

Remedial Investigation Work Plan

Location:

Jamestown Brewery 115-121 West Third Street Jamestown, New York

Prepared for:

GPatti Enterprises, LLC 115 Livingston Avenue Jamestown, New York

LaBella Project No. 2180345

August 10, 2018

CERTIFICATIONS

I Adam Zebrowski certify that I am currently a Qualified Environm	nental Professional as
defined in 6 NYCRR Part 375 and that this Remedial Investigation Work Plan v	vas conducted in
accordance with all applicable statutes and regulations and in substantial con	formance with the DER
Technical Guidance for Site Investigation and Remediation (DER-10).	

Signed:

8 9 2018 Date:

Table of Contents

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND HISTORY	
2.1	Site Description and Surrounding Properties	1
2.2	Site History	
2.3	Site Geology and Hydrogeology	2
3.0	PREVIOUS INVESTIGATIONS	2
4.0	STANDARDS, CRITERIA AND GUIDANCE	3
5.0	OBJECTIVES AND RATIONALE	4
5.1	Areas of Concern	4
6.0	REMEDIAL INVESTIGATION SCOPE	4
6.1	Remedial Investigation Tasks	5
6.	1.1 Task 1: Soil Boring and Groundwater Investigation	6
6.2	Health and Safety and Community Air Monitoring	9
6.3	Housekeeping and Investigation Derived Waste	9
6.4	Quality Assurance/Quality Control Plan	9
7.0	RI SCHEDULE AND REPORTING – DELIVERABLES	10

TABLES, FIGURES AND APPENDICES

Figures

- Figure 1 Site Location Map
- Figure 2 Site Base Map
- Figure 3 2017 Phase II ESA Groundwater Sample Locations
- Figure 4 Proposed Remedial Investigation Locations
- Figure 5 Area of Concern
- Figure 6 Recognized Environmental Conditions Identified at the Site

Tables

- Table 1 Summary of Soil Boring Analytical Results
- Table 2 Summary of Soil Boring Analytical Results
- Table 2 Summary of Groundwater Analytical Results
- Table 4 Summary of Soil Vapor Analytical Results
- Table 5 Summary of Previous Sampling Events

Appendix

- Appendix 1 LaBella November 10, 2017 Draft Supplemental Phase II ESA Report and LaBella
- February 9, 2018 Supplemental Soil Investigation
- Appendix 2 Qualifications
- Appendix 3 BCP Contact List Information
- Appendix 4 Community Air Monitoring Plan
- Appendix 5 Quality Control Plan
- Appendix 6 Health & Safety Plan

1.0 INTRODUCTION

LaBella Associates, D.P.C. (LaBella) is pleased to submit this Remedial Investigation Work Plan (RIWP) to conduct additional investigation at 115-121 West Third Street, City of Jamestown, Chautauqua County, New York, herein after referred to as the "Site." The Site is applying to enter into the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP). A Site Location Map is included as Figure 1. LaBella is submitting this RIWP on behalf of GPatti Enterprises, LLC to define the nature and extent of contamination at the Site.

Information gathered from previous investigations have identified the presence of petroleum-related volatile organic compounds (VOCs) and chlorinated solvent VOCs (cVOCs) at the Site (Figure 5). Implementation of this RIWP will support existing information and fill in data gaps to identify the extent to which remediation is warranted. The activities in this RIWP will be carried out in accordance with the NYSDEC's Department of Environmental Remediation (DER)-10 (*Technical Guidance for Site Investigation and Remediation*) issued May 3, 2010.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Description and Surrounding Properties

The Site is comprised of one tax parcel (SBL #387.40-3-8) totaling 0.59± acres. The Site is located in an urban area north of East Second Street, east of Washington Street and south of East Third Street. Figure 2 illustrates the location and boundaries of the current tax parcel configuration associated with the Site. Current Site features include one, two-story 16,147 square foot vacant commercial building (Site Building) on the north portion of the Site and an asphalt-paved parking areas on the south portion of the Site.

2.2 Site History

The Site was developed in at least 1886 and has been utilized for various commercial purposes since that time including the following:

- A photo facility was present in the northwest corner of the Site from at least 1886 to at least 1891.
- From at least 1930 to at least 1949, a gasoline underground storage tank (UST) was located to the west of the parking garage within the Washington Street right-of-way proximate the southwest corner of the Site.
- One 3,000-gallon #2 fuel oil UST was also closed-in-place under NYSDEC direction within the Washington Street right-of-way proximate the west exterior of the Site Building in 2003.
- A photography studio was located on the north portion of the Site historically addressed as 117 West Third Street and Jamestown Furniture Co., historically addressed as 121 West Third Street, was located at the northwest corner of the Site from at least 1946 to at least 1949.
- The area immediately southwest exterior of the Site Building historically addressed as 214 Washington Street was occupied by a dry cleaner from at least 1965 to at least 1994.
- The south portion of the Site historically addressed as 208 Washington Street was occupied by taxi company garages from at least 1926 to at least 1930.

- The south portion of the Site historically addressed as 210 Washington Street was occupied by automotive repair facilities from at least 1930 to at least 1939.
- The portion of the Site historically addressed as 212-214 Washington Street was occupied by parking garages from at least 1922 to at least 1981.

The adjoining/adjacent properties appear to have been developed in at least 1886 and utilized commercially since that time. Commercial operations of note at the adjacent properties have included blacksmiths, a painting facility, a laundry facility, a welding company, a cleaning company, a clothing cleaner and automotive repair.

2.3 Site Geology and Hydrogeology

According to the United States Department of Agriculture (USDA) Web Soil Survey, the Site consists of Urban Land. Urban Land is characterized as areas highly developed for commercial, industrial, or residential use were the ground surface is covered by impervious features. Generally, the uppermost native soils have been removed, disturbed, or fill material has been placed over native soils. Based on the results of LaBella's November 10, 2017 Phase II Environmental Site Assessment (ESA) report and February 9, 2018 Supplementary Soil Investigation report, crushed asphalt was encountered followed by a gravel sub-base mixed with brown clay silts from approximately one to two feet below the ground surface (ft bgs). Apparent native soils consisting of glacial till comprised of silts and clays were generally encountered across the Site beyond two ft bgs. Depth to groundwater has been measured at the Site between 12.7 and 14.5 ft bgs. Groundwater is assumed to flow to the south towards Chadakoin River. Bedrock beneath the Site is reported to consist of Ellicott and Dexterville Formations shale and siltstone, dating from the Upper Devonian age.

3.0 PREVIOUS INVESTIGATIONS

The following environmental reports are being utilized to develop the scope of work associated with this RIWP discussed below:

- Phase I ESA report dated August 4, 2017
- Draft Supplemental Phase II ESA report dated November 10, 2017
- Supplemental Soil Investigation report dated February 9, 2018

Based on the results of the Phase I ESA, Recognized Environmental Conditions (RECs) were identified associated with the historical uses of the Site as a photo facility, a photography studio, a dry cleaner, blacksmith shops, taxi company garages, automotive repair shops and parking garages, and historical uses of adjacent properties including a black smith, painting facility, a laundry facility, a welder, an automotive repair shop, a cleaning company and a clothing cleaner and the historical presence of a gasoline UST located within the Washington Street right-of-way. Refer to Figure 6 for approximate locations of the on-site RECs identified. Phase II ESA activities were completed at the Site by LaBella on August 15, October 19 and December 22, 2017 and January 11 and 12, 2018 including the advancement of 30 direct-push soil borings and seven hand-auger soil borings, installation and sampling of two temporary groundwater monitoring wells, and three permanent groundwater monitoring wells, and four sub-slab soil vapor points.

Based on the results of those assessments, LaBella concluded the following:

Page | 3

- Laboratory analytical results did not identify any semi-volatile organic compounds or metals in the subsurface soil or groundwater at the Site at concentrations exceeding NYSDEC Part 375 Commercial-Use Soil Cleanup Objectives (SCOs).
- Soil vapor samples collected from beneath the basement slab of the Site Building identified cVOCs at concentrations exceeding New York State Department of Health (NYSDOH) Guidance. Such included elevated concentrations of cis-1,2-dichloroethene, trichloroethene (TCE) and tetrachloroethene (PCE) within SS1 and SS2. As a result, Mitigation Tech is currently in the process of installing a sub-slab depressurization system (SSDS) within the Site Building in order to mitigate soil vapor intrusion to the Site Building interior.
- cVOC-impacted soil and groundwater was identified within the subsurface proximate the southwest exterior of the Site Building at concentrations exceeding NYSDEC soil and groundwater guidance. Such included the following:
 - Up to six VOCs were identified at concentrations ranging from 140-21,000 micrograms per kilogram (ug/kg), exceeding NYSDEC Commissioner Policy (CP) 51 Soil Cleanup Guidance in SB-3, SB-6, SB-7 and SB-23.
 - One VOC (PCE) was identified at a concentration of 240,000 ug/kg, exceeding NYSDEC Commercial Use Soil Cleanup Objectives (SCOs) in SB-30.
 - Up to six VOCs were identified at concentrations ranging from 32.4-36,000 micrograms per liter (ug/L), exceeding applicable NYSDEC groundwater guidance in MW-2 and PMW-1.

The location of the subsurface cVOC impact appears consistent with the location of the historical location of the dry cleaning operation. While the extent of soil impact appears well defined south of the Site Building, the extent of groundwater impact has not been defined to the south, east and west of the Site Building at this time.

• No other contamination in excess of NYSDEC Part 375 Commercial-Use SCOs was noted on the Site.

4.0 STANDARDS, CRITERIA AND GUIDANCE

This section identifies the Standards, Criteria and Guidance (SCG) for the Site. The SCGs identified are used in order to quantify the extent of contamination at the Site that requires remedial work based on the cleanup goal. The SCGs to be utilized as part of the implementation of this RIWP are identified below:

Soil SCOs: The following SCOs for soil were used in developing this RIWP:

NYSDEC Part 375 Unrestricted-Use, Commercial-Use, and Protection of Groundwater SCOs

Groundwater SCGs: The following SCGs for groundwater were used in developing this RIWP:

 NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Water Quality Standards and Guidance Values.

5.0 OBJECTIVES AND RATIONALE

The objective of the RI is to evaluate the nature and extent of VOC and cVOC groundwater impact at the Site as identified during previous investigations (refer to Section 3.0). Implementation of this RIWP will support existing information and fill in data gaps to rule out the presence of other contaminants (i.e. PFAS, 1.4-dioxane, etc.) and to identify the extent to which remediation is warranted. In addition, the BCP general requirements (e.g., "full suite" testing, quality assurance/quality control (QA/QC), etc.) will also be fulfilled.

5.1 Areas of Concern

Based on November 10, 2017 Phase II ESA report and the February 8, 2018 Supplemental Soil Investigation report, the following areas of concern (AOCs) have been identified at the Site:

AOC #1: Impacted Soil Vapor

Sub-slab soil vapor samples collected from within the basement of the Site Building, identified a soil vapor intrusion concern within the Site Building. As a result, a SSDS is in the process of being installed within the Site Building and will be completed within the scope of this IRMWP.

AOC #2: Impacted Soil

Petroleum-type staining and odors, and elevated photo ionization detector (PID) readings were encountered within soil borings advanced proximate the historical footprint of the former dry cleaner located on the southwest exterior of the Site Building. Tetrachloroethene (PCE) was detected at concentrations exceeding NYSDEC Part 375 Commercial-Use SCOs in the soil sample collected from SB-30 at a depth of 14-15 ft bgs. SB-30 is located within the historical footprint of the former dry cleaner. It should also be noted that while below NYSDEC Part 375 Commercial Use SCOs, a PCE concentration of 120,000 micrograms per kilogram (μ g/kg) was identified in SB-23, also located in the historical footprint of the former dry cleaner. One VOC (m/p-Xylenes) was identified at a concentration of 270 μ g/kg in SB-23 only slightly exceeding the NYSDEC CP-51 Soil Cleanup Guidance of 260 μ g/kg.

AOC #3: Impacted Groundwater

Petroleum-type staining and odors, were encountered within MW-2 located proximate the historical footprint of the former dry cleaner located on the southwest exterior of the Site Building. Several VOCs were identified exceeding NYSDEC Division of Technical and Operational Guidance Series (TOGS) within the groundwater samples collected and submitted for analysis from MW-2 and PMW-1. It should be noted that MW-1 and MW2 were sampled and analyzed for Target Compound List (TCL) + CP-51 VOCs and CP-51 semi-volatile organic compounds (SVOCs), and PMW-1 and PMW-2 were sampled and analyzed for TCL VOCs during the previous investigations conducted at the Site.

6.0 REMEDIAL INVESTIGATION SCOPE

The proposed remedial investigation field activities to be completed as part of the work plan have been separated into tasks and are presented in this section. It should be noted that the RI scope of work is limited to the assessment of AOC 3. AOC 1 and AOC 2 will be addressed during Interim Remedial Measures (IRM). The IRMs to be conducted at the Site are discussed in the IRM Work Plan prepared by LaBella for the Site. The proposed IRM is not designed to be the final remedy for the

Site or address other AOCs at the Site, but it is intended to be the final remedy for AOC 2. If Protection of Groundwater SCOs are not met based on post-confirmatory soil sample results, remedial measures for AOC 2 will be evaluated in the Remedial Alternatives Analysis report. The overall objective for the Site is redevelopment into a brewery and restaurant.

A list with contact information for the anticipated personnel involved with the project is included in Appendix 2. Qualifications for the personnel are also included. Additionally, a BCP Site contact list is included as Appendix 3.

6.1 Remedial Investigation Tasks

The RI Field Plan is detailed below:

<u>Task 1: Soil Boring and Groundwater Investigation</u>- This task is proposed to further assess the subsurface soil and groundwater conditions across the Site. This task will help to determine groundwater flow direction. Groundwater sampling will attempt to determine the nature and extent of the cVOC and petroleum VOC contamination identified as AOC 3 and fill in data gaps to rule out the presence of other contaminants (i.e. PCBs, pesticides, herbicides, PFAS, 1.4-dioxane, etc.).

QA/QC samples will also be collected and analyzed (e.g., trip blank, duplicate sample, matrix spike/matrix spike duplicate (MS/MSD)). The specific QA/QC program is detailed in Section 6.4. The groundwater samples will be delivered under chain of custody procedures to an Environmental Laboratory Accreditation Program (ELAP)-certified laboratory. The laboratory will provide a NYSDEC Analytical Services Protocol (ASP) Category B Deliverables data package and a Data Usability Summary Report (DUSR) will be completed by a third-party data validator.

Page | 6

A summary of the proposed sampling locations and analysis is included in Table 6.1 - 1 below.

Table 6.1-1: Proposed Sample Location and Analysis Summary

Investigation Task	Number of Samples	Media	Depth	Analysis	QA/QC	Rationale
Subsurface soil (Soil Borings)	Three	Soil	0-25 ft bgs	TCL plus NYSDEC CP-51 VOCs by 8260 TCL SVOCs by 8270 Target Analyte Metals (TAL) metals by 6010/6020 Polychlorinated biphenyls (PCBs) by 8082 Pesticides by 8081 Herbicides by 8151	One Field DuplicateOne MS/MSD One Trip Blank	Assess subsurface soil conditions within prior to the installation of the three monitoring wells
Groundwater (Monitoring Wells)	Three (upgradient, downgradient, and source areacentral portion of Site)	Groundwater	Six wells to 25 ft bgs and one well along the southern Site boundary to 35 ft bgs or to confining layer	TCL plus NYSDEC CP-51 VOCs by 8260 TCL SVOCs by 8270 TAL metals by 6010/6020 PCBs by 8082 Pesticides by 8081 Herbicides by 8151 Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) by M537 1,4-Dioxane by 8270	One Field Duplicate One MS/MSD One Trip Blank One Equipment Rinsate Blank (PFOA/PFO S and 1,4- Dioxane only)	Assess nature and extent of groundwater impacts at the Site.

Notes:

• TCL plus NYSDEC CP-51 VOCS using USEPA method 8260 soil analysis will be limited to subsurface soil samples exhibiting visual, olfactory, or elevated PID readings.

6.1.1 Task 1: Soil Boring and Groundwater Investigation

This task will involve the installation of five 2-inch groundwater monitoring wells on the south portion of the Site, one 2-inch groundwater monitoring well on the east portion of the Site and reinstallation of PMW-1 on the central portion of the Site (following excavation of soils from AOC 2) to an average depth of 25 ft bgs with one well along the southern Site boundary being advanced to approximately 35 ft bgs or until a confining layer is encountered. A groundwater sample will be collected from the permanent groundwater monitoring well previously installed on Site (PMW-3) and from the seven monitoring wells to be installed/reinstalled on the Site to further assess groundwater conditions at the Site and determine groundwater flow. This work will be completed in accordance with NYSDEC DER-10 as well as the Quality Control Plan (QCP) included as Appendix 5. The proposed monitoring well locations are depicted on Figure 4. The following methods will be followed to complete this task:

- A Dig Safely New York stakeout will be conducted at the Site to locate any subsurface utilities in the areas where the subsurface assessment will take place.
- Soil borings will be advanced utilizing a Geoprobe system® to reach the desired depths.
- Soils retrieved from the soil borings will be continuously screened in the field for visible impairment, olfactory indications of impairment, and/or indication of detectable VOCs with a PID, collectively referred to as "evidence of impairment."
- Excess soil cuttings will be placed in a 55-gallon drum for off-site disposal.
- Subsurface soil samples will be collected and analyzed for the following parameters if such exhibit visual, olfactory or field screening evidence of impact.
 - o TCL SVOCs using USEPA 8270
 - o TAL Metals using USEPA Method 6010/6020
 - o PCBs by 8082
 - o Pesticides by 8081
 - Herbicides by 8151
- In addition, TCL plus NYSDEC CP-51 VOCS using USEPA method 8260 will be analyzed for subsurface soil samples exhibiting visual, olfactory, or field screening measurements indicating VOC impacts.
- Seven monitoring wells will be completed with 2-inch diameter PVC wells. Monitoring wells will be constructed using a 5-ft. to 10-ft. long 0.010-inch slotted PVC well screen finished with a PVC riser to an appropriate elevation above the ground surface. The annulus will be filled with sand to approximately 1 to 2 feet above the top of the screen, and filled with bentonite to the surface. The monitoring wells will be completed at the surface with 8-inch flush-mount covers with 2-inch by 2-inch concrete pads.
- The screened section for the six monitoring wells installed to 25 feet below the ground surface will be will be placed to intersect the water table as observed in the soil boring.
- Five feet of screen will be installed at the bottom of the deep monitoring well (installed to 35 ft bgs, or until a confining layer is encountered).
- Groundwater samples will be collected from each of the seven wells and from the previously installed well and analyzed for the following:
 - TCL plus NYSDEC CP-51 VOCS using USEPA method 8260
 - o TCL SVOCs using USEPA 8270
 - o TAL Metals using USEPA Method 6010
 - o PCBs by 8082
 - Pesticides by 8081
 - Herbicides by 8151

In addition, three wells will be sampled for the following parameters.

