

2021 Periodic Review Report (Reporting Period: December 27, 2019 to March 26, 2021)

Location:

Former Edgewood Warehouse Site 320 South Roberts Road, Dunkirk, New York NYSDEC Site No. C907032

Prepared for: 320 Roberts Road Freezer, LLC 4 Centre Drive Orchard Park, New York 14127

LaBella Project No. 2203235

April 19, 2021 (Revised June 10, 2021)

Table of Contents

1.0	EXE	ECUTIVE SUMMARY1
1.1	S	ite Summary1
1.2	E	ffectiveness of Remedial Program1
1.3	N	Ion-Compliance1
1.4	R	Recommendations2
2.0	SITE	E OVERVIEW2
2.1	S	ite Background2
2.2	R	Remedial Program Overview
3.0	EFF	ECTIVENESS OF THE REMEDIAL PROGRAM
4.0	INS	TITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT
4.1	IC	C/EC Requirements and Compliance
4	.1.1	IC Requirements-Site Restrictions5
4	.1.2	Engineering Controls-Site Cover System5
4.2	IC	C/EC Certification
5.0	MO	NITORING PLAN COMPLIANCE REPORT
5.1	R	Requirements
5.2	G	Groundwater Monitoring7
5	.2.1	Sampling Procedure7
5	.2.2	Sample Preservation and Handling7
5	.2.3	Quality Assurance/Quality Control Samples8
5	.2.4	Analytical Results8
5.3	С	Comparisons with Remedial Objectives8
5.4	Ν	1 Nonitoring Deficiencies
5.5	G	Groundwater Monitoring Conclusions and Recommendations9
5.6	Р	Post-Construction Indoor Air Quality Monitoring9
6.0	CON	NCLUSIONS AND RECOMMENDATIONS
7.0	LIM	IITATIONS
8.0	REF	-ERENCES

TABLE OF CONTENTS

Continued

Figures	Figure 1 – Site Location Map Figure 2 – Site Plan Figure 3 – Groundwater Elevations
Table	Table 1 – Summary of Post-Remedial Groundwater Analytical Results
Appendix 1 Appendix 2 Appendix 3 Appendix 4	Environmental Easement Cover Inspection Form Photographs Site Management Periodic Review Report-Institutional and Engineering Controls Certification Form
Appendix 5 Appendix 6 Appendix 7 Appendix 8	Field Logs Laboratory Analytical and Data Usability Summary Reports Geotechnical Boring Logs and Locations Post-Construction Indoor Air Quality Report

1.0 EXECUTIVE SUMMARY

This Periodic Review Report (PRR) is a required element of the approved Site Management Plan (SMP) for the former Edgewood Warehouse Site in Dunkirk, New York. The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) No. C907032-11-17, Site No. C907032, which was executed in January 2018, and amended in June and December 2019.

1.1 Site Summary

The former Edgewood Warehouse Site (hereafter referred to as the "Site") occupies approximately 7.94 acres of a former industrial park in the City of Dunkirk, Chautauqua County, New York. Historically, the Site contained industrial buildings, the last of which were demolished in the fall of 2018 in connection with remediation and redevelopment of the Site under the New York State Brownfield Cleanup Program (BCP). The Site is located in an area zoned for industrial use and is currently occupied by an approximately 71,000-square foot freezer warehouse and an approximately 250-square foot backflow/pump house that were constructed in 2019. The remaining portions of the property generally consist of asphalt parking areas and roadways, a stormwater management area, a stone truck staging area, a stone fire access drive, and vegetated green space.

Environmental investigations conducted at the Site revealed that contamination associated with historical operations had impacted the Site, necessitating remedial activities. The remedial activities were completed pursuant to the BCP with oversight by the New York State Department of Environmental Conservation (NYSDEC) and Department of Health (NYSDOH). Following completion of the remedial work described in the NYSDEC-approved Remedial Work Plan (RWP), some contamination was left in the subsurface of the Site, which is hereafter referred to as "remaining contamination." The remedial efforts also included development of a SMP to manage the remaining contamination at the Site in perpetuity or until extinguishment of the Environmental Easement that was placed on the Site, in accordance with Environmental Conservation Law (ECL) Article 71, Title 36.

1.2 Effectiveness of Remedial Program

Based on a recent inspection of the Site, the Site cover system is intact and functioning as designed on the Site. Additionally, recent groundwater sampling results indicate that total volatile organic compound (VOC) concentrations at the Site have generally decreased since the initial post-remedial groundwater sampling event in August 2019. Indoor air quality monitoring conducted in the new warehouse facility to evaluate the effectiveness of the sub-slab depressurization system (SSDS) detected the presence of VOCs at concentrations slightly above applicable guidance levels at several locations within the facility. However, these detections may have been influenced by new building materials, furnishings and finishes; the use of cleaning products; and the limited occupancy and operational status of the facility.

1.3 Non-Compliance

No areas of non-compliance regarding the major elements of the SMP were identified during the preparation of this PRR.

1.4 Recommendations

Overall, the remedial program is viewed to be effective in achieving the remedial objectives for the Site. No changes to the SMP, the monitoring program or the frequency of PRR submissions are recommended at this time. Re-sampling of the indoor air quality in areas of the facility where slightly elevated concentrations of VOCs were detected is recommended to assist in evaluating the need for SSDS activation as prescribed in the SMP. Such will occur in July 2021.

2.0 SITE OVERVIEW

The Site is located at 320 South Roberts Road in the City of Dunkirk, New York. Figure 1 shows the location of the Site and Figure 2 is the Site plan that depicts the Site configuration and location of the groundwater monitoring well network. A mixture of commercial, industrial and residential properties comprise the land use in the Site's vicinity. The Site is bounded to the north by an active CSX rail yard; to the east by the undeveloped Former Roblin Steel property; to the south by a vacant office building and undeveloped land that comprise the Former Alumax extrusions property; and to the west by South Roberts Road. Lake Erie is situated approximately 2,650 feet to the northwest of the Site. Hyde Creek is located approximately 290 feet from the northeast corner of the Site.

2.1 Site Background

The Site occupies approximately 7.94 acres of a former industrial park. Historically, the American Locomotive Company (ALCO) operated a manufacturing complex at the Site and adjoining properties from 1910-1930. This complex was later converted by ALCO to manufacture process and military equipment, and packaged nuclear reactor components until 1963. Following ALCO facility closure, the Site was used for the manufacturing of stainless steel feed water heater tubes for heat exchangers; and wooden pallets, crates and boxes until 1997. The demolition of several onsite structures occurred in the 1980s, and the largest remaining structure was utilized for warehouse operations and by a variety of small businesses from 1997 until 2008. The County of Chautauqua acquired the Site via tax foreclosure in 2008 for the purpose of stimulating private redevelopment interests. That same year, Chautauqua County undertook a Remedial Investigation/Alternatives Analysis (RI/AA) of the Site under the New York State Environmental Restoration Program (ERP). Based on the RI/AA, the NYSDEC issued a Record of Decision (ROD) in 2010 specifying the selected remedy for the Site, which included:

- Limited excavation of soil in three areas containing elevated levels of SVOCS and metals;
- Removal and off-site disposal of contaminated sediments from pits and sumps, and cleaning/closure of drainage structures;
- Removal of asbestos and containers from the building;
- Removal of contaminated wood flooring blocks;
- Soil vapor mitigation;
- In-situ groundwater treatment of VOCs and groundwater monitoring;
- A cover system consisting of soil cover systems in vegetated areas and a six-inch pavement or concrete cover system in non-vegetated areas;
- Development of an SMP describing institutional and engineering controls for the Site; and,
- An environmental easement with requirement for periodic certification.

The Site remained dormant from 2008 until 2018 when The Krog Group, LLC entered into a BCA with the NYSDEC to remediate the Site in accordance with the ROD. Said BCA was amended in June

2019 to reflect 320 Roberts Road Freezer, LLC as the Site owner and BCP volunteer, and a second amendment to the BCA was made in December 2019. The remedy established in the ROD was implemented in 2018-2019 in accordance with a NYSDEC-approved RWP. A Final Engineering Report (FER) summarizing and documenting the remedial program completed at the site was filed in December 2019 and subsequently approved by the NYSDEC. The Site was redeveloped with a new temperature controlled warehouse that commenced operation in late 2020.

2.2 Remedial Program Overview

The remediation program was completed in conformance with the NYSDEC-approved Remedial Work Plan (RWP) prepared by LaBella Associates D.P.C. (LaBella), dated May 2018. The following remedial program elements were completed:

- Limited subsurface soil/fill removal from the three contaminated "Hot Spot" areas that were potentially adversely affecting groundwater quality. The excavated soil/fill from these areas was transported off-site for disposal at the Chautauqua County Landfill. The limits of the excavations were confirmed with post-excavation sampling, extending to the points at which sample concentrations approached typical site levels;
- Cleaning and decommissioning of Site drainage structures and removal of brick incinerator;
- Removal and disposal of forty, 55-gallon drums of apparent food product waste;
- Removal of asbestos-containing materials (ACMs);
- Removal of deteriorated, loose flaking or peeling paint and disposal at approved landfill facilities as hazardous and non-hazardous waste;
- Removal of hazardous and non-hazardous wood block flooring;
- Controlled demolition of the remaining buildings;
- Removal and crushing of unadulterated concrete block, concrete floor slabs/foundations and brick followed by the placement and grading of the crushed material on the Site as backfill beneath the final cover system;
- Removal and proper off-site disposal of approximately 7.14 tons of stained concrete;
- Removal, treatment and permitted discharge of petroleum-impacted perched groundwater encountered during foundation excavations to the municipal sanitary sewer system;
- Removal of two 3,000-gallon gasoline underground storage tanks (USTs) and confirmatory soil sample characterization to verify compliance with soil cleanup objectives;
- Removal of steel building components and transport to a recycling facility;
- Removal of approximately 495 tons of petroleum-impacted soil encountered during foundation and utility excavations and disposal at the Chautauqua County Landfill;
- Implementation of a NYSDEC-approved In-Situ Groundwater Treatment Plan to remediate chlorinated VOCs present in the groundwater migrating onto the Site from up-gradient locations. The in-situ groundwater treatment program included the construction of a permeable reactive barrier (PRB) trench transecting the east portion of the Site from the north Site boundary to the south Site boundary; and direct-push injections over an approximately 18,300-square foot area along the east side of the new freezer warehouse facility;
- Installation of a Sub-slab Depressurization (SSD) system to mitigate the potential for soil vapor intrusion in the new freezer warehouse facility. The SSD system is a passive system that was designed to enable conversion to an active system should conditions warrant;
- Construction of a cover system to prevent exposure to remaining contamination in the soil/fill at the Site. The cover system includes a 12-inch clean soil cover for all vegetated areas. The

soil cover consists of six inches of clean soil underlain by an orange plastic demarcation layer to clearly mark the top surface of the un-remediated soil/fill that remains on the Site. Six inches of topsoil was placed atop the clean soil to support vegetation. Stone parking or storage areas consist of a 12-inches of clean stone cover underlain by a geotextile fabric and orange plastic demarcation mesh. Areas of the site covered by impermeable surfaces (buildings, roadways, parking lots, etc.) consist of a minimum of at least six inches of asphalt pavement or concrete slabs;

- Imposition of an institutional control in the form of an environmental easement that requires (a) limiting the use and development of the property to commercial use, which also permits industrial use; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by County health department; and (d) the property owner to complete and submit to the NYSDEC a periodic certification of institutional and engineering controls;
- Development of a site management plan (SMP) that includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the NYSDEC; (b) continued evaluation of the potential for vapor intrusion for any additional new buildings developed on the site; (c) monitoring of groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy;
- Periodic certification of institutional and engineering controls, prepared and submitted by a professional engineer or such other expert acceptable to the NYSDEC, until the NYSDEC notifies the property owner in writing that this certification is no longer needed; and
- Operation of the components of the remedy until the remedy objectives have been achieved, or until the NYSDEC determines that the continued operation is technically impractical or not feasible.

Following completion of the remedial work described in the RWP, some contamination was left in the subsurface of the Site. The SMP was formulated to manage remaining contamination at the Site in perpetuity or until extinguishment of the Environmental Easement in accordance with ECL Article 71, Title 36.

3.0 EFFECTIVENESS OF THE REMEDIAL PROGRAM

As detailed below in Section 4.1.2, the Site Cover System was inspected on March 10, 2021. Based on this inspection, the cover system is intact and functioning effectively throughout the Site.

The results of the March 2021 groundwater sampling event indicate that total VOC concentrations at the Site have generally decreased since the initial post-remedial groundwater sampling event (August 2019).

Recent indoor air quality results intended to verify the effectiveness of the SSDS installed beneath the new warehouse building may have been influenced by the limited operational status and occupancy of the building; the use of cleaning products during the sampling event; and off-gassing

from new building materials, furnishings and finishes. Consequently, additional indoor air monitoring has been recommended to assess the need for activation of the SSDS. Such will occur in July 2021.

4.0 INSTITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT

4.1 IC/EC Requirements and Compliance

4.1.1 IC Requirements-Site Restrictions

In accordance with the SMP, the Site has a series of Institutional Controls (ICs) in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement. The Environmental Easement is included as Appendix 1. Site restrictions that apply are as follows:

- The property may be used for commercial or industrial use;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Chautauqua County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any new buildings developed at the Site, and any potential impacts that are identified must be monitored or mitigated; and,
- Vegetable gardens and farming on the Site are prohibited.

4.1.2 Engineering Controls-Site Cover System

Exposure to the remaining contamination in soil/fill at the Site is prevented by a cover system that was previously placed over the Site. This cover system is comprised of a minimum of 12 inches of clean soil, or at least six inches of asphalt pavement or concrete-covered sidewalks and/or concrete building slabs. The EWP, which appears in Appendix 4 of the SMP, outlines the procedures that are required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. The cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

Pursuant to the requirements of the EWP, LaBella submitted notification to the NYSDEC on December 7, 2020 of geotechnical drilling planned in connection with the evaluation of the Site for potential expansion of the warehouse facility. NYSDEC provided approval to proceed with the drilling program on December 8, 2020 and the geotechnical test borings were conducted on December 17 and 18, 2020. The work was conducted in accordance with the EWP and included air monitoring per the Community Air Monitoring Plan (CAMP), repair of the demarcation layer, where encountered, and restoration of the cover system. Three borings were advanced in the parking area east adjacent the warehouse (B1, B-1A and B-1B) while one boring was advanced along the east Site boundary in the grass area (B-2). Equipment refusal was encountered in B1 and B-1A which led to the advancement of B-1B. Borings were advanced to depths of approximately 19-25 feet below the ground surface upon completion. A map of the boring locations and the boring logs are provided in Appendix 7. Auger cuttings and residual split-spoon sample material was placed in 55-gallon drums for proper off-site disposal. Waste stream disposal documentation will be forwarded to the NYSDEC upon removal of the drums which is currently in progress.

On March 10, 2021, LaBella conducted the annual Site inspection, which included traversing the Site on foot to observe the current conditions. The Cover Inspection Form is included herein as Appendix 2. Appendix 3 includes photographs taken during the Site inspection.

The Site currently consists of the following: an approximately 71,000-square foot cold storage facility and an approximately 250-square foot backflow/pump house. The remaining portions of the property generally consist of asphalt parking areas and roadways, a stormwater management area, a stone truck staging area, a stone fire access drive, and vegetated green space. All cover system types were observed to be intact at the time of the site inspection.

4.2 IC/EC Certification

The IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the SMP. Appendix 4 includes the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form."

5.0 MONITORING PLAN COMPLIANCE REPORT

5.1 Requirements

The Monitoring Plan is included in Section 4.0 of the SMP and describes the measures for evaluating: (1) the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site; (2) the cover system; and (3) all affected Site Media.

The Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly groundwater standards;
- Monitoring the cover system;
- Assessing achievement of the remedial performance criteria;
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and,

• Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, the Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g. well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and,
- Annual inspection and periodic certification.

5.2 Groundwater Monitoring

The groundwater monitoring program on an annual basis is required. Groundwater samples are analyzed for VOCs appearing on the United States Environmental Protection Agency (USEPA) Target Compound List (TCL). Trends in contaminant levels in groundwater are evaluated to determine if the remedy continues to be effective in achieving remedial goals.

The groundwater monitoring network prescribed in the SMP consists of four monitoring wells (MW-4RR and MW-11, MW-15 and MW-16). Well MW-15 is located up-gradient of the PRB trench near the up-gradient Site boundary relative to groundwater flow direction. Well MW-11 is located down-gradient from the PRB trench and near the down-gradient site boundary with respect to groundwater flow direction. Well MW-16 is located within the zone of in-situ treatment, and MW-4RR is situated down-gradient of this zone.

5.2.1 Sampling Procedure

Groundwater monitoring wells were purged and sampled in general accordance with the procedures detailed in the December 2019 SMP. All monitoring well sampling activities were recorded on groundwater sampling logs, which are included as Appendix 5. Other observations (e.g. well integrity, etc.) were also noted on the well sampling logs. Prior to the initiation of groundwater sampling, groundwater levels were measured with an electronic water level indicator to determine the static water level below the ground surface elevation. The groundwater levels were used to determine the volume of standing water in the wells.

Well purging consisted of the evacuation of a minimum of three well volumes using NYSDECapproved low-flow purging procedures via a Geotech Geopump II Pump. Development water was allowed to infiltrate back into the Site subsurface. No development water was allowed to leave the boundary of the Site. After completion of development, the wells were allowed to recharge. The samples were collected within three hours of completion of well purging using the low-flow method previously identified. Sample volumes were collected into clean sample bottles containing hydrochloric acid preservative provided by the laboratory. The groundwater samples were submitted for analysis of TCL VOCs via USEPA Method 8260.

5.2.2 Sample Preservation and Handling

Immediately after collection, all samples were placed in a cooler and chilled with ice. To ensure sample integrity, a Chain-of-Custody (COC) sample record was established and kept with the samples

to document each person that handled the samples. The samples were transported to Test America Laboratories, Inc., a NYSDOH Environmental Laboratory Accreditation Program certified laboratory for analysis. The COC records established for the collected samples were maintained throughout the laboratory handling. Copies of the COC and complete analytical laboratory report are included in Appendix 6.

5.2.3 Quality Assurance/Quality Control Samples

In addition to field samples, QA/QC samples were collected to evaluate the effectiveness of the QA/QC procedures implemented during the field and laboratory activities associated with the project. The QA/QC samples included a blind field duplicate and a trip blank that were also analyzed for TCL VOCs.

5.2.4 Analytical Results

The following section summarizes and discusses the analytical results generated during the aforementioned monitoring event. For discussion purposes, these results are compared with the Standards Criteria and Guidance Values applicable to groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1. These results are also compared with those generated from the initial post-remedial sampling of these wells in August 2019 to identify any trends with respect to contaminant concentrations over time.

Table 1 summarizes the post-remedial groundwater sampling results (August 2019 vs. March 2021) and compares the results to the applicable water quality standards. Figure 2 depicts the locations of the monitoring wells while Figure 3 depicts apparent groundwater flow direction at the Site. Groundwater elevations depicted in Figure 3 were calculated based upon the top of casing elevations listed in the SMP and the initial water level measurements recorded on the groundwater sampling logs.

5.3 Comparisons with Remedial Objectives

As shown in Table 1, low concentrations of one to four VOCs were detected in the samples collected from each of the four monitoring wells in March 2021, but when compared to the August 2019 results, total VOC concentrations decreased in three (MW-11, MW-15 and MW-16) of the four wells. This included significant decreases in MW-11 and MW-15. Total VOC concentrations detected in the fourth well (MW-4RR) in March 2021 increased slightly relative to August 2019 levels. While no contraventions of the Water Quality Standards (WQS) were noted in MW-15, one to two VOCs were detected at concentrations exceeding the WQS in the remaining three wells. The VOC detections in each of the four wells are discussed below:

- Two VOCs were detected at concentrations above the WQS in the sample collected from MW-4RR. Total VOC concentrations in this well have slightly increased since the August 2019 sampling event, but remain well below the level observed proximate this well (i.e., from Phase II ESA-MW-4) in March 1999.
- Two VOCs were detected at concentrations above the WQS in the sample collected from MW-11, but the concentration of total VOCs in this well have substantially decreased since the August 2019 sampling event.

- No VOCs were detected within MW-15 at concentrations above the WQS and the concentration of total VOCs in this well have substantially decreased since the August 2019 sampling event.
- One VOC was detected at a concentration above the WQS in the sample collected from MW-16. However, total VOC concentrations in this well have decreased since the August 2019 sampling event.

A comparison of the results from MW-15 with those from the blind field duplicate indicates a slight variation in the analytes detected. Three VOCs including acetone, cyclohexane and methylcyclohexane were detected in the blind field duplicate that were not detected in the sample designated MW-15. Acetone was also detected in the trip blank. Despite these issues with the QA/QC sample analysis, the overall data has been deemed acceptable for use by Vali-Data of WNY, LLC in a Data Usability Summary Report (DUSR) dated April 5, 2021. A copy of the DUSR is located in Appendix 6 after the laboratory analytical report.

5.4 Monitoring Deficiencies

No monitoring deficiencies were identified during the completion of the annual ground water sampling event in March 2021.

5.5 Groundwater Monitoring Conclusions and Recommendations

Total VOC concentrations have decreased in three (MW-11, MW-15 and MW-16) of the four wells comprising the groundwater monitoring network at the Site since the initial post-remedial groundwater sampling event conducted in August 2019. Additionally, the number of individual VOCs detected at concentrations exceeding the WQS in all of the wells has decreased from 16 to 5 over the same time period. While a slight increase in the total VOC concentration detected in MW-4RR was observed in the recent sampling event, the total VOC level in this well has remained relatively low and is substantially below the historical maximum level detected at a predecessor well in the same general area. These data indicate that the groundwater remedy is effectively achieving reductions in contaminant concentrations in the area subject to in-situ treatment.

In consideration of the information above, no changes to the SMP or the frequency of PRR submissions are recommended at this time.

5.6 Post-Construction Indoor Air Quality Monitoring

Section 3.3.3.2 of the SMP indicates that the SSDS will remain a passive system unless the results of indoor air sampling to be conducted six months after completion of construction of the building indicate that activation of the system is necessary. The six month interval following construction was selected to minimize the influence of VOC emissions from new building materials and products and to facilitate the collection of indoor air quality samples that are representative of fully operational conditions at the facility (i.e., building systems are fully functioning and facility is operating at capacity).

