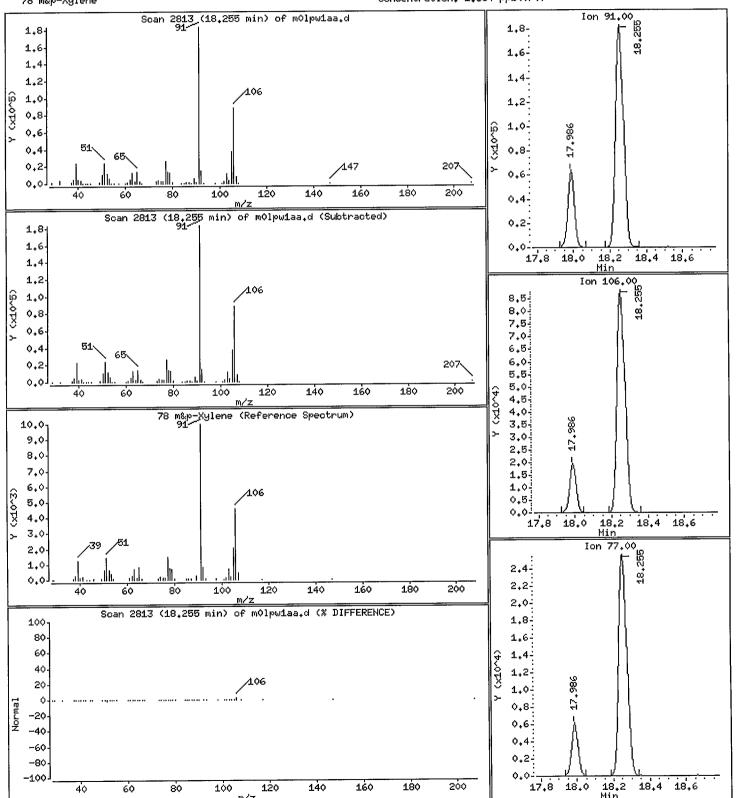
76 Ethylbenzene

Concentration: 0.3091 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

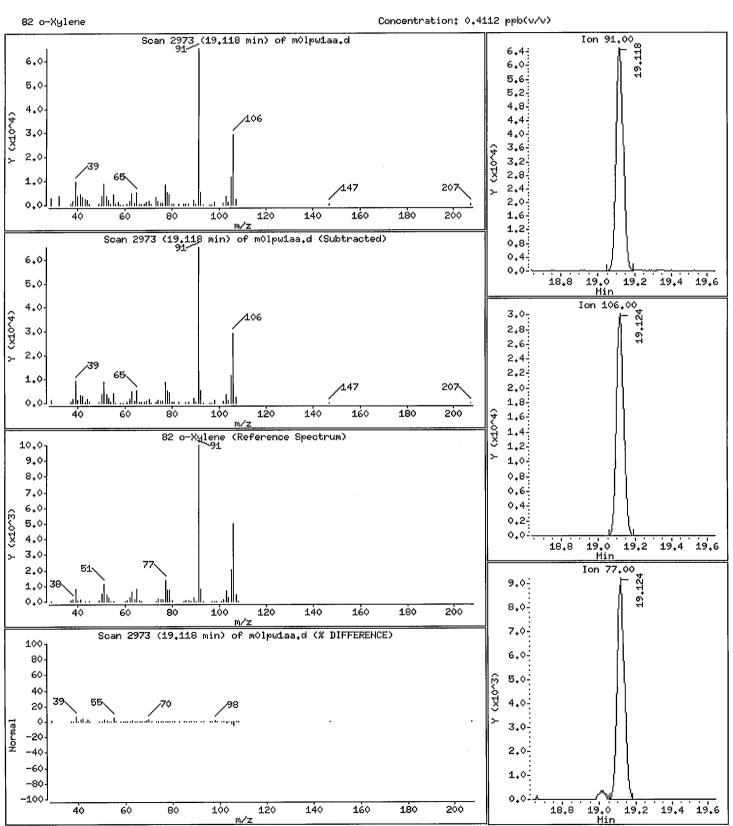
Column diameter: 0.32

78 m&p-Xylene

Concentration: 1.354 ppb(v/v)

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP Instrument: mr.i


Sample Info: ,,0,,

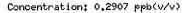
Purge Volume: 500.0 Operator: 403648

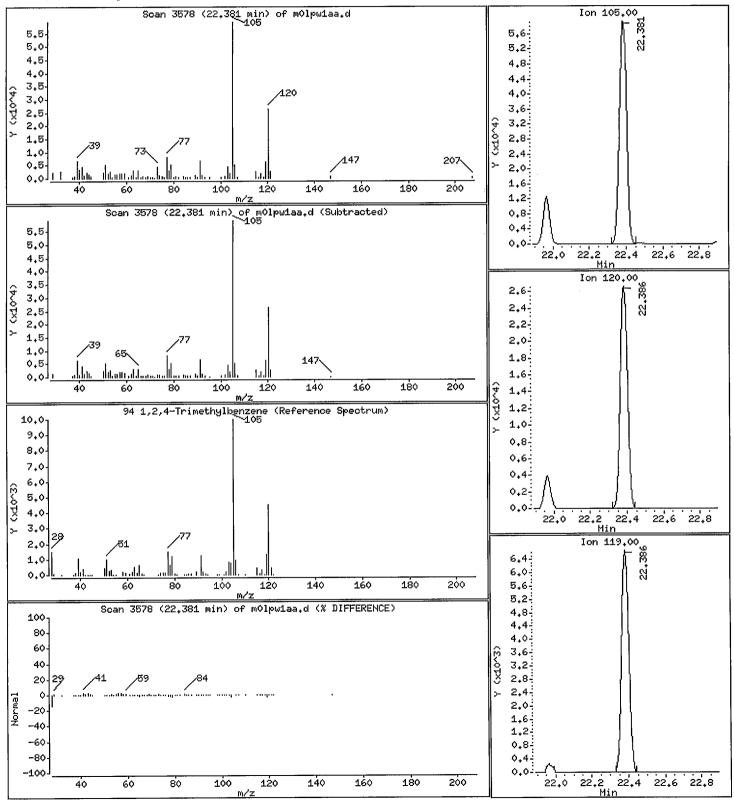
Column phase: Rtx-5 Column diameter: 0.32

82 o-Xylene

Concentration: 0.4112 ppb(v/v)

Date : 16-APR-2013 18:25


Client ID: INDOOR DUP Instrument: mr.i


Sample Info; ,,0,,

Purge Volume: 500.0 Operator: 403648

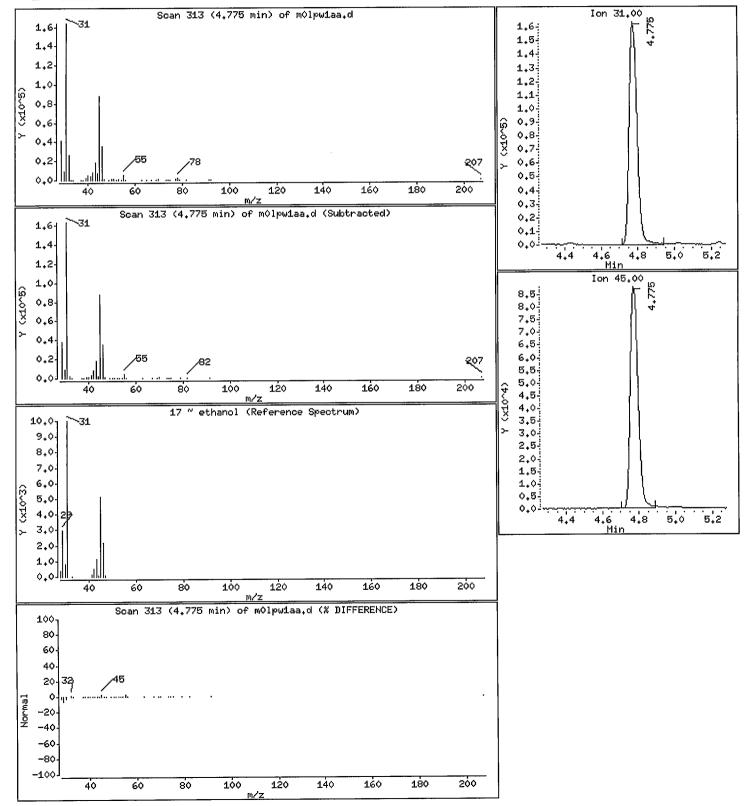
Column phase: Rtx-5 Column diameter: 0,32

94 1,2,4-Trimethylbenzene

Date : 16-APR-2013 18:25

Client ID: INDOOR DUP

Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0

Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

17 " ethanol Concentration: 13.79 ppb(v/v)

New York State D.E.C.

Client Sample ID: OUTDOOR

GC/MS Volatiles

Lot-Sample #	H3D160408 - 005	Wo	ork Order#	M0LP11AA	Matrix	: AIR
Date Sampled:	04/12/2013	Da	te Received:	04/15/2013		
Prep Date:	04/16/2013	An	alysis Date	04/16/2013		
Prep Batch #:	3106043					
Dilution Factor.:	1	Me	thod:	TO-15		
				_	 200	

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
1.1.1 m. 1.11	NID	0.080	ND	0.44
1,1,1-Trichloroethane	ND	0.080	ND ND	0.55
1,1,2,2-Tetrachloroethane 1,1,2-Trichlorotrifluoroethane	ND	0.080	ND ND	0.61
• •	ND ND	0.080	ND ND	0.44
1,1,2-Trichloroethane		0.080	ND ND	0.32
1,1-Dichloroethane	ND ND	0.080	ND ND	0.32
1,1-Dichloroethene				
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61
1,2-Dichlorobenzene	ND	0.080	ND	0.48
1,2-Dichloroethane	ND	0.080	ND	0.32
1,2-Dichloropropane	ND	0.080	ND	0.37
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39
1,4-Dichlorobenzene	ND	0.080	ND	0.48
1,4-Dioxane	0.74	0.20	2.7	0.72
2-Butanone (MEK)	ND	0.32	ND	0.94
1,3-Dichlorobenzene	ND	0.080	ND	0.48
2,2,4-Trimethylpentane	ND	0.20	ND	0.93
Benzene	12	0.080	37	0.26
Benzyl chloride	ND	0.16	ND	0.83
Bromodichloromethane	ND	0.080	ND	0.54
Bromoform	ND	0.080	ND	0,83
Bromomethane	ND	0.080	ND	0.31
Carbon tetrachloride	0.090	0.040	0.56	0.25
Chlorobenzene	ND	0.080	ND	0.37
Chloroethane	ND	0.080	ND	0.21
Chloroform	ND	0.080	ND	0.39
Cyclohexane	ND	0.20	ND	0.69
Chloromethane	0.91	0.20	1.9	0.41
cis-1,2-Dichloroethene	ND	0.080	ND	0.32
cis-1,3-Dichloropropene	ND	0.080	ND	0.36
Dibromochloromethane	ND	0.080	ND	0.68
Dichlorodifluoromethane	0.26	0.080	1.3	0.40
Ethanol	8.5	0.80	16	1.5
Ethylbenzene	ND	0.080	ND	0.35
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56
ane n-Hexane	ND	0,20	ND	0,70
	ND ND	0.080	ND ND	0.85
Hexachlorobutadiene	אטו	0.000	מאו	0.05

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

New York State D.E.C.

Client Sample ID: OUTDOOR

GC/MS Volatiles

Lot-Sample # H3D160408 - 00	5	Work Order # M0LP11	IAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	ND	0.20	ND	0.69
Styrene	ND	0.080	ND	0.34
tert-Butyl alcohol	ND	0.32	ND	0.97
Tetrachloroethene	0.38 est	0.080	2.6 est	0.54
Tolueue	0.57	0.080	2.2	0.30
m-Xylene & p-Xylene	ND	0.080	ND	0.35
o-Xylene	ND	0.080	ND	0.35
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Trichlorofluoromethane	0.20	0.080	1.1	0.45
Vinyl chloride	ND	0.080	ND	0.20
		PERCENT		LABORATORY CONTROL
SURROGATE		RECOVERY		LIMITS (%)
4-Bromofluorobenzene		98		60 - 140

Qualifiers

est Estimated value. See narrative for details.

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding) \# (Molecular \ Weight/24.45)$

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mr.i/R041613.b/m0lp11aa.d

Lab Smp Id: MOLP11AA / Client Smp ID: OUTDOOR

Inj Date : 16-APR-2013 20:21

Operator: 403648 Inst ID: mr.i

Smp Info : ,,0,,

Misc Info: R041613, T015, nysdec.sub

Comment :

Method : /var/chem/gcms/mr.i/R041613.b/T015.m

Meth Date: 16-Apr-2013 19:25 barlozha Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205.d

Als bottle: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: nysdec.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo .	500.00000	Default Sample Volume

Cpnd Variable

Local Compound Variable

CONCEMPDATIONS

						CONCENTRATIONS		
		QUANT SIG				ON-COLUMN	FINAL	
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb (v/v))
		====	==				======	
* 1	Bromochloromethane	128	8.873	8.873 (1.000)	250402	4.00000	4.000	/
* 2	1,4-Difluorobenzene	114	11.138	11.138 (1.000)	1285634	4.00000	4.000	
* 3	Chlorobenzene-d5	117	17.420	17.436 (1.000)	1078676	4.00000	4.000	
\$ 4	4-Bromofluorobenzene	95	20.159	20.170 (1.157)	742968	3.93411	3.934	
7	Dichlorodifluoromethane	85	3.723	3.723 (0.420)	69003	0.26445	0.2644	
8	Chloromethane	52	3.901	3.907 (0.440)	28870	0.90515	0.9052	
20	Trichlorofluoromethane	101	5.244	5.244 (0.591)	49477	0.19517	0.1952	
48	Benzene	78	10.550	10.550 (0.947)	3766006	11.5726	11.57	
50	Carbon Tetrachloride	117	10.588	10.588 (0.951)	15074	0.08967	0.08967	
59	1,4-dioxane	88	12.232	12.222 (1.098)	33954	0.73836	0.7384	
65	Toluene	91	14.551	14.551 (0.835)	256699	0.57356	0.5736	
73	Tetrachloroethene	129	16.223	16.180 (0.931)	59684	0.37652	0.3765 esc	•
17	~ ethanol	31	4.785	4.775 (0.539)	291737	8.49497	8.495	

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i Lab File ID: m0lp11aa.d Lab Smp Id: MOLP11AA

Analysis Type: OTHER

Quant Type: ISTD Operator: 403648

Method File: /var/chem/gcms/mr.i/R041613.b/T015.m

Misc Info: R041613, T015, nysdec.sub

Calibra	ation	Dat	ce:	16-AP	R-29	1.
Calibra	ation	Tir	ne:	10:51		
Client	Smp	ID:	OU.	rdoor		

Level: LOW

Sample Type: AIR

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
1 Bromochloromethan	294767	175386	414148	250402	-15.05
2 1,4-Difluorobenze	1529291	909928	2148654	1285634	-15.93
3 Chlorobenzene-d5	1257555	748245	1766865	1078676	-14.22

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=========	========	========	=
1 Bromochloromethan 2 1,4-Difluorobenze 3 Chlorobenzene-d5	8.87 11.14 17.44	8.54 10.81 17.11	9.20 11.47 17.77	8.87 11.14 17.42	0.00 0.00 -0.09

AREA UPPER LIMIT = +40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 17-Apr-2013 11:14

TestAmerica Knoxville

RECOVERY REPORT

Client Name: New York State D.E.C15-APR-2013 00:00

Client SDG: H3D160408

Sample Matrix: GAS

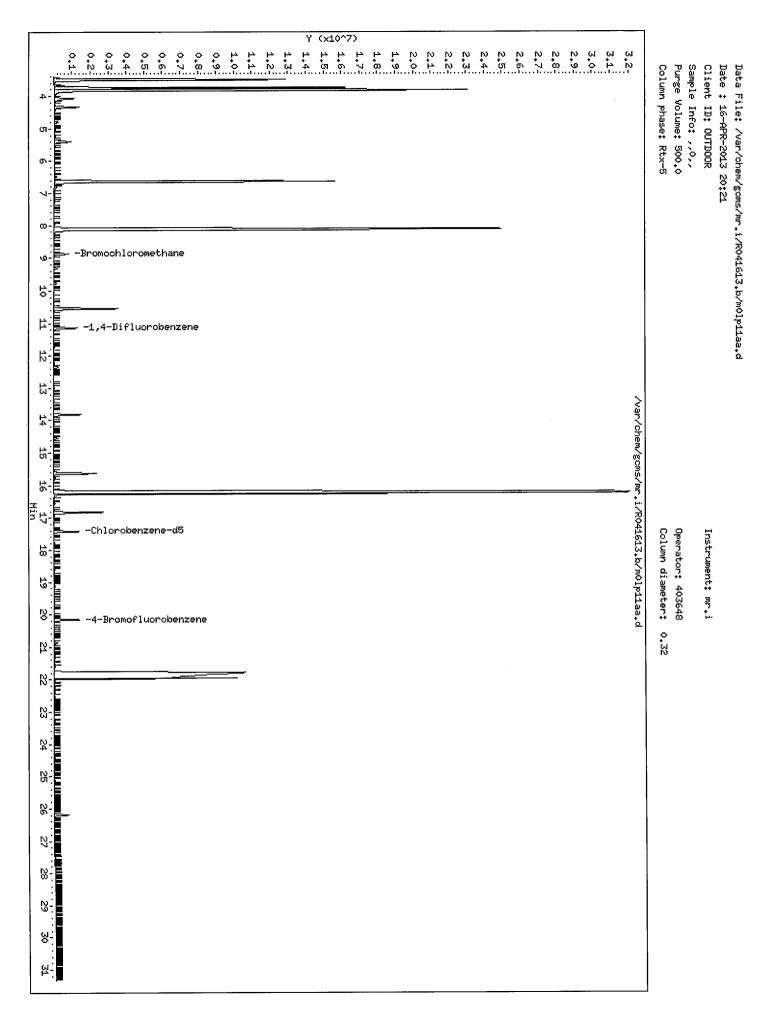
Fraction: OTHER

Lab Smp Id: MOLP11AA Level: LOW

Client Smp ID: OUTDOOR

Operator: 403648

SampleType: SAMPLE


Data Type: MS DATA SpikeList File: allnew.spk

Quant Type: ISTD

Sublist File: nysdec.sub

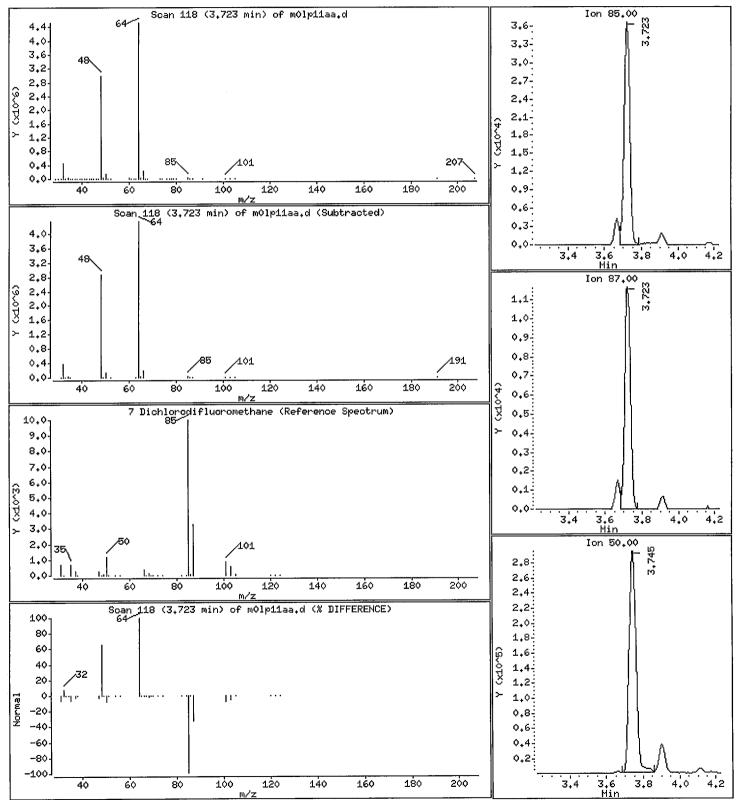
Method File: /var/chem/gcms/mr.i/R041613.b/T015.m Misc Info: R041613, T015, nysdec.sub

SURROGATE COMPOUND	CONC ADDED ppb (v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	4.000	3.934	98.35	60-140

Date : 16-APR-2013 20:21

Client ID: OUTDOOR

Instrument: mr.i


Sample Info; ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

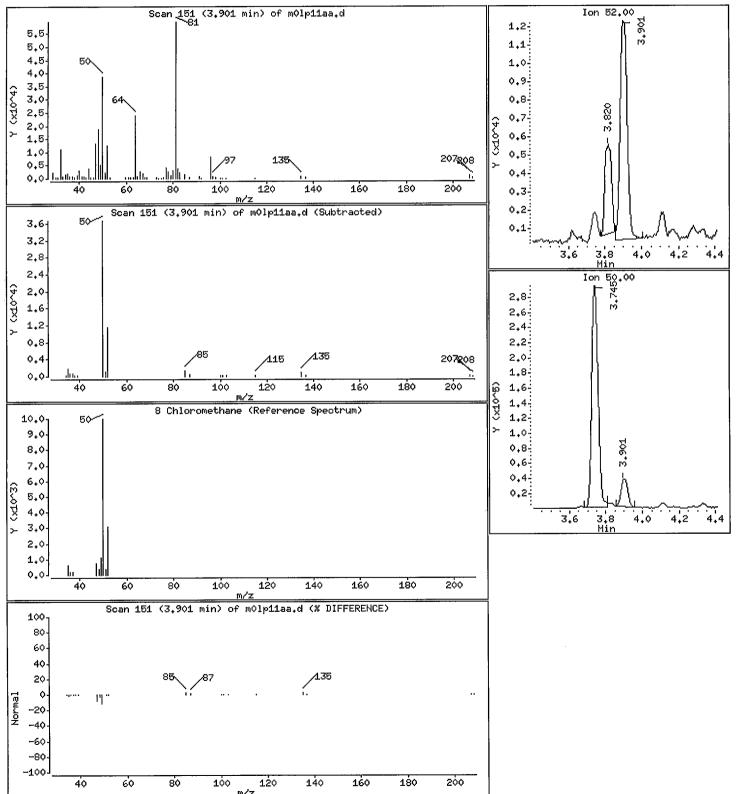
7 Dichlorodifluoromethane

Concentration: 0.2644 ppb(v/v)

Date : 16-APR-2013 20:21

Client ID: OUTDOOR Instrument: mr.i

Sample Info: ,,0,,
Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

8 Chloromethane

Concentration: 0.9052 ppb(v/v)

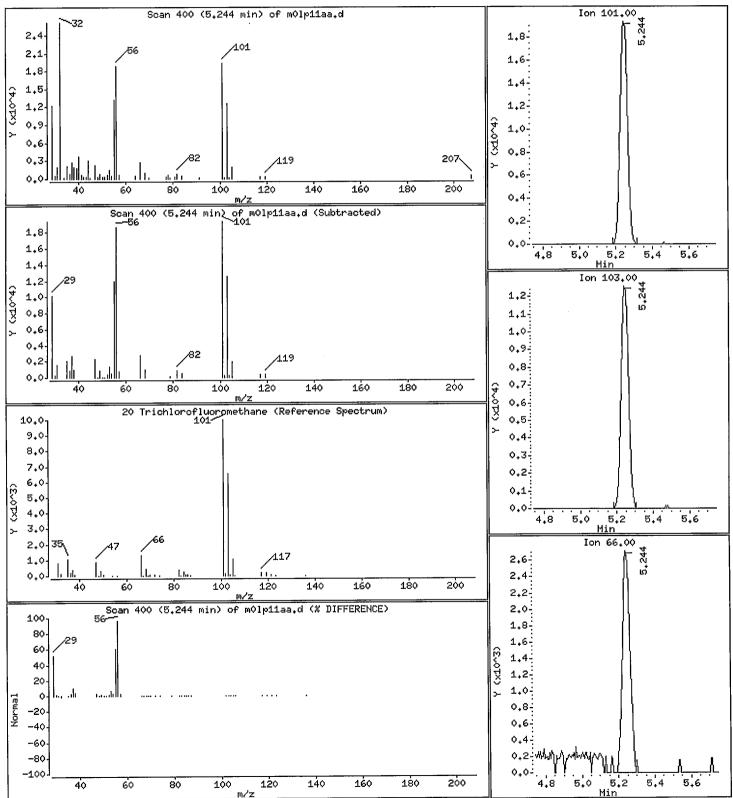
Date : 16-APR-2013 20:21

Client ID: OUTDOOR

Instrument: mr₊i

Sample Info: ,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

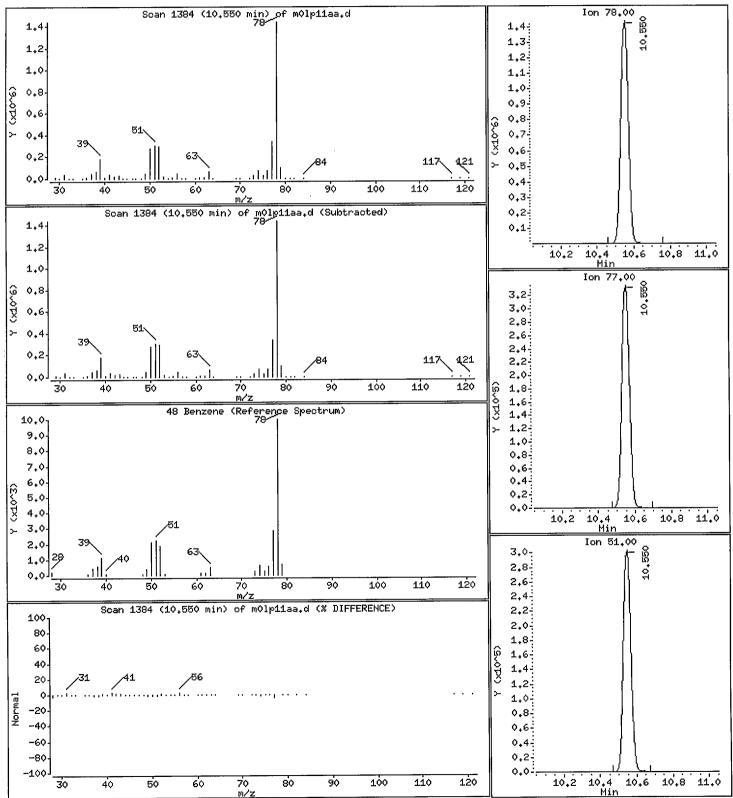
Column diameter: 0.32

20 Trichlorofluoromethane

Concentration: 0.1952 ppb(v/v)

Date : 16-APR-2013 20:21

Client ID: OUTDOOR Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

48 Benzene

Concentration: 11.57 ppb(v/v)

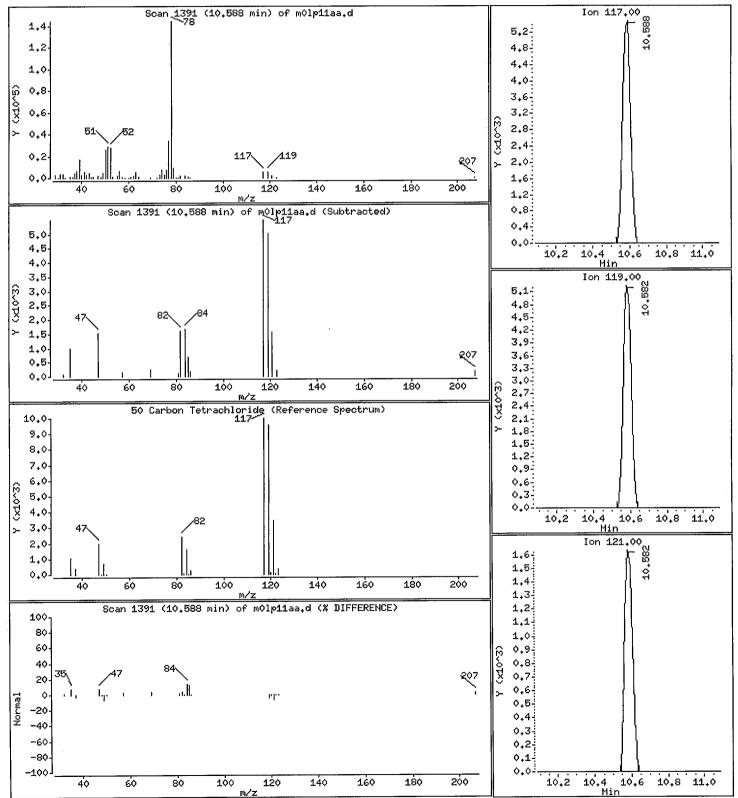
Date : 16-APR-2013 20:21

Client ID: OUTDOOR

Instrument: mr.i

Sample Info: ,,0,,

Purge Volume: 500.0


Operator: 403648

Column phase: Rtx-5

Column diameter: 0.32

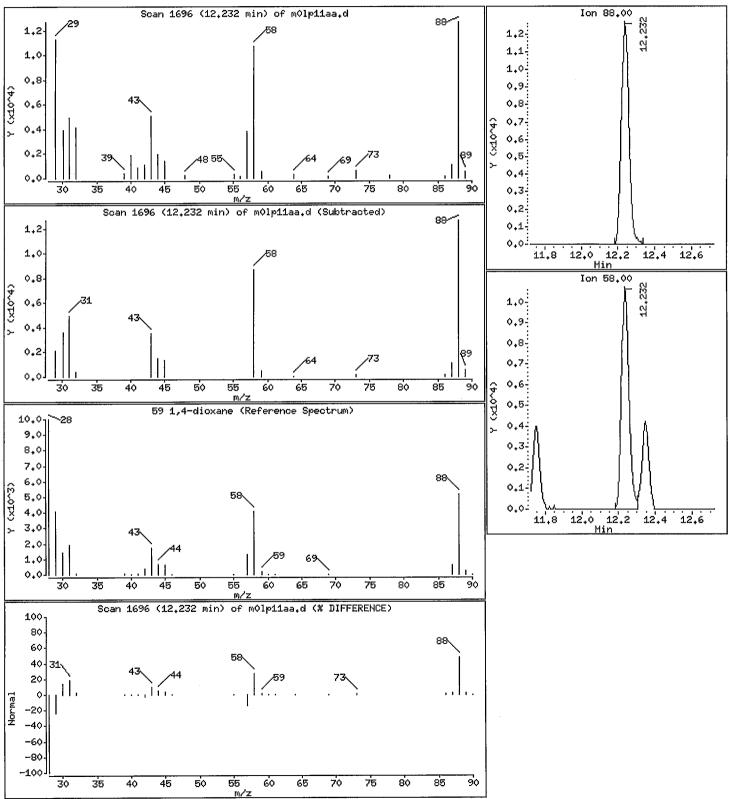
50 Carbon Tetrachloride

Concentration: 0.08967 ppb(v/v)

Date : 16-APR-2013 20:21

Client ID: OUTDOOR

Instrument: mr.i


Sample Info: ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

59 1,4-dioxane

Concentration: 0.7384 ppb(v/v)

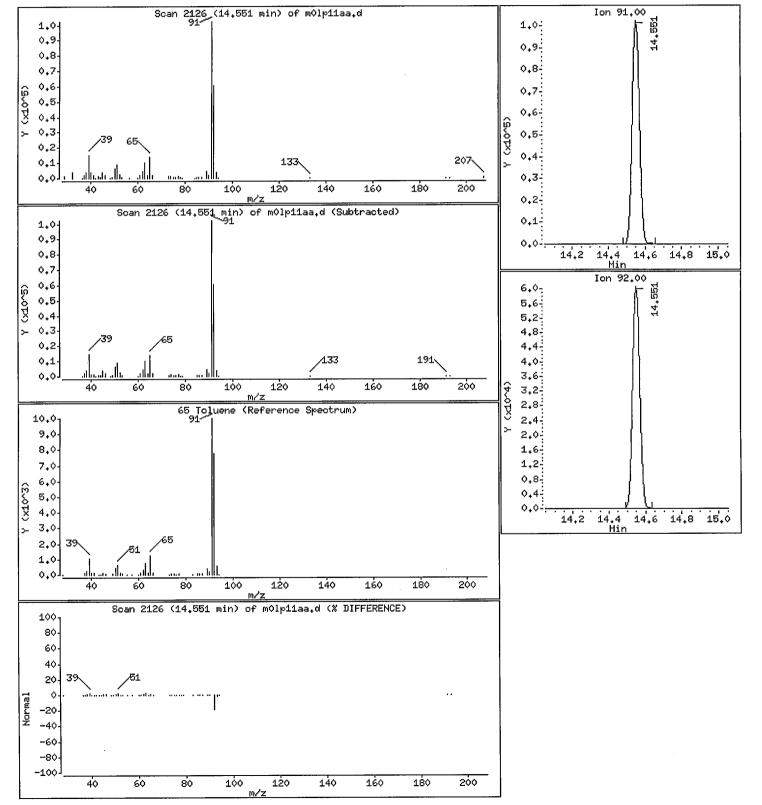
Date : 16-APR-2013 20:21

Client ID: OUTDOOR

Instrument: mr.i

Sample Info: ,,0,,

Purge Volume: 500.0


Operator: 403648

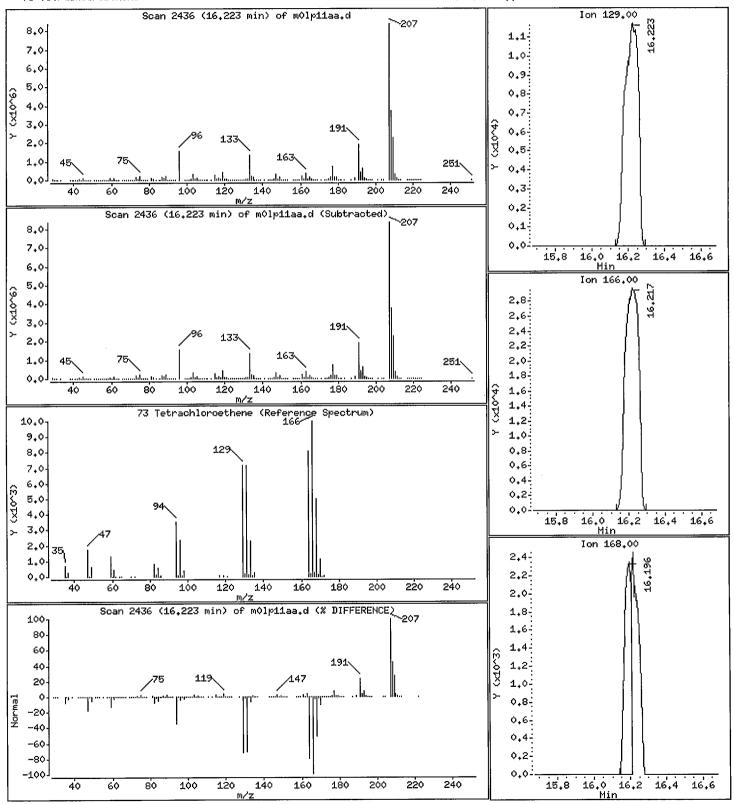
Column phase: Rtx-5

Column diameter: 0.32

65 Toluene

Concentration: 0.5736 ppb(v/v)

Date : 16-APR-2013 20:21


Client ID: OUTDOOR Instrument: mr.i

Sample Info: ,,0,,

Purge Volume: 500.0 Operator: 403648

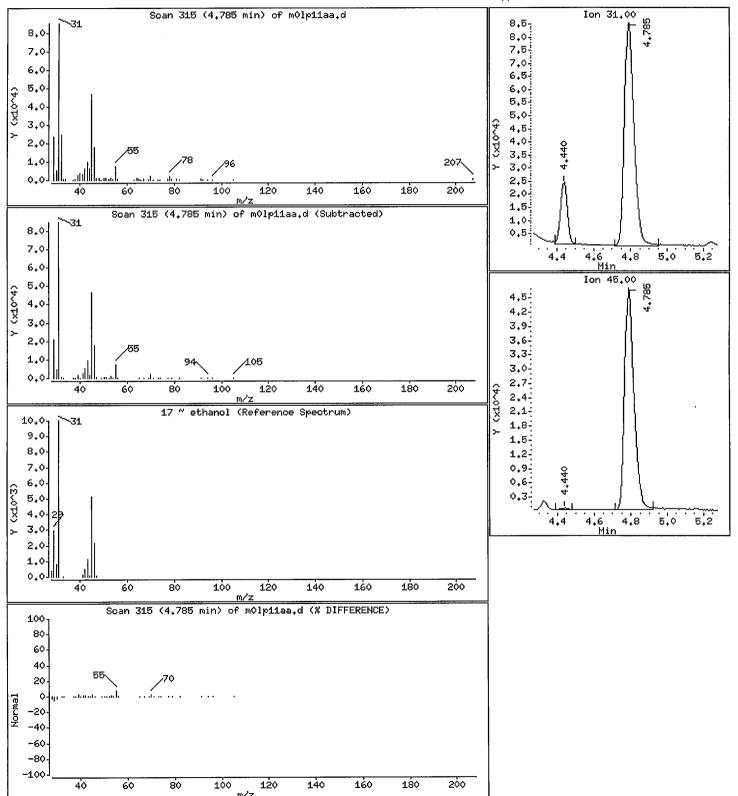
Column phase: Rtx-5 Column diameter: 0.32

73 Tetrachloroethene Concentration: 0.3765 ppb(v/v)

Date : 16-APR-2013 20:21

Client ID: OUTDOOR

Instrument: mr.i


Sample Info; ,,0,,

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

17 ~ ethanol

Concentration: 8.495 ppb(v/v)

Standards Data

TestAmerica Knoxville GC/MS Air Initial Calibration Data Review / Narrative Checklist Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 13 & KNOX-MS-0023, Rev 0

Analysis Date:	2/20/13	Instrument::	MR	ICAL Batch	/Scan Nam	ie;	ROZZ	2013 I Scan	ned 🗆
Review Items					N/A	Yes	No	If No, why is data reportable?	2nd
1. Did BFB m	eet tune criteria?					V			-
2. Were all sta	ndards injected v	vithin 24 hr of B	FB?	· · · · · · · · · · · · · · · · · · ·		V			+
	ne of analysis ve)					
4. Is low level	std at or <rl an<="" td=""><td>d are the remain</td><td>ing points cor</td><td>nsecutive?</td><td></td><td>/</td><td><u> </u></td><td></td><td></td></rl>	d are the remain	ing points cor	nsecutive?		/	<u> </u>		
5. Are the cali	bration levels cor	rrect? (Calculate	standard con	centration &					
	d with quan rpt a					V			
6. Was ICAL	processed using o	correct methods	and files?						
	L start and end c			· · · · · · · · · · · · · · · · · · ·		V			
	st 5 levels of eacl					V	,		\perp
consecutive	onsecutive points points for linear	curves? Note: (tic curves, an	d at least 5	/				M
10. Is %RSD fo	r all target analy	$tes \leq 30\%$? (with	up to 2 comp	pounds with		~		,	70
RSD ≤ 40%	ere used, is correl	ation coefficient	>0.0002	·		ļ,	-		1
	ic: is a tangent's			itive or	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	-		NB
negative and	d continuous.				/				NO
	r quadratic: origi "FORCE" throug		d"? (NOTE:	OHIO does	/				NS
	ntercept less than		curve?						NO
	IS ±20 sec avg.					/			
	ch IS <u>+</u> 40% avg.					/			
	e <u>+</u> 0.06 RRT of					V			
	iks been auto ide					V			
initialed, da	tegrations were p ted and reason gi	ven?		•	/			Reasons: 1)Corrected split peak; 2)Unresolved peak; 3)tailing; 4)RT shift; 5)wrong peak selected; 6)other	N
20. Have alterna correct RFs	ate hits/manual ir listed in ICAL sı	ntegrations been ummary?	verified as co	rrect and are	V				M
	ective compounds					/			
22. High point of	checked for satura	ation and point r	emoved if sat	urated?					
	er checked on iso								
	fluoromethane /					~			
	uoromethane / 1,	1,2-trichlorotriff	luoroethane	,,		/	<u> </u>		
 vinyl acet 						/			
	ans- isomers		``, , 			/			
	ene / m/p-xylene			····		V			
trimethyll			nethylbenzene 	2/1,2,4-		V			
 tert-butyl 	benzene/p-cymer	ie .				~			
• 1,2,4-trim	ethylbenzene/sec	-butylbenzene			<u> </u>	V			+
• 1,3- , 1,4-	, and 1,2-dichlor	obenzene	***************************************			V			+
	lorobenzene/1,2,					V			+
24. Is the second 135% R)	d source analysis	of a reference st	andard withir	ı limits? (65-		~			1
25. If criteria we	ere not met, was a	a NCM generate	d, approved b	y supervisor,	1		 		
	AL folder contain	i complete data	in the following	na order	 •				NO
Data review curves, follo	checklist, a com wed by [Quan re , in increasing ar	plete runlog, BF ports, chromatog	B info, ICAL grams, manua	summary,		/			
Analyst:	The		Date: 2	21/13	2nd Leve	l Davie	WOW !		7/2
Comments:	· /v-		Date. G	-117	Commen		mer;	Date: 03 >	115
					Commen	+ 13 +			
									

TestAmerica Laboratories, Inc. - Knoxville CANISTER RUN LOG

GCMS Analysis: AIR		Inst: MR
Analyst: DW Qtims Batch:	3052022	
Date: Z ZU 13 ICAL Batch: ROZZ	013 I Target Batch: R022013 I	IS #1 Area: (/v/6): 469377
Surr/IS ID & Vol.: V425/40ml System D	ate/Time ok (y/n): <u>y</u>	
Preventive Maintenance Performed	V	

	Time	Use	Lot No.	File ID	Can#	Pos	Vol*	Can DF	Comments
	1415	ok	BLANK	BLKI	_	16	700	1	
	1502	V	BFB	RBFBBZO	_		100		
	1528	OK	Blank	BLKZ		1	200		
	1614	V	MDL CHKO.02	-	CX-245		50		MXXXXIAA LODV
	1704	\checkmark	ICAL 0.04		51	1	100		MXXXOIAA
	1752	/	80.0		51	7	200		
	1839	/	0.16	3	50	9			2 10av
	1927		0.4	Ч	49	10			7 3 7
~	3014	V	1,0	5	48				
21.13	2101 2150	/	7.0	6	47	17			MXXX41AA LOQV
, Z	2150 2237 2237 2237 2325	/	Q. P	÷	46	13			2000
20	2337	/	8.0	8	45				
	2325	V	1 16	7 9	7 44				
	0013	QK	Blank	BUZ	-	16	D	4	
	०४५०	ok	Rlank	BCKY		16			
	0927	/	HZA 230417 (1009)		CX-2441	1			Also 2 Source for curve
	1015	V		6		1			
	1802	/		7		, (
	1150	~	1	787	4	١	7)	+	я
								-	
					. 112				. 44
					22113				
				A					
									
Εi	tech progra	mmed V	olume. If the Entech repor	t amount differs from the	programme	amount	by >5%, the	Entech report	amount is used for calulations.

MS027r16.DOC, 051210

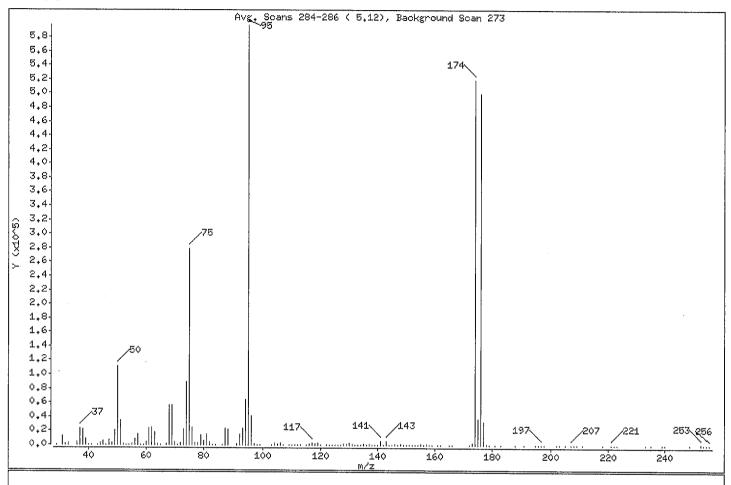
Date: 2 21 2

Data File: /chem/gcms/mr.i/R022013I.b/rbfbb20.d

Date : 20-FEB-2013 15:02

Client ID:

Instrument: mr.i


Sample Info: BFB,1,3

Operator: 060487

Column phase: RTX 624

Column diameter: 0.18

1 bfb

m/e	ION ABUNDANCE CRITERIA		% RELATIVE ABUNDANCE	
l I		·		
1 95 1	Base Peak, 100% relative abundance	1	100,00	1
50	15,00 - 40,00% of mass 95	I	18,52	- 1
1 75 1	30.00 - 60.00% of mass 95	1	46.70	1
1 96 1	5.00 - 9.00% of mass 95	1	6.96	1
173	Less than 2,00% of mass 174	1	0,44 (0,51)	1.
1 174 1	50,00 - 120,00% of mass 95	1	86.94	ì
175	5,00 - 9,00% of mass 174	1	6,20 (7,13)	- 1
176	95.00 - 101.00% of mass 174	1	83,69 (96,27)	- 1
1 177 1	5,00 - 9,00% of mass 176	1	5,53 (6,61)	1

Data File: /chem/goms/mr.i/R022013I.b/rbfbb20.d

Date : 20-FEB-2013 15:02

Client ID:

Instrument: mr.i

Sample Info: BFB,1,3

Operator: 060487

Column phase: RTX 624

Column diameter: 0,18

Data File: rbfbb20.d

Spectrum: Avg. Scans 284-286 (5.12), Background Scan 273

Location of Maximum: 95.00 Number of points: 157

+-	m/z	Y	m/z	Y	m/z	Y	m/z	Y .
1	29,00	78	, 74.00	89552	123,00	133	166.00	 194
1	31,00	11773	75,00	278528	124,00	368	172,00	271
1	32,00	792	I 76,00	24048	125,00	196	173,00	2636 [
1	33.00	2203	77,00	2992	126,00	232	174.00	518592
1	36,00	3843	1 78,00	21.32	127,00	144	175,00	36960 l
1	37,00	23848	79,00	14164	128,00	1888	 176,00	499264 l
I	38,00	21456	80,00	5324	129,00	823	177.00	32992
1	39,00	8690	81,00	15382	130,00	2080	178.00	971 l
I	40,00	368	I 82.00	4315	131,00	808	179,00	50
!	41,00	82	I 83,00	212	132,00	232	181,00	48
1	43,00	184	I 84,00	41.	133.00	107	183,00	 85
1	44.00	2936	I 86,00	550	134,00	124	188.00	33
1	45,00	4802	87,00	23640	135,00	1560	191,00	88
1	46,00	337	88,00	22120	136,00	165	195,00	70 I
1	47,00	6888	91,00	1644	137,00	990	196,00	126
1	48,00	2860	92,00	14602	138,00	34	197,00	181
I	49,00	21224	93,00	23112	139,00	234	198,00	39
ı	50,00	110504	l 94₊00	63976	140,00	345	202,00	34
1	51,00	33864	l 95.0¢	596480	141,00	5134	203,00	134 I
1	52.00	1.275	96,00	41520	142,00	532	205,00	155
i	53,00	14	I 97.00	1206	143,00	5281	207,00	314
1	54,00	11	98,00	115 (144,00	340	208,00	162
1	55,00	1094	99,00	28	145,00	533	209.00	209
1	56,00	7641	103,00	188	146,00	864	211,00	25 (
 +-	57,00	14923	104.00	2339	147,00	132	218,00	93 1
İ	58,00	587	105.00	695	148,00	1216	221,00	151 l
I	59,00	97	106.00	2227	149,00	194	222,00	59 I
I	60,00	4293	107,00	507 1	150,00	604	223,00	86 I
1	61,00	23104	109,00	135 (151,00	42	233,00	36
1	62,00	24760	110.00	339	152,00	276	235,00	4 !
Ī	63,00	18480	111.00	524 I	153,00	383	239,00	132
I	64,00		112,00	309	154,00	367	240,00	7 1
1	65,00	256	113,00	492	155,00	1345	249,00	95
1	67,00	1152	115,00	412	156,00	610	253,00	1177
1	68,00	56312	116,00	1926	157,00	1475	254,00	163

Data File: /ohem/goms/mr.i/R022013I.b/rbfbb20.d

Date : 20-FEB-2013 15:02

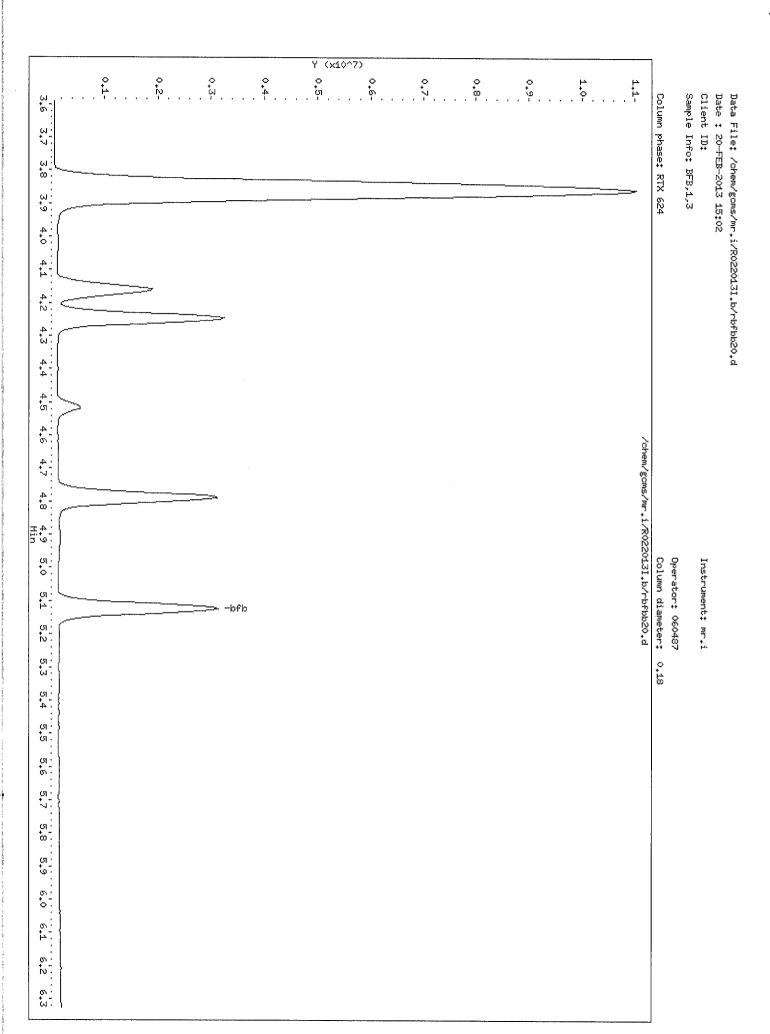
Client ID:

Instrument: mr.i

Sample Info: BFB,1,3

Operator: 060487

Column phase: RTX 624


Column diameter: 0.18

Data File: rbfbb20.d

Spectrum: Avg. Scans 284-286 (5.12), Background Scan 273

Location of Maximum: 95.00 Number of points: 157

	m/z	Y		m/z	Y		m/z	Y		m/z	Y	
+-			-+-			-+-			+			-+
1	69,00	56136	1	117,00	3100	1	158,00	424	ł	255,00	144	1
-1	70.00	4605	1	118,00	1823	I	159.00	612	I	256,00	124	1
1	71,00	91	I	119,00	2750	ŀ	161,00	559	1			ı
1	72,00	2650	1	120.00	152	1	162,00	93	ı			1
1	73,00	21976	1	122,00	164	1	165,00	175	ı			1
+-		·	-+-			-+-			+			-+

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50
Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m

Cal Date : 21-Feb-2013 08:18 wilesd

Curve Type : Average

Calibration File Names:

Level 1: /chem/gcms/mr.i/R022013I.b/ricb201.d Level 2: /chem/gcms/mr.i/R022013I.b/ricb202.d Level 3: /chem/gcms/mr.i/R022013I.b/ricb203.d Level 4: /chem/gcms/mr.i/R022013I.b/ricb204.d Level 5: /chem/gcms/mr.i/R022013I.b/ricb205.d Level 6: /chem/gcms/mr.i/R022013I.b/ricb206.d Level 7: /chem/gcms/mr.i/R022013I.b/ricb207.d Level 8: /chem/gcms/mr.i/R022013I.b/ricb208.d Level 9: /chem/gcms/mr.i/R022013I.b/ricb209.d

I	0.04000	0.08000	0,16000	0.40000	1.000	2.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	4.000	8.000	16.000		1]	·
	Level 7	Level 8	Level 9					
**********************			=======	=======	=======	=======		
M 83 Xylene (total)	1.77233			1.59750				
	1.56466						1.62589	4.284
	.						•	
5 Chlorodifluoromethane	0.51972			0.42969			•	
1	0.36781	0.34492	0.32802	l i			0,40861	14.257
6 Propene	++++		•	1.33167		'		!
	1.13050	1.05926	0.99947	· 			1.21594	14.374
7 Dichlorodifluoromethane	4.90512	4.67989		'	'	'	•	'
l	3.81586	3.56506	3.29290	· 		· 	4.16818	12.733
8 Chloromethane	+++++	0.63423	0.58479				,	
1	0.45191	0.41627	0.36880	· 			0.50950	19.128
·				'				
	1	1	l					
			! ————	l				

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25
Quant Method : ISTD

Õrigin : Disabled Target Version : 3.50 Integrator

Integrator : HP RTE
Method file : /chem/gcms/mr.i/R022013I.b/T015.m
Cal Date : 21-Feb-2013 08:18 wilesd

	0.04000	0.08000	0.16000	0.40000	1.000	2.000	1	
Compound	Level 1	Level 2	Level 3			Level 6	RRF	% RSD
	4.000	 8.000	16.000			 	. 	
	Level 7	Level 8	Level 9	i				,
0.100 Pt						•	•	
9 1,2-Dichlorotetrafluoroethane	3.88680 3.05685				3.35016	3.28556		
			2.71016			 	3.32193	
10 Methanol	++++	+++++	+++++	++++	0.48331	0.42031	!	,
	0.35705	0.32521	0.26986	I		l	0.37115	22.367
11 ~ cokaldahıdı							ı	
11 ~ acetaldehyde	+++++ 0.56935	+++++ 0.51177	+++++ 0.45272	0.80433	0.64212	0.61523		
		'			 	 	0.59925	20.324
12 Vinyl Chloride	2.07889	1.96139	1.85514	1.83938	1.75976	1.74278	ı	
	1.61427	1.51529	1.41213	I.	l		1.75322	12.093
			1	•		•		
13 n-Butane	3.34682				2,50784	2.46837		
	2.26218	•		•			2.59004	
14 1,3-Butadiene	1.62691		'				ı	
	1.25410	1.19028	1.10858				1.37716	12.638
		I	'					
15 Bromomethane	2.20871				1.55908	1.54556		
	1.44770	,		!	 		1.62801	'
16 Chloroethane	1.10130	JI.	'		0.87060	!		
İ	0.80860	0.76427	0.73639	'			0.88536	12,913
17 ~ ethanol	+++++	0.75362			0.52892	0.52781		
	0.46607	0.44136		 		!	0.54860	
	 	~~*						
The state of the s					l			