- PFOA and PFOS using USEPA Method 537
- 1,4-Dioxane using USEPA Method 8270

Results will be reported for the PFAS target analyte list contained in the NYSDEC guidance (February 2018) document included at the end of Appendix 5 (QCP), and reporting limits of 2 ng/l (parts per trillion) will be requested.

Groundwater sampling procedures are as follows:

- Wells will be developed until dry or until at least three well volumes have been removed using a dedicated bailer or peristaltic pump. Development water will be placed in 55-gallon drums and transported off-site for proper disposal. No water will be allowed to flow off-site.
- Samples will be collected using low-flow techniques. During sampling, the following parameters will be measured and recorded at three to five minute intervals:
 - Water level drawdown (<0.3')
 - Temperature (+/- 3%)
 - o pH (+/- 0.1 unit)
 - Dissolved oxygen (+/- 10%)
 - Specific conductance (+/- 3%)
 - Oxidation reduction potential (+/- 10 millivolts)
 - Turbidity (+/- 10%, <50 NTU for metals)
- Samples will be collected when the parameters have stabilized within the specified range for at least three consecutive intervals.
- All groundwater sampling will be completed in a manner to minimize potential crosscontamination of the samples by completing all work as identified below. Because PFAS are found in numerous everyday items, the following special precautions will be taken during all sampling activities:
 - Acceptable materials for sampling include stainless steel, high density polyethylene (HDPE), PVC, silicone, acetate and polypropylene
 - No use of Teflon®-containing materials (e.g., Teflon® tubing, bailers, tape, sample jar lid liners, plumbing paste)
 - No Tyvek® clothing will be worn onsite
 - O Clothing that contains polytetrafluorethylene (PTFE, GORE-TEX®, etc.) or that have been waterproofed with PFC materials will not be worn on-site.
 - All clothing worn by sampling personnel must have been laundered multiple times.
 Clothing must not be laundered with fabric softener.
 - No Post-It® notes will be brought onsite
 - o No fast food wrappers, disposable cups or microwave popcorn will be brought on-site.
 - No use of chemical (blue) ice packs will be allowed.
 - No use of aluminum foil, low density polyethylene (LDPE), glass or PTFE materials will be allowed.
 - o No use of Sharpies®, rather ball point pens will be utilized.
 - No use of sunscreen, insect repellants, cosmetic, lotions or moisturizers will be allowed by sampling personnel the day of sampling.

- Page | **9**
- If any of the above items are handled by the field personnel prior to sampling activities, field personnel will wash their hands thoroughly with soap and water prior to any sampling activities.
- Powder-free nitrile gloves will be worn during all sample collection activities.
- In the event of insufficient sample volume for full suite parameters, samples will be analyzed for as many of the listed parameters as possible, in the below listed order:
 - o TCL plus NYSDEC CP-51 VOCs using USEPA Method 8260
 - o TCL SVOCs using USEPA Method 8270
 - TAL metals using USEPA Methods 6010/6020
 - o PCBS
 - Pesticides
 - o Herbicides
 - PFOA and PFOS using USEPA Method 537
 - o 1,4-Dioxane using USEPA Method 8270
- In addition, monitoring wells will be surveyed (latitude, longitude, and elevation) following installation.

6.2 Health and Safety and Community Air Monitoring

LaBella's Health and Safety Plan (HASP) for this project is included as Appendix 6. The NYSDOH Generic Community Air Monitoring Plan (CAMP) and Fugitive Dust and Particulate Monitoring will be utilized for this RI and are included as Appendix 4.

6.3 Housekeeping and Investigation Derived Waste

Good housekeeping practices will be followed to prevent leaving contaminated material on the ground surface.

Waste materials anticipated to be generated during the implementation of this RIWP include soil generated from soil borings, groundwater generated from development and sampling of the wells. These waste materials will be spread across the Site surface in the vicinity of the investigation location from which the soil originated, or allowed to infiltrate back into the subsurface of the Site in the vicinity of the sample location from which the material originated. Procedures will be implemented to prevent soils or water from leaving the Site.

Additional information regarding Investigation Derived Waste is included in Section 9 of the QCP, included in Appendix 5.

6.4 Quality Assurance/Quality Control Plan

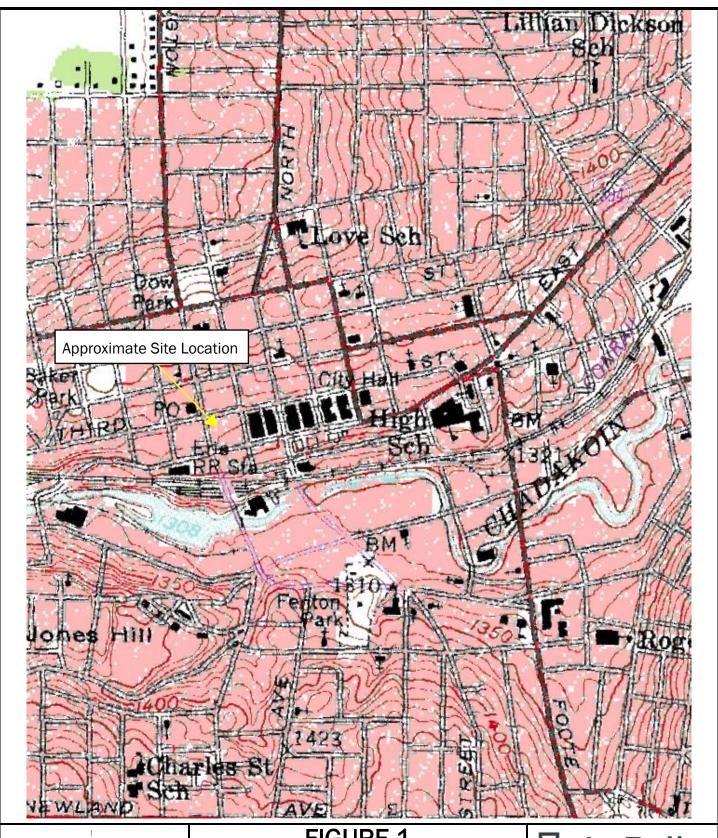
Activities completed at the Site will be managed under LaBella's QCP, which is included in Appendix 5. Laboratory QA/QC sampling will include analysis of one trip blank and one duplicate sample for each matrix type (i.e., soil and groundwater) at a rate of one per 20 samples collected for each parameter group, or one per shipment, whichever is greater. Additionally, one Matrix Spike/Matrix Spike Duplicate (MS/MSD) will be collected and analyzed for each twenty samples collected for each parameter group, or one per shipment, whichever is greater. The MS/MSD will be analyzed for the same parameters as that of the field samples. Furthermore, one equipment rinsate blank will be

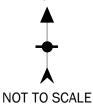
collected and analyzed for PFOA/PFOS and 1,4-dioxane associated with the one groundwater sampling collected from the Site. The samples will be delivered under Chain of Custody procedures to an ELAP-certified laboratory. The laboratory will provide a NYSDEC ASP Category B Deliverables data package for all samples. A DUSR will be completed for all ASP-B format laboratory data packages per DER-10. The DUSRs will include the laboratory data summary pages showing corrections made by the data validator and each page will be initialed by the data validator. The laboratory data summary pages will be included even if no changes were made.

7.0 RI SCHEDULE AND REPORTING – DELIVERABLES

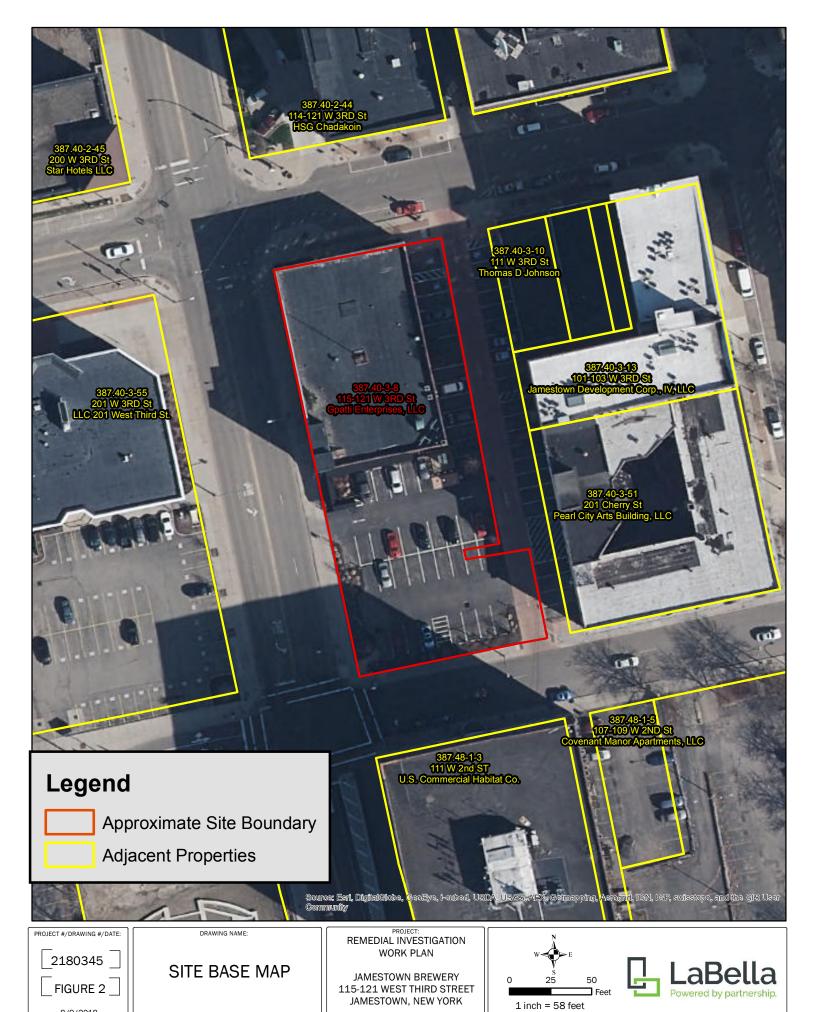
The information and laboratory analytical data obtained during the RI will be included in a RI Report, completed in accordance with DER-10.

It is anticipated that implementation of the RIWP will begin within 60 days after NYSDEC approval of this work plan and the standard three-day Dig Safely New York waiting period. The field work is anticipated to require approximately 14 days to complete subsequent to implementation of the RIWP (Note: this timeframe does not include laboratory analysis or data validation). The RI Report will be submitted within two months of receipt of DUSRs.


The above schedule assumes that an addendum to the RI Work Plan will not be required. If an RI Work Plan addendum is required, it will be submitted as the need is identified and it will include a revised schedule.


All data will also be submitted in the NYSDEC-approved EDD format. The data will be submitted on a continuous basis immediately after data validation occurs.

I:\GPATTI ENTERPRISES INC\2180345 - 115-121 W 3RD 200-210 WASHINGTON\REPORTS\RIWP\DRAFT VERSIONS of Assembled RIWP\RIWP_Jamestown Brewery_8.9.2018.docx


FIGURE 1 SITE LOCATION MAP

Jamestown Brewery 115-121 West Third Street

Jamestown, New York

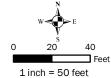
PROJECT NO. 2180345

INTENDED TO PRINT AS: 8.5" X 11"

Path: I:\Gpatti Enterprises Inc\2180345 - 115-121 W 3rd 200-210 Washington\Reports\RIWP\Figures\Map.2018.7.5.Fig2_basemap.mxd

8/9/2018

___2180345 _


FIGURE 3

8/9/2018

GROUNDWATER SAMPLE LOCATIONS

REMEDIAL INVESTIGATION
WORK PLAN

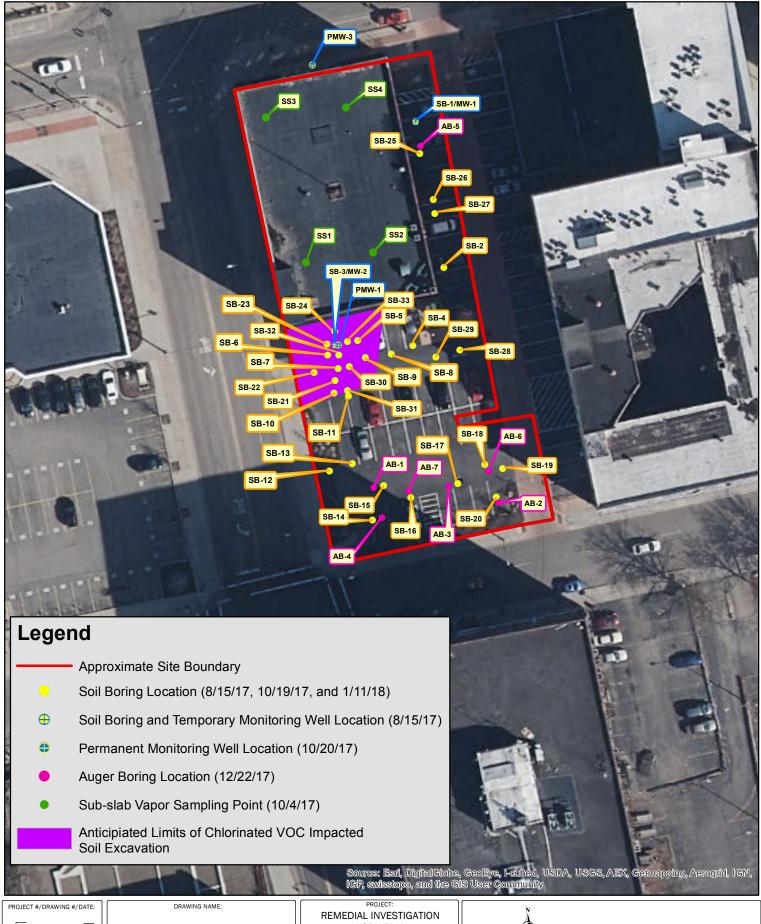
JAMESTOWN BREWERY 115-121 WEST THIRD STREET JAMESTOWN, NEW YORK

PROJECT #/DRAWING #/DATE:

FIGURE 4

8/9/2018

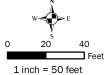
DRAWING NAME


PROPOSED REMEDIAL INVESTIGATION LOCATIONS

PROJECT:
REMEDIAL INVESTIGATION
WORK PLAN

JAMESTOWN BREWERY 115-121 WEST THIRD STREET JAMESTOWN, NEW YORK

2180345

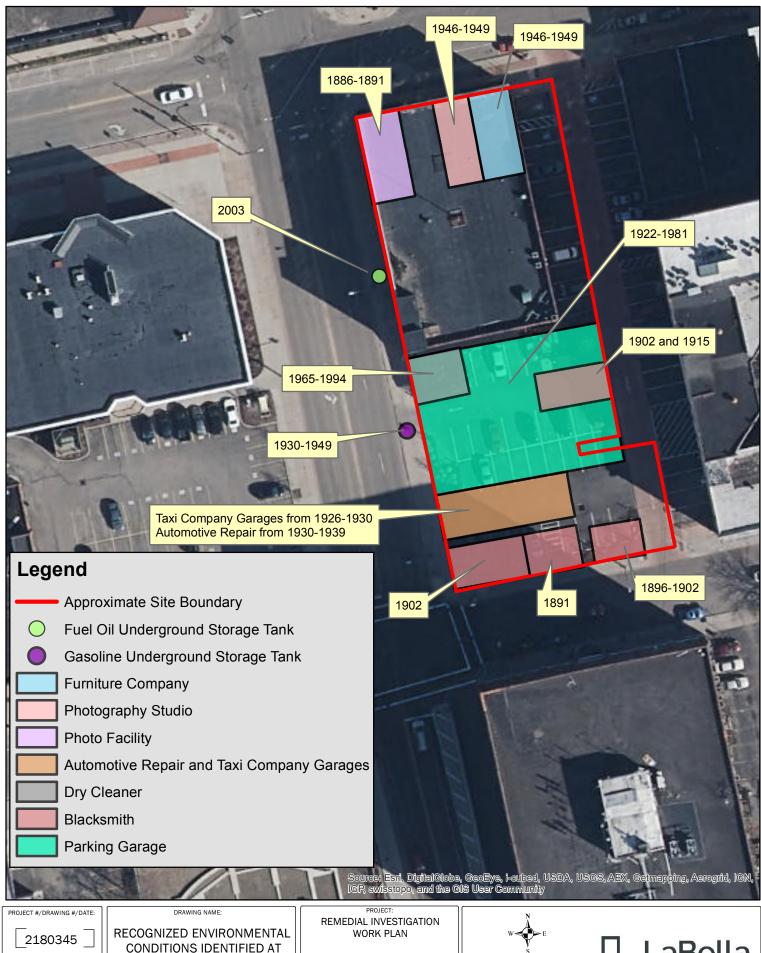
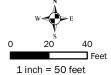