The post-construction indoor air quality monitoring event was conducted by LaBella in November 2020 and is summarized in the letter report provided in Appendix 8. As reflected in this report, the facility was not fully operational, did not contain product and was sparsely occupied at the time of

the sampling event. Indoor air samples were collected via summa canisters from each of the two freezer units, the shipping-receiving /re-packing area, the office area and the mechanical area and were analyzed for chlorinated VOCs via United States Environmental Protection Agency (USEPA) Method TO-15. Two outdoor background samples were also collected and analyzed via this method.

With the exception of cis-1,2-dichloroethene and trichloroethene in the sample collected from the office area, all VOC concentrations detected in the air samples collected from the building were below the USEPA 2001: Building Assessment and Survey Evaluation (BASE) database 90th percentile values included on Table C2 in Appendix C of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. Comparison of the analytical results to the Soil Vapor/Indoor Air Matrices included in the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, updated May 2017, revealed cis-1,2-dichloroethene, 1,1,1-trichloroethane, and trichloroethene in the sample collected from the office area and trichloroethene in the samples collected from the east freezer unit and shipping/receiving area were detected at concentrations exceeding the maximum indoor air concentrations on the respective matrices, indicating source identification, resampling or mitigation is necessary. The trichloroethene concentrations in the east freezer unit and shipping/receiving areas only minimally exceeded the maximum indoor air concentration on the Soil Vapor/Indoor Air Matrix. No VOCs were detected in the outdoor background air samples.

The office area is the only finished area within the freezer facility. Additionally, as identified in the Indoor Air Quality Questionnaire and Building Inventory, cleaning chemicals were utilized in the vicinity of this sample location during the sampling period. Cleaners, along with new building materials, furnishings and finishes are known to emit organic chemicals. When coupled with the limited operating status of the facility, these products and materials may have negatively influenced the indoor air quality results. Therefore, LaBella recommends resampling the areas of the freezer facility where VOC exceedances were detected (i.e., office area, shipping/receiving area and east freezer unit) once the facility has become fully operational to confirm the effectiveness of the passive SSDS.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The Site Cover System was inspected in March 2021 and was observed to be intact and functioning as designed throughout the Site.

Total VOC concentrations in the majority of the Site wells have decreased over time indicating the effectiveness of the groundwater remedy.

Recent indoor air quality results intended to verify the effectiveness of the SSDS installed beneath the new warehouse building may have been influenced by the limited operational status and occupancy of the building; the use of cleaning products during the sampling event; and off-gassing from new building materials, furnishings and finishes. Consequently, re-sampling of the indoor air quality in office area, east freezer unit and shipping/receiving areas of the facility where slightly elevated concentrations of VOCs were detected is recommended to assist in evaluating the need for SSDS activation. Re-sampling should be conducted once the facility has become fully operational. Such will occur in July 2021.

No changes to the Monitoring Plan or the SMP are recommended.

7.0 LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's' intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action expect where explicitly stated as such. LaBella makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not be construed as legal advice.

This assessment and report have been completed and prepared on behalf of and for the exclusive use of 320 Roberts Road Freezer, LLC. Any reliance on this report by a third party is at such party's sole risk.

8.0 **REFERENCES**

NYSDEC, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water, Technical and Operational Guidance Series (TOGS) 1.1.1, June 1998 (including April 2000 addendum).

NYSDEC Record of Decision (ROD) for the former Edgewood Warehouse Site, March 2010

Final Engineering Report, Former Edgewood Warehouse Site, LaBella, December 2019

Site Management Plan, Former Edgewood Warehouse Site, LaBella, December 2019

I:\320 ROBERTS RD FREEZER LLC\2203235 - 320 S ROBERTS RD ENV. MONITOR\REPORTS\PRR\FORMER EDGEWOOD WAREOUSE 2021 PRR.DEC SUBMISSION.6.10.21.DOCX

FIGURES

Data Source: Google Earth 2019; LaBella 2021.

TABLES

Table 1Former Edgewood Warehouse SiteSummary of Post-Remedial Groundwater Analytical Results

REGULATORY VALUE		MW-4RR (Replaced MW- 4R)		MW-11		MW-15		MW-16			
Date Collected		8/12/2019	3/10/2021	8/12/2019	3/10/2021	8/12/2019	3/10/2021	8/12/2019	3/10/2021		
			Post-Remedial Groundwater Analytical Results								
Volatile Organic Compounds	; (μg/L)										
Acetone	50	<	~	52	<	29	<	<	<		
2-Butanone (MEK)	50	<	<	190	<	22	<	<	<		
Benzene	1	<	<	<	<	2.8	<	<	<		
Chloroethane	5	5.3	2.2	32	2.5	<	<	<	<		
Chloroform	7	<		<	<	<	<	<	<		
cis-1,2-Dichloroethene	5	<	1.2	2.6	1.2	<	0.92 J	<	0.92 J		
Cyclohexane	-	<	<	<	<	<	<	<	<		
Ethylbenzene	5	<	<	<	<	14	<	<	<		
Isopropylbenzene	5	<	<	<	<	7	<	<	<		
4-Isopropyltoluene	5	<	<	<	<	2	<	<	<		
Methylcyclohexane	-	<	<	<	<	7.9	<	<	0.28 J		
Tetrachloroethene	5	<	<	<	<	<	<	<	<		
Trichloroethene	5	<	<	<	<	<	<	<	<		
Toluene	5	<	<	44	<	<	<	<	<		
trans-1,2-Dichloroethene	5	<	<	<	<	<	<	<	<		
Vinyl Chloride	2	<	2.8	8.2	2.6	<	<	26	10		
Xylene (Total)	5	<	<	<	<	53	<	<	<		
1,1,1-Trichloroethane	5	<	<	<	<	<	<	<	<		
1,1-Dichloroethane	5	<	12	21	12	2.8	<	<	<		
1,1-Dichloroethene	5	<	<	<	<	<	<	<	<		
1,2,4-Trimethylbenzene	5	<	<	<	<	130	<	<	<		
1,3,5-Trimethylbenzene	5	<	<	<	<	37	<	<	<		
Napthalene	10	<	<	<	<	8.6	<	<	<		
n-Butylbenzene	5	<	<	<	<	9.5	<	<	<		
n-Propylbenzene	5	<	<	<	<	21	<	<	<		
1,2-Dichloroethane	0.6	<	<	<	<	<	<	<	<		
Total VOCs	-	5.3	18.2	350	18.3	347	0.92	26	11.2		

Notes:

1. Class GA regulatory values are derived from NYS Ambient Water Quality Standards TOGS 1.1.1 (Source of Drinking Water, groundwater), June 1998

2. Only compounds with one or more detections are shown.

3. μ g/L = micrograms per Liter (equivalent to parts per billion or ppb)

4. < = analyte was not detected

5. (-) indicates that a regulatory value is not associated with this parameter

6. Shaded value represents concentration exceeded the Regulatory Value

7. J = Estimated value. The target analyte concentration is below the quantitation limit, but above the Method Detection Limit or Estimated Detection Limit.

APPENDIX 1

Environmental Easement

LARRY BARMORE

Receipt

Receipt Date: 12/11/2019 11:25:00 AM RECEIPT # 201906262998

Recording Clerk: KAS Cash Drawer: CASH8 Rec'd Frm: RUPP BAASE PFALZGRAF & CUNNINGHAM LLC

Instr#: DE2019008025 DOC: EASEMENT DEED STAMP: TT2020002401 OR Party: 320 ROBERTS ROAD FREEZER LLC EE Party: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Recording Fees				
Cover Page	\$5.00			
Recording Fee	\$70.00			
Cultural Ed	\$14.25			
Records Management - County	\$1.00			
Records Management - State	\$4.75			
Notations	\$0.50			
ТР584	\$5.00			
Transfer Tax				
Transfer Tax	\$0.00			
DOCUMENT TOTAL:>	\$100.50			

Receipt Summary		
Document Count:	1	
TOTAL RECEIPT:	>	\$100.50
TOTAL RECEIVED:	>	\$100.50
CASH BACK:	>	\$0.00
PAYMENTS		
Check # 7641 ->		\$100.50

RUPP	BAASE	PFALZGRAF	&	CUNNINGHAM	LLC
------	-------	-----------	---	------------	-----

County: Chautauqua Site No: C907032 Brownfield Cleanup Agreement Index : C907032-11-17 as amended June 26, 2019

FILED THAUTAHOUA COUNTY CLERK

ZUIS DEC 11 AM 11:25 ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this <u>5</u> day of <u>Deceder</u>, 2016 between Owner, 320 Roberts Road Freezer LLC, having an office at 4 Centre Drive, Orchard Park, New York 14127, County of Erie, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee"), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context

requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 320 South Roberts Road in the City of Dunkirk, County of Chautauqua and State of New York, known and designated on the tax map of the County Clerk of Chautauqua as tax map parcel numbers: Section 79.16 Block 2 Lot 2; Section 79.16 Block 2 Lot 77; and Section 79.12 Block 4 Lot 32, being the same as that property conveyed to Grantor by deed dated July 13, 2018 and recorded in the Chautauqua County Clerk's Office in Instrument No. DE2018004402. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 7.94 +/- acres, and is hereinafter more fully described in the Land Title Survey dated December 2017 and last revised August 22, 2019 prepared by Douglas R. Hager, L.L.S. of KHEOPS Architecture, Engineering & Survey, DPC, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the

Environmental Easement Page 1

protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C907032-11-17 as amended June 26, 2019, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Chautauqua County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

Environmental Easement Page 2

County: Chautauqua Site No: C907032 Brownfield Cleanup Agreement Index : C907032-11-17 as amended June 26, 2019

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential or Restricted Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held

by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

the institutional controls and/or engineering controls employed at such site:

(i) are in-place;

(2)

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:Site Number: C907032
Office of General Counsel
NYSDEC
625 Broadway
Albany New York 12233-5500With a copy to:Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail

and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

320 Roberts Road Freezer LLC: By: Print Name: Parce Krocq Title: Ugp Date: 11/20(

Grantor's Acknowledgment

STATE OF NEW YORK

COUNTY OF $E^{\mathcal{D}}E$) ss:

On the day of day of , in the year 20 day, before me, the undersigned, personally appeared day of day of , personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

MARC A. ROMANOWSIG Notary Public, State of New York Registration No. 02RO6066551 Qualified in Ede County My Commission Expires 11/19/2021 THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting by and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Michael J. Ryan, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the 5^{++} day of 1^{+} day

Notary State of New York Public -

David J. Chiusano Notary Public, State of New York. No. 01CH5032146 Qualified in Schenectady County Commission Expires August 22, 20

SCHEDULE "A" PROPERTY DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Dunkirk, County of Chautauqua and State of New York. Being part of Lot No. 12, Township 6, Range 12 of the Holland Land Company's Survey and being more particularly bounded and described as Follows;

Commencing at a point on the centerline of South Roberts Road, said point being at the westerly corner of lands conveyed by Edgewood Investments, Inc. to Alumax Extrusions, Inc.as described in a warranty deed dated March 2, 1989 and recorded in the Chautauqua County Clerk's office in Liber 2186 of Deeds at page 513, said point also being N 54° 17' 36" W and 601.13 feet from the NW line of the Norfolk and Western Railroad as measured along centerline of said South Roberts Road;

Thence N 37° 54" 24" E a distance of 33.02 to the true point or place of beginning;

Thence continuing N 37° 54" 24" E and along the westerly line of Cliffstar LLC by Liber 2013 of Deeds at Page 6243 a distance of 362.98 feet to an existing iron pipe;

Thence N 78° 57' 24" E a distance of 95.96 feet to the northeast corner of said Cliffstar;

Thence N 11° 12' 36" W and along the westerly line of lands of the County of Chautauqua by Liber 2494 of Deeds at Page 59 a distance of 19.82 feet to a set rebar;

Thence along a curve to the right with a chord bearing of N 76° 24' 48" E and a radius of 281.44 feet and continuing along the line of the County of Chautauqua by Liber 2494 of Deeds at Page 59 an arc distance of 9.20 feet to an existing rebar;

Thence N 10° 58' 36" W and continuing along the line of the County of Chautauqua by Liber 2494 of Deeds at Page 59 a distance of 62.82 feet to an existing railroad spike;

Thence along a curve to the right with a chord bearing of N 40° 55' 31" E and a radius of 757.76 feet and to the corner of lands of the County of Chautauqua by Liber 2494 of Deeds at Page 59 and the County of Chautauqua by Liber 2494 of Deeds at Page 49 an arc distance of 98.22 feet;

Thence continuing along the northerly line of the County of Chautauqua by Liber 2494 of Deeds at Page 49 along a curve to the right with a chord bearing of N 53° 38' 38" E and a radius of 1364.49 feet an arc distance of 419.76 feet to an existing rebar;

Thence continuing along the northerly line of the County of Chautauqua by Liber 2494 of Deeds at Page 49 along a curve to the right with a chord bearing of N 70° 41' 38" E and a radius of 260.49 feet an arc distance of 76.07 feet to a set rebar;

Thence N 78° 56' 24" E and continuing along the northerly line of the County of Chautauqua by Liber 2494 of Deeds at Page 49 a distance of 77.46 feet to a set rebar;

Thence N 11° 03' 36" W a distance of 10.97 feet to an existing rebar in the southerly line of the now or formally Erie Lackawanna Railroad Company;

Thence the following four courses and distances along the southerly line of the now or formally Erie Lackawanna Railroad Company;

1. S 78° 56' 24" W a distance of 154.00 feet to an existing rebar

2. S 68° 19' 38" W a distance of 117.89 feet to an existing iron pipe

3. S 79° 00' 11" W a distance of 714.56 feet to an existing iron pipe

4. S 76° 48' 24" W a distance of 497.94 feet to an existing iron pipe;

Thence S 54° 17' 36" E a distance of 46.00 feet to an existing monument;

Thence S 10° 53' 06" E a distance of 16.01 feet to the northeasterly line of South Roberts road;

Thence S 54° 17' 36" E and along the said northeasterly line of South Roberts Road a distance of 677.04 feet to the point or place of beginning, containing 7.94 acres of land more or less.

APPENDIX 2

Cover Inspection Form

COVER INSPECTION FORM

Former Edgewood Warehouse Site

Property Name:	Former Edgewood Warehouse Site	Inspection Date:		
Property Address:	320 South Roberts Road			
<u>City:</u> Dunkirk	State: New York	Zip Code:	14048	
Total Acreage: 8.6	acres			
Weather (during in	spection): Temperature°F			

Conditions:

SIGNATURE:

The findings of this inspection were discussed with appropriate personnel, corrective actions were identified and implementation was mutually agreed upon:

Inspector Heather Geoghegan
Next Scheduled Inspection Date:

Date: 3/10/2021

COVER & VEGETATION

		Yes	No
1.	Final Cover in acceptable condition?	X	
2.	Is there evidence of sloughing, erosion, ponding, or settlement?		\succ
3.	Is there evidence of unintended traffic; rutting?		×
4.	Is there evidence of distressed vegetation/turf		\succ
5.	Final Cover sufficiently covers soil/fill material?	\times	
6.	Are any cracks visible in the soil or pavement?		X
7.	Any activity on-Site that mechanically disturbed soil cover?		\times

SSDS SYSTEM

		Yes	No
8.	Are the vent pipes in good condition (do not appear damaged)?	<u>×</u>	
	INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS & ENVIRONM	ENTAL EASEMEN	T
9.	Are the IC/ECs established for the Site being implemented appropriately?	×	<u>Ohman kan an a</u>
10.	. Is the Site in compliance with the Environmental Easement?	\times	

ADDITIONAL FACILITY CONDITIONS

Is there development on or near the Site? (specify size and type of development)

COMMENTS

ATTATCHMENTS

- 1. Site Sketch
- 2. Photographs
- 3. Laboratory Analytical Report (s)

J:\The Krog Group\2171946 - Former Edgewood Warehouse\Reports\SMP\Draft Appendices\Supporting Documents\Appendix 9 Site Management Plan Forms

APPENDIX 3

Photographs

Inside Freezer

Staging area in New Warehouse

Office area of New Warehouse

Maintenance area of New Warehouse

Maintenance area of New Warehouse

Looking along the North Side of Facility

Southeast side of Site

West side of Site

West side of Site

2021 Periodic Review Report Former Edgewood Warehouse Site 320 S. Roberts Road, Dunkirk, New York

North side Exterior Air Vents

2021 Periodic Review Report Former Edgewood Warehouse Site 320 S. Roberts Road, Dunkirk, New York North Side Exterior Air Vents

APPENDIX 4

Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	Site Details	Box 1	
Site No.	C907032		
Site Name	Former Edgewood Warehouse Site		
Site Addre City/Town: County: Ch Site Acrea	ss: 320 South Roberts Road Zip Code: 14048 Dunkirk autauqua ge: 7.940		
Reporting	Period: December 27, 2019 to March 26, 2021		
		YES	NO
1. Is the i	nformation above correct?	•	
If NO,	nclude handwritten above or on a separate sheet.		
2. Has so tax ma	me or all of the site property been sold, subdivided, merged, or undergone a p amendment during this Reporting Period?		•
3. Has th (see 6	ere been any change of use at the site during this Reporting Period NYCRR 375-1.11(d))?		•
4. Have a for or a	iny federal, state, and/or local permits (e.g., building, discharge) been issued it the property during this Reporting Period?		•
lf you that de	answered YES to questions 2 thru 4, include documentation or evidence ocumentation has been previously submitted with this certification form.		
5. Is the	ite currently undergoing development?		•
		Box 2	
		YES	NO
6. Is the c Comm	current site use consistent with the use(s) listed below? ercial and Industrial	•	
7. Are all	ICs in place and functioning as designed?		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd	
A Correcti	ve Measures Work Plan must be submitted along with this form to address th	iese iss	ues.
Signature of	f Owner, Remedial Party or Designated Representative Date		

			Box 2	A
			VEC	NO
 Has any new i Assessment re 	nformation revealed that assumptions made in egarding offsite contamination are no longer va	the Qualitative Exposure lid?		NU 0
If you answer that documer	ed YES to question 8, include documentation the test of te	on or evidence this certification form.		7
9. Are the assum (The Qualitativ	ptions in the Qualitative Exposure Assessmen e Exposure Assessment must be certified eve	t still valid? ry five years)	•	
lf you answer updated Qual	ed NO to question 9, the Periodic Review R itative Exposure Assessment based on the	eport must include an new assumptions.		
SITE NO. C907032			Во	c 3
Description of	Institutional Controls			4
Parcel	<u>Owner</u> 320 Roberts Road Freezer I.I.C.	Institutional Contro	<u>ol</u>	
79.12-4-32	S20 NODENS NOBULT REEZER ELO	Ground Water Use Soil Management Landuse Restrictio Monitoring Plan Site Management IC/EC Plan	e Restrict Plan on Plan	tion
 prohibition against compliance with an annual groundwate 79.16-2-2 	groundwater use without treatment; excavation work plan; and r monitoring 320 Roberts Road Freezer LLC	Ground Water Use Soil Management I Landuse Restrictio Monitoring Plan Site Management I IC/EC Plan	Restrict Plan n Plan	lion
 site use must be ma prohibition against ; compliance with an annual groundwate 79.16-2-77 site use must be ma prohibition against generative set to a set to	aintained as commercial; groundwater use without treatment; excavation work plan; and r monitoring 320 Roberts Road Freezer LLC all and the second se	Ground Water Use Soil Management I Landuse Restrictio Monitoring Plan Site Management I IC/EC Plan	Plan Plan Plan	ion
- annual groundwate	r monitoring			
			Box	4
Description of	Engineering Controls			

arc	cel Engineering Control		
79.1	2-4-32		
soi	Lover System		
per	rmeable reactive barrier trench		
9.1	6-2-2		
	Cover System		
soi	il and pavement site cover system; and		
per 9 1	rmeable reactive barrier trench		
5.1	Cover System		
soi	il and pavement site cover system; and		
per	rmeable reactive barrier trench		
			D 5
			Box 5
	Periodic Review Report (PRR) Certification Statements		
	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the or reviewed by, the party making the Engineering Control certification; 	lirection of	, and
	b) to the best of my knowledge and belief, the work and conclusions describe are in accordance with the requirements of the site remedial program, and ge engineering practices; and the information presented is accurate and compete.	ed in this c enerally acc	ertification cepted
		YES	NO
	For each Engineering control listed in Box 4, I certify by checking "YES" below that following statements are true:	all of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the	Departmer	nt;
	 (b) nothing has occurred that would impair the ability of such Control, to prot the environment; 	ect public I	nealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Continued.	ate the rol;	
	 (d) nothing has occurred that would constitute a violation or failure to comply Site Management Plan for this Control; and 	with the	
	(e) if a financial assurance mechanism is required by the oversight documer mechanism remains valid and sufficient for its intended purpose established	t for the sit in the docu	e, the ment.
		YES	NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise contin	d ue.	
	Corrective Measures Work Plan must be submitted along with this form to addres	s these is	sues.
A	ale ale and a construction was equivalent and an experimentative server server and a server 💭 a construction of the server of the		

IC CERTIFICATIONS SITE NO. C907032	
	Box 6
SITE OWNER OR DESIGNATED REPRESENTATION I certify that all information and statements in Boxes 1,2, and 3 are true statement made herein is punishable as a Class "A" misdemeanor, pur Penal Law.	/E SIGNATURE ie. I understand that a false ursuant to Section 210.45 of the
PETER L. KROG at 4 CENTRE D print name print business ac	DR. ORCHARD PARK
am certifying as OWNER	(Owner or Remedial Party)
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	3.25.21 Date

EC CERTIFICATIONS

Signature

Box 7

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	LaBe	ella Associates,	D.P.C.
Daniel Noll	at 300	State Street Roc	hester, NY
print name		print business address	
am certifying as a for the	. 1		
		(Owner or Re	emedial Party)
		OFNEW	
		STATEL A. 10 022	
		*	
		E Par sur Ma	
		No. 081996 55	
D.J. t. 11		POFESSIONIAL	4/19/21
Signature of , for the Owner or Remedia	l Party,	Stamp	Date
Rendering Certification		(Required for PE	.)