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25

Quant Method : ISTD

Origin : Digabled

: Disabled Origin Target Version : 3.50

Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m

Cal Date : 21-Feb-2013 08:18 wilesd

Curve Type : Average

P. I. J. Company of the Company of t								
	0.04000	0.08000	0.16000	0.40000	1.000	2.000		1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
·							1	1
	4.000	8.000	16.000				1	I
	Level 7	Level 8	Level 9					I
	== ====================================		-				, 	 =======
18 Vinyl Bromide	1.89330			•			'	,
•	1.53054	1.47604	'		1		1,63857	8.565
			'	•	 	l 1		,
19 2-methyl butane	2.33265		·		1		1	
19 2 meetry 1 became	1.80081	1.72116			1 1,94598	1.92585		J
							1.96805	·
0.0 m. 1.1.7			ı	'	I	r		
20 Trichlorofluoromethane	4.55726				4.08076	4.04052		
	3.78788	3,64080	3,56757		ļ		4.04968	8.204
~~~~								
21 Acrolein	++++	+++++	0.89468	0.62584	0.56422	0.57615	}	
	0,47790	0.52291	0.53067				0.59891	23.116
22 Acetonitrile	+++++	++++	0.67975	0.60385	0,65525	0.62295		
	0.58791	0.56568	0.55451				0.60999	7.527
			· 					
25 Pentane	+++++	0.34947	0.33122	0.33548	'   0.33282	0.32736	! 	 
	0.308951	0.29843			0.55 <u>2</u> 02	0.32/30 	l 0,32255	 
			0.29009 		 	 	0,32255	
23 Acetone	+++++					ı	ı	
23 Acecone		+++++	++++	++++	0.96561	0.86132	,	
	0.83696	0.73886					0.82088	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								
24 Isopropyl alcohol	+++++ {	+++++	+++++	2.49698	2.47083	2.39877		
	2.23122	2.13848	2.01358				2.29164	8.510
26 Ethyl Ether	1.91770	1.90933	1.76308	1.75864	1.72398	1.69857		
	1.59301	1.51376	1.44528				1.70260	9.520
	1		· 			, 		· 
							·	·

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25
Quant Method : ISTD

Origin : Disabled Target Version : 3.50

Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m

Cal Date : 21-Feb-2013 08:18 wilesd

Curve Type : Average

	0.04000	0.08000	0.16000	0.40000	1.000	2.000	l	1
Compound	Level 1	Level 2	Level 3	•		Level 6	RRF	% RSD
	4.000	   8.000	16.000				1	
	Level 7	Level 8	Level 9	! [	l 	 	1	 
	=========	' 		  =========	  =========	  =========	========	  =======
27 1,1-Dichloroethene	1.88633							! 
	1.47849	1.44511	1.44236				1.60519	9.4
29 Acrylonitrile	1.23788				1.24912	1,26009		İ
	1,19175	'	•	•	<u> </u>	1	1.24170	
30 1,1,2-Trichlorotrifluoroethan				•			'	
30 1,1,2-111Chiofolilliuoroechan	3.77179 3.13257	'				3,32100		
	3.1325/	,			 	 	3.33743	
28 tert-butanol	+++++	2.90806		1	1	1	1	 
	2.64834				2.02525	&.75055 	   2.74079	I 5.9
			•	,		 	•	
31 Methylene Chloride	++++	+++++	1.71969	1.51954	1.47399	1,43905		· 
	1.34131	1.29860	1.29635	l			1.44122	10.4
32 3-Chloropropene	1.39014	1.26137	1.16198	1.17177	1.19842	1.12102		
	1.11560		'	'			1.13544	14.1
22 G-whore District de				'				
33 Carbon Disulfide	5.25232				4.55099	4.57960	'	<u> </u>
	4.34562				 		4.60227	
35 ~ 2-Methyl Pentane	+++++	4.05447	'	1	ı		!	 
· ····•	3.41115			!	3.04320	3.02339	   3.58058	8,6
				 			3,50050	
34 trans-1,2-Dichloroethene	1.98544	1.84193	1.70523	1.65055	1.60414		'	
	1.53436	1.49772	1.50713		· 		1.65884	9.8
				l.			ı i	

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25
Quant Method : ISTD

Origin : Disabled Target Version : 3.50 Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m Cal Date : 21-Feb-2013 08:18 wilesd

	0.04000	0.08000	0.16000	0.40000	1.000	2.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	4.000	8.000	16.000	 	 		 	<b>[</b>
	Level 7	Level 8	Level 9	I	İ	i I	l	' 
36 Methyl-t-Butyl Ether	4.76920							
30 Mechyr-c-Bucyr Echer	4.76920	'		'	4.28204	4.25683 	   4.24047	6.5
							'	
37 1,1-Dichloroethane	3.18912	3.12723	2.96460	2.92903	2.89887	2.88511		
	2.71410				1	<u>}</u>	2.87721	7.3
38 Vinyl Acetate	4.01423	ı	1	'	3.83108		1	
	3.79813		'		3,03100	3.85805 	3.82794	   3.1
					· 			
39 2-Butanone	+++++	++++	1.05631	0.80470	0.77471	0.78182		
	0.75413			•			0.80311	14.3
40 Hexane	1.57267		1				1	
i o nonane	1.28078				1.35924	1.34730	   1.37436	8.6
						, 		0.0
41 cis 1,2-Dichloroethene	2.07540	1.79341	1.68570	1.66460	1.64731	1.63934		
	1.56108		1.53387				1,68161	10.0
42 Ethyl acetate								
42 Ediyi acetate	+++++	3.62460 3.18413			3.44177	3.45320		
					 		3,38983	5.2
43 Chloroform	3.65330	3.44300	3.30035	3.24039	ı		1	
	3.02233	2.91287	2.86698		l	İ	3.20644	7.80
AA Mohanbardan faran				1			ļ į	
44 Tetrahydrofuran	+++++	2.07162 1.65155	'	'	1.82666	1.80487	! -	
	1.70084	1.65155	1.61042		 	!	1.80845	8.51
			·					

#### TestAmerica Knoxville

#### INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04

End Cal Date : 20-FEB-2013 23:25
Quant Method : ISTD
Origin : Disabled Target Version : 3.50

Integrator : HP RTE
Method file : /chem/gcms/mr.i/R022013I.b/T015.m
Cal Date : 21-Feb-2013 08:18 wilesd
Curve Type : Average

	0.04000	0.08000	0.16000	0.40000	1.000	2.000	l	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
							1	1
	4.000	8.000	16.000		1	!	[	1
		Level 8	Level 9			i	1	1
	===   ========   =			=======	======			
45 1,1,1-Trichloroethane	3.43003	3.31892	'		3.12233	3.13343	1	1
	2.97079	2.91187		1			3.11792	5.3
46 1,2-Dichloroethane	0.48868	0.46555		•	0.43444	0.43707		l
	0.41470	0.41041					0.43797	5,9
40 Cycloborone								
49 Cyclohexane	0.17219	0.16961			0.15450	0.15630		l
	0.15014	0.15074					0.15703	5.3
48 Benzene				~				
40 Delizelle	1.17353	1.09459	'	0.98560	0.98863	0.98843		
	0.95352	0.95536					1.01249	7.3
50 Carbon Tetrachloride	0.66712	0.64752						
or carbon rectachioride	0.66622	0.84752			0.46161	0.41298		
~~~~		0.36520	0.67018	~			0.52304	
51 ~ 2,3-dimethylpentane	0.22909	0.21601	'		!	0.01105		
The demonstration of the second secon	0.20524	0.21601	,	0.21545	0.21164	0.21187		
			0.20770		 		0.21317	
47 1-Butanol	+++++	+++++	+++++	0.09384	0.09649	0 1000		
	0.10045	0.09890	,	0.02384	0,09049	0.10225	'	
							0.09854	3.0
52 ~ Thiophene	0.63372	0.62678			0.58765	I.	 	
•	0.56984	0.56938	· ·	0.50213	V.30/65	0.2881.7	 0.59138	
***********************	-						 0.23T38	
53 2,2,4-trimethylpentane	1.80958	1.73001	1.66400	'	,	1.63027		
• •	1.56855	1.56083	1.54195	1,02512	1.02223	1.02027	 1.64003	5.2
	-				I	ا ا	L.04003	5.2
	1	!	1					

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25

Quant Method : ISTD Origin : Disabled Target Version : 3.50 Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m

Cal Date : 21-Feb-2013 08:18 wilesd

	0.04000	0.08000	0.16000	0.40000	1,000	2.000	1 1		ł
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	
							! 1		
	4.000	8.000	16.000						
	Level 7	Level 8	Level 9				 		[
54 Heptane	0.38764	0.37561		0.34424					
	0.34125	0.34219	0.34861			ĺ	0.35529	4.508	
55 1,2-Dichloropropane	 0.39776	0.39319	 0.37887	0.36576			, ,		
11 1/1 India of options	0.35504	'		0.36576	0.36597 	0.36790	'		
			0.30000 		 	 	0.37120	4.184	ļ I
56 Trichloroethene	0.47451	0.46215	0.44856	0.43665	0.44065	0.44702	 		i I
	0,43510	0.44719	0.46167		· 	1	0.45039	2.926	
									1
180 ~ 2-nitropropane	+++++	+++++	+++++	+++++	++++	++++			İ
	+++++	+++++	+++++			1	+++++	+++++	1
57 Dibromomethane	0.37356	0.36623	0.35995	0.35183	0,35788				
	0.35654	0.36727		0.33163	0.35788	0.36520	 0.36272	1.837	;
						 	0.36272	1.837	l L
58 Bromodichloromethane	0.62778	0.61871	0.59522	0.61679	0.65003	0.66186			l I
	0.67158	0.66199	0.68833	ĺ		[0.64359	4.734	
									l
60 Methyl Methacrylate	+++++	0,36775	0.37616	0.38216	0.41268	0.42215	i.		
	0.41471	0.41362	0.41411			[0.40042	5.321	
59 1,4-dioxane	\ +++++ +++++	0.13636	0.14618	0.12660					ļ
	0.14107	0.14220	0.14169	0.13668	0.15069	0.14973	'		
**	0.14107		0.14169	 		 	0.14308	3.778	Į L
61 ~ methyl cyclohexane	0.63196	0.62682	0.59603	0.59039		'			l I
	0.58222	0.58604	0.59906				0.60121	2.856	l l
]					· 			·
							i	·	

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50
Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m

Cal Date : 21-Feb-2013 08:18 wilesd

The state of the s		~~~						
	0.04000	0.08000	0.16000	0.40000	1.000	2.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
]	
	4.000	8.000	16.000	[1		1	
	Level 7	Level 8	Level 9	1	l	1		
	=======	=======	=======		=======	=======		
63 cis-1,3-Dichloropropene	0.54866	0.51886	0.50714	0.50957	0.52690	0.53552		
ı	0.51879	0.52630	0.53866	1			0.52560	2.598
							•	
62 4-Methyl-2-pentanone	++++	+++++	0.69267	0.74166	0.72722	0.74025	' 	
	0.72570	0.65403	'		****=*=== 	01,710 2 5) 0.71475	 4,377
					! !	l I	1 0.11412	4,3//
64 trans-1,3-Dichloropropene	0.76187	0.73011	l.	,	0.72757	0.73069		
_,	0.72567		'		0.72757	0,73069		
	0.72507		•	!			0.72524	
65 Toluene	1 06600		•		!		1	
05 Tordene	1.86689	'	•	,	1.63887	1.62561		
	1.56903	'		'			1.65964	5.970
			r	'				
66 1,1,2-Trichloroethane	0.49900			0.45386	0.46394	0.46534		
ì	0.44643	0.44783	0.45660				0.46409	3,535
67 ~ 2-methyl thiophene	1.45624	1.43093	1,39275	1.38031	1.40571	1.41687		
	1.37167	1.38067	1.39914				1.40381	1.938
68 ~ 3-methyl thiophene	1.52198	1.45974	1.42178	1.41173	1.42408	1.44982	' 	
1	1.39802	1.40788	1.43347	· 			1.43650	2.618
					~ ~ ~ ~ ~ ~ ~ ~		- 1	2,010
69 2-Hexanone	+++++	0.45039	0.49999	'	0.53229			
'	0.54325	'		'	0.55225	0.54430		10 05-
l 				 			0.50528	
70 Octane	0.59166		ł			1		
1	,				0.53207	0.54478		İ
	0.52725		'		ļ		0.54547	3.979
		l						

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25

Quant Method : ISTD Origin : Disabled Target Version: 3.50 Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m : 21-Feb-2013 08:18 wilesd

Cal Date

	0.04000	0.08000	0.16000	0.40000	1.000	2.000]
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
							J	
	4.000	8.000	16.000			1	1	
	Level 7	Level 8	Level 9		1	1	ĺ	
		=======	========	========	=======			
71 Dibromochloromethane	0.77319							' [
	0.95592	0.93181	1.03578	· [J	1	0.84171	' 13.858
					, 	 	•	
72 1,2-Dibromoethane	0.76762	0.77891	0.77193	0.79222	' 0.83839	l 0.86269	! 	
	0.84100			•	1	1 0.00203	0.82295	∤ 5.606
				 	 	 	•	1 2,000
73 Tetrachloroethene	0,64918			!	1		ı	
	0.56335		'		1 0.57576	0.58069		
	0.50535			'			0.58782	4.700
75 ~ 2,3-dimethylheptane	'			'	1	!		
73 2,3-dimethylheptane	1.64150			,	1,47997	1.48138		
	1.40878						1.47030	6.793
74 Chlorobenzene	1.41048		1.30160	1.27461	1.28535	1.29845		
	1.25559	1.26904	1.31254				1.30937	3.936
76 Ethylbenzene	2.28916	2.17575	2.09010	2.03650	2.07236	2,07542]	
	1.99659	2.00232	2.01941]			2.08418	4.536
77 ~ 2-ethyl thiophene	1.65268	1.56775	1.52802	1.53641	1.57148	1.59055		
	1.53874	1.54867	1.58323				1.56861	2,443
78 m&p-Xylene	1.75008	1,66693			,		'	
	1.55993	1.56898			1,40023	1,01123		4 005
				'	· I		1.60891	****
79 Nonane	++++	1.14350	1.08855		'	'		
	1.05969		'	T.08T3.	1.09941	1.10343		
	1.05969		1.03106				1.08201	3.271

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25

Quant Method : ISTD Origin : Disabled Target Version : 3.50 Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m : 21-Feb-2013 08:18 wilesd

Cal Date

	0.04000	0.08000	0.16000	0.40000	1.000	2.000		
Compound	Level 1	Level 2	Level 3			Level 6	RRF	% RSD
	4.000	8.000	16.000				l 1	
	Level 7	Level 8	Level 9	ĺ	İ	i İ	j	
80 Bromoform	++++	0.58549			•	0.76322		=======================================
	0.94107				1		0.75603	27.8
81 Styrene	+++++	 0.92265	1	'	1	1	(
	1.21081	,	•	,		1.23018	 1.14267	 13.1
82 o-Xylene	1.81683	1	1	1	1.64867	•		
-	1.57411			•	1.04067	1 1,65029	 1.65987	1 4.8
84 1,1,2,2-Tetrachloroethane	- 1.18712	ı	1	!	!		ı	
or apply rectuent of occurrence	1.19041			'	1.23940	1,23336	 1.19823	 2.3
85 1,2,3-Trichloropropane	1 0 30700	1	1	'				
1,2,5-iffentoropropane	0.38789	•	,	'	0.36580	0.36678	0.36347	 3.0
86 Cumene	-	•	'					
oo cumene	2,33496	2,52111		'	2.40218	2.41409	2.39816	 2.4
***************************************	- []							
87 n-Propylbenzene	0,67484	0.68948			0.69241	0.69273		
	-				 	 ~~	0.68754	
88 2-chlorotoluene	0.65746				0.62127	0.62282		1
	-		0.64450		 		0,62489	
89 4-Ethyltoluene	+++++	2.47771		2.41282	2.50171	2.50448		
**	2.41559	2,44827	2.46574	~~~~	 		2.45672	1.4

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25 Quant Method : ISTD

Origin : Disabled Target Version : 3.50 Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m Cal Date : 21-Feb-2013 08:18 wilesd

	0.04000	0.08000	0.16000	0.40000	1.000	2.000		1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	8 RSD
	4.000	8.000	16.000				1	
	Level 7	Level 8	Level 9	1		1	ł i	1
			_========			, =======	=======	========
90 1,3,5-Trimethylbenzene	++++	1.15615				1,17339	•	i I
	1.13934	1.17348	1.21977			1	1.15883	2.7
O1 7 July Markley July	-			1		1	1	
91 Alpha-Methylstyrene	+++++	+++++	0.64986		0.89188	0.97235	1	
	0,94673				1	1	0.90929	
92 Decane	1.25917		'	1.	1.41983	1		
	1.35679				1.41903	1.416// 	 1,35801	l 3.6
	. [•	
93 tert-butylbenzene	++++	2.25803	2.17049	2.13747	2.20998	2,19542		!
	2.12460	2,17436	2.19477				2.18314	1.9
			'					
94 1,2,4-Trimethylbenzene	1.98615				2.07702	2.07442		l
	2.00016	•			<u> </u>		2.02744	1.6
95 sec-butylbenzene	+++++	3.08768	2.98583	,				
1	2.91249			,	3.05671	3.04474	•	
. = = = = = = = = = = = = = = = = = = =		•		!			2.98700	2.3
96 1,3-Dichlorobenzene	++++	1.35703	1,33100	!	1			
	1.34600	1.41313	1.48768				1.37357	 4,1:
97 Benzyl Chloride	++++	1.50537	1.53560	1.59947	1.79790	1.81222		
	1.79391				Ι,	!	1.72292	8.7
99 1 4 Dighlorohousens								
98 1,4-Dichlorobenzene	1.36570	1.35234			1.37430	1.39509		
	1.36570	1.43953	1.48277				1.38059	4.1
	1		1					

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25

Quant Method : ISTD : Disabled Origin Target Version : 3.50 Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m : 21-Feb-2013 08:18 wilesd

Cal Date

	1 0 04000							
Company	0.04000		0.16000			2.000		1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
							1	
	4.000	8.000	16.000			1	1	1
	Level 7	Level 8	Level 9		.[İ	1	1
						========	======	========
99 p-Cymene	2.48737	'		'	2.59100	2.60916	1	
	2.49779			'		1	2.53763	1.949
		i	I.	1				
100 ~ 1,2,3- Trimethylbenzene	1.79869	•	•	•	1.82990	1.82013	1	
	1.77597	'		'		İ	1.82092	2.359
101 ~ n-butylcyclohexane	+++++	1.73107	1.69946	1.64486	1.69254	1,67673	l	
	1.59168	1.60217	1.59739		[1.65449	3.220
102 ~ Indane	2.02648	2.00499	1.95605	1.88126	1.97908	1.96361		
	1.89707	1.94678	1.93578				1.95457	2.392
103 1,2-Dichlorobenzene	+++++	1.33673	1.28545	1.27671	1.33375	1.32581		
	1.29007	1.34082	1.38446				1,32173	2,718
104 n-butylbenzene	++++	2.36666	2.38808	2.35156	2,48244	2.45165		· }
	2.32280	2.31182	2.28670				2,37021	2.877
105 ~ Indene	++++	1.58132	1.65201	1.70659	1.87134	1.96019		
	1.87642	2.00579	2.08364		· 	· 	1.84216	9.702
106 Undecane	++++	1.42638	1.59231	1.59776	1.68182	1.75934	·	
	1.64408	1.57704	1.41293				1,58646	7.469
				'	 	 		7.405
107 ~ 1,2-dimethyl-4-ethylenzene	+++++	2,52925	2.52720	2.49731	'	'	1	
	2.49086		'				2,53224	1.832
*	 						2,55224	1,032
	' 		' '	· !	· · · · ·			
444				·				

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04

End Cal Date : 20-FEB-2013 23:25
Quant Method : ISTD
Origin : Disabled Target Version : 3.50 Integrator : HP RTE

Method file : /chem/gcms/mr.i/R022013I.b/T015.m Cal Date : 21-Feb-2013 08:18 wilesd

	0.04000	0.08000	0.16000	0.40000	1.000	2.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	4.000	8.000	16.000	}	1			
	Level 7	Level 8	Level 9	Į.			1	J
		=======		=======	=======			=======
108 ~ 1,2,4,5-tetramethylbenzene	++++	2.49697	2.61111	2.56694	2.68393	2.72713		1
	2.57192	2.57613	2.48406		1	1	2.58977	3.2
109 ~ 1,2,3,5-tetramethylbenzene	+++++	1.60107	1.67305	1.61674	1.69271	1.69304		
	1.58031	1.57705	1.55108	1	[1,62313	3,4
			1					
110 ~ 1,2,3,4-tetramethylbenzene	+++++	2.00819		2.13035	2.25160	2.29507		
	2,12311			1	1		2.12017	6.9
444 5 3			1	1				
111 Dodecane	++++	0.76052	,	1.48468	1.32005	1.87071	1	
	1.66677			•	1		1.34747	29,1
140 4 0			,	•				1
112 1,2,4-Trichlorobenzene	0.81294	,		•	1.31259	1.37220		
	1.27704		'	'			1.15077	18.1
440.				'				
113 Napthalene	1.63695			2.77759	3.12031	3.37106	1	ſ
	3.05957			'			2.74129	19.3
464 8 1			•	1				
114 ~ benzo(b) thiophene	1.36864				2.21884	2.30385		
	2.07661						1.96067	16.7
115 Warrach Land								
115 Hexachlorobutadiene	++++	1,15123		'	1.20867	1.18281	ĺ	
	1.11860			'			1.10416	10.7
116 1 0 0 1 1 1 7				'				
116 1,2,3-trichlorobenzene	0.84347		'		1.36926	1.40720		1
	1.25901		0.60097		l		1.15198	22.9
	li		l <u></u>				l	

TestAmerica Knoxville

INITIAL CALIBRATION DATA

Start Cal Date : 20-FEB-2013 17:04 End Cal Date : 20-FEB-2013 23:25

Quant Method : ISTD Origin : Disabled Target Version : 3.50 Integrator : HP RTE

: /chem/gcms/mr.i/R022013I.b/T015.m

Method file Cal Date : 21-Feb-2013 08:18 wilesd

Total	
1	0.04000 0.08000 0.16000 0.40000 1.000 2.000
Compound	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 RRF % RSD
1	
1	4.000 8.000 16.000
	Level 7 Level 8 Level 9
	========= ======== ======= ======
117 ~ 2-Methylnaphthalene	+++++ +++++ 0.20537 0.19537 0.17659 0.43038
	0.36600 0.26573 +++++ 0.27324 37.809
118 ~ 1-Methylnaphthalene	+++++ +++++ 0.20413 0.18859 0.17211 0.37419
	0.30406 0.19321 +++++ 0.23938 33.854
=======================================	
\$ 4 4-Bromofluorobenzene	0.66144 0.67543 0.68441 0.68829 0.70315 0.71261
	0.71923 0.72638 0.73188 0.70031 3.468

```
STD 1 = /chem/gcms/mr.i/R022013I.b/ricb201.d
STD 2 = /chem/gcms/mr.i/R022013I.b/ricb202.d
STD 3 = /chem/gcms/mr.i/R022013I.b/ricb203.d
STD 4 = /chem/gcms/mr.i/R022013I.b/ricb204.d
STD 5 = /chem/gcms/mr.i/R022013I.b/ricb205.d
STD 6 = /chem/gcms/mr.i/R022013I.b/ricb206.d
STD 7 = /chem/gcms/mr.i/R022013I.b/ricb207.d
STD 8 = /chem/gcms/mr.i/R022013I.b/ricb208.d
STD 9 = /chem/gcms/mr.i/R022013I.b/ricb209.d
```

COMPOUND	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	STD 9	MEAN
	l	l	l	l	l			l	l	l
1,4-Difluorobenzene	11.272	[11.272	11.272	11.272	11.278	11.278	11.278	11.283	11.283	11.276
Chlorobenzene-d5	17,484	17.484	17.484	17.484	17.490	17.490	17.490	17.490	17.490	17.487
Bromochloromethane	9.088	9.088	9.088	9.089	9.088	9.094	9.094	9.099	9.105	9.092
4-Bromofluorobenzene	1,156	1.156	1.156	1.156	1.156	1.156	1.156	1.156	1.156	1.156
~ 2-Methylnaphthalene	NA	NA	1.714	1.714	1.714	1.714	1.714	1.714	NА	1.714
Chlorodifluoromethane	0.461	0.461	0.461	0.460	0.461	0.460	0.460	0.460	0,460	0.460
Propene	NA	NA	0.462	0.461	0.461	0.462	0.462	0.461	0.461	0.461
Dichlorodifluoromethane	0.467	0.468	0.467	0.467	0.467	0.468	0.467	0.467	0.467	0.467
Chloromethane	NA	0.487	0.487	0.486	0.487	0,486	0.486	0.486	0.486	0.486
1,2-Dichlorotetrafluoroethan	0.487	0.488	0,487	0.487	0.488	0.488	0.488	0.487	0.488	0.488
Methanol	NA	NA	NA	NA	0.503	0.502	0.502	0.502	0.502	0.502
~ acetaldehyde	NA	NA	NA	0.503	0.503	0.502	0.502	0.503	0.502	0.502
Vinyl Chloride	0.505	0.506	0.505	0.505	0.505	0.505	0.505	0.504	0.505	0.505
n-Butane	0.515	0.515	0.515	0.515	0.515	0.515	0.515	0.515	0.514	0.515
1,3-Butadiene	0.514	0.515	0.515	0.514	0.515	0.514	0.514	0.515	0,514	0.514
Bromomethane	0.549	0.548	0.548	0.548	0.548	0.549	0.549	0.548	0.548	0.548
Chloroethane	0.563	0.564	0.563	0.563	0.564	0.564	0.564	0.563	0.564	0.564
~ ethanol	NA				0.576					
Vinyl Bromide	0.595	0.596	0.595	0.596	0.596	0.596	0.596	0.596	0.595	0.596
2-methyl butane					0.602					
Trichlorofluoromethane	0.624	0.625	0.624	0.624	0.624	0.625	0.625	0.624	0.624	0.624
Acrolein	NA	NA	0.625	0.624	0.624	0,624	0.624	0.624	0.624	0.624
Acetonitrile	NA	NA	0.632	0.630	0.630	0.630	0.630	0.630	0.630	0.630
Acetone	NA	NA	NA	NA	0.636	0,636	0.636	0.636	0.636	0.636
Isopropyl alcohol	NA	NA	NA	0.647	0.648	0.646	0.647	0.647	0.648	0.647
Pentane	NA	0,648	0.648	0.648	0.649	0.648	0.648	0.648	0.648	10.648
Ethyl Ether	0.666				0.665				•	
1,1-Dichloroethene	0.698				0.698		•			0.698
tert-butanol	NA				0.709				, 0.709	0.709
Acrylonitrile					0.706	•	•	•	•	
1,1,2-Trichlorotrifluoroetha					0.718					
Methylene Chloride	NA				0.733					
3-Chloropropene	'	•	•	•	0.735		•	•	,	
Carbon Disulfide					0.751	•		•	•	
					0.819					
~ 2-Methyl Pentane		•			0.822				•	
Methyl-t-Butyl Ether	0.834							, , , , , ,	•	•

Evaluation Criteria

Internal Standard RT shift within 20 seconds of mean RT Target compound RRT within 0.06 RRT of the RRT mean Note: IS data is RT, SS and Target Compound Data is RRT.

```
STD 1 = /chem/gcms/mr.i/R022013I.b/ricb201.d

STD 2 = /chem/gcms/mr.i/R022013I.b/ricb202.d

STD 3 = /chem/gcms/mr.i/R022013I.b/ricb203.d

STD 4 = /chem/gcms/mr.i/R022013I.b/ricb204.d

STD 5 = /chem/gcms/mr.i/R022013I.b/ricb205.d

STD 6 = /chem/gcms/mr.i/R022013I.b/ricb206.d

STD 7 = /chem/gcms/mr.i/R022013I.b/ricb207.d

STD 8 = /chem/gcms/mr.i/R022013I.b/ricb208.d

STD 9 = /chem/gcms/mr.i/R022013I.b/ricb209.d
```

2-Butanone	COMPOUND	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	STD 9	MEAN
Vinyl Acetate		I			.				.	.1	
2-Butanone	1,1-Dichloroethane	0.862	0.862	0.862	0.862	0.862	0.862	0.862	0.861	0.861	0.862
Rexane	Vinyl Acetate	0.873	0.873	0.873	0.873	0.873	0.872	0.872	0.872	0.873	0.873
Cis 1,2-Dichloroethene 0.966 0.966 0.966 0.965 0	2-Butanone	NA	NA	0.920	0.919	0.919	0.919	0.919	0.918	0.918	0.919
Ethyl acetate	Hexane	0.926	0.927	0.926	0.926	0.926	0.926	0.926	0.926	0.925	0.926
Chloroform	cis 1,2-Dichloroethene	0.966	0.966	0.966	0.965	0.966	0.965	0.966	0.965	0.965	0.966
Tetrahydrofuran	Ethyl acetate	NA	0.987	0.986	0.986	0,985	0.984	0.984	0.984	0,985	0.985
1,1,1-Trichloroethane	Chloroform	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002
1,2-Dichloroethane	Tetrahydrofuran	NA	1.049	1.047	1.047	1.046	1.045	1.045	1.044	1.044	1,046
1-Butanol	1,1,1-Trichloroethane	1.113	1.113	1.113	1.113	1.113	1.113	1.113	1.112	1.112	1.113
Benzene	1,2-Dichloroethane	0.904	0.905	0.904	0.905	0.904	0.904	0.905	0.905	0.905	0.904
Cyclohexane	1-Butanol	NA	NA	NA	0.948	0.947	0.947	0.946	0.946	0.946	0.947
Carbon Tetrachloride	Benzene	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950
~ 2,3-dimethylpentane	Cyclohexane	0.952	0.952	0.952	0.952	0.951	0.951	0.952	0.951	0.952	0.952
Thiophene	Carbon Tetrachloride	0.953	0.953	0.953	0.953	0.953	0.953	0.953	0.953	0.953	0,953
2,2,4-trimethylpentane	~ 2,3-dimethylpentane	0.964	0.963	0.963	0.964	0,963	0.963	0.963	0.963	0.964	0,963
Heptane	~ Thiophene	0.975	0.975	0.974	0.975	0.974	0.974	0.975	0.974	0.975	0.974
Heptane	2,2,4-trimethylpentane	1.025	1.025	1.024	1.024	1.024	1,024	1.024	1.024	1.025	1.024
1.2-Dichloropropane	Heptane	1.062									1.062
Dibromomethane	1,2-Dichloropropane									1.066	1.066
Bromodichloromethane	Trichloroethene	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071
1,4-dioxane	Dibromomethane	1.077	1.077	1.077	1.077	1.077	1.077	1.077	[1.077	1.077	1.077
Methyl Methacrylate	Bromodichloromethane	1.093	1.094	1.093	1.093	1.093	1.093	1.093	1.093	1.093	1.093
T-Methylnaphthalene	1,4-dioxane	NA	1.097	1.096	1.096	1.095	1.094	1.094	1.094	1.094	1.095
T-Methylnaphthalene	Methyl Methacrylate	NA	1.105	1,105	1.104	1.104	1.104	1.104	1.104	1.104	1.104
4-Methyl-2-pentanone	~ 1-Methylnaphthalene	NA									1.732
cis-1,3-Dichloropropene	~ methyl cyclohexane	1,154	[1.154	1.154	1.153	1.153	1.153	1.153	1.153	1.153	1.153
trans-1,3-Dichloropropene	4-Methyl-2-pentanone	NA	NA	1.197	1.196	1.196	1.196	1.196	1.195	1.196	1.196
trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	1.202	[1.202	1.202	1.201	1,201	1.201	1.201	1.201	1.202	1.201
Toluene	trans-1,3-Dichloropropene								•		•
1,1,2-Trichloroethane	Toluene	0.837									
~ 2-methyl thiophene 0.848 0.848 0.848 0.848 0.848 0.848 0.848 0.849 0.849 0.869 0.861 0.861 0.861 0.862 0.874	1,1,2-Trichloroethane										
~ 3-methyl thiophene	~ 2-methyl thiophene										
2-Hexanone	~ 3-methyl thiophene	0.865									
Octane	2-Hexanone										
Dibromochloromethane 0.898 0.898 0.897 0.897 0.897 0.897 0.897 0.897 0.898 0.8	Octane	0.895				•			•		10.895
	Dibromochloromethane										
	1,2-Dibromoethane	0,921							•		•

Internal Standard RT shift within 20 seconds of mean RT Target compound RRT within 0.06 RRT of the RRT mean Note: IS data is RT, SS and Target Compound Data is RRT.

```
STD 1 = /chem/gcms/mr.i/R022013I.b/ricb201.d
STD 2 = /chem/gcms/mr.i/R022013I.b/ricb202.d
STD 3 = /chem/gcms/mr.i/R022013I.b/ricb203.d
STD 4 = /chem/gcms/mr.i/R022013I.b/ricb204.d
STD 5 = /chem/gcms/mr.i/R022013I.b/ricb205.d
STD 6 = /chem/gcms/mr.i/R022013I.b/ricb206.d
STD 7 = /chem/gcms/mr.i/R022013I.b/ricb207.d
STD 8 = /chem/gcms/mr.i/R022013I.b/ricb208.d
STD 9 = /chem/gcms/mr.i/R022013I.b/ricb209.d
```

COMPOUND	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	STD 9	MEAN	1
	_		.	.1[l		_
Tetrachloroethene	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	1
Chlorobenzene	1.005	1.004	1.004	1.004	1.004	1.004	[1.004	1.004	1.005	1.004	}
~ 2,3-dimethylheptane	1.012	1.012	1.012	1.012	1.012	1.012	1.012	1.012	1.012	1.012	1
Ethylbenzene	1.033	1.033	1.032	1.032	1.032	1.032	1.032	1.032	1.033	1.032	t
~ 2-ethyl thiophene	1.042	1.042	1.041	1.041	1.041	1.041	1.041	1.042	1.042	1.041	l
m&p-Xylene	1,048	1.048	1.048	1.048	1.048	1.048	1.048	1.048	1.048	1.048	1
Nonane	NA	1.094	1.093	1.094	1.093	1.093	1.093	1.093	1.094	1,093	1
Bromoform	NA	1.086	1.086	1.086	1.086	1.086	1.086	1.086	1.086	1.086	[
Styrene	NA	1.092	1.091	1.091	1.091	1,091	1.091	1.091	1.092	1.091	1
o-Xylene	1.097	1.097	1.097	1.097	[1.097	1.097	1.097	1.097	1.097	1.097	1
1,1,2,2-Tetrachloroethane	1.128	1.128	1.128	1.128	1,128	1.127	1.127	1.128	1.128	1.128	1
1,2,3-Trichloropropane	1.143	1.143	1.143	1.143	1.143	1.143	1.143	1.143	1.143	1.143	ı
Cumene	NA	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.156	1.155	Ì
n-Propylbenzene	NA	1.210	1.210	1.210	1.210	1.210	1.210	1.210	1.210	1.210	1
2-chlorotoluene	1.212	1.212	1.212	1.212	1.212	1.212	1.212	1.212	1.212	1.212	
4-Ethyltoluene	NA	1.227	1.227	1.227	1,227	1.227	1.227	1.227	1.227	1.227	ĺ
1,3,5-Trimethylbenzene	NA	1,236	1.236	1,236	1.235	1.235	1,235	1.236	1.236	1.236	Ì
Alpha-Methylstyrene	NA	NA	1.260	1.260	1.260	1.260	1.260	1.260	1.260	1.260	Ì
Decane	1.275	1.275	1,274	1.275	1.274	1.274	1.274	1.275	1.275	1.274	i
tert-butylbenzene	NA	1.282	1.282	1.282	1.281	1.281	1.281	1.281	1.282	1.282	i
1,2,4-Trimethylbenzene	1.283	1.283	1.283	1.283	1.283	1.283	1,283	1.283	1.284	1.283	i
sec-butylbenzene	NA	1.313	1.313	1.313	1.313	1.313	1.313	1.314	1.314	1.313	ì
1,3-Dichlorobenzene	NA							1.311			-
Benzyl Chloride	NA							1.321			
1,4-Dichlorobenzene	NA							1,322			
p-Cymene	1.335	1.334	1.334	1.334	1.334	1.334	1.334	1.334	1.335	1.334	İ
~ 1,2,3- Trimethylbenzene	1.338			1.338				1.338	1.338	1.338	i
~ n-butylcyclohexane	NA	1.348	1.348	1.348	1.348	1.348	1.348	1.348	1.348	11,348	i
~ Indane	1.366	1.366	11 366	11.366	11.366	1.366	11.366	11.366	1.366	1.366	i
1,2-Dichlorobenzene	14.500	11.300	12,500								
n-butylbenzene	NA			1.364					1.365	1.364	I
~ Indene			1.364	1.364	1.364	1.364	1.364	1.365	1.365		1
	NA	1.364	1.364	1.364 1.388	1.364 1.388	1.364	1.364 1.388	1.365	1.388	1.388	i
Undecane	NA NA	1.364 1.388 1.382	1.364 1.388 1.382	1.364 1.388	1.364 1.388 1.381	1.364 1.388 1.381	1.364 1.388 1.381	1,365 1,388 1,381	1.388	1.388	1
<pre>Undecane 1,2-dimethyl-4-ethylenzen</pre>	AN AN AN	1.364 1.388 1.382 1.439	1.364 1.388 1.382 1.439	1.364 1.388 1.382 1.439	1.364 1.388 1.381 1.439	1.364 1.388 1.381 1.439	1.364 1.388 1.381 1.439	1,365 1.388 1.381 1.439	1.388 1.382 1.440	1.388 1.382 1.439	
	AN AN AN AN AN AN	1.364 1.388 1.382 1.439 1.438	1.364 1.388 1.382 1.439 1.438	1.364 1.388 1.382	1.364 1.388 1.381 1.439 1.437	1.364 1.388 1.381 1.439 1.437	1.364 1.388 1.381 1.439 1.437	1,365 1,388 1,381 1,439 1,437	1.388 1.382 1.440 1.437	1.388 1.382 1.439 1.437	
~ 1,2-dimethyl-4-ethylenzen	NA NA NA NA NA	1.364 1.388 1.382 1.439 1.438	1.364 1.388 1.382 1.439 1.438	1.364 1.388 1.382 1.439 1.437	1.364 1.388 1.381 1.439 1.437	1.364 1.388 1.381 1.439 1.437	1.364 1.388 1.381 1.439 1.437	1.365 1.388 1.381 1.439 1.437 1.490	1.388 1.382 1.440 1.437 1.490	1.388 1.382 1.439	1 1 1 1 1

Internal Standard RT shift within 20 seconds of mean RT Target compound RRT within 0.06 RRT of the RRT mean $\,$

Note: IS data is RT, SS and Target Compound Data is RRT.

STD 1 = /chem/gcms/mr.i/R022013I.b/ricb201.d
STD 2 = /chem/gcms/mr.i/R022013I.b/ricb202.d
STD 3 = /chem/gcms/mr.i/R022013I.b/ricb203.d
STD 4 = /chem/gcms/mr.i/R022013I.b/ricb204.d
STD 5 = /chem/gcms/mr.i/R022013I.b/ricb205.d
STD 6 = /chem/gcms/mr.i/R022013I.b/ricb206.d
STD 7 = /chem/gcms/mr.i/R022013I.b/ricb207.d
STD 8 = /chem/gcms/mr.i/R022013I.b/ricb208.d
STD 9 = /chem/gcms/mr.i/R022013I.b/ricb209.d

COMPOUND	STD 1 ST	D 2 STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	STD 9	MEAN
					.			l	.1
Dodecane	NA 1.	580 1.580	1.580	1.579	1.579	1.579	1.580	1.580	1.580
1,2,4-Trichlorobenzene	1.586 1.	586 1.586	1.586	1.585	1.585	1.585	1.585	1.586	1.586
Napthalene	1.599 1.	599 1.599	1.599	1.599	1.599	1.599	1,599	1.599	1.599
~ benzo(b) thiophene	1.610 1.	610 1.610	1.610	1.610	1.610	1.610	1.610	1.610	1.610
Hexachlorobutadiene	NA 1.	628 1.628	1.628	1.628	1.628	1.628	1.628	1.628	1.628
1,2,3-trichlorobenzene	1.631 1.	631 1.631	1.631	1.631	1.631	1.631	1.631	1.631	1.631

Evaluation Criteria

Internal Standard RT shift within 20 seconds of mean RT Target compound RRT within 0.06 RRT of the RRT mean Note: IS data is RT, SS and Target Compound Data is RRT.

Data File: /chem/gcms/mr.i/R022013I.b/ricb201.d

Report Date: 21-Feb-2013 12:03

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /chem/gcms/mr.i/R022013I.b/ricb201.d

Lab Smp Id: ICAL1 Client Smp ID: STD0.04

Inj Date : 20-FEB-2013 17:04

Operator : 060487 Inst ID: mr.i

Smp Info : ICAL1,1,1,1,,STD0.04

Misc Info : R022013I, T015,

Comment :

Method: /chem/gcms/mr.i/R022013I.b/T015.m

Meth Date: 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date : 20-FEB-2013 17:04 Cal File: ricb201.d

Als bottle: 1 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: allmdl.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

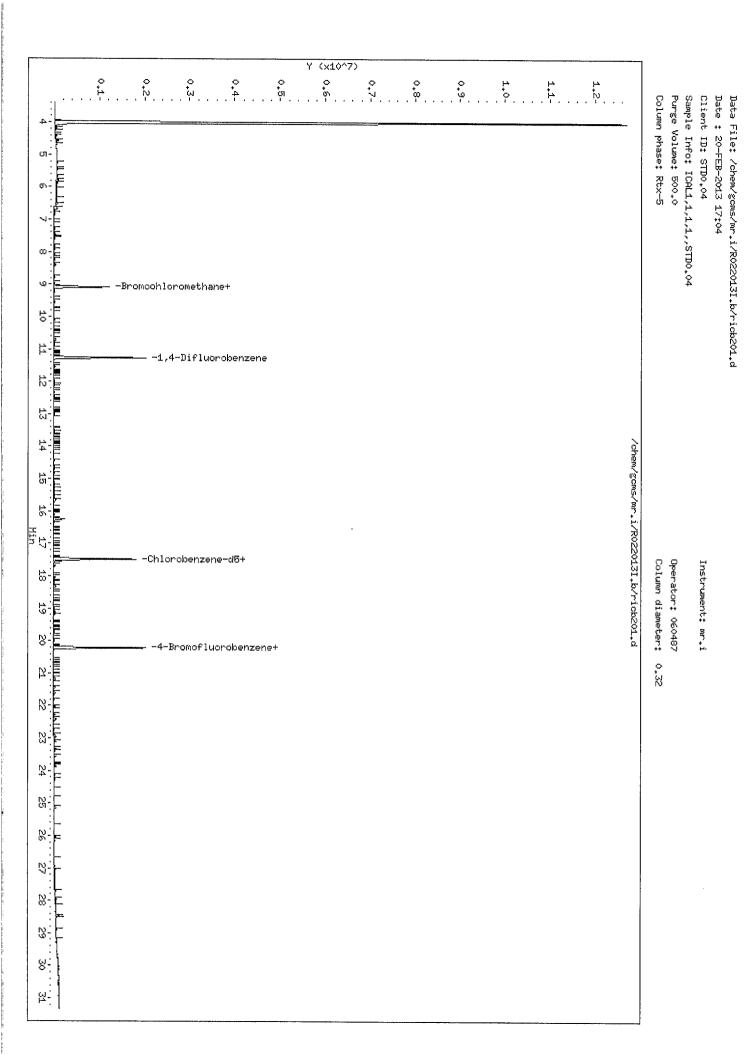
Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

						AMOUNTS		
		QUANT SIG				CAL-AMT	ON-COL	
Compounds		MASS	RT	EXP RT REL	RT RESPONSE	(ppb(v/v))	(ppb(v/v))	
=======================================		===	==	======	== ======	======	======	
* 1 Bromoch	loromethane	128	9.089	9.089 (1.0	00) 459092	4.00000	4.000	
* 2 1,4-Dif	luorobenzene	114	11,273	11.278 (1.0	00) 2272465	4.00000	4.000	
* 3 Chlorobe	enzene-d5	117	17,485	17.490 (1.0	00) 1582153	4.00000	4.000	
\$ 4 4-Bromo:	fluorobenzene	95	20.218	20.218 (1.1	56) 1046505	4.00000	3.958	
5 Chlorod	fluoromethane	67	4.192	4.187 (0.4	61) 2386	0.04000	0.04308	
6 Propene		41	4,198	4.192 (0.4	62) 9894	0.04000	0.000	
7 Dichlor	odifluoromethane	85	4.246	4.246 (0.4	67) 22519	0,04000	0.04094	
8 Chlorome	ethane	52	4.424	4.424 (0.4	87) 4064	0.04000	0.05583	
9 1,2-Dick	nlorotetrafluoroethane	135	4.430	4.435 (0.4	87) 17844	0.04000	0,04111	
10 Methano		31	4.581	4.570 (0.5	04) 12791	0.04000	0.000	
11 ~ aceta	.dehyde	44	4.575	4.570 (0.5	03) 53047	0.20000	0.000	
12 Vinyl Cl	nloride	62	4.591	4.591 (0.5	05) 9544	0.04000	0.04116	
13 n-Butan	;	43	4.678	4.678 (0.5	15) 15365	0.04000	0.04094	
14 1,3-Buta	ndiene	54	4.672	4.678 (0.5	14) 7469	0.04000	0.04051	
15 Bromome	chane	94	4.990	4.985 (0.5	49) 10140	0.04000	0.04313	
16 Chloroe	chane	64	5.120	5.125 (0.5	63) 5056	0.04000	0.04206	

Data File: /chem/gcms/mr.i/R022013I.b/ricb201.d Report Date: 21-Feb-2013 12:03

							AMOUNT	5
		QUANT SIG					CAL-AMT	ON-COL
Compour	nds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		====	==	=====	=====	=======	======	======
17	~ ethanol	31	5.244	5.233	(0.577)	18350	0.20000	0.2122
18 V	Vinyl Bromide	106	5.411	5.416	(0.595)	8692	0.04000	0.04109
19 2	2-methyl butane	43	5.470	5.470	(0.602)	10709	0.04000	0.04115
20 5	Trichlorofluoromethane	101	5.675	5,675	(0.624)	20922	0,04000	0.04074
21 /	Acrolein	56	5,681	5.670	(0.625)	4149	0.04000	0.000
23 1	Acetone	58	5.805	5.783	(0.639)	29728	0.04000	0.000
24	Isopropyl alcohol	45	5.896	5,885	(0.649)	24876	0.04000	0.000
25 1	Pentane	72	5.886	5.896	(0.648)	1699	0.04000	0.04236
26 I	Ethyl Ether	31	6.058	6.047	(0.667)	8804	0.04000	0.04009
27	1,1-Dichloroethene	96	6.344	6.344	(0.698)	8660	0.04000	0.04129
28 1	tert-butanol	59	6.463	6.441	(0.711)	14447	0.04000	0.04328
29 2	Acrylonitrile	53	6,425	6.419	(0.707)	5683	0.04000	0.03812
30	1,1,2-Trichlorotrifluoroethane	101	6.522	6.522	(0.718)	17316	0.04000	0.04081
31 1	Methylene Chloride	84	6.662	6.662	(0.733)	11327	0.04000	0.000
32	3-Chloropropene	39	6.678	6.684	(0.735)	6382	0.04000	0.04194
33 (Carbon Disulfide	76	6.824	6.824	(0.751)	24113	0.04000	0.04079
34	trans-1,2-Dichloroethene	96	7.439	7.444	(0.818)	9115	0.04000	0.04150
35	~ 2-Methyl Pentane	43	7.476	7.476	(0.823)	19546	0.04000	0.04200
36 t	Methyl-t-Butyl Ether	73	7.584	7,568	(0.834)	21895	0.04000	0.04165
37	1,1-Dichloroethane	63	7,832	7.832	(0.862)	14641	0.04000	0.04039
38	Vinyl Acetate	43	7.935	7.935	(0.873)	18429	0.04000	0.04027
39	2-Butanone	72	8.371	8.355	(0.921)	6148	0.04000	0.000
40 1	Hexane	56	8.415	8.420	(0.926)	7220	0,04000	0.04072
41	cis 1,2-Dichloroethene	96	8.776	8.776	(0,966)	9528	0.04000	0.04292
42	Ethyl acetate	43	8.970	8.954	(0.987)	18393	0.04000	0.04421
43	Chloroform	8.3	9.105	9.110	(1.002)	16772	0.04000	0.04118
44	Tetrahydrofuran	42	9.542	9.509	(1.050)	10052	0.04000	0.04228
45	1,1,1-Trichloroethane	97	10.113	10.118	(1.113)	15747	0.04000	0.04066
46	1,2-Dichloroethane	62	10.194	10.199	(0.904)	11105	0.04000	0.04097
47	1-Butanol	31	10.701	10.679	(0.949)	2039	0.04000	0.000
48	Benzene	78	10.712	10.712	(0.950)	26668	0.04000	0.04139
49	Cyclohexane	69	10.728	10.728	(0.952)	3913	0.04000	0.04030
50	Carbon Tetrachloride	117	10.744	10.744	(0.953)	15160	0.04000	0.04060
51.	~ 2,3-dimethylpentane	71	10.863	10.863	(0,964)	5206	0.04000	0.04118
52	~ Thiophene	84	10.987	10,987	(0.975)	14401	0.04000	0.04022
53	2,2,4-trimethylpentane	57	11,553	11,553	(1.025)	41122	0.04000	0.04090
54	Heptane	71	11.968	11.973	(1.062)	8809	0.04000	0.04063
55	1,2-Dichloropropane	63	12.017	12.017	(1.066)	9039	0.04000	0,04023
56	Trichloroethene	130	12.071	12.076	(1.071)	10783	0.04000	0.04053
57	Dibromomethane	93	12,141	12.146	(1.077)	8489	0.04000	0.04040
58	Bromodichloromethane	83	12.324	12.324	(1.093)	14266	0.04000	0.04029
59	1,4-dioxane	88	12.362	12.346	(1,097)	1685	0.04000	0.02818
	Methyl Methacrylate	41	12.453		(1.105)	8591	0.04000	0.04112
61	~ methyl cyclohexane	83	13.003	13.003	(1.154)	14361	0.04000	0.04016
62	4-Methyl-2-pentanone	43	13.494	13,483	(1.197)	16495	0.04000	0.000
63	cis-1,3-Dichloropropene	75	13.553	13.548	(1.202)	12468	0.04000	0.04112
64	trans-1,3-Dichloropropene	75	14.454	14.459	(0.827)	12054	0.04000	0.04085


Data File: /chem/gcms/mr.i/R022013I.b/ricb201.d Report Date: 21-Feb-2013 12:03

AMOUNTS

	QUANT SIG				CAL-AMT (ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==	=======================================			(PP~ (1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1
65 Toluene	91	14.637	14.637 (0.837)	29537		0.04100
66 1,1,2-Trichloroethane	83	14.724	14.718 (0.842)	7895		0.04086
67 ~ 2-methyl thiophene	97	14.831	14,837 (0,848)	23040		0.04035
68 ~ 3-methyl thiophene	97	15.117	15.112 (0.865)	24080		0.04083
69 2-Hexanone	58	15.290	15.279 (0.874)	2326		0.01306
70 Octane	85	15.656	15.662 (0.895)	9361		0,04085
71 Dibromochloromethane	129	15.694	15.689 (0.898)	12233		0.04100
72 1,2-Dibromoethane	107	16.104	16.104 (0.921)	12145	0.04000	0.03971
73 Tetrachloroethene	129	16.250	16.250 (0.929)	10271	0.04000	0.04107
74 Chlorobenzene	112	17,565	17.565 (1.005)	22316	0.04000	0.04048
75 ~ 2,3-dimethylheptane	43	17.695	17.695 (1.012)	25971	0.04000	0,04090
76 Ethylbenzene	91	18.056	18.056 (1.033)	36218	0.04000	0.04102
77 ~ 2-ethyl thiophene	97	18.212	18.212 (1.042)	26148	0.04000	0.04105
78 m&p-Xylene	91	18.326	18.326 (1.048)	55378	0.08000	0,08195
79 Nonane	57	19.124	19.124 (1.094)	18030	0.04000	0.03986
80 Bromoform	173	18.994	18.989 (1.086)	9294	0.04000	0.04013
81 Styrene	104	19.081	19.086 (1.091)	14083	0.04000	0.03859
82 o-Xylene	91	19.189	19.183 (1.097)	28745	0.04000	0.04074
M 83 Xylene (total)	100			84123	0.12000	0.1227
84 1,1,2,2-Tetrachloroethane	83	19.717	19,722 (1,128)	18782	0.04000	0.04015
85 1,2,3-Trichloropropane	110	19.981	19.987 (1.143)	6137	0.04000	0.04115
86 Cumene	105	20.208	20.202 (1.156)	41595	0.04000	0.04171
87 n-Propylbenzene	120	21,162	21.162 (1,210)	10791	0.04000	0.03957
88 2-chlorotoluene	126	21,194	21.194 (1.212)	10402	0.04000	0,04077
89 4-Ethyltoluene	105	21.453	21.453 (1.227)	39984	0.04000	0.04080
90 1,3,5-Trimethylbenzene	120	21.604	21.604 (1.236)	18308	0.04000	0.04003
91 Alpha-Methylstyrene	118	22.030	22.036 (1.260)	9092	0.04000	0.000
92 Decane	57	22,289	22.289 (1,275)	19922	0.04000	0.03833
93 tert-butylbenzene	119	22,408	22.408 (1.282)	35823	0.04000	0.04011
94 1,2,4-Trimethylbenzene	105	22.440	22.440 (1.283)	31424	0.04000	0.03948
95 sec-butylbenzene	105	22.969	22.969 (1.314)	48863	0,04000	0.04001
96 1,3-Dichlorobenzene	146	22.925	22.925 (1,311)	21328	0.04000	0.03973
97 Benzyl Chloride	91	23.098	23.098 (1.321)	21580	0.04000	0.03624
98 1,4-Dichlorobenzene	146	23.114	23.114 (1.322)	21021	0.04000	0.03930
99 p-Cymene	119	23.335	23.330 (1.335)	39354	0.04000	0.03925
100 ~ 1,2,3- Trimethylbenzene	105	23.395	23.395 (1.338)	28458	0.04000	0.03866
101 ~ n-butylcyclohexane	83	23.573	23.572 (1.348)	26498	0.04000	0.03870
102 ~ Indane	117	23,885	23,885 (1,366)	32062	0.04000	0.04021
103 1,2-Dichlorobenzene	146	23.858	23.864 (1.365)	21232	0.04000	0.04016
104 n-butylbenzene	91	24.279	24,279 (1,389)	34691	0.04000	0.03706
105 ~ Indene	116	24.160	24,160 (1,382)	23601	0.04000	0.03773
106 Undecane	57	25,163	25.169 (1.439)	18553	0.04000	0.03288
107 ~ 1,2-dimethyl-4-ethylenzene	119	25,136	25.136 (1.438)	36537		0.03652
108 ~ 1,2,4,5-tetramethylbenzene	119	26.048	26.048 (1.490)	32982		0,03339
109 ~ 1,2,3,5-tetramethylbenzene	119	26.172	26.172 (1.497)	22201		0.03506
110 ~ 1,2,3,4-tetramethylbenzene	119	27,045	27.045 (1.547)	25042		0.03153
111 Dodecane	57	27,628	27.622 (1.580)	1895	0.04000	0.01088

Data File: /chem/gcms/mr.i/R022013I.b/ricb201.d Report Date: 21-Feb-2013 12:03

					S	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==	=======================================		======	
112 1,2,4-Trichlorobenzene	180	27.725	27.725 (1.586)	12862	0.04000	0.03474
113 Napthalene	128	27.962	27.962 (1.599)	25899	0.04000	0.03180
114 ~ benzo(b) thiophene	134	28.156	28.151 (1.610)	21654	0.04000	0.03459
115 Hexachlorobutadiene	225	28.469	28.474 (1.628)	17026	0.04000	0.03739
116 1,2,3-trichlorobenzene	180	28.523	28 523 (1 631)	13345	0 04000	0 03/17

Data File: /chem/gcms/mr.i/R022013I.b/ricb202.d

Report Date: 21-Feb-2013 12:03

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /chem/gcms/mr.i/R022013I.b/ricb202.d

Lab Smp Id: ICAL2 Client Smp ID: STD0.08

Inj Date : 20-FEB-2013 17:52

Operator: 060487 Inst ID: mr.i

Smp Info : ICAL2,1,1,2,,STD0.08

Misc Info: R022013I, T015,

Comment :

Method : /chem/gcms/mr.i/R022013I.b/T015.m Meth Date : 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date : 20-FEB-2013 17:52 Cal File: ricb202.d

Als bottle: 1 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: allmdl.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

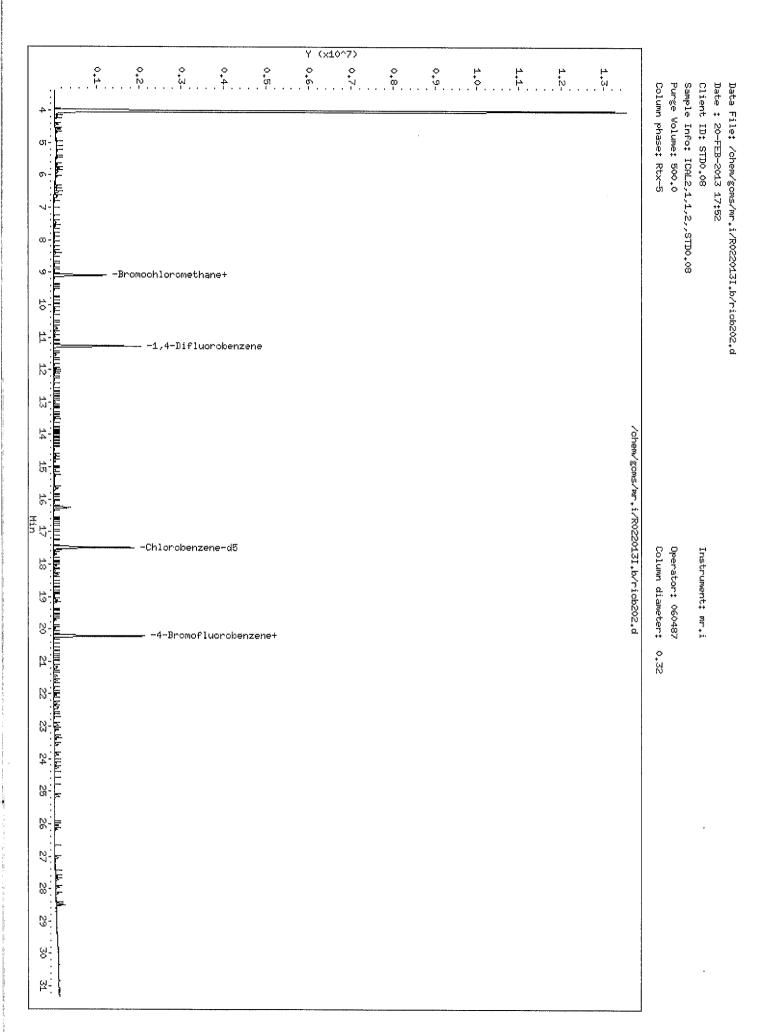
Name	Value	Description
DF.	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable Local Compound Variable

						AMOUN'	rs ⁻
		QUANT SIG				CAL-AMT	ON-COL
Compo	ounds	RSAM	RT	EXP RT REL RT	RESPONSE	(ppb(v/v)	(ppb(v/v))
=====		====	==	=======================================	¥======	# # # # # # # #	======
* :	l Bromochloromethane	128	9.088	9.089 (1.000)	465844	4.00000	4,000
* 2	2 1,4-Difluorobenzene	114	11.272	11.278 (1.000)	2297612	4.00000	4.000
* :	3 Chlorobenzene-d5	117	17,484	17.490 (1.000)	1628035	4.00000	4,000
\$ 4	4 4-Bromofluorobenzene	95	20.218	20.218 (1.156)	1099623	4.00000	4.042
į	5 Chlorodifluoromethane	67	4.192	4.187 (0.461)	4150	0.08000	0.07384
(5 Propene	41	4.203	4.192 (0.462)	17633	0.08000	0.000
,	7 Dichlorodifluoromethane	85	4.252	4.246 (0.468)	43602	0.08000	0.07812
{	3 Chloromethane	52	4,424	4.424 (0.487)	5909	0.08000	0.08000
9	9 1,2-Dichlorotetrafluoroethane	135	4.435	4.435 (0.488)	34259	0.08000	0.07778
10	Methanol	31	4.575	4.570 (0.503)	18293	0.08000	0.000
1:	l ~ acetaldehyde	44	4.575	4.570 (0.503)	100183	0.40000	0.000
13	2 Vinyl Chloride	62	4.597	4.591 (0.506)	18274	0.08000	0.07767
1:	3 n-Butane	43	4,683	4.678 (0.515)	29744	0.08000	0.07811
1	1 1,3-Butadiene	54	4.678	4.678 (0.515)	14774	0.08000	0.07897
1	5 Bromomethane	94	4.985	4.985 (0.548)	17590	0.08000	0.07374
1	6 Chloroethane	64	5.130	5.125 (0.564)	9253	0.08000	0.07587