FIGURE 5

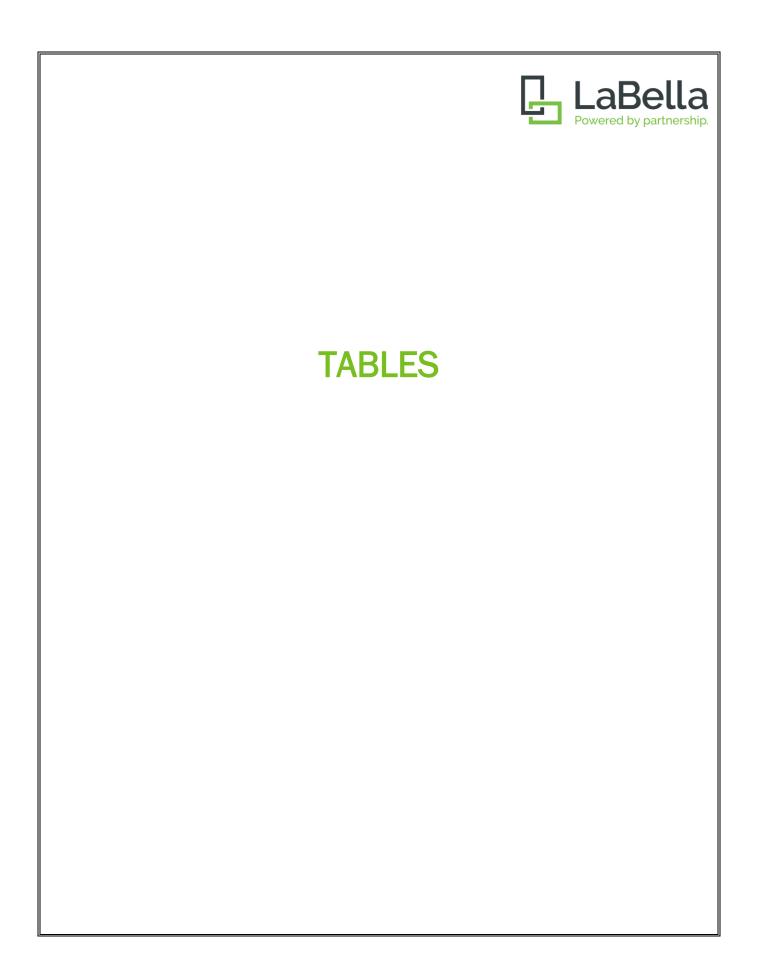
8/9/2018

AREA OF CONCERN

WORK PLAN

JAMESTOWN BREWERY 115-121 WEST THIRD STREET JAMESTOWN, NEW YORK


FIGURE 6 8/9/2018

CONDITIONS IDENTIFIED AT THE SITE

JAMESTOWN BREWERY 115-121 WEST THIRD STREET JAMESTOWN, NEW YORK

Table 1

115-121 West Third Street

Jamestown, New York

Remedial Investigation Work Plan Summary of Subsurface Soil Analytical Results

(Detected Analytes Only)

								(Detected A	Analytes Only)									
Sample ID	SB-1	SB-3	SB-5	SB-6	SB-7	SB-8	SB-9	SB-10	SB-11	SB-12	SB-13	AB-1	AB-2	AB-4	AB-5	AB-7	Restricted	
Depth (ft bgs)	12-14	10-12	10-12	14-15	14-15	11-12	10-11	12-13	10-11	12-13	10-11	0.25-0.5	1-2	0.25-0.5	1-2	0.25-0.5	Residential Use	Commercial Use
Sample Date	8/15/2017	8/15/2017	8/15/2017	10/19/2017	10/19/2017	10/19/2017	10/19/2017	10/19/2017	10/19/2017	10/19/2017	10/19/2017	12/22/2017	12/22/2017	12/22/2017	12/22/2017	12/22/2017	SC0s	SC0s
Volatile Organic Compounds (µg/kg)		•	•	•		•	•	•	•	•	•	•	•	•				
Acetone	<	<	<	<	<	<	<	<	1.4 J	2.6 J	<	NA	NA	NA	NA	NA	100,000	500,000
Benzene	<	<	<	<	140 J	<	<	32 J	<	<	<	NA	NA	NA	NA	NA	4,800	44,000
Bromomethane	<	<	<	<	<	27 J	40 J	27 J	<	<	<	NA	NA	NA	NA	NA	NL	NL
Cyclohexane	<	<	<	870 J	27,000	<	<	200 J	<	<	<	NA	NA	NA	NA	NA	NL	NL
cis-1,2-Dichloroethene	<	<	<	<	<	<	<	<	<	<	1.3	NA	NA	NA	NA	NA	100,000	500,000
trans-1,2-Dichloroethene	<	<	<	<	66 J	<	<	<	0.33 J	<	<	NA	NA	NA	NA	NA	100,000	500,000
Ethylbenzene	<	<	<	400	3,600	<	<	27 J	<	<	<	NA	NA	NA	NA	NA	41,000	390,000
Isopropylbenzene	<	<	<	1,200	2,700	<	<	79	<	<	<	NA	NA	NA	NA	NA	NL	NL
Methylcyclohexane	<	3,900	<	5,100	100,000 E	<	<	1,200	0.40 J	<	<	NA	NA	NA	NA	NA	NL	NL
Methylene chloride	3.4 J	<	<	<	<	<	<	<	<	<	<	NA	NA	NA	NA	NA	100,000	500,000
Methyl ethyl ketone (2-Butanone)	<	175 J	<	<	<	<	<	<	<	<	<	NA	NA	NA	NA	NA	100,000	500,000
Methyl-tert-butyl-ether	<	<	<	<	<	5.6 J	8.3 J	<	<	<	<	NA	NA	NA	NA	NA	100,000	500,000
Tetrachloroethene	39.2	66,100	2,860	59,000 E	84,000 E	2,800	7,400	1,600	35	<	<	NA	NA	NA	NA	NA	19,000	150,000
Toluene	<	<	<	<	290 J	<	<	<	<	<	<	NA	NA	NA	NA	NA	100,000	500,000
Trichloroethene	<	<	<	<	2,100	<	<	<	1.2	<	<	NA	NA	NA	NA	NA	21,000	200,000
Total Xylenes	<	349 J	<	<	<	<	<	<	<	<	<	NA	NA	NA	NA	NA	100,000	500,000
m/p - Xylenes	NA	NA	NA	1,800	21,000	<	<	160	<	<	<	NA	NA	NA	NA	NA	100,000*	500,000*
o - Xylenes	NA	NA	NA	340	2,600	<	<	64 J	<	<	<	NA	NA	NA	NA	NA	100,000*	500,000*
Semi-Volatile Organic Compounds (µg	/kg)																	
Acenaphthene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	<	33 J	<	<	<	100,000	500,000
Anthracene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	<	150	35 J	<	<	100,000	500,000
Benzo(a)anthracene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	99 J	360	120	<	130	1,000	5,600
Benzo(b)fluoranthene	<	9.1	<	NA	NA	NA	NA	NA	NA	NA	NA	150	410	140	<	190	1,000	5,600
Benzo(k)fluoranthene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	49 J	140	50 J	<	58 J	3,900	56,000
Benzo(g,h,i)perylene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	89 J	200	84 J	<	150	100,000	500,000
Benzo(a)pyrene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	100 J	290	110 J	<	160	1,000	1,000
Chrysene	<	16	<	NA	NA	NA	NA	NA	NA	NA	NA	130	360	120	<	130	3,900	56,000
Dibenzo(a,h)anthracene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	<	55 J	21 J	<	33 J	330	560
Fluoranthene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	270	940	240	<	210	100.000	500,000
Fluorene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	<	48 J	<	<	<	100,000	500,000
Indeno(1,2,3-cd)pyrene	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	86 J	220	88 J	<	140 J	500	5,600
Naphthalene	<	125	<	NA NA	NA	NA	NA	NA	NA	NA	NA	<	24 J	<	<	<	100,000	500,000
Phenanthrene	<	123	<	NA NA	NA NA	NA NA	NA NA	130	760	140	<	81 J	100,000	500,000				
Pyrene	<	10.1	<	NA NA	NA NA	NA NA	NA NA	220	720	200	<	200	100,000	500,000				
Metals (mg/kg)	`	10.1	1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	220	120	200	`	200	100,000	300,000
Arsenic	14.3	12.7	4.6	l NA	NA	l NA	NA	l NA	NA NA	NA NA	NA NA	8.59	7.99	7.36	7.58	6.9	16	16
	119	130	68.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	73.2	7.99 83.6	69.1	36.5	81.1	400	400
Barium	0.26	0.33	0.13 J	NA NA		NA NA	-	NA NA	NA NA	NA NA	NA NA	0.1 J	0.162 J	0.073 J	0.06 J	0.101 J	4.3	9.3
Cadmium	1.3	8.9			NA NA		NA NA		-									
Chromium			3.6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	9.51	8.81	7.68	7.85	9.11	110/180**	400/1,500**
Lead	18.9	14.6	9.9	NA NA	NA	NA	NA	NA	NA	NA	NA	74.7	267	18	10.6	20.7	400	1,000
Mercury	<	<	< 0.54	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	0.29	0.48	0.07	0.01 J	0.04 J	0.81	2.8
Selenium	1.4	0.59 J	0.54	NA	NA	NA	NA NA	NA	NA	NA	NA	0.502 J	0.554 J	0.405 J	0.386 J	0.438 J	180	1,500
Silver	2.2	2.4	1.5	NA	NA	NA	NA	NA	NA	NA	NA	<	<	<	<	<	180	1,500

Restricted Residential Use SCOs = NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs), Table 375-6.8(a) (December 2006)

Commercial Use SCOs = Part 375 Commercial Use SCOs = NYSDEC Part 375 Commercial Use Soil Cleanup Objectives (SCOs), Table 375-6.8(b) (December 2006)

Concentrations in bold exceedPart 375 Restricted Residential Use SCOs

Concentrations in gray exceed Part 375 Commericial Use SCOs < = Not detected

NL = Not listed

NA = Not analyzed

ft bgs = Feet below the ground surface

µg/kg = Micrograms per kilogram

mg/kg = Milligrams per kilogran

J = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample

E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument

* = Guidance for total xylenes

** = Chromium, hexavalent/Chromium, trivalent (The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.)

Table 2

115-121 West Third Street and 200-210 Washington Street

Jamestown, New York

Remedial Investigation Work Plan

Summary of Subsurface Soil Analytical Results

(Detected Analytes Only)

Depth (1 bgs)	Sample ID	SB-16	SB-17	SB-18	SB-19	SB-20	cted Analytes On SB-21	SB-22	SB-23	SB-26	SB-28	SB-29	SB-30	Part 375
Semple Date	•		2-5	1-4	2-5	1-4	14-15	15-16	15-16	0.5-2	0.5-2	3-5	14-15	Commercial Use
Vicinite Organic Compounds (ug/Ng) Vicinite		1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/12/2018	1/12/2018	1/12/2018	1/12/2018	
Cyclobrance	•	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	
list_12-Dichloroethene NA		NA	NA	NA	NA	NA	8.2 J	420 J	17,000	NA	NA	NA	810 J	NL
Ethylehezene	cis-1,2-Dichloroethene		NA	NA		NA	0.72	<	<		NA	NA	<	500,000
Sopropylemzene	trans-1,2-Dichloroethene					NA	2.7	<	<		NA	NA	<	
Methylocyclohexane	Ethylbenzene												<	390,000
Mettykene chloride	Isopropylbenzene	NA	NA	NA	NA	NA	0.41 J		·			NA		NL
Tetrachloroethene			NA	NA		NA	21	1,900			NA	NA	·	
Toluene	Methylene chloride	NA	NA	NA		NA			,		NA	NA		·
Trichloroethene	Tetrachloroethene							710	120,000				240,000	·
m/p - Vylenes NA			NA	NA	NA			<	<				<	·
NA				NA	NA			<					<	·
Semi-Volatile Organic Compounds (µg/kg)	m/p - Xylenes	NA	NA	NA	NA	NA		<	270 J	NA	NA	NA	<	·
Benzo(a)anthracene	o - Xylenes	NA	NA	NA	NA	NA	1.5	<	<	NA	NA	NA	<	500,000*
Benzo(b)fluoranthene	Semi-Volatile Organic Compounds (µg/	'kg)												
Benzo(g,h,i)perylene	Benzo(a)anthracene	<	<	<	<	79 J	<	<	<	<	<	<	<	5,600
Biphenyl	Benzo(b)fluoranthene	<	<	<	<	110 J	<	<	<	42 J	<	<	<	5,600
Chrysene 40 J 92 J 39 J 56,000 Fluoranthene 58 J 180 J	Benzo(g,h,i)perylene	<	<	<	<	100 J	<	<	<	150	<	<	<	500,000
Fluoranthene	Biphenyl	<	<	<	<	<	54 J	<	<	<	<	<	250 J	NL
Indeno(1,2,3-cd)pyrene	Chrysene	<	<	40 J	<	92 J	<	<	<	39 J	<	<	<	56,000
Naphthalene	Fluoranthene	<	<	58 J	<	180 J	<	<	<	<	<	<	<	500,000
Phenanthrene	Indeno(1,2,3-cd)pyrene	<	<	<	<	60 J	<	<	<	34 J	<	<	<	5,600
Pyrene 46 J 150 J 500,000 2-Methylnaphthalene 3,500 NL Metals (mg/kg) Arsenic 8.48 11.8 9.12 9.9 10 NA NA NA 7.75 8.31 12.6 NA 16 Barium 64.2 79.5 99.5 93.4 73.6 NA NA NA 38.8 118 25.5 NA 400 Cadmium 0.639 1.05 0.757 0.962 0.796 NA NA NA 0.622 0.584 0.687 NA 9.3	Naphthalene	<	<	<	<	<	1,600	120 J	<	<	<	<	1,100	500,000
2-Methylnaphthalene 3,500 NL Metals (mg/kg) Arsenic 8.48 11.8 9.12 9.9 10 NA NA NA 7.75 8.31 12.6 NA 16 Barium 64.2 79.5 99.5 93.4 73.6 NA NA NA 38.8 118 25.5 NA 400 Cadmium 0.639 1.05 0.757 0.962 0.796 NA NA NA 0.622 0.584 0.687 NA 9.3	Phenanthrene	<	<	<	<	130 J	<	<	<	<	<	<	<	500,000
Metals (mg/kg) Arsenic 8.48 11.8 9.12 9.9 10 NA NA NA 7.75 8.31 12.6 NA 16 Barium 64.2 79.5 99.5 93.4 73.6 NA NA NA 38.8 118 25.5 NA 400 Cadmium 0.639 1.05 0.757 0.962 0.796 NA NA NA 0.622 0.584 0.687 NA 9.3	Pyrene	<	<	46 J	<	150 J	<	<	<	<	<	<	<	500,000
Arsenic 8.48 11.8 9.12 9.9 10 NA NA NA 7.75 8.31 12.6 NA 16 Barium 64.2 79.5 99.5 93.4 73.6 NA NA NA 38.8 118 25.5 NA 400 Cadmium 0.639 1.05 0.757 0.962 0.796 NA NA NA 0.622 0.584 0.687 NA 9.3	2-Methylnaphthalene	<	<	<	<	<	1,700	160 J	900	<	<	<	3,500	NL
Barium 64.2 79.5 99.5 93.4 73.6 NA NA NA 38.8 118 25.5 NA 400 Cadmium 0.639 1.05 0.757 0.962 0.796 NA NA NA 0.622 0.584 0.687 NA 9.3	Metals (mg/kg)	•												
Cadmium 0.639 1.05 0.757 0.962 0.796 NA NA NA 0.622 0.584 0.687 NA 9.3	Arsenic	8.48	11.8	9.12	9.9	10	NA	NA	NA	7.75	8.31	12.6	NA	16
Cadmium 0.639 1.05 0.757 0.962 0.796 NA NA NA 0.622 0.584 0.687 NA 9.3	Barium	64.2	79.5	99.5	93.4	73.6	NA	NA	NA	38.8	118	25.5	NA	400
		0.639	1.05	0.757										
	Chromium	7.91	16.3	11.4	14.6	8.15	NA	NA	NA	7.56	9.96	8.97	NA	400/1,500**
Lead 36 7.12 13.8 7.52 134 NA NA NA 10 114 12.2 NA 1,000														, .
Mercury 0.04 J < < 0.3 NA NA NA < 0.45 0.04 J NA 2.8														
Selenium 0.172 J Co.168 Co.156 J NA NA NA Co.179 J O.167 J NA 1,500 J	·													

NYSDEC Part 375 Commercial Use Soil Cleanup Objectives (SCOs), Table 375-6.8(b) (December 2006)

Concentrations in gray exceed Part 375 Commericial Use SCOs

< = Not detected

NL = Not listed

NA = Not analyzed

ft bgs = Feet below the ground surface

μg/kg = Micrograms per kilogram

mg/kg = Milligrams per kilogram

- J = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample
- E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of instrument
- * = Guidance for total xylenes
- ** = Chromium, hexavalent/Chromium, trivalent (The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.)

Table 3 115-121 West Third Street Jamestown, New York

Remedial Investigation Work Plan Summary of Groundwater Analytical Results (Detected Compounds Only)

Sample ID	MW-1	MW-2	PMW-1	PMW-3	
Sample Date	8/15/2017	8/15/2017	10/20/2017	10/20/2017	NYSDEC TOGS
Volatile Organic Compounds (µg/L)					
Acetone	25	31.6	400 J	3.3 J	50
Benzene	<	1.7	<	<	1
Carbon Disulfide	2.7	<	<	<	NL
Cyclohexane	<	749	<	<	NL
cis-1,2-Dichloroethene	<	33.7	<	<	5
trans-1,2-Dichloroethene	<	2.5	<	<	5
Ethylbenzene	<	1.3	<	<	5
Isopropylbenzene	<	32.4	<	<	5
Methylcyclohexane	<	1,290	<	<	NL
Methylene Chloride	<	4.8	<	<	5
Methyl ethyl ketone (2-Butanone)	<	5 J	<	<	50
Tetrachloroethene	<	27,100	36,000	<	5
Toluene	<	1.9	<	<	5
Trichloroethene	<	74.4	96 J	<	5
Total Xylene	<	61.8	<	<	5
Semi-Volatile Organic Compounds (με	<u>₹</u> /L)	•	•		•
Naphthalene	<	23.1	NA	NA	10

NYSDEC TOGS = NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations (June 1998)

μg/L = micrograms per liter

< = Not detected

NL = Not listed

NA = Not analyzed

J = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.