APPENDIX 5

Field Logs

LABELLA ASSOCIATE	S, D.P.C				t		
Environmental Engine	ering Co	nsultants	5	110		Well I.D.	W. HRR
Sample Date:	JIDIANA	<u>agewood</u>	walenouse	-dite	-	JOD NO.	2201255
LaBella Representative:	Heather G	eoghegan				2203	235
Well I.D.	Initial Readings	1 Well Volume	2 Well Volumes	3 Well Volume	Sample	Post Sample	Details
Time	1120	11150	1155	1200	1205	1210	
Depth of well	23.60						
Depth to water	9.70	9.75	10.10	10.10	10.10	10.10	
Well diameter	2"						
Well volume (gallons)	2.256						
Purging device	Peristral	ic fump					
Containment device	Bucket						
Purge time							
Gallons purged	2-	2.3	1.0	1.0	.5	.5	
Sample device	Design	sted Ti	Upine				
Field Parameters	0		r				
Temperature	10.5	10.0	10.5	9,9	9.7	9.7	
pH measurement	7.60	7.71	CEIE	7.71	7.61	7.60	
Conductivity (mS/cm)	0.980	0.808	0.806	0.823	868.0	0.808	
ORP/Eh (mV)	-32.7	-32.2	-353	-8.2	-6.4	-5.6	
Turbidity (NTUs)	18.0	12.69	6.77	3.82	1.10	1.00	
WEATHER: NOTES/FIELD OBSERVATI Remoted additional low flow Sampling.	ONS: well volu	une. Stort	- lauftau	SA	mple E	1210pm	>
Well Volume Purge: 1 Well Volu (only if applicable) Well Capacity (Gallons per Foot): 0.7 4"=0.65 5"=1.02 6"=1.47	me = (Total) = (ft.) $= (ft.)$ $12"=5.88$	Well Depth – ft.) X . gal/ =0.04 1.5"=	Static Depth $ft = 0.3056 \text{ g}$ $= 0.092 2$ "=0	To Water) X allons .16 3"= 0.37	Well Capacit	У	
1. Stabilization Crite	ria for range	of variation o	f last three co	onsecutive Rea	adings		
pH: ± 0.2 units; Temperatur	e: $\pm 0.5^{\circ}$ C; S	pecific Cond	uctance: <u>+</u> 10	%; Turbidity:	$\leq 50 \text{ NTU}$		
A minimum of three well volumes event that groundwater recharge is returned to its are purge level (or)	and a maximu slow, the purg	im of five well ging process w	volumes are t vill continue u	to be removed ntil the well is	from each we purged "dry"	ll prior to samp After the wate	oling. In the er level has

ł.

event that groundwater recharge is slow, the purging process will continue until the well is purged "dry". After the water level has returned to its pre-purge level (or within a maximum of two hours), samples will be collected. If the water level is slow to recharge and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.

ite Location: ample Date: aBella Representative: /ell I.D. ï me	Formes a <u>3102031</u> Heather Ge Initial Readings	Edgwood eoghegan 1 Well	Warehou	<u>se.Site</u>		Job No. Ə203	2201255						
ample Date: aBella Representative: /ell I.D. ï me	<u>Initial</u> Readings	eoghegan 1 Well				2203	1235						
aBella Representative: Vell I.D.	Heather Ge Initial Readings	eoghegan 1 Well				2203035							
Vell I.D. ïme	Initial Readings	1 Well	Heather Geoghegan										
ïme		Volume	2 Well Volumes	3 Well Volume	Sample	Post Sample	Details						
	1020	1045	1050	1055	1100	1105	1110						
epth of well	19.88												
Pepth to water	4.95	5.01	5.05	5.05	5.10	5.10							
Vell diameter	2"												
Vell volume (gallons)	2.42												
Purging device	Perist	ltic	Pump										
Containment device	Bucke	-											
Purge time													
Sallons purged		2.42	1.0	1.0	6.5	0.5							
Sample device	Designat	ed Tubi	ng	3.65									
Field Parameters			0	~~~									
Femperature	10.1	10.4	9.6	9.6	9.6	9.6	9.6						
oH measurement	7.02	7.26	7.39	7.00	730	7.30	7.29						
Conductivity (mS/cm)	1.7(A	1.864	1.864	1.854	1.853	1.852	1.848						
ORP/Eh (mV)	-100.10	-102.4	-90.4	105.3	-94.8	-95,1	-951						
Turbidity (NTUs)	~80.M	76.93	2453	26.30	20.91	20.9	18.94						
WEATHER: NOTES/FIELD OBSERVA	TIONS:			<u>^</u>									
Removed another u	sell volum	le And le	logan la	s flas p	oceduse	S.							
	SAmple	de III	0										
Well Volume Purge: 1 Well V	olume = (Total	Well Depth	– Static Deptl	n To Water) X	Well Capaci	ity							
(only if applicable)	=(1)	$\frac{ft ft.}{x} = 0.04$ 1.5	$\frac{1}{ft} = 0.3056$	gallons =0.16 3"=0.1	37								
4 "=0.65 5 "=1.02 6 "=1.47	12"=5.88	0.01	0.072 -										
1. Stabilization Cr	iteria for rang	e of variation	of last three	consecutive R	eadings								
nH: + 0.2 units: Tempera	ture: $+ 0.5^{\circ}$ C:	Specific Con	ductance: + 1	0%; Turbidit	y: <u>≤</u> 50 NTU								
prin _ 0.2 units, Tempera						1							
A minimum of three well volum event that groundwater recharge returned to its pre-purge level (nes and a maxin e is slow, the pu or within a max	num of five we orging process imum of two l	ell volumes are will continue hours), sample	e to be remove until the well s will be colle	d from each w is purged "dry cted. If the wa	vell prior to san ". After the wa ater level is slo	mpling. In the ater level has we to recharge						

LABELLA ASSOCIATE Environmental Engine Site Location:	S, D.P.C. ering Con Former Ed	nsultants	auchonse	. Site		Well I.D.	NW-15 2201255
Sample Date: LaBella Representative:	3/10/20 Heather Ge	eoghegan	•			2203	235
Well I.D.	Initial Readings	1 Well Volume	2 Well Volumes	3 Well Volume	Sample	Post Sample	Details
Time	820	830	835	840	845	0847	
Depth of well	14.73	*					
Depth to water	5.50	6.00	6.02	6.02	6.02	6.02	
Well diameter							
Well volume (gallons)	1.47	1.0	,5	.5	.5		
Purging device	Peristal	tiu Pu	mp				
Containment device	Bucket						
Purge time	0630	Smin	5 mins	5mins	5 mins		
Gallons purged	÷	1.0	0.5	0.5	0.5	4.5	
Sample device	Desig	nated T	Tubing.				
Field Parameters	Initial		0				
Temperature	7.6	4.8	6.7	6.6	6.6		
pH measurement	7.24	7.31	7.32	7.32	7.32		
' Conductivity (mS/cm)	1.841	1.915	1.917	1.919	1.914		
ORP/Eh (mV)	-79.2	123.6	- 68,4	-63.5	-60.10		
Turbidity (NTUs)	68.90	66.40	42.19	11.31	7.55		
WEATHER:							
NOTES/FIELD OBSERVAT	IONS:	SAr	nple @ E	345	DUPLIC	SATE	
Remailed 1 We	Il volum	C. Bega	lowfla	2 proces	S.		
Well Volume Purge: 1 Well Vo	lume = (Total	Well Depth -	- Static Depth	n To Water) y	Well Capac	ity	
(only if applicable) Well Capacity (Callons per Feet): 0	=(f	$\frac{t ft.}{X} \times \frac{ga}{1.5}$	l/ft = 0.3056 '=0.092 2"=	gallons =0.16 3"=0.1	37		
4"=0.65 5 "=1.02 6 "=1.47	12"=5.88						
1. Stabilization Crit	teria for range	e of variation	of last three	consecutive R	eadings		
pH: ± 0.2 units; Temperatu	are: <u>+</u> 0.5 ⁰ C;	Specific Con	ductance: <u>+</u> 1	0%; Turbidit	y: \leq 50 NTU		
A minimum of three well volume event that groundwater recharge returned to its pre-purge level (or and does not reach its pre-purge	es and a maxim is slow, the pu within a maxi level within tw eld notes with	num of five we rging process mum of two h to hours, then	ell volumes are will continue nours), sample samples can b th to water not	e to be remove until the well s will be colle be collected aff ed	ed from each w is purged "dry cted. If the wa ter sufficient w	vell prior to sar ". After the wa ater level is slo vater has recha	npling. In the ater level has w to recharge rged, and the

LABELLA ASSOCIATE	S, D.P.C. ering Co	nsultants	;			Well I.D.	Musho			
Site Location:	Former FA	awood (i)	webause.	Site		Job No.	2201255			
Sample Date:	3/10/2020	3/10/2021 2203235								
LaBella Representative:	Heather Ge	oghegan								
Well I.D.	Initial Readings	1 Well Volume	2 Well Volumes	3 Well Volume	Sample	Post Sample	Details			
Time	910	0940	0945	0450	0955	1000				
Depth of well	24									
Depth to water	9.35	9.45	9.45	9.48						
Well diameter	24									
Well volume (gallons)	(2.41)	D.41								
Purging device	Parstol.	Pump								
Containment device	Bucket									
Purge time										
Gallons purged		241	0.5	0.5	1.5	0.5				
Sample device	design	sted tub	ing	<u> </u>						
Field Parameters	9	1	0	1		1	· · · · · · · · · · · · · · · · · · ·			
Temperature	11.2	11.0	11.0	11.1	11.1	11.7				
pH measurement	7.31	7.37	7.33	7.31	7.31	7.39				
Conductivity (mS/cm)	1.302	1.292	1.382	1.268	1.262	1.255				
ORP/Eh (mV)	-119.9	Ī71. J.	170.1	195.1	-205	- 200,3				
Turbidity (NTUs)	50,2	34.49	14.68	- 11.22	8.50	34.6				
WEATHER: NOTES/FIELD OBSERVAT Removed I will vi	TIONS: plume th	nen star	ted low	flaz.						
Designated Tubing Well Volume Purge: 1 Well Vo (only if applicable)	br Store olume = (Total = (f	Well Depth - tft.) X . ga	SAMP - Static Depth 1/ft = 0.3056	To Water) X gallons	Well Capaci	ity				
Well Capacity (Gallons per Foot): 0 4"=0.65 5"=1.02 6"=1.47	0.75 "=0.02 1 12 "=5.88	"=0.04 1.5 "	*= 0.092 2**=	3"= 0.16	37					
1. Stabilization Crit	teria for range	e of variation	of last three of	consecutive R	eadings					
pH: ± 0.2 units; Temperat	ure: $\pm 0.5^{\circ}$ C;	Specific Con	ductance: <u>+</u> 10	0%; Turbidit;	$y: \leq 50 \text{ NTU}$					
A minimum of three well volume event that groundwater recharge returned to its pre-purge level (or and does not reach its pre-purge degree of recharge indicated in f	es and a maxim is slow, the pur r within a maxi level within tw eld notes with	num of five we rging process mum of two h to hours, then	Il volumes are will continue tours), samples samples can b h to water not	to be remove until the well s will be colle e collected aft ed.	d from each w is purged "dry cted. If the wa er sufficient w	ell prior to sar ". After the water level is slow ater has rechard	npling. In the ater level has w to recharge rged, and the			
degree of recharge indicated in fi	ield notes with	time and dept	to water not	ed.		has reena	, al			

APPENDIX 6

Laboratory Analytical and Data Usability Summary Reports

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-181915-1

Client Project/Site: Edgewood Warehouse, Dunkirk,NY

For:

LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Attn: Chris Kibler

Joeph V. Giscomoyje

Authorized for release by: 3/18/2021 9:28:15 AM Joe Giacomazza, Project Manager I joe.giacomazza@testamericainc.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835 Brian.Fischer@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	22
Lab Chronicle	23
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	28

Client: LaBella Associates DPC Project/Site: Edgewood Warehouse, Dunkirk,NY

Qualifiers

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	ŏ
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 480-181915-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-181915-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 3/10/2021 2:05 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 8.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: LaBella Associates DPC Project/Site: Edgewood Warehouse, Dunkirk,NY

		Detec	tion Sum	mary					
Client: LaBella Associates DPC Project/Site: Edgewood Warehouse, Du	inkirk,NY			-				Job	ID: 480-181915-1
Client Sample ID: MW-15						Lal	b S	ample ID:	: 480-181915-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.92	J	1.0	0.81	ug/L	1		8260C	Total/NA
Client Sample ID: MW-16						Lal	b S	ample ID:	: 480-181915-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.92		1.0	0.81	ug/L	1	_	8260C	Total/NA
Methylcyclohexane	0.28	J	1.0	0.16	ug/L	1		8260C	Total/NA
Vinyl chloride	10		1.0	0.90	ug/L	1		8260C	Total/NA
Client Sample ID: MW-11						Lal	b S	ample ID	: 480-181915-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	12		1.0	0.38	ug/L	1	_	8260C	Total/NA
Chloroethane	2.5		1.0	0.32	ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	1.2		1.0	0.81	ug/L	1		8260C	Total/NA
Vinyl chloride	2.6		1.0	0.90	ug/L	1		8260C	Total/NA
Client Sample ID: MW-4RR						Lal	b S	ample ID	: 480-181915-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	12		1.0	0.38	ug/L	1	_	8260C	Total/NA
Chloroethane	2.2		1.0	0.32	ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	1.2		1.0	0.81	ug/L	1		8260C	Total/NA
Vinyl chloride	2.8		1.0	0.90	ug/L	1		8260C	Total/NA
Client Sample ID: Duplicate						Lal	b S	ample ID:	480-181915-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.6	J	10	3.0	ug/L	1	_	8260C	Total/NA
Cyclohexane	1.2		1.0	0.18	ug/L	1		8260C	Total/NA
Methylcyclohexane	0.21	J	1.0	0.16	ug/L	1		8260C	Total/NA
Client Sample ID: Trip Blank						Lal	b S	ample ID:	: 480-181915-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.5		10	3.0	ug/L	1		8260C	Total/NA

Client Sample ID: MW-15 Date Collected: 03/10/21 08:45 Date Received: 03/10/21 14:05

Tetrachloroethene

Job ID: 480-181915-1

Lab Sample ID: 480-181915-

Matrix: Wate

•1 er	
_	
ac	5
1 1	6
1	
1	8
1 1	9
1	
1	
1 1	
1 1	13
1 1	
1 1	
1	

Method: 8260C - Volatile Organic Compounds I	by GC/MS							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane ND		1.0	0.82	ug/L			03/13/21 14:12	1
1,1,2,2-Tetrachloroethane ND		1.0	0.21	ug/L			03/13/21 14:12	1
1,1,2-Trichloro-1,2,2-trifluoroethane ND		1.0	0.31	ug/L			03/13/21 14:12	1
1,1,2-Trichloroethane ND		1.0	0.23	ug/L			03/13/21 14:12	1
1,1-Dichloroethane ND		1.0	0.38	ug/L			03/13/21 14:12	1
1,1-Dichloroethene ND		1.0	0.29	ug/L			03/13/21 14:12	1
1,2,4-Trichlorobenzene ND		1.0	0.41	ug/L			03/13/21 14:12	1
1,2,4-Trimethylbenzene ND		1.0	0.75	ug/L			03/13/21 14:12	1
1,2-Dibromo-3-Chloropropane ND		1.0	0.39	ug/L			03/13/21 14:12	1
1,2-Dibromoethane ND		1.0	0.73	ug/L			03/13/21 14:12	1
1,2-Dichlorobenzene ND		1.0	0.79	ug/L			03/13/21 14:12	1
1,2-Dichloroethane ND		1.0	0.21	ug/L			03/13/21 14:12	1
1,2-Dichloropropane ND		1.0	0.72	ug/L			03/13/21 14:12	1
1,3,5-Trimethylbenzene ND		1.0	0.77	ug/L			03/13/21 14:12	1
1,3-Dichlorobenzene ND		1.0	0.78	ug/L			03/13/21 14:12	1
1,4-Dichlorobenzene ND		1.0	0.84	ug/L			03/13/21 14:12	1
2-Butanone (MEK) ND		10	1.3	ug/L			03/13/21 14:12	1
2-Hexanone ND		5.0	1.2	ug/L			03/13/21 14:12	1
4-Isopropyltoluene ND		1.0	0.31	ug/L			03/13/21 14:12	
4-Methyl-2-pentanone (MIBK) ND		5.0	2.1	ug/L			03/13/21 14:12	1
Acetone ND		10	3.0	ug/L			03/13/21 14:12	1
Benzene ND		1.0	0.41	ug/L			03/13/21 14:12	
Bromodichloromethane ND		1.0	0.39	ug/L			03/13/21 14:12	1
Bromoform ND		1.0	0.26	ug/L			03/13/21 14:12	1
Bromomethane ND		1.0	0.69	ug/L			03/13/21 14:12	1
Carbon disulfide ND		1.0	0.19	ug/L			03/13/21 14:12	1
Carbon tetrachloride ND		1.0	0.27	ug/L			03/13/21 14:12	1
Chlorobenzene ND		1.0	0.75	ug/L			03/13/21 14:12	1
Chloroethane ND		1.0	0.32	ug/L			03/13/21 14:12	1
Chloroform ND		1.0	0.34	ug/L			03/13/21 14:12	1
Chloromethane ND		1.0	0.35	ug/L			03/13/21 14:12	1
cis-1.2-Dichloroethene 0.92	J	1.0	0.81	ug/L			03/13/21 14:12	1
cis-1,3-Dichloropropene ND		1.0	0.36	ug/L			03/13/21 14:12	1
Cyclohexane ND		1.0	0.18	ug/L			03/13/21 14:12	1
Dibromochloromethane ND		1.0	0.32	ug/L			03/13/21 14:12	1
Dichlorodifluoromethane ND		1.0	0.68	ug/L			03/13/21 14:12	1
Ethylbenzene ND		1.0	0.74	ug/L			03/13/21 14:12	1
Isopropylbenzene ND		1.0	0.79	ug/L			03/13/21 14:12	1
Methyl acetate ND		2.5	1.3	ug/L			03/13/21 14:12	1
Methyl tert-butyl ether ND		1.0	0.16	ug/L			03/13/21 14:12	1
Methylcyclohexane ND		1.0	0.16	ug/L			03/13/21 14:12	1
Methylene Chloride ND		1.0	0.44	ug/L			03/13/21 14:12	1
Naphthalene ND		1.0	0.43	ug/L			03/13/21 14:12	1
n-Butylbenzene ND		1.0	0.64	ug/L			03/13/21 14:12	1
N-Propylbenzene ND		1.0	0.69	ug/L			03/13/21 14:12	1
sec-Butylbenzene ND		1.0	0.75	ug/L			03/13/21 14:12	1
Styrene ND		1.0	0.73	ug/L			03/13/21 14:12	1
tert-Butylbenzene ND		1.0	0.81	ug/L			03/13/21 14:12	1

Eurofins TestAmerica, Buffalo

03/13/21 14:12

1.0

0.36 ug/L

ND

1

Client Sample ID: MW-15 Date Collected: 03/10/21 08:45

Date Received: 03/10/21 14:05

Method: 8260C - Volatile Orga	inic Compounds I	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		1.0	0.51	ug/L			03/13/21 14:12	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/13/21 14:12	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/13/21 14:12	1
Trichloroethene	ND		1.0	0.46	ug/L			03/13/21 14:12	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/13/21 14:12	1
Vinyl chloride	ND		1.0	0.90	ug/L			03/13/21 14:12	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/13/21 14:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 _ 120			-		03/13/21 14:12	1
4-Bromofluorobenzene (Surr)	93		73 - 120					03/13/21 14:12	1
Dibromofluoromethane (Surr)	103		75 - 123					03/13/21 14:12	1

80 - 120

94

Client Sample ID: MW-16

Toluene-d8 (Surr)

Date Collected: 03/10/21 10:00 Date Received: 03/10/21 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			03/13/21 14:37	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/13/21 14:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/13/21 14:37	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/13/21 14:37	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/13/21 14:37	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/13/21 14:37	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/13/21 14:37	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			03/13/21 14:37	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/13/21 14:37	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			03/13/21 14:37	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/13/21 14:37	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			03/13/21 14:37	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			03/13/21 14:37	1
1,3,5-Trimethylbenzene	ND		1.0	0.77	ug/L			03/13/21 14:37	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			03/13/21 14:37	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			03/13/21 14:37	1
2-Butanone (MEK)	ND		10	1.3	ug/L			03/13/21 14:37	1
2-Hexanone	ND		5.0	1.2	ug/L			03/13/21 14:37	1
4-Isopropyltoluene	ND		1.0	0.31	ug/L			03/13/21 14:37	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/13/21 14:37	1
Acetone	ND		10	3.0	ug/L			03/13/21 14:37	1
Benzene	ND		1.0	0.41	ug/L			03/13/21 14:37	1
Bromodichloromethane	ND		1.0	0.39	ug/L			03/13/21 14:37	1
Bromoform	ND		1.0	0.26	ug/L			03/13/21 14:37	1
Bromomethane	ND		1.0	0.69	ug/L			03/13/21 14:37	1
Carbon disulfide	ND		1.0	0.19	ug/L			03/13/21 14:37	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/13/21 14:37	1
Chlorobenzene	ND		1.0	0.75	ug/L			03/13/21 14:37	1
Chloroethane	ND		1.0	0.32	ug/L			03/13/21 14:37	1
Chloroform	ND		1.0	0.34	ua/L			03/13/21 14:37	1

Eurofins TestAmerica, Buffalo

Job ID: 480-181915-1

Lab Sample ID: 480-181915-1

03/13/21 14:12

Lab Sample ID: 480-181915-2

Matrix: Water

1

Matrix: Water

5

6

Client: LaBella Associates DPC Project/Site: Edgewood Warehouse, Dunkirk,NY

Client Sample ID: MW-16 Date Collected: 03/10/21 10:00

Date Received: 03/10/21 14:05

Method: 8260C - Volatile Orga	nic Compounds I	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	0.35	ug/L			03/13/21 14:37	1
cis-1,2-Dichloroethene	0.92	J	1.0	0.81	ug/L			03/13/21 14:37	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/13/21 14:37	1
Cyclohexane	ND		1.0	0.18	ug/L			03/13/21 14:37	1
Dibromochloromethane	ND		1.0	0.32	ug/L			03/13/21 14:37	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/13/21 14:37	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/13/21 14:37	1
Isopropylbenzene	ND		1.0	0.79	ug/L			03/13/21 14:37	1
Methyl acetate	ND		2.5	1.3	ug/L			03/13/21 14:37	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			03/13/21 14:37	1
Methylcyclohexane	0.28	J	1.0	0.16	ug/L			03/13/21 14:37	1
Methylene Chloride	ND		1.0	0.44	ug/L			03/13/21 14:37	1
Naphthalene	ND		1.0	0.43	ug/L			03/13/21 14:37	1
n-Butylbenzene	ND		1.0	0.64	ug/L			03/13/21 14:37	1
N-Propylbenzene	ND		1.0	0.69	ug/L			03/13/21 14:37	1
sec-Butylbenzene	ND		1.0	0.75	ug/L			03/13/21 14:37	1
Styrene	ND		1.0	0.73	ug/L			03/13/21 14:37	1
tert-Butylbenzene	ND		1.0	0.81	ug/L			03/13/21 14:37	1
Tetrachloroethene	ND		1.0	0.36	ug/L			03/13/21 14:37	1
Toluene	ND		1.0	0.51	ug/L			03/13/21 14:37	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/13/21 14:37	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/13/21 14:37	1
Trichloroethene	ND		1.0	0.46	ug/L			03/13/21 14:37	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/13/21 14:37	1
Vinyl chloride	10		1.0	0.90	ug/L			03/13/21 14:37	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/13/21 14:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120			-		03/13/21 14:37	1
4-Bromofluorobenzene (Surr)	105		73 - 120					03/13/21 14:37	1
Dibromofluoromethane (Surr)	106		75 - 123					03/13/21 14:37	1
Toluene-d8 (Surr)	101		80 - 120					03/13/21 14:37	1