Data File: /chem/gcms/mr.i/R022013I.b/ricb202.d Report Date: 21-Feb-2013 12:03

AMOUNTS


	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
=======================================	====	==	BAT KI KBE KI	SESCOSS	(Pps (V) V))	(pps (*/ *//
17 ~ ethanol	31	5.244	5.233 (0.577)	35107	0,40000	0.4000
18 Vinyl Bromide	106	5,416	5.416 (0.596)	16706	0.08000	0.07782
19 2-methyl butane	43	5,470	5.470 (0.602)	20521	0.08000	0.07770
20 Trichlorofluoromethane	101	5,680	5.675 (0.625)	40910	0.08000	0.07851
21 Acrolein	56	5.686	5.670 (0.626)	8141	0.08000	0.000
23 Acetone	58	5.804	5.783 (0.639)	55777	0.08000	0.000
24 Isopropyl alcohol	45	5.896	5.885 (0.649)	38867	0.08000	0.000
25 Pentane	72	5.891	5.896 (0.648)	3256	0.08000	0.08000
26 Ethyl Ether	31	6.058	6.047 (0.667)	17789	0.08000	0.07982
27 1,1-Dichloroethene	96	6.349	6.344 (0.699)	16477	0.08000	0.07742
28 tert-butanol	59	6.462	6.441 (0.711)	27094	0.08000	0.08000
29 Acrylonitrile	53	6.425	6.419 (0.707)	12671	0.08000	0.08376
30 1,1,2-Trichlorotrifluoroethane		6.522	6.522 (0.718)	33752	0.08000	0.00376
31 Methylene Chloride	84	6,662	6.662 (0.733)	18619	0.08000	0.000
32 3-Chloropropene	39	6.683	6.684 (0.735)	11752	0.08000	0.07611
33 Carbon Disulfide	76	6,829	6.824 (0.751)	47047	0.08000	0.07843
34 trans-1,2-Dichloroethene	, o 96	7.444	7.444 (0.819)	17161	0.08000	0.07700
35 ~ 2-Methyl Pentane	43	7.476	7.444 (0.813)	37775	0.08000	0.08000
36 Methyl-t-Butyl Ether	73	7.579	7.568 (0.834)	40906	0.08000	0.08000
37 1,1-Dichloroethane	63	7.837	7.832 (0.862)	29136	0.08000	0.07889
38 Vinyl Acetate	43	7.934	7.935 (0.873)	36899	0.08000	0.07922
39 2-Butanone	72	8.371	8.355 (0.921)	12026	0.08000	
40 Hexane	56	8,425				0,000
	96	8.781	8.420 (0.927)	14136	0.080.0	0.07856
41 cis 1,2-Dichloroethene 42 Ethyl acetate	43	8.970	8.776 (0.966) 8.954 (0.987)	16709	0.08000	0.07417
43 Chloroform	83	9.110	9,110 (1.002)	33770 32078	0.08000	0.08000
44 Tetrahydrofuran	42	9.536	9.509 (1.049)			0.07763
45 1,1,1-Trichloroethane	97	10,118	10.118 (1.113)	19301 30922	0.08000	0.08000
46 1,2-Dichloroethane	62	10.205			0.08000	0.07868
47 1-Butanol	31	10.701	10.199 (0.905)	21393	0.08000	0.07806
48 Benzene	78	10,701	10.679 (0.949)	4617	0.08000	0.000
49 Cyclohexane			10.712 (0.950)	50299	0.08000	0.07722
50 Carbon Tetrachloride	69	10.733	10.728 (0.952) 10.744 (0.953)	7794	0.08000	0.07940
·	117	10.744	, , ,	29755	0.08000	0.07881
51 ~ 2,3-dimethylpentane 52 ~ Thiophene	71	10.857	10.863 (0.963)	9926	0.08000	0.07765
•	84	10.987	10.987 (0.975)	28802	0.08000	0.07956
53 2,2,4-trimethylpentane	57	11.558	11.553 (1.025)	79498	0.08000	0.07820
54 Heptane	71	11.973	11.973 (1.062)	17260	0.08000	0.07874
55 1,2-Dichloropropane	63	12.017	12.017 (1.066)	18068	0.08000	0.07954
56 Trichloroethene	130	12.070	12.076 (1.071)	21237	0.08000	0.07894
57 Dibromomethane	93	12,146	12,146 (1,077)	16829	0.08000	0.07921
58 Bromodichloromethane	83	12,329	12.324 (1.094)	28431	0.08000	0.07942
59 1,4-dioxane	88	12.367	12.346 (1.097)	6266	0.08000	0.1036
60 Methyl Methacrylate	41	12.453	12.448 (1.105)	16899	0,08000	0.08000
61 ~ methyl cyclohexane	83	13.003	13.003 (1.154)	28804	0.08000	0.07967
62 4-Methyl-2-pentanone	43	13,494	13,483 (1,197)	32747	0.08000	0.000
63 cis-1,3-Dichloropropene	75	13.548	13,548 (1.202)	23843	0.08000	0.07777
64 trans-1,3-Dichloropropene	75	14.459	14.459 (0.827)	23773	0.08000	0.07830

Data File: /chem/gcms/mr.i/R022013I.b/ricb202.d Report Date: 21-Feb-2013 12:03

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==	==========	=======	======	======
65 Toluene	91	14.637	14.637 (0.837)	57820	0.08000	0.07800
66 1,1,2-Trichloroethane	83	14.723	14.718 (0.842)	15562	0.08000	0.07827
67 ~ 2-methyl thiophene	97	14.837	14.837 (0,849)	46592	0.08000	0.07930
68 ~ 3-methyl thiophene	97	15,112	15.112 (0.864)	47530	0.08000	0.07833
69 2-Hexanone	58	15.290	15.279 (0.874)	14665	0.08000	0.08000
70 Octane	85	15.662	15.662 (0.896)	18460	0.08000	0.07829
71 Dibromochloromethane	129	15,694	15.689 (0.898)	23953	0.08000	0.07801
72 1,2-Dibromoethane	107	16.104	16.104 (0.921)	25362	0.08000	0.08058
73 Tetrachloroethene	129	16.250	16.250 (0.929)	20033	0.08000	0,07785
74 Chlorobenzene	112	17.560	17.565 (1.004)	44825	0.08000	0.07903
75 ~ 2,3-dimethylheptane	43	17.689	17.695 (1.012)	51093	0.08000	0.07820
76 Ethylbenzene	91	18.056	18.056 (1.033)	70844	0.08000	0.07797
77 ~ 2-ethyl thiophene	97	18,212	18,212 (1,042)	51047	0.08000	0.07789
78 m&p-Xylene	91	18.331	18.326 (1.048)	108553	0.16000	0,1561
79 Nonane	57	19.124	19.124 (1.094)	37233	0.08000	0.08000
80 Bromoform	173	18.983	18.989 (1.086)	19064	0.08000	0.08000
81 Styrene	104	19.086	19.086 (1.092)	30042	0.08000	0.08000
82 o-Xylene	91	19.183	19.183 (1.097)	57007	0.08000	0.07852
M 83 Xylene (total)	100			165560	0.24000	0.2346
84 1,1,2,2-Tetrachloroethane	83	19.722	19.722 (1.128)	38357	0.08000	0.07969
85 1,2,3-Trichloropropane	110	19.986	19,987 (1.143)	11923	0.08000	0.07770
86 Cumene	105	20,202	20.202 (1.155)	82089	0.08000	0.08000
87 n-Propylbenzene	120	21.162	21.162 (1.210)	22450	0.08000	0.08000
88 2-chlorotoluene	126	21.194	21.194 (1.212)	20600	0.08000	0.07846
89 4-Ethyltoluene	105	21.453	21.453 (1.227)	80676	0.08000	0.08000
90 1,3,5-Trimethylbenzene	120	21.604	21.604 (1.236)	37645	0.08000	0.08000
91 Alpha-Methylstyrene	118	22.036	22.036 (1.260)	19816	0.08000	0.000
92 Decane	57	22.289	22.289 (1.275)	44570	0.08000	0,08334
93 tert-butylbenzene	119	22.408	22,408 (1.282)	73523	0.08000	0.08000
94 1,2,4-Trimethylbenzene	105	22.440	22.440 (1.283)	66386	0.08000	0.08105
95 sec-butylbenzene	105	22.963	22.969 (1.313)	100537	0.08000	0.08000
96 1,3-Dichlorobenzene	146	22.925	22.925 (1.311)	44186	0.08000	0.08000
97 Benzyl Chloride	91	23.092	23.098 (1.321)	49016	0,08000	0.08000
98 1,4-Dichlorobenzene	146	23.109	23.114 (1.322)	44033	0.08000	0.08000
99 p-Cymene	119	23.330	23,330 (1.334)	84097	0.08000	0,08150
100 ~ 1,2,3- Trimethy1benzene	105	23.389	23.395 (1.338)	62629	0.08000	0.08268
101 ~ n-butylcyclohexane	83	23.572	23,572 (1,348)	56365	0.08000	0.08000
102 ~ Indane	117	23.885	23.885 (1.366)	65284	0.08000	0.07957
103 1,2-Dichlorobenzene	146	23.858	23.864 (1.365)	43525	0.08000	0.08000
104 n-butylbenzene	91	24.279	24.279 (1.389)	77.060	0.08000	0.08000
105 ~ Indene	116	24,160	24,160 (1,382)	51489	0.08000	0.08000
106 Undecane	57	25,163	25.169 (1.439)		0.08000	0.08000
107 ~ 1,2-dimethyl-4-ethylenzer		25,136	25.136 (1.438)		0.08000	0.08000
108 ~ 1,2,4,5-tetramethylbenzer		26.047	26.048 (1.490)	81303	0.08000	0.08000
109 ~ 1,2,3,5-tetramethylbenzer		26,172	26.172 (1.497)	52132	0.08000	0.08000
110 ~ 1,2,3,4-tetramethylbenzer		27.045	27.045 (1.547)	65388	0.08000	0.08000
111 Dodecane	57	27,622	27.622 (1.580)	24763	0.08000	0.1382
		,	, , , , , , , , , , , , , , , , , , , ,			· ·

Data File: /chem/gcms/mr.i/R022013I.b/ricb202.d Report Date: 21-Feb-2013 12:03

				AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==				***
112 1,2,4-Trichlorobenzene	180	27.724	27.725 (1.586)	34487	0,08000	0.09052
113 Napthalene	128	27.962	27.962 (1.599)	80781	0.08000	0.09640
114 ~ benzo(b) thiophene	134	28.151	28.151 (1.610)	58505	0.08000	0.09082
115 Hexachlorobutadiene	225	28,474	28.474 (1.629)	37485	0.08000	0.08000
116 1,2,3-trichlorobenzene	180	28.517	28.523 (1.631)	36835	0.08000	0.09166
117 ~ 2-Methylnaphthalene	142	29.979	29.979 (1.715)	1643	0.50000	0.000
118 ~ 1-Methylnaphthalene	142	30.297	30.291 (1.733)	2002	0.50000	0.000

Data File: /chem/gcms/mr.i/R022013I.b/ricb203.d

Report Date: 21-Feb-2013 12:03

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /chem/gcms/mr.i/R022013I.b/ricb203.d

Lab Smp Id: ICAL2 Client Smp ID: STD0.16

Inj Date : 20-FEB-2013 18:39

Operator: 060487 Inst ID: mr.i

Smp Info : ICAL2,1,1,3,,STD0.16

Misc Info: R022013I, T015,

Comment :

Method : /chem/gcms/mr.i/R022013I.b/T015.m

Meth Date: 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date: 20-FEB-2013 18:39 Cal File: ricb203.d

Als bottle: 1 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: allmdl.sub

Target Version: 3.50

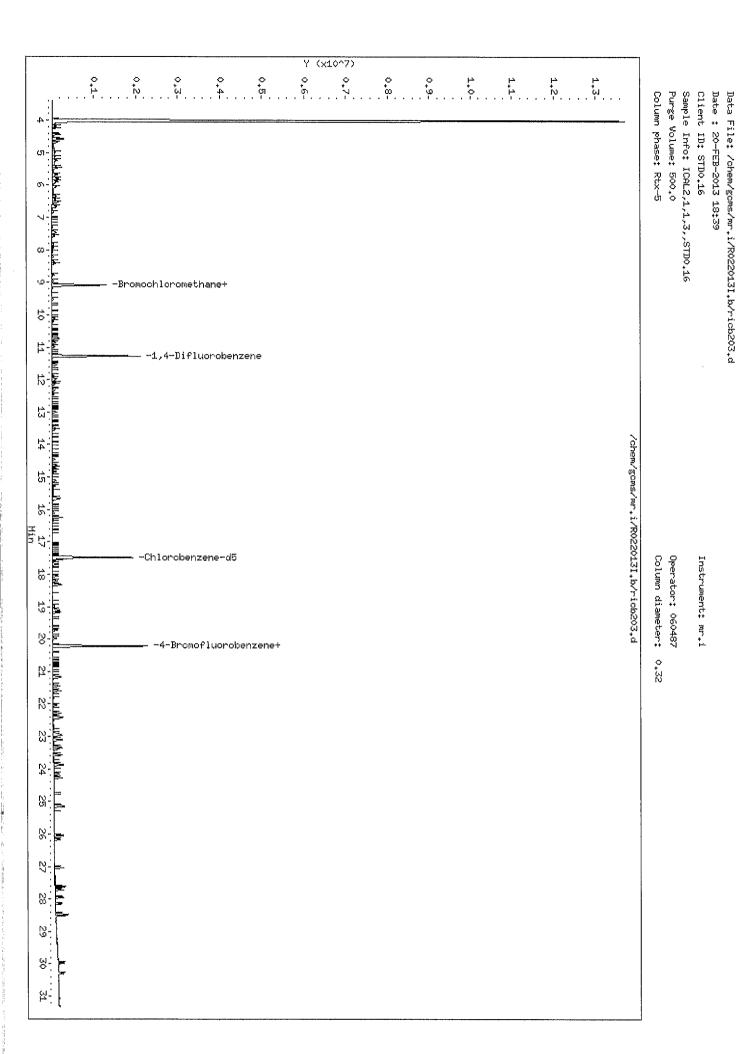
Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

					'MUOMA	rs
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v)	(ppb(v/v))
		==				======
* 1 Bromochloromethane	128	9.089	9.089 (1.000)	473631	4.00000	4.000
* 2 1,4-Difluorobenzene	114	11.272	11.278 (1.000)	2340803	4.00000	4.000
* 3 Chlorobenzene-d5	117	17.484	17.490 (1.000)	1654983	4.00000	4.000
\$ 4 4-Bromofluorobenzene	95	20.218	20.218 (1.156)	1132688	4.00000	4.063
5 Chlorodifluoromethane	67	4.187	4.187 (0.461)	8237	0.16000	0.1491
6 Propene	41	4.198	4.192 (0.462)	28723	0.16000	0.1600
7 Dichlorodifluoromethane	85	4.246	4.246 (0.467)	86455	0.16000	0.1548
8 Chloromethane	52	4.424	4.424 (0.487)	11079	0.16000	0.1535
9 1,2-Dichlorotetrafluoroethane	135	4.430	4.435 (0.487)	67391	0.16000	0.1535
10 Methanol	31	4.570	4.570 (0.503)	26405	0.16000	0.000
11 ~ acetaldehyde	44	4.570	4.570 (0.503)	179354	0.80000	0.000
12 Vinyl Chloride	62	4.591	4.591 (0.505)	35146	0.16000	0.1510
13 n-Butane	43	4.678	4.678 (0.515)	54143	0.16000	0,1460
14 1,3-Butadiene	54	4.678	4.678 (0.515)	28065	0.16000	0.1515
15 Bromomethane	94	4,985	4.985 (0.548)	32007	0.16000	0.1402
16 Chloroethane	64	5.120	5.125 (0.563)	17690	0.16000	0.1480

Data File: /chem/gcms/mr.i/R022013I.b/ricb203.d Report Date: 21-Feb-2013 12:03


							AMOUNTS		
		QUANT SIG					CAL-AMT	ON-COL	
Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
=====	****************	====	==	=====			======	======	
17	~ ethanol	31	5.233	5.233	(0.576)	69221	0.80000	0.7877	
18	Vinyl Bromide	106	5.411	5.416	(0.595)	32077	0.16000	0.1511	
19	2-methyl butane	43	5.470	5.470	(0.602)	40105	0.16000	0,1527	
20	Trichlorofluoromethane	101	5.675	5.675	(0.624)	79409	0.16000	0.1531	
21	Acrolein	56	5.681	5.670	(0.625)	16950	0.16000	0.1600	
22	Acetonitrile	40	5.740	5.729	(0.632)	12878	0.16000	0.1600	
23	Acetone	58	5.799	5.783	(0.638)	84192	0.16000	0.000	
24	Isopropyl alcohol	45	5.891	5.885	(0.648)	59854	0.16000	0.000	
25	Pentane	72	5.891	5.896	(0.648)	6275	0.16000	0.1557	
26	Ethyl Ether	31	6.047	6.047	(0.665)	33402	0.16000	0.1514	
27	1,1-Dichloroethene	96	6,344	6.344	(0.698)	31862	0.16000	0.1513	
28	tert-butanol	59	6,446	6,441	(0.709)	55744	0.16000	0.1609	
29	Acrylonitrile	53	6,419	6.419	(0.706)	24477	0.16000	0.1594	
3 0	1,1,2-Trichlorotrifluoroethane	101	6.516	6.522	(0.717)	64494	0,16000	0.1513	
31	Methylene Chloride	84	6.657	6.662	(0.732)	32580	0.16000	0.1600	
3.2	3-Chloropropene	39	6.684	6.684	(0.735)	22014	0.16000	0,1462	
33	Carbon Disulfide	76	6.824	6.824	(0.751)	89312	0.16000	0.1507	
34	trans-1,2-Dichloroethene	96	7.444	7.444	(0.819)	32306	0.16000	0.1479	
35	~ 2-Methyl Pentane	43	7.476	7.476	(0.823)	72541	0.16000	0.1554	
36	Methyl-t-Butyl Ether	73	7.573	7.568	(0.833)	82807	0.16000	0.1550	
37	1,1-Dichloroethane	63	7.832	7.832	(0.862)	56165	0.16000	0.1533	
38	Vinyl Acetate	43	7.935	7.935	(0.873)	72595	0.16000	0.1558	
39	2-Butanone	7.2	8.361	8.355	(0.920)	20012	0.16000	0.1600	
40	Hexane	56	8.420	8.420	(0.926)	27459	0.16000	0,1533	
41	cis 1,2-Dichloroethene	96	8.776	8.776	(0.966)	31936	0.16000	0.1457	
42	Ethyl acetate	43	8.965	8.954	(0.986)	67332	0.16000	0.1584	
43	Chloroform	83	9.110	9.110	(1.002)	62526	0.16000	0.1524	
44	Tetrahydrofuran	42	9.520	9.509	(1.047)	36999	0.16000	0.1553	
45	1,1,1-Trichloroethane	97	10.118	10.118	(1.113)	59813	0.16000	0,1530	
46	1,2-Dichloroethane	62	10.194	10.199	(0.904)	41610	0.16000	0.1525	
47	1-Butanol	31	10,690	10.679	(0.948)	10420	0.16000	0.000	
48	Benzene	78	10.706	10.712	(0.950)	94800	0.16000	0.1481	
49	Cyclohexane	69	10.728	10.728	(0.952)	14713	0.16000	0.1512	
5.0	Carbon Tetrachloride	117	10.744	10.744	(0.953)	36635	0.16000	0.1101	
51	~ 2,3-dimethylpentane	71	10.857	10.863	(0.963)	20306	0.16000	0.1572	
52	~ Thiophene	84	10.981	10.987	(0.974)	54832	0.16000	0.1523	
53	2,2,4-trimethylpentane	57	11.547	11.553	(1.024)	155804	0.16000	0.1535	
54	Heptane	71	11.968	11.973	(1.062)	33485	0.16000	0.1531	
55	1,2-Dichloropropane	63	12.017	12.017	(1.066)	35474	0.16000	0.1554	
56	Trichloroethene	130	12.071	12,076	(1.071)	42000	0.16000	0.1554	
57	Dibromomethane	93	12,141	12.146	(1.077)	33703	0.16000	0.1571	
58	Bromodichloromethane	83	12,319	12.324	(1.093)	55732	0.16000	0.1551	
59	1,4-dioxane	88	12.356	12.346	(1.096)	13687	0.16000	0.1656	
60	Methyl Methacrylate	41	12.453	12.448	(1.105)	35221	0.16000	0.1618	
61	methyl cyclohexane	83	13.003	13.003	(1.154)	55808	0.16000	0.1542	
62	4-Methyl-2-pentanone	43	13.489	13,483	(1.197)	64856	0.16000	0.1600	
63	cis-1,3-Dichloropropene	75	13.548	13,548	(1.202)	47485	0.16000	0.1546	

Data File: /chem/gcms/mr.i/R022013I.b/ricb203.d Report Date: 21-Feb-2013 12:03

					AMOUNTS	3
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==		======		=======
64 trans-1,3-Dichloropropene	75	14.454	14.459 (0.827)	46166	0.16000	0.1529
65 Toluene	91	14.637	14.637 (0.837)	110499	0.16000	0.1508
66 1,1,2-Trichloroethane	83	14.724	14.718 (0.842)	30841	0.16000	0.1550
67 ~ 2-methyl thiophene	97	14.831	14.837 (0,848)	92199	0.16000	0.1562
68 ~ 3-methyl thiophene	97	15.112	15.112 (0.864)	94121	0.16000	0.1550
69 2-Hexanone	58	15,284	15.279 (0.874)	33099	0.16000	0.1684
70 Octane	85	15.656	15.662 (0.895)	36534	0.16000	0.1549
71 Dibromochloromethane	129	15.689	15,689 (0.897)	45282	0.16000	0.1497
72 1,2-Dibromoethane	107	16.104	16.104 (0.921)	51101	0.16000	0.1598
73 Tetrachloroethene	129	16.250	16.250 (0.929)	38745	0.16000	0.1519
74 Chlorobenzene	112	17.560	17.565 (1.004)	86165	0.16000	0.1528
75 ~ 2,3-dimethylheptane	43	17.689	17.695 (1.012)	99259	0.16000	0.1528
76 Ethylbenzene	91	18.051	18.056 (1.032)	138363	0.16000	0.1530
77 ~ 2-ethyl thiophene	97	18.207	18.212 (1.041)	101154	0.16000	0.1545
78 m&p-Xylene	91	18.326	18.326 (1.048)	213439	0.32000	0.3077
79 Nonane	57	19.118	19.124 (1.093)	72061	0.16000	0.1561
80 Bromoform	173	18.984	18.989 (1.086)	31953	0.16000	0.1446
81 Styrene	104	19.081	19.086 (1.091)	63547	0.16000	0.1632
82 o-Xylene	91	19.183	19.183 (1.097)	110561	0.16000	0.1530
M 83 Xylene (total)	100			324000	0.48000	0.4608
84 1,1,2,2-Tetrachloroethane	83	19.717	19.722 (1.128)	76977	0.16000	0.1582
85 1,2,3-Trichloropropane	110	19.981	19.987 (1.143)	23592	0.16000	0.1540
86 Cumene	105	20.202	20.202 (1.155)	160796	0.16000	0.1570
87 n-Propylbenzene	120	21,162	21.162 (1.210)	43830	0.16000	0.1568
88 2-chlorotoluene	126	21.194	21.194 (1.212)	40815	0.16000	0.1552
89 4-Ethyltoluene	105	21.448	21.453 (1.227)	160693	0.16000	0.1584
90 1,3,5-Trimethylbenzene	120	21.604	21.604 (1.236)	73851	0.16000	0.1571
91 Alpha-Methylstyrene	118	22.030	22,036 (1,260)	43020	0.16000	0.1600
92 Decane	57	22.284	22.289 (1.274)	89608	0.16000	0.1632
93 tert-butylbenzene	119	22.408	22.408 (1.282)	143685	0.16000	0.1568
94 1,2,4-Trimethylbenzene	105	22.440	22.440 (1.283)	133148	0.16000	0.1599
95 sec-butylbenzene	105	22,963	22.969 (1.313)	197660	0,16000	0.1573
96 1,3-Dichlorobenzene	146	22,925	22.925 (1.311)	88111	0.16000	0.1584
97 Benzyl Chloride	91	23.098	23.098 (1.321)	101656	0.16000	0.1616
98 1,4-Dichlorobenzene	146	23.109	23.114 (1.322)	88087	0.16000	0.1587
99 p-Cymene	119	23.330	23.330 (1.334)	165804	0.16000	0.1587
100 ~ 1,2,3- Trimethylbenzene	105	23.389	23.395 (1.338)	118940	0.16000	0.1563
101 ~ n-butylcyclohexane	83	23.572	23.572 (1.348)	112503	0.16000	0.1585
102 ~ Indane	117	23,885	23.885 (1.366)	129489	0.16000	0.1568
103 1,2-Dichlorobenzene	146	23.858	23.864 (1.365)	85096	0.16000	0,1569
104 n-butylbenzene	91	24.279	24.279 (1.389)	158089	0.16000	0.1607
105 ~ Indene	116	24.160	24.160 (1.382)	109362	0.16000	0.1635
106 Undecane	57	25.169	25.169 (1.439)	105410	0.16000	0.1688
107 \sim 1,2-dimethyl-4-ethylenzene	119	25.136	25,136 (1.438)	167299	0.16000	0.1599
108 ~ 1,2,4,5-tetramethylbenzene	119	26.048	26.048 (1.490)	172854	0.16000	0.1636
109 ~ 1,2,3,5-tetramethylbenzene	119	26.172	26.172 (1.497)	110755	0.16000	0.1635
110 $^{\sim}$ 1,2,3,4-tetramethylbenzene	119	27.045	27.045 (1.547)	146137	0.16000	0.1676

Data File: /chem/gcms/mr.i/R022013I.b/ricb203.d Report Date: 21-Feb-2013 12:03

					AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
= = = = = = = = = = = = = = = = = = = =	====	== ==		======		======	
111 Dodecane	57	27.622	27.622 (1.580)	99603	0.16000	0.2126	
112 1,2,4-Trichlorobenzene	180	27.725	27.725 (1.586)	79657	0.16000	0.1878	
113 Napthalene	128	27.956	27.962 (1.599)	191778	0.16000	0.1982	
114 ~ benzo(b) thiophene	134	28.151	28.151 (1.610)	142168	0.16000	0.1940	
115 Hexachlorobutadiene	225	28.474	28.474 (1.629)	72419	0.16000	0.1559	
116 1,2,3-trichlorobenzene	180	28.517	28.523 (1.631)	83938	0.16000	0.1877	
117 ~ 2-Methylnaphthalene	142	29,979	29.979 (1.715)	84971	1.00000	1.000	
118 ~ 1-Methylnaphthalene	142	30.297	30.291 (1.733)	84458	1.00000	1.000	

Data File: /chem/gcms/mr.i/R022013I.b/ricb204.d

Report Date: 21-Feb-2013 12:03

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /chem/gcms/mr.i/R022013I.b/ricb204.d

Lab Smp Id: ICAL4 Client Smp ID: STD0.4

Inj Date : 20-FEB-2013 19:27

Operator : 060487 Inst ID: mr.i

Smp Info : ICAL4,1,1,4,,STD0.4

Misc Info: R022013I, T015,

Comment

Comment:
Method: /chem/gcms/mr.i/R022013I.b/T015.m

Meth Date: 21-Feb-2013 12:03 wilesd Quant Type: ISTD
Cal Date: 20-FEB-2013 19:27 Cal File: ricb204.d

Als bottle: 1 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

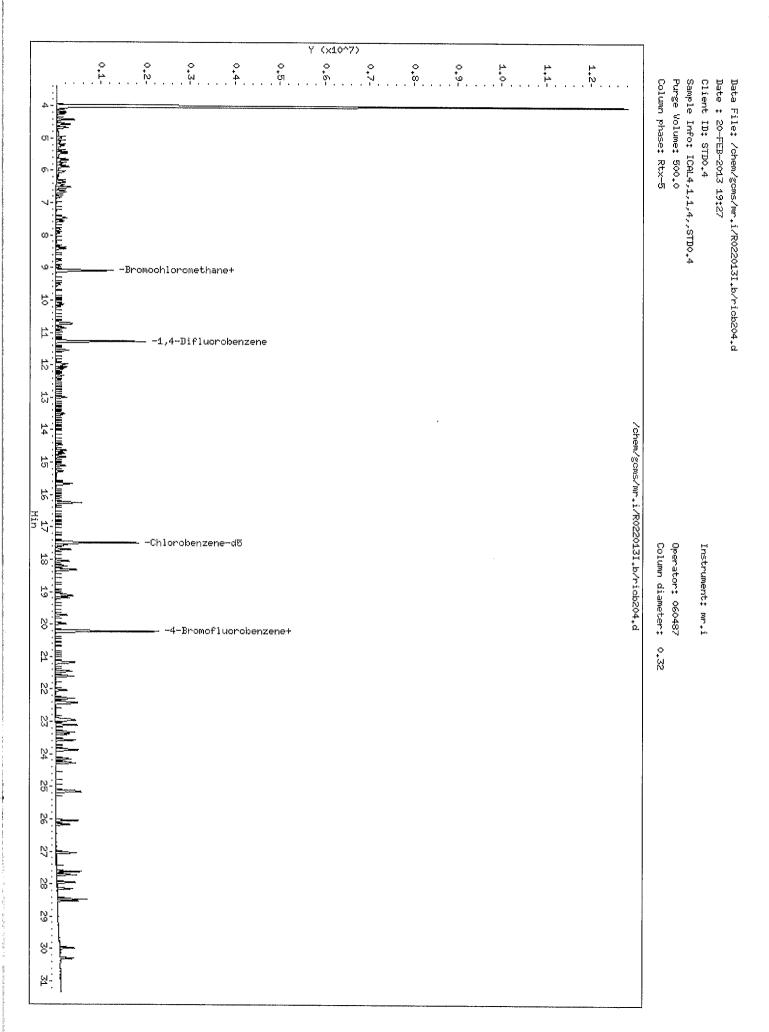
Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

						AMOUNTS		
		QUANT SIG				CAL-AMT	ON-COL	
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
== = = = =	<u> </u>	====	*=	## #### ## #####	=======	======	======	
* 1	Bromochloromethane	128	9.089	9.089 (1.000)	450576	4.00000	4.000	
* 2	1,4~Difluorobenzene	114	11.273	11.278 (1.000)	2223161	4.00000	4.000	
* 3	Chlorobenzene-d5	117	17.485	17.490 (1.000)	1589024	4.00000	4.000	
\$ 4	4-Bromofluorobenzene	95	20.218	20.218 (1.156)	1093713	4.00000	4.064	
M 83	Xylene (total)	100			761540	1.20000	1,145	
5	Chlorodifluoromethane	67	4.182	4.187 (0.460)	19361	0.40000	0.3758	
6	Propene	41	4.192	4.192 (0.461)	60002	0.40000	0.3741	
7	Dichlorodifluoromethane	85	4.246	4.246 (0.467)	196172	0.40000	0.3765	
8	Chloromethane	.52	4.419	4.424 (0.486)	28121	0.40000	0.4063	
9	1,2-Dichlorotetrafluoroethane	135	4.430	4.435 (0.487)	157284	0.40000	0.3822	
11	~ acetaldehyde	44	4.570	4.570 (0.503)	181207	2.00000	2.000	
12	Vinyl Chloride	62	4.591	4.591 (0.505)	82878	0.40000	0.3805	
13	n-Butane	43	4.678	4.678 (0.515)	119515	0.40000	0.3522	
14	1,3-Butadiene	54	4.672	4.678 (0.514)	64304	0.40000	0.3730	
15	Bromomethane	94	4,985	4.985 (0.548)	72987	0.40000	0.3500	
16	Chloroethane	64	5.120	5.125 (0,563)	40636	0.40000	0.3672	

Data File: /chem/gcms/mr.i/R022013I.b/ricb204.d Report Date: 21-Feb-2013 12:03

AMOUNTS


		QUANT SIG				CAL-AMT	ON-COL
Compoi	ınds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
_			==	==========	=======	(PP= (1) / / / /	(PP= (*/ *//
17	~ ethanol	31	5.228	5.233 (0.575)	122855	2.00000	1.612
18	Vinyl Bromide	106	5,416	5.416 (0.596)	74342	0.40000	0.3755
19	2-methyl butane	43	5,470	5.470 (0.602)	90132	0.40000	0.3699
20	Trichlorofluoromethane	101	5.675	5.675 (0.624)	188786	0.40000	0.3868
21	Acrolein	56	5.670	5.670 (0.624)	28199	0.40000	0.3293
22	Acetonitrile	40	5.729	5.729 (0.630)	27208	0.40000	0.3764
25	Pentane	72	5.891	5.896 (0.648)	15116	0.40000	0.3962
24	Isopropyl alcohol	45	5.880	5.885 (0.647)	112508	0.40000	0.4000
26	Ethyl Ether	31	6.042	6,047 (0.665)	79240	0.40000	0.3829
27	1,1-Dichloroethene	96	6.344	6.344 (0.698)	72824	0.40000	0.3719
29	Acrylonitrile	53	6.419	6.419 (0.706)	56629	0.40000	0.3907
30	1,1,2-Trichlorotrifluoroethane	101	6,516	6.522 (0.717)	152088	0.40000	0.3810
28	tert-butanol	59	6.446	6.441 (0.709)	123881	0.40000	0.3836
31	Methylene Chloride	84	6.662	6,662 (0.733)	68467	0.40000	0.3753
32	3-Chloropropene	39	6.678	6.684 (0.735)	52797	0.40000	0.3761
33	Carbon Disulfide	76	6.824	6.824 (0.751)	209281	0.40000	0.3780
35	~ 2-Methyl Pentane	43	7.476	7.476 (0.823)	167486	0,40000	0,3845
34	trans-1,2-Dichloroethene	96	7.439	7.444 (0.818)	74370	0.40000	0.3676
36	Methyl-t-Butyl Ether	73	7.573	7.568 (0.833)	193462	0,40000	0.3854
37	1,1-Dichloroethane	63	7.832	7.832 (0.862)	131975	0.40000	0.3838
38	Vinyl Acetate	43	7.935	7.935 (0.873)	173468	0.40000	0.3934
39	2-Butanone	72	8.355	8.355 (0.919)	36258	0.40000	0.3459
40	Hexane	56	8.415	8.420 (0.926)	61865	0.40000	0.3716
41	cis 1,2-Dichloroethene	96	8.770	8.776 (0.965)	75003	0.40000	0.3689
42	Ethyl acetate	43	8.959	8.954 (0.986)	155583	0.40000	0.3897
43	Chloroform	83	9,110	9.110 (1.002)	146004	0.40000	0.3802
44	Tetrahydrofuran	42	9.515	9,509 (1.047)	83029	0.40000	0.3769
45	1,1,1-Trichloroethane	97	10.113	10.118 (1.113)	140816	0.40000	0.3837
46	1,2-Dichloroethane	62	10.199	10.199 (0.905)	96858	0.40000	0.3800
49	Cyclohexane	69	10.728	10.728 (0.952)	34420	0.40000	0.3789
48	Benzene	78	10.706	10,712 (0.950)	219115	0.40000	0,3696
50	Carbon Tetrachloride	117	10.744	10.744 (0.953)	90097	0.40000	0.3071
51	~ 2,3-dimethylpentane	71	10.863	10.863 (0.964)	47899	0.40000	0.3929
47	1-Butanol	3 1.	10.685	10.679 (0.948)	20862	0.40000	0.4000
52	~ Thiophene	84	10.987	10.987 (0.975)	129416	0.40000	0.3836
53	2,2,4-trimethylpentane	57	11.548	11.553 (1.024)	361290	0.40000	0,3808
54	Heptane	71	11.974	11.973 (1,062)	76530	0.40000	0.3759
55	1,2-Dichloropropane	63	12.017	12.017 (1.066)	81314	0.40000	0.3811
56	Trichloroethene	130	12.071	12.076 (1.071)	97075	0,40000	0.3835
180	~ 2-nitropropane	43	11.968	11.973 (1.062)	130331	0,32000	0.000
57	Dibromomethane	93	12.141	12.146 (1.077)	78218	0.40000	0.3878
58	Bromodichloromethane	83	12.324	12.324 (1.093)	137123	0.40000	0.4014
60	Methyl Methacrylate	41	12.448	12.448 (1.104)	84960	0.40000	0.4072
59	1,4-dioxane	88	12.351	12.346 (1.096)	30387	0.40000	0.3912
61	~ methyl cyclohexane	83	12.998	13.003 (1.153)	131254	0.40000	0.3863
63	cis-1,3-Dichloropropene	75	13.543	13.548 (1.201)	113285	0.40000	0.3912
62	4-Methyl-2-pentanone	43	13.483	13.483 (1.196)	164884	0.40000	0.4137

Data File: /chem/gcms/mr.i/R022013I.b/ricb204.d Report Date: 21-Feb-2013 12:03

					AMOUNTS		
		QUANT SIG				CAL-AMT	ON-COL
Compo	ands	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=====	=======================================	8322	==		=======	======	======
64	trans-1,3-Dichloropropene	75	14.459	14.459 (0.827)	110296	0.40000	0.3852
65	Toluene	91	14.637	14.637 (0.837)	256069	0.40000	0.3724
66	1,1,2-Trichloroethane	83	14.718	14.718 (0.842)	72119	0.40000	0.3829
67	~ 2-methyl thiophene	97	14.837	14.837 (0.849)	219334	0.40000	0.3902
68	~ 3-methyl thiophene	97	15.112	15.112 (0.864)	224328	0.40000	0.3884
69	2-Hexanone	58	15.279	15.279 (0.874)	78850	0.40000	0.4116
70	Octane	85	15.657	15.662 (0.895)	83809	0.40000	0.3771
71	Dibromochloromethane	129	15.689	15.689 (0.897)	119060	0.40000	0.4075
72	1,2-Dibromoethane	107	16.099	16.104 (0.921)	125885	0.40000	0.4075
73	Tetrachloroethene	129	16,250	16.250 (0.929)	89902	0.40000	0.3748
75	~ 2,3-dimethylheptane	43	17.695	17.695 (1.012)	233898	0.40000	0.3810
74	Chlorobenzene	112	17.560	17.565 (1.004)	202539	0,40000	0.3802
76	Ethylbenzene	91	18,051	18.056 (1.032)	323605	0.40000	0.3792
77	~ 2-ethyl thiophene	97	18.207	18,212 (1.041)	244140	0.40000	0.3911
78	m&p-Xylene	91	18.326	18.326 (1.048)	499292	0.80000	0.7617
79	Nonane	57	19.124	19.124 (1.094)	171833	0.40000	0.3916
80	Bromoform	173	18,989	18.989 (1.086)	90251	0.40000	0.4166
8 1.	Styrene	104	19.081	19.086 (1.091)	165342	0.40000	0.4272
82	o-Xylene	91	19.183	19.183 (1.097)	262247	0.40000	0.3834
84	1,1,2,2-Tetrachloroethane	83	19,717	19.722 (1.128)	186050	0,40000	0.3987
85	1,2,3-Trichloropropane	110	19.987	19.987 (1.143)	55859	0.40000	0.3847
86	Cumene	105	20.202	20.202 (1.155)	377435	0.40000	0.3891
87	n-Propylbenzene	120	21.162	21.162 (1.210)	105472	0.40000	0.3952
88	2-chlorotoluene	126	21,195	21.194 (1.212)	96591	0.40000	0.3868
89	4-Ethy1toluene	105	21.453	21.453 (1.227)	383403	0.40000	0.3956
90	1,3,5-Trimethylbenzene	120	21.604	21.604 (1.236)	179329	0.40000	0.3983
91	Alpha-Methylstyrene	118	22,036	22.036 (1.260)	117018	0.40000	0.4250
92	Decane	57	22.289	22.289 (1.275)	219123	0.40000	0.4116
93	tert-butylbenzene	119	22,408	22.408 (1.282)	339649	0.40000	0.3906
94	1,2,4-Trimethylbenzene	105	22.440	22.440 (1.283)	315821	0.40000	0.3963
95	sec-butylbenzene	105	22.963	22.969 (1.313)	467960	0.40000	0.3918
96	1,3-Dichlorobenzene	146	22,925	22.925 (1.311)	207173	0.40000	0.3919
97	Benzyl Chloride	91	23.093	23.098 (1.321)	254159	0.40000	0.4136
98	1,4-Dichlorobenzene	146	23,109	23.114 (1.322)	207268	0.40000	0.3926
99	p-Cymene	119	23,330	23.330 (1.334)	393204	0.40000	0.3940
100	~ 1,2,3- Trimethylbenzene	105	23.395	23.395 (1.338)	289273	0.40000	0.3969
101	~ n-butylcyclohexane	83	23.573	23.572 (1.348)	261372	0.40000	0.3889
102	~ Indane	117	23.885	23.885 (1.366)	298937	0.40000	0.3825
103	1,2-Dichlorobenzene	146	23.858	23.864 (1.365)	202873	0.40000	0.3929
	n-butylbenzene	91	24.279	24.279 (1.389)	373669	0.40000	0.3971
105	~ Indene	116	24.155	24.160 (1.381)	271181	0.40000	0.4146
	Undecane	57	25,163	25.169 (1.439)	253888	0.40000	0.4153
107	~ 1,2-dimethyl-4-ethylenzene	119	25.131	25.136 (1.437)	396828	0.40000	0.3967
108	~ 1,2,4,5-tetramethylbenzene	119	26.048	26.048 (1.490)	407893	0.40000	0.4013
109	~ 1,2,3,5-tetramethylbenzene	119	26.172		256904	0.40000	0.3967
	~ 1,2,3,4-tetramethylbenzene	119	27.045	27,045 (1,547)	338518	0.40000	0.4028
111	Dodecane	57	27.622	27.622 (1.580)	235919	0.40000	0.4751

Data File: /chem/gcms/mr.i/R022013I.b/ricb204.d Report Date: 21-Feb-2013 12:03

					AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
	2===	==		======	=======	======	
112 1,2,4-Trichlorobenzene	180	27.725	27.725 (1.586)	184302	0.40000	0.4382	
113 Napthalene	128	27.962	27.962 (1.599)	441365	0.40000	0.4538	
114 ~ benzo(b) thiophene	134	28.151	28.151 (1.610)	336959	0.40000	0.4564	
115 Hexachlorobutadiene	225	28.474	28.474 (1.629)	163281	0.40000	0.3768	
116 1,2,3-trichlorobenzene	180	28.517	28.523 (1.631)	189315	0.40000	0.4299	
117 ~ 2-Methylnaphthalene	142	29.979	29.979 (1.715)	194029	2.50000	2,438	
118 ~ 1-Methylnaphthalene	142	30.297	30,291 (1,733)	187293	2.50000	2.401	

Data File: /chem/gcms/mr.i/R022013I.b/ricb205.d

Report Date: 21-Feb-2013 12:04

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /chem/gcms/mr.i/R022013I.b/ricb205.d

Lab Smp Id: ICAL5 Client Smp ID: STD1

Inj Date : 20-FEB-2013 20:14

Operator : 060487 Inst ID: mr.i

Smp Info : ICAL5,1,1,5,,STD1
Misc Info : R022013I,T015,

Comment :

Method : /chem/gcms/mr.i/R022013I.b/T015.m

Meth Date: 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205.d

Als bottle: 1 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50

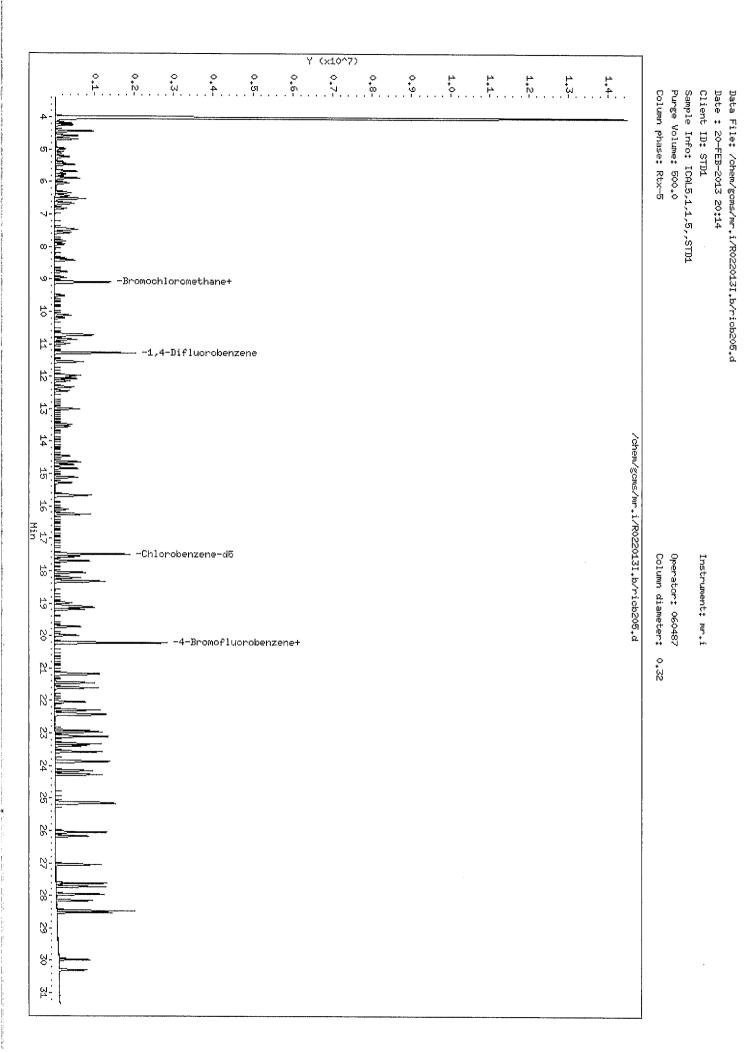
Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description					
DF	1.00000	Dilution Factor					
Vt	500.00000	Default Calibration Volume					
Vo	500.00000	Default Sample Volume					

Cpnd Variable

							AMOUNTS		
			QUANT SIG				CAL-AMT	ON-COL	
Coi	npo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
20 22 3			====	==		=======	222220	=======	
*	1	Bromochloromethane	128	9.089	9.089 (1.000)	466793	4.00000	4.000	
*	2	1,4-Difluorobenzene	114	11.278	11.278 (1.000)	2287260	4.00000	4.000	
*	3	Chlorobenzene-d5	117	17.490	17.490 (1.000)	1639236	4.00000	4,000	
\$	4	4-Bromofluorobenzene	95	20.218	20.218 (1.156)	1152627	4.00000	4.016	
M	83	Xylene (total)	100			1993789	3,00000	2.992	
	5	Chlorodifluoromethane	67	4.187	4.187 (0.461)	47712	1.00000	1.000	
	6	Propene	41	4.192	4.192 (0.461)	145492	1.00000	1.025	
	7	Dichlorodifluoromethane	85	4.246	4.246 (0.467)	491689	1.00000	1,011	
	8	Chloromethane	52	4.424	4.424 (0.487)	58713	1.00000	0.9875	
	9	1,2-Dichlorotetrafluoroethane	135	4.435	4.435 (0.488)	390958	1.00000	1.008	
	10	Methanol	31	4.570	4.570 (0.503)	56402	1,00000	1.302	
	11	~ acetaldehyde	44	4.570	4.570 (0.503)	374671	5.00000	5,358	
	12	Vinyl Chloride	62	4.591	4.591 (0.505)	205361	1.00000	1.004	
	13	n-Butane	43	4.678	4.678 (0.515)	292660	1.00000	0.9683	
	14	1,3-Butadiene	54	4.678	4.678 (0.515)	160237	1.00000	0.9970	
	15	Bromomethane	94	4.985	4.985 (0.548)	181942	1.00000	0.9577	

Data File: /chem/gcms/mr.i/R022013I.b/ricb205.d Report Date: 21-Feb-2013 12:04


							AMOUNT	3
		QUANT SIG					CAL-AMT	ON-COL
Compor	ınds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
=====		===	==	======	=====	=======	======	======
16	Chloroethane	64	5.125	5,125	(0.564)	101598	1.00000	0.9833
17	~ ethanol	31	5.233	5.233	(0.576)	308619	5.00000	4.821
18	Vinyl Bromide	106	5.416	5.416	(0.596)	188671	1.00000	0.9867
19	2-methyl butane	43	5.470	5.470	(0,602)	227092	1.00000	0.9888
20	Trichlorofluoromethane	101	5.675	5.675	(0.624)	476217	1.00000	1.008
21	Acrolein	56	5.670	5.670	(0.624)	65844	1.00000	0.9421
22	Acetonitrile	40	5.729	5.729	(0.630)	76466	1.00000	1.074
25	Pentane	72	5.896	5.896	(0.649)	38840	1.00000	1.032
23	Acetone	58	5,783	5.783	(0.636)	112685	1.00000	1.176
24	Isopropyl alcohol	45	5,885	5.885	(0.648)	288341	1.00000	1.078
26	Ethyl Ether	3 1.	6.047	6.047	(0.665)	201186	1.00000	1,012
27	1,1-Dichloroethene	96	6.344	6.344	(0.698)	181932	1.00000	0.9712
29	Acrylonitrile	53	6.419	6.419	(0.706)	145770	1.00000	1.006
3 0	${\tt 1,1,2-Trichlorotrifluoroethane}$	101	6.522	6.522	(0.718)	388027	1.00000	0.9963
28	tert-butanol	59	6.441	6.441	(0.709)	330173	1.00000	1.032
31	Methylene Chloride	84	6,662	6.662	(0,733)	172012	1.00000	1.023
32	3-Chloropropene	39	6.684	6.684	(0.735)	139854	1.00000	1.055
3 3	Carbon Disulfide	76	6.824	6.824	(0.751)	531093	1.00000	0.9888
35	~ 2-Methyl Pentane	43	7.476	7.476	(0.823)	425162	1,00000	1.018
34	trans-1,2-Dichloroethene	96	7.444	7.444	(0.819)	187200	1.00000	0.9670
36	Methyl-t-Butyl Ether	73	7.568	7.568	(0.833)	499707	1,00000	1.010
37	1,1-Dichloroethane	63	7.832	7.832	(0.862)	338293	1.00000	1.008
38	Vinyl Acetate	43	7.935	7.935	(0.873)	447080	1.00000	1.001
39	2-Butanone	72	8.355	8,355	(0.919)	90407	1.00000	0.9646
40	Hexane	56	8.420	8.420	(0.926)	158621	1.00000	0.9890
41.	cis 1,2-Dichloroethene	96	8.776	8.776	(0.966)	192238	1.00000	0.9796
42	Ethyl acetate	43	8.954	8,954	(0.985)	401649	1.00000	1.015
43	Chloroform	83	9.110	9.110	(1.002)	374651	1.00000	1.001
44	Tetrahydrofuran	42	9.509	9.509	(1.046)	213168	1.00000	1.010
45	1,1,1-Trichloroethane	97	10.118	10.118	(1.113)	364370	1.00000	1.001
46	1,2-Dichloroethane	62	10.199	10.199	(0.904)	248419	1.00000	0.9919
49	Cyclohexane	69	10.728	10.728	(0.951)	88345	1.00000	0.9839
48	Benzene	78	10.712	10.712	(0.950)	565311	1.00000	0,9764
50	Carbon Tetrachloride	117	10.744	10.744	(0.953)	263957	1.00000	0.8826
51	~ 2,3-dimethylpentane	71	10.863	10.863	(0.963)	121018	1.00000	0.9928
47	1-Butanol	31	10.679	10.679	(0.947)	55175	1.00000	0.9792
52	~ Thiophene	84	10.987	10.987	(0.974)	336028	1.00000	0.9937
53	2,2,4-trimethylpentane	57	11.553	11.553	(1.024)	932021	1.00000	0.9938
	Heptane	71	11.973	11,973		200155	1.00000	0.9852
	1,2-Dichloropropane	63	12.017	12.017	(1.065)	209269	1.00000	0.9859
	Trichloroethene	130	12.076	12.076	(1.071)	251969	1.00000	0.9784
	~ 2-nitropropane	43	11.973	11,973		341464	1.00000	0.000
	Dibromomethane	93	12,146	12.146		204643	1.00000	0.9867
	Bromodichloromethane	83	12,324	12.324		371695	1.00000	1.010
	Methyl Methacrylate	41	12.448	12.448		235976	1.00000	1.031
	1,4-dioxane	88	12.346	12.346	(1.095)	86164	1.00000	1,053
61	methyl cyclohexane	83	13.003	13.003	(1.153)	341319	1.00000	0.9928

Data File: /chem/gcms/mr.i/R022013I.b/ricb205.d Report Date: 21-Feb-2013 12:04

AMOUNTS OHANT STO ON-COL CAL-AMT Compounds MASS RТ EXP RT REL RT RESPONSE (ppb (v/v)) (ppb(v/v))----======= ----------63 cis-1,3-Dichloropropene 75 13,548 13,548 (1,201) 301289 1.00000 1.002 62 4-Methyl-2-pentanone 4.3 13.483 13.483 (1.196) 415836 1.00000 1.017 64 trans-1,3-Dichloropropene 75 14.459 14.459 (0.827) 298165 1,00000 1.003 65 Toluene 91 14.637 14.637 (0.837) 671623 1.00000 0.9875 66 1,1,2-Trichloroethane 14.718 14.718 (0.842) 83 190126 1,00000 0.9997 67 ~ 2-methyl thiophene 14.837 14.837 (0.848) 576073 1,00000 1.001 68 ~ 3-methyl thiophene 97 15.112 15.112 (0.864) 583599 1.00000 0.9914 69 2-Hexanone 15.279 15.279 (0.874) 58 218139 1.00000 1.053 70 Octane 85 15,662 15,662 (0.895) 218046 1.00000 0.9754 71 Dibromochloromethane 15.689 15.689 (0.897) 129 345106 1,00000 1.000 72 1,2-Dibromoethane 107 16.104 16.104 (0.921) 343579 1,00000 1.019 73 Tetrachloroethene 129 16.250 16.250 (0.929) 235953 1,00000 0.9795 75 ~ 2,3-dimethylheptane 43 17.695 17.695 (1.012) 606505 1,00000 1.006 74 Chlorobenzene 112 17.565 17.565 (1.004) 526748 1.00000 0.9816 76 Ethylbenzene 18.056 18.056 (1.032) 91 849272 1.00000 0.9943 77 ~ 2-ethyl thiophene 97 18.212 18.212 (1.041) 644007 1.00000 1.002 78 m&p-Xylene 91 18,326 18,326 (1.048) 1318151 2.00000 1,999 79 Nonane 57 19.124 19.124 (1.093) 450547 1.00000 1.016 80 Bromoform 18.989 18.989 (1.086) 173 297241 1.00000 0.9594 81 Styrene 104 19,086 19.086 (1.091) 481193 1.00000 1.028 82 o-Xylene 91 19.183 19.183 (1.097) 675638 1.00000 0.9932 84 1,1,2,2-Tetrachloroethane 19.722 19.722 (1.128) 83 507916 1,00000 1.034 85 1,2,3-Trichloropropane 110 19.987 19.987 (1.143) 149910 1,00000 1.006 86 Cumene 20.202 20.202 (1.155) 105 984436 1.00000 1.002 87 n-Propylbenzene 120 21.162 21.162 (1.210) 283756 1.00000 1.007 88 2-chlorotoluene 126 21.194 21.194 (1.212) 254603 1.00000 0.9942 89 4-Ethyltoluene 105 21.453 21.453 (1.227) 1025223 1.00000 1.018 90 1,3,5-Trimethylbenzene 120 21.604 21.604 (1.235) 477170 1,00000 1.005 22.036 22.036 (1.260) 91 Alpha-Methylstyrene 118 365500 1.00000 0.9808 92 Decane 57 22.289 22.289 (1.274) 581860 1.00000 1.046 93 tert-butylbenzene 119 22,408 22,408 (1,281) 905669 1.00000 1.012 94 1,2,4-Trimethylbenzene 105 22,440 22,440 (1,283) 851181 1.00000 1.024 95 sec-butylbenzene 105 22.969 22.969 (1.313) 1252669 1.00000 1.023 96 1,3-Dichlorobenzene 22.925 22.925 (1.311) 146 559285 1.00000 0.9936 97 Benzyl Chloride 91 23.098 23.098 (1.321) 736797 1.00000 1.044 98 1,4-Dichlorobenzene 146 23.114 23.114 (1.322) 563201 1.00000 0.9954 99 p-Cymene 119 23.330 23.330 (1.334) 1061814 1.00000 1.021 100 ~ 1,2,3- Trimethylbenzene 105 23.395 23.395 (1,338) 749908 1.00000 1.005 101 ~ n-butylcyclohexane 83 23.572 23.572 (1,348) 693619 1.00000 1.023 102 ~ Indane 117 23.885 23.885 (1.366) 811044 1.00000 1.012 103 1,2-Dichlorobenzene 146 23.864 23.864 (1.364) 546584 1.00000 1.009 104 n-butylbenzene 91 24.279 24.279 (1.388) 1017327 1,00000 1.047 105 ~ Indene 24.160 24.160 (1.381) 116 766892 1.00000 1,016 106 Undecane 57 25.169 25.169 (1.439) 689225 1,00000 1.060 107 ~ 1,2-dimethyl-4-ethylenzene 119 25.136 25.136 (1.437) 1064441 1,00000 1.026 108 ~ 1,2,4,5-tetramethylbenzene 26.048 26.048 (1.489) 119 1099898 1,00000 1.036 109 ~ 1,2,3,5-tetramethylbenzene 119 26,172 26,172 (1,496) 693689 1.00000 1.043

Data File: /chem/gcms/mr.i/R022013I.b/ricb205.d Report Date: 21-Feb-2013 12:04

					AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v)) (ppb(v/v))	
	====	==		=======	#=====	=======	
110 ~ 1,2,3,4-tetramethylbenzene	119	27.045	27.045 (1.546)	922725	1.00000	1.062	
111 Dodecane	57	27.622	27.622 (1.579)	540968	1.00000	0.9796	
112 1,2,4-Trichlorobenzene	180	27.725	27.725 (1.585)	537911	1.00000	1.141	
113 Napthalene	128	27,962	27.962 (1.599)	1278733	1.00000	1.115	
114 ~ benzo(b) thiophene	134	28.151	28,151 (1.610)	909299	1.00000	1,132	
115 Hexachlorobutadiene	225	28,474	28,474 (1.628)	495325	1.00000	1.095	
116 1,2,3-trichlorobenzene	180	28,523	28.523 (1.631)	561136	1.00000	1,189	
117 ~ 2-Methylnaphthalene	142	29,979	29.979 (1.714)	452313	6.25000	4.039	
118 ~ 1-Methylnaphthalene	142	30.291	30.291 (1.732)	440815	6.25000	4.494	

Data File: /chem/gcms/mr.i/R022013I.b/ricb206.d

Report Date: 21-Feb-2013 12:04

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /chem/gcms/mr.i/R022013I.b/ricb206.d

Lab Smp Id: ICAL6 Client Smp ID: STD2

Inj Date : 20-FEB-2013 21:01

Inst ID: mr.i

Operator : 060487 Smp Info : ICAL6,1,1,6,,STD2 Misc Info: R022013I, T015,

Comment

Method : /chem/gcms/mr.i/R022013I.b/T015.m Meth Date : 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date : 20-FEB-2013 21:01 Cal File: ricb206.d