Concentrations in bold exceed NYSDEC TOGS

Table 4 115-121 West Third Street Jamestown, New York Remdial Investigation Work Plan Summary of Soil Vapor Analytical Results (Detected Analytes Only)

Sample ID	SS1	SS2	SS3	SS4
Sampling Date	10/4/2017	10/4/2017	10/4/2017	10/4/2017
Location	Sub-Slab	Sub-Slab	Sub-Slab	Sub-Slab
Volatile Organic Compounds (µg/m3)			
Dichlorodifluoromethane	<	2.79	2.39	4.05
1,3-Butadiene	<	<	1.9	<
Acetone	271	51.1	51.1	78.6
Carbon disulfide	107	19.7	2.31	2.72
trans-1,2-Dichloroethene	62.6	<	<	<
n-Hexane	8.11	4.76	16.4	14.4
cis-1,2-Dichloroethene	157	<	<	<
Chloroform	<	<	2.22	<
1,1,1-Trichloroethane	12.1	9.66	<	<
Cyclohexane	<	2.26	5.44	5.47
2,2,4-Trimethylpentane	<	<	2.9	<
Benzene	<	1.96	4.98	3.9
Trichloroethene	1,840	40.6	<	<
Toluene	12.7	4.79	11.8	11.3
Tetrachloroethene	5,920	868	15.4	10.8
m,p-Xylene	<	<	5.21	6.34
o- Xylene	<	<	2.53	2.9
1,2,4-Trimethylbenzene	<	2.4	4.18	4.14
2-Butanone	<	<	5.49	4.45
Heptane	8.65	6.11	11.3	12.5

Volatile Organic Compounds by United States Environmental Protection Agency (USEPA)

Method TO-15

< = Not detected

 $\mu g/m^3$ = micrograms per cubic meter

Table 5

115-121 West Third Street

Jamestown, New York

Remedial Investigation Work Plan

Sample Summary

Sample ID Co	Callantian Data	Depth								
	Collection Date		-0.45			Laboratory Analysis				
		(feet bgs)	TO-15	TCL VOCs	CP-51 VOCs	TCL SVOCs	CP-51 SVOCs	PCBs	RCRA Metals	Notes
Subsurface Soil Sample									T	
	8/15/2017	12 to 14		Х	X		X		Х	
	8/15/2017	10 to 12		Х	X		Х		Х	
	8/15/2017	10 to 12		Х	X		Х		Х	
	10/19/2017	14 to 15		Х						
	10/19/2017	14 to 15		X						
	10/19/2017	11 to 12		Х						
	10/19/2017	10 to 11		Х						
	10/19/2017	12 to 13		Х						
	10/19/2017	10 to 11		Х						
	10/19/2017	12 to 13		Х						
	10/19/2017	10 to 11		X						
	1/11/2018	2 to 5				X			Х	
	1/11/2018	2 to 5				X		X	Х	
	1/11/2018	1 to 4				X		X	Х	
	1/11/2018	2 to 5				Х			Х	
SB-20	1/11/2018	1 to 4				Х			Х	
SB-21	1/11/2018	14 to 15		Х		Х				
	1/11/2018	15 to 16		Х		Х				
SB-23	1/11/2018	15 to 16		Х		Х				
SB-26	1/12/2018	0.5 to 2				Х		Х	х	
SB-28	1/12/2018	0.5 to 2				Х		Х	х	
SB-29	1/12/2018	3 to 5				Х		Х	х	
SB-30	1/12/2018	14 to 15		Х		Х				
Surface Soil Samples	_									
AB-1	12/22/2017	0.25 to 0.5					х		х	
AB-2	12/22/2017	1 to 2					Х		Х	
AB-4	12/22/2017	0.25 to 0.5					Х		Х	
AB-5	12/22/2017	1 to 2					х		Х	
AB-7	12/22/2017	0.25 to 0.5					Х		Х	
Groundwater Samples										
MW-1	8/15/2017	19.3		Х	Х		Х			
	8/15/2017	20.1		Х	Х		Х			
	10/20/2017	20		Х						
	10/20/2017	20		Х						
Sub-Slab Soil Vapor Sar									•	•
	10/4/2017	0.5	х							
	10/4/2017	0.5	х							
	10/4/2017	0.5	х							
	10/4/2017	0.5	х							

TO-15 = Volatile Organic Compound (VOC) air analysis via USEPA Test Method TO-15

TCL VOCs = Target Compounds List (TCL) VOCs via USEPA Test Method 8260

CP-51 VOCs = Commissioner Policy (CP)-51 VOCs via USEPA Test Method 8260

TCL SVOCs = Target Compound List semi-volatile organic compounds (SVOCs) via USEPA Test Method 8270

CP-51 SVOCs = CP-51 SVOCs via USEPA Test Method 8270

PCBs = Polychlorinated biphenyls via USEPA Test Method 8082

RCRA Metals = Resource Conservation and Recovery Act Metals via USEPA Test Method 6010/7471

APPENDIX 1

Phase II Environmental Site Assessments

Olympic Towers, 300 Pearl Street, Suite 130 | Buffalo, NY 14202 | p 716.551.6281 | f 716.551.6282 | www.labellapc.com

Draft Supplemental Phase II Environmental Site Assessment

Location:

115-121 West Third Street and 200-210 Washington Street Jamestown, New York

Prepared for:

Gebbie Foundation c/o Mr. David Flynn Mr. Phillips Lytle LLP 125 Main Street Buffalo, New York

LaBella Project No. 2172285

November 10, 2017

Table of Contents

1.0	INTRO	DUCTION	1
1.1	Spec	cial Terms & Conditions	1
1.2	Limi	itations & Exceptions	1
1.3	Relia	ance	1
2.0	BACKG	GROUND	1
2.1	Site	Description & Features Error! Bookmark not def	ined
2.2	Phys	sical Setting	1
2.3	Adjo	pining/Adjacent Property Use	1
2.4	Sum	nmary of Previous Studies	2
3.0	OBJEC	TIVE	3
4.0		OF WORK	
4.1	Soil	Borings	3
4.2	Grou	undwater Monitoring Wells	4
4.3	Limi	ited Vapor Intrusion Assessment	4
5.0		NGS	
5.1	Site	Geology and Hydrology	5
5.2	Field	d Observations and Screening	5
5.3	Labo	oratory Analytical Results	6
5	.3.1	Soil Laboratory Results	<i>6</i>
5	.3.2	Groundwater Laboratory Results	<i>6</i>
5	.3.3	Soil Vapor Laboratory Results	7
6.0	CONCL	LUSIONS	8
7.0		MMENDATIONS	
8.0	SIGNA	TURES OF ENVIRONMENTAL PROFESSIONALS	S
Figure	S	Figure 1 – Site Location Map Figure 2 – Site Investigation Map	
Tables	:	Table 1 – Summary of Subsurface Soil Analytical Results Table 2 – Summary of Groundwater Analytical Results Table 3 – Summary of Soil Vapor Intrusion Analytical Results Table 4 – Soil Vapor Intrusion Field Table Table 5 – Soil Boring PID Readings	
Appen Appen Appen	dix 2	Field Logs NYSDOH Indoor Air Quality Questionnaire and Building Inventory Forms Laboratory Reports	

1.0 INTRODUCTION

LaBella Associates, D.P.C. (LaBella) completed a Phase II Environmental Assessment (ESA) for the property located at 115-121 West Third Street and 200-210 Washington Street, City of Jamestown, Chautauqua County, New York (Site) in August 2017. The results of that assessment are summarized in LaBella's Phase II ESA report dated September 7, 2017. Subsequently, LaBella was retained by Gebbie Foundation (Client) to conduct a Supplemental Phase II ESA for the Site to further evaluate the extent of the chlorinated solvent impact identified proximate the southwest exterior of the Site Building (SB-3), and to evaluate whether the subsurface chlorinated solvent impact represents a soil vapor intrusion concern to the Site Building. This Supplemental Phase II ESA has been performed in conformance with the scope and limitations of ASTM Practice E 1903-11. It should be noted that the results of LaBella's September 7, 2017 Phase II ESA Report have been included within this report.

1.1 Special Terms & Conditions

The findings of this Phase II ESA are generally based on the scope of work and project objectives as stated in LaBella Proposal #P1701253 dated September 22, 2017.

1.2 Limitations & Exceptions

Work associated with this Phase II ESA was performed in accordance with generally accepted environmental engineering and environmental contracting practices for this region. LaBella makes no other warranty or representation, either expressed or implied, nor is one intended to be included as part of its services, proposals, contracts or reports.

In addition, LaBella cannot provide guarantees, certifications or warranties that the property is or is not free of environmental impairment or other regulated solid wastes. The Client shall be aware that the data and representative samples from any given soil sampling point, monitoring well or soil vapor sampling point may represent conditions that apply only at that particular location, and such conditions may not necessarily apply to the general Site as a whole.

1.3 Reliance

Gebbie Foundation may rely upon the findings of this report and should be aware of the agreed upon scope of work and the limitations associated with this Scope of Work.

2.0 BACKGROUND

2.1 Physical Setting

The Site is located at 115-121 West Third Street and 200-210 Washington Street, City of Jamestown, Chautauqua County, New York, within a predominantly urban area. Groundwater flow at the Site appears to generally flow to the south.

2.2 Adjoining/Adjacent Property Use

The following properties border the Site.

Direction	Occupant (Address)
North beyond West Third Street	Chadakoin Theatre (114-122 West Third Street)
	The Q (104 West Second Street), Convenient Store (111 West
East beyond Foundry Alley	Third Street), Commercial buildings (1101-103 West Third Street
	and 201 Cherry Street)
South beyond West Second	Parking lot (200 – 210 Washington Street)
Street	Parking for (200 – 210 Washington Street)
West beyond Washington	LIC Army Pocruiting Station (201 West Third Street)
Street	US Army Recruiting Station (201 West Third Street)

2.3 Summary of Previous Studies

As you know, LaBella completed a Phase I ESA Report for the Site dated August 4, 2017. Based on the results of that assessment, the following Recognized Environmental Conditions (RECs) were identified associated with the Site.

- It appears the Site historically included a photo facility located on the northwest portion of the Site from at least 1886 to at least 1891.
- From between at least 1930 and 1949, one gasoline underground storage tank (UST) was located within the Washington Street right-of-way proximate the southwest corner of the Site.
- A photography studio was located on the north portion of the Site historically addressed as 117
 West Third Street and Jamestown Furniture Co., historically addressed as 121 West Third Street, was located at the northwest corner of the Site from at least 1946 to at least 1949.
- The southwest corner of the Site historically addressed as 214 Washington Street was occupied by a dry cleaners from at least 1965 to at least 1994.
- A black smith and painting facility was located on the north adjacent property in at least 1886.
- Black smith shops were located on the south adjoining property along West Second Street from at least 1891 to at least 1902 and on the south adjoining property historically addressed as 208-210 Washington Street in at least 1902 and 1915.
- A laundry facility was located on the west adjacent properties historically addressed as 205 West Third Street and 219 Washington Street from at least 1891 to at least 1902.
- The west adjacent property historically addressed as 217 Washington Street was occupied by Jamestown welding in at least 1922 and Bucklin Bros auto tires from at least 1922 to at least 1926.
- The west adjacent property historically addressed as 217-219 Washington Street was occupied by a cleaning company from at least 1922 to at least 1939.
- The south adjoining property historically addressed as 208 Washington Street was occupied by taxi company garages from at least 1926 to at least 1930.
- The south adjoining property historically addressed as 210 Washington Street was occupied by automotive repair facilities from at least 1930 to at least 1939.
- The south adjoining property historically addressed as 212-214 Washington Street was occupied by parking garages from at least 1922 to at least 1981.
- The west adjacent property historically addressed as 203 Washington Street was occupied by a

clothing cleaner from at least 1955 to at least 1960.

As such, LaBella completed a Phase II ESA to further evaluate the RECs identified associated with the Site. The results of the subsurface soil and groundwater investigation have been incorporated into Section 4.0 below. Based on the results of the subsurface soil and groundwater investigation, further investigation was recommended at the Site.

3.0 OBJECTIVE

The objective of this Supplemental Phase II ESA was to further evaluate the extent of chlorinated solvent impact identified within the soil sample collected from soil boring SB-3, and evaluate whether the subsurface chlorinated solvent impact represents a soil vapor intrusion concern to the Site Building.

4.0 SCOPE OF WORK

LaBella completed the following scope of work at the Site.

4.1 Soil Borings

LaBella advanced five soil borings (SB-1 through SB-5) on the exterior of the Site on August 15, 2017 with a direct-push sampling system to evaluate the RECs identified above. Based on the findings of that investigation, eight additional soil borings (SB-6 through SB-13) were advanced at the Site on October 19, 2017 to further evaluate the extent of the chlorinated solvent impact identified within soil boring SB-3.

Soil borings were advanced to a depth of 20 feet below the ground surface (ft bgs). All soil borings were advanced on the exterior of the Site. Soil Boring Logs were completed for each soil boring and are included in Appendix 1. Soil boring locations are depicted on Figure 2.

Soils recovered from the soil borings were continuously assessed for visible impairment, olfactory indications of impairment and indication of detectable volatile organic compounds (VOCs) with a photoionization detector (PID). Select soil samples were placed in a cooler on ice and sent under standard chain of custody procedures to Pace Analytical Services (Pace) in Melville, New York and Alpha Analytical Laboratories (Alpha) in Westborough, Massachusetts. The following laboratory analysis was performed.

Sample ID	Sample Depth (ft bgs)	Date Collected	Laboratory Analyses
SB-1	12-14	8/15/2017	- TCL VOCs + CP-51 VOCs
SB-3	10-12	8/15/2017	- CP-51 SVOCs
SB-5	10-12	8/15/2017	- RCRA Metals
SB-6	14-15	10/19/2017	
SB-7	14-15	10/19/2017	- TCL VOCs
SB-8	11-12	10/19/2017	- TCL VOCS
SB-9	10-11	10/19/2017	

SB-10	12-13	10/19/2017
SB-11	10-11	10/19/2017
SB-12	12-13	10/19/2017
SB-13	10-11	10/19/2017

TCL and NYSDEC CP-51 VOCs = Target Compound List (TCL) and New York State Department of Environmental Conservation (NYSDEC) Commissioner Policy (CP)-51 VOCs using United States Environmental Protection Agency (USEPA) Method 8260 NYSDEC CP-51 SVOCs = NYSDEC CP-51 Semi-Volatile Organic Compounds (SVOCs) using USEPA Method 8270 RCRA Metals = Resource Conservation and Recovery Act (RCRA) Metals using USEPA Method 7470/6010

Upon completion of soil boring activities, the removed materials were returned to the bore holes from which they originated. Soil borings were completed with a cold patch to the pre-existing surfaces.

4.2 Groundwater Monitoring Wells

Two temporary one-inch groundwater monitoring wells designated as MW-1 and MW-2 were installed within soil borings SB-1 and SB-3, to depths of 19.3 ft bgs and 20.1 ft bgs on August 15, 2017. Each well was completed with ten feet of 0.010-slot screen. The screens associated with the monitoring wells were connected to an appropriate length of solid PVC well riser to complete the wells. The annulus was packed with quartz sand to approximately two ft bgs. The remaining annulus was bentonite sealed to the ground surface.

On October 12, 2017, LaBella installed two, two-inch permanent shallow overburden groundwater monitoring wells designated as PMW-1 and PMW-2. Additionally, on October 19, 2017, LaBella installed a third, two-inch permanent shallow overburden groundwater monitoring well designated as PMW-3. All three permanent groundwater monitoring wells were installed to a depth of 20 ft bgs. Each well was completed with ten feet of 0.010-slot screen. The screens were connected to an appropriate length of solid PVC well riser to complete the well. The annulus was sand packed with quartz sand to an approximate depth of two feet above the screen section. The remaining annulus was sealed with bentonite to approximately two feet below ground surface. The wells were completed at the surface with 8-inch flush-mount covers with 2-inch by 2-inch concrete pads. Field logs associated with groundwater monitoring activities are included in Appendix 1. Monitoring well locations are depicted on Figure 2.

The groundwater samples were placed in a cooler on ice, and sent under standard chain of custody procedures to Pace and Alpha. The following laboratory analysis was performed.

Sample ID	Laboratory Analyses
MW-1	- TCL + CP-51 VOCs
MW-2	- CP-51 SVOCs
PMW-1	TCL VOCs
PMW-3	TCL VOCS

TCL VOCs = TCL and CP-51 VOCs using USEPA Method 8260 CP-51 SVOCs = NYSDEC CP-51 SVOCs using USEPA Method 8270

4.3 Limited Vapor Intrusion Assessment

On October 4, 2017, LaBella completed a soil vapor intrusion assessment at the Site. The soil vapor sampling methods utilized were generally consistent with the October 2006 New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion. The soil vapor intrusion assessment included the collection of four sub-slab soil vapor samples (SS1 through SS4) throughout the Site Building basement. The sub-slab soil vapor air sampling locations were selected to provide overall coverage and evaluate sub-slab soil vapor conditions beneath the Site Building. The locations of the soil vapor sampling points are depicted on Figure 2.

A hammer drill was utilized to puncture the floor slab at four locations within the basement of the Site Building. Thereafter, polyethylene tubing and a seal was installed at each puncture location. An enclosure was then constructed and sealed to the sampling point tubing at each location. Subsequently, each enclosure was enriched with helium to conduct a tracer gas evaluation. The polyethylene tubing at each sub-slab soil vapor sampling point was then purged to ensure a representative sample of soil vapor was obtained. During purging, the purged air was monitored for helium via a Radio Detection MGD-2002 Helium Leak Detector. None of the sub-slab soil vapor sampling points exhibited concentrations of the tracer gas greater than 10%, thus all appeared to be sealed properly.

Subsequent to purging, the polyethylene tubing at each sub-slab soil vapor sampling point was connected to a PID to measure total VOCs. Table 4 located within the report appendices summarizes the field screening results. No elevated PID measurements were detected associated with the air sampling locations evaluated.

Summa canisters with laboratory calibrated regulators were connected to each of the four sub-slab soil vapor sampling points for soil vapor sample collection. Each sub-slab soil vapor sample was collected continuously over an approximately four-hour period and sent to Alpha for analysis using USEPA test method TO-15.

Weather conditions at the time of the sampling event were sunny with a temperature of approximately 75°F. The NYSDOH Indoor Air Quality Questionnaire and Building Inventory forms were completed as part of this assessment and are included in Appendix 2.

5.0 FINDINGS

5.1 Site Geology and Hydrology

In general, the soil borings advanced encountered crushed asphalt to approximately two ft bgs followed by a gravel sub-base mixed with brown clay silts from approximately one to two ft bgs. Native soils encountered generally consisted of various mixtures of brown clay silt and gray clay silt to the bottom of the soil borings. Saturated conditions were encountered in soil borings SB-1 through SB-11 at depths ranging from 13 to 20 ft bgs. It should be noted that PMW-2 was dry at the time of sample collection; therefore, groundwater samples were not collected from PMW-2.

5.2 Field Observations and Screening

Maximum PID readings at each soil boring location are summarized within Table 5.

Strong petroleum-type odors were observed within the following soil borings: SB-3 at 8-15 ft bgs, SB-6 at 12-20 ft bgs, SB-7 at 7-20 ft bgs and SB-10 at 10-15 ft bgs. Black staining was observed within SB-7 at 13-15 ft bgs and SB-6 at 14-15 ft bgs.

No olfactory or visual evidence of impairment was observed in the groundwater extracted from MW-1, PMW-1 or PMW-3. Petroleum-type odors and rainbow sheen were observed within the groundwater extracted from MW-2.