Client Sample ID: MW-11

Date Collected: 03/10/21 11:10

Date Received: 03/10/21 14:05

Method: 8260C - Volatile Organic	Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			03/12/21 12:13	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			03/12/21 12:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			03/12/21 12:13	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			03/12/21 12:13	1
1,1-Dichloroethane	12	1.0	0.38	ug/L			03/12/21 12:13	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			03/12/21 12:13	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			03/12/21 12:13	1
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L			03/12/21 12:13	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			03/12/21 12:13	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			03/12/21 12:13	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			03/12/21 12:13	1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-181915-2

Matrix: Water

5

6

Lab Sample ID: 480-181915-3

Matrix: Water

Client Sample ID: MW-11 Date Collected: 03/10/21 11:10 Date Received: 03/10/21 14:05

Dibromofluoromethane (Surr)

loh	ın	480-	181	91	5-
500	ID.	400-	101	31	J-

Lab Sample ID: 480-181915-3

Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.2-Dichloroethane	ND		1.0	0.21	ua/L			03/12/21 12:13	
1.2-Dichloropropane	ND		1.0	0.72	ua/L			03/12/21 12:13	
1,3,5-Trimethylbenzene	ND		1.0	0.77	ug/L			03/12/21 12:13	
1.3-Dichlorobenzene	ND		1.0	0.78	ua/L			03/12/21 12:13	
1.4-Dichlorobenzene	ND		1.0	0.84	ua/L			03/12/21 12:13	
2-Butanone (MEK)	ND		10	1.3	ua/L			03/12/21 12:13	
2-Hexanone	ND		5.0	1.2	ug/L			03/12/21 12:13	
4-Isopropyltoluene	ND		1.0	0.31	ug/L			03/12/21 12:13	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	uq/L			03/12/21 12:13	
Acetone	ND		10	3.0	ug/L			03/12/21 12:13	
Benzene	ND		1.0	0.41	ua/L			03/12/21 12:13	
Bromodichloromethane	ND		1.0	0.39	ua/L			03/12/21 12:13	
Bromoform	ND		1.0	0.26	ua/L			03/12/21 12:13	
Bromomethane	ND		1.0	0.69	ua/L			03/12/21 12:13	
Carbon disulfide	ND		1.0	0.19	ua/L			03/12/21 12:13	
Carbon tetrachloride	ND		1.0	0.27	ua/L			03/12/21 12:13	
Chlorobenzene	ND		1.0	0.75	ua/L			03/12/21 12:13	
Chloroethane	2.5		1.0	0.32	ua/L			03/12/21 12:13	
Chloroform	ND		1.0	0.34	ua/l			03/12/21 12:13	
Chloromethane	ND		1.0	0.35	ua/l			03/12/21 12:13	
cis_1 2-Dichloroothene	1.2		1.0	0.81	ua/l			03/12/21 12:13	
cis-1 3-Dichloropropene	ND		1.0	0.36	ug/L			03/12/21 12:13	
Cyclobexane	ND		1.0	0.18	ug/l			03/12/21 12:13	
Dibromochloromethane	ND		1.0	0.32	ua/l			03/12/21 12:13	
	ND		1.0	0.68	ua/l			03/12/21 12:13	
Thylbenzene	ND		10	0.74	ua/l			03/12/21 12:13	
sopropylbenzene	ND		1.0	0.79	ua/l			03/12/21 12:13	
Vethyl acetate	ND		2.5	1.3	ua/L			03/12/21 12:13	
Methyl tert-butyl ether	ND		10	0.16	ua/l			03/12/21 12:13	
Methylcyclohexane	ND		1.0	0.16	ua/l			03/12/21 12:13	
Methylene Chloride	ND		1.0	0 44	ua/l			03/12/21 12:13	
Naphthalene	ND		1.0	0.43	ua/L			03/12/21 12:13	
n-Butylbenzene	ND		1.0	0.64	ua/l			03/12/21 12:13	
N-Propylbenzene	ND		1.0	0.69	ua/l			03/12/21 12:13	
sec-Butylbenzene	ND		10	0.75	ua/l			03/12/21 12:13	
Styrene	ND		10	0.73	ua/l			03/12/21 12:13	
ert-Butvlbenzene	ND		1.0	0.81	ua/L			03/12/21 12:13	
Tetrachloroethene	ND		10	0.36	ua/l			03/12/21 12:13	
Toluene	ND		1.0	0.51	ua/l			03/12/21 12:13	
rans-1.2-Dichloroethene	ND		1.0	0.90	ua/L			03/12/21 12:13	
rans-1.3-Dichloropropene	ND		10	0.37	ua/L			03/12/21 12:13	
Trichloroethene			1.0	0.46	ua/L			03/12/21 12:13	
Trichlorofluoromethane			1.0	0.88	<u>-</u>			03/12/21 12:13	
Vinyl chloride	2 C		1.0	0.00	ua/l			03/12/21 12:13	
Xvlenes Total	ND		2.0	0.66	ug/L			03/12/21 12:13	
	ND		2.0	0.00	а <u>а</u> , с			00/12/21 12:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			_		03/12/21 12:13	
4-Bromofluorobenzene (Surr)	98		73 - 120					03/12/21 12:13	

Eurofins TestAmerica, Buffalo

03/12/21 12:13

75 - 123

94

1

Matrix: Water

Matrix: Water

Lab Sample ID: 480-181915-3

Client Sample ID: MW-11 Date Collected: 03/10/21 11:10

Date Received: 03/10/21 14:05

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
-----------	---------------------	--------	----------	----------	---------

Client Sample ID: MW-4RR

Date Collected: 03/10/21 12:10 Date Received: 03/10/21 14:05

Method: 8260C - Volatile Organic	Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			03/12/21 12:37	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			03/12/21 12:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			03/12/21 12:37	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			03/12/21 12:37	1
1,1-Dichloroethane	12	1.0	0.38	ug/L			03/12/21 12:37	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			03/12/21 12:37	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			03/12/21 12:37	1
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L			03/12/21 12:37	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			03/12/21 12:37	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			03/12/21 12:37	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			03/12/21 12:37	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			03/12/21 12:37	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			03/12/21 12:37	1
1,3,5-Trimethylbenzene	ND	1.0	0.77	ug/L			03/12/21 12:37	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			03/12/21 12:37	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			03/12/21 12:37	1
2-Butanone (MEK)	ND	10	1.3	ug/L			03/12/21 12:37	1
2-Hexanone	ND	5.0	1.2	ug/L			03/12/21 12:37	1
4-Isopropyltoluene	ND	1.0	0.31	ug/L			03/12/21 12:37	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			03/12/21 12:37	1
Acetone	ND	10	3.0	ug/L			03/12/21 12:37	1
Benzene	ND	1.0	0.41	ug/L			03/12/21 12:37	1
Bromodichloromethane	ND	1.0	0.39	ug/L			03/12/21 12:37	1
Bromoform	ND	1.0	0.26	ug/L			03/12/21 12:37	1
Bromomethane	ND	1.0	0.69	ug/L			03/12/21 12:37	1
Carbon disulfide	ND	1.0	0.19	ug/L			03/12/21 12:37	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			03/12/21 12:37	1
Chlorobenzene	ND	1.0	0.75	ug/L			03/12/21 12:37	1
Chloroethane	2.2	1.0	0.32	ug/L			03/12/21 12:37	1
Chloroform	ND	1.0	0.34	ug/L			03/12/21 12:37	1
Chloromethane	ND	1.0	0.35	ug/L			03/12/21 12:37	1
cis-1,2-Dichloroethene	1.2	1.0	0.81	ug/L			03/12/21 12:37	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			03/12/21 12:37	1
Cyclohexane	ND	1.0	0.18	ug/L			03/12/21 12:37	1
Dibromochloromethane	ND	1.0	0.32	ug/L			03/12/21 12:37	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			03/12/21 12:37	1
Ethylbenzene	ND	1.0	0.74	ug/L			03/12/21 12:37	1
Isopropylbenzene	ND	1.0	0.79	ug/L			03/12/21 12:37	1
Methyl acetate	ND	2.5	1.3	ug/L			03/12/21 12:37	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			03/12/21 12:37	1
Methylcyclohexane	ND	1.0	0.16	ug/L			03/12/21 12:37	1

5 6

Eurofins TestAmerica, Buffalo

Client Sample ID: MW-4RR Date Collected: 03/10/21 12:10

Date Received: 03/10/21 14:05

Method: 8260C - Volatile Organ	nic Compounds I	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		1.0	0.44	ug/L			03/12/21 12:37	1
Naphthalene	ND		1.0	0.43	ug/L			03/12/21 12:37	1
n-Butylbenzene	ND		1.0	0.64	ug/L			03/12/21 12:37	1
N-Propylbenzene	ND		1.0	0.69	ug/L			03/12/21 12:37	1
sec-Butylbenzene	ND		1.0	0.75	ug/L			03/12/21 12:37	1
Styrene	ND		1.0	0.73	ug/L			03/12/21 12:37	1
tert-Butylbenzene	ND		1.0	0.81	ug/L			03/12/21 12:37	1
Tetrachloroethene	ND		1.0	0.36	ug/L			03/12/21 12:37	1
Toluene	ND		1.0	0.51	ug/L			03/12/21 12:37	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/12/21 12:37	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/12/21 12:37	1
Trichloroethene	ND		1.0	0.46	ug/L			03/12/21 12:37	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/12/21 12:37	1
Vinyl chloride	2.8		1.0	0.90	ug/L			03/12/21 12:37	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/12/21 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 _ 120			-		03/12/21 12:37	1
4-Bromofluorobenzene (Surr)	99		73 - 120					03/12/21 12:37	1
Dibromofluoromethane (Surr)	97		75 _ 123					03/12/21 12:37	1
Toluene-d8 (Surr)	96		80 - 120					03/12/21 12:37	1

Client Sample ID: Duplicate

Date Collected: 03/10/21 00:00 Date Received: 03/10/21 14:05

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			03/12/21 13:01	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			03/12/21 13:01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			03/12/21 13:01	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			03/12/21 13:01	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			03/12/21 13:01	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			03/12/21 13:01	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			03/12/21 13:01	1
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L			03/12/21 13:01	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			03/12/21 13:01	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			03/12/21 13:01	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			03/12/21 13:01	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			03/12/21 13:01	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			03/12/21 13:01	1
1,3,5-Trimethylbenzene	ND	1.0	0.77	ug/L			03/12/21 13:01	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			03/12/21 13:01	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			03/12/21 13:01	1
2-Butanone (MEK)	ND	10	1.3	ug/L			03/12/21 13:01	1
2-Hexanone	ND	5.0	1.2	ug/L			03/12/21 13:01	1
4-Isopropyltoluene	ND	1.0	0.31	ug/L			03/12/21 13:01	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			03/12/21 13:01	1
Acetone	3.6 J	10	3.0	ug/L			03/12/21 13:01	1
Benzene	ND	1.0	0.41	ug/L			03/12/21 13:01	1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-181915-4

Lab Sample ID: 480-181915-5

Matrix: Water

Matrix: Water

5

6

Page 11 of 28

1

Client Sample ID: Duplicate Date Collected: 03/10/21 00:00

Date Received: 03/10/21 14:05

wethod: 8260C - Volatile Organi	ic compounds i		Sontinuea)			_			
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Bromodichloromethane	ND		1.0	0.39	ug/L			03/12/21 13:01	1
Bromoform	ND		1.0	0.26	ug/L			03/12/21 13:01	1
Bromomethane	ND		1.0	0.69	ug/L			03/12/21 13:01	1
Carbon disulfide	ND		1.0	0.19	ug/L			03/12/21 13:01	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/12/21 13:01	1
Chlorobenzene	ND		1.0	0.75	ug/L			03/12/21 13:01	1
Chloroethane	ND		1.0	0.32	ug/L			03/12/21 13:01	1
Chloroform	ND		1.0	0.34	ug/L			03/12/21 13:01	1
Chloromethane	ND		1.0	0.35	ug/L			03/12/21 13:01	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			03/12/21 13:01	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/12/21 13:01	1
Cyclohexane	1.2		1.0	0.18	ug/L			03/12/21 13:01	1
Dibromochloromethane	ND		1.0	0.32	ug/L			03/12/21 13:01	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/12/21 13:01	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/12/21 13:01	1
lsopropylbenzene	ND		1.0	0.79	ug/L			03/12/21 13:01	1
Methyl acetate	ND		2.5	1.3	ug/L			03/12/21 13:01	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			03/12/21 13:01	1
Methylcyclohexane	0.21	J	1.0	0.16	ug/L			03/12/21 13:01	1
Methylene Chloride	ND		1.0	0.44	ug/L			03/12/21 13:01	1
Naphthalene	ND		1.0	0.43	ug/L			03/12/21 13:01	1
n-Butylbenzene	ND		1.0	0.64	ug/L			03/12/21 13:01	1
N-Propylbenzene	ND		1.0	0.69	ug/L			03/12/21 13:01	1
sec-Butylbenzene	ND		1.0	0.75	ug/L			03/12/21 13:01	1
Styrene	ND		1.0	0.73	ug/L			03/12/21 13:01	1
tert-Butylbenzene	ND		1.0	0.81	ug/L			03/12/21 13:01	1
Tetrachloroethene	ND		1.0	0.36	ug/L			03/12/21 13:01	1
Toluene	ND		1.0	0.51	ug/L			03/12/21 13:01	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/12/21 13:01	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/12/21 13:01	1
Trichloroethene	ND		1.0	0.46	ug/L			03/12/21 13:01	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/12/21 13:01	1
Vinyl chloride	ND		1.0	0.90	ug/L			03/12/21 13:01	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/12/21 13:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			77 - 120			_		03/12/21 13:01	1
4-Bromofluorobenzene (Surr)	100		73 - 120					03/12/21 13:01	1
Dibromofluoromethane (Surr)	105		75 - 123					03/12/21 13:01	1
Toluono de (Surr)	98		80 120					03/12/21 13:01	1

Client Sample ID: Trip Blank Date Collected: 03/10/21 00:00 Date Received: 03/10/21 14:05

Method: 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			03/12/21 13:25	1		
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			03/12/21 13:25	1		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			03/12/21 13:25	1		

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-181915-5

Matrix: Water

5

6

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 03/10/21 00:00 Date Received: 03/10/21 14:05

.1

Lab Sample ID: 480-181915-6

Matrix: Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/12/21 13:25	
1-Dichloroethane	ND		1.0	0.38	ug/L			03/12/21 13:25	
1-Dichloroethene	ND		1.0	0.29	ug/L			03/12/21 13:25	
2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/12/21 13:25	
2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			03/12/21 13:25	
2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/12/21 13:25	
2-Dibromoethane	ND		1.0	0.73	ug/L			03/12/21 13:25	
2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/12/21 13:25	
2-Dichloroethane	ND		1.0	0.21	ug/L			03/12/21 13:25	
2-Dichloropropane	ND		1.0	0.72	ug/L			03/12/21 13:25	
3,5-Trimethylbenzene	ND		1.0	0.77	ug/L			03/12/21 13:25	
3-Dichlorobenzene	ND		1.0	0.78	ug/L			03/12/21 13:25	
4-Dichlorobenzene	ND		1.0	0.84	ug/L			03/12/21 13:25	
Butanone (MEK)	ND		10	1.3	ug/L			03/12/21 13:25	
Hexanone	ND		5.0	1.2	ug/L			03/12/21 13:25	
Isopropyltoluene	ND		1.0	0.31	ug/L			03/12/21 13:25	
Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/12/21 13:25	
cetone	3.5	J	10	3.0	ug/L			03/12/21 13:25	
enzene	ND		1.0	0.41	ua/L			03/12/21 13:25	
romodichloromethane	ND		1.0	0.39	ua/L			03/12/21 13:25	
romoform	ND		1.0	0.26	ua/l			03/12/21 13:25	
omomethane	ND		1.0	0.69	ua/L			03/12/21 13:25	
arbon disulfide	ND		1.0	0.19	ua/l			03/12/21 13:25	
arbon tetrachloride	ND		1.0	0.27	ua/l			03/12/21 13:25	
hlorobenzene	ND		1.0	0.27	ug/L			03/12/21 13:25	
bloroethane	ND		1.0	0.32	ug/l			03/12/21 13:25	
ploroform	ND		1.0	0.34	ug/L			03/12/21 13:25	
bloromethane	ND		1.0	0.01	ug/L			03/12/21 13:25	
s-1 2-Dichloroethene	ND		1.0	0.00	ug/L			03/12/21 13:25	
s-1 3-Dichloropropene	ND		1.0	0.01	ug/L			03/12/21 13:25	
	ND		1.0	0.00	ug/L			03/12/21 13:25	
bromochloromethane			1.0	0.10	ug/L			03/12/21 13:25	
chlorodifluoromethane			1.0	0.52	ug/L			03/12/21 13:25	
thylbenzene	ND		1.0	0.00	ug/L			03/12/21 13:25	
opropylbenzene			1.0	0.74	ug/L			03/12/21 13:25	
athyl acotato			2.5	13	ug/L			03/12/21 13:25	
ethyl tort butyl othor			2.5	0.16	ug/L			02/12/21 13:25	
			1.0	0.10	ug/L			03/12/21 13:25	
ethylope Chloride			1.0	0.10	ug/L			03/12/21 13:23	
	ND		1.0	0.44	ug/L			03/12/21 13.25	
aprilitalelle	ND		1.0	0.43	ug/L			03/12/21 13:25	
	ND		1.0	0.64	ug/L			03/12/21 13:25	
	ND		1.0	0.69	ug/L			03/12/21 13:25	
с-витуlbenzene	ND		1.0	0.75	ug/L			03/12/21 13:25	
yrene	ND		1.0	0.73	ug/L			03/12/21 13:25	
rt-Butylbenzene	ND		1.0	0.81	ug/L			03/12/21 13:25	
etrachloroethene	ND		1.0	0.36	ug/L			03/12/21 13:25	
luene	ND		1.0	0.51	ug/L			03/12/21 13:25	

Eurofins TestAmerica, Buffalo

RL

1.0

1.0

1.0

2.0

Limits

77 - 120

73 - 120

75 - 123

80 - 120

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

%Recovery Qualifier

103

99

103

99

Client Sample ID: Trip Blank Date Collected: 03/10/21 00:00

Date Received: 03/10/21 14:05

Analyte

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)

Job ID:	480-1819	15-1

Lab Sample ID: 480-181915-6 Matrix: Water

MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
0.46	ug/L			03/12/21 13:25	1	
0.88	ug/L			03/12/21 13:25	1	6
0.90	ug/L			03/12/21 13:25	1	
0.66	ug/L			03/12/21 13:25	1	
		_	Prepared	Analyzed	Dil Fac	2
				03/12/21 13:25	1	0
				03/12/21 13:25	1	0
				03/12/21 13:25	1	9
				03/12/21 13:25	1	

Eurofins TestAmerica, Buffalo

Method: 8260C - Volatile Organic Compounds by GC/MS

Job ID: 480-181915-1

Prep Type: Total/NA

			F			
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)	
480-181915-1	MW-15	100	93	103	94	
480-181915-2	MW-16	108	105	106	101	
480-181915-3	MW-11	99	98	94	96	
480-181915-4	MW-4RR	96	99	97	96	
480-181915-5	Duplicate	103	100	105	98	
480-181915-6	Trip Blank	103	99	103	99	
LCS 480-572272/6	Lab Control Sample	102	105	102	101	
LCS 480-572425/5	Lab Control Sample	100	105	102	100	
MB 480-572272/8	Method Blank	103	102	102	100	
MB 480-572425/7	Method Blank	99	98	99	96	

Surrogate Legend

Matrix: Water

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Lab Sample ID: MB 480-572272/8 Matrix: Water

Analysis Batch: 572272

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			03/12/21 10:51	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/12/21 10:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/12/21 10:51	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/12/21 10:51	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/12/21 10:51	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/12/21 10:51	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/12/21 10:51	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			03/12/21 10:51	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/12/21 10:51	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			03/12/21 10:51	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/12/21 10:51	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			03/12/21 10:51	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			03/12/21 10:51	1
1,3,5-Trimethylbenzene	ND		1.0	0.77	ug/L			03/12/21 10:51	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			03/12/21 10:51	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			03/12/21 10:51	1
2-Butanone (MEK)	ND		10	1.3	ug/L			03/12/21 10:51	1
2-Hexanone	ND		5.0	1.2	ug/L			03/12/21 10:51	1
4-Isopropyltoluene	ND		1.0	0.31	ug/L			03/12/21 10:51	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/12/21 10:51	1
Acetone	ND		10	3.0	ug/L			03/12/21 10:51	1
Benzene	ND		1.0	0.41	ug/L			03/12/21 10:51	1
Bromodichloromethane	ND		1.0	0.39	ug/L			03/12/21 10:51	1
Bromoform	ND		1.0	0.26	ug/L			03/12/21 10:51	1
Bromomethane	ND		1.0	0.69	ug/L			03/12/21 10:51	1
Carbon disulfide	ND		1.0	0.19	ug/L			03/12/21 10:51	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/12/21 10:51	1
Chlorobenzene	ND		1.0	0.75	ug/L			03/12/21 10:51	1
Chloroethane	ND		1.0	0.32	ug/L			03/12/21 10:51	1
Chloroform	ND		1.0	0.34	ug/L			03/12/21 10:51	1
Chloromethane	ND		1.0	0.35	ug/L			03/12/21 10:51	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			03/12/21 10:51	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/12/21 10:51	1
Cyclohexane	ND		1.0	0.18	ug/L			03/12/21 10:51	1
Dibromochloromethane	ND		1.0	0.32	ug/L			03/12/21 10:51	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/12/21 10:51	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/12/21 10:51	1
Isopropylbenzene	ND		1.0	0.79	ug/L			03/12/21 10:51	1
Methyl acetate	ND		2.5	1.3	ug/L			03/12/21 10:51	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			03/12/21 10:51	1
Methylcyclohexane	ND		1.0	0.16	ug/L			03/12/21 10:51	1
Methylene Chloride	ND		1.0	0.44	ug/L			03/12/21 10:51	1
Naphthalene	ND		1.0	0.43	ug/L			03/12/21 10:51	1
n-Butylbenzene	ND		1.0	0.64	ug/L			03/12/21 10:51	1
N-Propylbenzene	ND		1.0	0.69	ug/L			03/12/21 10:51	1
sec-Butylbenzene	ND		1.0	0.75	ug/L			03/12/21 10:51	1
Styrene	ND		1.0	0.73	ug/L			03/12/21 10:51	1
tert-Butvlbenzene			1.0	0.81	ua/L			03/12/21 10:51	1
·····				0.01	·· 3· =				