Als bottle: 1 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50

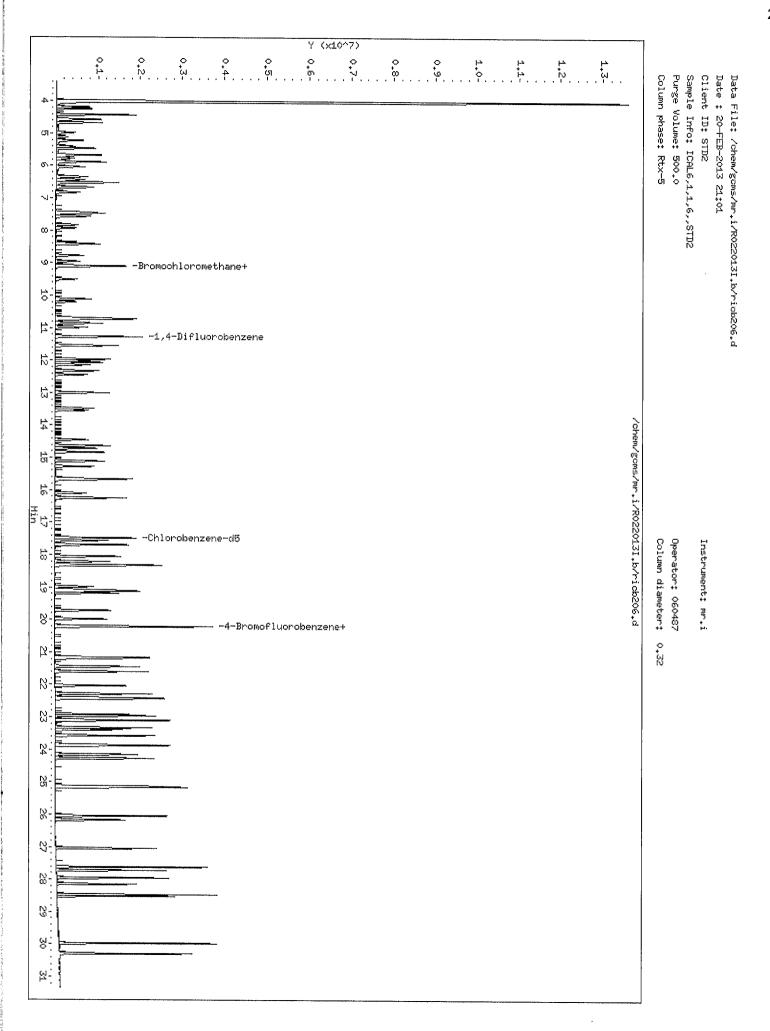
Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1,00000	Dilution Factor
Vt	500,00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

							AMOUNT	78
			QUANT SIG				CAL-AMT	ON-COL
Co	rogmo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
===		= = = = = = = = = = = = = = = = = = =	====	==	=======================================		======	22 to 2 to 3 to 3 to 3 to 3 to 3 to 3 to
*	1	Bromochloromethane	128	9.094	9.089 (1.000)	469377	4.00000	4.000
*	2	1,4-Difluorobenzene	114	11.278	11.278 (1.000)	2304849	4.00000	4.000
*	3-	Chlorobenzene-d5	117	17.490	17.490 (1.000)	1658847	4.00000	4.000
\$	4	4-Bromofluorobenzene	95	20.218	20.218 (1.156)	1182105	4.00000	4.165
М	83	Xylene (total)	100			4041598	6.00000	5.857
	5	Chlorodifluoromethane	67	4.187	4.187 (0.460)	93476	2.00000	1.788
	6	Propene	41	4.198	4.192 (0.462)	288162	2.00000	1.808
	7	Dichlorodifluoromethane	85	4.252	4.246 (0.468)	967919	2.00000	1.823
	8	Chloromethane	52	4.424	4.424 (0.486)	115652	2.00000	1.688
	9	1,2-Dichlorotetrafluoroethane	135	4.435	4.435 (0.488)	771083	2.00000	1.836
	10	Methanol	31	4.564	4,570 (0.502)	98641	2.00000	2.000
	11	~ acetaldehyde	44	4.570	4.570 (0.502)	721937	10.0000	8.668
	12	Vinyl Chloride	62	4.591	4.591 (0.505)	409011	2.00000	1.839
	13	n-Butane	43	4.683	4.678 (0.515)	579297	2.00000	1,700
	14	1,3-Butadiene	54	4.678	4.678 (0.514)	316175	2.00000	1.804
	15	Bromomethane	94	4.990	4.985 (0.549)	362724	2,00000	1,726

Data File: /chem/gcms/mr.i/R022013I.b/ricb206.d Report Date: 21-Feb-2013 12:04


							AMOUNTS	
		QUANT SIG					CAL-AMT	ON-COL
Compou	nds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
=====		5225	==	=====	=====	=======	======	======
16	Chloroethane	64	5,125	5.125	(0.564)	201430	2.00000	1.792
17	~ ethanol	31	5.233	5.233	(0.575)	619351	10.0000	8.255
18	Vinyl Bromide	106	5,416	5,416	(0.596)	380046	2.00000	1.872
19	2-methyl butane	43	5,476	5.470	(0.602)	451976	2.00000	1.820
20	Trichlorofluoromethane	101	5,681	5.675	(0.625)	948264	2.00000	1.891
21	Acrolein	56	5.675	5,670	(0.624)	135215	2.00000	1,649
22	Acetonitrile	40	5,729	5.729	(0.630)	146200	2.00000	1,960
25	Pentane	72	5.896	5.896	(0.648)	76827	2.00000	1,949
23	Acetone	58	5.783	5.783	(0.636)	202142	2.00000	2.000
24	Isopropyl alcohol	45	5.880	5.885	(0.647)	562963	2.00000	1.960
26	Ethyl Ether	31	6.042	6.047	(0.664)	398634	2.00000	1.877
27	1,1-Dichloroethene	96	6.344	6.344	(0.698)	368191	2.00000	1.841
29	Acrylonitrile	53	6.419	6.419	(0.706)	295729	2.00000	1.967
30	1,1,2-Trichlorotrifluoroethane	101	6.522	6.522	(0.717)	779400	2,00000	1.898
28	tert-butanol	59	6.441	6.441	(0.708)	656891	2.00000	1.964
3 1	Methylene Chloride	84	6.667	6.662	(0.733)	337728	2,00000	1.846
32	3-Chloropropene	39	6.683	6.684	(0.735)	263090	2.00000	1.836
33	Carbon Disulfide	76	6.829	6.824	(0.751)	1074780	2.00000	1.889
35	~ 2-Methyl Pentane	43	7,476	7.476	(0.822)	851823	2.00000	1.906
34	trans-1,2-Dichloroethene	96	7.444	7.444	(0.819)	376218	2.00000	1.824
36	Methyl-t-Butyl Ether	73	7.568	7,568	(0.832)	999029	2.00000	1.928
37	1,1-Dichloroethane	63	7.837	7.832	(0.862)	677103	2.00000	1.911
38	Vinyl Acetate	43	7.935	7.935	(0.872)	905440	2.00000	1.977
39	2-Butanone	72	8.355	8.355	(0.919)	1.83484	2.00000	1.775
4.0	Hexane	56	8.420	8.420	(0,926)	316195	2.00000	1.856
41	cis 1,2-Dichloroethene	96	8.776	8.776	(0.965)	384735	2.00000	1.850
42	Ethyl acetate	43	8.954	8.954	(0.985)	810427	2.00000	1.961
43	Chloroform	83	9.110	9.110	(1.002)	752958	2.00000	1.904
44	Tetrahydrofuran	42	9.504	9.509	(1.045)	423582	2,00000	1.882
45	1,1,1-Trichloroethane	97	10.118	10.118	(1.113)	735381	2.00000	1.938
46	1,2-Dichloroethane	62	10.199	10.199	(0.904)	503686	2.00000	1.924
49	Cyclohexane	69	10.728	10.728	(0.951)	180126	2.00000	1.930
48	Benzene	78	10.712	10.712	(0.950)	1139096	2,00000	1.881
50	Carbon Tetrachloride	117	10.744	10.744	(0.953)	475928	2.00000	1.636
51	~ 2,3-dimethylpentane	71	10.863	10.863	(0.963)	244160	2,00000	1.945
47	1-Butanol	31	10.679	10.679	(0.947)	117834	2.00000	2.086
52	~ Thiophene	84	10.987	10.987	(0.974)	677822	2.00000	1.950
53	2,2,4-trimethylpentane	57	11.553	11.553	(1.024)	1878762	2.00000	1.927
54	Heptane	71	11.973	11.973	(1.062)	403812	2,00000	1.930
55	1,2-Dichloropropane	63	12,017	12.017	(1,065)	423974	2.00000	1.933
56	Trichloroethene	130	12,076	12.076	(1.071)	515155	2.00000	1.970
180	~ 2-nitropropane	43	11.973	11.973	(1.062)	689316	2.00000	0.000
57	Dibromomethane	93	12.146	12.146	(1,077)	420869	2.00000	2.010
58	Bromodichloromethane	83	12.324	12.324	(1.093)	762742	2.00000	2.121
60	Methyl Methacrylate	41	12,448	12.448	(1.104)	486491	2.00000	2.181
59	1,4-dioxane	88	12.340	12.346	(1.094)	172558	2.00000	2.105
61	~ methyl cyclohexane	83	13.003	13.003	(1,153)	693156	2.00000	1.974

Data File: /chem/gcms/mr.i/R022013I.b/ricb206.d Report Date: 21-Feb-2013 12:04

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	* ===	==	===== ======		======	======
63 cis-1,3-Dichloropropene	75	13,548	13.548 (1.201)	617152	2,00000	2.044
62 4-Methyl-2-pentanone	43	13,483	13.483 (1.196)	853085	2.00000	2.042
64 trans-1,3-Dichloropropene	75	14,459	14.459 (0.827)	606049	2.00000	2.022
65 Toluene	91	14.637	14,637 (0.837)	1348321	2.00000	1.902
66 1,1,2-Trichloroethane	83	14.723	14.718 (0.842)	385966	2.00000	1.970
67 ~ 2-methyl thiophene	97	14.837	14.837 (0.848)	1175187	2.00000	2.002
68 ~ 3-methyl thiophene	97	15.112	15.112 (0.864)	1202517	2.00000	1.996
69 2-Hexanone	58	15.279	15.279 (0.874)	452016	2.00000	2.189
70 Octane	85	15.662	15.662 (0.895)	451854	2.00000	1.958
71 Dibromochloromethane	129	15.689	15.689 (0.897)	719639	2.00000	2.277
72 1,2-Dibromoethane	107	16.104	16.104 (0.921)	715536	2.00000	2.171
73 Tetrachloroethene	129	16.250	16.250 (0.929)	481635	2.00000	1.938
75 ~ 2,3-dimethylheptane	43	17.695	17.695 (1.012)	1228688	2,00000	1.933
74 Chlorobenzene	112	17,560	17.565 (1.004)	1076965	2.00000	1.949
76 Ethylbenzene	91	18.056	18.056 (1.032)	1721400	2.00000	1.946
77 ~ 2-ethyl thiophene	97	18.212	18.212 (1.041)	1319238	2.00000	2.020
78 m&p~Xylene	91	18.326	18.326 (1.048)	2672812	4.00000	3,924
79 Nonane	57	19.124	19.124 (1.093)	915207	2.00000	1.998
80 Bromoform	173	18.989	18.989 (1.086)	633029	2,00000	2.545
81 Styrene	104	19.081	19.086 (1.091)	1025316	2.00000	2.378
82 o-Xylene	91	19.183	19,183 (1.097)	1368786	2.00000	1.933
84 1,1,2,2-Tetrachloroethane	83	19.717	19.722 (1.127)	1022978	2.00000	2.079
85 1,2,3-Trichloropropane	110	19.986	19.987 (1.143)	304220	2.00000	2.006
86 Cumene	105	20.202	20.202 (1.155)	2002301	2.00000	1.983
87 n-Propylbenzene	120	21,162	21.162 (1.210)	574568	2.00000	2.046
88 2-chlorotoluene	126	21.200	21.194 (1.212)	516583	2.00000	1,985
89 4-Ethyltoluene	105	21.453	21.453 (1.227)	2077275	2.00000	2.040
90 1,3,5-Trimethylbenzene	120	21.604	21.604 (1.235)	973240	2.00000	2.052
91 Alpha-Methylstyrene	118	22.036	22.036 (1.260)	806486	2.00000	2.474
92 Decane	57	22,289	22.289 (1.274)	1176764	2.00000	2.093
93 tert-butylbenzene	119	22,413	22.408 (1.281)	1820932	2.00000	2.005
94 1,2,4-Trimethylbenzene	105	22.440	22.440 (1.283)	1720570	2.00000	2.054
95 sec-butylbenzene	105	22.968	22.969 (1.313)	2525380	2.00000	2.019
96 1,3-Dichlorobenzene	146	22.925	22,925 (1.311)	1148914	2,00000	2.061
97 Benzyl Chloride	91	23.098	23.098 (1.321)	1503101	2.00000	2.247
98 1,4-Dichlorobenzene	146	23,114	23.114 (1.322)	1157117	2,,00000	2.074
99 p-Cymene	119	23,330	23.330 (1.334)	2164101	2.00000	2.061
100 ~ 1,2,3- Trimethylbenzene	105	23,394	23.395 (1.338)	1509662	2.00000	1.987
101 ~ n-butylcyclohexane	83	23.572	23.572 (1.348)	1390723	2.00000	1.987
102 ~ Indane	117	23.885	23.885 (1.366)	1628667	2.00000	1.997
103 1,2-Dichlorobenzene	146	23.858	23.864 (1.364)	1099657	2.00000	2.030
104 n-butylbenzene	91	24.279	24.279 (1.388)	2033460	2,00000	2.052
105 ~ Indene	116	24.160	24.160 (1.381)	1625829	2.00000	2.273
106 Undecane	57	25,169	25,169 (1,439)	1459235	2.00000	2.208
107 ~ 1,2-dimethyl-4-ethylenze	ne 119	25,136	25.136 (1.437)	2164307	2.00000	2.054
108 ~ 1,2,4,5-tetramethylbenze	ne 119	26.047	26.048 (1.489)	2261942	2.00000	2.097
109 ~ 1,2,3,5-tetramethylbenze	ne 119	26.172	26.172 (1.496)	1404249	2.00000	2.057

Data File: /chem/gcms/mr.i/R022013I.b/ricb206.d Report Date: 21-Feb-2013 12:04

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	===	<u></u>		======	
110 ~ 1,2,3,4-tetramethylbenzene	119	27.050	27.045 (1.547)	1903586	2.00000	2.125
111 Dodecane	57	27.622	27.622 (1.579)	1551610	2,00000	2.663
112 1,2,4-Trichlorobenzene	180	27.725	27.725 (1.585)	1138134	2.00000	2,447
113 Napthalene	128	27.962	27.962 (1.599)	2796036	2,00000	2.561
114 ~ benzo(b) thiophene	134	28.151	28.151 (1,610)	1910869	2.00000	2.366
115 Hexachlorobutadiene	225	28.474	28.474 (1,628)	981048	2.00000	2.124
116 1,2,3-trichlorobenzene	180	28.523	28.523 (1.631)	1167167	2.00000	2,409
117 ~ 2-Methylnaphthalene	142	29.979	29.979 (1.714)	2231060	12.5000	19,42
118 ~ 1-Methylnaphthalene	142	30.297	30.291 (1.732)	1939781	12 5000	19 20

Data File: /chem/gcms/mr.i/R022013I.b/ricb207.d

Report Date: 21-Feb-2013 12:04

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /chem/gcms/mr.i/R022013I.b/ricb207.d

Lab Smp Id: ICAL7 Client Smp ID: STD4

Inj Date : 20-FEB-2013 21:50

Operator : 060487 Inst ID: mr.i

Smp Info : ICAL7,1,1,7,,STD4 Misc Info: R022013I, T015,

Comment :

Method : /chem/gcms/mr.i/R022013I.b/T015.m Meth Date : 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date : 20-FEB-2013 21:50 Cal File: ricb207.d

Als bottle: 1 Calibration Sample, Level: 7

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50

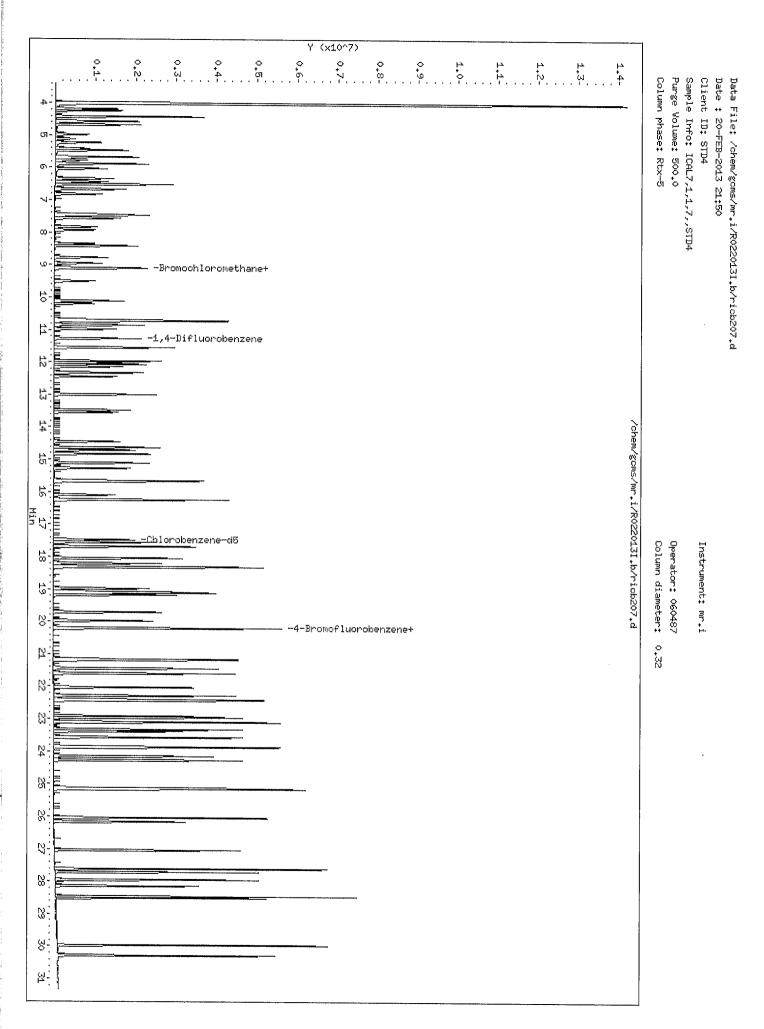
Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

							PRIONA	?S
			QUANT SIG				CAL-AMT	ON-COL
Co	mpo	ınds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
227 120			====	==	22255 SSSSS	=======		======
*	1	Bromochloromethane	128	9.094	9.089 (1.000)	499938	4.00000	4.000
*	2	1,4-Difluorobenzene	114	11.278	11.278 (1.000)	2420270	4.00000	4.000
*	3	Chlorobenzene-d5	117	17.490	17.490 (1.000)	1759144	4.00000	4,000
\$	4	4-Bromofluorobenzene	95	20.219	20.218 (1.156)	1265233	4.00000	4.168
M	83	Xylene (total)	100			8257365	12.0000	11.40
	5	Chlorodifluoromethane	67	4.187	4,187 (0.460)	183880	4.00000	3.401
	6	Propene	41	4.198	4.192 (0.462)	565178	4.00000	3.474
	7	Dichlorodifluoromethane	85	4,246	4.246 (0.467)	1907691	4.00000	3.463
	8	Chloromethane	52	4.424	4.424 (0.486)	225928	4.00000	3,242
	9	1,2-Dichlorotetrafluoroethane	135	4,435	4.435 (0.488)	1528236	4.00000	3.501
	10	Methanol	31	4,564	4.570 (0.502)	178505	4.00000	3,674
	11	~ acetaldehyde	44	4.570	4.570 (0.502)	1423191	20.0000	17,18
	12	Vinyl Chloride	62	4.591	4.591 (0.505)	807037	4.00000	3.493
	13	n-Butane	43	4.683	4.678 (0.515)	1130949	4.00000	3.235
	14	1,3-Butadiene	54	4.678	4.678 (0.514)	626970	4.00000	3,451
	15	Bromomethane	94	4.990	4.985 (0.549)	723758	4.00000	3,341

Data File: /chem/gcms/mr.i/R022013I.b/ricb207.d Report Date: 21-Feb-2013 12:04


		QUANT SIG				CAL-AMT	ON-COL
Compou	nds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
=====	=======================================	====	==	=======================================	======		
16	Chloroethane	64	5,125	5.125 (0.564)	404248	4.00000	3,467
17	~ ethanol	31	5.233	5.233 (0.575)	1165036	20.0000	15.41
18	Vinyl Bromide	106	5,416	5.416 (0.596)	765176	4.00000	3.608
19	2-methyl butane	43	5.476	5.470 (0.602)	900293	4.00000	3,491
20	Trichlorofluoromethane	101	5,681	5.675 (0.625)	1893703	4.00000	3.614
21	Acrolein	56	5.675	5.670 (0.624)	238921	4.00000	2.970
22	Acetonitrile	40	5.729	5.729 (0.630)	293919	4.00000	3.771
25	Pentane	72	5.896	5.896 (0.648)	154456	4.00000	3,739
23	Acetone	58	5.783	5.783 (0.636)	418428	4.00000	3.943
24	Isopropyl alcohol	45	5.886	5.885 (0.647)	1115470	4.00000	3.757
26	Ethyl Ether	31	6.042	6.047 (0.664)	796407	4.00000	3.593
27	1,1-Dichloroethene	96	6.344	6.344 (0.698)	739154	4.00000	3,548
29	Acrylonitrile	53	6.419	6.419 (0.706)	595800	4.00000	3.764
30	1,1,2-Trichlorotrifluoroethane	101	6,522	6.522 (0.717)	1566090	4,00000	3.645
28	tert-butanol	59	6.446	6.441 (0.709)	1324008	4.00000	3.771
31	Methylene Chloride	84	6.667	6.662 (0.733)	670573	4.00000	3.565
32	3-Chloropropene	39	6.684	6.684 (0.735)	557733	4.00000	3.707
33	Carbon Disulfide	76	6.829	6.824 (0.751)	2172542	4.00000	3.648
35	~ 2-Methyl Pentane	43	7.482	7.476 (0.823)	1705363	4.00000	3.660
34	trans-1,2-Dichloroethene	96	7.444	7.444 (0.819)	767085	4.00000	3.568
36	Methyl-t-Butyl Ether	73	7.568	7.568 (0.832)	2019155	4.00000	3.711
37	1,1-Dichloroethane	63	7.838	7.832 (0.862)	1356880	4.00000	3.658
38	Vinyl Acetate	43	7.935	7.935 (0.872)	1898829	4.00000	3.910
39	2-Butanone	72	8.355	8.355 (0.919)	377018	4.00000	3.552
40	Hexane	56	8.420	8.420 (0.926)	640309	4.00000	3.599
41	cis 1,2-Dichloroethene	96	8.781	8.776 (0.966)	780443	4.00000	3,596
42	Ethyl acetate	43	8.954	8.954 (0.985)	1.646241	4.00000	3.790
43	Chloroform	83	9.116	9.110 (1.002)	1510977	4.00000	3.651
44	Tetrahydrofuran	42	9,504	9.509 (1.045)	853316	4.00000	3.640
45	1,1,1-Trichloroethane	97	10.119	10.118 (1.113)	1485209	4.00000	3.726
46	1,2-Dichloroethane	62	10.205	10.199 (0.905)	1003677	4.00000	3.705
49	Cyclohexane	69	10.733	10.728 (0.952)	363377	4.00000	3,753
48	Benzene	78	10.712	10.712 (0.950)	2307780	4.00000	3.686
50	Carbon Tetrachloride	117	10.744	10.744 (0.953)	1612424	4.00000	5.012
51	~ 2,3-dimethylpentane	71	10.863	10.863 (0.963)	496747	4.00000	3.805
47	1-Butanol	31	10.674	10.679 (0.946)	243113	4,00000	4.065
52	~ Thiophene	84	10.992	10.987 (0.975)	1379165	4.00000	3.813
53	2,2,4-trimethylpentane	57	11,553	11.553 (1.024)	3796309	4.00000	3.754
54	Heptane	71	11,974	11.973 (1.062)	825923	4.00000	3.797
55	1,2-Dichloropropane	63	12,017	12.017 (1.065)	859295	4.00000	3.773
56	Trichloroethene	130	12.076	12.076 (1.071)	1053069	4.00000	3.862
1.80	~ 2-nitropropane	43	11.974	11.973 (1.062)	1380497	4,00000	0.000
57	Dibromomethane	93	12.146	12.146 (1.077)	862929	4.00000	3.937
58	Bromodichloromethane	83	12.324	12,324 (1.093)	1625407	4,00000	4.250
60	Methyl Methacrylate	41.	12.448	12.448 (1.104)	1003714	4.00000	4.225
59	1,4-dioxane	88	12.340	12.346 (1.094)	341427	4.00000	3.974
61	~ methyl cyclohexane	83	13.004	13.003 (1.153)	1409131	4.00000	3.850

Data File: /chem/gcms/mr.i/R022013I.b/ricb207.d Report Date: 21-Feb-2013 12:04

						STYUOMA	!
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
=====			==	PREER 000000		======	
63	cis-1,3-Dichloropropene	75	13,548	13.548 (1.201)	1255611	4.00000	3.967
62	4-Methyl-2-pentanone	43	13.483	13.483 (1.196)	1756394	4.00000	4.003
64	trans-1,3-Dichloropropene	75	14.459	14.459 (0.827)	1276555	4.00000	4.013
65	Toluene	91	14.637	14.637 (0.837)	2760146	4.00000	3.722
66	1,1,2-Trichloroethane	83	14.724	14.718 (0.842)	785336	4.00000	3.815
67	~ 2-methyl thiophene	97	14.837	14.837 (0.848)	2412968	4.00000	3.896
68	~ 3-methyl thiophene	97	15.117	15.112 (0.864)	2459322	4.00000	3.873
69	2-Hexanone	58	15.279	15.279 (0.874)	955656	4.00000	4.286
70	Octane	85	15.662	15.662 (0.895)	927507	4.00000	3.823
71	Dibromochloromethane	129	15.689	15,689 (0.897)	1681599	4,00000	4.814
72	1,2-Dibromoethane	107	16.104	16.104 (0.921)	1479440	4.00000	4.192
73	Tetrachloroethene	129	16.250	16,250 (0,929)	991008	4.00000	3.798
75	~ 2,3-dimethylheptane	43	17,695	17.695 (1.012)	2478249	4.00000	3.727
74	Chlorobenzene	112	17.565	17.565 (1.004)	2208762	4.00000	3.806
76	Ethylbenzene	91	18,056	18.056 (1.032)	3512281	4.00000	3,784
77	~ 2-ethyl thiophene	97	18.213	18.212 (1.041)	2706860	4.00000	3,923
78	m&p-Xylene	91	18.331	18.326 (1.048)	5488275	8.00000	7.663
79	Nonane	57	19.124	19.124 (1.093)	1864155	4.00000	3,870
80	Bromoform	173	18,989	18.989 (1.086)	1655476	4.00000	5.634
81	Styrene	104	19,086	19.086 (1.091)	2129995	4.00000	4.509
82	o-Xylene	91	19.189	19.183 (1.097)	2769090	4.00000	3.736
84	1,1,2,2-Tetrachloroethane	83	19.717	19.722 (1.127)	2094098	4.00000	4,011
85	1,2,3-Trichloropropane	110	19.987	19.987 (1.143)	620658	4.00000	3,881
86	Cumene	105	20,208	20.202 (1.155)	4107524	4.00000	3.868
87	n-Propylbenzene	120	21,168	21.162 (1.210)	1187138	4.00000	3.990
88	2-chlorotoluene	126	21,200	21.194 (1.212)	1057707	4.00000	3.860
89	4-Ethyltoluene	1.05	21,453	21.453 (1.227)	4249373	4.00000	3.948
90	1,3,5-Trimethylbenzene	120	21.604	21.604 (1.235)	2004264	4.00000	3.988
91	Alpha-Methylstyrene	118	22.036	22.036 (1.260)	1665442	4.00000	4.583
92	Decane	57	22.289	22.289 (1.274)	2386788	4.00000	4.002
93	tert-butylbenzene	119	22,413	22,408 (1,281)	3737475	4.00000	3.903
94	1,2,4-Trimethylbenzene	105	22.440	22,440 (1,283)	3518569	4.00000	3.968
95	sec-butylbenzene	105	22,969	22.969 (1.313)	5123491	4.00000	3.890
96	1,3-Dichlorobenzene	1.46	22,925	22.925 (1.311)	2367800	4.00000	4.004
97	Benzyl Chloride	91	23.098	23.098 (1.321)	3155743	4.00000	4.351
98	1,4-Dichlorobenzene	146	23.114	23.114 (1.322)	2402462	4.00000	4.048
99	p-Cymene	119	23.335	23,330 (1,334)	4393978	4.00000	3.955
1.00	~ 1,2,3- Trimethylbenzene	1.05	23.395	23,395 (1,338)	3124193	4.00000	3.898
	~ n-butylcyclohexane	83	23,578	23.572 (1.348)	2799999	4.00000	3.815
	~ Indane	117	23.885	23,885 (1,366)	3337214	4.00000	3,882
103	1,2-Dichlorobenzene	1.46	23.864	23.864 (1.364)	2269421	4.00000	3,960
	n-butylbenzene	91	24.279	24.279 (1.388)	4086141	4.00000	3,910
	~ Indene	116	24.160	24,160 (1.381)	3300898	4.00000	4.276
	Undecane	57	25.169	25.169 (1.439)	2892176	4.00000	4.100
	~ 1,2-dimethyl-4-ethylenzene	119	25,136	25.136 (1.437)	4381789	4.00000	3.937
	~ 1,2,4,5-tetramethylbenzene	119	26.053	26.048 (1.490)	4524383	4.00000	3,965
	~ 1,2,3,5-tetramethylbenzene	119	26.177	26.172 (1.497)	2779993	4.00000	3.871
	-						

Data File: /chem/gcms/mr.i/R022013I.b/ricb207.d Report Date: 21-Feb-2013 12:04

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
======================================	===	==		=======	======	======
110 ~ 1,2,3,4-tetramethylbenzene	119	27,051	27.045 (1.547)	3734862	4.00000	3.945
111 Dodecane	57	27,622	27.622 (1.579)	2932080	4.00000	4.574
112 1,2,4-Trichlorobenzene	180	27.730	27.725 (1.585)	2246491	4.00000	4.452
113 Napthalene	128	27.962	27.962 (1.599)	5382230	4.00000	4.526
114 ~ benzo(b) thiophene	134	28,151	28.151 (1.610)	3653061	4.00000	4.219
115 Hexachlorobutadiene	225	28.474	28.474 (1.628)	1967777	4.00000	4.014
116 1,2,3-trichlorobenzene	180	28.523	28.523 (1.631)	2214773	4.00000	4.256
117 ~ 2-Methylnaphthalene	142	29.979	29.979 (1.714)	4024073	25.0000	30.57
118 ~ 1-Methylnaphthalene	142	30.297	30.291 (1.732)	3342985	25.0000	28.39

Data File: /chem/gcms/mr.i/R022013I.b/ricb208.d

Report Date: 21-Feb-2013 12:04

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /chem/gcms/mr.i/R022013I.b/ricb208.d

Lab Smp Id: ICAL8 Client Smp ID: STD8

Inj Date : 20-FEB-2013 22:37

Operator: 060487 Inst ID: mr.i

Smp Info : ICAL8,1,1,8,,STD8 Misc Info : R022013I,TO15,

Comment

Method : /chem/gcms/mr.i/R022013I.b/T015.m

Meth Date: 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date: 20-FEB-2013 22:37 Cal File: ricb208.d

Als bottle: 1 Calibration Sample, Level: 8

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50

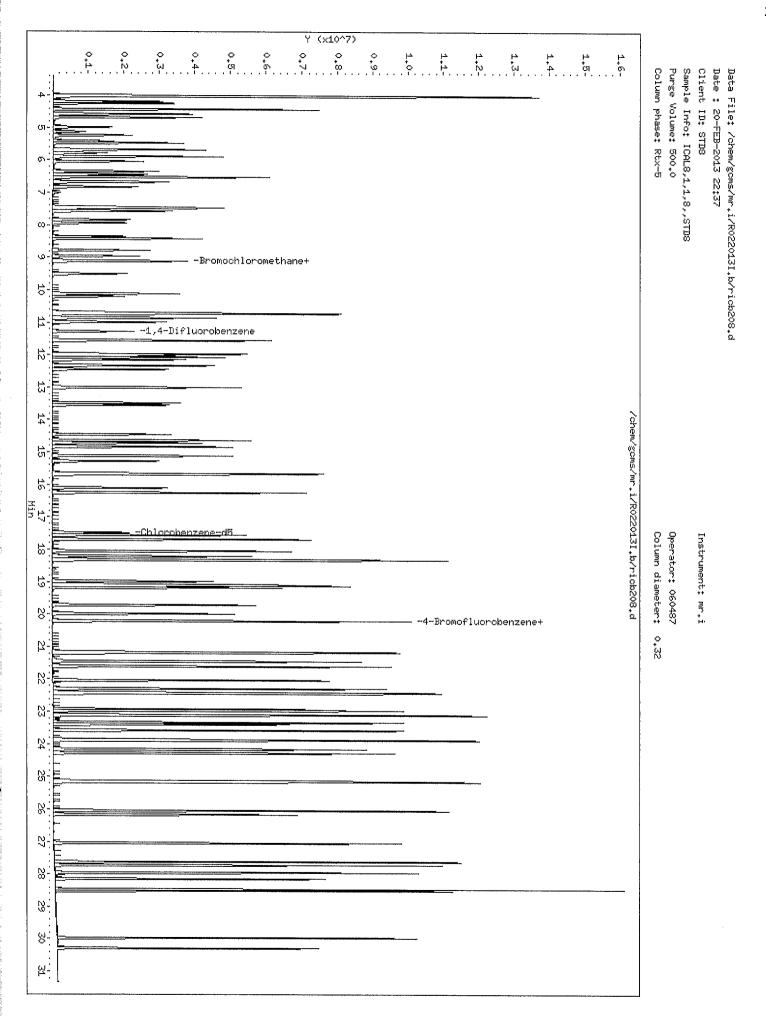
Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

							AMOUNTS	
			QUANT SIG				CAL-AMT	ON-COL
Compounds			MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
			***	***		======	=======	=======
*	1	Bromochloromethane	128	9.099	9.089 (1,000)	540354	4.00000	4.000
*	2	1,4-Difluorobenzene	114	11.283	11.278 (1,000)	2546995	4.00000	4.000
*	3	Chlorobenzene-d5	117	17.490	17.490 (1.000)	1857770	4.00000	4.000
\$	4	4-Bromofluorobenzene	95	20.218	20.218 (1.156)	1349445	4.00000	4.178
М	83	Xylene (total)	100			17511981	24.0000	23,04
	5	Chlorodifluoromethane	67	4.187	4.187 (0.460)	372763	8.00000	6.568
	6	Propene	41	4.198	4.192 (0.461)	1144756	8.00000	6.763
	7	Dichlorodifluoromethane	85	4.252	4.246 (0.467)	3852790	8.00000	6.653
	8	Chloromethane	52	4.424	4.424 (0.486)	449868	8.00000	6.236
	9	1,2-Dichlorotetrafluoroethane	135	4,435	4.435 (0.487)	3115556	8.00000	6.773
	10	Methanol	31	4.570	4.570 (0.502)	351452	8.00000	7.079
	11	~ acetaldehyde	44	4.575	4.570 (0.503)	2765387	40.0000	32.74
	12	Vinyl Chloride	62	4.591	4.591 (0.505)	1637585	8.00000	6.731
	13	n-Butane	43	4.683	4.678 (0.515)	2270040	8.00000	6.230
	14	1,3-Butadiene	54	4.683	4.678 (0.515)	1286346	8.00000	6.724
	15	Bromomethane	94	4.990	4.985 (0.548)	1481360	8.00000	6.522

Data File: /chem/gcms/mr.i/R022013I.b/ricb208.d Report Date: 21-Feb-2013 12:04


					AMOUNTS	3
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		==	######	=======	======	*=====
16 Chloroethane	64	5.125	5.125 (0.563)	825955	8.00000	6.728
17 ~ ethanol	31	5.238	5.233 (0.576)	2384899	40.0000	30.57
18 Vinyl Bromide	106	5,422	5.416 (0.596)	1595173	8.00000	7.092
19 2-methyl butane	43	5.476	5.470 (0.602)	1860072	8.00000	6.836
20 Trichlorofluoromethane	101	5.681	5.675 (0.624)	3934641	8.00000	7.080
21 Acrolein	56	5.675	5.670 (0.624)	565118	8.00000	6.753
22 Acetonitrile	40	5.735	5.729 (0.630)	611332	8.00000	7.394
25 Pentane	72	5.896	5.896 (0.648)	322511	8.00000	7.342
23 Acetone	58	5.788	5.783 (0.636)	798490	8.00000	7.276
24 Isopropyl alcohol	45	5.891	5.885 (0.647)	2311077	8.00000	7.386
26 Ethyl Ether	3 1	6.042	6.047 (0.664)	1635935	8.00000	6,975
27 1,1-Dichloroethene	96	6,349	6,344 (0,698)	1561738	8,00000	7.071
29 Acrylonitrile	53	6.425	6.419 (0,706)	1264156	8.00000	7.471
30 1,1,2-Trichlorotrifluoro	oethane 101	6.527	6.522 (0.717)	3296398	8.00000	7,214
28 tert-butanol	59	6.452	6.441 (0.709)	2765131	8.00000	7.396
31 Methylene Chloride	84	6.667	6,662 (0.733)	1403404	8.00000	7.098
32 3-Chloropropene	39	6.689	6.684 (0.735)	905451	8.00000	5.821
33 Carbon Disulfide	76	6.829	6.824 (0.750)	4518602	8.00000	7.146
35 ~ 2-Methyl Pentane	43	7.482	7,476 (0,822)	3528570	8.00000	7,154
34 trans-1,2-Dichloroethene	96	7.449	7.444 (0.819)	1618602	8.00000	7.097
36 Methyl-t-Butyl Ether	73	7.568	7.568 (0.832)	4218330	8.00000	7.280
37 1,1-Dichloroethane	63	7,838	7.832 (0.861)	2828507	8.00000	7.175
38 Vinyl Acetate	43	7.940	7.935 (0.873)	3983094	8.00000	7.645
39 2-Butanone	72	8,355	8.355 (0.918)	784610	8.00000	7.044
40 Hexane	56	8.425	8.420 (0.926)	1339039	8.00000	7.095
41 cis 1,2-Dichloroethene	96	8.781	8.776 (0,965)	1657563	8.00000	7.186
42 Ethyl acetate	43	8.959	8.954 (0.985)	3441114	8.00000	7.433
43 Chloroform	83	9,121	9.110 (1.002)	3147960	8.00000	7.160
44 Tetrahydrofuran	42	9.504	9.509 (1.044)	1784841	8,00000	7.187
45 1,1,1-Trichloroethane	97	10.119	10.118 (1,112)	3146884	8.00000	7.396
46 1,2-Dichloroethane	62	10.210	10.199 (0.905)	2090611	8.00000	7.422
49 Cyclohexane	69	10.733	10.728 (0.951)	767890	8.00000	7.599
48 Benzene	78		10.712 (0.950)	4866573	8.00000	7,468
50 Carbon Tetrachloride	117		10.744 (0.953)	1962219	8.00000	6.033
51 ~ 2,3-dimethylpentane	71	10.868	10.863 (0.963)	1042671	8,00000	7,646
47 1-Butanol	31	10.679	10.679 (0.946)	503787	8.00000	8.003
52 ~ Thiophene	84	10.992	10,987 (0.974)	2900430	8.00000	7.673
53 2,2,4-trimethylpentane	57	11,558	11.553 (1.024)	7950864	8.00000	7.543
54 Heptane	71	11.979	11.973 (1.062)	1743091	8.00000	7,668
55 1,2-Dichloropropane	63	12.022	12.017 (1,065)	1811670	8.00000	7.619
56 Trichloroethene	130	12,081	12.076 (1.071)	2277990	8.00000	7.947
180 ~ 2-nitropropane	43		11,973 (1.062)	2879395	8,00000	0.000
57 Dibromomethane	93		12.146 (1.077)	1870851	8.00000	8.095
58 Bromodichloromethane	83	12.329	12.324 (1.093)	3372192	8.00000	8.323
60 Methyl Methacrylate	41	12,453	12.448 (1.104)	2106982	8.00000	8.354
59 1,4-dioxane	88	12.340	12.346 (1.094)	724353	8.00000	8.009
61 ~ methyl cyclohexane	83	13,009	13.003 (1.153)	2985290	8.00000	7,786

Data File: /chem/gcms/mr.i/R022013I.b/ricb208.d Report Date: 21-Feb-2013 12:04

						AMOUNTS	3
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		====	==	======	*======		
63	cis-1,3-Dichloropropene	75	13.553	13.548 (1.201)	2680970	8.00000	8.042
62	4-Methyl-2-pentanone	43	13.489	13.483 (1.195)	3331609	8.00000	7.360
64	trans-1,3-Dichloropropene	75	14.465	14.459 (0.827)	2639415	8,00000	7.877
65	Toluene	91	14.643	14.637 (0.837)	5872415	8.00000	7.566
66	1,1,2-Trichloroethane	83	14.724	14.718 (0.842)	1663913	8.00000	7.701
67	~ 2-methyl thiophene	97	14.842	14.837 (0.849)	5129929	8.00000	7.866
68	~ 3-methyl thiophene	97	15.117	15.112 (0.864)	5231037	8.00000	7.828
69	2-Hexanone	58	15.279	15.279 (0.874)	1530828	8.00000	6.711
70	Octane	85	15.662	15.662 (0.895)	1973319	8.00000	7.743
71	Dibromochloromethane	129	15.694	15,689 (0.897)	3462170	8.00000	9.159
72	1,2-Dibromoethane	107	16.104	16,104 (0.921)	3198562	8.00000	8.494
73	Tetrachloroethene	129	16.250	16.250 (0.929)	2121111	8.00000	7.740
75	~ 2,3-dimethylheptane	43	17.695	17.695 (1.012)	5099215	8.00000	7.358
74	Chlorobenzene	112	17.565	17.565 (1.004)	4715186	8.00000	7.736
76	Ethylbenzene	91	18.056	18.056 (1.032)	7439684	8.00000	7.646
77	~ 2-ethyl thiophene	97	18.218	18.212 (1.042)	5754146	8.00000	7.911
78	m&p-Xylene	91	18.331	18.326 (1.048)	11659207	16.0000	15.50
79	Nonane	57	19.124	19.124 (1.093)	3897760	8.00000	7.716
	Bromoform	173	18.989	18.989 (1.086)	3262039	8.00000	9.990
81	Styrene	104	19.086	19.086 (1.091)	4700016	8.00000	9.151
82	o-Xylene	91	19.188	19.183 (1.097)	5852774	8.00000	7,547
84	1,1,2,2-Tetrachloroethane	83	19.722	19.722 (1.128)	4458353	8.00000	8.074
	1,2,3-Trichloropropane	110	19.987	19.987 (1.143)	1323468	8.00000	7.860
86	Cumene	105	20.208	20.202 (1.155)	8759520	8.00000	7.841
87	n-Propylbenzene	120	21.167	21.162 (1.210)	2589274	8.00000	8.199
88	2-chlorotoluene	126	21.200	21.194 (1.212)	2302096	8.00000	7.961
89	4-Ethyltoluene	105	21,453	21.453 (1.227)	9096637	8.00000	8.002
	1,3,5-Trimethylbenzene	120	21,610	21.604 (1.236)	4360096	8.00000	8.179
	Alpha-Methylstyrene	118	22.036	22.036 (1.260)	3878760	8,00000	9.601
92	Decane	57	22,294	22.289 (1.275)	5019618	8.00000	7.974
93	tert-butylbenzene	119	22.413	22.408 (1.281)	8078917	8.00000	7.991
94	1,2,4-Trimethylbenzene	105	22.445	22.440 (1.283)	7571746	8,00000	8.073
	sec-butylbenzene	105	22.974	22.969 (1.314)	10988409	8.00000	7.916
	1,3-Dichlorobenzene	146	22.931	22.925 (1.311)	5250557	8.00000	8,337
	Benzyl Chloride	91	23,103	23.098 (1.321)	6984830	8.00000	8.911
	1,4-Dichlorobenzene	146	23.120	23,114 (1.322)	5348640	8.00000	8.439
	p-Cymene	119	23,335	23.330 (1.334)	9416986	8.00000	8.023
	~ 1,2,3- Trimethylbenzene	105	23.400	23,395 (1,338)	6652212	8.00000	7.878
	n-butylcyclohexane	83	23.578	23.572 (1.348)	5952940	8.00000	7.732
	~ Indane	117	23.891	23.885 (1.366)	7233350	8.00000	7.971
	1,2-Dichlorobenzene	146	23.869	23.864 (1.365)	4981861	8.00000	8.193
	n-butylbenzene	91	24.279	24.279 (1.388)	8589652	8.00000	7.819
	~ Indene	116	24.160	24.160 (1.381)	7452598	8.00000	8.929
	Undecane	57	25,174	25.169 (1.439)	5859547	8.00000	7.888
	1,2-dimethyl-4-ethylenzene	119	25.136	25.136 (1.437)	9340017	8.00000	7.955
	~ 1,2,4,5-tetramethylbenzene	119	26.053	26.048 (1.490)	9571728	8.00000	7.952
109	~ 1,2,3,5-tetramethylbenzene	119	26.177	26,172 (1,497)	5859609	8.00000	7.771

Data File: /chem/gcms/mr.i/R022013I.b/ricb208.d Report Date: 21-Feb-2013 12:04

					AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))	
	====	==		aaaaaaa	======		
110 ~ 1,2,3,4-tetramethylbenzene	119	27.051	27.045 (1.547)	7858767	8.00000	7.883	
111 Dodecane	57	27.628	27,622 (1.580)	5151406	8.00000	7.672	
112 1,2,4-Trichlorobenzene	180	27.730	27.725 (1.585)	4934473	8.00000	9.056	
113 Napthalene	128	27.967	27.962 (1.599)	11316077	8.00000	8.851	
114 ~ benzo(b) thiophene	134	28.156	28.151 (1.610)	7814470	8.00000	8.463	
115 Hexachlorobutadiene	225	28,474	28.474 (1.628)	4452761	8.00000	8.494	
116 1,2,3-trichlorobenzene	180	28.523	28.523 (1.631)	4820268	8.00000	8.651	
117 ~ 2-Methylnaphthalene	142	29.979	29.979 (1.714)	6170828	50.0000	45.41	
118 ~ 1-Methylnaphthalene	142	30.297	30.291 (1.732)	4486664	50.0000	38.21	

Data File: /chem/gcms/mr.i/R022013I.b/ricb209.d

Report Date: 21-Feb-2013 12:04

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /chem/gcms/mr.i/R022013I.b/ricb209.d

Lab Smp Id: ICAL9 Client Smp ID: STD16

Inj Date : 20-FEB-2013 23:25

Inst ID: mr.i

Operator : 060487 Smp Info : ICAL9,1,1,9,,STD16

Misc Info: R022013I, T015,

Comment

Method : /chem/gcms/mr.i/R022013I.b/T015.m Meth Date : 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date : 20-FEB-2013 23:25 Cal File: ricb209.d

Als bottle: 1 Calibration Sample, Level: 9

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

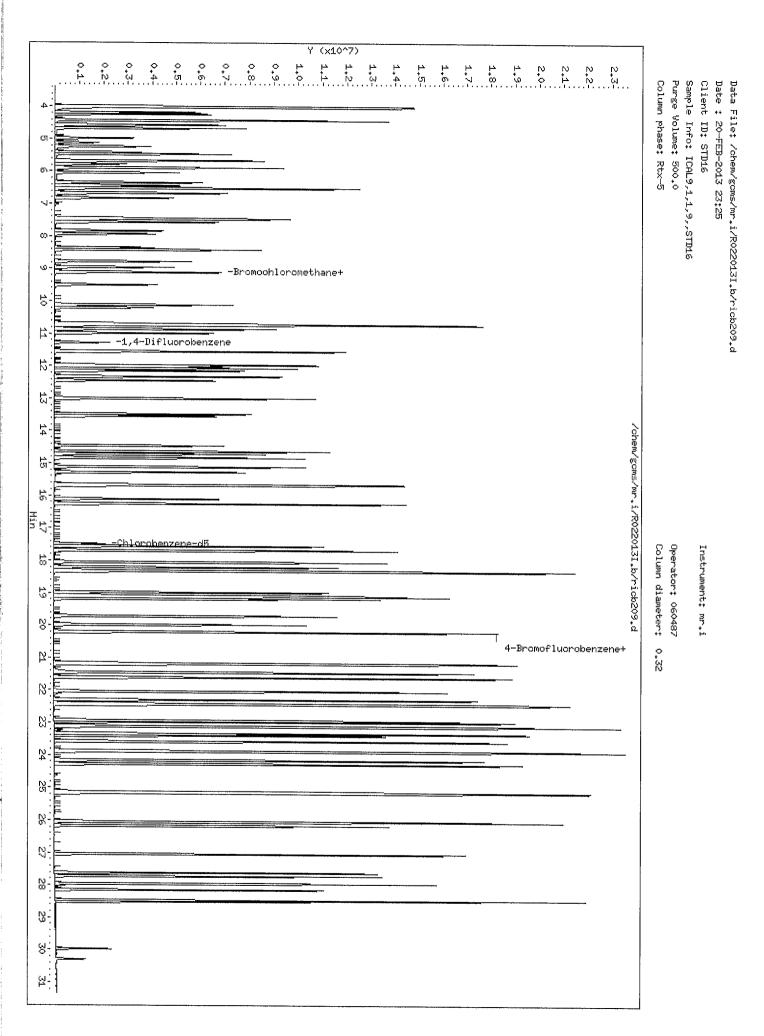
Local Compound Variable

					AMOUNTS		
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		2002	==		=======	======	======
* 1	Bromochloromethane	128	9.105	9.089 (1.000)	561398	4.00000	4.000
* 2	1,4-Difluorobenzene	114	11.283	11,278 (1.000)	2583489	4.00000	4.000
* 3	Chlorobenzene-d5	117	17.490	17.490 (1.000)	1896513	4.00000	4.000
\$ 4	4-Bromofluorobenzene	95	20.224	20.218 (1.156)	1388011	4.00000	4.182
M 83	Xylene (total)	100			35393122	48.0000	45.89
5	Chlorodifluoromethane	67	4.187	4.187 (0.460)	736609	16.0000	12.84
6	Propene	41	4.198	4.192 (0.461)	2244400	16.0000	13,21
7	Dichlorodifluoromethane	85	4.252	4.246 (0.467)	7394520	16.0000	12.66
8	Chloromethane	52	4.424	4,424 (0,486)	828183	16.0000	11.56
9	1,2-Dichlorotetrafluoroethane	135	4.440	4.435 (0.488)	6085909	16.0000	13.07
10	Methanol	31	4.570	4.570 (0.502)	606006	16.0000	12.58
11	~ acetaldehyde	44	4.575	4.570 (0.502)	5083153	80.0000	61,32
12	Vinyl Chloride	62	4.597	4.591 (0.505)	3171058	16.0000	12.89
13	n-Butane	43	4,683	4.678 (0.514)	4315599	16.0000	11.82
14	1,3-Butadiene	54	4.683	4.678 (0.514)	2489412	16.0000	12,87
15	Bromomethane	94	4,990	4,985 (0.548)	2971033	16.0000	12.93
5 6 7 8 9 10 11 12 13	Chlorodifluoromethane Propene Dichlorodifluoromethane Chloromethane 1,2-Dichlorotetrafluoroethane Methanol ~ acetaldehyde Vinyl Chloride n-Butane 1,3-Butadiene	67 41 85 52 135 31 44 62 43 54	4.198 4.252 4.424 4.440 4.570 4.575 4.597 4.683	4.192 (0.461) 4.246 (0.467) 4.424 (0.486) 4.435 (0.488) 4.570 (0.502) 4.570 (0.502) 4.591 (0.505) 4.678 (0.514) 4.678 (0.514)	736609 2244400 7394520 828183 6085909 606006 5083153 3171058 4315599 2489412	16.0000 16.0000 16.0000 16.0000 16.0000 80.0000 16.0000 16.0000 16.0000	12.84 13.21 12.66 11.56 13.07 12.58 61.32 12.89 11.82

Data File: /chem/gcms/mr.i/R022013I.b/ricb209.d Report Date: 21-Feb-2013 12:04

							AMOUNTS		
		QUANT SIG					CAL-AMT	ON-COL	
Compoi	ınds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))	
=====		* 声 二 口	==	=====				======	
16	Chloroethane	64	5,130	5.125	(0.564)	1653631	16.0000	13.28	
17	~ ethanol	31	5,244		(0.576)	4434068	80.0000	57.30	
18	Vinyl Bromide	106	5,422		(0.595)	3312200	16.0000	14.38	
19	2-methyl butane	43	5,476		(0.601)	3741507	16.0000	13.53	
20	Trichlorofluoromethane	101	5.686		(0.624)	8011312	16.0000	14.11	
21	Acrolein	56	5,680		(0.624)	1191671	16.0000	14.04	
22	Acetonitrile	40	5,740		(0.630)	1245205	16.0000	14.73	
25	Pentane	72	5.896		(0.648)	666249	16.0000	14.78	
23	Acetone	58	5.788		(0.636)	1575647	16.0000	14.31	
24	Isopropyl alcohol	45	5.896		(0.648)	4521669	16.0000	14,28	
26	Ethyl Ether	31	6.047		(0.664)	3245520	16,0000	13.60	
27	1,1-Dichloroethene	96	6,349		(0.697)	3238941	16.0000	14.32	
	Acrylonitrile	53	6.430		(0.706)	2600204	16.0000	14.93	
	1,1,2-Trichlorotrifluoroethane	101	6.527		(0.717)	6812913	16.0000	14.54	
28	tert-butanol	59	6.457		(0.709)	5594252	16,0000	14.61	
	Methylene Chloride	84	6.673		(0.733)	2911070	16.0000	14.45	
32	3-Chloropropene	39	6,689		(0.735)	2157729	16,0000	13.63	
33	Carbon Disulfide	76	6.834		(0.751)	9211633	16.0000	14.24	
35	~ 2-Methyl Pentane	43	7.487		(0.822)	6950055	16.0000	13.86	
34	trans-1,2-Dichloroethene	96	7,455		(0.819)	3384390	16.0000	14.48	
	Methyl-t-Butyl Ether	73	7.573		(0.832)	8665753			
	1,1-Dichloroethane	63	7.843		(0.861)		16.0000	14.58	
	Vinyl Acetate	43	7.945		(0.873)	5770108	16.0000	14.30	
	2-Butanone	72	8.360		(0.873)	8133772	16.0000	15.14	
	Hexane	56	8,425		(0.925)	1625945	16,0000	14.34	
	cis 1,2-Dichloroethene	96	8.786		(0.965)	2763285	16.0000	14.31	
42		43	8,964		(0.985)	3444447	16.0000	14.56	
43	Chloroform	83	9.126		(1.002)	6995031	16.0000	14.74	
44	Tetrahydrofuran	42	9,504		(1.002)	6438069	16.0000	14,31	
	1,1,1-Trichloroethane	97	10.124		(1.112)	3616349	16.0000	14.27	
	1,2-Dichloroethane	62	10.124		(0.905)	6493142	16.0000	14.84	
	Cyclohexane	69	10.210			4245469	16,0000	14.99	
					(0.952)	1527963	16.0000	15.03	
	Benzene Carbon Tetrachloride	78	10.722		(0.950)	9923500	16.0000	15,13	
51		117	10.749		(0.953)	6925617	16.0000	20.20(A)	
47		71	10.873		(0.964)	2146395	16.0000	15.58	
52	~ Thiophene	31	10,679		(0.946)	1026454	16.0000	16.06(A)	
53	2,2,4-trimethylpentane	84	10.997		(0.975)	5985260	16.0000	15.66	
	Heptane	57	11.564		(1.025)	15934399	16.0000	15.03	
	1,2-Dichloropropane	71	11.984 12.027		(1.062)	3602510	16.0000	15.67	
56	Trichloroethene	63				3727076	16.0000	15.52	
180	~ 2-nitropropane	130	12.081		(1.071)	4770911	16.0000	16.36(A)	
57	.	43		11.973		5676520	16.0000	0.000	
58	Bromodichloromethane	93	12.157		(1.077)	3782526	16.0000	16.12(A)	
		83	12.335		(1.093)	7113149	16.0000	17.13(A)	
60	Methyl Methacrylate	41		12.448		4279429	16.0000	16,62(A)	
59 61	1,4-dioxane	88		12.346		1464223	16.0000	15.97	
61	methyl cyclohexane	.83	13.014	13.003	(1.153)	6190643	16.0000	15,93	