5.3 Laboratory Analytical Results

5.3.1 Soil Laboratory Results

Eighteen VOCs were detected at concentrations above laboratory method detection limits. Among the VOCs detected, nine petroleum-related VOCs were detected at concentrations above laboratory method detection limits. Amongst the detected petroleum-related VOCs, six petroleum-related VOCs (benzene, ethylbenzene, isopropylbenzene, total xylenes, m/p - xylenes and o - xylenes), were identified at concentrations exceeding NYSDEC CP-51 Soil Cleanup Guidance (SCG) within SB-3, SB-6 and SB-7 with total petroleum-related VOC concentrations ranging from 524 micrograms per kilogram (μ g/kg) to 30,330 μ g/kg. Additionally, petroleum-related VOCs were identified within SB-8, SB-9 and SB-10 with total petroleum-related VOC concentrations ranging from 5.6 μ g/kg to 362 μ g/kg.

Six chlorinated solvents were detected at concentrations above laboratory method detection limits. None of these chlorinated solvents were identified above applicable NYSDEC guidance. However, several elevated concentrations of chlorinated solvents (cis-1,2-dichloroethene, trans-1,2-dichloroethene, tetrachloroethene and trichloroethene) were identified amongst the soil samples collected from SB-3 and SB-5 through SB-10 with total chlorinated solvent concentrations ranging from 1,600 μ g/kg to 86,166 μ g/kg.

Cyclohexane and methylcyclohexane were detected at concentrations above laboratory method detection limits. NYSDEC guidance has not established standards for cyclohexane and methylcyclohexane. Several elevated concentrations of both analytes were identified amongst the soil samples collected from SB-3, SB-6, SB-7 and SB-10 with concentrations ranging from 200 μ g/kg to 100,000 μ g/kg. The source of these elevated analytes is unknown; however, cyclohexane and methylcyclohexane are can be related to both petroleum contamination and also solvent use.

No SVOCs were detected at concentrations above NYSDEC CP-51 SCG or NYSDEC Part 375 Commercial-Use Soil Cleanup Objects (SCOs). Soil laboratory results are summarized in Table 1. Copies of the laboratory reports are included in Appendix 3.

5.3.2 Groundwater Laboratory Results

Based on the groundwater laboratory analytical results, several VOCs were detected at concentrations above laboratory method detection limits in each of the groundwater samples submitted for analysis.

Seven petroleum-related VOCs were identified within MW-2. Two of these petroleum-related VOCs exceeded NYSDEC Division of Technical and Operational Guidance Series (TOGS) Standards, Guidance and Limitations.

Six chlorinated solvent-related VOCs were identified within MW-2 and PMW-3. Four of these chlorinated solvent-related VOCs were identified within MW-2 at concentrations exceeding NYSDEC TOGs at concentrations of 32.4 micrograms per liter (μ g/L) to 27,100 μ g/L. Additionally, two chlorinated solvent-related VOCs were identified within PMW-3 at concentrations exceeding NYSDEC TOGS at concentrations of 96 μ g/L and 36,000 μ g/L.

Additionally, one SVOC was detected within MW-2 and one additional VOC was detected within PMW-3, at concentrations exceeding NYSDEC TOGS. Groundwater laboratory results are summarized in Table 2. Copies of the laboratory report are included in Appendix 3.

5.3.3 Soil Vapor Laboratory Results

Based on laboratory analytical results, several VOCs were detected in each sub-slab soil vapor air sample. The NYSDOH has established guidance documents for determining appropriate action to be taken to address current and potential soil vapor intrusion for a limited number of parameters. The NYSDOH guidance includes matrices to evaluate the results of sub-slab soil vapor and indoor air samples. Laboratory results associated with the soil vapor intrusion assessment are summarized in Table 3 and the laboratory analytical reports are included in Appendix 3. The May 2017 updated Soil Vapor/Indoor Air Matrices A, B, and C are included following the Tables in the Appendices.

The following table identifies the elevated concentrations of VOCs detected within the sub-slab soil vapor air samples collected and submitted for laboratory analysis.

Sample ID	SS1	SS2	SS3	SS4		
Sampling Date	10/4/17	10/4/17	10/4/17	10/4/17		
Location	Sub-Slab	Sub-Slab	Sub-Slab	Sub-Slab		
Volatile Organic Compound	s (μg/m³)					
Trichloroethene (TCE)	1,840	40.6	Not	Not detected		
Tetrachloroethene (PCE)	5,920	868	15.4	10.8		
1,1,1 - Trichloroethane	12.1	9.66	Not	detected		
Cis-1,2- dichloroethene	157		Not detected			

Concentrations of several additional VOCs were detected above laboratory method detection limits within the sub-slab soil vapor samples collected; however, such were either detected at concentrations below NYSDOH Guidance, or current NYSDOH Guidance has not established standards for such VOCs.

Based on the comparison of laboratory analytical results and NYSDOH guidance matrices, mitigation is required within the areas of SS1 and SS2 regardless of unknown indoor air concentrations. Additionally, no further action or to identify sources and resample or mitigation is required within the areas of SS3 and SS4; however, such is dependent on the indoor air concentrations within those areas. It should be

noted although SS3 and SS4 are located to the north of SS1 and SS2, the Site Building basement consists of an open floor plan.

6.0 CONCLUSIONS

Based on the results of this assessment, LaBella concludes the following.

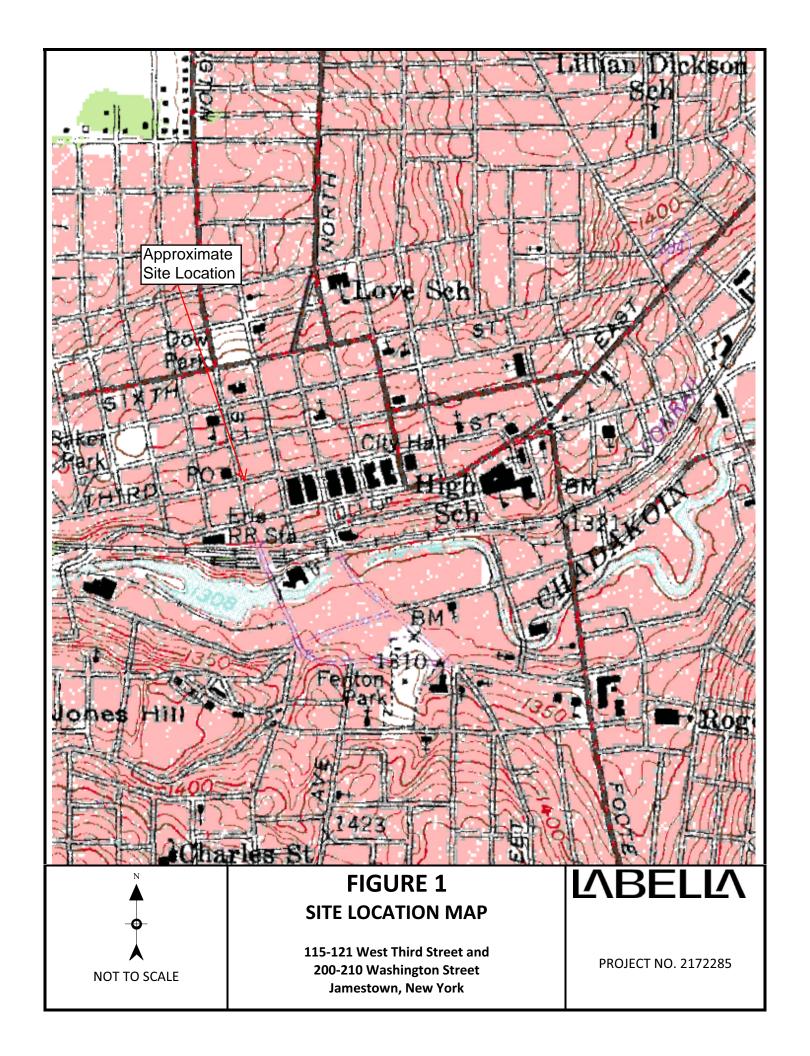
- The extent of the chlorinated solvent sub-surface soil impact to the south and east of the Site Building appears to be generally defined; however, the extent is unknown to the north and west of the Site Building due to the Site Building location and the Washington Street right-of-way. Soil vapor and groundwater laboratory analytical results suggest the chlorinated solvent soil impact does not extent north beyond SS1 and SS2 beneath the Site Building. While the source of the sub-surface soil chlorinated solvent impact has not been confirmed, the location of the impact appears consistent with the location of the historical on-site dry cleaning operations.
- The source of and extent of the chlorinated solvent groundwater contamination is not confirmed, however, groundwater laboratory analytical results do not suggest up gradient impact. The location of the impact appears consistent with the location of the historical on-site dry cleaning operations.
- Petroleum-type odors were observed within SB-3, SB-6, SB-7 and SB-10. Additionally, black staining was observed within SB-7. Petroleum-type odors and rainbow sheen were observed within MW-2. Elevated PID readings ranging from 455 ppm to 3,104 were identified within SB-3, SB-6, SB-7 and SB-10. Laboratory analytical results of both the groundwater and soil identified multiple petroleum-related VOCs with exceedances of applicable NYSDEC guidance. The source and extent of this contamination is not confirmed; however, a gasoline underground storage tank was identified to have been historically located proximate the southwest corner of the Site Building.
- Several elevated VOCs were identified with in the sub-slab soil vapor air samples collected within SS1 and SS2 located on the south portion of the Site Building. Based on a comparison to NYSDOH guidance matrices mitigation is required within the areas of SS1 and SS2. Although contaminant concentrations detected within SS3 and SS4 do not require mitigation, such would be dependent on the indoor air sampling results to confirm indoor air conditions. As the Site Building basement consists of an open floor plan, there is the potential for indoor air impacts to exist within the entirety of the basement.

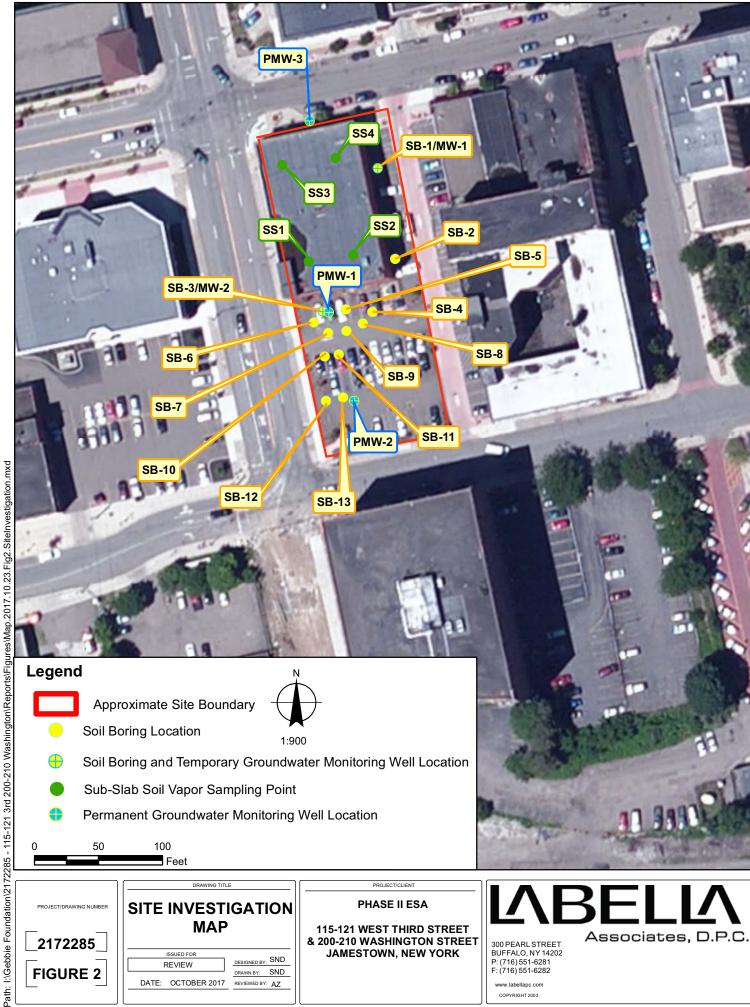
7.0 RECOMMENDATIONS

- Installation of a soil vapor intrusion mitigation system is recommended to properly mitigate the soil vapor intrusion concern which has been identified beneath the Site Building slab.
- Further investigation is warranted to determine the extent of the soil and groundwater contamination identified south of the Site Building.
- Legal counsel should be retained or consulted to evaluate whether the subsurface chlorinated solvent impact identified at the Site constitutes a reporting obligation to the NYSDEC.

8.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

We appreciate the opportunity to serve your professional environmental engineering needs. If you have any questions please do not hesitate to contact me at (716) 840-2548.


Report Approved By: Report Prepared By:


Adam Zebrowski
Director of Environmental Due Diligence and
Project Manager
Environmental Professional

Shannon Dalton Environmental Analyst

FIGURES

2172285 FIGURE 2

MAP

ISSUED FOR DESIGNED BY: SND REVIEW DRAWN BY: SND DATE: OCTOBER 2017 REVIEWED BY: AZ

115-121 WEST THIRD STREET **& 200-210 WASHINGTON STREET** JAMESTOWN, NEW YORK

Associates, D.P.C. 300 PEARL STREET BUFFALO, NY 14202

P: (716) 551-6281 F: (716) 551-6282 COPYRIGHT 2003

TABLES

Table 1 115-121 West Third Street and 200-210 Washington Street

Jamestown, New York

Phase II Environmental Site Investigation Summary of Subsurface Soil Analytical Results (Detected Analytes Only)

Sample ID	SB-1	SB-3	SB-5	SB-6	SB-7	SB-8	SB-9	SB-10	SB-11	SB-12	SB-13		Part 375
Depth (ft bgs)	12-14	10-12	10-12	14-15	14-15	11-12	10-11	12-13	10-11	12-13	10-11	CP-51 SCG	Commercial
Sample Date	8/15/2017	8/15/2017		10/19/2017						_	_		Use SCOs
Volatile Organic Compounds (μg/kg)	3, 23, 2323	5/ 25/ 2521	0, 20, 202				_0,_0,_0			1 -0, -0, -0-1			
Acetone	<	<	<	<	<	<	<	<	1.4 J	2.6 J	<	NL	500,000
Benzene	<	<	<	<	140 J	<	<	32 J	<	<	<	60	44,000
Bromomethane	<	<	<	<	<	27 J	40 J	27 J	<	<	<	NL	NL
Cyclohexane	<	<	<	870 J	27,000	<	<	200 J	<	<	<	NL	NL
cis-1,2-Dichloroethene	<	<	<	<	<	<	<	<	<	<	1.3	NL	500,000
trans-1,2-Dichloroethene	<	<	<	<	66 J	<	<	<	0.33 J	<	<	NL	500,000
Ethylbenzene	<	<	<	400	3,600	<	<	27 J	<	<	<	1,000	390,000
Isopropylbenzene	<	<	<	1,200	2,700	<	<	79	<	<	<	2,300	NL
Methylcyclohexane	<	3,900	<	5,100	100,000 E	<	<	1,200	0.40 J	<	<	NL	NL
Methylene chloride	3.4 J	<	<	<	<	<	<	<	<	<	<	NL	500,000
Methyl ethyl ketone (2-Butanone)	<	175 J	<	<	<	<	<	<	<	<	<	NL	500,000
Methyl-tert-butyl-ether	<	<	<	<	<	5.6 J	8.3 J	<	<	<	<	930	500,000
Tetrachloroethene	39.2	66,100	2,860	59,000 E	84,000 E	2,800	7,400	1,600	35	<	<	NL	150,000
Toluene	<	<	<	<	290 J	<	<	<	<	<	<	700	500,000
Trichloroethene	<	<	<	<	2,100	<	<	<	1.2	<	<	NL	200,000
Total Xylenes	<	349 J	<	<	<	<	<	<	<	<	<	260*	500,000
m/p - Xylenes	NA	NA	NA	1,800	21,000	<	<	160	<	<	<	260*	500,000
o - Xylenes	NA	NA	NA	340	2,600	<	<	64 J	<	<	<	260*	500,000
Semi-Volatile Organic Compounds (µg/	kg)												
Benzo(b)fluoranthene	<	9.1	<	NA	NA	NA	NA	NA	NA	NA	NA	1,000	5,600
Chrysene	<	16	<	NA	NA	NA	NA	NA	NA	NA	NA	1,000	56,000
Naphthalene	<	125	<	NA	NA	NA	NA	NA	NA	NA	NA	12,000	500,000
Phenanthrene	<	12	<	NA	NA	NA	NA	NA	NA	NA	NA	100,000	500,000
Pyrene	<	10.1	<	NA	NA	NA	NA	NA	NA	NA	NA	100,000	500,000
Metals (mg/kg)													
Arsenic	14.3	12.7	4.6	NA	NA	NA	NA	NA	NA	NA	NA	NL	16
Barium	119	130	68.1	NA	NA	NA	NA	NA	NA	NA	NA	NL	400
Cadmium	0.26	0.33	0.13 J	NA	NA	NA	NA	NA	NA	NA	NA	NL	9.3
Chromium	1.3	8.9	3.6	NA	NA	NA	NA	NA	NA	NA	NA	NL	400/1,500**
Lead	18.9	14.6	9.9	NA	NA	NA	NA	NA	NA	NA	NA	NL	1,000
Selenium	1.4	0.59 J	0.54	NA	NA	NA	NA	NA	NA	NA	NA	NL	1,500
Silver	2.2	2.4	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NL	1,500

CP-51 SCG = New York State Department of Environmental Conservation (NYSDEC) Commissioner Policy, 51 (CP-51) Soil Cleanup Guidance (SCG) for Gasoline and Fuel Oil Contaminated Soils, Tables 2 and 3 (December 2010)

Part 375 Commercial Use SCOs = NYSDEC Part 375 Commercial Use Soil Cleanup Objectives (SCOs), Table 375-6.8(b) (December 2006)

Concentrations in bold exceed CP-51 SCG

< = Not detected

NL = Not listed

NA = Not analyzed

ft bgs = Feet below the ground surface

μg/kg = Micrograms per kilogram

mg/kg = Milligrams per kilogram

J = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample

E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument

^{* =} Guidance for total xylenes

^{** =} Chromium, hexavalent/Chromium, trivalent (The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.)