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Method Blank

8

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-572272/8 Matrix: Water

Analysis Batch: 572272

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Tetrachloroethene ND 1.0 03/12/21 10:51 0.36 ug/L 1 0.51 ug/L Toluene ND 1.0 03/12/21 10:51 1 03/12/21 10:51 ND trans-1,2-Dichloroethene 1.0 0.90 ug/L 1 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 03/12/21 10:51 1 Trichloroethene ND 1.0 0.46 ug/L 03/12/21 10:51 1 Trichlorofluoromethane ND 1.0 0.88 ug/L 03/12/21 10:51 1 Vinyl chloride ND 1.0 0.90 ug/L 03/12/21 10:51 1 Xylenes, Total ND 2.0 0.66 ug/L 03/12/21 10:51 1

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		77 - 120		03/12/21 10:51	1
4-Bromofluorobenzene (Surr)	102		73 - 120		03/12/21 10:51	1
Dibromofluoromethane (Surr)	102		75 - 123		03/12/21 10:51	1
Toluene-d8 (Surr)	100		80 - 120		03/12/21 10:51	1

Lab Sample ID: LCS 480-572272/6

Matrix: Water Analysis Batch: 572272

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	26.6		ug/L		106	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.2		ug/L		101	76 ₋ 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.5		ug/L		106	61 ₋ 148	
ne								
1,1,2-Trichloroethane	25.0	27.6		ug/L		110	76 - 122	
1,1-Dichloroethane	25.0	27.0		ug/L		108	77 - 120	
1,1-Dichloroethene	25.0	26.4		ug/L		106	66 - 127	
1,2,4-Trichlorobenzene	25.0	26.2		ug/L		105	79 - 122	
1,2,4-Trimethylbenzene	25.0	25.8		ug/L		103	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	25.8		ug/L		103	56 - 134	
1,2-Dibromoethane	25.0	28.2		ug/L		113	77 - 120	
1,2-Dichlorobenzene	25.0	25.1		ug/L		100	80 - 124	
1,2-Dichloroethane	25.0	26.0		ug/L		104	75 ₋ 120	
1,2-Dichloropropane	25.0	26.8		ug/L		107	76 ₋ 120	
1,3,5-Trimethylbenzene	25.0	25.4		ug/L		102	77 ₋ 121	
1,3-Dichlorobenzene	25.0	26.5		ug/L		106	77 - 120	
1,4-Dichlorobenzene	25.0	25.6		ug/L		103	80 - 120	
2-Butanone (MEK)	125	137		ug/L		110	57 ₋ 140	
2-Hexanone	125	144		ug/L		115	65 ₋ 127	
4-Isopropyltoluene	25.0	26.2		ug/L		105	73 ₋ 120	
4-Methyl-2-pentanone (MIBK)	125	136		ug/L		109	71 - 125	
Acetone	125	137		ug/L		110	56 ₋ 142	
Benzene	25.0	26.6		ug/L		107	71 - 124	
Bromodichloromethane	25.0	27.3		ug/L		109	80 - 122	
Bromoform	25.0	27.9		ug/L		111	61 - 132	
Bromomethane	25.0	22.5		ug/L		90	55 ₋ 144	
Carbon disulfide	25.0	25.8		ug/L		103	59 ₋ 134	
Carbon tetrachloride	25.0	25.9		ug/L		104	72 ₋ 134	
Chlorobenzene	25.0	26.6		ug/L		106	80 - 120	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-572272/6

Matrix: Water Analysis Batch: 572272

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroethane		23.4		ug/L		93	69 - 136	
Chloroform	25.0	26.5		ug/L		106	73 ₋ 127	
Chloromethane	25.0	24.7		ug/L		99	68 ₋ 124	
cis-1,2-Dichloroethene	25.0	26.8		ug/L		107	74 ₋ 124	
cis-1,3-Dichloropropene	25.0	27.8		ug/L		111	74 - 124	
Cyclohexane	25.0	26.7		ug/L		107	59 ₋ 135	
Dibromochloromethane	25.0	27.6		ug/L		110	75 - 125	
Dichlorodifluoromethane	25.0	24.5		ug/L		98	59 ₋ 135	
Ethylbenzene	25.0	27.4		ug/L		110	77 ₋ 123	
Isopropylbenzene	25.0	25.7		ug/L		103	77 - 122	
Methyl acetate	50.0	54.0		ug/L		108	74 ₋ 133	
Methyl tert-butyl ether	25.0	27.8		ug/L		111	77 - 120	
Methylcyclohexane	25.0	26.7		ug/L		107	68 ₋ 134	
Methylene Chloride	25.0	25.3		ug/L		101	75 ₋ 124	
Naphthalene	25.0	26.7		ug/L		107	66 ₋ 125	
n-Butylbenzene	25.0	25.2		ug/L		101	71 ₋ 128	
N-Propylbenzene	25.0	25.1		ug/L		101	75 ₋ 127	
sec-Butylbenzene	25.0	26.1		ug/L		104	74 ₋ 127	
Styrene	25.0	26.3		ug/L		105	80 - 120	
tert-Butylbenzene	25.0	27.5		ug/L		110	75 - 123	
Tetrachloroethene	25.0	26.9		ug/L		108	74 ₋ 122	
Toluene	25.0	25.6		ug/L		102	80 - 122	
trans-1,2-Dichloroethene	25.0	27.2		ug/L		109	73 ₋ 127	
trans-1,3-Dichloropropene	25.0	28.6		ug/L		114	80 - 120	
Trichloroethene	25.0	26.2		ug/L		105	74 ₋ 123	
Trichlorofluoromethane	25.0	25.3		ug/L		101	62 _ 150	
Vinyl chloride	25.0	25.8		ug/L		103	65 - 133	

	LCS	LCS			
Surrogate	%Recovery	Qualifier	Limits		
1,2-Dichloroethane-d4 (Surr)	102		77 - 120		
4-Bromofluorobenzene (Surr)	105		73 - 120		
Dibromofluoromethane (Surr)	102		75 - 123		
Toluene-d8 (Surr)	101		80 - 120		

MR MR

Lab Sample ID: MB 480-572425/7 Matrix: Water

Analysis Batch: 572425

Analyte	Result	NID .							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			03/13/21 11:57	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/13/21 11:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/13/21 11:57	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/13/21 11:57	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/13/21 11:57	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/13/21 11:57	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/13/21 11:57	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			03/13/21 11:57	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/13/21 11:57	1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

5

8

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-572425/7

Matrix: Water Analysis Batch: 572425

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed ND 1.0 1,2-Dibromoethane 0.73 ug/L 03/13/21 11:57 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 03/13/21 11:57 ND 1,2-Dichloroethane 0.21 03/13/21 11:57 1.0 ug/L 1,2-Dichloropropane ND 1.0 0.72 ug/L 03/13/21 11:57 ND 1,3,5-Trimethylbenzene 1.0 0.77 ug/L 03/13/21 11:57 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 03/13/21 11:57 ND 1,4-Dichlorobenzene 1.0 0.84 ug/L 03/13/21 11:57 2-Butanone (MEK) ND 10 1.3 ug/L 03/13/21 11:57 2-Hexanone ND 5.0 1.2 ug/L 03/13/21 11:57 4-Isopropyltoluene ND 1.0 0.31 ug/L 03/13/21 11:57 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 03/13/21 11:57 ug/L Acetone ND 10 3.0 ug/L 03/13/21 11:57 Benzene ND 1.0 0.41 ug/L 03/13/21 11:57 ND Bromodichloromethane 1.0 0.39 ug/L 03/13/21 11:57 Bromoform ND 1.0 0.26 ug/L 03/13/21 11:57 Bromomethane ND ug/L 1.0 0.69 03/13/21 11:57 Carbon disulfide ND 1.0 0.19 ug/L 03/13/21 11:57 Carbon tetrachloride ND 1.0 ug/L 0.27 03/13/21 11:57 Chlorobenzene ND 1.0 0.75 03/13/21 11:57 ug/L Chloroethane ND 1.0 0.32 ug/L 03/13/21 11:57 Chloroform ND 1.0 0.34 ug/L 03/13/21 11:57 ND Chloromethane 10 0.35 ug/L 03/13/21 11:57 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 03/13/21 11:57 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 03/13/21 11:57 ND Cyclohexane 1.0 0.18 ug/L 03/13/21 11:57 Dibromochloromethane ND 1.0 0.32 ug/L 03/13/21 11:57 Dichlorodifluoromethane ND 1.0 0.68 ug/L 03/13/21 11:57 Ethylbenzene ND 1.0 0.74 ug/L 03/13/21 11:57 ND Isopropylbenzene 1.0 0.79 ug/L 03/13/21 11:57 Methyl acetate ND 2.5 1.3 ug/L 03/13/21 11:57 ND 10 0.16 ug/L 03/13/21 11:57 Methyl tert-butyl ether Methylcyclohexane ND 1.0 0.16 03/13/21 11:57 ug/L Methylene Chloride ND 1.0 0.44 ug/L 03/13/21 11:57 Naphthalene ND 1.0 0.43 ug/L 03/13/21 11:57 n-Butylbenzene ND 1.0 0.64 ug/L 03/13/21 11:57 N-Propylbenzene ND 1.0 0.69 ug/L 03/13/21 11:57 sec-Butylbenzene ND 1.0 0.75 ug/L 03/13/21 11:57 ND Styrene 1.0 0.73 ug/L 03/13/21 11:57 tert-Butylbenzene ND 1.0 0.81 ug/L 03/13/21 11:57 ND Tetrachloroethene 1.0 0.36 ug/L 03/13/21 11:57 ND Toluene 1.0 0.51 ug/L 03/13/21 11:57 ND 1.0 0.90 ug/L 03/13/21 11:57 trans-1,2-Dichloroethene trans-1,3-Dichloropropene ND 1.0 03/13/21 11:57 0.37 ug/L Trichloroethene ND 1.0 0.46 03/13/21 11:57 ug/L Trichlorofluoromethane ND 1.0 0.88 ug/L 03/13/21 11:57 Vinyl chloride ND 1.0 0.90 ug/L 03/13/21 11:57 0.66 ug/L Xylenes, Total ND 2.0 03/13/21 11:57

Lab Sample ID: MB 480-572425/7

Dichlorodifluoromethane

Ethylbenzene

Isopropylbenzene

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water Prep Type: Total/NA Analysis Batch: 572425 MB MB %Recovery Dil Fac Surrogate Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 99 77 - 120 03/13/21 11:57 4-Bromofluorobenzene (Surr) 98 73 - 120 03/13/21 11:57 1 Dibromofluoromethane (Surr) 99 75 - 123 03/13/21 11:57 1 Toluene-d8 (Surr) 96 80 - 120 03/13/21 11:57 1 Lab Sample ID: LCS 480-572425/5 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 572425 %Rec. Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits 1.1.1-Trichloroethane 25.0 25.5 ug/L 102 73 - 126 1,1,2,2-Tetrachloroethane 25.0 22.9 ug/L 92 76 - 120 25.0 23.7 95 1,1,2-Trichloro-1,2,2-trifluoroetha ug/L 61 - 148 ne 25.0 98 1,1,2-Trichloroethane 24 6 ug/L 76 - 122 1,1-Dichloroethane 25.0 23.8 95 77 - 120 ug/L 25.0 97 1,1-Dichloroethene 24.3 ug/L 66 - 127 79 - 122 1,2,4-Trichlorobenzene 25.0 25.3 ug/L 101 1,2,4-Trimethylbenzene 25.0 99 24.8 ug/L 76 - 121 ug/L 1,2-Dibromo-3-Chloropropane 25.0 23.0 92 56 - 134 1,2-Dibromoethane 25.0 25.5 102 77 - 120 ug/L 25.0 98 1 2-Dichlorobenzene 24 4 ug/L 80 - 124 1,2-Dichloroethane 25.0 24.0 ug/L 96 75 - 120 25.0 94 76 - 120 1,2-Dichloropropane 23.6 ug/L 1,3,5-Trimethylbenzene 25.0 24.7 ug/L 99 77 _ 121 ug/L 1,3-Dichlorobenzene 25.0 24.3 97 77 - 120 1,4-Dichlorobenzene 25.0 24.0 ug/L 96 80 - 120 2-Butanone (MEK) 125 130 ug/L 104 57 - 140 65 - 127 2-Hexanone 125 132 ug/L 106 4-Isopropyltoluene 25.0 24.7 ug/L 99 73 - 120 125 126 101 71 - 125 4-Methyl-2-pentanone (MIBK) ug/L 125 131 105 56 - 142 Acetone ug/L 25.0 237 95 71 - 124 Benzene ug/L Bromodichloromethane 25.0 24.3 ug/L 97 80 - 122 Bromoform 25.0 25.6 ug/L 103 61 - 132 Bromomethane 25.0 23.9 ug/L 96 55 - 144 ug/L Carbon disulfide 25.0 22.9 92 59 - 134 Carbon tetrachloride 25.0 99 24.8 ug/L 72 - 134 Chlorobenzene 25.0 23.5 ug/L 94 80 - 120 Chloroethane 25.0 93 69 - 136 23.1 ug/L Chloroform 25.0 23.7 ug/L 95 73 - 127 Chloromethane 25.0 79 68 - 124 19.7 ug/L 25.0 97 74 - 124 cis-1,2-Dichloroethene 24.3 ug/L cis-1,3-Dichloropropene 25.0 26.4 106 74 - 124 ug/L Cyclohexane 25.0 23.8 ug/L 95 59 - 135 25.0 254 ug/L 102 75 - 125 Dibromochloromethane

Eurofins TestAmerica, Buffalo

59 - 135

77 - 123

77 - 122

60

97

98

5

8

14.9

24.2

24.5

ug/L

ug/L

ug/L

25.0

25.0

25.0

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

100

Lab Sample ID: LCS 480-572425/5

Matrix: Water Analysis Batch: 572425

Toluene-d8 (Surr)

Analysis Datch. 572425										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl acetate			50.0	48.0		ug/L		96	74 - 133	
Methyl tert-butyl ether			25.0	25.2		ug/L		101	77 - 120	
Methylcyclohexane			25.0	23.9		ug/L		96	68 ₋ 134	
Methylene Chloride			25.0	22.9		ug/L		92	75 ₋ 124	
Naphthalene			25.0	25.7		ug/L		103	66 ₋ 125	
n-Butylbenzene			25.0	24.6		ug/L		99	71 ₋ 128	
N-Propylbenzene			25.0	24.1		ug/L		97	75 - 127	
sec-Butylbenzene			25.0	24.8		ug/L		99	74 ₋ 127	
Styrene			25.0	24.8		ug/L		99	80 - 120	
tert-Butylbenzene			25.0	25.1		ug/L		101	75 - 123	
Tetrachloroethene			25.0	24.3		ug/L		97	74 ₋ 122	
Toluene			25.0	23.7		ug/L		95	80 - 122	
trans-1,2-Dichloroethene			25.0	24.1		ug/L		96	73 ₋ 127	
trans-1,3-Dichloropropene			25.0	25.1		ug/L		100	80 - 120	
Trichloroethene			25.0	25.0		ug/L		100	74 - 123	
Trichlorofluoromethane			25.0	21.3		ug/L		85	62 - 150	
Vinyl chloride			25.0	20.9		ug/L		84	65 - 133	
	1.05	105								
Surroacto	200	Qualifiar	Limito							
Surrogate	_ %Recovery	Quaimer								
1,2-Dicnioroethane-d4 (Surr)	100		//_120							
4-Bromofluorobenzene (Surr)	105		73 - 120							
Dibromofluoromethane (Surr)	102		75 _ 123							

80 - 120
QC Association Summary

Client: LaBella Associates DPC Project/Site: Edgewood Warehouse, Dunkirk,NY

Lab Control Sample

Job ID: 480-181915-1

GC/MS VOA

LCS 480-572425/5

Analysis Batch: 572272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181915-3	MW-11	Total/NA	Water	8260C	
480-181915-4	MW-4RR	Total/NA	Water	8260C	
480-181915-5	Duplicate	Total/NA	Water	8260C	
480-181915-6	Trip Blank	Total/NA	Water	8260C	
MB 480-572272/8	Method Blank	Total/NA	Water	8260C	
LCS 480-572272/6	Lab Control Sample	Total/NA	Water	8260C	
Analysis Batch: 5724	25				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181915-1	MW-15	Total/NA	Water	8260C	
480-181915-2 MW-16		Total/NA	Water	8260C	
MB 480-572425/7 Method Blank		Total/NA	Water	8260C	

Total/NA

Water

8260C

Floject/Site. Eugev			-						
Client Sample I	D: MW-15	5					Lal	b Sample II	D: 480-181915-1
Date Collected: 03	8/10/21 08:4	5							Matrix: Water
Date Received: 03	/10/21 14:0	5							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			572425	03/13/21 14:12	AMM	TAL BUF	
Client Sample I	D: MW-16	6					Lal	b Sample II	D: 480-181915-2
Date Collected: 03	8/10/21 10:00	0							Matrix: Water
Date Received: 03	/10/21 14:0	5							
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	572425	03/13/21 14:37	AMM	TAL BUF	
Client Sample I	D: MW-11						Lal	b Sample II	D: 480-181915-3
Date Collected: 03	8/10/21 11:10	0						-	Matrix: Water
Date Received: 03	/10/21 14:0	5							
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	572272	03/12/21 12:13	CRL	TAL BUF	
Client Sample I	D: MW-4F	R					Lal	b Sample II	D: 480-181915-4
Date Collected: 03	8/10/21 12:10	0							Matrix: Water
Date Received: 03	/10/21 14:0	5							
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	572272	03/12/21 12:37	CRL	TAL BUF	
Client Sample I	D: Duplic	ate					Lal	o Sample II	D: 480-181915-5
Date Collected: 03	8/10/21 00:0	0							Matrix: Water
Date Received: 03	/10/21 14:0	5							
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	572272	03/12/21 13:01	CRL	TAL BUF	
Client Sample I	D: Trip Bl	ank					Lal	b Sample II	D: 480-181915-6
Date Collected: 03	8/10/21 00:0	0							Matrix: Water
Date Received: 03	/10/21 14:0	5							
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			572272	03/12/21 13:25	CRI	TAL BUE	

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: LaBella Associates DPC Project/Site: Edgewood Warehouse, Dunkirk,NY Job ID: 480-181915-1

Laboratory: Eurofins TestAmerica, Buffalo The accreditations/certifications listed below are applicable to this report.

AuthorityProgramIdentification NumberExpiration DateNew YorkNELAP1002603-31-21

Eurofins TestAmerica, Buffalo

Client: LaBella Associates DPC Project/Site: Edgewood Warehouse, Dunkirk,NY

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: LaBella Associates DPC Project/Site: Edgewood Warehouse, Dunkirk,NY

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-181915-1	MW-15	Water	03/10/21 08:45	03/10/21 14:05	
480-181915-2	MW-16	Water	03/10/21 10:00	03/10/21 14:05	
480-181915-3	MW-11	Water	03/10/21 11:10	03/10/21 14:05	
480-181915-4	MW-4RR	Water	03/10/21 12:10	03/10/21 14:05	
480-181915-5	Duplicate	Water	03/10/21 00:00	03/10/21 14:05	
480-181915-6	Trip Blank	Water	03/10/21 00:00	03/10/21 14:05	