Data File: /chem/gcms/mr.i/R022013I.b/ricb209.d Report Date: 21-Feb-2013 12:04


						AMOUNTS	
		QUANT SIG				CAL-AMT	ON-COL
Compou	ınds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
		====	==	===== =====	=======	======	
63	cis-1,3-Dichloropropene	75	13.559	13.548 (1.202)	5566452	16.0000	16.40(A)
62	4-Methyl-2-pentanone	43	13.494	13.483 (1.196)	7457883	16.0000	16.20(A)
64	trans-1,3-Dichloropropene	75	14.465	14.459 (0.827)	5685037	16.0000	16.54(A)
65	Toluene	91	14.648	14.637 (0.838)	12133635	16.0000	15.40
66	1,1,2-Trichloroethane	83	14.729	14.718 (0.842)	3463759	16.0000	15.74
67	~ 2-methyl thiophene	97	14.848	14.837 (0.849)	10613970	16.0000	15.95
68	~ 3-methyl thiophene	97	15.123	15,112 (0,865)	10874362	16.0000	15.95
69	2-Hexanone	58	15.284	15,279 (0,874)	4271970	16.0000	17.97(A)
70	Octane	85	15.667	15.662 (0.896)	4066955	16,0000	15.68
71	Dibromochloromethane	129	15.700	15.689 (0.898)	7857478	16.0000	19.69(A)
72	1,2-Dibromoethane	107	16.115	16.104 (0.921)	6773830	16.0000	17.40(A)
73	Tetrachloroethene	129	16.255	16.250 (0,929)	4431686	16.0000	15.86
75	~ 2,3-dimethylheptane	43	17.700	17.695 (1.012)	9923761	16.0000	14.25
74	Chlorobenzene	112	17.571	17.565 (1.005)	9956985	16.0000	16.00(A)
76	Ethylbenzene	91	18.061	18.056 (1.033)	15319316	16.0000	15.49
77	~ 2-ethyl thiophene	97	18.218	18.212 (1.042)	12010435	16,0000	16.15(A)
78	m&p-Xylene	91	18,336	18.326 (1.048)	23237176	32.0000	30.46
79	Nonane	57	19,129	19.124 (1.094)	7821645	16.0000	15.28
80	Bromoform	173	18.994	18.989 (1.086)	8378935	16.0000	23.24(A)
81	Styrene	104	19.091	19.086 (1.092)	10105442	16.0000	18.73(A)
82	o-Xylene	91	19.194	19.183 (1.097)	12155945	16.0000	15.43
84	1,1,2,2-Tetrachloroethane	83	19.728	19.722 (1.128)	9271389	16.0000	16.39(A)
85	1,2,3-Trichloropropane	110	19.992	19.987 (1.143)	2789327	16.0000	16.20(A)
86	Cumene	1.05	20.213	20.202 (1.156)	17836176	16.0000	15.69
87	n-Propylbenzene	120	21,173	21.162 (1.211)	5523606	16.0000	16.96(A)
88	2-chlorotoluene	126	21.205	21.194 (1.212)	4889234	16.0000	16.49(A)
89	4-Ethyltoluene	105	21.459	21,453 (1,227)	18705230	16.0000	16.10(A)
90	1,3,5-Trimethylbenzene	120	21.615	21.604 (1.236)	9253203	16.0000	16.85(A)
91	Alpha-Methylstyrene	118	22.041	22.036 (1.260)	8525568	16.0000	19.71(A)
92	Decane	57	22.300	22.289 (1.275)	9976807	16.0000	15.58
93	tert-butylbenzene	119	22.424	22,408 (1,282)	16649608	16,0000	16.11(A)
94	1,2,4-Trimethylbenzene	1.05	22.451	22.440 (1.284)	15427408	16,0000	16.10(A)
95	sec-butylbenzene	105	22,979	22,969 (1,314)	22046529	16.0000	15.62
96	1,3-Dichlorobenzene	146	22.936	22.925 (1,311)	11285592	16.0000	17.31(A)
97	Benzyl Chloride	91	23.109	23.098 (1.321)	14102155	16,0000	17.37(A)
98	1,4-Dichlorobenzene	146	23,130	23,114 (1,322)	11248407	16.0000	17.17(A)
	p-Cymene	119	23.346	23.330 (1.335)	19397581	16,0000	16.16(A)
100	~ 1,2,3- Trimethylbenzene	105	23.405	23.395 (1.338)	13902339	16,0000	16.11(A)
101	~ n-butylcyclohexane	83	23.583	23.572 (1.348)	12117879	16,0000	15.50
102	~ Indane	117	23,896	23.885 (1.366)	14684940	16.0000	15.87
103	1,2-Dichlorobenzene	146	23.874	23.864 (1.365)	10502597	16.0000	16.78(A)
104	n-butylbenzene	91	24.284	24.279 (1.388)	17347017	16.0000	15.54
105	~ Indene	116	24.171	24.160 (1.382)	15806618	16.0000	18.14(A)
106	Undecane	57	25,179	25.169 (1.440)	10718532	16.0000	14.37
107	~ 1,2-dimethyl-4-ethylenzene	119	25.142	25.136 (1.437)	18910082	16.0000	15.81
108	~ 1,2,4,5-tetramethylbenzene	119	26.058	26.048 (1.490)	18844212	16.0000	15,43
109	~ 1,2,3,5-tetramethylbenzene	119	26.182	26.172 (1.497)	11766561	16.0000	15,38

Data File: /chem/gcms/mr.i/R022013I.b/ricb209.d Report Date: 21-Feb-2013 12:04

				AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	2254	==	===== ================================	========		
110 ~ 1,2,3,4-tetramethylbenzene	119	27.056	27.045 (1.547)	13885634	16.0000	13.94
111 Dodecane	57	27.627	27.622 (1.580)	5962662	16.0000	9.306
112 1,2,4-Trichlorobenzene	180	27.735	27.725 (1.586)	6310123	16.0000	11.77
113 Napthalene	128	27.967	27.962 (1.599)	17315870	16.0000	13.27
114 ~ benzo(b) thiophene	134	28.156	28.151 (1.610)	11454999	16.0000	12.53
115 Hexachlorobutadiene	225	28.479	28.474 (1.628)	6463681	16.0000	12.52
116 1,2,3-trichlorobenzene	180	28.523	28.523 (1.631)	4559021	16.0000	8.548
117 ~ 2-Methylnaphthalene	142	29,979	29.979 (1.714)	1383818	100.000	9.976
118 ~ 1-Methylnaphthalene	142	30.297	30.291 (1.732)	737945	100.000	6.156

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: /chem/gcms/mr.i/R022013I.b/mxxx51aa.d

Report Date: 21-Feb-2013 12:09

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /chem/gcms/mr.i/R022013I.b/mxxx51aa.d

Lab Smp Id: MXXX51AA Client Smp ID: IDOC 1 / 2nd source

Inj Date : 21-FEB-2013 09:27

Operator : 060487 Inst ID: mr.i

Smp Info : ,,0,,,
Misc Info : R022013I,T015,

Comment

Method : /chem/gcms/mr.i/R022013I.b/T015.m

Meth Date: 21-Feb-2013 12:03 wilesd Quant Type: ISTD Cal Date : 20-FEB-2013 20:14 Cal File: ricb205.d Als bottle: 1 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable

Local Compound Variable

						CONCENTRA	rions
		QUANT SIG				ON-COLUMN	FINAL
Comp	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
====	x x x z z z z z z z z z z z z z z z z z	====	==			======	
*	1 Bromochloromethane	128	9.094	9.089 (1.000)	444415	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.278	11.278 (1.000)	2155314	4.00000	4.000
*	3 Chlorobenzene-d5	117	17.490	17.490 (1.000)	1582730	4.00000	4.000
\$	4 4-Bromofluorobenzene	95	20.218	20.218 (1.156)	1158760	4.18171	4.182
M 8	3 Xylene (total)	100			8001405	12.4381	12.44
	5 Chlorodifluoromethane	67	4.187	4.187 (0,460)	175968	3.87607	3,876
	6 Propene	41	4.198	4.192 (0,462)	562086	4.16065	4.161
	7 Dichlorodifluoromethane	85	4.251	4.246 (0.468)	1892132	4.08579	4.086
	8 Chloromethane	52	4.424	4,424 (0.486)	229462	4.05354	4.054
	9 1,2-Dichlorotetrafluoroethane	135	4.435	4.435 (0.488)	1491184	4.04028	4.040
1	0 Methanol	31	4.570	4.570 (0.502)	162153	3.93230	3.932
1	1 ~ acetaldehyde	44	4.575	4.570 (0.503)	1334072	20.0373	20.04
1	2 Vinyl Chloride	62	4.591	4.591 (0.505)	799686	4.10538	4.105
1	3 n-Butane	43	4.683	4.678 (0.515)	1118918	3.88833	3.888
1	4 1,3-Butadiene	54	4.683	4.678 (0.515)	602753	3,93937	3.939

Data File: /chem/gcms/mr.i/R022013I.b/mxxx51aa.d Report Date: 21-Feb-2013 12:09

						CONCENTRAT	IONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	****	==	=====	=====	======		
15 Bromomethane	94	4.990	4.985	(0.549)	737811	4.07905	4.079
16 Chloroethane	64	5,125	5.125	(0.564)	406970	4.13728	4.137
17 ~ ethanol	31	5.238	5.233	(0.576)	1040490	17.0709	17.07
18 Vinyl Bromide	106	5,422	5.416	(0.596)	705190	3.87358	3.874
19 2-methyl butane	43	5.476	5.470	(0.602)	880800	4.02822	4.028
20 Trichlorofluoromethane	101	5.680	5.675	(0,625)	1872199	4,16105	4.161
21 Acrolein	56	5.675	5.670	(0.624)	291553	4.38153	4.382
22 Acetonitrile	40	5.729	5.729	(0.630)	278840	4.11441	4.114
25 Pentane	72	5.896	5.896	(0.648)	153958	4.29608	4.296
23 Acetone	58	5.783	5.783	(0.636)	351036	3.84895	3.849
24 Isopropyl alcohol	45	5.885	5.885	(0.647)	978528	3.84324	3,843
26 Ethyl Ether	31	6.042	6.047	(0.664)	820535	4.33767	4.338
27 1,1-Dichloroethene	96	6.349	6.344	(0.698)	607449	3.40609	3,406
29 Acrylonitrile	53	6,425	6.419	(0.706)	567817	4.11588	4.116
30 1,1,2-Trichlorotrifluoroethan	e 101	6.522	6.522	(0.717)	1320590	3,56145	3.561
28 tert-butanol	59	6.446	6.441	(0.709)	1206245	3.96124	3.961
31 Methylene Chloride	84	6,667	6.662	(0.733)	568398	3.54972	3,550
32 3-Chloropropene	39	6.689	6.684	(0,736)	451872	3.58196	3.582
33 Carbon Disulfide	76	6.829	6.824	(0,751)	2058766	4.02630	4,026
35 ~ 2-Methyl Pentane	43	7.482	7.476	(0.823)	1671052	4.20057	4.200
34 trans-1,2-Dichloroethene	96	7.444	7.444	(0.819)	734296	3,98417	3,984
36 Methyl-t-Butyl Ether	73	7.568		(0.832)	1945748	4.12994	4,130
37 1,1-Dichloroethane	63	7.837		(0.862)	1240308	3.87998	3.880
38 Vinyl Acetate	43	7.934		(0.872)	1777904	4.18037	4.180
39 2-Butanone	72	8.355		(0.919)	347275	3.89199	3,892
40 Hexane	56	8.420		(0.926)	620841	4.06586	4.066
41 cis 1,2-Dichloroethene	96	8.781		(0.966)	693890	3.71395	3,714
42 Ethyl acetate	43	8.959		(0,985)	1612334	4.28103	4,281
43 Chloroform	83	9.115		(1.002)	1390049	3,90192	3,902
44 Tetrahydrofuran	42	9.504		(1.045)	821800	4.09006	4.090
45 1,1,1-Trichloroethane	97	10.118		(1.113)	1372706	3.96263	3.963
46 1,2-Dichloroethane	62	10.205		(0.905)	932611	3.95189	3.952
49 Cyclohexane	69	10.733		(0.952)	351361	4.15249	4.152
48 Benzene	78			(0,950)	2123308	3.89199	3.892
50 Carbon Tetrachloride	117	10.749		(0.953)	1295965	4.59841	4.598
51 ~ 2,3-dimethylpentane	71	10.868		(0,964)	479055	4.17063	4,171
47 1-Butanol	31	10,679		(0.947)	230075	4.33306	4,333
52 ~ Thiophene	84	10.992		(0.975)	1325908	4.16095	4.161
53 2,2,4-trimethylpentane	57	11.553		(1.024)	3691250	4.17707	4.177
54 Heptane	71	11.973		(1,062)	798750	4.17234	4.172
55 1,2-Dichloropropane	63	12.022		(1,066)	816288	4.08117	4.081
56 Trichloroethene	130	12.076		(1.071)	984917	4.05845	4.051
180 ~ 2-nitropropane	43	11.973		(1.062)	1359706	1.00040	11000
57 Dibromomethane	93	12.151		(1.002)	847344	4.33547	4.335
58 Bromodichloromethane	83	12,329		(1.077)	1563172	4.50763	4.335
60 Methyl Methacrylate	41	12,453		(1.104)	1011830	4.68968	4.690
59 1,4-dioxane	88		12.346		304214	3.94607	3,946
•	30			(1,001)	201214	3.21007	3,710

Data File: /chem/gcms/mr.i/R022013I.b/mxxx51aa.d Report Date: 21-Feb-2013 12:09

						CONCENTRAT	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Compou	ınds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
======		a = = =	==	===== ================================	======		=====
61	~ methyl cyclohexane	83	13.003	13.003 (1.153)	1355573	4.18451	4.184
63	cis-1,3-Dichloropropene	75	13,553	13.548 (1.202)	1207118	4.26230	4.262
62	4-Methyl-2-pentanone	43	13.483	13.483 (1.196)	1684167	4.37303	4.373
64	trans-1,3-Dichloropropene	75	14.459	14.459 (0.827)	1218163	4.24498	4.245
65	Toluene	91	14.637	14.637 (0.837)	2619612	3.98910	3.989
66	1,1,2-Trichloroethane	83	14,723	14.718 (0.842)	775499	4.22310	4.223
67	~ 2-methyl thiophene	97	14.837	14.837 (0.848)	2340202	4.21306	4.213
68	~ 3-methyl thiophene	97	15.117	15,112 (0,864)	2392528	4.20925	4.209
69	2-Hexanone	58	15.279	15.279 (0.874)	884059	4,42181	4.422
70	Octane	85	15.662	15.662 (0.895)	917039	4,24885	4.249
71	Dibromochloromethane	129	15.694	15.689 (0.897)	1628530	4.88975	4.890
72	1,2-Dibromoethane	107	16.104	16.104 (0.921)	1440482	4.42372	4.424
73	Tetrachloroethene	129	16.250	16.250 (0.929)	954301	4.10296	4.103
75	~ 2,3-dimethylheptane	43	17.695	17.695 (1.012)	2426539	4,17094	4.171
74	Chlorobenzene	112	17.565	17.565 (1.004)	2119640	4.09122	4.091
76	Ethylbenzene	91	18.056	18.056 (1.032)	3312628	4,01690	4,017
7.7	~ 2-ethyl thiophene	97	18.212	18.212 (1.041)	2635498	4.24619	4.246
78	m&p-Xylene	91	18.331	18.326 (1.048)	5294337	8.31638	8.316
79	Nonane	57	19.124	19.124 (1.093)	1857001	4.33746	4.337
80	Bromoform	173	18.989	18.989 (1.086)	1598530	5.34365	5.344
81	Styrene	104	19.086	19.086 (1.091)	2064428	4.56596	4.566
82	o-Xylene	91	19,188	19.183 (1,097)	2707068	4.12173	4.122
84	1,1,2,2-Tetrachloroethane	83	19.722	19.722 (1.128)	2025303	4.27174	4.272
85	1,2,3-Trichloropropane	110	19,986	19.987 (1.143)	609834	4.24024	4.240
	Cumene	105	20.208	20.202 (1.155)	4127092	4.34930	4.349
	n-Propylbenzene	120	21,167	21,162 (1,210)	1186463	4.36124	4.361
	2-chlorotoluene	126	21.200	21.194 (1.212)	1044898	4.22596	4.226
	4-Ethyltoluene	105	21,453	21,453 (1,227)	4205949	4.32675	4.327
	1,3,5-Trimethylbenzene	120	21.604	21.604 (1.235)	1956577	4,26708	4.267
	Alpha-Methylstyrene	118	22.036	22.036 (1.260)	1743522	4.84596	4.846
92	Decane	57	22.289	22.289 (1.274)	2435609	4.53270	4,533
	tert-butylbenzene	119	22.413	22.408 (1.281)	3767770	4.36170	4.362
	1,2,4-Trimethylbenzene	105	22,440	22,440 (1.283)	3488270	4.34826	4.348
	sec-butylbenzene	105	22.968	22.969 (1.313)	5188002	4.38953	4.390
	1,3-Dichlorobenzene	146	22.925	22.925 (1.311)	2328343	4,28400	4.284
	Benzyl Chloride	91	23.098	23.098 (1.321)	3171722	4.65247	4.652
	1,4-Dichlorobenzene	146	23,114	•	2356200	4.31320	4.313
	p-Cymene	119	23.335	23.330 (1.334)	4436007	4.41790	4.418
	~ 1,2,3- Trimethylbenzene	105	23.394	23,395 (1.338)	3055752	4.24112	4.241
	~ n-butylcyclohexane	83	23.578	23.572 (1.348)	2829958	4.32284	4.323
	~ Indane	117	23.885	23.885 (1.366)	3374238	4.36293	4.363
	1,2-Dichlorobenzene	146	23.864	23,864 (1,364)	2253004	4.30798	4.308
	n-butylbenzene	91	24.279		4055539	4.32428	4.324
	~ Indene	116	24.160	24.160 (1.381)	3414535	4.68443	4.684
	Undecane	57	25,169		2889470	4.60302	4.603
	1,2-dimethyl-4-ethylenzene	119	25.136	•	4440605	4.43190	4.432
108	1,2,4,5-tetramethylbenzene	119	26.053	26.048 (1.490)	4603970	4.49287	4.493

Data File: /chem/gcms/mr.i/R022013I.b/mxxx51aa.d Report Date: 21-Feb-2013 12:09

					CONCENTRA	rions
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
	====	==	=======================================	=======	======	
109 ~ 1,2,3,5-tetramethylbenzene	119	26.177	26.172 (1.497)	2834329	4.41316	4.413
110 ~ 1,2,3,4-tetramethylbenzene	119	27,050	27.045 (1.547)	3814315	4.54672	4.547
111 Dodecane	57	27.622	27.622 (1,579)	2677126	5.02114	5.021
112 1,2,4-Trichlorobenzene	180	27.724	27.725 (1,585)	1826184	4.01060	4.010
113 Napthalene	128	27.962	27.962 (1.599)	4223787	3.89404	3,894
114 ~ benzo(b) thiophene	134	28.150	28.151 (1.610)	3739175	4.81974	4.820
115 Hexachlorobutadiene	225	28,474	28.474 (1.628)	1773799	4.05999	4.060
116 1,2,3-trichlorobenzene	1.80	28.523	28.523 (1.631)	1740437	3.81825	3.818
117 ~ 2-Methylnaphthalene	1.42	29.979	29.979 (1.714)	4796178	44.3610	44.36(R)
118 ~ 1-Methylnaphthalene	142	30.297	30.291 (1.732)	4019585	42.4372	42,44(R)

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Data File: /chem/gcms/mr.i/R022013I.b/mxxx51aa.d

Report Date: 21-Feb-2013 12:09

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i

Lab File ID: mxxx51aa.d

Lab Smp Id: MXXX51AA

Analysis Type: OTHER

Quant Type: ISTD Operator: 060487

Method File: /chem/gcms/mr.i/R022013I.b/T015.m

Misc Info: R022013I, T015,

Calibration Date: 20-FEB-2013

Calibration Time: 21:01

Client Smp ID: IDOC 1 / 2nd source

Level: LOW

Sample Type: AIR

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========			======
1 Bromochloromethan	469377	279279	659475	444415	-5.32
2 1,4-Difluorobenze	2304849	1371385	3238313	2155314	-6.49
3 Chlorobenzene-d5	1658847	987014	2330680	1582730	-4.59

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========			======
1 Bromochloromethan	9.09	8.76	9.42	9.09	0.00
2 1,4-Difluorobenze	11.28	10.95	11.61	11,28	0.00
3 Chlorobenzene-d5	17.49	17.16	17,82	17.49	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /chem/gcms/mr.i/R022013I.b/mxxx51aa.d Report Date: 21-Feb-2013 12:09

TestAmerica Knoxville

RECOVERY REPORT

Client Name: TestAmerica Knoxvill23-JAN-2013 00:00 Client SDG: H3A230417

Sample Matrix: GAS Fraction: OTHER

Lab Smp Id: MXXX51AA Level: LOW Client Smp ID: IDOC 1 / 2nd source

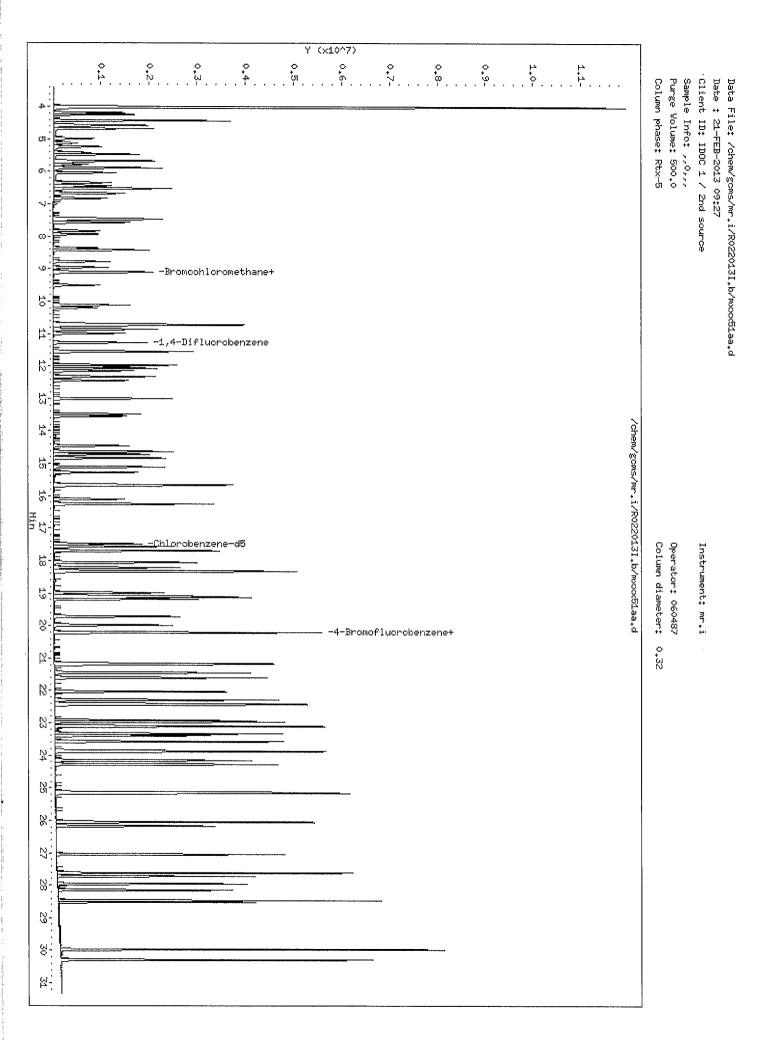
Operator: 060487 Data Type: MS DATA SampleType: BLANK SpikeList File: allnew.spk Sublist File: all.sub Quant Type: ISTD

Method File: /chem/gcms/mr.i/R022013I.b/T015.m

Misc Info: R022013I, T015,

	CONC	CONC	્રે	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ppb (v/v)	ppb(v/v)		
5 Chlorodifluorometh	4.000	3,876	96.90	60-140
6 Propene	4.000	4.161	104.02	60-140
7 Dichlorodifluorome	4.000	4.086	102.14	60-140
8 Chloromethane	4.000	4.054	101.34	60-140
9 1,2-Dichlorotetraf	4.000	4.040	101.01	60-140
10 Methanol	4.000	3.932	98.31	60-140
11 ~ acetaldehyde	20.00	20.04	100.19	70-130
12 Vinyl Chloride	4.000	4.105	102.63	70-130
13 n-Butane	4.000	3,888	97.21	60-140
14 1,3-Butadiene	4.000	3.939	98.48	60-140
15 Bromomethane	4.000	4.079	101.98	70-130
16 Chloroethane	4.000	4.137	103,43	70-130
17 ~ ethanol	20.00	17.07	85,35	70-130
18 Vinyl Bromide	4.000	3.874	96.84	60-140
19 2-methyl butane	4.000	4.028	100,71	70-130
20 Trichlorofluoromet	4.000	4.161	104.03	60-140
21 Acrolein	4.000	4.382	109.54	60-140
22 Acetonitrile	4.000	4.114	102.86	60-140
23 Acetone	4.000	3.849	96.22	60-140
25 Pentane	4.000	4.296	107,40	70-130
24 Isopropyl alcohol	4.000	3.843	96.08	60-140
26 Ethyl Ether	4.000	4.338	108.44	60-140
27 1,1-Dichloroethene	4,000	3,406	85.15	70-130
28 tert-butanol	4,000	3.961	99.03	60-140
29 Acrylonitrile	4.000	4.116	102.90	60-140
30 1,1,2-Trichlorotri	4.000	3.561	89.04	70-130
31 Methylene Chloride	4.000	3,550	88.74	70-130
32 3-Chloropropene	4.000	3.582	89,55	60-140
33 Carbon Disulfide	4.000	4.026	100.66	70-130
34 trans-1,2-Dichloro	4.000	3.984	99.60	70-130
35 ~ 2-Methyl Pentane	4.000	4.200	105.01	70-130
36 Methyl-t-Butyl Eth	4.000	4,130	103,25	60-140
37 1,1-Dichloroethane	4.000	3.880	97.00	70-130
				<u> </u>

Data File: /chem/gcms/mr.i/R022013I.b/mxxx51aa.d Report Date: 21-Feb-2013 12:09


	CONC	CONC	ર	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ppb (v/v)	ppb(v/v)		
38 Vinyl Acetate	4.000	4.180	104.51	$-\frac{1}{60-140}$
39 2-Butanone	4.000	3.892	97.30	60-140
40 Hexane	4.000	4.066	101.65	70-130
41 cis 1,2-Dichloroet	4.000	3.714	92.85	70-130
42 Ethyl acetate	4.000	4.281	107.03	60-140
43 Chloroform	4.000	3.902	97.55	70-130
44 Tetrahydrofuran	4.000	4.090	102.25	60-140
45 1,1,1-Trichloroeth	4.000	3.963		70-130
46 1,2-Dichloroethane	4.000	3.952	99.07	
47 1-Butanol			98.80	70-130
48 Benzene	4.000	4.333	108.33	60-140
	4.000	3.892	97.30	70-130
49 Cyclohexane	4.000	4.152	103.81	70-130
50 Carbon Tetrachlori	4.000	4.598	114.96	70-130
51 ~ 2,3-dimethylpent	4.000	4.171	104.27	70-130
52 ~ Thiophene	4.000	4.161	104.02	70-130
53 2,2,4-trimethylpen	4,000	4.177	104.43	70-130
54 Heptane	4.000	4.172	104.31	70-130
55 1,2-Dichloropropan	4.000	4.081	102.03	70-130
56 Trichloroethene	4,000	4.058	101.46	70-130
57 Dibromomethane	4.000	4.335	108,39	70-130
58 Bromodichlorometha	4,000	4.508	112.69	70-130
59 1,4-dioxane	4.000	3.946	98.65	60-140
60 Methyl Methacrylat	4.000	4,690	117.24	60-140
61 ~ methyl cyclohexa	4.000	4.184	104.61	70-130
62 4-Methyl-2-pentano	4.000	4.373	109.33	60-140
63 cis-1,3-Dichloropr	4.000	4.262	106.56	70-130
64 trans-1,3-Dichloro	4.000	4,245	106.12	70-130
65 Toluene	4.000	3.989	99.73	70-130
66 1,1,2-Trichloroeth	4.000	4.223	105,58	70-130
67 ~ 2-methyl thiophe	4.000	4.213	105.33	70-130
68 ~ 3-methyl thiophe	4.000	4.209	105.23	70-130
69 2-Hexanone	4.000	4.422	110.55	60-140
70 Octane	4.000	4,249	106.22	70-130
71 Dibromochlorometha	4.000	4.890	122.24	70-130
72 1,2-Dibromoethane	4.000	4.424	110.59	70-130
73 Tetrachloroethene	4.000	4.103	102.57	70-130
74 Chlorobenzene	4.000	4.091	102.28	70-130
75 ~ 2,3-dimethylhept	4.000	4.171	104.27	70-130
76 Ethylbenzene	4.000	4.017	100.42	70-130
77 ~ 2-ethyl thiophen	4.000	4,246	106.15	70-130
78 m&p-Xylene	8.000	8.316	103,95	70-130
M 83 Xylene (total)	12.00	12.44	103,65	70-130
79 Nonane	4.000	4.337	108.44	60-140
80 Bromoform	4.000	5.344	133.59	60-140
81 Styrene	4.000	4.566	114,15	70-130
82 o-Xylene	4.000	4.122	103,04	70-130
84 1,1,2,2-Tetrachlor	4.000	4.272	106.79	70-130

Data File: /chem/gcms/mr.i/R022013I.b/mxxx51aa.d

Report	Date:	21-Feb	-2013	12:	09

SPIKE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
		T T , , ,		
85 1,2,3-Trichloropro	4,000	4.240	106.01	60-140
86 Cumene	4.000	4.349	108.73	70-130
87 n-Propylbenzene	4.000	4.361	109.03	70-130
88 2-chlorotoluene	4,000	4.226	105.65	70-130
89 4-Ethyltoluene	4.000	4.327	108.17	70-130
90 1,3,5-Trimethylben	4.000	4.267	106.68	70-130
91 Alpha-Methylstyren	4.000	4.846	121.15	60-140
92 Decane	4.000	4.533	113,32	60-140
93 tert-butylbenzene	4.000	4.362	109.04	70-130
94 1,2,4-Trimethylben	4.000	4.348	108.71	70-130
95 sec-butylbenzene	4.000	4.390	109.74	70-130
96 1,3-Dichlorobenzen	4.000	4.284	107.10	70-130
97 Benzyl Chloride	4.000	4.652	116.31	70-130
98 1,4-Dichlorobenzen	4.000	4.313	107.83	70-130
99 p-Cymene	4.000	4.418	110.45	70-130
100 ~ 1,2,3- Trimethyl	4.000	4.241	106.03	70-130
101 ~ n-butylcyclohexa	4.000	4.323	108.07	70-130
102 ~ Indane	4.000	4.363	109.07	70-130
103 1,2-Dichlorobenzen	4.000	4.308	107.70	70-130
104 n-butylbenzene	4.000	4.324	108.11	60-140
105 ~ Indene	4.000	4.684	117.11	70-130
106 Undecane	4.000	4.603	115.08	60-140
107 ~ 1,2-dimethyl-4-e	4.000	4.432	110.80	70-130
108 ~ 1,2,4,5-tetramet	4.000	4.493	112.32	70-130
109 ~ 1,2,3,5-tetramet	4.000	4.413	110.33	70-130
110 ~ 1,2,3,4-tetramet	4.000	4.547	113.67	70-130
111 Dodecane	4.000	5.021	125.53	60-140
112 1,2,4-Trichloroben	4.000	4.010	100.26	60-140
113 Napthalene	4.000	3,894	97.35	40-140
114 ~ benzo(b) thiophe	4.000	4.820	120,49	70-130
115 Hexachlorobutadien	4.000	4.060	101.50	60-140
116 1,2,3-trichloroben	4.000	3.818	95.46	40-140
117 ~ 2-Methylnaphthal	25.00	44.36	177.44*	70-130
118 ~ 1-Methylnaphthal	25.00	42.44	169.75*	70-130
	Mark			1

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	4.000	4.182	104.54	70-130

TestAmerica Knoxville GC/MS Air Continuing Calibration Review / Narrative Checklist Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 13 & KNOX-MS-0023, Rev 0

Analysis Date: 4/16/13 CCAL Batch/ R 04/16/3	Ins	trument	. O	OR Scan Name: RO22013I Scanned	
Review Items	N/A	Yes	No	If No, why is data reportable?	2nd
1. Did BFB meet tune criteria?		V	<u> خونو</u>	□ failed for TO-14A, but passes for TO-15	$\overline{}$
2. Were all standards injected within 24 hr of BFB?		-			
3. Have the Entech position no. & vol. been verified with run					
log & sample vol. corrected if actual amount differs >5%?				checked manally on-screen	
4. Was date/time of analysis in logbook correct?				The second second	
5. Was the CCAL compared to the correct ICAL (date &				V	-
time on CCAL matches the ICAL)					
				√ [ccal] analytes > 30% but passes LCS criteria.	-/4
6. Is the %D ≤ 30% for all target analytes? (Narrative req'd.).				The local analytes > 30 % but passes LOS chiefia.	-4
7. Have all peaks been auto identified? If not, list:					
8. If manual integrations were performed, are they clearly identified, initialed, dated and reason given?	/			Reasons: 1)Corrected split peak; 2)Unresolved peak; 3)tailing; 4)RT shift; 5)wrong peak selected; 6)other	M
9. Have alternate hits/manual integrations been verified as	. /				.1
correct and are correct RFs listed in CCAL summary?			_		MO.
10. Is the first IS documented correctly on the log?			<u> </u>		
11. Elution order checked on isomeric pairs?		,/	Ĭ		\neg
• dichlorodifluoromethane / 1,2-dichlorotetrafluoroethane		' /			-
				-	-
• trichlorofluoromethane / 1,1,2-trichlorotrifluoroethane		V/	 		-
vinyl acetate / hexane	·	V			
cis- and trans- isomers					
 ethyl benzene / m/p-xylene / o-xylene 		<i>\</i>	[
• n-propylbenzene/4-ethyl toluene/1,3,5-		. /			
trimethylbenzene/1,2,4-trimethylbenzene			ļ		1
tert-butylbenzene/p-cymene			_		$\overline{}$
• 1,2,4-trimethylbenzene/sec-butylbenzene					
		<u> </u>	-		-
• 1,3-, 1,4-, and 1,2-dichlorobenzene		<i></i>	/ 		-
• 1,2,4-trichlorobenzene/1,2,3-trichlorobenzene					
12. Did the LCS meet criteria (70-130% with a limited #				[lcs6] LCS analyte(s) flagged as being outside	1
allowed 60-140% (see table) provisional analyte limit 60-				control limits but within marginal limits	
140% with a limited # allowed 50-150%, and no two	1			☐ [lcs5] LCS outside marginal exceedences high, but	
consecutive MEs). Note: Ohio does not allow for ME.		İ		analytes were not detected	- 1
Number of target analytes in # marginal exceedances of				13-01/00000000000000+47/ (116)	
LCS LCS control limits allowed			_	John Maria Maria Maria	1
>90 5		l ./		[Meth. Methocry ate +13/[mc]	X
71 - 90 4 51 - 70 3		V		analytes were not detected 3-chloropropene+47/ (ME) Meth. Methacrylate +43/ (ME) Vinyl Acetate +41/. NT ethyl Acetate +42/. I	_
31-50 2				104.01.10.10.10.1.1	
11 - 30 1 1			1	lethy the envision	1
13. If criteria were not met, was a NCM generated, approved			 	1 dell (012) KU 1:3 13	
by supervisor, and copy included in folder?	1				M
	1	 	ļ		'
14. Does the CCAL folder contain complete data in the following order: data review checklist, a complete runlog,		/	1		1
		1	1		
tune pass/fail page, m/z list, tyne chromatogram, Target CCAL summary, Quan report, chromatogram, manual				•	1
		1			
integrations.	'	<u> </u>	L	<u> </u>	
Analyst: Date:	161	7 200	ra.T.b	vel Reviewer: Date: 0471	2
Comments:	10/		mme		>
Arccal Ar LCS 5		100	1111111	11103	
74 LLY 75 75 1211	CD+				
-propene +31% - ethyl ether +	<u> </u>				
-tatonitrile+38% - 1-Butamol+64	<u> </u>				
-IPA +33%.					
-THF +381.					
-MIBK +39./.		_			
-Bromoform -3i/.					

TestAmerica Laboratories, Inc. - Knoxville CANISTER RUN LOG

000140	4 A 1	' ATD	CAN	ISTER R	UŃ I	JOG		4 M	
	S Anai	ysis: AIR		01010	42	(Ma) or	r).	Inst: MR	
GCMS Analysis: AIR Analyst: FG Qtims Batch: 3/06042 (MOLOT) 3/06043 (MOLDY)									
Date: 4/6/13 ICAL Batch: R022013 T Target Batch: R04/6/13 IS #1 Area: 294767									
Surr/IS ID & Vol.: 40mL V462 System Date/Time ok (y/n): 4									
		Maintenance Perfo				C	9n1+.	Comments	
Time	Use	Lot No.	File ID	Can#	Pos	Vol* (mL)	Can DF	Comments	
1026	V	ture	RBFBD16		16	(00)	1		
1051	V	ccv	1 CCV T	CX2461	١		1		
1051	~	LCS	+ LCS +	+	1	+			
1201	N	fhish	flush			500			
1252	-	Lot	1048813	7494		1		daily blh	
1252	اسا	BIK	RBIK DI6	V	V	+		V T	
1338	~	H3D120401	MOLCNZAA	12398	d	50		DCe /	
1427	-OK	Į.Į	1 CPR	1397	9	200		tolyni/pce@5.0	
1515	سسا	H3D150412	FVIAA	6117	12	150	W	tolynipce @ 5.0 Farm (7m)	
1640	Ok	lealer	leah	_	16	500	1		
1732	1	H3D160408	MOLPTIAA	1118)	1	1	nysdec (7m)	
1825	V,		I PW I	93145	2				
3021	1 1	+	PI	1539	3	V			
2110	\checkmark	H3D160415	Q3 +	12492	4	200		to14n;	
2159	an		Q3D	+	4	١			
921	128.	+	+ 971AA	11347	5	1			
1930	\mathcal{N}	leaker	leak 2		160	200			
2335	3 7.5	H3D160408	MOLPMIAA	6634	63	125		hystec 200ml (7M)	
0023	257	4	I PQ 1	1122	73	1200			
0110	W	H3D160402	MOLNL	12818	8	95	1200	hohey_ 2526.32	
ONSA	V		NM	1126	9	30	3294.97	21966.47	
0245	√		NN	12/61	10	140	316.86	452.66	
いアア	✓		NQ	93289	11	80	722.2	1805.5	
0419	\checkmark		NB	5-1528	12	100	1461.26	2922.52	
0500	V	,	NT	6606	13	130	356.89	549.06	
0852	\checkmark		MX L	92035	14	55	10037:16	36498.76	
06.78	✓,		NV	6683	15	20	31755.82		
()72!	\$ \/,_		I NW //	6596	1	40	103791.35	518956.75	
0811	<u> / </u>	Johnna 1641 - 17: / 1	V NO V	1372	2	45	108310.88	481381.69	

Programmed volume. It the Enteen report amount uniters from the programmed amount by > 376, the Enteen report amount is used for cardiations

TestAmerica Laboratories, Inc. - Knoxville CANISTER RUN LOG

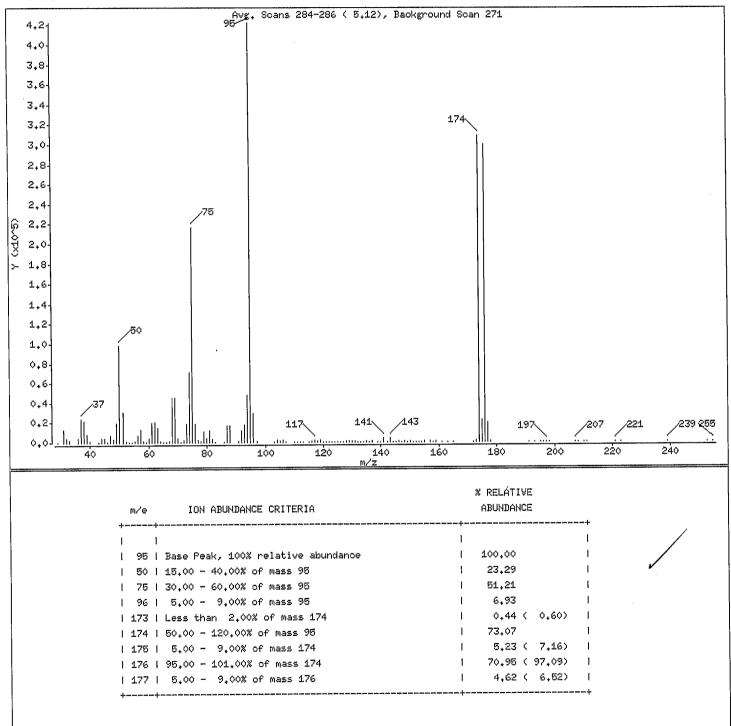
Analy	st:	1	_ Qtims Batch: _	3/0	60	42		3/06043
Date:	41	17115 ICA	AL Batch: NO2201	57. Tat	get B	atch: R	041613	IS #1 Area: 294767
Surr/IS	S ID 8	¿ Vol.: 40mil V	7162 System Date	e/Time ok	(v/n)	: \		
Prever	ntive N	Maintenance Per	rformed Daily		000	1:t	Inom	PC. 47
Time	Use	Lot No.	File ID	Can #	Pos	Vol*	Can DF	Comments
(SA II)	$\sqrt{}$	March calle	MUGTALA MAGFOUM	1221/2	-	(mL)		
0901	J	1730160,412			5	200)	MOLQ72AA(-1AA
THS.		11 217 100 108	MOLPMAAA	6134	6	Sw)	14/19/17
w/Kr		*	MOLPBRAD	1125	7	本工		
					-			
							/	
							/	
	-	•			ļ			
					/			
	-				<u> </u>			
			1 1	1/				
			\ \\	<i>Y</i>				
			101/4/		ļ			
			VI					
				1				
				,		·-		
			1/	· · · · · · · · · · · · · · · · · · ·				
			A - A					
			/ 1	-				
		/						
	A							
	\angle							
-4								
1			The state of the s	The second of the second of the second				

Data File: /chem/goms/mr.i/R041613.b/rbfbd16.d

Date : 16-APR-2013 10:26

Client ID:

Instrument: mr.i


Sample Info: BFB,1,3

Operator: 403648

Column phase: RTX 624

Column diameter: 0.18

1 bfb

Data File: /chem/goms/mr.i/R041613.b/rbfbd16.d

Date : 16-APR-2013 10:26

Client ID:

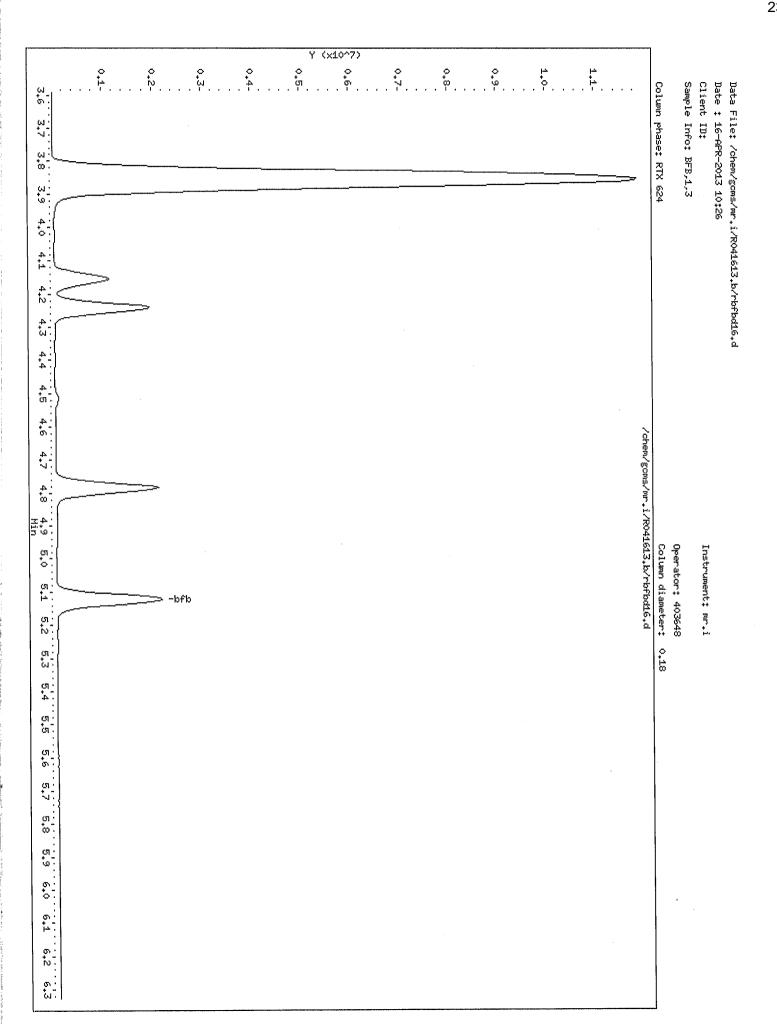
Instrument: mr.i

Sample Info: BFB,1,3

Operator: 403648

Column phase: RTX 624

Column diameter: 0.18


Data File: rbfbd16.d

Spectrum: Avg. Scans 284-286 (5.12), Background Scan 271

Location of Maximum: 95.00

Number of points: 137

	m/z	Y	m/z	Y .	かくて	Y	m/z	Υ .
+-	29,00	172	69,00	44784 I	116,00	1425 I	152.00	317 I
ı	31.00	12707	70,00	3504 l	117.00	2298	153.00	322
ı	32.00	3714	71.00	157 I	118.00	1353	154,00	339
ı	33,00	2054	72,00	1967 l	119,00	1988	155,00	952 l
i	36,00	4033	73,00	18480 I	120,00	181	157,00	803 1
+-			+					+
1	37,00	23552	74,00	70872	121,00	18	158,00	161
i	38,00	21432	75,00	216256	122,00	81	159,00	515 l
1	39,00	8131	76,00	18824	123,00	133	161,00	415
i	40,00	933	77,00	2352	124,00	259	163,00	159 l
-1	43₊◊◊	202	78,00	1432	125,00	136	165,00	2
+	44.00	354¢	+ 79₊00	10912	126.00	208	172.00	265 I
1	45.00	4361		4083	127,00	157	173,00	1858 I
ĺ	46.00	320		11388	128,00	1335	174.00	308672
1	47.00	6644	82,00	3160	129.00	740	175,00	22096 I
i	48.00	2557	83,00	315	130,00	1369	176,00	299712 l
+			+		<u> </u>		+	+
١	49,00	19520	86,00	447	131.00	592	177,00	19528
I	50,00	98368	87,00	16680	132,00	78	178.00	648
- [51,00	30040	I 88₊00	16270	133,00	139	191.00	83 I
J	52,00	1283	91,00	1250	134.00	192	193,00	39 I
1	53,00	27	92,00	11197	135,00	1363	1 195,00	41 l
+	54,00	34	+ 93.00	17192	136.00	211	196.00	120
l	55,00	1106	1 94,00	47368	137,00	655	1 197,00	362 l
-1	56,00	6537	1 95,00	422400	139,00	149	198₊◊◊	34 l
-1	57,00	12594	1 96,00	29272	140,00	215	1 207.400	174 l
I	58,00	607	1 97,00	971	141.00	3801	I 208₊00	84 1
+	 59₊◊◊	 96	+ 103.00	138	+ 142,00	 457	210.00	69
	60.00	3487		1710	I 143.00	3895	211.00	41
ı	61.00	19576		651	144.00	246	1 221,00	29
	62,00	20448	1 106,00	1744	145,00	378		9 1
i	63,00	14965	1 107,00	410	146,00	563	239₊≎≎	167 l
4	64.00	1385	110.00	227	+ 147.00	 334	+ ! 253.00	 78 I
i			1 111,00		148,00	867		48 I
i	66,00		1 112,00	275	149,00	324	I	t
i	67,00	937		342	1 150,00	493	1	1
Ì			1 115,00	430	151,00	36	I	1

Data File: /var/chem/gcms/mr.i/R041613.b/rccvd16.d

Report Date: 16-Apr-2013 12:14

TestAmerica Knoxville

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mr.i Lab File ID: rccvd16.d Injection Date: 16-APR-2013 10:51

Init. Cal. Date(s): 20-FEB-2013 20-FEB-2013 17:04

Analysis Type: AIR

Init. Cal. Times: Quant Type: ISTD

23:25

Lab Sample ID: CCV

Method: /var/chem/gcms/mr.i/R041613.b/T015.m

	<u> </u>		MIN		MAX	1	
COMPOUND	RRF / AMOUNT				%D / %DRIFT	'	•
\$ 4 4-Bromofluorobenzene	0.70031	: :		•			
•	1.62589						•
• •						l Arrowaged	Г
5 Chlorodifluoromethane	0.40861	:		•		Averaged	1<-60140
6 Propene	1.21594				:		
7 Dichlorodifluoromethane	4.16818					<u>-</u>	<u>.</u>
8 Chloromethane	0.50950					<u> </u>	<u>'</u>
9 1,2-Dichlorotetrafluoroetha	3,32193	•		•			· _
10 Methanol	0.37115			•	•		1<-M7-
11 ~ acetaldehyde	0.59925			•	•		
12 Vinyl Chloride	1.75322			•	•		1
13 n-Butane	2,59004			•	•		
14 1,3-Butadiene	1.37716			•	•		lu 4/16/18
15 Bromomethane	1.62801	1.39291	0.000	14.44101	30.00000	Averaged	1 715 111010
16 Chloroethane	0.88536	0.86377	0.000	2,43785	30.00000	Averaged	frs 4/16/13
17 ~ ethanol	0.54860	0.82349	0.000	-50.10974	50.00000	Averaged	if ok
18 Vinyl Bromide	1.63857	1.47355	0.000	10.07116	30.00000	Averaged	1
19 2-methyl butane	1.96805	2.43446	0.000	-23.69898	30.00000	Averaged	
20 Trichlorofluoromethane	4.04968	4.13596	0.000	-2.13050	30.00000	Averaged	
21 Acrolein	0.59891	0.64543	0.000	-7.76630	30.0000	Averaged	
22 Acetonitrile	0.60999	0.84011	0.000	-37.72580	30,00000	Averaged	1<-60-140
25 Pentane	0.32255	0.33373	0.000	-3,46626	30.00000		
23 Acetone	0.82088	0.83847	0.000	-2.14220	30.00000	Averaged	140
24 Isopropyl alcohol	2.29164	3.04723	0.000	-32.97150	30.00000	Averaged	1<-60-140
26 Ethyl Ether	1,70260	2.69757	0.000	-58.43849	30.00000	Averaged	1<-60-140 1
27 1,1-Dichloroethene	1.60519	1.53203	0.000	4.55765	30.00000		
29 Acrylonitrile	1.24170	1.47212	0.000	-18,55678	30.00000	Averaged	1
30 1,1,2-Trichlorotrifluoroeth	3,33743	3.27892	0,000	1.75299	30.00000	Averaged	I
28 tert-butanol	2.74079	3.21506	0.000	-17.30413	30.00000	Averaged	1
31 Methylene Chloride	1,44122	1.46301	0.000	-1.51207	30.00000	Averaged	1 . 11.
32 3-Chloropropene	1.13544	1.67037	0.000	-47,11115	30.00000	Averaged	1 - 60-140 M (ME
33 Carbon Disulfide	4,60227		•	•	•	Averaged	1.60-140 A(ME
35 ~ 2-Methyl Pentane	3.58058	:		•	:	Averaged	OK 4041213
34 trans-1,2-Dichloroethene	1.65884	:			:		
36 Methyl-t-Butyl Ether	4.24047	:	•	•		,	
37 1,1-Dichloroethane	2,87721	•	•	•			
3/ 1,1-Diditorochiane	2,0//21	3.20040	, 3.000 I	1 21,2,513	1	I	·
		I		I			. 1

Data File: /var/chem/gcms/mr.i/R041613.b/rccvd16.d

Report Date: 16-Apr-2013 12:14

TestAmerica Knoxville

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mr.i

Injection Date: 16-APR-2013 10:51

Lab File ID: rccvd16.d

Init. Cal. Date(s): 20-FEB-2013 20-FEB-2013

Analysis Type: AIR

Init. Cal. Times: 17:04

23:25

Lab Sample ID: CCV Quant Type: ISTD

Method: /var/chem/gcms/mr.i/R041613.b/T015.m

	1	1	MIN		MAX		
COMPOUND	RRF / AMOUNT	RF2	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE	
					========	========	1 60-140 1 N 1 60 R0415/3
38 Vinyl Acetate	3.82794	5.40271	0.000	-41.13902	30.00000	Averaged	1<-60-140 T
39 2-Butanone	0.80311	0,82242	0.000	-2.40531	30.00000	Averaged	1 Por 80415/3
40 Hexane	1.37436	1.58325	0.000	-15.19905	30.00000	Averaged	I JOK KO KO I
41 cis 1,2-Dichloroethene	1.68161	1.67016	0.000	0.68068	30.00000	Averaged	I WOUND N
42 Ethyl acetate	3.38983	4.79836	0.000	-41.55174	30.00000	Averaged	1<-60-1407
43 Chloroform	3.20644	3.49796	0.000	-9.09168	30.00000	Averaged	
44 Tetrahydrofuran	1.80845	2.50175	0.000	-38.33630	30.00000	Averaged	<-60-14b
45 1,1,1-Trichloroethane	3.11792	3,37760	0.000	-8.32852	30.00000	Averaged	<u> </u>
46 1,2-Dichloroethane	0.43797	0.50371	0.000	-15.01108	30.00000	Averaged	
49 Cyclohexane	0.15703	0.15972	0.000	-1,70881	30.00000	Averaged	1
48 Benzene	1.01249	0.99675	0.000	1.55475	30.00000	Averaged	
50 Carbon Tetrachloride	0.52304	0.66984	0.000	-28.06620	30.00000	Averaged	
51 ~ 2,3-dimethylpentane	0.21317	0.21667	0.000	-1.64130	50.00000	Averaged	1
47 1-Butanol	0.09854	0,16169	0.000	-64.08408	30,00000	Averaged	1-60-140 19
52 ~ Thiophene	0.59138	0.57807]	0.000	2,25062	50.00000		
53 2,2,4-trimethylpentane	1,64003	1.83649	0.000	-11.97898	30.00000	Averaged	
54 Heptane	0.35529	0.36238	0.000	-1.99498	30.00000	Averaged	
55 1,2-Dichloropropane	0.37120	0.40241	0.000	-8.40785	30.00000	Averaged	1
56 Trichloroethene	0.45039	0.39864	0.000	11,48903	30.00000		
180 ~ 2-nitropropane	++++	0.78990	0.000	++++	30.00000	Averaged	1<-M7
57 Dibromomethane	0.36272	0,36887	0.000	-1.69590	30.00000		
58 Bromodichloromethane	0.64359	0.71024	0.000	-10,35663	30.00000	Averaged	1
60 Methyl Methacrylate	0.40042	0.57148	0.000	-42.72185	30.00000	Averaged	i-60-1401(
59 1,4-dioxane	0.14308	0.14029	0.000	1.94458	30.00000		
61 ~ methyl cyclohexane	0.60121	0.58897	0.000	2.03686	50.00000	Averaged	
63 cis-1,3-Dichloropropene	0.52560	0.55102	0.000	-4.83680	30.00000	Averaged	
62 4-Methyl-2-pentanone	0.71475	0.99658	0.000	-39.43170	30.00000	Averaged	1-60140
64 trans-1,3-Dichloropropene	0.72524	0.68236	0.000	5.91223	30.00000		
65 Toluene	1.65964	1.40632	0.000	15.26382	30.00000	Averaged	1
66 1,1,2-Trichloroethane	0.46409	0.41358	0.000	10.88336	30.00000	Averaged	I.
67 ~ 2-methyl thiophene	1.40381	1.19338	0.000	14.98988	50.00000	Averaged	1
68 ~ 3-methyl thiophene	1.43650	1.21942	0.000	15.11197	50.00000	Averaged	1
69 2-Hexanone	0.50528	0,53172	0.000	-5,23280	30.00000	Averaged	1
70 Octane	0.54547	0.46408	0.000	14.92129	30.00000	Averaged	ı
71 Dibromochloromethane	0.84171	0.73204		:	30.00000	Averaged	ι

Data File: /var/chem/gcms/mr.i/R041613.b/rccvd16.d Report Date: 16-Apr-2013 12:14

TestAmerica Knoxville

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mr.i

Injection Date: 16-APR-2013 10:51

Lab File ID: rccvd16.d

Init. Cal. Date(s): 20-FEB-2013 20-FEB-2013

Analysis Type: AIR

Init. Cal. Times: 17:04

23:25

Lab Sample ID: CCV Quant Type: ISTD Method: /var/chem/gcms/mr.i/R041613.b/T015.m

		ļ	MIN	<u> </u>	MAX	1
COMPOUND	RRF / AMOUNT	RF2	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
=======================================	-			=========		=======
72 1,2-Dibromoethane	0.82295	0.71234	0.000	13.44105	30.00000	Averaged
73 Tetrachloroethene	0.58782	0.46084	0.000	21.60065	30.00000	Averaged
75 ~ 2,3-dimethylheptane	1,47030	1.73523	0.000	-18.01867	50,00000	Averaged
4 Chlorobenzene	1.30937	1.05500	0.000	19.42704	30.00000	Averaged
6 Ethylbenzene	2.08418	1.79572	0.000	13.84011	30.00000	Averaged
77 ~ 2-ethyl thiophene	1.56861	1.36168	0.000	13.19224	50.00000	Averaged
78 m&p-Xylene	1.60891	1.41378	0.000	12.12807	30.00000	Averaged
79 Nonane	1.08201	1.09498	0.000	-1.19933	30.00000	
80 Bromoform	0.75603	0.52411	0.000	30.67578	30.00000	Averaged
81 Styrene	1.14267	1.00735	0.000	11.84220	30.00000	
82 o-Xylene	1.65987	1.43354	0.000	13.63513	30.00000	Averaged
84 1,1,2,2-Tetrachloroethane	1.19823	1.07951	0.000	9.90773	30.00000	Averaged
35 1,2,3-Trichloropropane	0.36347	0.30235	0.000	16.81543	30.00000	Averaged
36 Cumene	2.39816	2.02124	0.000	15.71702	30.00000	Averaged
37 n-Propylbenzene	0.68754	0.55714	0.000	18.96541	30.00000	Averaged
8 2-chlorotoluene	0.62489	0.49776	0.000	20.34449	30.00000	Averaged
9 4-Ethyltoluene	2.45672	2.06256	0.000	16.04385	30.00000	Averaged
0 1,3,5-Trimethylbenzene	1.15883	0.94193	0.000	18.71674	30.00000	Averaged
1 Alpha-Methylstyrene	0.90929	0.77834	0.000	14.40099	30.00000	Averaged
2 Decane	1.35801	1.41002	0.000	-3.82938	30.00000	Averaged
3 tert-butylbenzene	2.18314	1.78282	0.000	18.33700	30.00000	Averaged
4 1,2,4-Trimethylbenzene	2.02744	1.72509	0.000	14,91286	30.00000	Averaged
5 sec-butylbenzene	2.98700	2.50996	0.000	15.97050	30.00000	Averaged
06 1,3-Dichlorobenzene	1.37357	1.07490	0.000	21.74427	30,00000	Averaged
97 Benzyl Chloride	1.72292	1.62516	0.000	5.67371	30.00000	
98 1,4-Dichlorobenzene	1.38059	1,09503	0.000	20.68390	30.00000	
99 p-Cymene	2.53763	2.08295	0.000	17,91763	30.00000	Averaged
100 ~ 1,2,3- Trimethylbenzene	1.82092	1.55294	0.000	14.71698	50.00000	Averaged
01 ~ n-butylcyclohexane	1.65449	1.45767	0.000	11.89619	50,00000	Averaged
.02 ~ Indane	1.95457	1.59019	0.000	18.64243	50.00000	Averaged
.03 1,2-Dichlorobenzene	1.32173	1,03080	0.000	22.01143	30.00000	Averaged
.04 n-butylbenzene	2,37021	2.13900	0.000	9.75487	30.00000	Averaged
.05 ~ Indene	1.84216	1,58757	0.000	13.82025	50.00000	Averaged
.06 Undecane	1.58646	1.69956	0.000	-7.12914	30.00000	Averaged
107 ~ 1,2-dimethyl-4-ethylenzen	2.53224	2.10921	10.000	16.70587	50.00000	Averaged
108 ~ 1,2,4,5-tetramethylbenzen	2.58977	2.19007	0.000	15.43394	50.00000	Averaged
			.			l