Table 2 115-121 West Third Street and 200-210 Washington Street Jamestown, New York

Phase II Environmental Site Investigation Summary of Groundwater Analytical Results (Detected Compounds Only)

Sample ID	MW-1	MW-2	PMW-1	PMW-3	
Sample Date	8/15/2017	8/15/2017	10/20/2017	10/20/2017	NYSDEC TOGS
Volatile Organic Compounds (μg/L)					
Acetone	25	31.6	400 J	3.3 J	50
Benzene	<	1.7	<	<	1
Carbon Disulfide	2.7	<	<	<	NL
Cyclohexane	<	749	<	<	NL
cis-1,2-Dichloroethene	<	33.7	<	<	5
trans-1,2-Dichloroethene	<	2.5	<	<	5
Ethylbenzene	<	1.3	<	<	5
Isopropylbenzene	<	32.4	<	<	5
Methylcyclohexane	<	1,290	<	<	NL
Methylene Chloride	<	4.8	<	<	5
Methyl ethyl ketone (2-Butanone)	<	5 J	<	<	50
Tetrachloroethene	<	27,100	36,000	<	5
Toluene	<	1.9	<	<	5
Trichloroethene	<	74.4	96 J	<	5
Total Xylene	<	61.8	<	<	5
Semi-Volatile Organic Compounds (µg	g/L)				
Naphthalene	<	23.1	NA	NA	10

NYSDEC TOGS = NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1), Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations (June 1998)

 μ g/L = micrograms per liter

< = Not detected

NL = Not listed

NA = Not analyzed

J = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.

Concentrations in bold exceed NYSDEC TOGS

Table 3
115-121 West Third Street and 200-210 Washington Street, Jamestown, NY
Summary of Soil Vapor Instrusion Analyticial Results
(Detected Analytes Only)

Sample ID	SS1	SS2	SS3	SS4
Sampling Date	10/4/2017	10/4/2017	10/4/2017	10/4/2017
Location	Sub-Slab	Sub-Slab	Sub-Slab	Sub-Slab
Volatile Organic Compounds (µg	J/m3)			
Dichlorodifluoromethane	<	2.79	2.39	4.05
1,3-Butadiene	<	<	1.9	<
Acetone	271	51.1	51.1	78.6
Carbon disulfide	107	19.7	2.31	2.72
trans-1,2-Dichloroethene	62.6	<	<	<
n-Hexane	8.11	4.76	16.4	14.4
cis-1,2-Dichloroethene	157	<	<	<
Chloroform	<	<	2.22	<
1,1,1-Trichloroethane	12.1	9.66	<	<
Cyclohexane	<	2.26	5.44	5.47
2,2,4-Trimethylpentane	<	<	2.9	<
Benzene	<	1.96	4.98	3.9
Trichloroethene	1,840	40.6	<	<
Toluene	12.7	4.79	11.8	11.3
Tetrachloroethene	5,920	868	15.4	10.8
m,p-Xylene	<	<	5.21	6.34
o- Xylene	<	<	2.53	2.9
1,2,4-Trimethylbenzene	<	2.4	4.18	4.14
2-Butanone	<	<	5.49	4.45
Heptane	8.65	6.11	11.3	12.5

Volatile Organic Compounds by United States Environmental Protection Agency (USEPA)

Method TO-15

< = Not detected

 μ g/m³ = micrograms per cubic meter

Table 4
Vapor Intrusion Assessment
115-121 3rd Street and 200-210 Washington Street, Jamestown, New York
Summary of SUMMA Canister Investigation

Sample ID	551	552	SS3	SS4
Location	Sw	38	32	30
Date	1014/17	10/4/17	10/4/17 10/4/17 10/4/17	10/417
Canister Number	481	484	399	1735
Regulator Number	0800	0923	0258	8900
PID Reading (PPM)	6.51	1.8	٦. ك	1.2
Start Time	1215	acci	1230	1240
Reading	30	30	30	30
End Time	مااما	1615	i (\$30	1440
Reading	4.63	1.05	8.69	6.01

-Date: 10/417
-Temperature: 75 F + thickness

5

J.

9

-Barometric Pressure: -Relative Humidity:

Table 5
115-121 West Third Street and 200-210 Washington Street
Phase II Investigation
Soil Boring PID Readings

Soil		Sample Interval (ft bgs)																		
Boring ID	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20
SB-1	0	(0	()	0	(0	()	()	0.	1*	0.2					
SB-2	0	(0	()	0	(0	()	()		0	0				-	
SB-3	0		0	()	0	(0	2!	55	2,1	00*	1	LO	12.1	12	2.1		12	
SB-4	0	0	.2	()	0.4	0	.2	0	.8	0	.8	2	9	2.9	1	.4		1.1	
SB-5	0	(0	()	0.6	1	.6	5	.6	14	.5*		2	2.9					
SB-6		0	0	0	0	0	0	0	0	0	74	151	924	1,751	2,072*	63	63	63	63	63
SB-7		0.4	3.2	2.2	1.4	6.7	4	3.9	3.3	4.2	2.3	7.2	3.3	17.1	3,104*	82	82	82	82	82
SB-8		0	0.2	0.3	0.1	0.2	0.5	1	1.5	1.8	3	3.4*	1	1.2	0.3	0.4	2.5	1	0.4	0.3
SB-9		0	0.3	1.2	1.5	4.5	2	2.8	1.4	1.9	10.5*	6	5.5	5.4	5.7	10.1	10.1	10.1	10.1	10.1
SB-10		2	2	2.4	2.8	1.2	2	2.2	4	3.9	80	95	455*	385	325					
SB-11						1.5	2.3	2	5.7	0.6	5.8*	4.1	3.7	2	2.6					
SB-12		0.8	0.9	1.8	2.2	0.3	1.2	1.6	1.4	1.8	0.6	2.2	3.7*	1.3	1.4	1	1.4	0.5	0.1	0.2
SB-13		0	0.3	0.2	0	0.2	0.3	0.5	0.5	1.1	3.2*	1.5	2	1.1	0.8	1.7	2.1	1.7	2.3	0.9

All photoionization detector (PID) readings were collected utilizing a Miniraw 3000 photoionization detector and are expressed in parts per million.

The PID screening is performed as a method of determining the general presence of absence of volatile organic compounds (VOCs) in soil, and to provide a basis for selecting samples for laboratory analysis. The readings obtained provided only an indiciation of the relative levels of VOC presence in the soil, and are not considered to be a direct quantization of actual soil VOC concentration.

ft bgs = feet below ground surface

[&]quot;--" denotes boring not completed to above-listed depth or insufficient recovery occurred at specified depth.

[&]quot;*" denotes a soil sample was submitted for laboratory analysis from this interval

Soil Vapor/Indoor Air Matrix A

May 2017

Analytes Assigned:

Trichloroethene (TCE), cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

	INDOOR AIR	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)	ID (mcg/m³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 to < 1	1 and above
9 V	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily

building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim **Monitor:** We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated. are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX A Page 1 of 2

Soil Vapor/Indoor Air Matrix B

May 2017

Analytes Assigned:

Tetrachloroethene (PCE), 1,1,1-Trichloroethane (111-TCA), Methylene Chloride

	INDOOR AIR	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m^3)	ID (mcg/m³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 3	3 to < 10	10 and above
< 100	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
100 to < 1,000	4. No further action	5. MONITOR	6. MITIGATE
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled

site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated. Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX B Page 1 of 2

Soil Vapor/Indoor Air Matrix C May 2017

Analytes Assigned: Vinyl Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)	N of COMPOUND (mcg/m³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 and above
9 >	1. No further action	2. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
6 to < 60	3. MONITOR	4. MITIGATE
60 and above	5. MITIGATE	6. MITIGATE

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled

site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated. Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX C Page 1 of 2

APPENDIX 1

Field Logs

300 Pearl Street, Suite 130

Engineering Architecture Environmental

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TEST BORING LOG

BORING: SB-1/MW-1

Sheet 1 of 1 JOB: 2171989 Checked by:

CONTRACTOR: LaBella Envir. LLC

TIME: 8:15

DATUM:

DRILLER: Mike Winderl Jr.

LABELLA REPRESENTITIVE: Shannon START DATE: 8/15/17 END DATE: 8/15/17

Dalton

TYPE OF DRILL RIG: AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OTHER:

CVLINDO	IDEN SAM	LIIVO IVILITIO	D. Direct Fusii	T	OTTILN.
			MPLE		
DEPTH (FT)	BLOW COUNT	PID FIELD SCREEN (PPM)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-1		0		No odors	0-0.6 grey gravel asphalt fill
				or staining	
1-3		0		No odors	0.6-5 brown sandy silt mixed with grey gravel (I,m)
				or staining	
3-5		0		No odors	5-8 brown gray sand mixed with red brick (m,m,m)
				or staining	
5-6		0		No odors	8-10 asphalt fill with red brick and brown silt (m,m)
				or staining	
6-8		0		No odors	10-12 brown black clay (m, hp , moist)
				or staining	
8-10		0		No odors	12-14 gray sandy clay silt (m,m)
				or staining	
10-12		0		No odors	14-15 brown gray clay silt (m,m)
				or staining	45.00 M
12-14		0.1		No odors	15-20 No recovery
				or staining	
14-15		0.2		No odors	
				or staining	
15-17					
17-20					
G	ROUNDW	ATER ENCOU	NTERED	NOTES:	1
DATE	DEPTH	WELL INSTALLED	WELL ID	Groundwate	r encountered at 15 ft bgs
8/15/17	15 ft bgs	YES	MW-1	ample colle	cted at 12-14 ft bgs
	1	1	i	1	

Engineering Architecture Environmental

TEST BORING LOG

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-2**

Sheet 1 of 1 **JOB:** 2171989 Checked by:

CONTRACTOR: LaBella Envir. LLC TIME: 8:40

DATUM:

LABELLA REPRESENTITIVE: Shannon

DRILLER: Mike Winderl Jr.

START DATE: 8/15/17 END DATE: 8/15/17

Dalton

TYPE OF DRILL RIG: **AUGER SIZE AND TYPE:**

300 Pearl Street, Suite 130

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

O V LIND O I			OD. Direct asir		
			AMPLE		
DEPTH (FT)	BLOW COUNT	PID FIELD SCREEN (PPM)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-1		0		No odors	0-2 black asphalt fill
				or staining	'
1-3		0		No odors	2-5 brown clay silt (m,m)
				or staining	, , , ,
3-5		0		No odors	5-6 gray asphalt gravel fill
				or staining	
5-6		0		No odors	6-10 brown silt (l,m)
				or staining	
6-8		0		No odors	10-12 brown clay silt mixed with gravel (m,m)
				or staining	
8-10		0		No odors	12-15 brown clay silt (m,w)
				or staining	
10-12		0		No odors	15-20 No recovery
				or staining	
12-14		0		No odors	
				or staining	
14-15		0		No odors	
				or staining	
15-17					
17-20					
	DOLINDAY	ATED ENICO	INTERER	NOTEC	
DATE	DEPTH	ATER ENCOL	WELLID	NOTES:	r apparent and at 12 ft has
DATE	DEFIN	INSTALLED	VV LLL ID	Groundwate	r encountered at 12 ft bgs
8/15/17	12 ft bgs	NO			

LABELLA REPRESENTITIVE: Shannon

300 Pearl Street, Suite 130

Engineering Architecture Environmental

B | Plannir

TEST BORING LOG

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

END DATE: 8/15/17

BORING: SB-3/MW-2

Sheet 1 of 1 JOB: 2171989 Checked by:

CONTRACTOR: LaBella Envir. LLC TIME: 9:00 t

START DATE: 8/15/17

DRILLER: Mike Winderl Jr. DATUM:

Dalton

TYPE OF DRILL RIG: DRIVE SAMPLER TYPE: AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

SAMPLE PIPP FIELD SCREEN STRATA CHANGE	OVERBUR	TOEN SAIVII	PLING METHO	D: Direct Push		OTHER:
COUNT						
1-3					REMARKS	VISUAL CLASSIFICATION
1-3	0-1		0		No odors	0-0.6 grey gravel asphalt fill
or staining 3-5 0 No odors or staining 5-6 0 No odors or staining 6-8 0 No odors or staining 8-10 255 No odors or staining 10-12 2,100 Petroleum type odor No staining 12-14 10 Petroleum type odor No staining 14-15 12.1 Petroleum type odor No staining 15-17 12.1 No odors or staining 17-20 12 No odors or staining 17-20 12 No odors or staining 17-20 12 No odors or staining 18-17 DEPTH WELL STALLED DATE DEPTH WELL STALLED GROUNDWATER ENCOUNTERED NOTES: Groundwater encountered at 12 ft bgs Sample collected at 10-12 ft bgs					or staining	
3-5	1-3		0		No odors	0.6-2 brown silt mixed with grey gravel (m,m)
5-6 0 0 No odors or staining 6-8 0 No odors or staining 8-10 255 No odors or staining 10-12 2,100 Petroleum type odor No staining 12-14 10 Petroleum type odor No staining 14-15 12.1 Petroleum type odor No staining 15-17 12.1 No odors or staining 17-20 12 No odors or staining 17-20 12 No odors or staining 17-20 12 Square ENCOUNTERED NOTES: GROUNDWATER ENCOUNTERED Sample collected at 10-12 ft bgs Sample collected at 10-12 ft bgs					or staining	
S-6	3-5		0		No odors	2-5 dark brown silt mixed with grey gravel (m,m)
Or staining 10-15 gray clay silt (m, w) 10-12 gray clay silt					or staining	
10-15 gray clay silt (m, w)	5-6		0		No odors	5-10 brown sandy silt mixed with gravel (I,m)
or staining No odors or staining 10-12					or staining	
8-10 255 No odors or staining 10-12 2,100 Petroleum type odor No staining 12-14 10 Petroleum type odor No staining 14-15 12.1 Petroleum type odor No staining 15-17 12.1 No odors or staining 17-20 12 No odors or staining 17-20 12 No odors or staining 17-20 12 South Market ENCOUNTERED South Market Potential South Market P	6-8		0		No odors	10-15 gray clay silt (m, w)
or staining 10-12					or staining	
10-12	8-10		255	\top	No odors	15-20 brown clay silt (I,w)
type odor No staining 12-14 10 Petroleum type odor No staining 14-15 12.1 Petroleum type odor No staining 15-17 12.1 No odors or staining 17-20 12 No odors or staining No odors or staining No odors or staining Training Training No odors or staining Training					or staining	
No staining 15-20 gray clay silt (m,w) 12-14 10 Petroleum type odor No staining 14-15 12.1 Petroleum type odor No staining 15-17 12.1 No odors or staining 17-20 12 No odors or staining No odors Or staining No odors Or staining No odors Or staining	10-12		2,100		Petroleum	14-15 brown gray clay silt (m,m)
12-14					type odor	
type odor No staining 14-15 12.1 Petroleum type odor No staining 15-17 12.1 No odors or staining 17-20 12 No odors or staining Or staining No odors or staining From Staining NOTES: GROUNDWATER ENCOUNTERED DATE DEPTH WELL INSTALLED WELL ID Groundwater encountered at 12 ft bgs Sample collected at 10-12 ft bgs					No staining	15-20 gray clay silt (m,w)
No staining Petroleum type odor No staining 15-17 12.1 No odors or staining 17-20 12 No odors or staining Or staining No odors Or staining	12-14		10		Petroleum	
14-15					type odor	
type odor No staining 15-17					No staining	
No staining 15-17	14-15		12.1		Petroleum	
15-17 12.1 No odors or staining 17-20 12 No odors or staining GROUNDWATER ENCOUNTERED NOTES: DATE DEPTH WELL WELL ID INSTALLED WELL ID INSTALLED Sample collected at 10-12 ft bgs Sample collected at 10-12 ft bgs						
Or staining 17-20 12 No odors or staining GROUNDWATER ENCOUNTERED DATE DEPTH WELL WELL ID INSTALLED NOTES: Groundwater encountered at 12 ft bgs Sample collected at 10-12 ft bgs					No staining	
The state of the s	15-17		12.1		No odors	
GROUNDWATER ENCOUNTERED DATE DEPTH WELL WELL ID INSTALLED WELL ID INSTALLED Groundwater encountered at 12 ft bgs Sample collected at 10-12 ft bgs					or staining	
GROUNDWATER ENCOUNTERED DATE DEPTH WELL INSTALLED WELL ID Groundwater encountered at 12 ft bgs Sample collected at 10-12 ft bgs	17-20		12		No odors	
DATE DEPTH WELL WELL ID Groundwater encountered at 12 ft bgs INSTALLED Sample collected at 10-12 ft bgs					or staining	
DATE DEPTH WELL WELL ID Groundwater encountered at 12 ft bgs INSTALLED Sample collected at 10-12 ft bgs						
DATE DEPTH WELL WELL ID Groundwater encountered at 12 ft bgs INSTALLED Sample collected at 10-12 ft bgs		 				
DATE DEPTH WELL WELL ID Groundwater encountered at 12 ft bgs INSTALLED Sample collected at 10-12 ft bgs						
DATE DEPTH WELL WELL ID Groundwater encountered at 12 ft bgs INSTALLED Sample collected at 10-12 ft bgs						
DATE DEPTH WELL WELL ID Groundwater encountered at 12 ft bgs INSTALLED Sample collected at 10-12 ft bgs						
DATE DEPTH WELL WELL ID Groundwater encountered at 12 ft bgs INSTALLED Sample collected at 10-12 ft bgs						
DATE DEPTH WELL WELL ID Groundwater encountered at 12 ft bgs INSTALLED Sample collected at 10-12 ft bgs						
INSTALLED Sample collected at 10-12 ft bgs	G	ROUNDW	ATER ENCOU	NTERED	NOTES:	1
INSTALLED Sample collected at 10-12 ft bgs					_	r encountered at 12 ft bgs
8/15/17 12 ft bgs YES MW-2						<u> </u>
	8/15/17	12 ft bgs	YES	MW-2		-

Engineering Architecture Environmental Planning

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TEST BORING LOG

BORING: SB-4

Sheet 1 of 1 JOB: 2171989 Checked by:

TIME: 9:30

DATUM:

CONTRACTOR: LaBella Envir. LLC

DRILLER: Mike Winderl Jr.

300 Pearl Street, Suite 130

START DATE: 8/15/17 END DATE: 8/15/17

LABELLA REPRESENTITIVE: Shannon START DATE: 8,

Dalton

TYPE OF DRILL RIG: AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OTHER:

OVERBUF	RDEN SAM	PLING METHO	DD: Direct Push		OTHER:
		SA	AMPLE		
DEPTH (FT)	BLOW COUNT	PID FIELD SCREEN (PPM)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-1		0		No odors	0-0.6 gravel asphalt fill
				or staining	
1-3		0.2		No odors	0.6-2 brown gray clay silt (m,m)
				or staining	
3-5		0		No odors	2-5 brown red clay silt (m,m)
				or staining	
5-6		0.4		No odors	5-10 brown gray clay silt (m,m)
				or staining	
6-8		0.2		No odors	10-15 red brown clay silt (m,m)
				or staining	
8-10		0.8		No odors	15-20 gray clay silt (m,m)
				or staining	
10-12		0.8		No odors	
				or staining	
12-14		2.9		No odors	
				or staining	
14-15		2.9		No odors	
				or staining	
15-17		1.4		No odors	
				or staining	
17-20		1.1		No odors	
				or staining	
		ATER ENCOU	NTEDED	NOTES:	
DATE	DEPTH	WELL	WELLID	-	or ancountared at 12 ft has
DAIL	DEFIII	INSTALLED	VVLLL ID	Groundwate	r encountered at 12 ft bgs
8/15/17	12 ft bgs	No			
	1				

Engineering Architecture Environmental

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TEST BORING LOG

BORING: SB-5

Sheet 1 of 1 JOB: 2171989 Checked by:

to

TIME: 10:25

DATUM:

CONTRACTOR: LaBella Envir. LLC

DRILLER: Mike Winderl Jr.