Eurofins TestAmerica, Buffalo

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Chain of Custody Record

င့်နှို eurofins Environment Testing America

Substrate Market Control Market Contro Market Control Market Contro	Client Information	Sampler	Supave		Lab PI Fisch	er, Brian		Carrier Tracking No(s):	COC No: 480-157819-30095.1	
Control Control Analysis <	Client Contact Houther Costhe can	Phone:	29-14 P	50	E-Mail Brian	Fischer@)Eurofinset.com	State of Origin:	Page: Page 1 of 1	
Other Other <th< td=""><td>Company:</td><td></td><td></td><td>:OISMo</td><td></td><td></td><td>Analysis I</td><td>Requested</td><td>Job #;</td><td></td></th<>	Company:			:OISMo			Analysis I	Requested	Job #;	
Old Outcome Ou	Address: 300 Pearl Street Suite 130	Due Date Requeste	ij						Preservation Codes:	
	City: Buffalo	TAT Requested (da	ys):						B - NOL M M B - NAOH N - N	nexane None AsNaO2
Полити и стал. Полити	State, Zip: NY, 14202	Compliance Project	t: A Yes A	No					P - Nitric Acid P - N	Na204S Na2SO3 Na2SO3
Miletion Sample formation Sample formation Sample formation Sample formation Etamono wirehouse Sample formation Sample formation Sample formation Sample formation Sample formation Etamono wirehouse Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Etamono wirehouse Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Sample formation Multi IS Multi IS Sample formation Sample formation Sample formation Sample formation Sample formation Multi IS Multi IS Sample formation Sample formation Multi IS Sample formation Sample formation Multi IS Multi IS Sample formation Sample formation Multi IS Sample formation Sample formation Multi IS	Phone: SAS.409.1468	PO#:				(0			r S-F	H2SO4 TSP Dodecahydrate
Protection Process Sector of the control of the contr	Email	Never Com				NO)	-	1915 Chain of Custody	ter V-1	Acetone MCAA pH 4-5
Determination Some	Project Name: Edgewood Warehouse, Dunkirk.NY	Project #:	2003	235		63 OL 63 OL			Z-0	other (specify)
Same function MM-15 Same function Same function Same function Same function Same function Same function MM-15 Same function Same function Same function Same function Same function Same function MM-11 Same function Same function Same function Same function Same function Same function MM-11 Same function Same function Same function Same function Same function Same function MM-11 Same function Same function Same function Same function Same function Same function MM-11 Same function Same function Same function Same function Same function MM-11 Same function Same function Same function Same function Same function MM-11 Same function Same function Same function Same function Same function MM-11 Same function Same function Same function Same function Same function MM-11 Same function Same function Same function Same function </td <td>Site:</td> <td>:#MOSS</td> <td></td> <td></td> <td></td> <td>LCF AC</td> <td></td> <td></td> <td>0 10</td> <td></td>	Site:	:#MOSS				LCF AC			0 1 0	
Multility Preservation (cold X N Nume X	and Manufalin and Andrews	Samula Data	Sample	Sample Type (C=comp,	Matrix (w=water. S=30Hd. O=wasterioti.	illeld Filtered : M\SM MJSH MSH MSH MJSH			nədmuki ləto" Admuki ləto" Admuki ləto" Admuki lətər Admuki lətər Admu	ctions/Note.
WMJ-IS St.Cl> BLS Voire K I I S MMJ-IL 31e0/31 10000 Wore K I I S MMJ-11 31e0/31 1000 Wore K I I S MMJ-11 31e0/31 1010 Wore K I I S MMJ-11 31e0/31 1310 Wore K I I S MMJ-11 Wore K V I K I I S MMJ-11 Wore K V I K K I S MMJ-1 Site/1			X	Preservatio	on Code:					
MMJ-116 Strobal IODE Wate Ex I	MM-15	10018	845		Water	X			V	
Multi-II Jiola IIO Wate I	MW-16	10/01/2	000		Water	X				
MM-4(2) 31.6(2) 31.6(2) Water P <	Mw - 11	16/01/5	1110		Water	×			3	
Water Nater Nater <th< td=""><td>MW-4RR</td><td>10/01/8</td><td>1010</td><td></td><td>Water</td><td></td><td></td><td></td><td>3</td><td></td></th<>	MW-4RR	10/01/8	1010		Water				3	
Mater Mater Water Water Water Water Mater					Water					
TCO DANK 310(31 Water X Image of the second o	DUPLICATE.	3/10/21			Water	×			Ľ	
Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Possible Hazard Identification Skin Initiant Poison B Unknown Possible Hazard Identification Non-Hazard Emple Disposal IA fee may be assessed if samples are retained longer than 1 month) Non-Hazard Feature To Citeral Disposal IA fee may be assessed if samples are retained longer than 1 month) Deliverable Requester: 1.1.11.1V. Other (specify) Special Instructions/GC Requirements: Months EmplyKit Relinquiched by: Date: Image: Time: Date: Remonster Di Date: Time: Date: Company Remonster Di Date: Company Received by: Date: Company Archive For Date: Company Received by: Date: Company Kanding Seas Indict Custody Seal No: Date: Company Date: Company Archive For Date: Company Received by: Date: Company <t< td=""><td>TRIP BLANIC</td><td>16/01/E</td><td></td><td>-</td><td>Water</td><td>×</td><td></td><td></td><td>N N</td><td></td></t<>	TRIP BLANIC	16/01/E		-	Water	×			N N	
Possible Hazard Identification Deliveration Sample Disposal If amples are retained tonger than 1 month) Non-Hazard Eramable Skin Irritiant Poison B Unknown Radiological Non-Hazard Frammable Skin Irritiant Poison B Unknown Deliverable Requested: 1. II. III. V. Other (specify) Secial Instructions/OC Requirements: Months EmplyKit Relimptived by: Deleter Time: Months Relimptived by: Deleter Time: Months Relimptived by: Deleter Time: Months Relimptived by: Deleter Time: Mentod of Shipment: Relimptived by: Deleter Time: Mentod of Shipment: Relimptived by: Deleter Company Received by Relimptived by: Deleter Company Received by <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Possible Hazard Identification Possible Hazard Identification Ivenable Skin Irrinant Posson B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Deliverable Requested: 1. II. IV. Other (specify) Secial Instructions/OC Requirements: Months Deliverable Requested: 1. II. IV. Other (specify) Special Instructions/OC Requirements: Mentod of Shipment: Emply Kit Relinquished by: Date Instructions/OC Requirements: Mentod of Shipment: Relinquished by: Date Time: Mentod of Shipment: Company Relinquished by: Date/Time: Company Received by: Date/Time: <			_							
On-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months Deliverable Requested: I. III. III. V. Other (specify) Empty Kit Relinquished by: Image:	Possible Hazard Identification] [Sampl	e Disposal (A fee may l	be assessed if samples are	retained longer than 1 mon	ith)
Empty Kit Relinquished by: Date: Time: Method of Shighment: Relinquished by: Date/Time: Date/Time: Company Relinquished by: Date/Time: Company Received by: Custody Seals Intact: Custody Seal No: Relinquished by: Relinquished by: A Yes A No No Conter Temperature(s) 'C and Other Remarks. R (the time of the time of th	On-Hazard Flammable Skin Irritant Deliverable Requested: I, III, IV. Other (specify)	Poison B Unkno] [[R	adiological		Specia	Return To Client	Disposal By Lab	Archive For N	Aonths
Relination Date/Time: Date/Time: Company Relinquished by: 21003 VCC Company Received by: Date/Time: Company Relinquished by: Date/Time: Company Received by: Conter/Time: Company Relinquished by: Date/Time: Date/Time: Company Bate/Time: Company Area A No Area No Conter Temperature(s) 'C and Other Remarks: B (Left H Join C Company Area A No Area A No Area Area Area <td>Empty Kit Relinquished by:</td> <td></td> <td>Date:</td> <td></td> <td></td> <td>Time:</td> <td></td> <td>Method of Shipment:</td> <td></td> <td></td>	Empty Kit Relinquished by:		Date:			Time:		Method of Shipment:		
Relinquished by: Date/Time: Company Received by: Date/Time: Company Received by: Date/Time: Company Relinquished by: Date/Time: No 3/1/D 1 2/1 1/1 6 Company / Yes A No	Relipoutsthed by	Date/Time:	INCO	ů	mpany	Rec	eived by:	Date/Time:	Com	hany
Reinquished by: Reinquished by: Company Coupany Compa	Relinquished by:	Date/Time:	/ /	ő	mpany	Rec	teived by:	Date/Time	Com	hany
Custody Seals Intact: Custody Seal No.: Cooler Temperature(s) 'C and Other Remarks. B (0 # 1 (0 T C E) Ver. 11 01 2020	Relinquished by:	Date/Time:		ő	mpany	Rec	eived by:	Date/Time:	2171 16165 Com	Anedu
	Custody Seals Intact: Custody Seal No.: A Yes A No					Š	bler Temperature(s) "C and Othe	r Remarks: 8 (6 #	コットのシー	r)r
							1	1	Ver	: 11-01-2020

Client: LaBella Associates DPC

Login Number: 181915 List Number: 1

Creator: Sabuda, Brendan D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	8.6 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Job Number: 480-181915-1

List Source: Eurofins TestAmerica, Buffalo

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

Edgewood Warehouse, Dunkirk, NY Eurofins SDG#480-181915-1 April 5, 2021 Sampling date: 3/10/2021

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for LaBella Associates DPC, project located at Edgewood Warehouse, Dunkirk, NY, Eurofins SDG#480-181915-1 submitted to Vali-Data of WNY, LLC on March 18, 2021. This DUSR has been prepared in general compliance with USEPA National Functional Guidelines(NFG) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA method Volatile Organics (8260C).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness -Narrative and Data Reporting Forms -Chain of Custody and Traffic Reports -Holding Times -Internal Standard (IS) Area Performance -Surrogate Spike Recoveries -Method Blank -Field Duplicate Sample Precision -Laboratory Control Samples -MS/MSD -Compound Quantitation -Initial Calibration -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Compound Quantitation and Initial Calibration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Data was not reported to 3 significant figures. This does not affect the usability of the data.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except the temperature of the samples was outside QC limits. Given the temperature that day and the time to receipt by the lab, it is determined that no further action is required.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except cis-1,2-Dichloroethene was detected in MW-15 but was not detected in Duplicate. Acetone, Cyclohexane and Methylcyclohexane were detected in Duplicate but were not detected in MW-15.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD was acquired.

COMPOUND QUANTITATION

All criteria were met except Acetone was detected above the MDL, below the reporting limit and is qualified as estimated in Trip Blank. This target analyte should be qualified as undetected at the reporting limit in associated samples in which it was detected below the reporting limit. This target analyte should be qualified as estimate high in associated samples in which it was detected above the reporting limit.

INITIAL CALIBRATION

All criteria were met except the %RSD of Bromoform was outside QC limits in the initial calibration performed on instrument HP5977L. This target analyte should be qualified as estimated in the associated samples, blanks and spikes.

Alternate forms of regression were performed on some target analytes, with acceptable results.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

APPENDIX 7

Geotechnical Boring Logs and Locations

Temperature Controlled Warehouse Dunkirk, NY

2210339

													SHEET 1 of 1
	1	2	Ro		ssociates, D.P.C.						Boring	No.	B-1
- تيا		a	DE	LLC 300 State S	Street, Suite 201	Т	EST BORING	S LOG	ì		Dualaat	Nex	2210220
	Pow	ere	a by part	nersnip. Rochester,	New York 14614						Project	NO.:	2210339
Proir	www.i		320 Robe	uts Road Freezer/Brow	-0110 nfield Redevelopment	Services				_	Start I Einish I	Date:	12/18/20
Pioje	Locatio	ne.	Dunkirk			Services					Inspo	ctor	D Keller
	Clie	nt.	The Kroa	Group							Surface F	lev ·	See Survey
Dril	lina Fir	т:	LaBella E	nvironmental, LLC			Driller: A	ustin Ski	nner		oundoo 2		
Key:						Drill Rig:	Diedrich D50				Roc	k Core	: None
-				Geologic Strata Chang	je –	Casing:	4-1/4 HSA			Other:	Edgewood	Site	
	_ · _ · _		· — · — · -	Gradation Change Wit	hin Strata	Sampler:	1- ³ / ₈ " ID S.S.				Hand exca	vated t	o 2.0 feet.
						Undisturbed:	None						
Coc	ordinate	es:	N: s	see survey E:	see survey	Hammer:	140# Automatic, 3	0" drop					
(; ;			Blows	240			ON	÷	a Ê				
ţ,	nbe	oqu	on Samplor	trace (1 - 10	%) little (11 - 20%) so	ome (21 - 35%) at	<u>UN</u> 0d (36-50%) [.]	ţ	dd)	(0.0	<u>C(</u> N-volue i		NTS
Dep	San Nur	Syn	per 6"		,			Dep	ED Cra	(6.5	run, % r	ecove	red, RQD)
				Brown, coarse to fine \$	SAND, some Silt, trace	e coarse to fine Gr	avel.						
1		[-CLEAN	FILL-		0.9'		Note	d possible d	emarc	ation layer at 0.9
_				Brown, coarse to fine	Sand and coarse to fin	e Gravel, little Silt.				feet	(thread-thick	ness c	prange mesh 1"x1"
2	64		50/4"	Brown and the first	-FILI	fine Croud little (2:14			gria)	4 ^	0'	
3	5-1	H	JU/ I	Drown, coarse to fir	ie Sanu and coarse to	inne Gravel, little S	DIIL.	-/		<u>5-</u> RE(<u> </u>	.u - 2 M/0	∠.ı №>50 C: Moist
				1	Bottom Of Explo	ration 2.1 feet					Consist	encv: '	Very Dense
4				1								- ,.	,
				Split sp	boon and auger refusa	l on probable obst	ruction.						
5													
				se	e also Test Boring Log	gs for B-1A and B-	1B						
6					Parabala baakfilla	d with outtings							
7					BUIENDIE DACKTIIIE	a with cuttings.							
· ·													
8													
9													
10													
10													
11		ŀ											
12													
13													
1/													
14													
15				1									
		[
16		[
47				{									
17				1									
18				1									
				1									
19		[
		[
20				{									
21				4									
21				1									
22				1						* the	re are sever	al mon	itoring wells on the
	site that can be referenced for							enced for					
23	23 accurate water level data.							data.					
	c	irou	undwater/	Caving *	Date	Time		One	D	epth in	feet to:		
				While Drilling:	(mm/dd/yy)	(24 hr clock	Bot of N	R		BOI Of	R		NR
	Whi	le D	rilling or	Before Rock Corina:	NR	NR	N	R		N	R		NR
			Befo	ore Casing Removed:	NR	NR	N	R		N	R		NR
			Af	ter Casing Removed:	NR	NR	Rem	oved		N	R		NR

BORING NO .: B-1

												SHEET 1 of 1 .
	1	aRo		ssociates, D.P.C.						Borin	g No.	B-1A
- با			300 State S	Street, Suite 201	Т	EST BO	DRING L	.OG		Broico	No i	2210220
		eled by part	Rochester,	New YORK 14614						Flojec	Doto:	12/18/20
Proi	act Nam	asenape.cor		nfield Redevelopment	Services					Finish	Date.	12/18/20
FIUJ	Locatio	n. Dunkirk	New York		001 11000					Inerg	octor	D. Keller
	Clin	t. The Kroa	Group							Surface		
Dril	lina Fir	m: LaBella F				Г	Driller: Aust	in Skinne	r	Sunace		
Kev:	iiiig i iii				Drill Ria:	Diedrich D	050		•	Ro	k Core	None
			Geologic Strata Chang	ne –	Casing:	4-1/4 HSA	4		0	ther: Edgewood	Site	
			Gradation Change Wit	hin Strata	Sampler:	1- ³ / ₂ " ID S	s			(a) 10 feet	south c	of B-1
			0	-	Undisturbed:	None				(see surve	y for loo	cation of B-1)
Cod	ordinate	s: N:	(a) E :	(a)	Hammer:	140# Auto	omatic, 30" d	lrop				
$\widehat{}$		Blows				•			Ê			
Jepth (ff	Sample Number	on Gampler Sampler	<u>VIS</u> trace (1 - 10	SUAL-MANUAL MATE %), little (11 - 20%), so	ERIAL DESCRIPTI ome (21 - 35%), ar	<u>ION</u> nd (36-50%	<i>б</i>);	Depth of Change	udd) Cle	<u>C</u> (e.g., N-value, run %	OMME recover	NTS ry, moisture, core red_ROD)
_			Advanced augers to 2.	.1 ft, no sampling.								
1			See Test Boring Log for	or B-1 for details.								
]]									
2	4											
2			4	Pottom Of Funda	ration 2.1 fact							
3	1		1									
4			1	Auger refusal on pro	bable obstruction.							
 	1]									
5			S	ee also Test Boring Lo	ogs for B-1 and B-1	1B						
			-									
6			-	Borenole backfille	a with cuttings.							
7												
-												
8												
			-									
9			-									
10												
			1									
11												
10			4									
12			-									
13			-									
 	1]									
14	1		4									
1 <i>F</i>			4									
10	1		1									
16			1									
	1		1									
17	4		4									
19			4									
10	1		1									
19			1									
]]									
20	1		4									
21			4									
1	1		1									
22			1							* there are seve	ral mon	itoring wells on the
]]							site that can b	be refer	enced for
23				_	_				Ļ	accurate wate	er level	data.
	<u>c</u>	Groundwater	/Caving *	Date	Time		Bot of Cor	ing	Dep	oth in feet to:	1	Wator
			While Drilling:	(mm/ad/yy) NR	(24 nr cioch NR	v	NR	ing		NR	-	NR
	Whi	le Drilling or	Before Rock Coring:	NR	NR		NR			NR	1	NR
		Befo	ore Casing Removed:	NR	NR		NR			NR	L	NR
		Af	ter Casing Removed:	NR	NR		Remove	d		NR		NR

BORING NO.: B-1A

														SHEET 1 of 2
	1)	Po	LaBella As	ssociates, D.P.C.							Borina	No.	B-1B
L-i		C	De	LLC 300 State S	Street, Suite 201	Т	ST B		OG			g		
	Pow	ere	ed by part	nership. Rochester,	New York 14614				-00			Project	No.:	2210339
	www.la	abe	ellapc.com	p: 585-454-	-6110							Start D	ate:	12/18/20
Proje	ect Nam	e:	320 Robe	rts Road Freezer/Browr	nfield Redevelopment	Services						Finish D	ate:	12/18/20
1	Locatio	n:	Dunkirk, N	lew York								Inspec	tor:	D. Keller
	Clier	nt:	The Krog	Group							S	Surface E	ev.:	see survey
Drill	ing Firi	n:	LaBella E	nvironmental, LLC				Driller: Chri	s Stone /	Austin Sl	kinner			
Key:						Drill Rig:	Diedrich	D50				Rock	Core: N	one
-				Geologic Strata Chang	ie –	Casing:	2-1/4 HS	A		Ot	her: Ec	dgewood	Site	
		· · -		Gradation Change Wit	hin Strata	Sampler:	1- ³ /。" ID	S.S.			(a)) 35 feet r	orth of B-	1
				ů –	-	Undisturbed:	None				(se	ee survey	for locatio	on of B-1)
Coo	ordinate	s:	N:	(a) E :	(a)	Hammer:	140# Au	tomatic, 30" c	drop					
			Blows											
(t	e le	<u> </u>	on	VIS	UAL-MANUAL MATE	ERIAL DESCRIPTI	ON		ge of	mq		со	MMENTS	5
pth	d m	gm	Sampler	trace (1 - 10	%), little (11 - 20%), s	ome (21 - 35%), ar	nd (36-50	%);	pth ang	a d	(e.g., N	N-value, r	ecovery, n	noisture, core
De	Sa Nu	s	per 6"						ъ Б	PIC		run, % re	covered,	RQD)
				Brown, coarse to fine S	SAND, some Silt, trace	e coarse to fine Gra	avel.			0	Advance	ed boreho	le with au	gers to
1					-CLEAN	FILL-			0.9'		4 feet, n	no samplin	g.	
				Brown, coarse to fine S	Sand and coarse to fin	e Gravel, little Silt.			1					
2					-FILI	L-					Overbur	rden detai	ls from 0.0) to 2.1
				Brown, coarse to fine S	Sand and coarse to fin	ne Gravel, little Silt,				1	feet bas	ed on Tes	st Boring L	.og B-1.
3						- <u></u>			3.0'					
									1					
4														
			8	Mixed light brown and	gray brown and dark I	brown, coarse to fi	ne Sand a	and clayey		5	<u>S-1</u>	4.	0' - 6.0'	N=19
5	S-1		14	Silt, trace medium to fi	ne Gravel, with probal	ble cobbles and/or	concrete	pieces.			REC =	10"	M/C: M	loist
			5		-FILL (reworked al	luvial deposits)-						Consiste	ncy: Med	ium Dense
6			4											
			5	Mixed light brown and	gray brown and dark I	brown, coarse to fi	ne SAND	and clayey		8	<u>S-2</u>	6.	0' - 8.0'	N=10
7	S-2		5	Silt, trace medium to fi	ne Gravel.						REC =	20"	M/C: M	loist
			5									Consiste	ncy: Loos	se
8			4											
			4	Sample S-3 similar to S-2. 56 Section 10.0'								N=2		
9	S-3		1	REC = 10" M/C: Moist								loist		
			1									Consiste	ncy: Very	Loose
10			4											
11														
12														
13														
			2	Sample S-4 similar to S	S-2, except with freque	ent sand seams.				<1	<u>S-4</u>	13.	0' - 15.0	' N=4
14	S-4		2								REC =	3"	M/C: M	loist
			2									Consiste	ncy: Very	Loose
15			2											
16														
17														
18														
			1						18.5'		<u>S-5</u>	18.	0' - 20.0	N=3
19	S-5		1	Gray, silty CLAY, trace	e fine Sand.					0	REC =	20"	M/C: M	loist
			2		-GLACIOLACUSTR	INE DEPOSITS-						Consiste	ncy: Soft	
20			2											
21														
22		* there are several monitoring wells								ng wells				
	on the site that can be referenced								eferenced					
23	22.9' for accurate water level data.								data.					
	G	iro	undwater/	Caving *	Date	Time		_		Dep	th in fee	et to:		
	-				(mm/dd/yy)	(24 hr clock	()	Bot of Cas	sing	B	ot of Ho	ble	l	Nater
		_		While Drilling:	NR	NR		NR			NR			NR
	Whi	e L	Drilling or	Before Rock Coring:	NR	NR		NR			NR			NR
			Befo	ore Casing Removed:	NR	NR		NR		ļ	NR			NK
			Af	ter Casing Removed:	NR	NR		Remove	d		NR			NR

BORING NO .: B-1B .