Data File: /var/chem/gcms/mr.i/R041613.b/rccvd16.d

Report Date: 16-Apr-2013 12:14

TestAmerica Knoxville

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mr.i

Injection Date: 16-APR-2013 10:51

Lab File ID: rccvd16.d Init. Cal. Date(s)
Analysis Type: AIR Init. Cal. Times:
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mr.i/R041613.b/T015.m

	1 1	MIN	MAX	
COMPOUND	RRF / AMOUNT	RF2 RRF %D /	%DRIFT %D / %DRIFT	CURVE TYPE
				=======
109 ~ 1,2,3,5-tetramethylbenzen	1.62313	1.35186 0.000 16	5.71271 50.00000	Averaged
110 ~ 1,2,3,4-tetramethylbenzen	2.12017	1,82241 0.000 14	1.04431 50.00000	Averaged
111 Dodecane	1.34747	1.68548 0.000 -25	30.00000	Averaged
112 1,2,4-Trichlorobenzene	1.15077	0.94361 0.000 18	3.00216 30.00000	Averaged
113 Napthalene	2.74129	2.47978 0.000	9.53951 30.00000	Averaged
114 ~ benzo(b) thiophene	1.96067	1.69435 0.000 13	3.58332 50.00000	Averaged
115 Hexachlorobutadiene	1.10416	0.76841 0.000 30	0.40755 30.00000	Averaged < D C
116 1,2,3-trichlorobenzene	1.15198	0.94220 0.000 18	3.21100 30.00000	Averaged
117 ~ 2-Methylnaphthalene	0.27324	0.24506 0.000 10	50.00000	Averaged All 12
118 ~ 1-Methylnaphthalene	0.23938	0.22448 0.000	5.22320 50.00000	Averaged 7/16/1
ļ <u>.</u>				

Data File: /var/chem/gcms/mr.i/R041613.b/rccvd16.d

Report Date: 16-Apr-2013 12:14

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mr.i/R041613.b/rccvd16.d

Client Smp ID: CCV/LCS Lab Smp Id: CCV

Inj Date : 16-APR-2013 10:51

Inst ID: mr.i

Operator : 403648 Smp Info : CCV,,2,6,,CCV/LCS Misc Info: R041613, T015,

Comment

Method : /var/chem/gcms/mr.i/R041613.b/T015.m

Meth Date: 16-Apr-2013 12:14 barlozha Quant Type: ISTD Cal File: ricb205.d Cal Date : 20-FEB-2013 20:14

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: qmidhp01

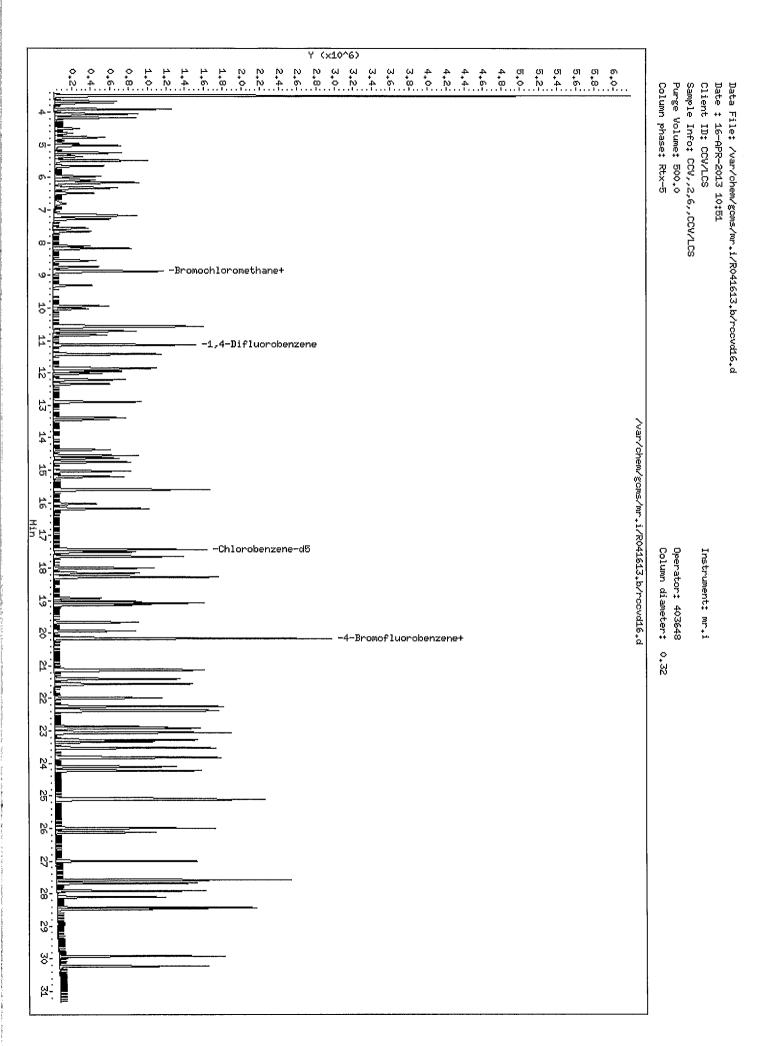
Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

1	Name	Value	Description
	DF	1.00000	Dilution Factor
	Vt	500.00000	Default Calibration Volume
	Vo	500.00000	Default Sample Volume

Local Compound Variable Cpnd Variable

							LUOME	:s
			QUANT SIG				CAL-AMT	ON-COL
Cc	mpou	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
===	===		====	==	=======================================	=======	======	======
*	1	Bromochloromethane	128	8.873	8.873 (1,000)	294767	4.00000	4.000
*	2	1,4-Difluorobenzene	114	11.138	11,138 (1.000)	1529291	4.00000	4.000
*	3	Chlorobenzene-d5	117	17.436	17.436 (1.000)	1257555	4.00000	4.000
\$	4	4-Bromofluorobenzene	95	20.170	20.170 (1.157)	995775	4.00000	4.523
М	83	Xylene (total)	100			2679281	6.00000	5.242
	5	Chlorodifluoromethane	67	3,664	3.664 (0.413)	66468	2.00000	2.207
	6	Propene	41	3,669	3.669 (0.414)	235616	2.00000	2.630
	7	Dichlorodifluoromethane	85	3.723	3.723 (0.420)	629243	2.00000	2.048
	8	Chloromethane	52	3.907	3.907 (0.440)	85710	2.00000	2.283
	9	1,2-Dichlorotetrafluoroethane	135	3,917	3.917 (0.441)	415180	2.00000	1.696
	10	Methanol	31	4.063	4.063 (0.458)	82473	2.00000	3.015
	11	~ acetaldehyde	44	4.058	4.058 (0.457)	544050	10.0000	12.32
	12	Vinyl Chloride	62	4,079	4.079 (0.460)	260774	2.00000	2.018
	13	n-Butane	43	4.176	4.176 (0.471)	451462	2.00000	2.365
	14	1,3-Butadiene	54	4.171	4,171 (0.470)	214651	2.00000	2.115

Data File: /var/chem/gcms/mr.i/R041613.b/rccvd16.d Report Date: 16-Apr-2013 12:14


						AMOUNTS	
		QUANT SIG				CAL-AMT	ON-COL
Compou	nds	MASS	RT	EXP RT REL	RT RESPONSE	(ppb(v/v))	(ppb(v/v))
55555		====	==		300 000000	=====	
15	Bromomethane	94	4.500	4.500 (0.5	507) 205292	2.00000	1.711
16	Chloroethane	64	4.645	4.645 (0.5	524) 127306	2.00000	1.951
17	~ ethanol	31	4.775	4.775 (0.5	538) 606849	10.0000	15.01
18	Vinyl Bromide	106	4.963	4.963 (0.5	559) 217177	2.00000	1.798
19	2-methyl butane	43	5.023	5.023 (0.5	566) 358799	2.00000	2,474
20	Trichlorofluoromethane	101	5.244	5.244 (0.5	591) 609573	2.00000	2.043
21	Acrolein	56	5,238	5.238 (0.5	590) 95125	2.00000	2.155
22	Acetonitrile	40	5.303	5.303 (0.5	598) 123818	2.00000	2.754
25	Pentane	72	5,481	5.481 (0.6	618) 49186	2.00000	2.069
23	Acetone	58	5.362	5.362 (0.6	604) 123576	2.00000	2.043
24	Isopropyl alcohol	45	5.481	5.481 (0.6	618) 449112	2.00000	2.659
26	Ethyl Ether	3.1	5,643	5.643 (0.6	636) 397577	2.00000	3.169
27	1,1-Dichloroethene	96	5.966	5.966 (0.6	672) 225796	2.00000	1.909
29	Acrylonitrile	53	6.047	6.047 (0.6	682) 216966	2.00000	2.371
30	1,1,2-Trichlorotrifluoroethane	101	6.161	6.161 (0.6	694) 483260	2.00000	1.965
28	tert-butanol	59	6.090	6.090 (0.6	686) 473847	2.00000	2.346
31	Methylene Chloride	84	6.312	6.312 (0.7	711) 215624	2.00000	2.030
32	3-Chloropropene	39	6.333	6,333 (0.7	714) 246184	2,00000	2,942
33	Carbon Disulfide	76	6.479	6.479 (0.7	730) 710475	2.00000	2.095
35	~ 2-Methyl Pentane	43	7.180	7.180 (0.8	809) 730631	2.00000	2.769
34	trans-1,2-Dichloroethene	96	7.142	7.142 (0.8	805) 236874	2.00000	1.938
36	Methyl-t-Butyl Ether	73	7.277	7.277 (0.8	820) 676831	2.00000	2.166
37	1,1-Dichloroethane	63	7.557	7,557 (0.8	852) 484665	2.00000	2.286
38	Vinyl Acetate	43	7.665	7.665 (0.8	864) 796272	2.00000	2,823
39	2-Butanone	72	8.107	8.107 (0.9	914) 121211	2.00000	2.048
40	Hexane	56	8.177	8.177 (0.5	922) 233344	2.00000	2,304
41	cis 1,2-Dichloroethene	96	8.549	8,549 (0.5	964) 246155	2.00000	1.986
42	Ethyl acetate	43	8.738	8.738 (0.5	985) 707200	2.00000	2.831
43	Chloroform	83	8.900	8.900 (1.0	003) 515542	2.00000	2.182
44	Tetrahydrofuran	42	9,304	9.304 (1.0	049) 368717	2.00000	2.767
45	1,1,1-Trichloroethane	97	9.941	9.941 (1.	120) 497803	2.00000	2.166
46	1,2-Dichloroethane	62	10.027	10.027 (0.	900) 385163	2.00000	2,300
49	Cyclohexane	69	10,572	10.572 (0.	949) 122127	2.00000	2.034
48	Benzene	78	10.550	10.550 (0.	947) 762159	2.00000	1.969
50	Carbon Tetrachloride	117	10,588	10.588 (0.	951) 512188	2.00000	2.561
51	~ 2,3-dimethylpentane	71	10.717	10.717 (0.	962) 165677	2.00000	2.033
47	1-Butanol	31	10.534	10.534 (0.	946) 123637	2.00000	3,282
52	~ Thiophene	84	10.836	10.836 (0.		2.00000	1.955
53	2,2,4-trimethylpentane	57	11.424	11.424 (1.	026) 1404260	2,00000	2.240
54	Heptane	71	11.855	11.855 (1.	064) 277089	2.00000	2.040
55	1,2-Dichloropropane	63	11.893	11.893 (1.	068) 307701	2,00000	2.168
56	Trichloroethene	130	11,947	11.947 (1.	073) 304822	2,00000	1.770
180	~ 2-nitropropane	43	11.855	11.855 (1.	064) 603993	2.00000	
57	Dibromomethane	93	12.022	12.022 (1.	079) 282057	2.00000	2.034
58	Bromodichloromethane	83	12.205	12.205 (1.	096) 543083	2.00000	2.207
	Methyl Methacrylate	41	12,340	12,340 (1.	108) 436982	2.00000	2.854
59	1,4-dioxane	88	12,222	12.222 (1.	097) 107274	2.00000	1.961

Data File: /var/chem/gcms/mr.i/R041613.b/rccvd16.d Report Date: 16-Apr-2013 12:14

						AMOUNTS	
		QUANT SIG				CAL-AMT (ON-COL
Compou	nnds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
		====	==		=======	=======	
61	~ methyl cyclohexane	83	12.896	12.896 (1.158)	450350	2.00000	1.959
63	cis-1,3-Dichloropropene	75	13.451	13.451 (1.208)	421337	2.00000	2.097
62	4-Methyl-2-pentanone	43	13.386	13.386 (1.202)	762032	2.00000	2.789
64	trans-1,3-Dichloropropene	75	14.373	14.373 (0.824)	429055	2.00000	1.882
65	Toluene	91	14.551	14.551 (0.835)	884262	2.00000	1.695
66	1,1,2-Trichloroethane	83	14.637	14.637 (0.839)	260051	2.00000	1.782
67	~ 2-methyl thiophene	97	14.756	14.756 (0.846)	750371	2.00000	1.700
68	~ 3-methyl thiophene	97	15.031	15.031 (0.862)	766742	2.00000	1.698
69	2-Hexanone	58	15.198	15.198 (0.872)	334335	2.00000	2.105
70	Octane	85	15.592	15.592 (0.894)	291801	2.00000	1.702
71	Dibromochloromethane	129	15,613	15.613 (0.895)	460293	2.00000	1.739
72	1,2-Dibromoethane	107	16.029	16.029 (0.919)	447901	2.00000	1.731
73	Tetrachloroethene	129	16.180	16.180 (0.928)	289768	2.00000	1.568
75	~ 2,3-dimethylheptane	43	17,652	17.652 (1.012)	1091073	2.00000	2.360
74	Chlorobenzene	112	17,512	17.512 (1.004)	663359	2.00000	1.611
76	Ethylbenzene	91	18.008	18.008 (1.033)	1129112	2.00000	1.723
77	~ 2-ethyl thiophene	97	18.164	18.164 (1.042)	856193	2.00000	1.736
78	m&p-Xylene	91	18.277	18.277 (1.048)	1777902	4.00000	3.515
79	Nonane	57	19,081	19.081 (1.094)	688500	2.00000	2,024
80	Bromoform	173	18.935	18.935 (1.086)	329547	2.00000	1.386
81	Styrene	104	19.038	19.038 (1.092)	633401	2.00000	1.763
82	o-Xylene	91	19,140	19,140 (1.098)	901379	2.00000	1,727
84	1,1,2,2-Tetrachloroethane	83	19.668	19,668 (1,128)	678771	2.00000	1.802
85	1,2,3-Trichloropropane	110	19.938	19,938 (1,143)	190114	2.00000	1.664
86	Cumene	105	20.159	20.159 (1.156)	1270911	2.00000	1,686
87	n-Propylbenzene	120	21,114	21.114 (1.211)	350320	2.00000	1.621
88	2-chlorotoluene	126	21,146	21,146 (1,213)	312978	2.00000	1.593
8.9	4-Ethyltoluene	105	21,405	21.405 (1.228)	1296895	2,00000	1,679
90	1,3,5-Trimethylbenzene	120	21.556	21.556 (1.236)	592267	2.00000	1.626
91	Alpha-Methylstyrene	118	21.987	21.987 (1.261)	489403	2.00000	1.712
92	Decane	57	22.246	22,246 (1.276)	886586	2.00000	2.076
93	tert-butylbenzene	119	22.359	22.359 (1.282)	1120995	2,00000	1.633
94	1,2,4-Trimethylbenzene	105	22,392	22.392 (1.284)	1084697	2.00000	1.702
	sec-butylbenzene	105	22.920	22.920 (1.315)	1578209	2,00000	1.680
96	1,3-Dichlorobenzene	146	22.877	22.877 (1.312)	675871	2.00000	1,565
97	Benzyl Chloride	91	23.044	23.044 (1.322)	1021867	2,00000	1.886
98	1,4-Dichlorobenzene	146	23.060	23.060 (1.323)	688531	2,00000	1.586
	p-Cymene	119	23.281	23,281 (1.335)	1309713	2,00000	1.642
100	~ 1,2,3- Trimethylbenzene	105	23.341	23.341 (1.339)	976451	2.00000	1.706
101	~ n-butylcyclohexane	83	23,529	23.529 (1.349)	916549	2.00000	1.762
	~ Indane	117		23,831 (1.367)	999875	2.00000	1.627
103	1,2-Dichlorobenzene	146		23.810 (1.366)	648141	2.00000	1.560
	n-butylbenzene	91		24.230 (1.390)	1344957	2.00000	1.805
	~ Indene	116		24.106 (1.383)	998230	2,00000	1,724
	Undecane	57		25,120 (1,441)	1068644	2.00000	2,142
	~ 1,2-dimethyl-4-ethylenzene	119		25.082 (1.439)	1326225	2.00000	1.666
	~ 1,2,4,5-tetramethylbenzene	119		25.999 (1.491)	1377067	2,00000	1,691
	. , ,	-		, ,			

Data File: /var/chem/gcms/mr.i/R041613.b/rccvd16.d Report Date: 16-Apr-2013 12:14

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb (v/v))
******	====	==		=======	======	
109 ~ 1,2,3,5-tetramethylbenzene	119	26.123	26.123 (1.498)	850021	2.00000	1.666
110 ~ 1,2,3,4-tetramethylbenzene	119	27.002	27.002 (1.549)	1145890	2.00000	1.719
111 Dodecane	57	27.579	27.579 (1.582)	1059794	2.00000	2.502
112 1,2,4-Trichlorobenzene	180	27.682	27.682 (1.588)	593319	2.00000	1,640
113 Napthalene	128	27.913	27.913 (1.601)	1559232	2,00000	1.809
114 ~ benzo(b) thiophene	134	28.108	28.108 (1.612)	1065368	2.00000	1,728
115 Hexachlorobutadiene	225	28.431	28.431 (1.631)	483160	2.00000	1.392
116 1,2,3-trichlorobenzene	180	28.474	28.474 (1.633)	592432	2.00000	1.636
117 ~ 2-Methylnaphthalene	142	29.925	29.925 (1.716)	963035	12.5000	11.21
118 ~ 1-Methylnaphthalene	142	30.227	30.227 (1.734)	882185	12,5000	11.72

TestAmerica Knoxville GC/MS Air Continuing Calibration Review / Narrative Checklist Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 13 & KNOX-MS-0023, Rev 0

Analysis Date: 4/17/13 Scan Name: R041713	Ins	trument	' M	R Scan Name: RO22013I Scanned	
Review Items	N/A	Yes	No	If No, why is data reportable?	2nd
1. Did BFB meet tune criteria?		~	Websit Co.	□ falled for TO-14A, but passes for TO-15	
2. Were all standards injected within 24 hr of BFB?					$\overline{}$
3. Have the Entech position no. & vol. been verified with run				/ 1 1 bi	
log & sample vol. corrected if actual amount differs >5%?				checked manually on-screen	
4. Was date/time of analysis in logbook correct?				0	$\overline{}$
5. Was the CCAL compared to the correct ICAL (date &					
time on CCAL matches the ICAL)					
6. Is the %D \leq 30% for all target analytes? (Narrative req'd.).					\supset
7. Have all peaks been auto identified? If not, list:					$\overline{}$
8. If manual integrations were performed, are they clearly				Reasons: 1)Corrected split peak; 2)Unresolved peak;	$\overline{}$
identified, initialed, dated and reason given?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			3)tailing; 4)RT shift; 5)wrong peak selected; 6)other	M
9. Have alternate hits/manual integrations been verified as					
correct and are correct RFs listed in CCAL summary?					NS
10. Is the first IS documented correctly on the log?		V			_
11. Elution order checked on isomeric pairs?		V			
dichlorodifluoromethane / 1,2-dichlorotetrafluoroethane		V			7
• trichlorofluoromethane / 1,1,2-trichlorotrifluoroethane					7
• vinvl acetate / hexane					\neg 1
• cis- and trans- isomers				"	\neg
ethyl benzene / m/p-xylene / o-xylene	 				-
• n-propylbenzene/4-ethyl toluene/1,3,5-	 	-			-
trimethylbenzene/1,2,4-trimethylbenzene					
tert-butylbenzene/p-cymene		<u> </u>			\neg
	-				-
• 1,2,4-trimethylbenzene/sec-butylbenzene	ļ	1	<u> </u>		-
• 1,3-, 1,4-, and 1,2-dichlorobenzene		<u> </u>			- _
• 1,2,4-trichlorobenzene/1,2,3-trichlorobenzene		V			_
12. Did the LCS meet criteria (70-130% with a limited #	İ			☐ [lcs6] LCS analyte(s) flagged as being outside	ĺ
allowed 60-140% (see table) provisional analyte limit 60-				control limits but within marginal limits	
140% with a limited # allowed 50-150%, and no two				☐ [lcs5] LCS outside marginal exceedences high, but	
consecutive MEs). Note: Ohio does not allow for ME. Number of target analytes in # marginal exceedances of		1	/	analytes were not detected	
LCS LCS		Ι,		analytes were not detected Carb Het. +31% R041613	إ
control limits allowed		\ \		11:1000 Acc 1 +42:1	
71 - 90 4				Vingl Acet +42%. Of last report offugl Acet .+72%. R041513	
51 - 70 3 31 - 50 2			1	lethyl Acet. +72/. PALIFIZ	
11 - 30 1				1, 0	
<11 0	ļ		ļ		
13. If criteria were not met, was a NCM generated, approved	1	ļ			112
by supervisor, and copy included in folder?	-				M
14. Does the CCAL folder contain complete data in the	1	/	-		إ
following order: data review checklist, a complete runlog,		V	1		
tune pass/fail page, m/z list, tune chromatogram, Target CCAL summary, Quan report, hromatogram, manual				<u> </u>	
integrations.		1			
integrations.	1 1	1	<u></u>	l	
Analyst: Date:	119/1	$2 \mid 2n$	d Lev	el Reviewer: Date: 06 191	72
Comments:	'' / 		mme		
A CCALA					
-detonitrile +40% (NT)					
-1PA +36%				. IAMANAS PRO STORE CONTROL OF STORE CON	
-THF + 38 %					
-MIBK+38%.					
		\neg			

TestAmerica Laboratories, Inc. - Knoxville

			CAN	ISTER R	UN L	ωG	v	(A, A)	
GCMS	Anal	ysis) AIR				_	$\hat{}$	(4m) Inst: MR	
Analys	t:	HFB.	Qtims Batch:	31070	87	(MON	(N) 31	(4M) Inst: MR 070 f f (MMCP)	
Date:_	4/1	7/13 ICAI	L Batch: <u>R 0220</u>	13I Tari	get Ba	tch: <u>{ </u>	41713	IS #1 Area: 21/19/	
Surr/IS	SID'&	Vol.: 40mL V46	System Date	/Time ok	(y/n):	4			
Preven	Preventive Maintenance Performed Daily								
Time	Use	Lot No.	File ID	Can#	Pos	Vol*	Can DF	Comments	

Time	Use	Lot No.	File ID	Can#	Pos	Vol* (mL)	Can DF	Comments
1106	1	the	RBFBD17		16	100	1	
1131	N	cu	ICUT	CX2461	ţ			
1245	-	CCV	CCV A	CX2462	-			
1245		Les	+LCS +A	4		+		
1403	N	flush	flush	سمسين		500		
1454	└	lotr	10489	1125	+			
1547	V	+	10490	1353N	\mathcal{Q}			daily Blh
1547		BIK	RBILDI7	+	+	+		0
1639,	. / ,	H3D160408	MOLPQIAA	1122	7	+		nysdec (7m)
1928		leak	leah		16	500		·
2012	\mathcal{U}	H3D160415	MOLQ21AA	93176	1	20		tolynja
2103	\checkmark		1 Q5 1	1531	2	200		
2151	1		96	0184	3	+		
200%	M	V	4	12484	4	20	\bigvee	RR
2325	\checkmark	H3D170408	3C	92003	5	110	134.33	vohey 244.24
027	\checkmark		3D	93189	6	70	646.35	1846.71
0059	V		3E	6685	7	110	367.49	668.16
2410	\vee		3F	93009	J.	65	1419.35	4367.23
0733	V		3G	03840	9		9728.08	16918.4
0,27/	√		34	03852	10	95	6/42.58	12931.75
5040	1		35	92090	11	70	9728.08	27794.51
0445	V	V	3JD	+	11	1	+	
10544		H3D170404	V 2HIAA	7510	12	300	1	dechi (7M)
1730	1/	Cot	10489B	0179	1	500	1	, /
01923		17201100110	MOLBER	93176	-1	200	1	
J722	\checkmark	1	MOLGHR	12484	4	200	1 ,	
_								
						4,1	130	
				e of crossociamerous company is a complete company of	2 - STATE OF THE PARTY OF THE P		A CONTRACTOR OF THE PARTY OF TH	amount is used for calulations.

* Entech programmed Volume. If the Entech report amount differs from the programmed amount by >5%, the Entech report amount is used for calulations.

Analyst: _____ Date: _

MS027r16.DOC, 051210

Data File: /ohem/goms/mr.i/R041713.b/rbfbd17.d

Date : 17-APR-2013 11:06

Client ID:

Instrument: mr.i

Sample Info: BFB,1,3

Operator: 22980

Column phase: RTX 624

Column diameter: 0.18

1 bfb

Data File: /ohem/goms/mr.i/R041713.b/rbfbd17.d

Date : 17-APR-2013 11:06

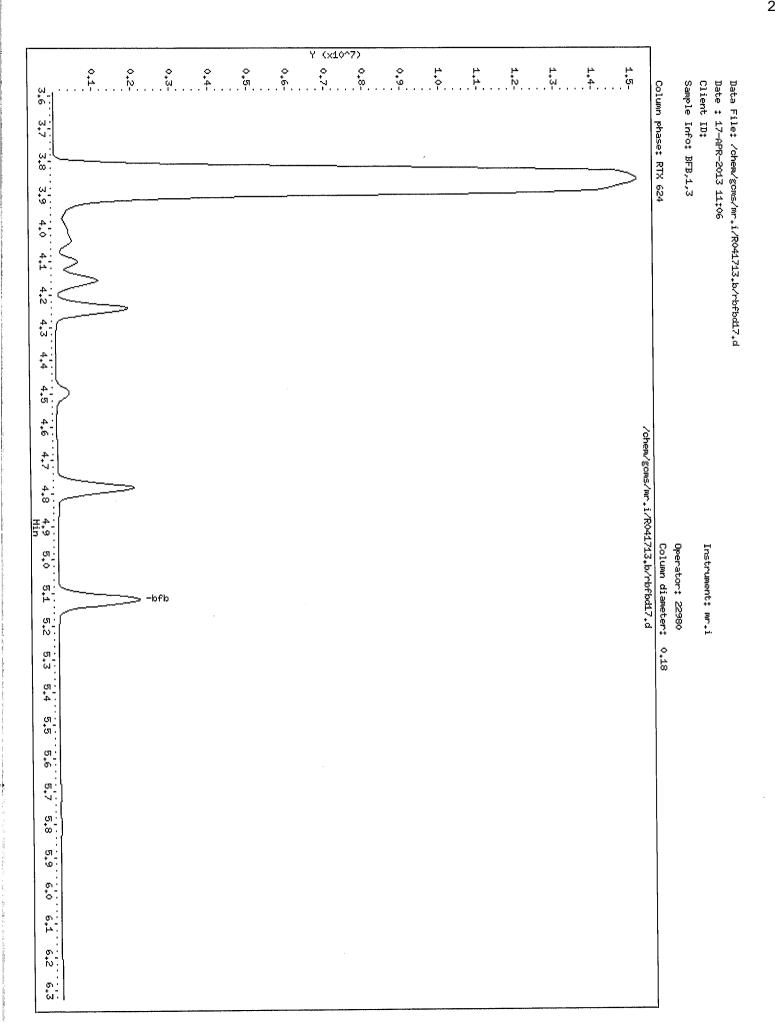
Client ID:

Instrument: mr.i

Sample Info; BFB,1,3

Operator: 22980

Column phase: RTX 624


Column diameter: 0.18

Data File: rbfbd17.d

Speotrum: Avg. Soans 283-285 (5.12), Background Scan 273

Location of Maximum: 95.00 Number of points: 137

	m/z	Υ.	m/z	Y	m/z	Υ	m/z	Y
+ 	29,00	460 I	67,00	1186	111,00	367 I	149,00	233 I
I	31,00	12586 I	68,00	43904	112,00	116 l	150.00	273 I
j	32,00	5170 l	69,00	44432	113,00	322	151.00	84 1
ı	33,00	2027 I	70,00	4597 I	115,00	366 I	152,00	290 1
ı	34,00	112 I	71,00	545 I	116.00	1325	153,00	340 1
+ l	36.00	4025 I	72,00	1 1990	117,00	 2172	154.00	243 l
ı	37.00	23336 I	73,00	17536 l	118,00	1407 I	155.00	903 1
ı	38.00	21040	74,00	69328 (119,00	1914 I	156.00	114 l
ı	39,00	8789 I	75,00	211328	120,00	119	157,00	517 l
ì	40,00	847 I	•	18176	122,00	40	158,00	132
+- 1	41.00	+ 694	77,00	1 2087	⊦ 123.00	 79 l	159.00	 441 l
i	42.00	225 1		1562		242 1		447 l
i I	43,00	1128 I		10692		129		35 I
i	44.00	17528 I		3887		249		272
l	45₊◊◊	4547		10871	127,00	164	173.00	1789 l
+	46.00	 427	82.00	3206	+ 128.00	1315	⊦ 174.00	299200 I
i	47,00	6483	`	419	129.00	678	175.00	21,000
i	48.00	2597			130.00	1375	176.00	286592
i	49,00	19056			131.00	536	177.00	18880
l	50,00	97888	86,00	388	1 132,00	36	178,00	602
+- 1	51,00	29512	+ 87.¢¢	1.6440	+ 133.00	 74	+ 179.00	98
i	52,00	1249		15696		71		27
i	53.00	195		1174		427	•	60
í	54.00	76		11085			192.00	41
i	55,00	1866		16310		656		98
+-	 56.00	6299	+ 94,00	46128	+ 139.00	123	+ 197.00	78
,	57.00	12655			1 140.00	305	•	2
ı	58.00	622	•		141.00	3645		313
1	60.00	3585	•		1 142,00		1 221,00	57
ì	61,00	19448			1 143,00	3709	•	36
+-	62,00	19552	+ 104.00	 1667	+ 144,00	241	+ 223,00	7
i	63,00		105,00		145,00		1 239,00	9
ì	64,00		106.00		I 146.00	568		
1	65,00		1 107,00		1 147,00	267		
i	66,00		1 110,00		1 148.00	768		

Report Date: 17-Apr-2013 13:32

TestAmerica Knoxville

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mr.i Injection Date: 17-APR-2013 12:45

Init. Cal. Date(s): 20-FEB-2013 20-FEB-2013
Init. Cal. Times: 17:04 23:25 Lab File ID: rccvd17a.d

Analysis Type: AIR Init. Cal. Times:
Lab Sample ID: CCV Quant Type: ISTD
Method: /var/chem/gcms/mr.i/R041713.b/T015.m

	<u> </u>	1	MIN		MAX		
COMPOUND	RRF / AMOU	NT RF2	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE	
********************	•		•	•			
\$ 4 4-Bromofluorobenzene	0.700	•	•	•	30.00000	Averaged	
M 83 Xylene (total)	1.625	89 1.44774	10.000	10.95692	30.00000	Averaged	
5 Chlorodifluoromethane	0.408	61 0.44472	0.000	-8.83618	30.00000	Averaged	
6 Propene	1.215	94 1.56904	10.000	-29,03940	30.00000	Averaged	l
7 Dichlorodifluoromethane	4.168	18 4.24389	0.000	-1.81632	30,00000	Averaged	I
8 Chloromethane	0.509	50 0.55004	10.000	-7.95571	30.00000	Averaged	l '
9 1,2-Dichlorotetrafluoroetha	3.321	93 2.82662	2 0.000	14.91046	30.00000	Averaged	1
10 Methanol	0.371	15 0.53220	0.000	-43.39309	30.00000	Averaged	I<- MI
11 ~ acetaldehyde	0.599	25 0.72463	10.000	-20.92138	50.00000	Averaged	1
12 Vinyl Chloride	1.753	22 1,76203	0.000	-0.50211	30.00000	Averaged	l
13 n-Butane	2.590	04 3.06610	0.000	-18.38042	30.0000	Averaged	
14 1,3-Butadiene	1.377	16 1.47024	10.000	-6.75890	30.00000	Averaged	
15 Bromomethane	1.628	01 1.42343	10.000	12.56636	30.00000	Averaged	
16 Chloroethane	0.885	36 0.87309	0.000	1.38503	30.00000	Averaged	
17 ~ ethanol	0.548	60 0.78741	. 0.000	-43.53269	50.00000	Averaged	1
18 Vinyl Bromide	1,638	57 1.48230	0.000	9.53694	30.00000	Averaged	1
19 2-methyl butane	1.968	05 2.36081	. 0.000	-19.95673	30.00000	Averaged	1
20 Trichlorofluoromethane	4.049	68 4,21788	3 0,000	-4.15342	30.00000	Averaged	1
21 Acrolein	0.598	91 0.63858	3 0.000	-6.62375	30.00000	Averaged	
22 Acetonitrile	0.609	99 0.85668	10.000	-40.44325	30.00000	Averaged	1-60-140 MT) 1-60-140 MT 1-60-140 AA NT
25 Pentane	0.322	55 0.34315	5 0.000	-6.38414	30.00000	Averaged	
23 Acetone	0,820	88 0.85961	0.000	-4.71796	30.00000	Averaged	
24 Isopropyl alcohol	2.291	64 3.11151	10.000	-35.77662	30.00000	Averaged	1<-60-140
26 Ethyl Ether	1.702	60 2.67180	0.000	-56.92515	30,0000	Averaged	1-60-140 AA(NT
27 1,1-Dichloroethene	1,605	19 1.57212	2 0.000	2.05971	30,00000	Averaged	00.79011
29 Acrylonitrile	1.241	70 1,48968	3 0.000	-19,97072	30,00000	Averaged	I
30 1,1,2-Trichlorotrifluoroeth	3,337	43 3.35437	7 0.000	-0.50750	30.00000	Averaged	Ì
28 tert-butanol	2,740	79 3.28636	5 0.000	-19.90571	30.00000	Averaged	I
31 Methylene Chloride	1.441	22 1.50747	7 0.000	-4.59706	30.00000	Averaged	
32 3-Chloropropene	1.135	44 1.65688	3 0 . 0 0 0	-45.92334	30.00000	Averaged	1-60-140 1 WI
33 Carbon Disulfide	4.602	•	•	•			
35 ~ 2-Methyl Pentane	3.580		•				(ME TON)
34 trans-1,2-Dichloroethene	1.658	:	•	•			
36 Methyl-t-Butyl Ether	4.240	:	•	•			
37 1,1-Dichloroethane	2.87	:	•	:			;
	1	1	1	1			1

Report Date: 17-Apr-2013 13:32

TestAmerica Knoxville

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mr.i

Injection Date: 17-APR-2013 12:45

Lab File ID: rccvd17a.d

Init. Cal. Date(s): 20-FEB-2013 20-FEB-2013
Init. Cal. Times: 17:04 23:25

Analysis Type: AIR

Lab Sample ID: CCV Quant Type: ISTD Method: /var/chem/gcms/mr.i/R041713.b/T015.m

			MIN		MAX	
COMPOUND	RRF / AMOUNT		RRF		%D / %DRIFT	
38 Vinyl Acetate	3.82794			!		•
39 2-Butanone	0.80311	:			!	
40 Hexane	1.37436	:				
41 cis 1,2-Dichloroethene	1.68161	:				
42 Ethyl acetate	3.38983	:	•	•		
43 Chloroform	3.20644		•	•	!	
44 Tetrahydrofuran	1.80845	1	•	•	•	
45 1,1,1-Trichloroethane	3.11792	:	'			
46 1,2-Dichloroethane	0.43797			•		
49 Cyclohexane	0.15703	1		•		
48 Benzene	1.01249					
50 Carbon Tetrachloride	0.52304	:		•		
51 ~ 2,3-dimethylpentane	0.21317		•	•	•	
47 1-Butanol	0.09854	:		•	•	
52 ~ Thiophene	0.59138	:	•	•		
53 2,2,4-trimethylpentane	1.64003	1.85963	0.000	-13.39039		
54 Heptane	0.35529	:		•		
55 1,2-Dichloropropane	0.37120	:				
56 Trichloroethene	0.45039					
180 ~ 2-nitropropane	++++	:	•			
57 Dibromomethane	0.36272	0.37569	0.000	-3.57449	30.00000	
58 Bromodichloromethane	0.64359	1	•	•		
60 Methyl Methacrylate	0.40042	0.57354	0.000	-43.23495	30,00000	Averaged
59 1,4-dioxane	0.14308	0.14514	0.000	-1.44567	30.00000	Averaged
61 ~ methyl cyclohexane	0.60121	0.59958	0.000	0,27108	50.00000	1
63 cis-1,3-Dichloropropene	0.52560	0.55652	0.000	-5.88205	30.00000	Averaged
62 4-Methyl-2-pentanone	0.71475	0,98874	0.000	-38,33393	30,00000	Averaged
64 trans-1,3-Dichloropropene	0.72524	0.70214	0.000	3.18552	30,00000	Averaged
65 Toluene	1.65964	1.45655	0.000	12.23730	30.00000	Averaged
66 1,1,2-Trichloroethane	0.46409	0.42325	0.000	8.79940	30.00000	Averaged
67 ~ 2-methyl thiophene	1,40381	1.23476	0.000	12.04232	50.00000	Averaged
68 ~ 3-methyl thiophene	1.43650	1.25609	0.000	12.55872	50.00000	Averaged
69 2-Hexanone	0,50528	0.55187	0.000	-9.22027	30.00000	Averaged
70 Octane	0,54547	0.47981	0.000	12.03750	30.00000	Averaged
71 Dibromochloromethane	0.84171	0.78056	0.000	7.26534	30.00000	Averaged
	1	1	1	1	1	1

Report Date: 17-Apr-2013 13:32

TestAmerica Knoxville

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mr.i Injection Date: 17-APR-2013 12:45

Init. Cal. Date(s): 20-FEB-2013 20-FEB-2013 Lab File ID: rccvd17a.d

Analysis Type: AIR Init. Cal. Times: 17:04 23:25

Lab Sample ID: CCV Quant Type: ISTD

Method: /var/chem/gcms/mr.i/R041713.b/T015.m

	l		MIN	Í	MAX	
COMPOUND	RRF / AMOUNT	RF2	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	Ż					
72 1,2-Dibromoethane	0.82295			•		
73 Tetrachloroethene	0.58782				!	
75 ~ 2,3-dimethylheptane	1.47030	•		!		
74 Chlorobenzene	1.30937					<u> </u>
76 Ethylbenzene	2.08418					
77 ~ 2-ethyl thiophene	1.56861					
78 m&p-Xylene	1.60891	1.43996	0.000	10.50088	30.00000	Averaged
79 Nonane	1.08201	1.12181	0.000	-3.67924	30.00000	Averaged
80 Bromoform	0.75603	0.64355	0.000	14.87672	30.00000	Averaged
81 Styrene	1.14267	1.03668	0.000	9.27579	30.00000	Averaged
82 o-Xylene	1.65987	1.46332	0.000	11.84095	30.00000	Averaged
84 1,1,2,2-Tetrachloroethane	1.19823	1.10193	0.000	8.03659	30.00000	Averaged
85 1,2,3-Trichloropropane	0.36347	0.31088	0.000	14.46978	30.00000	Averaged
86 Cumene	2.39816	2.06213	0.000	14.01192	30.00000	Averaged
87 n-Propylbenzene	0.68754	0.56369	0.000	18.01307	30.00000	Averaged
88 2-chlorotoluene	0.62489	0.50564	0.000	19.08333	30.00000	Averaged
89 4-Ethyltoluene	2.45672	2.10124	0.000	14.46947	30.00000	Averaged
90 1,3,5-Trimethylbenzene	1.15883	0.96233	0.000	16.95698	30.00000	Averaged
91 Alpha-Methylstyrene	0.90929	0.78571	0.000	13.59064	30.00000	Averaged
92 Decane	1.35801	1.42069	0.000	-4.61551	30.00000	Averaged
93 tert-butylbenzene	2,18314	1.81097	0.000	17.04749	30.00000	Average
94 1,2,4-Trimethylbenzene	2.02744	1.74240	0.000	14.05907	30,00000	Average
95 sec-butylbenzene	2.98700	2.53765	0.000	15.04356	30.00000	Averaged
96 1,3-Dichlorobenzene	1,37357	1.10045	0.000	19.88424	30.00000	Averaged
97 Benzyl Chloride	1.72292	1.65698	0.000	3.82703	30,00000	Average
98 1,4-Dichlorobenzene	1.38059	1.11993	0.000	18,88021	30,00000	Average
99 p-Cymene	2.53763	2,12215	0.000	16.37289	30.00000	Average
100 ~ 1,2,3- Trimethylbenzene	1.82092	:			•	
101 ~ n-butylcyclohexane	1.65449				:	
102 ~ Indane	1.95457		•			
103 1,2-Dichlorobenzene	1,32173					
104 n-butylbenzene	2.37021			•		: -
105 ~ Indene	1.84216					
106 Undecane	1.58646					
100 ondecane 107 ~ 1,2-dimethyl-4-ethylenzen	2.53224					
, , , , , , , , , , , , , , , , , , , ,						: -
108 ~ 1,2,4,5-tetramethylbenzen	2.58977	2.18658	10.000	15.56852	1 50,00000	Average

Report Date: 17-Apr-2013 13:32

TestAmerica Knoxville

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: mr.i Injection Date: 17-APR-2013 12:45

Lab File ID: rccvd17a.d Init. Cal. Date(s): 20-FEB-2013 20-FEB-2013

Analysis Type: AIR Init. Cal. Times: 17:04 23:25

Lab Sample ID: CCV Quant Type: ISTD Method: /var/chem/gcms/mr.i/R041713.b/T015.m

1] !	MIN		MAX	1
COMPOUND	RRF / AMOUNT	RF2	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
			=====	======		========
109 ~ 1,2,3,5-tetramethylbenzen	1.62313	1.35358	0.000	16.60702	50.00000	Averaged
110 ~ 1,2,3,4-tetramethylbenzen	2.12017	1.82053	0.000	14.13294	50.00000	Averaged
111 Dodecane	1.34747	1.69664	0.000	-25.91286	30.00000	Averaged
112 1,2,4-Trichlorobenzene	1.15077	0.98401	0.000	14.49117	30.00000	Averaged
113 Napthalene	2,74129	2.54908	0.000	7.01150	30.00000	Averaged
114 ~ benzo(b) thiophene	1.96067	1.75623	0.000	10.42727	50,00000	Averaged
115 Hexachlorobutadiene	1.10416	0.78696	0.000]	28.72778	30.00000	Averaged
116 1,2,3-trichlorobenzene	1.15198	0.98674	0.000	14.34429	30.00000	Averaged
117 ~ 2-Methylnaphthalene	0,27324	0.28119	0.000	-2.90934	50.00000	Averaged
118 ~ 1-Methylnaphthalene	0.23938	0.25799	0.000	-7.77404	50.00000	Averaged
	_					

Report Date: 17-Apr-2013 13:32

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mr.i/R041713.b/rccvd17a.d

Lab Smp Id: CCV Client Smp ID: CCV/LCS

Inj Date : 17-APR-2013 12:45

Inst ID: mr.i

Operator : 403648 Smp Info : CCV,,2,6,,CCV/LCS

Misc Info: R041713, T015,

Comment

Method : /var/chem/gcms/mr.i/R041713.b/T015.m Meth Date : 17-Apr-2013 13:32 barlozha Quant Type: ISTD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

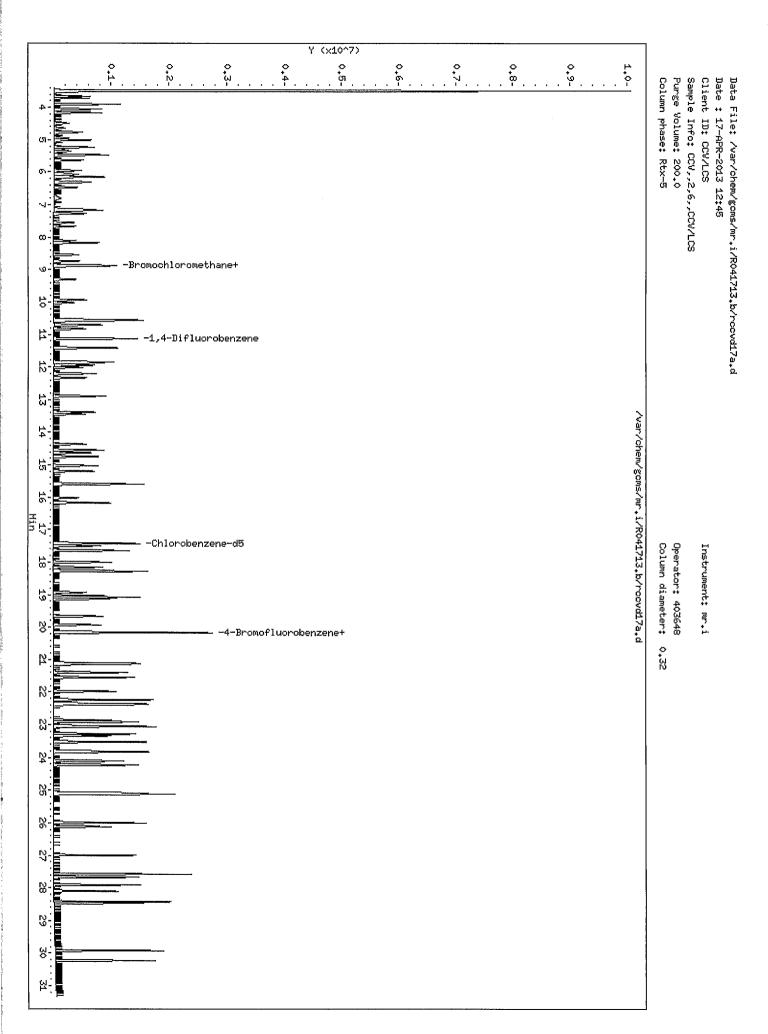
Target Version: 3.50 Processing Host: qmidhp01

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	200.00000	Default Sample Volume

Cpnd Variable Local Compound Variable

						AMOUNT	S
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
==		====	==	202500 22262	======	======	======
*	1 Bromochloromethane	128	8.868	8.868 (1.000)	281891	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11.132	11.132 (1.000)	1460036	4.00000	4.000
*	3 Chlorobenzene-d5	117	17.431	17.431 (1.000)	1172674	4.00000	4.000
\$	4 4-Bromofluorobenzene	95	20.165	20.165 (1.157)	920169	4.00000	4.482
М	83 Xylene (total)	100			2546600	6.00000	5.343
	5 Chlorodifluoromethane	67	3.659	3.659 (0.413)	62681	2.00000	2.177
	6 Propene	41	3,669	3.669 (0.414)	221149	2,00000	2.581
	7 Dichlorodifluoromethane	85	3.718	3,718 (0.419)	598157	2,00000	2,036
	8 Chloromethane	52	3.896	3.896 (0.439)	77525	2.00000	2,159
	9 1,2-Dichlorotetrafluoroethane	135	3.912	3.912 (0.441)	398399	2.00000	1.702
	10 Methanol	31	4.063	4.063 (0.458)	75011	2.00000	2.868
	11 ~ acetaldehyde	44	4.052	4.052 (0.457)	510664	10.0000	12.09
	12 Vinyl Chloride	62	4.074	4.074 (0.459)	248350	2.00000	2.010
	13 n-Butane	43	4.171	4.171 (0.470)	432153	2.00000	2.368
	14 1,3-Butadiene	54	4,165	4.165 (0.470)	207223	2.00000	2.135


Data File: /var/chem/gcms/mr.i/R041713.b/rccvd17a.d Report Date: 17-Apr-2013 13:32

						AMOUNT	S
		QUANT SIG				CAL-AMT	ON-COL
Compour	nds	MASS	RT	EXP RT REL	RT RESPONSE	(ppb (v/v))	(ppb (v/v))
-			==	===========		======	
15 E	Bromomethane	94	4.494	4.494 (0.5	507) 200626	2.00000	1.749
16 C	Chloroethane	64	4,640	4.640 (0.5	523) 123058	2,00000	1.972
17 ~	ethanol	31	4.769	4.769 (0.5	538) 554912	10.0000	14.35
18 V	Jinyl Bromide	106	4.958	4.958 (0.5	559) 208923	2,00000	1.809
19 2	2-methyl butane	43	5.017	5.017 (0.5	332745	2.00000	2.399
20 7	Frichlorofluoromethane	101	5.239	5.239 (0.5	591) 594491	2.00000	2.083
21 P	Acrolein	56	5.239	5.239 (0.5	90005	2.00000	2.132
22 F	Acetonitrile	40	5.303	5.303 (0.5	598) 120745	2.00000	2.809
25 I	Pentane	72	5.476	5.476 (0.6	518) 48364	2.00000	2.128
23 A	Acetone	58	5.363	5.363 (0.6	305) 121158	2.00000	2.094
24]	Isopropyl alcohol	45	5,481	5.481 (0.6	318) 438554	2.00000	2.716
26 E	Ethyl Ether	31	5.638	5.638 (0.6	376578	2.00000	3.138
27 1	1,1-Dichloroethene	96	5,961	5.961 (0.6	572) 221583	2.00000	1.959
29 <i>I</i>	Acrylonitrile	53	6.047	6.047 (0.6	82) 209963	2.00000	2.399
30 1	1,1,2-Trichlorotrifluoroethane	101	6.155	6.155 (0.6	594) 472782	2.00000	2.010
28 t	tert-butanol	59	6.085	6.085 (0.6	86) 463197	2.00000	2.398
31 N	Methylene Chloride	84	6.306	6.306 (0.7	711) 212471	2.00000	2.092
32 3	3-Chloropropene	39	6.328	6.328 (0.7	714) 233529	2.00000	2.918
33 (Carbon Disulfide	76	6.473	6.473 (0.7	730) 690135	2.00000	2.128
35 ^	2-Methyl Pentane	43	7.174	7.174 (0.8	309) 712735	2,00000	2.824
34 t	trans-1,2-Dichloroethene	96	7.137	7.137 (0.8	305) 230757	2.00000	1.974
36 N	Methyl-t-Butyl Ether	73	7.271	7.271 (0.8	320) 649874	2.00000	2.175
37 1	l,1-Dichloroethane	63	7.552	7.552 (0.8	352) 470283	2.00000	2.319
7 8 E	Vinyl Acetate	43	7.665	7.665 (0.8	766922	2,00000	2.843
39 2	2-Butanone	72	8.102	8.102 (0.9	914) 115603	2.00000	2.042
40 F	Hexane	56	8.172	8.172 (0.9	229189	2.00000	2.366
41 0	cis 1,2-Dichloroethene	96	8.544	8.544 (0.9	238756	2.00000	2.015
42 I	Ethyl acetate	43	8.738	8.738 (0.9	985) 677594	2.00000	2.836
43 (Chloroform	83	8.895	8.895 (1.0	003) 497963	2.00000	2.204
44 5	Tetrahydrofuran	42	9.299	9.299 (1.0	352163	2.00000	2.763
45	1,1,1-Trichloroethane	97	9,935	9.935 (1.1	120) 485187	2.00000	2.208
46	1,2-Dichloroethane	62	10.022	10.022 (0.9	900) 369790	2.00000	2.313
	Cyclohexane	69	10.566	10.566 (0.9	949) 119365	2.00000	2.082
	Benzene	78		10.545 (0.9		2.00000	2,004
	Carbon Tetrachloride	117	10.582	10.582 (0.9	•	2.00000	2.611
51 ′	~ 2,3-dimethylpentane	71	10.712	10.712 (0.9		2.00000	2.080
	1-Butanol	31	10.528	10.528 (0.9	•	2.00000	3.256
	~ Thiophene	84	10.830	10.830 (0.9		2.00000	2.006
	2,2,4-trimethylpentane	57	11.418	11.418 (1.0		2.00000	2,268
	Heptane	71	11.850	11.850 (1.0		2.00000	2.061
	1,2-Dichloropropane	63		11.887 (1.0		2,00000	2.177
	Trichloroethene	130		11.947 (1.0		2.00000	1.830
	~ 2-nitropropane	43		11.850 (1.0		2.00000	
	Dibromomethane	93		12.017 (1.0		2,00000	2.071
	Bromodichloromethane	83	12,200	12.200 (1.0		2.00000	2.243
	Methyl Methacrylate	41	12.335	12.335 (1.1		2.00000	2.865
59	1,4-dioxane	88	12.216	12.216 (1.0	097) 105957	2.00000	2.029

Data File: /var/chem/gcms/mr.i/R041713.b/rccvd17a.d Report Date: 17-Apr-2013 13:32

						AMOUNTS	
		QUANT SIG				CAL-AMT	ON-COL
Compou	ınds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
=====	=======================================		==		=======	0505000	======
61	~ methyl cyclohexane	83	12.896	12.896 (1.158)	437706	2,00000	1.994
63	cis-1,3-Dichloropropene	75	13.446	13,446 (1.208)	406267	2.00000	2.118
62	4-Methyl-2-pentanone	43	13.381	13.381 (1.202)	721795	2.00000	2.767
64	trans-1,3-Dichloropropene	75	14.368	14.368 (0.824)	411690	2.00000	1.936
65	Toluene	91	14.546	14.546 (0.834)	854028	2,00000	1.755
66	1,1,2-Trichloroethane	83	14.632	14.632 (0.839)	248169	2.00000	1.824
67	~ 2-methyl thiophene	97	14.745	14.745 (0.846)	723985	2,00000	1.759
68	~ 3-methyl thiophene	97	15.026	15.026 (0.862)	736494	2.00000	1.749
69	2-Hexanone	58	15.193	15.193 (0.872)	323582	2.00000	2.184
70	Octane	85	15.586	15.586 (0.894)	281328	2.00000	1.759
71	Dibromochloromethane	129	15.608	15.608 (0.895)	457668	2.00000	1.855
72	1,2-Dibromoethane	107	16.023	16.023 (0.919)	430007	2.00000	1.782
73	Tetrachloroethene	129	16.174	16.174 (0.928)	283795	2.00000	1.647
75	~ 2,3-dimethylheptane	43	17.646	17.646 (1.012)	1040543	2.00000	2.414
74	Chlorobenzene	112	17.506	17.506 (1.004)	635109	2.00000	1.654
76	Ethylbenzene	91	18,002	18.002 (1.033)	1069550	2.00000	1.750
77	~ 2-ethyl thiophene	97	18.159	18.159 (1.042)	812410	2.00000	1,767
78	m&p-Xylene	91	18.272	18.272 (1.048)	1688600	4.00000	3.580
79	Nonane	57	19.075	19.075 (1.094)	657761	2.00000	2.074
80	Bromoform	173	18.930	18.930 (1.086)	377339	2.00000	1.702
81	Styrene	104	19.032	19.032 (1.092)	607843	2.00000	1.814
82	o-Xylene	91	19,129	19,129 (1.097)	858000	2.00000	1.763
84	1,1,2,2-Tetrachloroethane	83	19.663	19,663 (1,128)	646102	2.00000	1.839
8.5	1,2,3-Trichloropropane	110	19.933	19.933 (1.144)	182280	2.00000	1.711
86	Cumene	105	20.154	20.154 (1.156)	1209104	2,00000	1,720
87	n-Propylbenzene	120	21,114	21,114 (1,211)	330513	2.00000	1.640
88	2-chlorotoluene	126	21.146	21,146 (1.213)	296474	2.00000	1.618
89	4-Ethyltoluene	105	21.399	21,399 (1.228)	1232036	2.00000	1.711
90	1,3,5-Trimethylbenzene	120	21,550	21.550 (1.236)	564247	2.00000	1.661
91	Alpha-Methylstyrene	118	21.982	21.982 (1.261)	460690	2.00000	1,728
92	Decane	57	22.241	22.241 (1.276)	833004	2,00000	2.092
93	tert-butylbenzene	119	22.359	22.359 (1.283)	1061838	2.00000	1.659
94	1,2,4-Trimethylbenzene	105	22.386	22.386 (1.284)	1021633	2,00000	1.719
95	sec-butylbenzene	105	22.915	22.915 (1.315)	1487919	2.00000	1.699
96	1,3-Dichlorobenzene	146	22.872	22.872 (1.312)	645232	2,00000	1.602
97	Benzyl Chloride	91	23.044	23.044 (1.322)	971549	2.00000	1.923
98	1,4-Dichlorobenzene	146	23.060	23,060 (1.323)	656658	2.00000	1.622
99	p-Cymene	119	23,276	23.276 (1.335)	1244295	2.00000	1.672
	~ 1,2,3- Trimethylbenzene	105	23,335	23.335 (1.339)	916704	2.00000	1.717
101	~ n-butylcyclohexane	83	23.524	23.524 (1.350)	859025	2.00000	1.771
102	~ Indane	117	23.831	23.831 (1.367)	933513	2,00000	1,629
103	1,2-Dichlorobenzene	146	23.804	23.804 (1.366)	612804	2,00000	1.581
104	n-butylbenzene	91	24,225	24.225 (1.390)	1256231	2.00000	1.808
105	~ Indene	116	24,101	24.101 (1.383)	934737	2.00000	1.731
106	Undecane	57	25,115	25.115 (1.441)	996280	2.00000	2.142
107	~ 1,2-dimethyl-4-ethylenzene	119	25,077	25.077 (1.439)	1235610	2.00000	1.664
108	~ 1,2,4,5-tetramethylbenzene	119	25.994	25.994 (1.491)	1282076	2.00000	1,689

					AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))	
	===	==			======		
109 ~ 1,2,3,5-tetramethylbenzene	119	26.118	26.118 (1.498)	793653	2.00000	1.668	
110 ~ 1,2,3,4-tetramethylbenzene	119	26.997	26.997 (1.549)	1067444	2,00000	1.717	
111 Dodecane	57	27.579	27.579 (1.582)	994802	2.00000	2.518	
112 1,2,4-Trichlorobenzene	180	27.676	27.676 (1.588)	576961	2.00000	1.710	
113 Napthalene	128	27,913	27.913 (1.601)	1494622	2.00000	1.860	
114 ~ benzo(b) thiophene	134	28.102	28.102 (1.612)	1029741	2.00000	1.791	
115 Hexachlorobutadiene	225	28.431	28.431 (1.631)	461424	2,00000	1.425	
116 1,2,3-trichlorobenzene	180	28.474	28.474 (1.634)	578562	2.00000	1.713	
117 ~ 2-Methylnaphthalene	142	29.925	29.925 (1.717)	1030455	12.5000	12.86	
118 ~ 1-Methylnaphthalene	142	30,227	30,227 (1,734)	945429	12.5000	13.47	

Raw QC Data

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H3D160000 - 043B Work Order # M0L0V1AA Matrix....... AIR