LaBella Associates, D.P.C. .aBella Boring No. **B-1B** 300 State Street, Suite 201 **TEST BORING LOG** Powered by partnership. 2210339 Project No.: Rochester, New York 14614 12/18/20 www.labellapc.com p: 585-454-6110 Start Date: Project Name: 320 Roberts Road Freezer/Brownfield Redevelopment Services Finish Date: 12/18/20 Location: Dunkirk, New York D. Keller Inspector: Client: The Krog Group see survey Surface Elev.: Blows PID (ppm) Depth of Change Sample Number VISUAL-MANUAL MATERIAL DESCRIPTION **COMMENTS** on trace (1 - 10%), little (11 - 20%), some (21 - 35%), and (36-50%); (e.g., N-value, recovery, moisture, core Depth Sampler . (ft.) per 6" run, RQD, % recovered) 22.9' N=27 12 Moderately hard, moderately to slightly weathered, dark gray, aphanitic, SHALE. 23.0' - 24.9' 0 <u>S-6</u> 24 14 Extremely fractured. S-6 REC = 16" M/C: Moist 13 -BEDROCK-Consistency: Medium Dense 25 50/5' 26 Bottom Of Exploration 24.9 feet 27 Split spoon refusal. 28 Borehole grouted to approximately 1-ft, then backfilled with clean fill. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

SHEET 2 of 2

	1		Do	LaBella As	sociates, D.P.C.							Boring	No	B_2
Ŀ÷		d	ве	LLC 300 State S	Street, Suite 201		TEST		OG			Bonng	, NO.	D-2
	Pow	ere	ed by part	nership. Rochester,	New York 14614				.00			Project	No.:	2210339
	www.la	abe	ellapc.com	<u>p: 585-454</u>	-6110							Start I	Date:	12/17/20
Proje	ect Nam	e:	320 Robe	rts Road Freezer/Brow	nfield Redevelopment	Services						Finish L	Date:	12/17/20
1	Locatio	n:	Dunkirk, N	lew York								Inspe	ctor:	D. Keller
	Clier	nt:	The Krog	Group								Surface E	lev.:	see survey
Drill	ing Firi	n:	LaBella E	nvironmental, LLC				Driller: Chris	Stone					
Key:						Drill R	ig: Diec	Irich D50				Roc	k Core	: NQ
-				Geologic Strata Chang	je	Casiı	ig: 4-1/4	4 HSA			Other:	Edgewood	Site	
	_ · _ · _	·· —		Gradation Change Wit	hin Strata	Sampl	e r: 1- ³ / ₈	" ID S.S.				Hand exca	vated to	o 2.0 feet.
						Undisturbe	ed: Non	e				No demarc	ation la	yer found.
Coo	rdinate	s:	N: s	see survey E:	see survey	Hamm	er: 140#	# Automatic, 30" d	rop					
t.)			Blows						f	(և				
t) t	ple	loq	on	<u>VIS</u>	UAL-MANUAL MATE	ERIAL DESCRI	PTION	C FOR():	ch o nge	dd)		<u>C(</u>	DMME	NTS .
ept	am	ym	Sampler	trace (1 - 10	%), little (11 - 20%), s	ome (21 - 35%)	, and (3	6-50%);	ept har	ĩ	(e.g	I., N-value, I	ecover	y, moisture, core
	ωz	S	per 6"	Brown, cooreo to fino 9	SAND some Silt trac	o coarso to fina	Graval			4		run, % r	ecover	ed, RQD)
1				brown, coarse to line t	-CI EAN		Glavel.			0				
					-CLEAN				1 2'	0				
2				Grav-brown coarse to	fine Sand and coarse	to fine Gravel			1.3 — — —					
			31	little Silt, with brick par	ticles					0	S-1	I 2	0' - 4	0' N-34
3	S-1		21		-FII	1-			2 8'	Ŭ	REC	<u>-</u> 22"	.0 M/C	: Dry to Moist
	01		13	Dark brown to black c	oarse to fine SAND s	ome Silt with a						Consist	encv: [)ense
4			13		-FIL	L-	011.		4.0'			Contoiot	onoy. L	01100
			8	Light brown, coarse to	fine SAND and clave	v Silt. trace me	lium to fi	ine Gravel.		0	S-2	2 4	.0' - 6	.0' N=13
5	S-2		7	;	-FILL (reworked al	luvial deposits	;)-			-	REC		M/C	: Moist
			6				,					Consist	encv: N	ledium Dense
6			5						6.0'					
			5	Mottled gray-brown an	d yellow-brown, silty 0	CLAY, little fine	Sand,			0	S-3	<u> </u>	.0' - 8	.0' N=7
7	S-3		3	trace organic fibers.							REC	c = 17"	M/C	: Moist
			4	-	-ALLUVIAL D	EPOSITS-						Consist	ency: N	ledium Stiff
8			5											
			1	Sample S-4 similar to	S-3.					0	<u>S-4</u>	<u>1</u> 8	.0' - 1	0.0' N=5
9	S-4		2								REC	2 = 18"	M/C	: Moist
			3		Consistency: Medium Stif							ledium Stiff		
10			4											
11														
12														
10									10.4					
13	0.5		45						13.1			- 40	0	
14	3-0		15	Gray-brown, coarse to	Time SAND and claye	y Siit, some coa	irse		13.0		<u>3-3</u>	ס וט גריי	.0 - 1 M/C	3.0 N>3U
14			50/1	to fille Glavel.							REC	Consist	ncv: \	/erv Dense
15				R-1A: Highly weather		erv from top of	R-1)					00113131	ency. v	ery Dense
10		P			-WEATHERED	BEDROCK-	• • • • •		15.7'					
16	R-1			- <u></u>							RU	N-1 14	.0' - 1	9.0'
				R-1B: Moderatelv hard	, fresh, dark grav. apł	nanitic, SHALE.					R	UN = 60"	- '	REC = 40"
17				Joints horizontal to low	angle, very close to	close, smooth	olanar. ti	ght,			%F	REC= 67%		_· · · •
				except moderately dip	ping with clay infilling	at 18.4 feet.	, •	- ·				Spcs ≥ 4" =	11"	
18				. 211	-BEDR	оск-					-	OD 11'		00/
											R	QD = 60'	= 1	8%
19												Rock Mass	Quality	: Very Poor
									1					
20					Bottom Of Explor	ration 19.0 feet								
21				Borehole grouted to approximately 1.5-ft, then backfilled with clean fill.										
22		* there are several monitoring wells								toring wells				
	on the site that can be referenced								e referenced					
23	for accurate water level data.							vel data.						
	Groundwater/Caving * Date Time Depth in feet to:													
	(mm/dd/yy) (24 hr clock) Bot of Casing Bot of Hole Water							Water						
				While Drilling:	12/17/20	12:4)	13.0			13.	6		none*
	Whi	e L	orning or	Before Rock Coring:	NK	NR		NR			NF	۲ ۵	1	
		_	Befo	tor Casing Removed:		NR		NK	4			\ >		
			Af	er casing Removed:	INK	NR		Kemové	u		NF	۱		INF

BORING NO .: B-2 .

SHEET 1 of 1

APPENDIX 8

Post-Construction Indoor Air Quality Report

June 4, 2021

Mr. Peter Krog II 320 Roberts Road Freezer, LLC 4 Centre Drive Orchard Park, New York 14127

RE: Indoor Air Sampling Former Edgewood Warehouse Site (320 Roberts Road Freezer) 320 South Roberts Road, Dunkirk, NY (BCP Site #C907032)

Dear Mr. Krog:

The Remedial Work Plan (RWP) for the Former Edgewood Warehouse Site prescribed postconstruction indoor air quality monitoring in the new freezer facility constructed on the Site for the purpose of evaluating the effectiveness of the building's sub-slab depressurization system (SSDS). The following sections summarize the scope of work completed and the results of the postconstruction indoor air sampling performed to satisfy this requirement.

BACKGROUND

The Former Edgewood Warehouse Site NYSDEC Site (Site #C907032) was remediated pursuant to a Brownfield Cleanup Agreement (BCA) ratified with the New York State Department of Environmental Conservation (NYSDEC) in January 2018 and amended in December 2019. Figure 1 depicts the location of this 7.94-acre site within the City of Dunkirk, Chautauqua County, New York. The property was remediated in 2018-2019 in accordance with a NYSDEC-approved RWP, and was redeveloped with a new temperature controlled warehouse facility. The remedy for the Site included the mitigation of potential soil vapor intrusion into the new freezer warehouse facility through the installation of a passive SSDS. The passive SSDS includes a clean aggregate gas permeable layer overlain by a polyethylene vapor barrier under the building floor slabs, and perforated fabric wrapped pipes buried in pea stone connected to polyvinyl chloride (PVC) riser vent pipes on the exterior of the building. The system was designed to be capable of activation should conditions warrant. The as-built SSDS drawings are included in Attachment 1.

SCOPE OF SERVICES

LaBella completed the following major tasks associated with the indoor air sampling:

- Mobilized to the Site on November 4, 2020 for the collection of indoor air samples as specified in the RWP for the Site.
- Air samples were collected utilizing batch-certified summa canisters equipped with a laboratory calibrated regulator set for sample collection over an approximate eight-hour period.
- Indoor air samples included two samples from each of the freezer units, and one sample from each of the shipping receiving area/re-packing area, office area, and mechanical area (total of seven indoor air samples). The following table indicates the sample IDs and corresponding sample locations.

Due to the low temperatures (-20°F) of the freezer units, the summa canisters for ID-1 and ID-2 were placed on the north exterior of the freezer facility proximate man-doors. Tubing was connected to the regulators on the canisters and run inside of the freezer units through the doors. The tubing was terminated approximately five feet inside of the freezer units. The summa canisters for ID-3 and ID-4 were placed within the Staging Area south of the freezer units and tubing was connected to the canisters and run into the freezer units and tubing was connected to the canisters and run into the freezer units and terminated along the south wall. ID-5 was collected from the west end of the Shipping and Receiving Area to avoid site operations and collect a representative sample. ID-6 was placed within the middle of the Mechanical Room to collect a representative sample. ID-7 was placed on a table along the north wall of the break room. As the office area was generally unoccupied, the break room was determined to be the location within the office area where occupants would remain for the longest period of time. The approximate sample locations are depicted on Figure 2.

- Two outdoor background air samples were collected from the downwind, east exterior of the Site. OD-1 was collected proximate the northeast corner and OD-2 was collected proximate the southeast corner of the freezer facility. The approximate sample locations are depicted on Figure 2.
- The summa canisters were setup and sample collection was initiated by opening the regulators between 8:30 am and 9:00 am. The initial vacuum readings of the canisters were recorded prior to initiating sample collection. The canisters were inspected periodically over the sample period to monitor the vacuum drop in the canisters. Sampling was terminated when the vacuum in the canisters approached -5 inches of mercury (in Hg) or after approximately eight hours of sample collection. The sample duration of two samples, ID-1 and ID-7, were terminated early due to low vacuum. The sample duration for ID-1 was approximately four hours and fourteen minutes. The sample duration for ID-7 was approximately six hours and ten minutes. The sample IDs, locations, canisters numbers, start times, initial vacuum readings, end times, and end vacuum readings were recorded on a field sampling log included in Attachment 2.
- Air samples were submitted under proper chain of custody procedures to Alpha Analytical, a New York State Department of Health Environmental Laboratory Approval Program certified laboratory for analysis of the following volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) method TO-15.
 - 1,1-Dichloroethene
 - o Cis-1,2-Dichloroethene
 - o Trichloroethene
 - o 1,1,1-Trichloroethene
 - o Tetrachloroethene
 - o Vinyl chloride

• A New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaire and Building Inventory was completed in accordance with NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006.

INDOOR AIR SAMPLING RESULTS

Based on the laboratory analytical results for the indoor air samples, cis-1,2-dichloroethene, trichloroethene, and 1,1,1-trichloroethane were detected in each of the indoor air samples; and Tetrachloroethene was detected in five of the seven samples. 1,1-dichloroethene and vinyl chloride were not detected above laboratory reporting limits in any of the samples. With the exception of cis-1,2-dichloroethene and trichloroethene in sample ID-7, all VOC concentrations detected in the air samples were below the Environmental Protection Agency (EPA) 2001: Building Assessment and Survey Evaluation (BASE) database 90th percentile values included on Table C2 in Appendix C of the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. Comparison of the analytical results to the Soil Vapor/Indoor Air Matrices included in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, updated May 2017, revealed cis-1,2-dichloroethene, 1,1,1-trichloroethane, and trichloroethene in ID-7 and trichloroethene in ID-2 and ID-5 were detected at concentrations exceeding the maximum indoor air concentrations on the respective matrices, indicating source identification, resampling or mitigation is necessary. No VOCs were detected in the outdoor background air samples. The laboratory analytical results are summarized in Table 1. The laboratory analytical report is included in Attachment 2.

NYSDOH QUESTIONNAIRE AND BUILDING INVENTORY

Per the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, an Indoor Air Quality Questionnaire and Building Inventory was completed for the freezer facility and is included in Attachment 3. The following observations were made and information was obtained from the interview during the completion of the NYSDOH Indoor Air Quality Questionnaire. Hand sanitizer was observed within the Office Area and in the Shipping and Receiving Area, and cleaning chemicals were observed on a cart within the janitor's closet in the Office Area. Cleaning of the Office Area was initiated just prior to the termination of indoor air sampling in the break room. Reportedly, cleaning of the Office Area did not include the break room and the janitor was asked to stop cleaning until the sampling was complete. Construction of the freezer facility was substantially completed in December 2019. However, the facility was sparsely occupied and not fully operational at the time of the sampling. The freezer units were empty with the exception of a few pallets of products utilized to train new employees, and the office area was generally unoccupied.

CONCLUSIONS AND RECOMMENDATIONS

The Site Management Plan (SMP) indicates that the need for additional sampling and/or SSDS activation shall be evaluated should post-remedial indoor air sampling identify indoor air quality concerns. Based on the results of the indoor air sampling, VOC concentrations were detected in excess of the EPA BASE database 90th percentile and/or the Soil Vapor/Indoor Air Matrices concentrations in the indoor air samples from ID-2, ID-5, and ID-7. The trichloroethene concentrations in ID-2 and ID-5 only minimally exceeded the maximum indoor air concentration on the Soil Vapor/Indoor Air Matrix. The freezer facility was recently constructed and was not fully occupied or operating at capacity at the time of sample collection. Sample ID-7 was located within the break room of the Office Area, which is the only finished area within the freezer facility. Additionally, as identified in the Indoor Air Quality Questionnaire and Building Inventory, cleaning chemicals were utilized in the vicinity of ID-7 during the sampling period. Cleaners, along with new building materials, furnishings and finishes are known to emit organic chemicals. When coupled with

the limited operating status of the facility, these products and materials may have negatively influenced the indoor air quality results.

Consequently, LaBella recommends resampling the areas of the freezer facility where VOC exceedances were detected (i.e., Office Area, Shipping/Receiving Area and East Freezer Unit) once the facility has become fully operational to confirm the effectiveness of the SSDS. Furthermore, the conclusions and recommendations contained in this letter should be submitted to NYSDEC to verify concurrence with the recommendation for additional monitoring.

Thank you for the opportunity to service your environmental needs. Please do not hesitate to contact me should you have any questions or require additional information.

Respectfully submitted,

LaBella Associates

WAA.A.M.

Robert Napieralski, CPG Regional Manager

Much Biller

Andrew Benkleman Project Manager

FIGURES

TABLES

Table 1

320 Roberts Road Freezer

320 South Roberts Road, Dunkirk, New York

Indoor Air Sampling Summary of Indoor Air Sample Analytical Results (Detected Analytes Only)

Sample ID	ID-1	ID-2	ID-3	ID-4	ID-5	ID-6	ID-7	0D-1	0D-2	
Sample Type	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Outdoor Air	Outdoor Air	BASE Indoor Air
Sample Date	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	1
Volatile Organic Compou	nds (mcg/m³)	-	-			-	-	-	-	-
cis-1,2- Dichloroethene	0.147	0.246	0.278	0.285	0.341	0.599	2.03	<	<	<1.9
1,1,1-Trichloroethane	0.589	0.960	1.19	1.19	1.17	0.267	13.1	<	<	20.6
Trichloroethene	0.597	1.20	0.564	0.693	1.11	0.812	5.37	<	<	4.2
Tetrachloroethene	0.190	0.380	<	0.149	0.325	<	0.488	<	<	15.9

Analytical method for air samples =United States Environmental Protection Agency Method TO-15 (USEPA Method TO-15)

< = Analyte detected at concentration below laboratory method detection limit

mcg/m3 = Micrograms per cubic meter

NL = Not Listed

Shaded values exceed New York State Department of Health Guidance for Evaluating Soil Vapor Instrusion in the State of New York, October 2006, Appendix C: Table C2 Environmental Protection Agency (EPA) 2001: Building assessment and survey evaluation (BASE)

database 90th percentile values

ATTACHMENT 1

SSDS As-Built Drawings

	LEGEND
	— FABRIC WRAPPED 4 INCH HDPE PERFORATED PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH
	4 INCH SOLID SCH 40 PVC PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH, SLOPED AWAY FROM VERTICAL
	15'
	SYSTEM #4
	OFFICE
	GENERAL DFFICE AREA

NOTES:

1. 1/4 INCH STAINLESS STEEL MONITORING POINTS MOUNTED APPROXIMATELY 3 FEET ABOVE FINAL GROUND SURFACE AGAINST AN EXTERIOR WALL. REFER TO DETAIL 1: PROFILE AT MONITORING POINT.

BREAK ROOM

MEN'S

WOMEN

- 1/4 STAINLESS STEEL TUBING TERMINATED IN MIDDLE OF SUBBASE STONE WITH FABRIC WRAPPED END.
 4 INCH SCHEDULE 40 PVC RISER LOCATED 6 INCHES FROM WALL AND VENTED UP ALONG THE EXTERIOR OF THE WALL AND TERMINATED AT LEAST 40 FEET ADOVE THE OPOLIND SUBFACE. DEFENSE TO DETAIL AND RESERVED ADOVE THE OPOLIND SUBFACE.
- TERMINATED AT LEAST 10 FEET ABOVE THE GROUND SURFACE. REFER TO DETAIL 8: RISER PROFILE.
 4. INCH SCHEDULE 40 PVC TO 4 INCH HDPE PERFORATED PIPE CONNECTION. REFER TO DETAIL 4: DETAIL AT HEADER.
- 4 INCH SOLIE DOLE 40 FV0 F0 4 INOT HOLE ETT ONATED FILE CONNECTION. THE ETT TO DETAIL 4. DETAIL AT THEADER.
 4 INCH HDPE PIPE WRAPPED IN FABRIC AND PLACED IN PEA STONE TRENCH. REFER TO DETAIL 7 & 10: MATERIAL PROFILE
 4 INCH SOLID PVC EXTENDING MINIMUM 2 FEET ON INTERIOR OF FOUNDATION WALL, GROUTED IN PLACE TO FORM WATER TIGHT
- CONNECTION. REFER TO DETAIL 6: TYPICAL HORIZONTAL PIPE PENETRATION.
 PIPING MOVED AS NEEDED IN FIELD TO AVOID PLUMBING. CONTACT ENGINEER TO CONFIRM PIPING MODIFICATIONS ARE
- ACCEPTABLE. 8. INSTALLED 4" CAP AT EACH VAPOR COLLECTION PIPE TERMINATION.
- ALL SUB-SLAB VAPOR COLLECTION PIPING IS GEOTEXTILE-WRAPPED 4 INCH PERFORATED CORRUGATED HDPE.
- 10. HEADER PIPING SHOWN IS 4 INCH SCHEDULE 40 PVC.
- 11. PEA STONE SHALL CONSIST OF WASHED MATERIAL THAT WILL PASS THROUGH A 2 INCH SIEVE AND BE RETAINED BY A 1/4 INCH SIEVE.
- 12. SEALED ALL PENETRATIONS AND GAPS WITH AN ELASTOMERIC JOINT SEALANT.
- THIS DRAWING IS NOT TO INTENDED TO PROVIDE STRUCTURAL INFORMATION. REFER TO STRUCTURAL DRAWINGS.
 SYSTEM INSTALLED AS PASSIVE. FANS WILL BE INSTALLED AND THE SYSTEM MADE ACTIVE IF PASSIVE SYSTEM IS NOT EFFECTIVE IN MITIGATING VAPOR INTRUSION INTO THE BUILDING.

\The |

ATTACHMENT 2

Field Sampling Log

Supplemental Indoor Air Sampling 320 South Roberts Road, Dunkirk, New York Field Sampling Log 10.70 7.96 TTU.L O. 00-1

Sample ID	ID-1	ID-2	ID-3	ID-4	ID-5	-U-U	10.7	Train	Rond
	North	North	Sout	Saith	Slaging	M.Room	lundh	Exturior	Extuior
Location	Freezer 1	Freize (2)	Freezero	Freezera	AREA	1 tom	Room	NW	NE
Date	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020	11/4/2020
Canister Number	2183	3424	2362	-196	139	2309	372	माम	556
Regulator Number	01355	01422	0970	0930	0330	0.1732	01280	0149	0046
Start Time	N9 37	0830	6900	09,45	6848	0849	63.58	0839	0342
Reading (inHg)	-	29.89	29.88	29.88	29.88	29.88	29.88	27.88	39.88
End Time	27.00	4.05	406	408	420	443	309	430	430
Reading (inHg)	-2.97	8,55	5.88	658	4.39	10.34	5.87	-9.56	11.54

-Date: 11/04/2020 -Temperature: °F

OD-2

ATTACHMENT 3

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number:	L2048654
Client:	LaBella Associates, P.C. 300 Pearl Street Suite 252 Buffalo, NY 14202
ATTN: Phone:	Andy Benkleman (716) 551-6281
Project Name: Project Number: Report Date:	FORMER EDGEWOOD WAREHOUSE SITE 2203235
	11/16/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:FORMER EDGEWOOD WAREHOUSE SITEProject Number:2203235

Lab Number:	L2048654
Report Date:	11/16/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2048654-01	ID-1	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 12:51	11/05/20
L2048654-02	ID-2	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 16:25	11/05/20
L2048654-03	ID-3	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 16:06	11/05/20
L2048654-04	ID-4	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 16:08	11/05/20
L2048654-05	ID-5	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 16:20	11/05/20
L2048654-06	ID-6	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 16:43	11/05/20
L2048654-07	ID-7	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 15:09	11/05/20
L2048654-08	OD-1	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 16:30	11/05/20
L2048654-09	OD-2	AIR	300 ROBERTS RD. DUNKIRK	11/04/20 16:30	11/05/20
Lab Number:
 L2048654

 Report Date:
 11/16/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L2048654

 Report Date:
 11/16/20

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on October 30, 2020. The canister certification results are provided as an addendum.