 04/11/2013
 Date Received..:
 04/15/2013

 Prep Date.......
 04/16/2013
 Analysis Date...
 04/16/2013

Prep Batch #....: 3106043

Dilution Factor.: 1 Method...... TO-15

Dilution Factor.: 1	Method: TO-15							
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)				
1,1,1-Trichloroethane	ND	0.080	ND	0.44				
1,1,2,2-Tetrachloroethane	ND	0.080	ND	0.55				
1,1,2-Trichlorotrifluoroethane	ND	0.080	ND	0.61				
1,1,2-Trichloroethane	ND	0.080	ND	0.44				
1,1-Dichloroethane	ND	0.080	ND	0.32				
1,1-Dichloroethene	ND	0.080	ND	0.32				
1,2,4-Trichlorobenzene	ND	0.080	ND	0.59				
1,2,4-Trimethylbenzene	ND	0.080	ND	0.39				
1,2-Dibromoethane (EDB)	ND	0.080	ND	0.61				
1,2-Dichlorobenzene	ND	0.080	ND	0.48				
1,2-Dichloroethane	ND	0.080	ND	0.32				
1,2-Dichloropropane	ND	0.080	ND	0.37				
1,3,5-Trimethylbenzene	ND	0.080	ND	0.39				
1,4-Dichlorobenzene	ND	0.080	ND	0.48				
1,4-Dioxane	ND	0.20	ND	0.72				
2-Butanone (MEK)	ND	0.32	ND	0.94				
1,3-Dichlorobenzene	ND	0.080	ND	0.48				
2,2,4-Trimethylpentane	ND	0.20	ND	0.93				
Benzene	ND	0.080	ND	0.26				
Benzyl chloride	ND	0.16	ND	0.83				
Bromodichloromethane	ND	0.080	ND	0.54				
Bromoform	ND	0.080	ND	0.83				
Bromomethane	ND	0.080	ND	0.31				
Carbon tetrachloride	ND	0.040	ND	0.25				
Chlorobenzene	ND	0.080	ND	0.37				
Chloroethane	ND	0.080	ND	0.21				
Chloroform	ND	0.080	ND	0.39				
Cyclohexane	ND	0.20	ND	0.69				
Chloromethane	ND	0.20	ND	0.41				
cis-1,2-Dichloroethene	ND	0.080	ND	0.32				
cis-1,3-Dichloropropene	ND	0.080	ND	0.36				
Dibromochloromethane	ND	0.080	ND	0.68				
Dichlorodifluoromethane	ND	0.080	ND	0.40				
Ethanol	ND	0.80	ND	1.5				
Ethylbenzene	ND	0.080	ND	0.35				
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.080	ND	0.56				
ane n-Hexane	ND	0.20	ND	0.70				

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H3D160000 - 04	13B V	Vork Order# M0L0V	1AA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Hexachlorobutadiene	ND	0.080	ND	0.85
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	ND	0.20	ND	0.69
Styrene	ND	0.080	ND	0.34
tert-Butyl alcohol	ND	0.32	ND	0.97
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
m-Xylene & p-Xylene	ND	0.080	ND	0.35
o-Xylene	ND	0.080	ND	0.35
trans-1,2-Dichloroethene	ND	0.080	ND	0.32
trans-1,3-Dichloropropene	ND	0.080	ND	0.36
Trichloroethene	ND	0.040	ND	0.21
Trichlorofluoromethane	ND	0.080	ND	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		114		60 - 140

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

Report Date: 16-Apr-2013 19:32

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mr.i/R041613.b/rblkd16.d

Lab Smp Id: MOLOV1AA / Client Smp ID: cn 7494

Inj Date : 16-APR-2013 12:52

Smp Info : MOLOV1AA,,3,,,cn 7494

Misc Info: R041613, T015, blkchklowny.sub

Comment

Method : /var/chem/gcms/mr.i/R041613.b/T015.m

Meth Date: 16-Apr-2013 19:25 barlozha Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205.d QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description				
\mathtt{DF}	1.00000	Dilution Factor				
Vt	500.00000	Default Calibration Volume				
Vo	500.00000	Default Sample Volume				

Cpnd Variable

Local Compound Variable

CONCENTRATIONS QUANT SIG ON-COLUMN FINAL MASS RT EXP RT REL RT RESPONSE (ppb(v/v))(ppb(v/v)) Compounds ----- -----_____ -----4.00000 1 Bromochloromethane 128 8.867 8.873 (1.000) 260594 4.000 2 1,4-Difluorobenzene 114 11.132 11.138 (1.000) 1363173 4.00000 4.000 4.000 3 Chlorobenzene-d5 117 17.414 17.436 (1.000) 1042048 4.00000

4.572 20.154 20.170 (1.157) 834140 4.57214 4 4-Bromofluorobenzene 95 4.176 4.176 (0.471) 7661 0.04540 0.04540 13 n-Butane 0.03230 M 5.028 5.023 (0.567) 19 2-methyl butane 43 4140 0.03230 24 Isopropyl Alcohol 45 5.513 5.481 (0.622) 3614 0.02421 0.02421 0.02282 6.311 6.312 (0.712) 0.02282 31 Methylene Chloride 84 2143 14.551 14.551 (0.836) 10478 0.02424 0.02424 65 Toluene

Julian

Report Date: 16-Apr-2013 19:32

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 16-APR-2013 Instrument ID: mr.i

Lab File ID: rblkd16.d Calibration Time: 10:51 Lab Smp Id: M0L0V1AA Client Smp ID: cn 7494

Analysis Type: OTHER Level: LOW

Quant Type: ISTD Sample Type: AIR Operator: 403648

Method File: /var/chem/gcms/mr.i/R041613.b/T015.m

Misc Info: R041613, T015, blkchklowny.sub

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=========	========	========	========	======
1 Bromochloromethan	294767	175386	414148	260594	-11.59
2 1,4-Difluorobenze	1529291	909928	2148654	1363173	-10.86
3 Chlorobenzene-d5	1257555	748245	1766865	1042048	-17.14
	ī				

	:	RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
1 Bromochloromethan	8.87	8.54	9.20	8.87	-0.06
2 1,4-Difluorobenze	11.14	10.81	11.47	11.13	-0.05
3 Chlorobenzene-d5	17.44	17.11	17.77	17.41	-0.13

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 16-Apr-2013 19:32

TestAmerica Knoxville

RECOVERY REPORT

Client SDG: R041613

Client Smp ID: cn 7494

Fraction: OTHER

Operator: 403648

Quant Type: ISTD

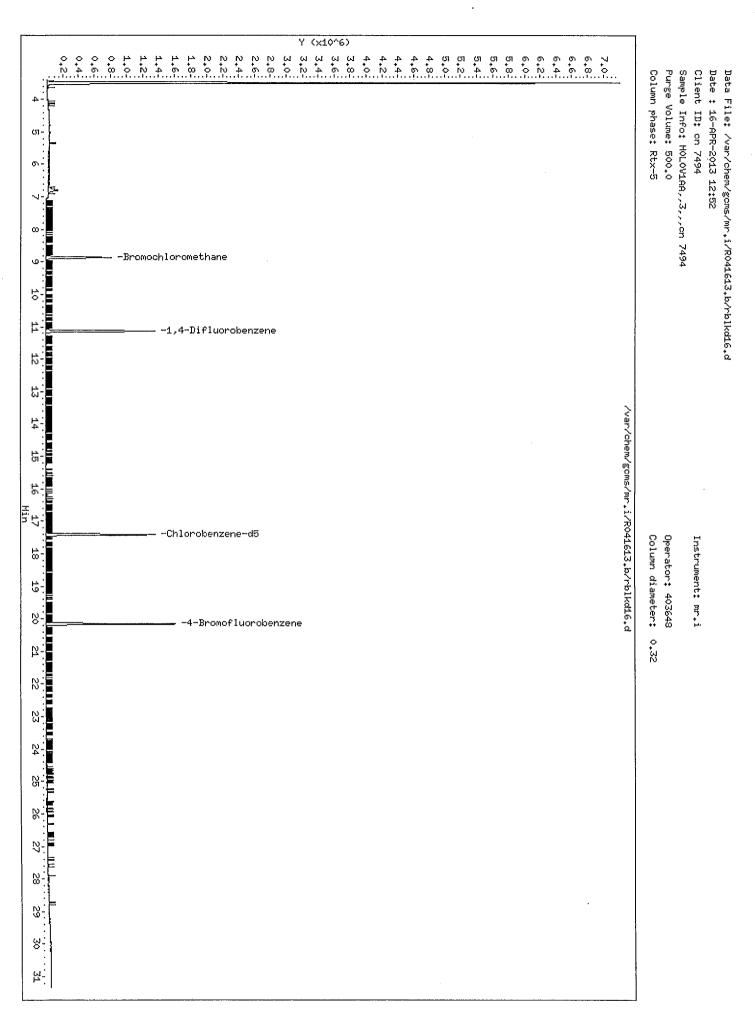
SampleType: BLANK

Client Name:

Sample Matrix: GAS

Lab Smp Id: MOLOV1AA

Level: LOW


Data Type: MS DATA

SpikeList File: allnew.spk

Sublist File: 1-all.sub

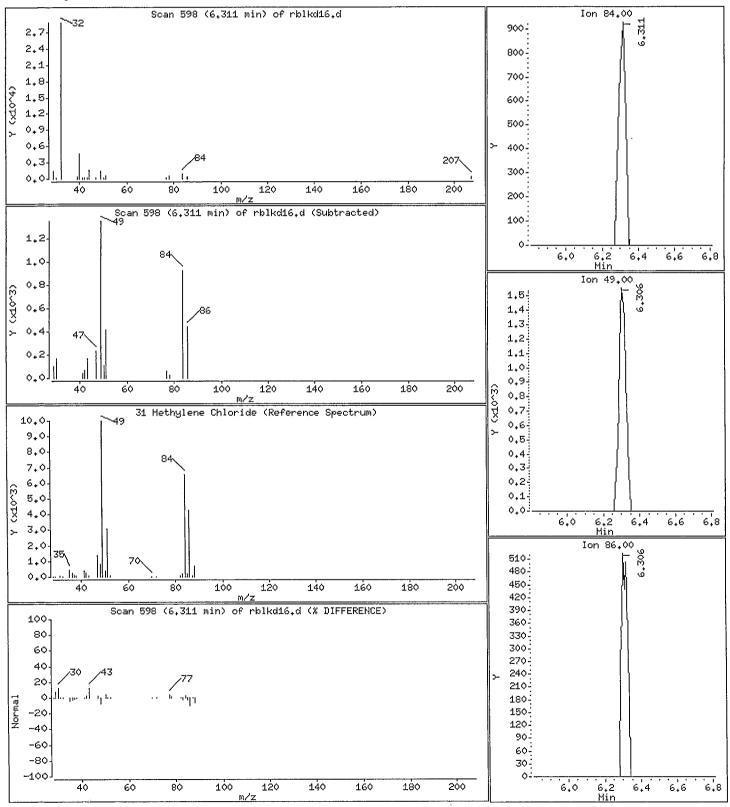
Method File: /var/chem/gcms/mr.i/R041613.b/T015.m Misc Info: R041613, T015, blkchklowny.sub

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	4.000	4.572	114.30	70-130

Date : 16-APR-2013 12:52

Client ID: on 7494

Instrument: mr.i


Sample Info: MOLOVIAA,,3,,,cn 7494

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

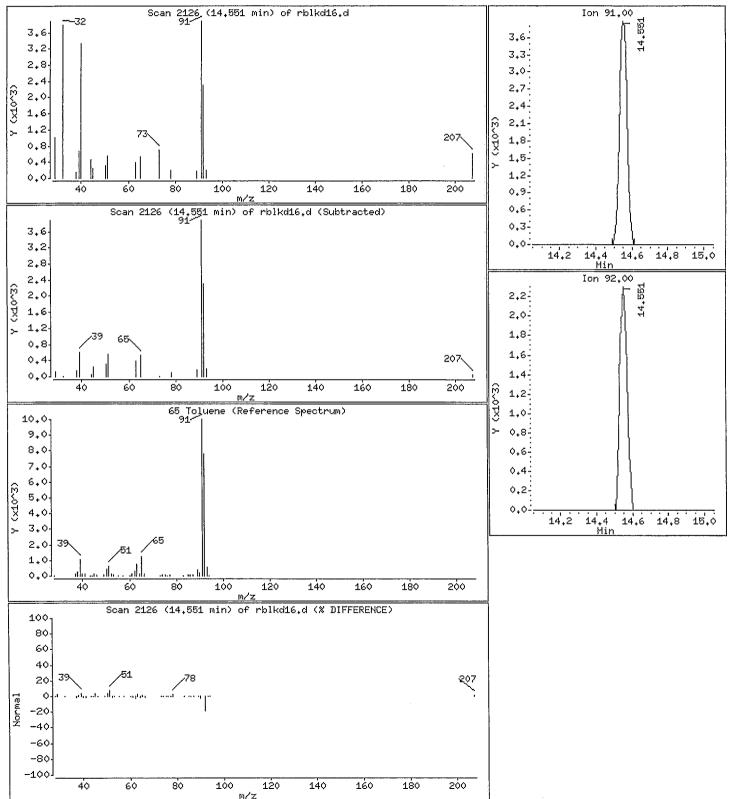
31 Methylene Chloride

Concentration: 0.02282 ppb(v/v)

Date : 16-APR-2013 12:52

Client ID: on 7494

Instrument: mr.i


Sample Info: MOLOVIAA,,3,,,cn 7494

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

65 Toluene

Concentration: 0.02424 ppb(v/v)

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

H3D160000 - 043C Work Order# M0L0V1AC Matrix....: AIR Lot-Sample #

04/11/2013 Prep Date....:

04/16/2013

Date Received ..: Analysis Date...

04/15/2013 04/16/2013

Prep Batch #....: 3106043

Dilution Factor.: 1	15	Method	TO-	15		
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
1,1,1-Trichloroethane	5.00	5.42	27	29.5	100	70 - 130
1,1,2,2-Tetrachloroethane	5.00	4.50	.34	30.9	108 90	70 - 130
1,1,2-Trichlorotrifluoroethane	5.00	4.91	38	37.6		70 - 130
1,1,2-111cmoroumnuoroemane	5.00	4.51	36	37.0	98	70 - 150
1,1,2-Trichloroethane	5.00	4.46	27	24.3	89	70 - 130
1,1-Dichloroethane	5.00	5.72	20	23.1	114	70 - 130
1,1-Dichloroethene	5.00	4.77	20	18.9	95	70 - 130
1,2,4-Trichlorobenzene	5.00	4.10	37	30.4	82	60 - 140
1,2,4-Trimethylbenzene	5.00	4.25	25	20.9	85	70 - 130
1,2-Dibromoethane (EDB)	5.00	4.33	38	33.3	87	70 - 130
1,2-Dichlorobenzene	5.00	3.90	30	23.4	78	70 - 130
1,2-Dichloroethane	5.00	5.75	20	23.3	115	70 - 130
1,2-Dichloropropane	5.00	5.42	23	25.0	108	70 - 130
1,3,5-Trimethylbenzene	5.00	4.06	25	20.0	81	70 - 130
1,4-Dichlorobenzene	5.00	3.97	30	23.8	79	70 - 130
1,4-Dioxane	5.00	4.90	18	17.7	98	60 - 140
2-Butanone (MEK)	5.00	5.12	15	15.1	102	60 - 140
1,3-Dichlorobenzene	5.00	3,91	30	23.5	78	70 - 130
2,2,4-Trimethylpentane	5.00	5.60	23	26.2	112	70 - 130
Benzene	5,00	4.92	16	15.7	98	70 - 130
Benzyl chloride	5.00	4.72	26	24.4	94	70 - 130
Bromodichloromethane	5.00	5.52	34	37.0	110	70 - 130
Bromoform	5.00	3.47	52	35.8	69	60 - 140
Bromomethane	5.00	4.28	19	16.6	86	70 - 130
Carbon tetrachloride	5.00	6.40	31	40.3	128	70 - 130
Chlorobenzene	5.00	4.03	23	18.5	81	70 - 130
Chloroethane	5.00	4.88	13	12.9	98	70 - 130
Chloroform	5.00	5.45	24	26.6	109	70 - 130
Cyclohexane	5.00	5.08	17	17.5	102	70 - 130
Chloromethane	5.00	5.71	10	11.8	114	60 - 140
cis-1,2-Dichloroethene	5.00	4.97	20	19.7	99	70 - 130
cis-1,3-Dichloropropene	5.00	5.24	23	23.8	105	70 - 130
Dibromochloromethane	5.00	4.35	43	37.0	87	70 - 130
Dichlorodifluoromethane	5.00	5.12	25	25.3	102	60 - 140
Ethanol	25.0	37.5	47	70.7	150	20 - 180
Ethylbenzene	5.00	4.31	22	18.7	86	70 - 130
1,2-Dichloro-1,1,2,2-tetrafluo roethane	5.00	4.24	35	29.6	85	60 - 140

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

Lot-Sample # H3D16000	0 - 043C	Work Order#		0V1AC	Matrix	: AIR
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
n-Hexane	5.00	5.76	18	20.3	115	70 - 130
Hexachlorobutadiene	5.00	3,48	53	37.1	70	60 - 140
4-Methyl-2-pentanone (MIBK)	5.00	6.97	20	28.6	139	60 - 140
Methyl tert-butyl ether	5.00	5.42	18	19.5	108	60 - 140
Methylene chloride	5.00	5.08	17	17.6	102	70 - 130
Styrene	5.00	4.41	21	18.8	88	70 - 130
tert-Butyl alcohol	5.00	5.86	15	17.8	117	60 - 140
Tetrachloroethene	5.00	3.92	34	26.6	78	70 - 130
Toluene	5.00	4.24	19	16.0	85	70 - 130
m-Xylene & p-Xylene	10.0	8.79	43	38.2	88	70 - 130
o-Xylene	5.00	4.32	22	18.8	86	70 - 130
trans-1,2-Dichloroethene	5.00	4.84	20	19.2	97	70 - 130
rans-1,3-Dichloropropene	5.00	4.70	23	21.3	94	70 - 130
Trichloroethene	5.00	4.43	27	23.8	89	70 - 130
Trichlorofluoromethane	5.00	5.11	28	28.7	102	60 - 140
Vinyl chloride	5.00	5.05	13	12.9	101	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTR LIMITS	OL
4-Bromofluorobenzene	<u> </u>	113			60 - 14	0

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Report Date: 16-Apr-2013 19:34

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mr.i/R041613.b/rlcsd16.d

Lab Smp Id: MOLOV1AC Client Smp ID: CCV/LCS

Inj Date : 16-APR-2013 10:51

Inst ID: mr.i Operator: 403648

Smp Info : MOLOV1AC,,2,6,,CCV/LCS

Misc Info: R041613, T015,

Comment

Method : /var/chem/gcms/mr.i/R041613.b/T015.m

Meth Date: 16-Apr-2013 19:25 barlozha Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205 Cal File: ricb205.d QC Sample: LCS

Als bottle: 1

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

DF 1.00000 Dilution Factor	 Name		Value	 Desci	ription 	
Vt 500.00000 Default Calibration Volu Vo 200.00000 Default Sample Volume	Vt	5	00.00000	Default	Calibration	

Cpnd Variable

Local Compound Variable

						CONCENTRA!	rions
		QUANT SIG				ON-COLUMN	FINAL
Comp	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb(v/v))
====	=======================================	====	==		=======		
*	1 Bromochloromethane	128	8.873	8.873 (1.000)	294767	4.00000	4.000
*	2 1,4-Difluorobenzene	114	11,138	11.138 (1.000)	1529291	4.00000	4.000
*	3 Chlorobenzene-d5	117	17.436	17.436 (1.000)	1257555	4.00000	4.000
\$	4 4-Bromofluorobenzene	95	20.170	20.170 (1.157)	995775	4.52274	11.31
M 8	3 Xylene (total)	100			2679281	5.24218	13.10
	5 Chlorodifluoromethane	67	3.664	3.664 (0.413)	66468	2.20739	5.518
	6 Propene	41	3.669	3.669 (0.414)	235616	2.62950	6.574
	7 Dichlorodifluoromethane	85	3.723	3.723 (0.420)	629243	2.04858	5.121
	8 Chloromethane	52	3.907	3.907 (0.440)	85710	2.28279	5.707
	9 1,2-Dichlorotetrafluoroethane	135	3.917	3.917 (0.441)	415180	1.69600	4.240
1	0 Methanol	31	4.063	4.063 (0.458)	82473	3.01539	7.538(R)
1	1 ~ acetaldehyde	44	4.058	4.058 (0.457)	544050	12.3199	30.80
1	2 Vinyl Chloride	62	4.079	4.079 (0.460)	260774	2.01840	5.046
1	3 n-Butane	43	4.176	4.176 (0.471)	451462	2.36535	5.913
1	4 1,3-Butadiene	54	4,171	4.171 (0.470)	214651	2.11510	5.288
1	5 Bromomethane	94	4.500	4.500 (0.507)	205292	1.71118	4.278

						CONCENTRATIONS			
		QUANT SIG					ON-COLUMN	FINAL	
Compou	ınds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))	
		====	==	=====	=====		======	=====	
16	Chloroethane	64	4.645	4.645	(0.524)	127306	1.95124	4.878	
17	~ ethanol	31	4.775	4.775	(0.538)	606849	15.0110	37.53 (R)	
1.8	Vinyl Bromide	106	4.963	4.963	(0.559)	217177	1.79858	4.496	
19	2-methyl butane	43	5.023	5.023	(0.566)	358799	2.47398	6.185	
20	Trichlorofluoromethane	101	5.244	5.244	(0.591)	609573	2.04261	5.106	
21	Acrolein	56	5.238	5.238	(0.590)	95125	2,15532	5.388	
22	Acetonitrile	40	5.303	5.303	(0.598)	123818	2.75452	6.886	
25	Pentane	72	5.481	5.481	(0.618)	49186	2.06929	5.173	
23	Acetone	58	5.362	5,362	(0.604)	123576	2.04284	5.107	
24	Isopropyl alcohol	45	5.481	5.481	(0.618)	449112	2.65943	6.648	
26	Ethyl Ether	31	5.643	5.643	(0.636)	397577	3.16877	7.922(R)	
27	1,1-Dichloroethene	96	5.966	5.966	(0.672)	225796	1.90885	4.772	
29	Acrylonitrile	53	6.047	6.047	(0.682)	216966	2.37113	5.928	
30	1,1,2-Trichlorotrifluoroethane	101	6.161	6.161	(0.694)	483260	1.96494	4.912	
28	tert-butanol	59	6.090	6.090	(0.686)	473847	2.34609	5.865	
31	Methylene Chloride	84	6.312	6.312	(0.711)	215624	2.03024	5.076	
32	3-Chloropropene	39	6.333	6.333	(0.714)	246184	2.94222	7.356(R)	
33	Carbon Disulfide	76	6.479	6.479	(0.730)	710475	2.09488	5.237	
35	~ 2-Methyl Pentane	43	7.180	7.180	(0.809)	730631	2.76902	6.922(R)	
34	trans-1,2-Dichloroethene	96	7.142	7.142	(0.805)	236874	1.93773	4.844	
36	Methyl-t-Butyl Ether	73	7.277	7.277	(0.820)	676831	2.16594	5.415	
37	1,1-Dichloroethane	63	7.557	7.557	(0.852)	484665	2.28587	5.715	
38	Vinyl Acetate	43	7.665	7.665	(0.864)	796272	2.82279	7.057(R)	
39	2-Butanone	72	8.107	8.107	(0.914)	121211	2.04810	5.120	
40	Hexane	·56	8.177	8.177	(0.922)	233344	2.30398	5.760	
41	cis 1,2-Dichloroethene	96	8.549	8.549	(0.964)	246155	1.98639	4.966	
42	Ethyl acetate	43	8.738	8.738	(0.985)	707200	2.83104	7.078(R)	
43	Chloroform	83	8.900	8.900	(1.003)	515542	2.18184	5.454	
44	Tetrahydrofuran	42	9.304	9.304	(1.049)	368717	2.76673	6.917	
45	1,1,1-Trichloroethane	97	9.941	9.941	(1.120)	497803	2.16658	5.416	
46	1,2-Dichloroethane	62	10.027	10.027	(0.900)	385163	2.30022	5.750	
49	Cyclohexane	69	10.572	10.572	(0.949)	122127	2.03417	5.085	
48	Benzene	78	10,550	10.550	(0.947)	762159	1.96890	4.922	
50	Carbon Tetrachloride	117	10.588	10.588	(0.951)	512188	2,56132	6.403	
51.	~ 2,3-dimethylpentane	71	10.717	10.717	(0.962)	165677	2.03282	5.082	
47	1-Butanol	31	10.534	10.534	(0.946)	123637	3.28167	8.204(R)	
52	~ Thiophene	84	10.836		(0.973)	442022	1.95499	4.887	
53	2,2,4-trimethylpentane	57	11.424		(1.026)	1404260	2.23958	5.599	
54	Heptane	71	11.855		(1.064)	277089	2,03990	5.100	
55	1,2-Dichloropropane	63	11.893		(1.068)	307701	2.16816	5.420	
56		130	11.947		(1.073)	304822	1.77022	4.426	
180	~ 2-nitropropane	43	11.855		(1.064)	603993			
57		93	12.022		(1.079)	282057	2.03392	5.085	
58	Bromodichloromethane	83	12.205		(1.096)	543083	2.20713	5.518	
60	Methyl Methacrylate	41	12.340		(1.108)	436982	2.85443	7.136(R)	
59	1,4-dioxane	88	12.222		(1.097)	107274	1.96110	4.903	
61	~ methyl cyclohexane	83	12.896	12.896	(1.158)	450350	1.95926	4.898	

						CONCENTRATIONS	
		QUANT SIG				ON-COLUMN	FINAL
Compo	ınds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
=====		====	==		======	======	======
63	cis-1,3-Dichloropropene	75	13.451	13.451 (1.208)	421337	2.09674	5.242
62	4-Methyl-2-pentanone	43	13.386	13.386 (1.202)	762032	2.78863	6.972
64	trans-1,3-Dichloropropene	75	14.373	14.373 (0.824)	429055	1.88175	4.704
65	Toluene	91	14,551	14.551 (0.835)	884262	1.69472	4.237
66	1,1,2-Trichloroethane	83	14.637	14.637 (0.839)	260051	1.78233	4.456
67	~ 2-methyl thiophene	97	14.756	14.756 (0.846)	750371	1.70020	4.250
68	~ 3-methyl thiophene	97	15.031	15.031 (0.862)	766742	1,69776	4.244
69	2-Hexanone	58	15.198	15.198 (0.872)	334335	2,10465	5.262
70	Octane	85	15.592	15.592 (0.894)	291801	1.70157	4.254
71	Dibromochloromethane	129	15.613	15.613 (0.895)	460293	1.73942	4.348
72	1,2-Dibromoethane	107	16.029	16.029 (0.919)	447901	1.73118	4.328
73	Tetrachloroethene	1.29	16.180	16.180 (0.928)	289768	1.56799	3.920
75	~ 2,3-dimethylheptane	43	17.652	17.652 (1.012)	1091073	2.36037	5.901
74	Chlorobenzene	112	17.512	17.512 (1.004)	663359	1.61146	4.029
76	Ethylbenzene	91	18,008	18.008 (1.033)	1129112	1.72320	4.308
77	~ 2-ethyl thiophene	97	18.164	18.164 (1.042)	856193	1,73615	4.340
78	m&p-Xylene	91	18.277	18.277 (1.048)	1777902	3.51488	8.787
79	Nonane	57	19.081	19.081 (1.094)	688500	2.02399	5.060
8.0	Bromoform	173	18.935	18.935 (1.086)	329547	1.38648	3.466
81	Styrene	104	19.038	19.038 (1.092)	633401	1.76316	4.408
	o-Xylene	91	19.140	19.140 (1.098)	901379	1.72730	4.318
	1,1,2,2-Tetrachloroethane	83	19.668	19.668 (1.128)	678771	1.80185	4.505
	1,2,3-Trichloropropane	110	19.938	19.938 (1.143)	190114	1.66369	4.159
	Cumene	105	20.159	20.159 (1.156)	1270911	1.68566	4.214
	n-Propylbenzene	120	21.114	21.114 (1.211)	350320	1.62069	4.052
88	2-chlorotoluene	126	21.146	21.146 (1.213)	312978	1.59311	3.983
89	4-Ethyltoluene	105	21.405	21.405 (1.228)	1296895	1.67912	4.198
	1,3,5-Trimethylbenzene	120	21.556	21.556 (1.236)	592267	1.62567	4.064
	Alpha-Methylstyrene	118	21,987	21.987 (1.261)	489403	1.71198	4.280
	Decane	57	22,246	22.246 (1.276)	886586	2.07659	5.191
9.3	tert-butylbenzene	119	22,359	22.359 (1.282)	1120995	1.63326	4.083
94		105	22.392	22.392 (1.284)	1084697	1.70174	4.254
	sec-butylbenzene	105	22.920	22.920 (1.315)	1578209	1,68059	4.201
	1,3-Dichlorobenzene	146	22.877	22.877 (1.312)	675871	1,56512	3.913
	Benzyl Chloride	91	23.044	23.044 (1.322)	1021867	1.88653	4.716
98		146	23.060	23.060 (1.323)	688531	1,58632	3.966
	p-Cymene	119	23.281	23.281 (1.335)	1309713	1.64165	4.104
100		105			976451	1.70566	4.264
101		83	23.529	23.529 (1.349)	916549	1.76208	4.405
	~ Indane	117	23.831		999875	1.62715	4.068
	1,2-Dichlorobenzene	146	23.810	23.810 (1.366)	648141	1.55977	3.899
	n-butylbenzene	91	24.230	24.230 (1.390)	1344957	1.80490	4.512
	~ Indene	116	24.230	24.230 (1.390)	998230	1.72360	4.309
_	Undecane	57	25.120	25.120 (1,441)	1068644	2.14258	5.356
	~ 1,2-dimethyl-4-ethylenzene	119	25.120	25.120 (1,441)	1326225	1.66588	4.165
	~ 1,2,4,5-tetramethylbenzene	119	25.082	25.082 (1.439)			
					1377067	1.69132	4.228
109	~ 1,2,3,5-tetramethylbenzene	119	26.123	26.123 (1.498)	850021	1.66575	4.164

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb (v/v))	(ppb(v/v))
	====	==			======	======
110 ~ 1,2,3,4-tetramethylbenzene	119	27.002	27.002 (1.549)	1145890	1.71911	4.298
111 Dodecane	57	27.579	27.579 (1.582)	1059794	2.50170	6.254
112 1,2,4-Trichlorobenzene	180	27.682	27.682 (1.588)	593319	1.63996	4.100
113 Napthalene	128	27.913	27.913 (1.601)	1559232	1.80921	4.523
114 ~ benzo(b) thiophene	134	28.108	28.108 (1.612)	1065368	1.72833	4.321
115 Hexachlorobutadiene	225	28.431	28.431 (1.631)	483160	1.39185	3.480
116 1,2,3-trichlorobenzene	1.80	28.474	28.474 (1.633)	592432	1.63578	4.089
117 ~ 2-Methylnaphthalene	142	29.925	29.925 (1.716)	963035	11.2106	28.03
118 ~ 1-Methylnaphthalene	142	30.227	30.227 (1.734)	882185	11.7221	29.30

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Calibration Date: 16-APR-2013

Calibration Time: 10:51 Client Smp ID: CCV/LCS

Level: LOW

Sample Type: AIR

Data File: /var/chem/qcms/mr.i/R041613.b/rlcsd16.d

Report Date: 16-Apr-2013 19:34

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i Lab File ID: rlcsd16.d Lab Smp Id: M0L0V1AC

Analysis Type: OTHER

Quant Type: ISTD

Operator: 403648

Method File: /var/chem/gcms/mr.i/R041613.b/T015.m

Misc Info: R041613, T015,

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	========	======
1 Bromochloromethan	294767	175386	414148	294767	0.00
2 1,4-Difluorobenze	1529291	909928	2148654	1529291	0.00
3 Chlorobenzene-d5	1257555	748245	1766865	1257555	0.00

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
1 Bromochloromethan	8.87	8.54	9.20	8.87	0.00
2 1,4-Difluorobenze	11.14	10.81	11.47	11,14	0.00
3 Chlorobenzene-d5	17.44	17.11	17.77	17.44	0.00

AREA UPPER LIMIT = +40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 16-Apr-2013 19:34

TestAmerica Knoxville

RECOVERY REPORT

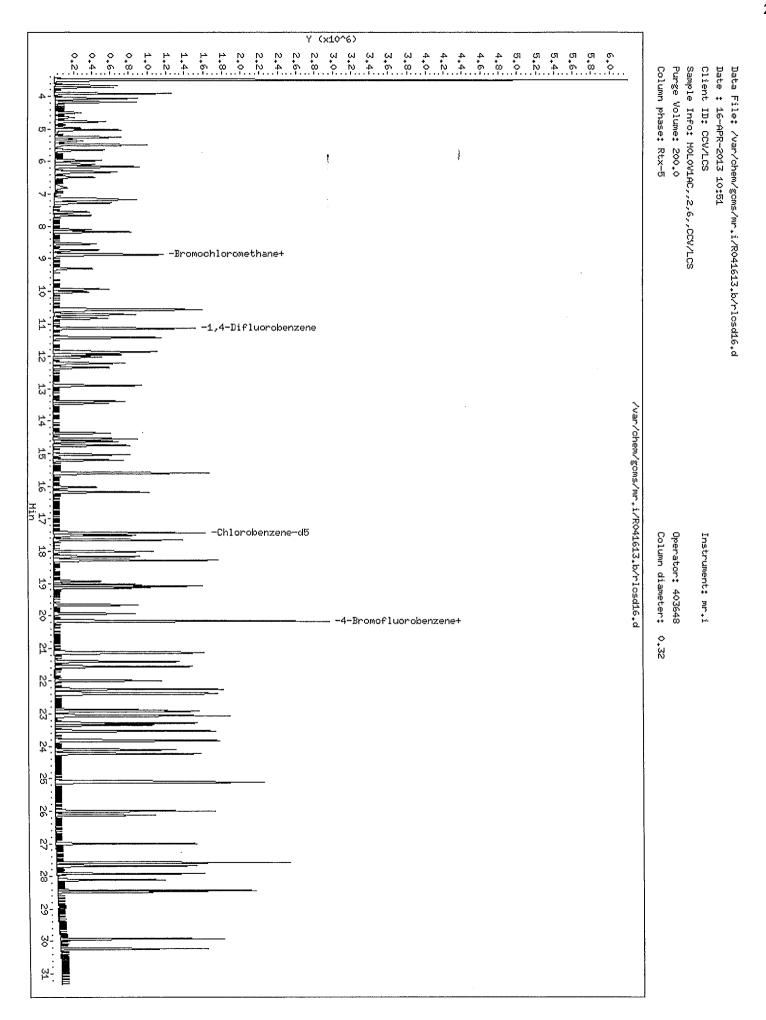
Client Name: Client SDG: R041613
Sample Matrix: GAS Fraction: OTHER

Lab Smp Id: MOLOV1AC Client Smp ID: CCV/LCS

Level: LOW Operator: 403648
Data Type: MS DATA SampleType: LCS
SpikeList File: allnew.spk Quant Type: ISTD

Sublist File: all.sub

Method File: /var/chem/gcms/mr.i/R041613.b/T015.m


Misc Info: R041613, T015,

		CONC	CONC	%	
SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
		ppb(v/v)	ppb(v/v)		
5	Chlorodifluorometh	5.000	5.518	110.37	60-140
	Propene	5.000	6.574	131.47	60-140
7	Dichlorodifluorome	5.000	5.121	102.43	60-140
8	Chloromethane	5.000	5.707	114.14	60-140
	1,2-Dichlorotetraf	5.000	4.240	84.80	60-140
10	Methanol	5.000	7.538	150.77*	60-140
11	~ acetaldehyde	25.00	30.80	123.20	70-130
12	Vinyl Chloride	5.000	5.046	100.92	70-130
13	n-Butane	5.000	5.913	118.27	60-140
14	1,3-Butadiene	5.000	5.288	105.75	60-140
15	Bromomethane	5.000	4.278	85.56	70-130
16	Chloroethane	5.000	4.878	97.56	70-130
17	~ ethanol	25.00	37.53	150.11*	70-130
18	Vinyl Bromide	5.000	4.496	89.93	60-140
	2-methyl butane	5.000	6.185	123.70	70-130
	Trichlorofluoromet	5.000	5.106	102.13	60-140
21	Acrolein	5.000	5.388	107.77	60-140
22	Acetonitrile	5.000	6.886	137.73	60-140
1	Acetone	5.000	5.107	102.14	60-140
i	Pentane	5.000	5.173	103.46	70-130
	Isopropyl alcohol	5.000	6.648	132.97	60-140
	Ethyl Ether	5.000	7.922	158.44*	60-140
27	1,1-Dichloroethene	5.000	4.772	95.44	70-130
	tert-butanol	5.000	5.865	117.30	60-140
	Acrylonitrile	5.000	5.928	118.56	60-140
		5.000	4.912	98.25	70-130
	Methylene Chloride	5.000	5.076	101.51	70-130
	3-Chloropropene	5.000	7.356	147.11*	60-140
(Carbon Disulfide	5.000	5.237	104.74	70-130
	trans-1,2-Dichloro	5.000	4.844	96.89	70-130
	~ 2-Methyl Pentane	5.000	6.922	138.45*	70-130
	Methyl-t-Butyl Eth	5.000	5.415	108.30	60-140
37	1,1-Dichloroethane	5.000	5.715	114.29	70-130

		CONC	CONC	8	
SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
		ppb(v/v)	ppb(v/v)		
38	Vinyl Acetate	5.000	7.057	141.14*	60-140
39	2-Butanone	5.000	5.120	102.40	60-140
40	Hexane	5.000	5.760	115.20	70-130
41	cis 1,2-Dichloroet	5,000	4.966	99.32	70-130
	Ethyl acetate	5.000	7.078	141.55*	60-140
	Chloroform	5.000	5.454	109.09	70-130
44	Tetrahydrofuran	5.000	6.917	138.34	60-140
45	1,1,1-Trichloroeth	5.000	5.416	108.33	70-130
	1,2-Dichloroethane	5.000	5.750	115.01	70-130
	1-Butanol	5.000	8.204	164.08*	60-140
48	Benzene	5.000	4.922	98.45	70-130
	Cyclohexane	5.000	5.085	101.71	70-130
	Carbon Tetrachlori	5.000	6.403	128.07	70-130
	~ 2,3-dimethylpent	5.000	5.082	101.64	70-130
52	~ Thiophene * *	5.000	4.887	97.75	70-130
	2,2,4-trimethylpen	5.000	5.599	111.98	70-130
	Heptane	5.000	5.100	101.99	70-130
	1,2-Dichloropropan	5.000	5.420	108.41	70-130
	Trichloroethene	5.000	4.426	88.51	70-130
i	Dibromomethane	5.000	5.085	101.70	70-130
1	Bromodichlorometha	5.000	5.518	110.36	70-130
1	1,4-dioxane	5.000	4.903	98.06	60-140
	Methyl Methacrylat	5.000	7.136	142.72*	60-140
	~ methyl cyclohexa	5.000	4.898	97.96	70-130
	4-Methyl-2-pentano	5.000	6.972	139.43	60-140
	cis-1,3-Dichloropr	5.000	5.242	104.84	70-130
	trans-1,3-Dichloro	5.000	4,704	94.09	70-130
	Toluene	5.000	4.237	84.74	70-130
66	1,1,2-Trichloroeth	5.000	4.456	89.12	70-130
	~ 2-methyl thiophe	5.000	4.250	85.01	70-130
	~ 3-methyl thiophe	5.000	4.244	84.89	70-130
69	2-Hexanone	5.000	5.262	105.23	60-140
70	Octane	5.000	4.254	85.08	70-130
71	Dibromochlorometha	5.000	4.348	86.97	70-130
72	1,2-Dibromoethane	5.000	4.328	86.56	70-130
73	Tetrachloroethene	5.000	3.920	78.40	70-130
74	Chlorobenzene	5.000	4.029	80.57	70-130
75	~ 2,3-dimethylhept	5.000	5.901	118.02	70-130
76	Ethylbenzene	5.000	4.308	86.16	70-130
77	~ 2-ethyl thiophen	5.000	4.340	86.81	70-130
78	m&p-Xylene	10.00	8.787	87.87	70-130
M 83		15.00	13.10	87.37	70-130
79	Nonane	5.000	5.060	101.20	60-140
80	Bromoform	5.000	3.466	69.32	60-140
81	Styrene	5.000	4.408	88.16	70-130
	o-Xylene	5.000	4.318	86.36	70-130
84	1,1,2,2-Tetrachlor	5.000	4.505	90.09	70-130

SPIKE COMPOUND	CONC ADDED	CONC RECOVERED	% RECOVERED	LIMITS
	ppb(v/v)	ppb(v/v)		
85 1,2,3-Trichloropro	5.000	4.159	83.18	60-140
86 Cumene	5.000	4.214	84.28	70-130
87 n-Propylbenzene	5.000	4.052	81.03	70-130
88 2-chlorotoluene	5.000	3.983	79.66	70-130
89 4-Ethyltoluene	5.000	4.198	83.96	70-130
90 1,3,5-Trimethylben	5.000	4.064	81.28	70-130
91 Alpha-Methylstyren	5.000	4.280	85.60	60-140
92 Decane	5.000	5.191	103.83	60-140
93 tert-butylbenzene	5.000	4.083	81.66	70-130
94 1,2,4-Trimethylben	5.000	4.254	85.09	70-130
95 sec-butylbenzene	5.000	4.201	84.03	70-130
96 1,3-Dichlorobenzen	5.000	3.913	78.26	70-130
97 Benzyl Chloride	5.000	4.716	94.33	70-130
98 1,4-Dichlorobenzen	5.000	3.966	79.32	70-130
99 p-Cymene	5.000	4.104	82.08	70-130
100 ~ 1,2,3- Trimethyl	5.000	4.264	85.28	70-130
101 ~ n-butylcyclohexa	5.000	4.405	88.10	70-130
102 ~ Indane	5.000	4.068	81.36	70-130
103 1,2-Dichlorobenzen	5.000	3.899	77.99	70-130
104 n-butylbenzene	5.000	4.512	90.25	60-140
105 ~ Indene	5.000	4.309	86.18	70-130
106 Undecane	5,000	5.356	107.13	60-140
107 ~ 1,2-dimethyl-4-e	5.000	4.165	83.29	70-130
108 ~ 1,2,4,5-tetramet	5.000	4.228	84.57	70-130
109 ~ 1,2,3,5-tetramet	5.000	4.164	83.29	70-130
110 ~ 1,2,3,4-tetramet	5.000	4.298	85.96	70-130
111 Dodecane	5.000	6.254	125.08	60-140
112 1,2,4-Trichloroben	5.000	4.100	82.00	60-140
113 Napthalene	5.000	4.523	90.46	40-140
114 ~ benzo(b) thiophe	5.000	4.321	86.42	70-130
115 Hexachlorobutadien	5.000	3.480	69.59	60-140
116 1,2,3-trichloroben	5.000	4.089	81.79	40-140
117 ~ 2-Methylnaphthal	31.25	28.03	89.68	70-130
118 ~ 1-Methylnaphthal	31.25	29.30	93.78	70-130

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	10.00	11.31	113.07	70-130

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H3D170000 - 088B Work Order # M0MCP1AA Matrix......: AIR

04/12/2013

04/15/2013 04/17/2013

Prep Batch #....: 3107088

Prep Date....:

__ ._

TO-15 Dilution Factor .: 1 Method....: REPORTING RESULTS REPORTING RESULTS PARAMETER LIMIT (ppb(v/v)) (ug/m3) LIMIT (ug/m3) (ppb(v/v)) 0.080 ND 0.44 ND 1,1,1-Trichloroethane ND 0.080 ND 0.55 1,1,2,2-Tetrachloroethane 1,1,2-Trichlorotrifluoroethane ND 0.080 ND 0.61 0.44 ND 0.080 ND 1,1,2-Trichloroethane ND 0.080 ND 0.32 1,1-Dichloroethane 0.080 ND 0.32 1,1-Dichloroethene ND ND 0.59 1.2.4-Trichlorobenzene ND 0.080 0.080 ND 0.39 ND 1,2,4-Trimethylbenzene 1,2-Dibromoethane (EDB) ND 0.080 ND 0.61 1,2-Dichlorobenzene ND 0.080 ND 0.48 0.32 0.080 ND ND 1,2-Dichloroethane 0.37 1,2-Dichloropropane ND 0.080 ND 1,3,5-Trimethylbenzene ND 0.080 ND 0.39 0.080 ND 0.48 1,4-Dichlorobenzene ND 0,20 ND 0.72 ND 1,4-Dioxane 0.94 2-Butanone (MEK) ND 0.32 ND 0.48 1.3-Dichlorobenzene ND 0.080 ND 0.93 0.20 ND 2,2,4-Trimethylpentane ND Benzene ND 0.080 ND 0.26 ND 0.16 ND 0.83 Benzyl chloride 0.54 0.080 ND Bromodichloromethane ND 0.080 ND0.83 Bromoform ND Bromomethane ND 0.080 ND 0.31 0.25 Carbon tetrachloride ND 0.040 ND 0.37 0.080 ND Chlorobenzene ND Chloroethane ND 0.080 ND 0.21 0.39 Chloroform ND0.080 ND0.20 ND0.69 ND Cyclohexane ND 0.41 Chloromethane ND0.20 ND 0.080 ND 0.32 cis-1,2-Dichloroethene 0.36 0.080 ND cis-1,3-Dichloropropene ND 0.68 ND 0.080 ND Dibromochloromethane Dichlorodifluoromethane ND 0.080 ND 0.40 1.5 0.80 ND Ethanol ND 0.080 ND 0.35 ND Ethylbenzene 1,2-Dichloro-1,1,2,2-tetrafluoroeth ND 0.080 ND 0.56 ane 0.70 n-Hexane ND 0.20 ND

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H3D170000 - 08	88B	Work Order # M0MCF	PIAA	Matrix: AIR
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
Hexachlorobutadiene	ND	0.080	ND	0.85
4-Methyl-2-pentanone (MIBK)	ND	0.20	ND	0.82
Methyl tert-butyl ether	ND	0.16	ND	0.58
Methylene chloride	ND	0.20	ND	0.69
Styrene	ND	0.080	ND	0.34
tert-Butyl alcohol	ND	0.32	ND	0.97
Tetrachloroethene	ND	0.080	ND	0.54
Toluene	ND	0.080	ND	0.30
m-Xylene & p-Xylene	ND	0.080	ND	0.35
o-Xylene	ND	0.080	ND	0.35
rans-1,2-Dichloroethene	ND	0.080	ND	0.32
rans-1,3-Dichloropropene	ND	0.080	ND	0.36
Frichloroethene	ND	0.040	ND	0.21
Trichloro fluoromethane	ND	0.080	ND	0.45
Vinyl chloride	ND	0.080	ND	0.20
SURROGATE		PERCENT RECOVERY		LABORATORY CONTROL LIMITS (%)
4-Bromofluorobenzene		113	_	60 - 140

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding) * (Molecular \ Weight/24.45)$

Report Date: 17-Apr-2013 19:59

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file: /var/chem/gcms/mr.i/R041713.b/rblkd17.d

Lab Smp Id: MOMCP1AA / Client Smp ID: can 1353N

Inj Date : 17-APR-2013 15:47

Operator: 403648 Inst ID: mr.i

Smp Info : MOMCP1AA,,3,,,can 1353N
Misc Info : R041713,T015,blkchklowny.sub

Comment :

65 Toluene

Method : /var/chem/gcms/mr.i/R041713.b/T015.m

Meth Date: 17-Apr-2013 19:55 barlozha Quant Type: ISTD Cal Date: 20-FEB-2013 20:14 Cal File: ricb205.d QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 1-all.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	500.00000	Default Sample Volume

Cpnd Variable Local Compound Variable

91

CONCENTRATIONS ON-COLUMN FINAL QUANT STG (ppb(v/v)) MASS EXP RT REL RT RESPONSE (ppb (v/v)) Compounds ----------_____ ==== ========== ======= 4.00000 4.000 1 Bromochloromethane 128 8.889 8.868 (1.000) 247729 114 11.148 11.132 (1.000) 4.000 2 1,4-Difluorobenzene 1298881 4.00000 3 Chlorobenzene-d5 117 17.420 17.431 (1.000) 988749 4.00000 /4.000 4.517 4 4-Bromofluorobenzene 95 20.159 20.165 (1.157) 782013 4.51747 0.03817M 0.03817 4.187 4.171 (0.471) 6123 13 n-Butane 43 5.044 5.017 (0.567) 2708 0.02222 0.022221/ 19 2-methyl butane 0.02512 5.546 5.481 (0.624) 3566 0.02513 24 Isopropyl Alcohol 45 6378 0.07146 0.07146 31 Methylene Chloride 84 6.328 6.306 (0.712) 0.01781 0.01781 56 8.199 8.172 (0.922) 1516 10.588 10.528 (0.950) 2760 0.08625 0.08625 MAL 31 47 1-Butanol

14.551 14.546 (0.835)

9167

0.02235

Julista

0.02234

Report Date: 17-Apr-2013 19:59

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i Lab File ID: rblkd17.d Lab Smp Id: MOMCP1AA Analysis Type: OTHER

Quant Type: ISTD

Operator: 403648

Method File: /var/chem/gcms/mr.i/R041713.b/T015.m

Misc Info: R041713, T015, blkchklowny.sub

Calibration	Date:	17-APR-2013
Calibration	Time:	12:45
07 O 7	FD ~~~	1 2 5 2 37

Client Smp ID: can 1353N

Level: LOW Sample Type: AIR

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=========	=======	=======	======
1 Bromochloromethan	281891	167725	396057	247729	-12.12
2 1,4-Difluorobenze	1460036	868721	2051351	1298881	-11.04
3 Chlorobenzene-d5	1172674	697741	1647607	988749	-15.68

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	=======	========	======
1 Bromochloromethan	8.87	8.54	9.20	8.89	0.24
2 1,4-Difluorobenze	11.13	10.80	11.46	11.15	0.14
3 Chlorobenzene-d5	17.43	17.10	17.76	17.42	-0.06

AREA UPPER LIMIT = +40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Report Date: 17-Apr-2013 19:59

TestAmerica Knoxville

RECOVERY REPORT

Client SDG: R041713

Client Smp ID: can 1353N

Fraction: OTHER

Operator: 403648

Quant Type: ISTD

SampleType: BLANK

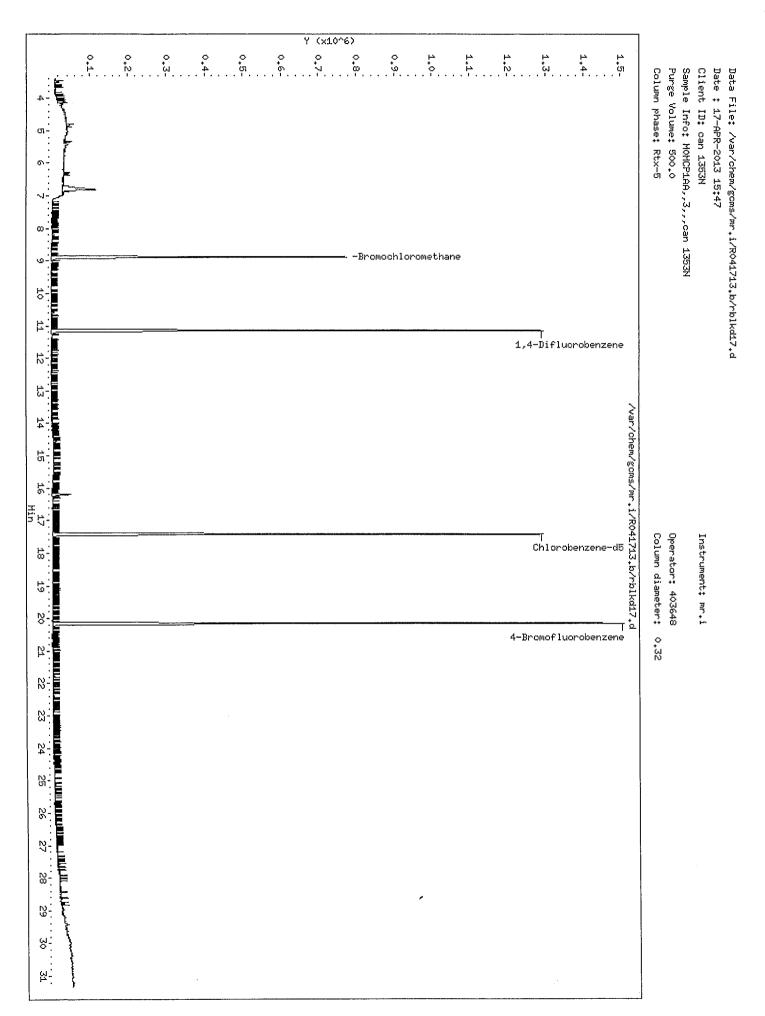
Client Name:

Sample Matrix: GAS

Lab Smp Id: MOMCP1AA

Level: LOW

Data Type: MS DATA


SpikeList File: allnew.spk

Sublist File: 1-all.sub

Method File: /var/chem/gcms/mr.i/R041713.b/T015.m

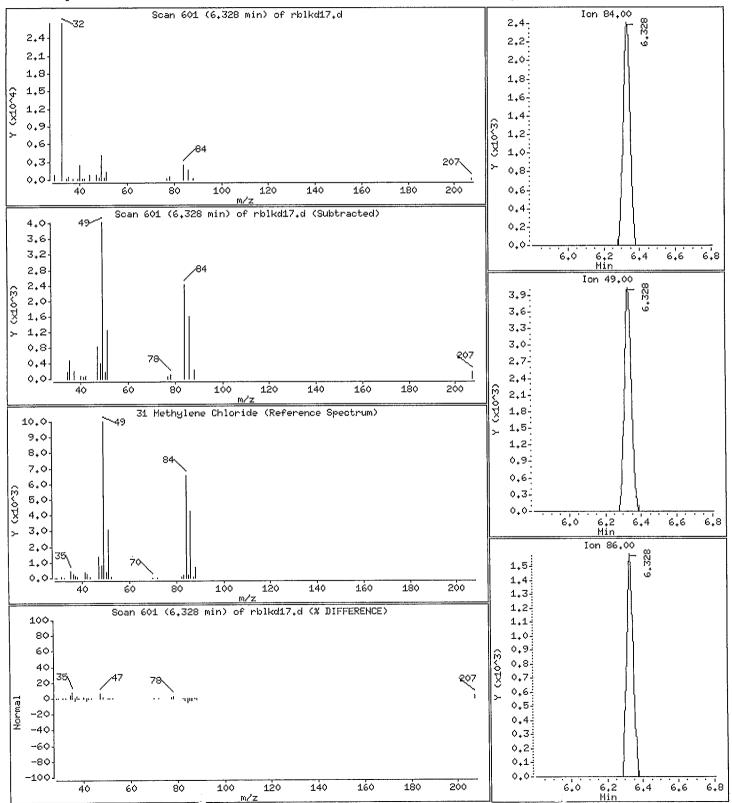
Misc Info: R041713, T015, blkchklowny.sub

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb (v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	4.000	4.517	112.94	70-130

Data File: /var/chem/gcms/mr.i/R041713.b/rblkd17.d

Date : 17-APR-2013 15:47

Client ID: can 1353N Instrument: mr.i


Sample Info: MOMCP1AA,,3,,,can 1353N

Purge Volume: 500.0 Operator: 403648

Column phase: Rtx-5 Column diameter: 0.32

31 Methylene Chloride

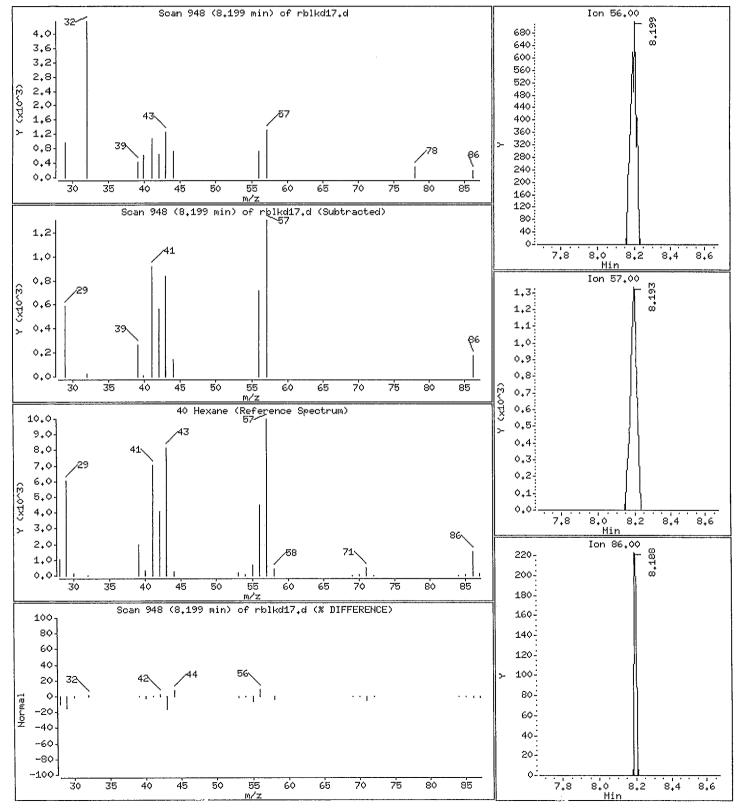
Concentration: 0.07146 ppb(v/v)

Data File: /var/chem/goms/mr.i/R041713.b/rblkd17.d

Date : 17-APR-2013 15:47

Client ID: can 1353N

Instrument: mr.i


Sample Info: MOMCP1AA,,3,,,can 1353N

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

40 Hexane

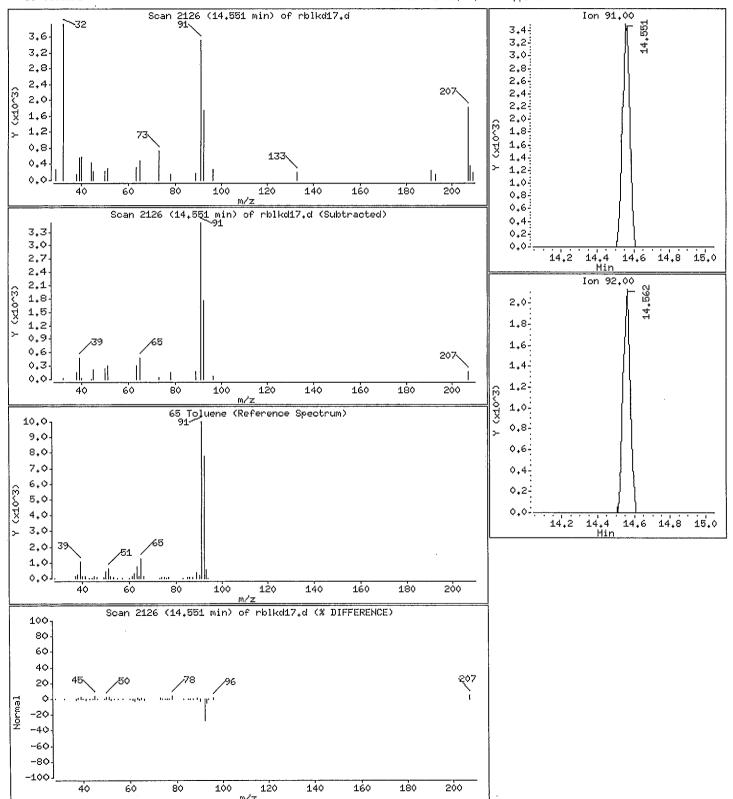
Concentration: 0.01781 ppb(v/v)

Data File: /var/chem/goms/mr.i/R041713.b/rblkd17.d

Date : 17-APR-2013 15:47

Client ID: can 1353N

Instrument: mr.i


Sample Info: MOMCP1AA,,3,,,can 1353N

Purge Volume: 500.0 Column phase: Rtx-5 Operator: 403648

Column diameter: 0.32

65 Toluene

Concentration: 0.02234 ppb(v/v)

New York State D.E.C.

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

Lot-Sample # H3D170000	- 088C	Work Ord	der# MON	MCP1AC	Matrix	: AIR
04/12/2 Prep Date: 04/17/2 Prep Batch #: 310708	2013	Date Rece Analysis I		5/2013 7/2013		
Dilution Factor.:		Method	TO-	15		
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
1,1,1-Trichloroethane	5.00	5.52	27	30.1	110	70 - 130
1,1,2,2-Tetrachloroethane	5.00	4.60	34	31.6	92	70 - 130
1,1,2-Trichlorotrifluoroethane	5.00	5.02	38	38.5	100	70 - 130
1,1,2-Trichloroethane	5.00	4.56	27	24.9	91	70 - 130
1,1-Dichloroethane	5.00	5.80	20	23.5	116	70 - 130
1,1-Dichloroethene	5.00	4.90	20	19.4	98	70 - 130
1,2,4-Trichlorobenzene	5.00	4.28	37	31.7	86	60 - 140
1,2,4-Trimethylbenzene	5.00	4.30	25	21.1	86	70 - 130
1,2-Dibromoethane (EDB)	5.00	4.46	38	34.2	89	70 - 130
1,2-Dichlorobenzene	5.00	3,95	30	23.8	79	70 - 130
1,2-Dichloroethane	5.00	5.78	20	23.4	116	70 - 130
,2-Dichloropropane	5.00	5,44	23	25.2	109	70 - 130
1,3,5-Trimethylbenzene	5.00	4.15	25	20.4	83	70 - 130
1,4-Dichlorobenzene	5.00	4.06	30	24.4	81	70 - 130
1,4-Dioxane	5.00	5.07	18	18.3	101	60 - 140
2-Butanone (MEK)	5.00	5.11	15	15.1	102	60 - 140
1,3-Dichlorobenzene	5.00	4.01	30	24.1	80	70 - 130
2,2,4-Trimethylpentane	5.00	5.67	.23	26.5	113	70 - 130
Benzene	5.00	5.01	16	16.0	100	70 - 130
Benzyl chloride	5.00	4.81	26	24.9	96	70 - 130
Bromodichloromethane	5.00	5.61	34	37.6	112	70 - 130
Bromoform	5.00	4.26	52	44.0	85	60 - 140
Bromomethane	5.00	4.37	19	17.0	87	70 - 130
Carbon tetrachloride	5.00	6.53	31	41.1 a ME	131 a ME	70 - 130
Chlorobenzene	5.00	4.14	23	19.0	83	70 - 130
Chloroethane	5.00	4.93	13	13.0	99	70 - 130
Chloroform	5.00	5.51	24	26.9	110	70 - 130
Cyclohexane	5.00	5.21	17	17.9	104	70 - 130
Chloromethane	5.00	5.40	10	11.1	108	60 - 140
cis-1,2-Dichloroethene	5.00	5.04	20	20.0	101	70 - 130
cis-1,3-Dichloropropene	5.00	5.29	23	24.0	106	70 - 130
Dibromochloromethane	5.00	4.64	43	39.5	93	70 - 130
Dichlorodifluoromethane	5.00	5.09	25	25.2	102	60 - 140
Ethanol	25.0	35.9	47	67.6	144	20 - 180
Ethylbenzene	5.00	4.38	22	19.0	88	70 - 130
1,2-Dichloro-1,1,2,2-tetrafluo	5.00	4.25	35	29.7	85	60 - 140

roethane

New York State D.E.C.

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

Lot-Sample # H3D17000	00 - 088C	Work Ord	ler# M0N	ICP1AC	Matrix	: AIR
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
n-Hexane	5.00	5.92	18	20.9	118	70 - 130
Hexachlorobutadiene	5.00	3.56	53	38.0	71	60 - 140
4-Methyl-2-pentanone (MIBK)	5.00	6.92	20	28.3	138	60 - 140
Methyl tert-butyl ether	5.00	5.44	18	19.6	109	60 - 140
Methylene chloride	5.00	5.23	17	18.2	105	70 - 130
Styrene	5.00	4.54	21	19.3	91	70 - 130
tert-Butyl alcohol	5.00	6.00	15	18.2	120	60 - 140
Tetrachloroethene	5.00	4.12	34	27.9	82	70 - 130
Toluene	5.00	4.39	19	16.5	88	70 - 130
m-Xylene & p-Xylene	10.0	8.95	43	38.9	90	70 - 130
o-Xylene	5.00	4.41	22	19.1	88	70 - 130
trans-1,2-Dichloroethene	5.00	4.94	20	19.6	99	70 - 130
trans-1,3-Dichloropropene	5.00	4.84	23	22.0	97	70 - 130
Trichloroethene	5.00	4.58	27	24.6	92	70 - 130
Trichlorofluoromethane	5.00	5.21	28	29.3	104	60 - 140
Vinyl chloride	5.00	5.02	13	12.8	100	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTRO LIMITS	OL
4-Bromofluorobenzene		112			60 - 14	0

Oualifiers

a Spiked analyte recovery is outside stated control limits.

ME The percent recovery of the analyte is outside the control limits but within marginal exceedance limits.

The 'Result' in ug/m3 is calculated using the following equation: Amount Found(before rounding)*(Molecular Weight/24.45)

The 'Reporting Limit' in ug/m3 is calculated using the following equation: (Reporting Limit(before rounding) * Dilution Factor) * (Molecular Weight/24.45)

Data File: /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d

Report Date: 17-Apr-2013 19:54

TestAmerica Knoxville

Modified Method TO-14/TO-15

Data file : /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d

Lab Smp Id: MOMCP1AC / Client Smp ID: CCV/LCS

Inj Date : 17-APR-2013 12:45

Operator: 403648 Inst ID: mr.i

Smp Info : MOMCP1AC,,2,6,,CCV/LCS

Misc Info: R041713, T015,

Comment :

Method : /var/chem/gcms/mr.i/R041713.b/T015.m

Meth Date : 17-Apr-2013 19:01 barlozha Quant Type: ISTD Cal Date : 20-FEB-2013 20:14 Cal File: ricb205.d

Als bottle: 1 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50

Concentration Formula: Amt * DF * Vt/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	500.00000	Default Calibration Volume
Vo	200.00000	Default Sample Volume

Cpnd Variable

Local Compound Variable

aa...aa...aa...aa.

							CONCENTRAT	rions	
			QUANT SIG				ON-COLUMN	FINAL	
(Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))	
-			====	==		======		**=====	
7	1	Bromochloromethane	128	8.868	8.868 (1.000)	281891	4.00000	4.000	
4	• 2	1,4-Difluorobenzene	114	11.132	11.132 (1.000)	1460036	4.00000	4.000	
,	٠ 3	Chlorobenzene-d5	117	17.431	17.431 (1.000)	1172674	4.00000	4.000	
8	4	4-Bromofluorobenzene	95	20.165	20.165 (1.157)	920169	4.48186	11.20	•
1	4 83	Xylene (total)	100			2546600	5.34315	13.36	
	5	Chlorodifluoromethane	67	3.659	3.659 (0.413)	62681	2.17671	5.442	
	6	Propene	41	3.669	3.669 (0.414)	221149	2.58078	6.452	
	7	Dichlorodifluoromethane	85	3.718	3.718 (0.419)	598157	2.03632	5.091	
	8	Chloromethane	52	3.896	3.896 (0.439)	77525	2.15910	5.398	
	9	1,2-Dichlorotetrafluoroethane	135	3.912	3.912 (0.441)	398399	1.70179	4.254	
	10	Methanol	31	4.063	4.063 (0.458)	75011	2.86783	7.170(R)	
	11	~ acetaldehyde	44	4.052	4.052 (0.457)	510664	12.0921	30.23	
	12	Vinyl Chloride	62	4.074	4.074 (0.459)	248350	2.01004	5.025	
	13	n-Butane	43	4.171	4.171 (0.470)	432153	2.36761	5.919	
	14	1,3-Butadiene	54	4.165	4.165 (0.470)	207223	2.13517	5.338	
	15	Bromomethane	94	4.494	4.494 (0.507)	200626	1.74867	4.372	

Data File: /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d Report Date: 17-Apr-2013 19:54

							CONCENTRAT	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
		====	==	======		=======		*=====
	Chloroethane	64	4.640		(0.523)	123058	1.97229	4.931
17	~ ethanol	31	4.769	4.769		554912	14.3533	35.88 (R)
18	•	106	4.958	4.958		208923	1.80925	4.523
19	2-methyl butane	43	5.017	5.017	(0.566)	332745	2.39913	5.998
20		101	5.239	5.239		594491	2.08307	5.208
	Acrolein	56	5.239	5.239	(0.591)	90005	2.13247	5.331
22	Acetonitrile	40	5.303	5.303	(0.598)	120745	2.80885	7.022(R)
25	Pentane	72	5.476	5.476	(0.618)	48364	2,12765	5.319
23	Acetone	58	5.363	5,363	(0.605)	121158	2.09435	5.236
24	Tsopropyl alcohol	45	5.481	5.481	(0.618)	438554	2,71553	6.789
26	Ethyl Ether	31	5.638	5.638	(0.636)	376578	3.13850	7.846(R)
27	1,1-Dichloroethene	96	5.961	5.961	(0.672)	221583	1.95880	4.897
29	Acrylonitrile	53	6.047	6.047	(0.682)	209963	2.39941	5.998
30	1,1,2-Trichlorotrifluoroethane	101	6.155	6.155	(0.694)	472782	2.01015	5.025
28	tert-butanol	59	6.085	6.085	(0.686)	463197	2.39811	5.995
31	Methylene Chloride	84	6.306	6.306	(0.711)	212471	2.09194	5.230
32	3-Chloropropene	39	6.328	6.328	(0.714)	233529	2.91846	7.296 (R)
33	Carbon Disulfide	76	6.473	6.473	(0.730)	690135	2.12785	5.320
35	~ 2-Methyl Pentane	43	7.174	7.174	(0.809)	712735	2.82458	7.061(R)
34	trans-1,2-Dichloroethene	96	7.137	7.137	(0.805)	230757	1.97392	4.935
36	Methyl-t-Butyl Ether	73	7.271	7,271	(0.820)	649874	2.17467 .	5.437
37	1,1-Dichloroethane	63	7.552	7.552	(0.852)	470283	2.31935	5.798
38	Vinyl Acetate	43	7.665	7.665	(0.864)	766922	2.84292	7.107(R)
.3.9	2-Butanone	72	8.102	8.102	(0.914)	115603	2.04256	5.106
40	Hexane	56	8.172	8.172	(0.922)	229189	2.36632	5.916
41	cis 1,2-Dichloroethene	96	8.544	8.544	(0.964)	238756	2.01469	5.037
42	Ethyl acetate	43	8.738	8.738	(0.985)	677594	2.83642	7.091(R)
43	Chloroform	83	8.895	8.895	(1.003)	497963	2.20370	5.509
44	Tetrahydrofuran	42	9.299	9.299	(1.049)	352163	2.76322	6.908
45	1,1,1-Trichloroethane	97	9.935	9.935	(1,120)	485187	2.20812	5.520
46	1,2-Dichloroethane	62	10.022	10.022		369790	2,31316	5.783
	Cyclohexane	69	10.566	10.566		119365	2.08247	5.206
	Benzene	78	10.545	10.545		740572	2.00388	5.010
	Carbon Tetrachloride	117	10.582	10.582		498532	2.61129	6.528 (R)
51		71	10.712	10.712		161853	2.08010	5.200
	1~Butanol	31	10.528	10.528		117099	3.25556	8.139(R)
52		84	10.830	10.830		433014	2.00599	5.015
	2,2,4-trimethylpentane	57	11,418	11.418		1357565	2.26781	5.670
	Heptane	71	11.850	11.850		267284	2.06105	5.153
	1,2-Dichloropropane	63	11.887	11.887		294971	2.17705	
	Trichloroethene	130	11.947	11.887		300840	1.82997	5.443 4.575
180		43	11.850	11.947		581706	1,02331	4.0/0
	Dibromomethane	93	12.017	12.017			2.07149	E 170
	Bromodichloromethane			12.017		274258		5.179
		83	12.200			526936	2.24309	5.608
	Methyl Methacrylate	41	12.335	12.335		418693	2.86470	7.162(R)
	1,4-dioxane	88	12.216	12.216		105957	2.02891	5.072
61	~ methyl cyclohexane	83	12.896	12.896	(1.158)	437706	1.99458	4.986

Data File: /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d Report Date: 17-Apr-2013 19:54

						CONCENTRAT	rions
		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	$R\mathbf{T}$	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
	- 40	====	==	======	=======	======	======
63	cis-1,3-Dichloropropene	75	13.446	13.446 (1.208)	406267	2.11764	5.294
62	4-Methyl-2-pentanone	43	13.381	13.381 (1.202)	721795	2.76668	6.917
64	trans-1,3-Dichloropropene	75	14.368	14.368 (0.824)	411690	1.93629	4.841
65	Toluene	91	14,546	14.546 (0.834)	854028	1.75525	4.388
66	1,1,2-Trichloroethane	83	14.632	14.632 (0.839)	248169	1.82401	4.560
67	~ 2-methyl thiophene	97	14.745	14.745 (0.846)	723985	1.75915	4.398
68	~ 3-methyl thiophene	97	15.026	15.026 (0.862)	736494	1.74883	4.372
69	2-Hexanone	58	15.193	15.193 (0.872)	323582	2.18440	5.461
70	Octane	85	15.586	15.586 (0.894)	281328	1.75924	4.398
71	Dibromochloromethane	129	15.608	15.608 (0.895)	457668	1.85469	4.637
72	1,2-Dibromoethane	107	16.023	16.023 (0.919)	430007	1.78232	4.456
73	Tetrachloroethene	129	16.174	16.174 (0.928)	283795	1.64682	4.117
75	~ 2,3-dimethylheptane	43	17.646	17.646 (1.012)	1040543	2.41400	6.035
74	Chlorobenzene	112	17.506	17,506 (1,004)	635109	1.65451	4.136
76	Ethylbenzene	91	18.002	18.002 (1.033)	1069550	1.75045	4.376
77	~ 2-ethyl thiophene	97	18.159	18.159 (1.042)	812410	1.76661	4.416
7.8	m&p-Xylene	91	18.272	18.272 (1.048)	1688600	3.57997	8.950
79	Nonane	57	19.075	19.075 (1.094)	657761	2.07358	5.184
80	Bromoform	173	18.930	18,930 (1.086)	377339	1.70246	4.256
81	Styrene	104	19.032	19.032 (1.092)	607843	1.81448	4.536
82	o-Xylene	91	19.129	19.129 (1.097)	858000	1.76318	4.408
84	1,1,2,2-Tetrachloroethane	83	19.663	19.663 (1.128)	646102	1.83927	4.598
8:5	1,2,3-Trichloropropane	110	19.933	19.933 (1.144)	182280	1.71060	4.276
86	Cumene	105	20,154	20.154 (1.156)	1209104	1.71976	4.299
87	n-Propylbenzene	120	21.114	21.114 (1.211)	330513	1.63974	4.099
88	2-chlorotoluene	126	21.146	21.146 (1.213)	296474	1.61833	4.046
89	4-Ethyltoluene	105	21.399	21.399 (1,228)	1232036	1.71061	4.276
90	1,3,5-Trimethylbenzene	120	21.550	21.550 (1.236)	564247	1,66086	4.152
91	Alpha-Methylstyrene	118	21.982	21.982 (1.261)	460690	1,72819	4.320
92	Decane	57	22.241	22.241 (1.276)	833004	2.09231	5.231
9.3	tert-butylbenzene	119	22.359	22.359 (1.283)	1061838	1.65905	4.148
94	1,2,4-Trimethylbenzene	105	22.386	22.386 (1.284)	1021633	1.71882	4.297
95	sec-butylbenzene	105	22.915	22.915 (1.315)	1487919	1.69913	4.248
96	1,3-Dichlorobenzene	146	22.872	22.872 (1.312)	645232	1.60232	4.006
97	Benzyl Chloride	91	23.044	23.044 (1.322)	971549	1.92346	4.809
98	1,4-Dichlorobenzene	146	23.060	23.060 (1.323)	656658	1.62239	4.056
99	p-Cymene	119	23.276	23.276 (1.335)	1244295	1.67254	4.181
100	~ 1,2,3- Trimethylbenzene	105	23.335	23.335 (1.339)	916704	1.71720	4.293
101	~ n-butylcyclohexane	83	23.524	23.524 (1.350)	859025	1.77102	4.428
102	~ Indane	117	23.831	23.831 (1.367)	933513	1.62912	4.073
103	1,2-Dichlorobenzene	146	23,804	23.804 (1.366)	612804	1.58148	3.954
104	n-butylbenzene	91	24.225	24.225 (1.390)	1256231	1.80786	4.520
105	~ Indene	116	24.101	24.101 (1.383)	934737	1.73079	4.327
106	Undecane	57	25.115	25.115 (1.441)	996280	2.14208	5.355
107	~ 1,2-dimethyl-4-ethylenzene	119	25.077	25.077 (1.439)	1235610	1.66440	4.161
108	~ 1,2,4,5-tetramethylbenzene	119	25.994	25.994 (1.491)	1282076	1.68863	4.222
109	~ 1,2,3,5-tetramethylbenzene	119	26.118	26.118 (1.498)	793653	1.66786	4.170

Data File: /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d Report Date: 17-Apr-2013 19:54

					CONCENTRA'	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb(v/v))	(ppb (v/v))
	====	==			======	
110 ~ 1,2,3,4-tetramethylbenzene	119	26.997	26,997 (1.549)	1067444	1,71734	4.293
111 Dodecane	57	27.579	27.579 (1.582)	994802	2.51826	6.296
112 1,2,4-Trichlorobenzene	180	27.676	27.676 (1.588)	576961	1.71017	4.275
113 Napthalene	128	27.913	27.913 (1.601)	1494622	1.85977	4.649
114 ~ benzo(b) thiophene	134	28.102	28.102 (1.612)	1029741	1,79145	4,479
115 Hexachlorobutadiene	225	28.431	28.431 (1.631)	461424	1,42545	3.564
116 1,2,3-trichlorobenzene	180	28.474	28.474 (1.634)	578562	1.71311	4.283
117 ~ 2-Methylnaphthalene	142	29.925	29,925 (1.717)	1030455	12.8637	32.16
118 ~ 1-Methylnaphthalene	142	30.227	30,227 (1.734)	945429	13.4718	33.68

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Calibration Date: 17-APR-2013

Calibration Time: 12:45

Client Smp ID: CCV/LCS

Level: LOW

Sample Type: AIR

Data File: /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d

Report Date: 17-Apr-2013 19:54

TestAmerica Knoxville

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: mr.i Lab File ID: rlcsd17a.d

Lab Smp Id: MOMCP1AC Analysis Type: OTHER

Quant Type: ISTD

Operator: 403648

Method File: /var/chem/gcms/mr.i/R041713.b/T015.m

Misc Info: R041713, T015,

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======================================	========	=======	========	======
1 Bromochloromethan	281891	167725	396057	281891	0.00
2 1,4-Difluorobenze	1460036	868721	2051351	1460036	0.00
3 Chlorobenzene-d5	1172674	697741	1647607	1172674	0.00

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	=======	========	======
1 Bromochloromethan	8.87	8.54	9.20	8.87	0.00
2 1,4-Difluorobenze	11.13	10.80	11.46	11.13	0.00
3 Chlorobenzene-d5	17.43	17.10	17.76	17.43	0.00

AREA UPPER LIMIT = +40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d

Report Date: 17-Apr-2013 20:05

TestAmerica Knoxville

RECOVERY REPORT

Client SDG: R041713

Client Smp ID: CCV/LCS

Fraction: OTHER

Operator: 403648

SampleType: LCS Quant Type: ISTD

Client Name:

Sample Matrix: GAS

Lab Smp Id: MOMCP1AC

Level: LOW

Data Type: MS DATA

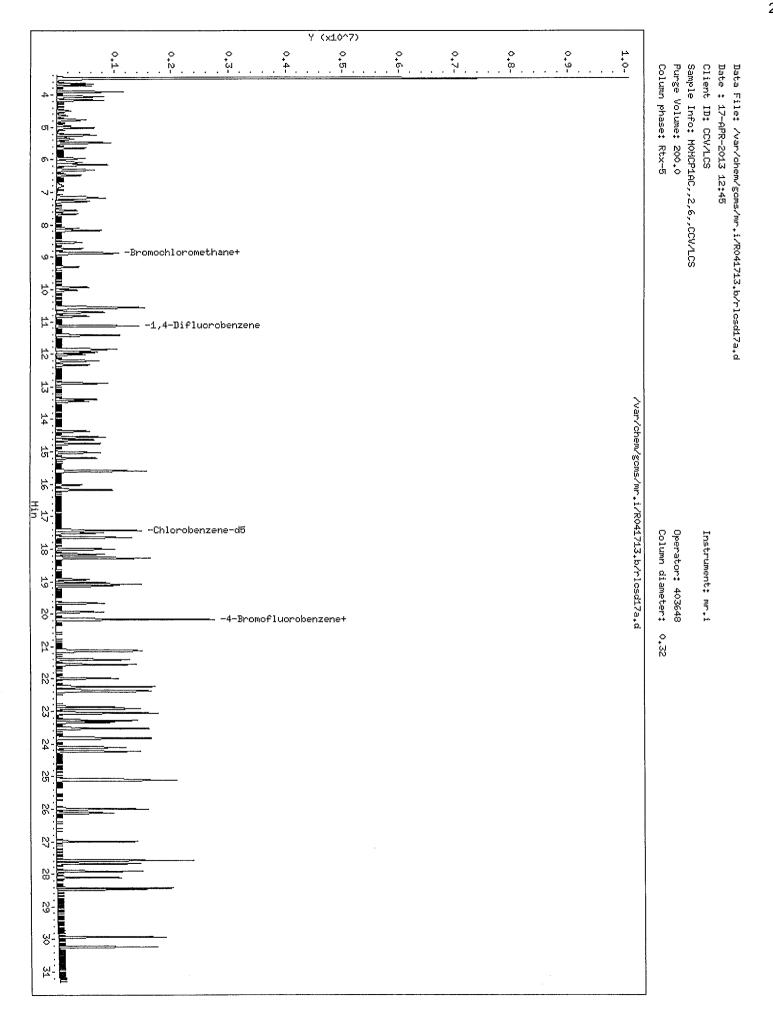
SpikeList File: allnew.spk

Sublist File: all.sub

Method File: /var/chem/gcms/mr.i/R041713.b/T015.m

Misc Info: R041713, T015,

	CONC	CONC	8	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ppb(v/v)	ppb(v/v)		
5 Chlorodifluorometh	i I	5.442	108.84	60-140
6 Propene	5.000	6.452	129.04	60-140
7 Dichlorodifluorome		5.091	101.82	60-140
8 Chloromethane	5.000	5.398	107.96	60-140
9 1,2-Dichlorotetraf	5.000	4.254	85.09	60-140
10 Methanol	5.000	7.170	143.39*	60-140
11 ~ acetaldehyde	25.00	30.23	120.92	70-130
12 Vinyl Chloride	5.000	5.025	100.50	70-130
13 n-Butane	5.000	5.919	118.38	60-140
14 1,3-Butadiene	5.000	5.338	106.76	60-140
15 Bromomethane	5.000	4.372	87.43	70-130
16 Chloroethane	5.000	4.931	98.61	70-130
17 ~ ethanol	25.00	35.88	143.53*	70-130
18 Vinyl Bromide	5.000	4.523	90.46	60-140
19 2-methyl butane	5.000	5.998	119.96	70-130
20 Trichlorofluoromet	5.000	5.208	104.15	60-140
21 Acrolein	5.000	5.331	106.62	60-140
22 Acetonitrile	5.000	7.022	140.44*	60-140
23 Acetone	5.000	5.236	104.72	60-140
25 Pentane	5.000	5.319	106.38	70-130
24 Isopropyl alcohol	5.000	6.789	135.78	60-140
26 Ethyl Ether	5.000	7.846	156.93*	60-140
27 1,1-Dichloroethene	5.000	4.897	97.94	70-130
28 tert-butanol	5.000	5.995	119.91	60-140
29 Acrylonitrile	5.000	5.998	119.97	60-140
30 1,1,2-Trichlorotri	5.000	5.025	100.51	70-130
31 Methylene Chloride	5.000	5.230	104.60	70-130
32 3-Chloropropene	5.000	7.296	145.92*	60-140
33 Carbon Disulfide	5.000	5.320	106.39	70-130
34 trans-1,2-Dichlord	5.000	4.935	98.70	70-130
35 ~ 2-Methyl Pentane	5.000	7.061	141.23*	70-130
36 Methyl-t-Butyl Eth		5.437	108.73	60-140
37 1,1-Dichloroethane		5.798	115.97	70-130


Data File: /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d Report Date: 17-Apr-2013 20:05

	CONC	CONC	00	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ppb(v/v)	ppb(v/v)		
38 Vinyl Acetate	5.000	7.107	142.15*	60-140
39 2-Butanone	5.000	5.106	102.13	60-140
40 Hexane	5.000	5.916	118.32	70-130
41 cis 1,2-Dichloroet	5.000	5.037	100.73	70-130
42 Ethyl acetate	5.000	7.091	141.82*	60-140
43 Chloroform	5.000	5.509	110.19	70-130
44 Tetrahydrofuran	5.000	6.908	138.16	60-140
45 1,1,1-Trichloroeth	5.000	5.520	110.41	70-130
46 1,2-Dichloroethane	5.000	5.783	115.66	70-130
47 1-Butanol	5.000	8.139	162.78*	60-140
48 Benzene	5.000	5.010	100.19	70-130
49 Cyclohexane	5.000	5.206	104.12	70-130
50 Carbon Tetrachlori	5.000	6.528	130.56*	70-130
51 ~ 2,3-dimethylpent	5.000	5.200	104.00	70-130
52 ~ Thiophene	5.000	5.015	100.30	70-130
53 2,2,4-trimethylpen	5.000	5.670	113.39	70-130
54 Heptane	5.000	5.153	103.05	70-130
55 1,2-Dichloropropan	5.000	5.443	108.85	70-130
56 Trichloroethene	5.000	4.575	91.50	70-130
57 Dibromomethane	5.000	5.179	103.57	70-130
58 Bromodichlorometha	5.000	5.608	112.15	70-130
59 1,4-dioxane	5.000	5.072	101.45	60-140
60 Methyl Methacrylat	5.000	7.162	143.23*	60-140
61 ~ methyl cyclohexa	5.000	4.986	99.73	70-130
62 4-Methyl-2-pentano	5.000	6.917	138.33	60-140
63 cis-1,3-Dichloropr	5.000	5.294	105.88	70-130
64 trans-1,3-Dichloro	5.000	4.841	96.81	70-130
65 Toluene	5.000	4.388	87.76	70-130
66 1,1,2-Trichloroeth	5.000	4.560	91.20	70-130
67 ~ 2-methyl thiophe	5.000	4.398	87.96	70-130
68 ~ 3-methyl thiophe	5.000	4.372	87.44	70-130
69 2-Hexanone	5.000	5.461	109.22	60-140
70 Octane	5.000	4.398	87.96	70-130
71 Dibromochlorometha	5.000	4.637	92.73	70-130
72 1,2-Dibromoethane	5.000	4.456	89.12	70-130
73 Tetrachloroethene	5.000	4.117	82.34	70-130
74 Chlorobenzene	5.000	4.136	82.73	70-130
75 ~ 2,3-dimethylhept	5.000	6.035	120.70	70-130
76 Ethylbenzene	5.000	4.376	87.52	70-130
77 ~ 2-ethyl thiophen	5.000	4.416	88.33	70-130
78 m&p-Xylene	10.00	8.950	89.50	70-130
M 83 Xylene (total)	15.00	13.36	89.05	70-130
79 Nonane	5.000	5.184	103.68	60-140
80 Bromoform	5.000	4.256	85.12	60-140
81 Styrene	5.000	4.536	90.72	70-130
82 o-Xylene	5.000	4.408	88.16	70-130
84 1,1,2,2-Tetrachlor	5.000	4.598	91.96	70-130

Data File: /var/chem/gcms/mr.i/R041713.b/rlcsd17a.d Report Date: 17-Apr-2013 20:05

	CONC	CONC	96	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ppb(v/v)	ppb(v/v)		

85 1,2,3-Trichloropro	5.000	4.276	85.53	60-140
86 Cumene	5.000	4.299	85.99	70-130
87 n-Propylbenzene	5.000	4.099	81.99	70-130
88 2-chlorotoluene	5.000	4.046	80.92	70-130
89 4-Ethyltoluene	5.000	4.276	85.53	70-130
90 1,3,5-Trimethylben	5.000	4.152	83.04	70-130
91 Alpha-Methylstyren	5.000	4.320	86.41	60-140
92 Decane	5.000	5.231	104.62	60-140
93 tert-butylbenzene	5.000	4.148	82.95	70-130
94 1,2,4-Trimethylben	5.000	4.297	85.94	70-130
95 sec-butylbenzene	5.000	4.248	84.96	70-130
96 1,3-Dichlorobenzen	5.000	4.006	80.12	70-130
97 Benzyl Chloride	5.000	4.809	96.17	70-130
98 1,4-Dichlorobenzen	5.000	4.056	81.12	70-130
99 p-Cymene	5.000	4.181	83.63	70-130
100 ~ 1,2,3- Trimethyl	5.000	4.293	85.86	70-130
101 ~ n-butylcyclohexa	5.000	4.428	88.55	70-130
102 ~ Indane	5.000	4.073	81.46	70-130
103 1,2-Dichlorobenzen	5.000	3.954	79.07	70-130
104 n-butylbenzene	5.000	4.520	90.39	60-140
105 ~ Indene	5.000	4.327	86.54	70-130
106 Undecane	5.000	5.355	107.10	60-140
107 ~ 1,2-dimethyl-4-e	5.000	4.161	83.22	70-130
108 ~ 1,2,4,5-tetramet	5.000	4.222	84.43	70-130
106 Undecane 107 ~ 1,2-dimethyl-4-e 108 ~ 1,2,4,5-tetramet 109 ~ 1,2,3,5-tetramet	5.000	4.170	83.39	70-130
110 ~ 1,2,3,4-tetramet	5.000	4.293	85.87	70-130
111 Dodecane	5.000	6.296	125.91	60-140
112 1,2,4-Trichloroben	5.000	4.275	85.51	60-140
113 Napthalene	5.000	4.649	92.99	40-140
114 ~ benzo(b) thiophe	5.000	4.479	89.57	70-130
115 Hexachlorobutadien	5.000	3.564	71.27	60-140
116 1,2,3-trichloroben	5.000	4.283	85.66	40-140
117 ~ 2-Methylnaphthal	31.25	32.16	102.91	70-130
118 ~ 1-Methylnaphthal	31.25	33.68	107.77	70-130

SURROGATE COMPOUND	CONC ADDED ppb(v/v)	CONC RECOVERED ppb(v/v)	% RECOVERED	LIMITS
\$ 4 4-Bromofluorobenze	10.00	11.20	112.05	70-130

Miscellaneous Data

TestAmerica Knoxville GC/MS Air Data Review / Narrative Checklist LOT/Project # H3D 6040 f Method: TO-14 and TO-15 - KNOX-MS-0001, Rev 13 & KNOX-MS-0023, Rev 0

Instrument: MR							
Scanned File: ROZZO13T PUL	11613			<u> </u>	11713		
Review Hems		PARTY	175. July	244		THE TEST MET MESSES HEREIN	2nd
A. Tune/Continuing Calibration		- N/A :-	Yes	No	Why is data reportable		
1. Were all samples injected within 24 hr of BFB?							/
2. Has a Continuing Calibration Checklist & run log been c	completed		/				
for each analytical batch and scanned properly?	•	ĺ					
3. Was the correct ICAL used for quantitation?			V				7
B. CLIENT SAMPLE AND QC SAMPLE Results	PARTITION	N/A	Yes	No	Why is data reportable		M. Gal
Were all special project requirements met?	See A Total and a see of the see		V	2.10			/
Were samples received in cans?			 	 	п Пеdlar11 analyzed и	ı/n 72 hours, □ [Tedlar2] X-fer within	 ´
2. Were samples received in earls?					72 hours.	77 72 hours, a [reduct2] X for whim	/
2. Con program has an receipt accontable?			 		see narrative		$\vdash \nearrow$
3. Can pressure/vac on receipt acceptable?			-		□ See Hallative		
4. Were dilution factors/can prep information verified?			-				
5. Have the can number & lab ID been verified between the	e analysis						/
log & sample prep log?							
6. Sample analyses done within analytical holding time (H	T)?	ĺ				l analysis after HT expired.	/
If no, list samples:			<u> </u>		□ Other:		
7. Default sample volume verified?							
8. Are surrogates and internal standards within QC limits?	(60-140%				□ [sur7] Obvious matrix	x effect	
R for surr.; 60-140%R from CCAL for IS)				l	□ [sur12] high recove	ry, no hits.	
If no, list samples/reason (e.g., sur1):		ĺ	,	/	□ [sur14] entire samp	le consumed	
	Reason			1		nalysis was not performed *	
					□ [is2] Reanalysis conf		1 /
	· · · ·	1					^
9. Were all positive results and false negatives on quan rep	ort	<u> </u>		†			
verified to be correct in LIMS?			0				
10. For dilutions, is highest concentration hit ≥ 20% cal range	ge and not			 	□ [elev1] Elevated RL	for due to sample matrix interferences.	
above calibration range?	60 and not					s for all analytes due to difficult sample	1
List samples and reason (e.g., elev1):			ļ	1	matrix.	tor an analyses due to difficult sample	
	Reason	/			□ [elev4] Elevated RLs	s based on screening	}
omnification of the second of		V		1		for all analytes due to presence of	
					non-target compounds.	Tor an analytes due to presence of	M
			i		□ [elev7] Elevated RLs	due to cample volume	<i>'</i> ''
11 IC	idontified			 		olit peak; 2)Unresolved peak;	
11. If manual integrations were performed, are they clearly initialed detect and reason given to element hits verifies			V			wrong peak selected; 6)other	/
initialed, dated and reason given & alternate hits verified		35-536	V20000000	alitical.		wrong peak selected, cycline	- ASSET
C. Preparation QC	7967 (1,1796479)	77,860,000		Section 5.00	a distillation of the state of the second	Programme Carlos Professional Committee Commit	1 1986-199
System blank run every 24 hours prior to samples?	160	 	-	 	F1-47 A31 3		 _
2. System blank surrogate recoveries within QC limits	(60-			1		arrogates OK and there is no analyte	/
140% R) ?		-	ļ		>RL in samples associa		-
3. Are all analytes present in the system blank < RL? (1/2	RL for		<i>\</i>	1		RL in associated samples.*	ر ا
DoD). If no, list blank ID:					□ [mb4] Sample resul	ts > 10x higher than blank.	/
4. DUP done per 20 samples and are all RPDs within limit	ts? (for			4			1
target analytes >5x RL, <25% RPD; no criteria for meth	hanol and		V	1			1
n-butanol) If no, list DUP ID:				1			/
							/
5. Did the LCS meet criteria (70-130% with a limite					[lcs6] LCS analyte	e(s) flagged as being outside	/
5. Did the LCS meet criteria (70-130% with a limite allowed 60-140% (see table) provisional analyte:					control limits but wit	hin marginal limits	/
	limit 60-				control limits but wit		/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no	limit 60- two				control limits but wit	hin marginal limits e marginal exceedences high, but	/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target # marginal exceedances of LCS	limit 60- two		V		control limits but wit	hin marginal limits e marginal exceedences high, but tected	
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCS # marginal exceedances of LCS control limits allowed	limit 60- two		V		control limits but wit	hin marginal limits e marginal exceedences high, but tected	/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCs >90 5	limit 60- two		V		control limits but wit	hin marginal limits e marginal exceedences high, but	/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCS	limit 60- two		V		control limits but wit	hin marginal limits e marginal exceedences high, but tected	/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCs >90 5	limit 60- two		<i>V</i>		control limits but wit	hin marginal limits e marginal exceedences high, but tected	/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of larget analytes in LCS control limits allowed \$>90\$ 5 71-90 4 51-70 31-50 2 11-30 1	limit 60- two		V		control limits but wit	hin marginal limits e marginal exceedences high, but tected	/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCS # marginal exceedances of LCS control limits allowed 59-0 5 711-90 4 4 511-70 311-50 2 111-30 1 1 - 111 0	limit 60- two or ME.			ALCO A	control limits but wit	hin marginal limits e marginal exceedences high, but tected 3/070 PP	
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCS # marginal exceedances of LCS control limits allowed \$>90	limit 60- two or ME.				control limits but wit	hin marginal limits e marginal exceedences high, but tected	
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCS # marginal exceedances of LCS control limits allowed \$90 \$711-90 \$4 \$51-70 \$31-50 \$2 \$11-30 \$11-30 \$11 \$0\$ D.: Other 1. Final report acceptable? (Results correct, RLs calculated	limit 60- two or ME.		V		control limits but wit	hin marginal limits e marginal exceedences high, but tected 3/070 PP	
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCs # marginal exceedances of LCS control limits allowed Number of target analytes in LCs # marginal exceedances of LCS control limits allowed >90	limit 60- two or ME.	7.00	V		control limits but wit	hin marginal limits e marginal exceedences high, but tected 3/070 PP	
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for target analytes in LCs control limits allowed 590 5 71-90 4 51-70 31-50 2 11-30 1 -	limit 60- two or ME.				control limits but wit	hin marginal limits e marginal exceedences high, but tected 3/070 PP	
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCS	limit 60- two or ME.				control limits but wit	hin marginal limits e marginal exceedences high, but tected 3/070 PP	/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCs control limits allowed Number of target analytes in LCs # marginal exceedances of LCS control limits allowed	limit 60- two or ME.		V		control limits but wit	hin marginal limits e marginal exceedences high, but tected 3/070 PP	/ / M
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCs control limits allowed >90	limit 60- two or ME.	V			control limits but wit [les5] LCS outside analytes were not det LCS ID:	hin marginal limits e marginal exceedences high, but tected 3/07000	/ M3
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCs control limits allowed Number of target analytes in LCs # marginal exceedances of LCS control limits allowed	limit 60- two or ME.		V		control limits but wit	hin marginal limits e marginal exceedences high, but tected 3/070 PP	/
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for the consecutive MEs. Note: Ohio does not allow for the consecutive MEs. Note: Ohio does not allow for the consecutive MEs. Note: Ohio does not allow for the consecutive MEs. Note: Ohio does not allow for the control limits allowed should be control limits allowed control limits allowed should be control limits allowed should be control limits allowed should be control limits allowed should be control limits allowed should be control limits allowed should be control limits allowed should be control limits allowed control limits allowed should be control limits allowed control limits allowed should be control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed should be control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed control limits allowed analytic should be marginal exceedances of LCS control limits allowed control limits allowe	limit 60-two or ME. The state of the state	V			control limits but wit [les5] LCS outside analytes were not det LCS ID:	hin marginal limits e marginal exceedences high, but tected 3/070 PP	/ M3
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for Number of target analytes in LCS control limits allowed Number of target analytes in LCS	limit 60-two or ME. The state of the state	V	V		control limits but wit [les5] LCS outside analytes were not det LCS ID:	hin marginal limits e marginal exceedences high, but tected 3/070 CP 1 [1ptsur] 1 [Extras] 1 [1ptsur] 1 [Extras] 1 [1ptsur] 1 [Dical > 30% but passes	/ M3
allowed 60-140% (see table) provisional analyte 140% with a limited # allowed 50-150%, and no consecutive MEs). Note: Ohio does not allow for the control in	limit 60-two or ME. The state of the state	V			control limits but wit [control limits but wit [les5] LCS outside analytes were not det LCS ID:	hin marginal limits e marginal exceedences high, but tected 3/070 CP 1 [1ptsur] 1 [Extras] 1 [1ptsur] 1 [Extras] 1 [1ptsur] 1 [Dical > 30% but passes	/ M3

RQC058	ω			E+	TestAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET	Labo TON B	rator: ENCH 1	ies, Inc. WORKSHEET		Run Date: 4/17/13 Time: 9:19:26
<u>LEV</u> <u>LEV</u>	LEV LEV Check Spike 6 MS/MSD - Compute - Compu	s/Volu & Surr ontain , greel er bat	mes ogate s cor nbars ch: c	Weights/Volumes Spike & Surrogate Worksheet Val contains correct volume Labels, greenbars, worksheets computer batch: correct & all manalies to Extraction Method	me me ets all match thod	- - -	- - - - - -		Expanded D COC Comple Bench Shee Package Be Bench Shee	Expanded Deliverable COC Completed Bench Sheet Copied Package Submitted to AnalyticalGroup Bench Sheet Copied per COC
Extractionist:	nist: tionis I :					* * * * * *	OC BATCH:	BATCH: 3106043 * ***********************************	PREP DATE: COMP DATE:	4/16/13 4/17/13
Reviewer/Date:		00/00/0			Vol	Volatile NO SAMPLE	Orga E PRE	atile Organics by GC/MS TO-15 SAMPLE PREPARATION PERFORMED	o low-level / DIRECT INJECTION	FION
EXTR	ANL LOT#, MSRUN#/ TEST DUE WORK ORDER FLGS	ST GS EXT	T MTH	MATRIX	INIT/FIN WT/VOL	TINI	PH"S ADJ1	SOLVENTS ADJ2 EXTRACTION VOL EXCHANGE	ENTS VOL	SPIKE STANDARD/ SURROGATE ID
0/00/00 COMMENTS:	H3D150412-001 4/26/13 M0LFV-1-AA	_α	8 7M	AIR	Ţ	NA	NA	NA	0.	0.
0/00/00 COMMENTS:	H3D160408-001 4/24/13 MOLPM-1-AA	DR 8	88 7M	AIR	mL	NA	NA		0.	0.
0/00/00 COMMENTS:	H3D160408-003 4/24/13 M0l.PT-1-AA	DR 8	88 7M	AIR	mL	NA	NA		0.	0.
0/00/00 COMMENTS:	H3D160408-004 4/24/13 MOLPW-1-AA	DR 8	88 7M	AIR	mī	NA	NA		· •	0.
0/00/00 COMMENTS:	H3D160408-005 4/24/13 MOLP1-1-AA	5 8	8 7M	AIR	mL	NA	NA	NA.	0.	0.
0/00/00 COMMENTS:	H3D160000-043 0/00/00 MOLOV-1-AAB	ω	8 7M	AIR	500mL 500.00mL	NA	NA	NA .	· •	0.
0/00/00 COMMENTS:	H3D160000-043 0/00/00 MOLOV-1-ACC	ω	88 7M	AIR	100mL 100.00mL	NA	NA		· •	0.

R = RUSH C = CLPE = EPA 600 D = EXP.DEL)

7

RQC058	TestAmerica Laboratories, Inc. EXTRACTION BENCH WORKSHEET	Labora ION BEN	tories CH WOR	, Inc. KSHEET		Run Date: 4/17/13 Time: 17:47:22
LEV LEV LEV LEV 1 2 Neights/Volumes Check Spike & Surrogate Worksheet - NSD Vial contains correct volume - NS/MSD Labels, greenbars, worksheets - Computer batch: correct & all representation Method	sheet volume ksheets t & all match n Method	** ** **	* * * * *	**************************************	Expanded D COC Comple Bench Shee Package Su Bench Shee	Expanded Deliverable COC Completed Bench Sheet Copied Package Submitted to AnalyticalGroup Bench Sheet Copied per COC
Extractionist:Concentrationist:		Ø * * ***	QC BATCH: *******	* QC BATCH: 3107088 * * ********************************	PREP DATE: COMP DATE:	4/17/13 4/18/13
Reviewer/Date: / 0/00/00	Vo) NO	latile (SAMPLE	rganic PREPAR	Volatile Organics by GC/MS TO-15 NO SAMPLE PREPARATION PERFORMED /	low-level / DIRECT INJECTION	TON
EXTR ANL LOT#, MSRUN#/ TEST EXT MTH MATRIX	INIT/FIN WI/VOL	THNI	PH"S ADJI ADJ2	SOLVENTS 2 EXTRACTION VOL EXCHANGE	TTS EXCHANGE VOL	SPIKE STANDARD/ SURROGATE ID
0/00/00 4/24/13 MOLPQ-1-AA DR 88 7M AIR COMMENTS:	Tw	NA 1	na na	٠		0
0/00/00 4/26/13 MOL2H-1-AA R 88 7M AIR COMMENTS:	mL	A. A.N.	NA NA	0		0.
0/00/00 0/00/00 MOMCP-1-AA B 88 7M AIR COMMENTS:	500mL 500.00mL	M AM	NA NA	•		0.
0/00/00 0/00/00 MOMCP-1-AC C 88 7M AIR COMMENTS:	100mL 100.00mL	NA NA	AN AN	0		0.

R = RUSH C = CLP E = EPA 600 D = EXP.DEL) M = CLIENT REQ MS/MSD

NUMBER OF WORK ORDERS IN BATCH:

Test America Knoxville GC/MS Volatiles

Lot ID: H3D160408 **Batch #:** 10463

 Matrix:
 Air
 Can #: 1127

 MethCod:
 7M

Method: EPA-2 TO-15

		Reporting	
Parameter	Result	Limit	Units
1,1,1-Trichloroethane	ND	0.080	ppb (v/v)
1,1,2,2-Tetrachloroethane	ND	0.080	ppb (v/v)
1,1,2-Trichlorotrifluoroethane	ND	0.080	ppb (v/v)
1,1,2-Trichloroethane	ND	0.080	ppb (v/v)
1,1-Dichloroethane	ND	0.080	ppb (v/v)
1,1-Dichloroethene	ND	0.080	ppb (v/v)
1,2,4-Trichlorobenzene	ND	0.080	ppb (v/v)
1,2,4-Trimethylbenzene	ND	0.080	ppb (v/v)
1,2-Dibromoethane (EDB)	ND	0.080	ppb (v/v)
1,2-Dichlorobenzene	ND	0.080	ppb (v/v)
1,2-Dichloroethane	ND	0.080	ppb (v/v)
1,2-Dichloropropane	ND	0.080	ppb (v/v)
1,3,5-Trimethylbenzene	ND	0.080	ppb (v/v)
1,4-Dichlorobenzene	ND	0.080	ppb (v/v)
1,4-Dioxane	ND	0.20	ppb (v/v)
2-Butanone (MEK)	ND	0.32	ppb (v/v)
1,3-Dichlorobenzene	ND	0.080	ppb (v/v)
2,2,4-Trimethylpentane	ND	0.20	ppb (v/v)
Benzene	ND	0.080	ppb (v/v)
Benzyl chloride	ND	0.16	ppb (v/v)
Bromodichloromethane	ND	0.080	ppb (v/v)
Bromoform	ND	0.080	ppb (v/v)
Bromomethane	ND	0.080	ppb (v/v)
Carbon tetrachloride	ND	0.040	ppb (v/v)
Chlorobenzene	ND	0.080	ppb (v/v)
Chloroethane	ND	0.080	ppb (v/v)
Chloroform	ND	0.080	ppb (v/v)
Cyclohexane	ND	0.20	ppb (v/v)
Chloromethane	ND	0.20	ppb (v/v)
cis-1,2-Dichloroethene	ND	0.080	ppb (v/v)
cis-1,3-Dichloropropene	ND	0.080	ppb (v/v)
Dibromochloromethane	ND	0.080	ppb (v/v)
Dichlorodifluoromethane	ND	0.080	ppb (v/v)
Ethanol	ND	0.80	ppb (v/v)
Ethylbenzene	ND	0.080	ppb (v/v)
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.080	ppb (v/v)
n-Hexane	ND	0.20	ppb (v/v)
Hexachlorobutadiene	ND	0.080	ppb (v/v)
4-Methyl-2-pentanone (MIBK)	ND	0.20	ppb (v/v)

Test America Knoxville GC/MS Volatiles

Lot ID:

H3D160408

Batch #: 10463

Matrix:

Air

Can #: 1127

MethCod:

7M

Method:

EPA-2 TO-15

		Reporting	
Parameter	Result	Limit	Units
Methyl tert-butyl ether	ND	0.16	ppb (v/v)
Methylene chloride	ND	0.20	ppb (v/v)
Styrene	ND	0.080	ppb (v/v)
tert-Butyl alcohol	ND	0.32	ppb (v/v)
Tetrachloroethene	ND	0.080	ppb (v/v)
Toluene	ND	0.080	ppb (v/v)
m-Xylene & p-Xylene	ND	0.080	ppb (v/v)
o-Xylene	ND	0.080	ppb (v/v)
trans-1,2-Dichloroethene	ND	0.080	ppb (v/v)
trans-1,3-Dichloropropene	ND	0.080	ppb (v/v)
Trichloroethene	ND	0.040	ppb (v/v)
Trichlorofluoromethane	ND	0.080	ppb (v/v)
Vinyl chloride	ND	0.080	ppb (v/v)

Sample Receipt Documentation

MANNERS 4-15-13 11:50

Canisters Received by:

Reseived by

13/13

(A)

Date/Time:

Samples Relinquished by:

Relinquished by:

Canisters Shipped by:

Date/Time:

Date/Time:

eived b

TAL Knoxville

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

H3D160408

Canister Samples Chain of Custody Record

Test Americo

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica assumes no liability with respect to the collection and shipment of these samples.


Ofher (Please specify in notes section) SEO HIDDRE × SOIL GAS 4485 Baby 1112 X Ambient Air S000 RECEIVED AT AMBIENT TEMP Х × TiA Toobri 11/ SOANS/SFIPMS of O Ofher (Please specify in notes section) 9461-G MT2A BKO 4-15-13 AKOTY KANI EPA 25C ND CUSTIBLY Sampled By: E. POPKEN (GES) EPA 3C A41-OT 4 X X X Canister ID 93145 1539 6834 1133 811 Flow Controller K095 X 467 KHX K168 KIEJ Vacuum in Field, 'Hg Standard (Specify) 10 Business DA Temperature (Fahrenheit) Pressure (inches of Hg) Canister (Stop) Project Manager: CHAB STAMISZ EUSK ; -MYSDEC 5 ٥ N 30" W460 Canister Vacuum in Field, "Hg N400 Phone: 716-851-7330 -N/S. Site Contact: ERIC PORKEN (665) 0E 2 (Start) Project Name: STANDARD PORTABLE つびなげを Analysis Turnaround Time Ambient Ambient S) 8 8 30 $\frac{8}{2}$ Time Start | Time Stop 1130 130 4/11-4/12/13 1230 1130 1330 1130 130 TAL Contact: JAMIE うるが S Rush (Specify) 1501 1201 1303 Interior Interior CLTEGOLY B/4SA) DENVOLABLE Sample Date(s) Start Start Stop Special Instructions/QC Requirements & Comments: SITE # C907030A EPOPHEN @ GESONLINE. COW Company: NYSOEC REGION MAYUICE , NY Sample Identification Sampled by: E. POPK EN(GES) 270 MICHIGAN 08-1-1220 あったたみっつ Client Contact Information BA OUT DOOR 900 NDOOR /SYS/ Site/location: City/State/Zip Phone: 716 Address: SS

TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST Lot Number: 43D/6040?

				101 20 100 100 100 100 100 100 100 100 1	
Review Items	Yes	Š.	NA	If No, what was the problem?	Comments/Actions Taken
 Do sample container labels match COC? (IDs, Dates, Times) 				□ 1a Do not match COC □ 1b Incomplete information	44
	/			□ 1c Marking smeared □ 1d Label torn	
				☐ 1e No label	
				□ 1g Other:	
2. Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C)				□ 2a Temp Blank = □ 2b Cooler Temp =	
	-		$\overline{}$	□ 2c Cooling initiated for recently collected samples, ice present.	
3. Were samples received with correct chemical preservative (excluding Encore)?			1	□ 3a Sample preservative =	
4. Were custody seals present/intact on cooler and/or				4a Not present	
containers?		\		□ 4b Not intact	
				□ 4c Other:	The same of adjusted was a manufactory for the same of
5. Were all of the samples listed on the COC received?	/			☐ 5a Samples received-not on COC☐ 5b Samples not received-on COC☐	
6. Were all of the sample containers received intact?				□ 6a Leaking □ 6b Broken	
7. Were VOA samples received without headspace?				☐ 7a Headspace (VOA only)	
8. Were samples received in appropriate containers?	\sum			□ 8a Improper container	
9. Did you check for residual chlorine, if necessary?				□ 9a Could not be determined due	
10 Were samples received within holding time?	7			O matrix interference	
- 1).	•		□ Incomplete information	
				If no, was pH adjusted to pH 7 - 9 with sulfuric acid?	
13. Are the shipping containers intact?	7			☐ 13a Leaking ☐ 13b Other:	
14. Was COC relinquished? (Signed/Dated/Timed)			<u> </u>	114a Not relinquished	
15. Are tests/parameters listed for each sample?	\			□ 15a Incomplete information	
16. Is the matrix of the samples noted?				□ 15a Incomplete information	
17. Is the date/time of sample collection noted?	//			□ 15a Incomplete information	
	>			□ 15a Incomplete information	
19. Was the sampler identified on the COC?				□ 19a Other	
Quote #: 91287 PM Instructions:					
Sample Receiving Associate:	2			Date: 4-15-13	QA026R23.doc, 022812

Test America - Knoxville ---- Air Canister Dilution Log Lot Number: <u>H3D160408</u>

	Comments	10463	-			3
	Final Pres. Pf (psig)					
	(mL)					
	Serial Dilution Can #					
ilutions	Third InCan Final Pres. Pf (psig)					
Subsequent Dilutions	First Second III InCan In-can Final					
Sub	First InCan Final Pres. Pf (psig)					
	Final Pres. Pf (psig)					
	Initial Pres. Pi (in)					
	Baro ID Pbarr S (in)					
	Analyst/Date					
	Adj. Initial Pres. (- in or + psig)					
	Pres. Adj. upon Initial receipt Pres. (-in or in or + + psig) psig)	-H.5	0.0	400	43	0.0
e.	Can#	6634	1122	1118	93145	1539
Initial Can Pressure	Sample ID	MOLPM	MOLPQ	MOLPT	MOLPW	MOLP1
	Baro ID Saro Pbarr (ii)	29.08				>
	Can O Tedlar bag prep Time	12.34	_			>
	Analyst/Date	24holy 12:34 29.08				>

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Mayville TestAmerica Laboratories # H3D160408 May 23, 2013 Sampling date: 4/12/2013

Prepared by

Jodi Zimmerman, B.S. Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

> Mayville H3D160408

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Groundwater and Environmental Services Inc., project in Mayville, TestAmerica Laboratories SDG ID #H3D160408, submitted to Vali-Data of WNY, LLC on May 1, 2013. This DUSR has been prepared in general compliance with NYSDEC Analytical Services Protocol (ASP) and USEPA National Functional Guidelines (NFG). The laboratory performed the analysis using Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

VOLATILE ORGANIC COMPOUND

The following items/criteria were reviewed for this report:

- Data Completeness
- Narrative and Data Reporting Forms
- Chain-of-Custody and Traffic Reports
- Holding Times
- Internal Standard (IS) Area Performance
- Method Blank
- Laboratory Control Samples
- MS/MSD
- Compound Quantitation
- Initial Calibration
- Continuing Calibration
- GC/MS Tuning
- Canister Certification Blanks

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use, but are qualified below in Chain of Custody and Traffic Reports, Laboratory Control Samples and Continuing Calibration.

Ultra-high purity humidified nitrogen was used in place of 'zero-air'. Interim criteria were utilized for Ethanol.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except TestAmerica did not include a MDL study, thus target analytes detected between the reporting limit and the lowest concentration in the initial calibration should be considered estimated.

Mayville H3D160408

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met except the final vacuum of samples, Outdoor and SS Dup, was 0 inches of Hg, thus the results for these samples must be qualified as estimated or undetected estimated.

HOLDING TIMES

All criteria were met.

INTERNAL STANDARD (IS)

All criteria were met.

METHOD BLANK

All criteria were met.

TRIP BLANKS

No trip blank was acquired.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Chloromethane, Carbon Tetrachloride and 4-Methyl-2-pentanone were detected in SS Dup but not SS. 2,2,4-Trimethylpentane and Tetrachloroethene were detected in SS but not SS Dup. 2,2,4-Trimethylpentane and o-Xylene were detected in Indoor Dup but not Indoor. Tetrachloroethene and Styrene were detected in Indoor but not Indoor Dup.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of 4-Methyl-2-pentanone was outside NFG QC limits, high in MOLOV1AC and should be qualified as estimated if detected in the associated samples. The %Rec of Bromoform was outside NFG QC limits, low in MOLOV1AC and should be qualified as estimated in the associated samples. The %Rec of 4-Methyl-2-pentanone and Carbon tetrachloride was outside NFG QC limits, high in MOMCP1AC and should be qualified as estimated if detected in the associated samples. The %Rec of Ethanol exceeded NFG QC limits for both laboratory control samples, but was within the laboratories alternate criteria.

MS/MSD

No MS/MSD was acquired.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met except the %D of 4-Methyl-2-pentanone, Bromoform and Hexachlorobutadiene were outside NFG QC limits in continuing calibration file #R041613 and should be qualified as estimated in the associated samples, blanks and spikes. The %D of 4-Methyl-2-pentanone and Carbon Tetrachloride were outside NFG QC limits in continuing calibration file #R041713 and should be qualified as estimated in the associated samples, blanks and spikes.

The %D of Ethanol exceeded NFG QC limits for both laboratory control samples, but was within the laboratories alternate criteria.

GC/MS TUNING

All criteria were met.

CANISTER CERTIFICATION BLANKS

All criteria were met.