Sample Receipt

The flow controller ID number for the sample designated OD-1 (L2048654-08) is listed on the CoC as 0149 but should be 01409.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 11/16/20

AIR

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-01	Date Collected:	11/04/20 12:51
Client ID:	ID-1	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/13/20 19:33
Analyst:	EW

	ррьУ		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.037	0.020		0.147	0.079			1
1,1,1-Trichloroethane	0.108	0.020		0.589	0.109			1
Trichloroethene	0.111	0.020		0.597	0.107			1
Tetrachloroethene	0.028	0.020		0.190	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	94		60-140

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-02	Date Collected:	11/04/20 16:25
Client ID:	ID-2	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/13/20 20:52
Analyst:	EW

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.062	0.020		0.246	0.079			1
1,1,1-Trichloroethane	0.176	0.020		0.960	0.109			1
Trichloroethene	0.224	0.020		1.20	0.107			1
Tetrachloroethene	0.056	0.020		0.380	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	99		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	96		60-140

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-03	Date Collected:	11/04/20 16:06
Client ID:	ID-3	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/13/20 21:31
Analyst:	EW

	ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.070	0.020		0.278	0.079			1
1,1,1-Trichloroethane	0.218	0.020		1.19	0.109			1
Trichloroethene	0.105	0.020		0.564	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	98		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	95		60-140

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-04	Date Collected:	11/04/20 16:08
Client ID:	ID-4	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/13/20 22:10
Analyst:	EW

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.072	0.020		0.285	0.079			1
1,1,1-Trichloroethane	0.218	0.020		1.19	0.109			1
Trichloroethene	0.129	0.020		0.693	0.107			1
Tetrachloroethene	0.022	0.020		0.149	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	93		60-140

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-05	Date Collected:	11/04/20 16:20
Client ID:	ID-5	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/13/20 22:49
Analyst:	EW

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.086	0.020		0.341	0.079			1
1,1,1-Trichloroethane	0.214	0.020		1.17	0.109			1
Trichloroethene	0.206	0.020		1.11	0.107			1
Tetrachloroethene	0.048	0.020		0.325	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	94		60-140

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-06	Date Collected:	11/04/20 16:43
Client ID:	ID-6	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/13/20 23:29
Analyst:	EW

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.151	0.020		0.599	0.079			1
1,1,1-Trichloroethane	0.049	0.020		0.267	0.109			1
Trichloroethene	0.151	0.020		0.812	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	93		60-140

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-07	Date Collected:	11/04/20 15:09
Client ID:	ID-7	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/14/20 00:08
Analyst:	EW

	ррьV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.512	0.020		2.03	0.079			1
1,1,1-Trichloroethane	2.40	0.020		13.1	0.109			1
Trichloroethene	1.00	0.020		5.37	0.107			1
Tetrachloroethene	0.072	0.020		0.488	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	94		60-140

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-08	Date Collected:	11/04/20 16:30
Client ID:	OD-1	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/13/20 18:14
Analyst:	EW

	ppbV			ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mansfield Lab									
Vinyl chloride	ND	0.020		ND	0.051			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Trichloroethene	ND	0.020		ND	0.107			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	93		60-140

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Lab Number:	L2048654
Project Number:	2203235	Report Date:	11/16/20

Lab ID:	L2048654-09	Date Collected:	11/04/20 16:30
Client ID:	OD-2	Date Received:	11/05/20
Sample Location:	300 ROBERTS RD. DUNKIRK	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	11/13/20 18:55
Analyst:	EW

	ppbV			ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mansfield Lab									
Vinyl chloride	ND	0.020		ND	0.051			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Trichloroethene	ND	0.020		ND	0.107			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	94		60-140

Lab Number: L2048654 Report Date: 11/16/20

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 11/13/20 15:22

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab f	or sample	(s): 01-09	Batch: W	G143419	6-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Lab Control Sample Analysis

Project Name:	FORMER EDGEWOOD WAREHOUSE SITE	Batch Quality Control	Lab Number:	L2048654
Project Number:	2203235		Report Date:	11/16/20

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s):	01-09 Batch: WG	61434196-3					
Vinyl chloride	76		-		70-130	-		25	
1,1-Dichloroethene	78		-		70-130	-		25	
cis-1,2-Dichloroethene	85		-		70-130	-		25	
1,1,1-Trichloroethane	116		-		70-130	-		25	
Trichloroethene	88		-		70-130	-		25	
Tetrachloroethene	81		-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER EDGEWOOD WAREHOUSE SITE Lab Number: Report Date:

Project Number: 2203235

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-09	QC Batch ID: WG14	34196-5 C	C Sample: L20	048654-01 Client ID: ID-1	
Vinyl chloride	ND	ND	ppbV	NC	25	
1,1-Dichloroethene	ND	ND	ppbV	NC	25	
cis-1,2-Dichloroethene	0.037	0.036	ppbV	3	25	
1,1,1-Trichloroethane	0.108	0.105	ppbV	3	25	
Trichloroethene	0.111	0.110	ppbV	1	25	
Tetrachloroethene	0.028	0.030	ppbV	7	25	

Serial_No:11162013:25 Lab Number: L2048654

Report Date: 11/16/20

Project Number: 2203235

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leal Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPC
L2048654-01	ID-1	01355	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	3.8	17
L2048654-01	ID-1	2183	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.3	-3.6	-	-	-	-
L2048654-02	ID-2	01422	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	4.2	7
L2048654-02	ID-2	3424	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.4	-8.0	-	-	-	-
L2048654-03	ID-3	0970	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	4.1	9
L2048654-03	ID-3	2362	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.4	-3.0	-	-	-	-
L2048654-04	ID-4	0930	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	4.0	12
L2048654-04	ID-4	196	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.4	-5.3	-	-	-	-
L2048654-05	ID-5	0330	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	4.1	9
L2048654-05	ID-5	139	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.2	-3.2	-	-	-	-
L2048654-06	ID-6	01732	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	3.9	14
L2048654-06	ID-6	2309	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.4	-10.4	-	-	-	-
L2048654-07	ID-7	01280	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	4.3	5
L2048654-07	ID-7	372	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.2	-6.2	-	-	-	-
L2048654-08	OD-1	01409	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	4.1	9

Project Name: FORMER EDGEWOOD WAREHOUSE SITE

Serial_No:11162013:25 Lab Number: L2048654

Report Date: 11/16/20

Project Number: 2203235

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2048654-08	OD-1	114	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.1	-11.3	-	-	-	-
L2048654-09	OD-2	0246	Flow 5	10/30/20	334663		-	-	-	Pass	4.5	4.2	7
L2048654-09	OD-2	556	2.7L Can	10/30/20	334663	L2046592-04	Pass	-29.3	-9.2	-	-	-	-

Project Number: CANISTER QC BAT **Report Date:** 11/16/20 **Air Canister Certification Results** Lab ID: L2046592-04 Date Collected: 10/26/20 16:00 Client ID: CAN 382 SHELF 8 Date Received: 10/27/20 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15 Anaytical Method: Analytical Date: 10/28/20 19:20 TS Analyst: ppbV ug/m3 Dilution Factor RL Qualifier Parameter Results RL Results MDL MDL Volatile Organics in Air - Mansfield Lab Chlorodifluoromethane ND 0.200 ND 0.707 ------1 Propylene ND 0.500 1 ND 0.861 ------Propane ND 0.500 ND 0.902 1 -----Dichlorodifluoromethane ND 0.200 ---ND 0.989 ---1 Chloromethane ND 0.200 ND 0.413 ---1 ---Freon-114 ND 0.200 ND 1.40 1 ------Methanol ND 5.00 ND 6.55 1 -----Vinyl chloride ND 0.200 ---ND 0.511 ---1 1,3-Butadiene ND 0.200 ND 0.442 1 -----Butane ND 0.200 ND 0.475 1 ------Bromomethane ND 0.200 ND 0.777 1 ------Chloroethane ND 0.200 ND 0.528 ---1 --Ethanol ND 5.00 ---ND 9.42 ---1 Dichlorofluoromethane ND 0.200 ND 0.842 1 -----Vinyl bromide ND 0.200 ND 0.874 1 ------Acrolein ND 0.500 ND 1 ---1.15 ---Acetone ND 1.00 --ND 2.38 ---1 Acetonitrile ND 0.200 ND 0.336 1 ------Trichlorofluoromethane 0.200 ND ND 1 ---1.12 ---Isopropanol ND 0.500 --ND 1.23 --1 Acrylonitrile ND 0.500 ---ND 1.09 ---1 Pentane 1 ND 0.200 ND 0.590 ----Ethyl ether ND 0.200 ND 0.606 1 ------1,1-Dichloroethene ND 0.200 ND 0.793 ------1

Serial_No:11162013:25

L2046592

Lab Number:

Project Name:

BATCH CANISTER CERTIFICATION

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2046592-04	Date Collected:	10/26/20 16:00
Client ID:	CAN 382 SHELF 8	Date Received:	10/27/20
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3	.3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield La	ab								
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1	
Methylene chloride	ND	0.500		ND	1.74			1	
3-Chloropropene	ND	0.200		ND	0.626			1	
Carbon disulfide	ND	0.200		ND	0.623			1	
Freon-113	ND	0.200		ND	1.53			1	
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
1,1-Dichloroethane	ND	0.200		ND	0.809			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
Vinyl acetate	ND	1.00		ND	3.52			1	
Xylenes, total	ND	0.600		ND	0.869			1	
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
Ethyl Acetate	ND	0.500		ND	1.80			1	
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	ND	0.500		ND	1.47			1	
2,2-Dichloropropane	ND	0.200		ND	0.924			1	
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	ND	0.200		ND	0.705			1	
Diisopropyl ether	ND	0.200		ND	0.836			1	
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1	
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1	
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1	
1,1-Dichloropropene	ND	0.200		ND	0.908			1	
Benzene	ND	0.200		ND	0.639			1	
Carbon tetrachloride	ND	0.200		ND	1.26			1	
Cyclohexane	ND	0.200		ND	0.688			1	
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1	

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2046592-04	Date Collected:	10/26/20 16:00
Client ID:	CAN 382 SHELF 8	Date Received:	10/27/20
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2046592-04	Date Collected:	10/26/20 16:00
Client ID:	CAN 382 SHELF 8	Date Received:	10/27/20
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3	/m3		Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
1,2,3-Trimethylbenzene	ND	0.200		ND	0.983			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1

							Serial	_No:111	62013:25	
Project Name:	BATCH CANIST	ER CERTI	FICATION			La	b Num	ber:	L2046592	
Project Number:	CANISTER QC	BAT				Re	eport D	Date:	11/16/20	
		Air Can	ister Cei	rtificatior	Results					
Lab ID: Client ID: Sample Location:	L2046592-04 CAN 382 SHEL	F 8				Date (Date F Field F	Collecte Receive Prep:	ed: ed:	10/26/20 16:0 10/27/20 Not Specifiec)0 I
Sample Depth:			nnh)/							
Parameter		Results	ppov RI	MDI	Results	ug/m3	MDL	Qualifie	Dilution Factor	
Volatile Organics in	Air - Mansfield Lab	Iteouno								Ì
Hexachlorobutadiene		ND	0.200		ND	2.13			1	-
T		Re	sults	Qualifier	Units	RDL		Dilutio Facto	on or	
rentatively identified Cor	npounas									

% Recovery

94

96

93

Qualifier

Acceptance Criteria

60-140

60-140

60-140

No Tentatively Identified Compounds

Internal Standard

1,4-Difluorobenzene

Bromochloromethane

chlorobenzene-d5

Report Date: CANISTER QC BAT 11/16/20 **Air Canister Certification Results** Lab ID: L2046592-04 Date Collected: 10/26/20 16:00 Client ID: CAN 382 SHELF 8 Date Received: 10/27/20 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15-SIM Anaytical Method: Analytical Date: 10/28/20 19:20 Analyst: TS ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane ND 0.200 ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND ND 1 0.020 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acetone ND 1.00 ---ND 2.38 ---1 Trichlorofluoromethane ND 0.050 ND 0.281 1 -----Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ------Methylene chloride ND 0.500 ND 1.74 1 ----Freon-113 ND 0.050 ---ND 0.383 ---1 trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 -----1,1-Dichloroethane ND 0.020 ND 0.081 1 ------Methyl tert butyl ether ND 0.200 ND 0.721 1 ------2-Butanone ND 0.500 ---ND 1.47 ---1 cis-1,2-Dichloroethene ND 0.020 1 ---ND 0.079 ---Chloroform ND 0.020 ND 0.098 1 ------1,2-Dichloroethane ND 0.020 ND 0.081 --1 --1,1,1-Trichloroethane ND 0.020 ---ND 0.109 ---1 Benzene ND ND 0.319 1 0.100 ----Carbon tetrachloride ND 0.020 ND 1 0.126 ------1,2-Dichloropropane ND 0.020 ND 0.092 ------1

Serial_No:11162013:25

L2046592

Lab Number:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2046592-04 CAN 382 SHELF 8	Date Collected:	10/26/20 16:00
Client ID:	CAN 382 SHELF 8	Date Received:	10/27/20
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

		Serial_No:1	1162013:25
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L2046592
Project Number:	CANISTER QC BAT	Report Date:	11/16/20
	Air Canister Certification Results		

Lab ID:	L2046592-04	Date Collected:	10/26/20 16:00
Client ID:	CAN 382 SHELF 8	Date Received:	10/27/20
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results		MDL	Results	RL MDL		Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	91		60-140

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
NA	Absent

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2048654-01A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)
L2048654-02A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)
L2048654-03A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)
L2048654-04A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)
L2048654-05A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)
L2048654-06A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)
L2048654-07A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)
L2048654-08A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)
L2048654-09A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-SIM(30)

YES

Lab Number: L2048654

Report Date: 11/16/20

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

GLOSSARY

Report Format: Data Usability Report

Lab Number: L2048654

Report Date: 11/16/20

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- Н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.

Report Format: Data Usability Report

Project Name:FORMER EDGEWOOD WAREHOUSE SITELab Number:L2048654Project Number:2203235Report Date:11/16/20

Data Qualifiers

- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

 Lab Number:
 L2048654

 Report Date:
 11/16/20

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
SPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:11162013:25

	AIR CHAIN OF CUSTO	ANALY	SIS		PAGE	OF	Date	Rec'd in La	ab: V	116	120		ALPH	A Job	#: L20	18654
320 Forbes Blvd, M	ansfield, MA 02048	Project	Informat	ion	THE WEST		Rep	ort Inform	ation	- Data	Delivera	bles	Billing	g Infor	mation	
TEL: 508-822-9300) FAX: 508-822-3288	Project N	ame: WA	enouse.	Site		DA	AX DEv					M Same	e as Clie	ent info PO #:	
Client Informatio	on	Project L	ocation: 3	20 Rober	ls Rd. I	Junkirk	-	Criteria Ch	ecker:							
Client Labella	, Asociates	Project #	55033	35				(Default bas Other Forn	ed on Reg nats:	utatory Cr	iteria Indical	ed)				
Address: 300 PEAK	1 Street Suite 130	Project M	anager: A	rdy Ben	klemer	1		MAIL (stand	lard pdf	report)			Regul	atory	Requirements	Report Limits
Buttalc	, NY 14202	ALPHA C	luote #:	No. Alexand	- Contraction	-	Bana	iditional De	liverabl	es:			State/Fe	ed	Program	Res / Comm
Fax:	51 6281	Turn-A	round Tir	ne			Repu	rt tO, ja afterer	nt than Proje	ct Manager)						
Empile 1		X.Standa	rd 🖸	RUSH (only	confirmed if pre-	(astroved!)							_			
Email abenkler	nan@labelh.pc.co	m	a*		Time									ANAL	YSIS	
Other Project S	pecific Requirements/	Comments:			inne:		1						F	1/	0.42	
Project-Specific	Target Compound Lis	st: 🗆											There	1 /		
1			10 mm		1000 TO. 17							_/	9	es ^{ncapta}		
AL PHA Lab ID		All Col	umn	s Be	low I	Must	Be	Filled	90	ut		5	5 SIM	10 & Ma	11	
(Lab Use Only)	Sample ID	End Date	Start Time	End Time	Initial Vacuum	Final Vacuum	Sample Matrix*	Sampler's Initials	s Can Size	I D Can	ID - Flow Controller	10/2	Pare Prove	Suma	Sample Con	ments (i.e. PID)
48654-01	10-1	1/4/20	0837	1251	59.88	3.97	Air	AG	2.7	2185	01555	×			For TO-15	5 Samle Ar
02	10-2	1/4/20	0830	1425	1	8.55	1	HG	2.7	5424	422	×			LI-Dich la	a dia
03	10-3	1/4/20	0900	1406		5.89		HG	2.7	asua	ano	×			Cisalant	illing of
CY	10-4	14/20	0845	11.08		-		114	27	194	.05	~			Te-ller	L
05	10-5	1/4/20	0846	1000		140		HQ U/	27	139	110	v		++	Inchioro	ethene
06	10-10	1/4/20	6844	1030		-		na	27	-201	13	×			461- trick	loroeth ene
07	10-7	14/20	0011	1643	1	10.54		HG	3.7	25	all				Tetrachl	roethene
08	00-1	11/4/20	0030	1507		5.81		HG	07	310	012 A	¥		++	Vinyl Ch	oride
09	00-2	1/4/20	ARda	11.20		-		HQ HZ	2.7	154	-410					
	00 2	7 4 4 4 4	0012	1430	Y	11.54	×	нд	d.t	5	027	~				
*SAMPLE	E MATRIX CODES	AA = Ambien SV = Soil Vap Other = Please	Air (Indoor or/Landfill C Specify	/Outdoor) Jas/SVE				C	ontaine	Туре					Please print clea completely. Sar	rly, legibly and ples can not be
	C.	Relinquis	hed By:		Dat	e/Time	A	Recei	ved By:			D	ate/Time:	110	clock will not sta	naround time rt until any ambi-
	With	hen Attlin	sn				4	Jun)		/	115	1	352	submitted are su Terms and Coord	bject to Alpha's
age 34 of 34 (25-5	Sep-15)	AI	my	r	1161	20 7:0	5	Ste	SVI	-		40	0 043	2	See reverse side	h.

ATTACHMENT 4

NYSDOH Indoor Air Quality Questionnaire and Building Inventory

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Heather Geogheg	Jan	_ Date/Time Prepared	11/4/2020;	1000
Preparer's Affiliatio	n LaBella Associ	ates	_Phone No. 716.55	1.6281	
Purpose of Investiga	ntion Evaluate the	effective	ness of SSDS		
1. OCCUPANT:					
Interviewed: <mark>Y</mark> / N	N				
Last Name: Andr	ea I	First Name: Bal	ldwin		
Address: 320 So	uth Roberts Road	l, Dunkirk	New York		
County: Chauta	uqua				
Home Phone:	Offic	e Phone:			
Number of Occupar	ts/persons at this location	n Ag	e of Occupants		
2. OWNER OR LA	NDLORD: (Check if sa	ume as occupant)		
Interviewed: Y/	v				
Last Name: Krog	II Fi	irst Name: <u>Pet</u>	er		
Address: 4 Cent	re Drive Orchard	l Park, New	w York		
County: Erie					
Home Phone:	Offic	ce Phone:			
3. BUILDING CH	ARACTERISTICS				
Type of Building: (Circle appropriate respon	use)			

Residential	School	Commercial/Multi-use			
Industrial	Church	Other:	Warehouse	<u>fr</u> eezer	storage

2

If the property is residential, type? (Circle appropriate response)

	Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	3-Fami Coloni Mobile se Townh Other:	ily al e Home iouses/Condos					
If n	If multiple units, how many?								
If the property is commercial, type?									
	Business Type(s) Warehouse storage freezer								
	Does it include residences (i.e., multi-use)? Y/N If yes, how many?								
Other characteristics:									
	Number of floors		Building age	<u>1 y</u> ear					
	Is the building insulated?	<mark>/</mark> / N	How air tight?	Tight / Average / Not Tight					

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors									
The	building	consists	of	а	slab	foundation.	No	visible	airflow
betw	ween floor	rs.							

Airflow near source

Outdoor air infiltration No visible outdoor air infiltration

Infiltration into air ducts No visible infiltration into air ducts

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	led
j. Sump present?	Y/ <mark>N</mark>			
k. Water in sump? Y / N	/ / not applicable			
	_			

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

No visible potential soil vapor entry points

6. **HEATING, VENTING and AIR CONDITIONING** (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	ump 1 radiation stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other			
The primary type of fuel used							
Natural Gas Electric Wood	Fuel Oil Propane Coal		Kerosene Solar				
Domestic hot water tank fueled by:							
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other			
Air conditioning:	Central Air	Window units	Open Windows	None			
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Y/N

7. OCCUPANCY

Is basement/le	owest level occupied?	Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g., fa	<u>milyroom, bedro</u>	oom, laundry, wo	orkshop, storage)
Basement					
1 st Floor	Slab foundati	on; one fl	oor freeze:	r warehouse	2
2 nd Floor					
3 rd Floor					
4 th Floor					
8. FACTORS a. Is there a	S THAT MAY INFLUE an attached garage?	ENCE INDOOF	R AIR QUALITY	Y Y/ <mark>N</mark>	
b. Does the	garage have a separate	e heating unit?		Y / N / NA	
c. Are petro stored in	bleum-powered machin the garage (e.g., lawnm	nes or vehicles nower, atv, car)		Y / N / NA Please specify_	
d. Has the b	building ever had a fire	?		Y / N When?	
e. Is a keros	sene or unvented gas sp	oace heater pres	sent?	Y / N Where?	2
f. Is there a	workshop or hobby/cr	aft area?	Y/N	Where & Type?	work area
g. Is there s	moking in the building	??	Y/ <mark>N</mark>	How frequently	?
h. Have clea	aning products been us	ed recently?	Y/N	When & Type?	handsanitizer/
i. Have cosı	metic products been us	ed recently?	Y/ <mark>N</mark>	When & Type?	Cleaning products

j. Has painting/sta	ining been done	in the last 6 mo	nths? Y / <mark>N</mark>	Where & Wh	en?
k. Is there new car	pet, drapes or ot	her textiles?	Y <mark>/ N</mark>	Where & Wh	en?
l. Have air freshen	ers been used re	cently?	Y/ <mark>N</mark>	When & Typ	e?
m. Is there a kitch	en exhaust fan?		Y/ <mark>N</mark>	If yes, where	vented? <u>No kitch</u> en
n. Is there a bathr	oom exhaust fan	?	Y/ <mark>N</mark>	If yes, where	vented?
o. Is there a clothe	s dryer?		Y/ <mark>N</mark>	If yes, is it ve	ented outside? Y / N
p. Has there been	a pesticide applic	eation?	Y/ <mark>N</mark>	When & Typ	e?
Are there odors in If yes, please desc	the building? ribe:		Y/ <mark>N</mark>		
Do any of the buildir (e.g., chemical manufaboiler mechanic, pesti	ng occupants use acturing or labora cide application, o	solvents at wor tory, auto mecha cosmetologist	k? Y / <mark>N</mark> anic or auto body	shop, painting	g, fuel oil delivery,
If yes, what types o	f solvents are use	d?			
If yes, are their clot	hes washed at wo	rk?	Y / N		
Do any of the buildir response)	ng occupants reg	ularly use or wo	ork at a dry-clea	ning service?	(Circle appropriate
Yes, use dry-o Yes, use dry-o Yes, work at a	cleaning regularly cleaning infrequer a dry-cleaning ser	(weekly) ntly (monthly or vice	less)	No <mark>Unknown</mark>	
Is there a radon miti Is the system active o	gation system for passive?	r the building/st Active/ <mark>Passive</mark>	tructure? <mark>Y</mark> / N	Date of Instal	llation: <u>Fall/Wint</u> er 2019
9. WATER AND SE	WAGE				
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION	INFORMATION	l (for oil spill re	sidential emerg	ency)	
a. Provide reasor	ns why relocation	is recommend	ed:		
b. Residents choo	ose to: remain in l	nome reloca	te to friends/fam	ily reloc	ate to hotel/motel
c. Responsibility	for costs associa	ted with reimbu	ırsement explai	ned? Y / N	I
d. Relocation pac	ckage provided a	nd explained to	residents?	Y / N	1

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

	-																						
 Re:	ter	to	at	tta	acr	led	d	ıа	gr	an	າຮ	01	: k	bui	.1c	lır	ıg	 		 	 	 	
			_															 	 	 	 	 	
			_				_											 	 	 	 	 	
		-																		 	 	 	

First Floor:

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
	Hand Sanitizer	I	ocated in	n the Office Area and Lo	ading Doc	k Area
	Cleaning Chemical	5		On cart Located in Jani	tor Close	t
	A janitorial serv	ice w	as clean:	ing the office area not	including	the
	break room. Clean	ing w	as initia	ted shortly prior to th	e termina	tion
	of the sample wit	hin t	he break	room.		

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.