BLOW

COUNT

START DATE: 8/15/17 END DATE: 8/15/17

Sample collected at 10-12 ft bgs

REMARKS

No odors or staining

LABELLA REPRESENTITIVE: Shannon

300 Pearl Street, Suite 130

Dalton

DEPTH

(FT)

0-1

8/15/17

12 ft bgs

TYPE OF DRILL RIG:

DRIVE SAMPLER TYPE: **AUGER SIZE AND TYPE:** INSIDE DIAMETER: ~

STRATA CHANGE

SAMPLE

OVERBURDEN SAMPLING METHOD: Direct Push

0

PID FIELD

SCREEN (PPM)

OTHER:
VISUAL CLASSIFICATION
0-0.6 gravel asphalt fill
0.6-2 brown sandy silt (I,m)
2-5 brown red clay silt (m,m)
5-10 light brown clay silt mixed with gravel (m,m)
10-12 brown clay silt (m,m)
12-15 brown clay silt (m,w)
15-20 no recovery

1-3		0		No odors	0.6-2 brown sandy silt (l,n
				or staining	
3-5		0		No odors	2-5 brown red clay silt (m
				or staining	
5-6		0.6		No odors	5-10 light brown clay silt r
				or staining	
6-8		1.6		No odors	10-12 brown clay silt (m,n
				or staining	
8-10		5.6		No odors	12-15 brown clay silt (m,v
				or staining	
10-12		14.5		No odors	15-20 no recovery
				or staining	
12-14		2		No odors	
				or staining	
14-15		2.9		No odors	
				or staining	
15-17					
17-20					
					_
					<u> </u>
					-
_					
		ATER ENCOU		NOTES:	
DATE	DEPTH	WELL	WELL ID	Groundwate	er encountered at 12 ft bgs

INSTALLED

No

300 Pearl Street

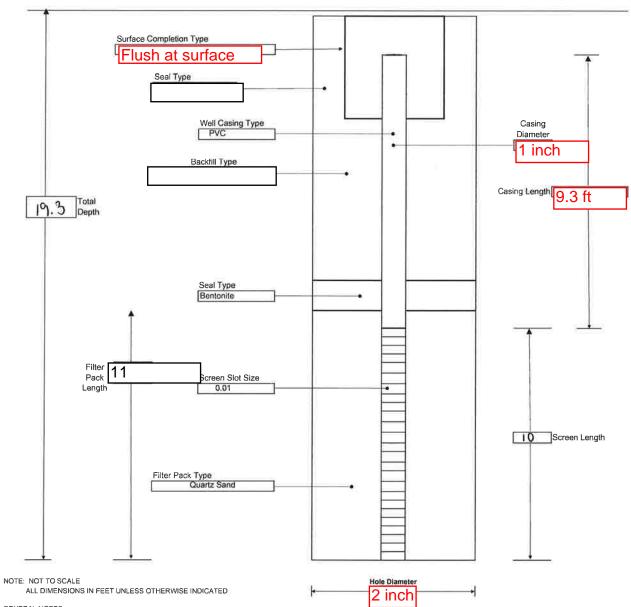
Buffalo, New York 14202

WELL I.D.: MW-1

Telephone: (716) 551-6281 Facsimile: (716) 551-6282

Project Nan Location: Project No. Sampled B Date: Weather:	:: 21 y: SI 8/ O	Phase II ESA 115-121 West Third Street and 200-210 Washington Street 2171989 Shannon Dalton 8/15/17 Overcast and raining E CALCULATION											
Well Diame Depth of W	eter:	1" 19.3 ft bg				Vater Leve ell Volume		14.5 ft bgs 0.192 gallons					
PURGE A	ND SAMP	LING MET	CHOD										
⊠ Bailer – Sampling Γ		0.75" PV	C Disposa	ble Bailer	☐ Pum Pump F	np – Type: Rate:							
		R MEASUI	REMENT										
Time	Gallons Purged	pН	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)			Comments					
13:00	0.192		(0)	(IIIS/CIII)	(1110)								
Total	0.102	C II D	1										
,	0.192	Gallons P	urgea		D 7	C		12.05					
Purge Time		13:00			Purge	Γime End:		13:05					
WELL SA	MPLING												
Sample I.D No. of Con		MW-1				le Time:	:	15:30					
		Four	GD 54		-	Preservat							
Sampled For:		s - 8260 TCL + Cs - 8270 CP-51		[□ VOCs - 8260B CP-51 Only □ PCBs □ Total RCRA Metals □ Other:								
OBSERVA	ATIONS												
	Well was installed in SB-1 (MW-1) Only one well volume was purged due to monitoring well casing malfunctions												
Recharge E	Behavior:	☐ Fast		☐ Purged Dry									

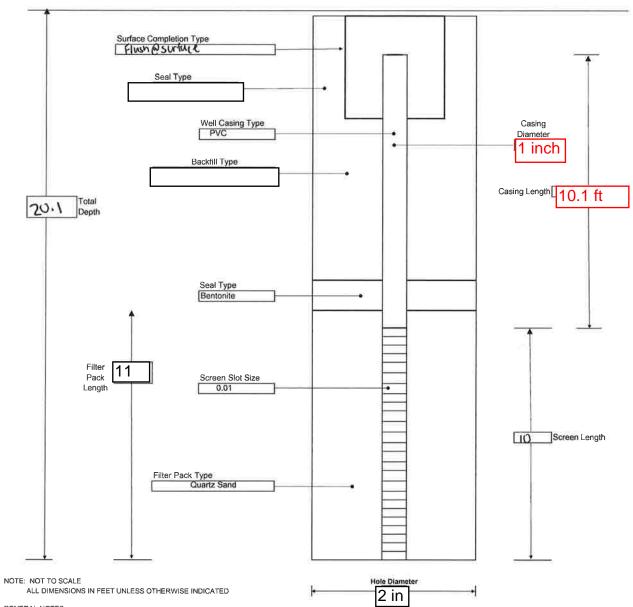
300 Pearl Street


Buffalo, New York 14202

WELL I.D.: MW-2

Telephone: (716) 551-6281 Facsimile: (716) 551-6282

Project Nan Location: Project No. Sampled B Date: Weather: PURGE V Well Diam Depth of W	11 y: 21 y: Sk 8/ St OLUME C	1" 20.1 ft bg	on FION	eet and 200-21	amesto	12.7 ft bgs 0.296 gallons				
PURGE A	ND SAMP	LING MET	THOD							
☐ Bailer – Sampling I		0.75" PV	C Disposa	ble Bailer	☐ Pun Pump F	np – Type: Rate:				
		R MEASUI	REMENT	•	•					
Time	Gallons Purged	рН	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)			Comments		
12:00	0.296		(0)	(me, em)	(1,10)					
12:05	0.592									
12:08	0.888									
Total	0.888	Gallons P	urged							
Purge Time	e Start:	12:00	-		Purge 7	Γime End:		12:08		
WELL SA	MPLING									
Sample I.D).:	MW-2			Samp	le Time:		12:10		
No. of Con		4				Preservat	ion:			
Sampled For:		s - 8260 TCL + Cs - 8270 CP-51			☐ VOCs - 8260 ☐ Total RCRA		ly	PCBs Other:		
OBSERVA	ATIONS									
Petroleum type odors and sheen was observed Well was installed in SB-3 (MW-2)										
Recharge E	Behavior:		⊠ Moder	ate	☐ Slov	v	☐ Purged Dry			


Associates, P.C. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	115-121 W 200-210 Wa	shing	ton	Stree	et	BORING: SHEET 2171989 CHKD. BY: SD
contractor: LaBella Environmental, LLC	BORING	LOCATIO	N.SV	S	B-1/	MW-1
DRILLER: LABELLA REPRESENTATIVE: Shannon Dalton		D SURFA				DATUM: N/A
			WATE	R LEVEL	DATA	
TYPE OF DRILL RIG:		DATE	TIME	WATER	CASING	REMARKS
AUGER SIZE AND TYPE: N/A						
OVERBURDEN SAMPLING METHOD:						
ROCK DRILLING METHOD: N/A						

GENERAL NOTES:

¹⁾ STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

ABBOCIATOS, P.C. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	115-121 W 200-210 Wa	shing	ton	Stree	et	BORING: SHEET 2171989 CHKD, BY: SD	
CONTRACTOR: LaBella Environmental, LLC	BORING	LOCATIO	N:	SB-3/	MW-	2	
DRILLER: LABELLA REPRESENTATIVE: Shannon Dalton	GROUN START	D SURFA	CE EL	EVATION:	N/A END DA	DA <mark>TUM: N/A</mark> TE:	
			WATE	R LEVEL	DATA		
TYPE OF DRILL RIG:		DATE	TIME	WATER	CASING	REMARKS	
AUGER SIZE AND TYPE: N/A							
OVERBURDEN SAMPLING METHOD:							
ROCK DRILLING METHOD: N/A							

GENERAL NOTES:

¹⁾ STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

Engineering Architecture Environmental Planning

TEST BORING LOG

Phase II ESA

BORING: SB- 6 Sheet 1 of 1 JOB: 2172285 Checked by:

300 Pearl Street, Suite 130

TYPE OF DRILL RIG:

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TIME: 8:30 to

DATUM:

CONTRACTOR: LaBella Envir. LLC

DRILLER:

LABELLA REPRESENTITIVE: Shannon

Dalton

า

START DATE: 10/19/17 END DATE: 10/19/17

DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER: **SAMPLE** PID FIELD SAMPLE STRATA **DEPTH BLOW REMARKS** VISUAL CLASSIFICATION **RECOVERY** SCREEN CHANGE COUNT (Feet) (Inches) (Parts per million) 0-1 0 0-1 asphalt No odors or staining 1-2 4 0 No odors or staining 1-2 brown clay silt mixed with gravel (m,m) 2-3 4 0 No odors or staining 3-4 4 0 No odors or staining 2-5 brown clay silt (m,m) 4-5 4 0 No odors or staining 5-7 brown clay silt mixed with gravel (m,m)5-6 5 0 No odors or staining 6-7 5 0 7-10 red brown clay silt mixed with No odors or staining gravel (m,m) 7-8 5 0 No odors or staining 10-13 white gray clay (l,m,m) 8-9 5 0 No odors or staining 9-10 5 0 13-14 brown clay silt (m,m) No odors or staining 10-11 74 6 No odors or staining 14-15 brown clay silt with black staining (m,m) 11-12 151 6 No odors or staining 12-13 15-20 brown clay silt (h,w) 6 924 Petroleum odor, no staining 13-14 1,751 6 Petroleum odor, no staining 14-15 2,072 Petroleum odor, black 6 staining 15-16 63 0.5 Petroleum odor, no staining 16-17 0.5 Petroleum odor, no staining 17-18 0.5 Petroleum odor, no staining 18-19 0.5 Petroleum odor, no staining 19-20 Petroleum odor, no staining 0.5 **GROUNDWATER ENCOUNTERED** DEPTH DATE WELL WELL ID Groundwater encountered at 15 ft bgs INSTALLED Sample collected at 14-15 bgs

Architecture

TEST BORING LOG

Phase II ESA

BORING: SB-7 Sheet 1 of 1 **JOB:** 2172285 Checked by:

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

> TIME: 9:15 to

DATUM:

CONTRACTOR: LaBella Envir. LLC

DRILLER:

LABELLA REPRESENTITIVE: Shannon

Dalton

AUGER SIZE AND TYPE:

TYPE OF DRILL RIG:

START DATE: 10/19/17 END DATE: 10/19/17

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

BLOW COUNT	SAMPLE	SAMPLE			
COUNT	RECOVERY	PID FIELD SCREEN	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
	(Inches)	(Parts per million)	CHANGE		
	0			No odors or staining	0-1 asphalt
	4	0.4		No odors or staining	1-5 brown clay silt (m,m)
	4	3.2		No odors or staining	5-13 brown clay silt mixed with gravel
	4	2.2		No odors or staining	(m,m)
	4	1.4		No odors or staining	13-15 brown clay silt with black
	4	6.7		No odors or staining	staining (m,m)
	4	4		No odors or staining	15-30 brown clay silt (h,w)
	4	3.9		Petroleum odor, no staining	
	4	3.3		Petroleum odor, no staining	
	4	4.2		Petroleum odor, no staining	
	3	2.3		Petroleum odor, no staining	
	3	7.2		Petroleum odor, no staining	
	3	3.3		Petroleum odor, no staining	
	3	17.1		Petroleum odor, black staining	
	3	3,104		Petroleum odor, black staining	
	0.25	82		Petroleum odor, no staining	
	0.25	-		Petroleum odor, no staining	
	0.25	-		Petroleum odor, no staining	
	0.25	-		Petroleum odor, no staining	
	0.25	-		Petroleum odor, no staining	
DUNDWA	TER ENCO	UNTERED		NOTES:	
DEPTH	WELL		LL ID	Groundwater encountered at 15	5 ft bgs
	INSTALLED	1		Sample collected at 14-15 bgs	
		4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	4 3.2 4 1.4 4 6.7 4 4 3.9 4 3.3 4 4.2 3 2.3 3 7.2 3 3.3 7.2 3 3.3 3 17.1 3 3,104 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	4 3.2 4 1.4 4 6.7 4 3.9 4 3.3 4 4.2 3 2.3 3 7.2 3 3.3 7.2 3 3.3 3 17.1 3 3,104 0.25 0.25 0.25 0.25 UNDWATER ENCOUNTERED DEPTH WELL WELLID	4 3.2 No odors or staining 4 1.4 No odors or staining 4 6.7 No odors or staining 4 No odors or staining 5 No odors or staining 6 No odors or staining 7 No odors or staining 8 No odors or staining 9 Petroleum odor, no staining 9 No odors or staining 9 Petroleum odor, no staining

Phase II ESA

BORING: SB-8 Sheet 1 of 1 **JOB:** 2172285 Checked by:

300 Pearl Street, Suite 130

TYPE OF DRILL RIG:

Dalton

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

> TIME: 10:35 to

DATUM:

CONTRACTOR: LaBella Envir. LLC DRILLER:

LABELLA REPRESENTITIVE: Shannon

START DATE: 10/19/17 END DATE: 10/19/17

DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBUR		PLING MET	HOD: Dire	ct Push	OTHER:				
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION			
0-1		0			No odors or staining	0-1 asphalt			
1-2		7	0		No odors or staining	2-5 brown gray clay silt mixed with gravel			
2-3		7	0.2		No odors or staining	(m,m)			
3-4		7	0.3		No odors or staining	5-15 brown clay silt mixed with gravel (m,m)			
4-5		7	0.1		No odors or staining	15-20 brown gray clay silt (h,w)			
5-6		6	0.2		No odors or staining				
6-7		6	0.5		No odors or staining				
7-8		6	1		No odors or staining				
8-9		6	1.5		No odors or staining				
9-10		6	1.8		No odors or staining				
10-11		4	3		No odors or staining				
11-12		4	3.4		No odors or staining				
12-13		4	1		No odors or staining				
13-14		4	1.2		No odors or staining				
14-15		4	0.3		No odors or staining				
15-16		7	0.4		No odors or staining				
16-17		7	2.5		No odors or staining				
17-18		7	1		No odors or staining				
18-19		7	0.4		No odors or staining				
19-20		7	0.3		No odors or staining				
G	ROUNDW	ATER ENCC	UNTERED	•	NOTES:				
DATE	DEPTH	WELL INSTALLEI	WE	LL ID	Groundwater encountered at 15 ft bgs Sample collected at 11-12 bgs				

Phase II ESA

Sheet 1 of 1 **JOB:** 2172285 Checked by:

BORING: SB-9

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

START DATE: 10/19/17 END DATE: 10/19/17

TIME: 11:00 to

DATUM:

CONTRACTOR: LaBella Envir. LLC

DRILLER:

LABELLA REPRESENTITIVE: Shannon

Dalton

TYPE OF DRILL RIG:

AUGER SIZE AND TYPE:

300 Pearl Street, Suite 130

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push				ct Push	OTHER:					
			SAMPLE							
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION				
0-1		0			No odors or staining	0-1 asphalt				
1-2		5	0		No odors or staining	1-3 orange brown clay silt mixed with gravel				
2-3		5	0.3		No odors or staining	[(m,m)				
3-4		5	1.2		No odors or staining	3-15 brown clay silt mixed with gravel (m,m)				
4-5		5	1.5		No odors or staining	15-20 brown clay silt mixed with gravel (m,w)				
5-6		4	4.5		No odors or staining					
6-7		4	2		No odors or staining					
7-8		4	2.8		No odors or staining					
8-9		4	1.4		No odors or staining					
9-10		4	1.9		No odors or staining					
10-11		6	10.5		No odors or staining					
11-12		6	6		No odors or staining					
12-13		6	5.5		No odors or staining					
13-14		6	5.4		No odors or staining					
14-15		6	5.7		No odors or staining					
15-16		0.5	10.1		No odors or staining					
16-17		0.5			No odors or staining					
17-18		0.5			No odors or staining					
18-19		0.5			No odors or staining					
19-20		0.5			No odors or staining					
G	ROUNDW	ATER ENCO	UNTERED		NOTES:					
DATE	DEPTH	WELL	WE	Groundwater encountered at 15 ft bgs						
		INSTALLED)		Sample collected at 10-11 ft bgs					

TEST BORING LOG Phase II ESA

BORING: SB-10 Sheet 1 of 1

JOB: 2172285 Checked by:

300 Pearl Street, Suite 130

TYPE OF DRILL RIG:

AUGER SIZE AND TYPE:

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

> TIME: 11:15 to

DATUM:

CONTRACTOR: LaBella Envir. LLC

DRILLER:

Dalton

LABELLA REPRESENTITIVE: Shannon

START DATE: 10/19/17 END DATE: 10/19/17

DRIVE SAMPLER TYPE:

INSIDE DIAMETER: ~

OVERBUR		· _· PLING MET	HOD: Dire	ct Push	OTHER:				
			SAMPLE						
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION			
0-1		0			No odors or	0-1 asphalt			
					staining				
1-2		6	2		No odors or	1-3 brown clay silt (m,m)			
					staining				
2-3		6	2		No odors or	3-5 gray clay silt (m,m)			
					staining				
3-4		6	2.4		No odors or	5-10 brown clay silt mixed with gravel (m,m)			
					staining				
4-5		6	2.8		No odors or	10-13 brown clay silt (m,m)			
					staining				
5-6		7	1.2		No odors or	13-15 brown gray clay silt (l,w)			
					staining				
6-7		7	2		No odors or	15-20 no recovery			
					staining				
7-8		7	2.2		No odors or				
					staining				
8-9		7	4		No odors or				
					staining				
9-10		7	3.9		No odors or				
					staining				
10-11		7	80		Petroleum odor,				
					no staining				
11-12		7	95		Petroleum odor,				
					no staining				
12-13		7	455		Petroleum odor,				
					no staining				
13-14		7	385		Petroleum odor,	1			
					no staining				
14-15		7	325		Petroleum odor,	1			
					no staining				
G	ROUNDW	ATER ENCC	UNTERED		NOTES:	1			
DATE	DEPTH	WELL		LL ID	4	ountered at 13 ft bgs			
		INSTALLEI)		Sample collected at 12-13 ft bgs				
					, , , , , , , , , , , , , , , , , , ,				

Phase II ESA

Sheet 1 of 1 **JOB:** 2172285 Checked by:

BORING: SB-11

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

> TIME: 11:30 to

DATUM:

CONTRACTOR: LaBella Envir. LLC DRILLER:

LABELLA REPRESENTITIVE: Shannon

START DATE: 10/19/17 END DATE: 10/19/17

Dalton

TYPE OF DRILL RIG: **AUGER SIZE AND TYPE:** DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OVERBUR	DEIN SAIVII	PLING MET	ווט. טוופ	Ct Pusii	OTHER.			
			SAMPLE					
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION		
0-5		0				0-5 no recovery		
5-6		4	1.5		No odors or staining	5-15 brown clay silt (m,m)		
6-7		4	2.3		No odors or staining	15-20 no recovery		
7-8		4	2		No odors or staining	·		
8-9		4	5.7		No odors or staining			
9-10		4	0.6		No odors or staining			
10-11		3	5.8		No odors or staining			
11-12		3	4.1		No odors or staining			
12-13		3	3.7		No odors or staining			
13-14		3	2		No odors or staining			
14-15		3	2.6		No odors or staining			
G	ROUNDW	ATER ENCO	UNTERED	1	NOTES:	1		
DATE	DEPTH	WELL	WE	LL ID	Sample collected at 10-11 ft bgs			

DATE	DEPTH	WELL INSTALLED	WELL ID	Sample collected at 10-11 ft bgs

Phase II ESA

BORING: SB-12 Sheet 1 of 1 **JOB:** 2172285 Checked by:

300 Pearl Street, Suite 130

TYPE OF DRILL RIG:

AUGER SIZE AND TYPE:

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

> TIME: 12:00 to

DATUM:

CONTRACTOR: LaBella Envir. LLC

DRILLER:

LABELLA REPRESENTITIVE: Shannon

Dalton

START DATE: 10/19/17 END DATE: 10/19/17

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

			CANADIE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-1		0				0-1 asphalt
1-2		5	0.8		No odors or staining	1-2 brown orange clay silt (m,m)
2-3		5	0.9		No odors or staining	
3-4		5	1.8		No odors or staining	2-5 brown clay silt (m,m)
4-5		5	2.2		No odors or staining	5-7 gray clay silt (m,m)
5-6		10	0.3		No odors or staining	7-10 brown clay silt (m,m)
6-7		10	1.2		No odors or staining	10-13 brown gray clay silt (m,m)
7-8		10	1.6		No odors or staining	13-15 gray clay silt (m,m)
8-9		10	1.4		No odors or staining	
9-10		10	1.8		No odors or staining	15-17 brown clay silt (m,m)
10-11		12	0.6		No odors or staining	17-20 gray clay silt (m,m)
11-12		12	2.2		No odors or staining	
12-13		12	3.7		No odors or staining	
13-14		12	1.3		No odors or staining	
14-15		12	1.4		No odors or staining	
15-16		10	1.0		No odors or staining	
16-17		10	1.4		No odors or staining	
17-18		10	0.5		No odors or staining	
18-19		10	0.1		No odors or staining	
19-20		10	0.2		No odors or staining	
GROUNDWATER ENCOUNTERED			ı	NOTES:	1	
DATE	DEPTH	WELL INSTALLED	WE	LL ID	Sample collected at 12	2-13 ft bgs

Phase II ESA

BORING: SB-13 Sheet 1 of 1 **JOB:** 2172285 Checked by:

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

> TIME: 12:30 to

DATUM:

CONTRACTOR: LaBella Envir. LLC

300 Pearl Street, Suite 130

TYPE OF DRILL RIG:

AUGER SIZE AND TYPE:

DRILLER:

LABELLA REPRESENTITIVE: Shannon Dalton START DATE: 10/19/17 END DATE: 10/19/17

DRIVE SAMPLER TYPE:

INSIDE DIAMETER: ~

OVENDOR	DEN SAM	LING WILL	nob. Direct i	usii	OTHER:			
DEPTH	BLOW	SAMPLE	SAMPLE PID FIELD	STRATA	REMARKS	VISUAL CLASSIFICATION		
(Feet)	COUNT	RECOVERY (Inches)	SCREEN (Parts per million)	CHANGE				
0-1		0			No odors or staining	0-1 asphalt		
1-2		6	0		No odors or staining	1-18 brown clay silt mixed with gravel (m,m)		
2-3		6	0.3		No odors or staining			
3-4		6	0.2		No odors or staining	18-20 gray clay silt (m,m)		
4-5		6	0		No odors or staining			
5-6		12	0.2		No odors or staining			
6-7		12	0.3		No odors or staining			
7-8		12	0.5		No odors or staining			
8-9		12	0.5		No odors or staining			
9-10		12	1.1		No odors or staining			
10-11		7	3.2		No odors or staining			
11-12		7	1.5		No odors or staining			
12-13		7	2		No odors or staining			
13-14		7	1.1		No odors or staining			
14-15		7	0.8		No odors or staining			
15-16		7	1.7		No odors or staining			
16-17		7	2.1		No odors or staining			
17-18		7	1.7		No odors or staining			
18-19		7	2.3		No odors or staining			
19-20		7	0.9		No odors or staining			
	GROUND	NATER ENC	OUNTERED		NOTES:			
DATE	DEPTH	WELL INSTALLED	WELL	. ID	Sample collected at 10-11 ft bgs			

300 Pearl Street WELL I.D.: PMW-1
Buffalo, New York 14202

☐ Fast

Recharge Behavior:

Buffalo, New York 14202 Telephone: (716) 551-6281 Facsimile: (716) 551-6282 Project Name: Phase II ESA 115-121 West Third Street and 200-210 Washington Street Location: 2172285 Project No.: Sampled By: Shannon Dalton Date: 10/20/17 Weather: Sunny **PURGE VOLUME CALCULATION** Well Diameter: 2 in Static Water Level: 11.9 ft One Well Volume: 1.296 gallons Depth of Well: 20 ft PURGE AND SAMPLING METHOD ⊠ Bailer – Type: \square Pump – Type: Sampling Device: Pump Rate: FIELD PARAMETER MEASUREMENT Time Gallons рΗ Temp Conductivity Turbidity Comments Purged (mS/cm) (NTU) $(^{\circ}C)$ 8:40 1.296 8:50 2.592 9:05 3.888 Total 3.888 Gallons Purged Purge Time Start: 8:40 Purge Time End: 9:05 WELL SAMPLING Sample I.D.: PMW-1 Sample Time: No. of Containers: Sample Preservation: ☐ VOCs - 8260B CP-51 Only ☐ Total RCRA Metals ☐ VOCs - 8260 TCL + CP-51 ☐ SVOCs - 8270 CP-51 Only ☐ PCBs Sampled For: Other: TCL VOCS **OBSERVATIONS** Very turbid, no odors or staining

Moderate

☐ Slow

☐ Purged Dry

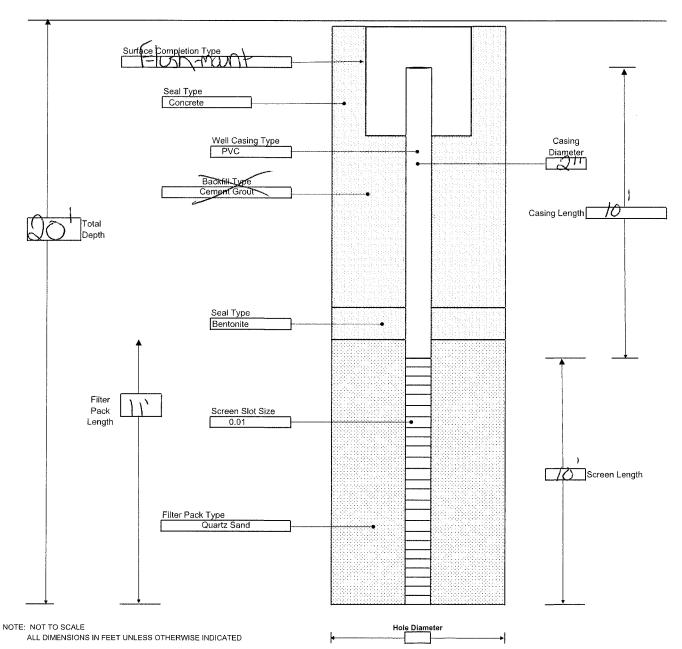
300 Pearl Street

WELL I.D.: PMW-2

Buffalo, New York 14202

Telephone: (716) 551-6281 Facsimile: (716) 551-6282

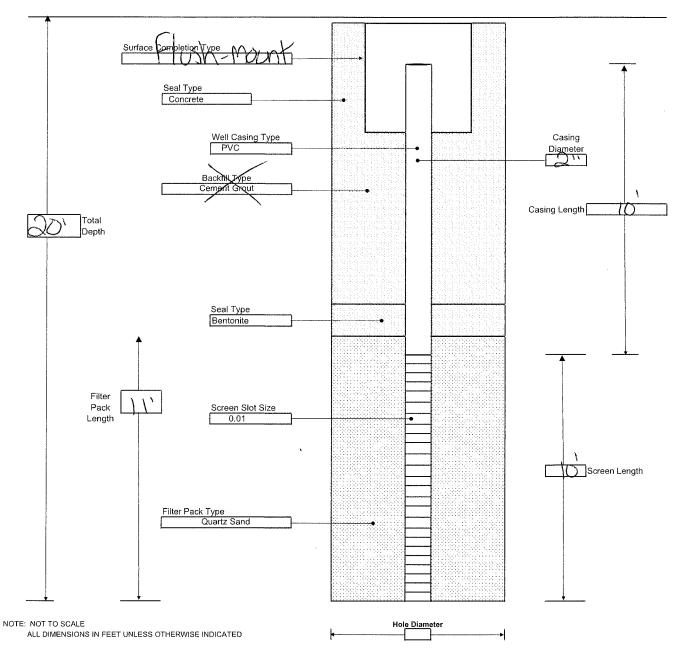
Project Name: Phase II ESA Location: 115-121 West Third Street Project No.: 2172285 Sampled By: Shannon Dalton Date: 10/20/17 Weather: Sunny PURGE VOLUME CALCULATION Well Diameter: 2 in Depth of Well: 20 ft PURGE AND SAMPLING METHOD				eet and 200-210	Static V	n Street Vater Leve	_					
☐ Bailer – Type: Sampling Device:		<u>-</u>				☐ Pump – Type: Pump Rate:						
FIELD PA	RAME	TER	MEASUI	REMENT								
Time	Gallo		рН	Temp	Conductivity	Turbidity			Comments			
	Purg	ed		(°C)	(mS/cm)	(NTU)						
T. 4.1			C 11 D	1								
Total			Gallons P	urgea								
Purge Time		_				Purge 7	Purge Time End:					
WELL SA	MPLIN	\G										
Sample I.D						Sampla	Time					
No. of Con		-				Sample Time: Sample Preservation:						
No. of Coll	tamers.	_										
Sampled For: VOCs - 8260 TCL + CP-51 SVOCs - 8270 CP-51 Only					□ VOCs - 8260B CP-51 Only □ PCBs □ Total RCRA Metals □ Other:							
OBSERVA	ATIONS	S										
Dry No samples	s collect	red										
Recharge Behavior:				te		v	☐ Purged Dry					



300 Pearl Street WELL I.D.: PMW-3
Buffalo, New York 14202

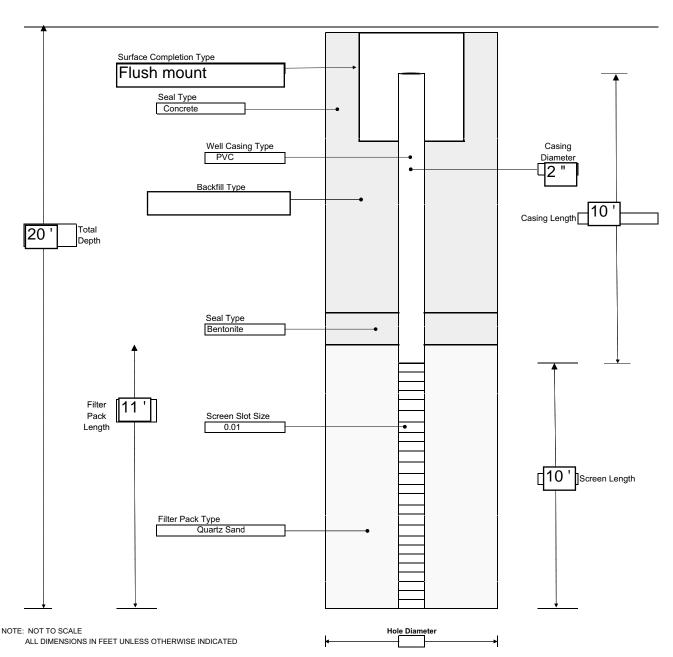
Telephone: (716) 551-6281 Facsimile: (716) 551-6282

D 1 131		DI.	H EG A							
Project Name: Phase II ESA 115 121 West Third Street and 200 2					1 200 21 <i>i</i>	0 Waalin ata	C4			_
Location: 115-121 West Third Street and 200					eet and 200-210	0 wasningto	n Street			
Project No.: 2172285										_
Sampled By: Shannon Dalton										
Date:	-	10/20								_
Weather:	-	Sunny	У							_
PURGE V	OLUMI	E CAL	CULAT	ION						
Well Diam	eter:	2	2 in			Static V	Vater Leve	1:	15.8 ft	
Depth of W	Vell:		20 ft			One We	ell Volume): _	0.672 gallons	
PURGE A	ND SAN	MPLIN	NG MET	HOD						
⊠ Bailer –	- Type:					□ Pun	np – Type:			
Sampling I						Pump F		_		_
FIELD PA	RAME.	TER N	MEASUE	REMENT				_		
Time	Gallo		рН	Temp	Conductivity	Turbidity			Comments	Ī
	Purge	ed	•	(°C)	(mS/cm)	(NTU)				
9:35	0.67									
9:50	1.34	4			Dry	@ 1.4 gallons				4
					Diy	a 1.4 ganons				-
										_
										_
Total	1.4	G	Gallons Pu	rged						_
Purge Time			9:35	<i>8</i>		Purge Time End:			9:50	
WELL SA	MPLIN	G								i
			DM 434. 2			C1 -	Time		10.20	
Sample I.D No. of Con		3	PMW-3			Sample	Preservati	_	10:20	_
						•		_		_
Sampled For:					[[□ VOCs - 8260B CP-51 Only □ PCBs □ Total RCRA Metals □ Other: TCL VOCs				
OBSERVA	ATIONS	5								
Very turbic	d and gra	v in co	olor , no c	odors or st	aining					_
,	J	,	,		S					
					☐ Modere	nte.		7	✓ Purged Dry	_
Recharge Behavior:			☐ Modera	☐ Moderate ☐ Slow			☑ Purged Dry			


	$(\mathcal{I}^{(Y)})$ 1-1
LABELLA ABBGCIBLES, P.C. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	Jamestan Brewery SHEET 1 OF 12285
CONTRACTOR: CABELLA DRILLER: LABELLA REPRESENTATIVE: CAL	BORING LOCATION: GROUND SURFACE ELEVATION: N/A DATUM: N/A START DATE: /O DEND DATE: /O - 2 - 1 3 3 3 3 3 3 3 3 3
TYPE OF DRILL RIG: AUGER SIZE AND TYPE: N/A OVERBURDEN SAMPLING METHOD: ROCK DRILLING METHOD: N/A	DATE TIME WATER CASING REMARKS

- GENERAL NOTES:

 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL
 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.


				DMI (-1)
IABELIA	PRO	IECT		BORING:
Associates, P.C.	aggree to Authority.	Ω		SHEET OI OF 1
300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	Jamestan	DUST	by.	JOB # 2/) 2/2/87
CONTRACTOR:	BORING LOC	ATION: 1		
DRILLER:	GROUND SU	RFACE ELEVAT	ION: N/A	DATUM: N/A
LABELLA REPRESENTATIVE: ()	START DATE	10-12-) END D.	ATE: 10-12-17)
		WATER LE	VEL DATA	
TYPE OF DRILL RIG:	DATI	TIME WAT	TER CASIN	GREMARKS
AUGER SIZE AND TYPE: N/A				
OVERBURDEN SAMPLING METHOD:				
ROCK DRILLING METHOD: N/A				

- GENERAL NOTES:

 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL
 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

ASSOCIATES, P.C. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR: LABella Environmental, LLC	115-120 We 200-210 Wa Jamestown,	shing				JOB#	PMW-3 2172285 SD	
DRILLER: LABELLA REPRESENTATIVE: Shannon Dalton		D SURFA	CE ELE	EVATION:	N/A END DA	DATUM: N/A NTE:		
			WATE	R LEVEL	DATA			
TYPE OF DRILL RIG:		DATE	TIME	WATER	CASING	REMARKS		
AUGER SIZE AND TYPE: N/A								
OVERBURDEN SAMPLING METHOD:								
ROCK DRILLING METHOD: N/A								•

- GENERAL NOTES:

 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL
 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

APPENDIX 2

New York State Department of Health Indoor Air Quality Questionnaire and Building Inventory Form

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

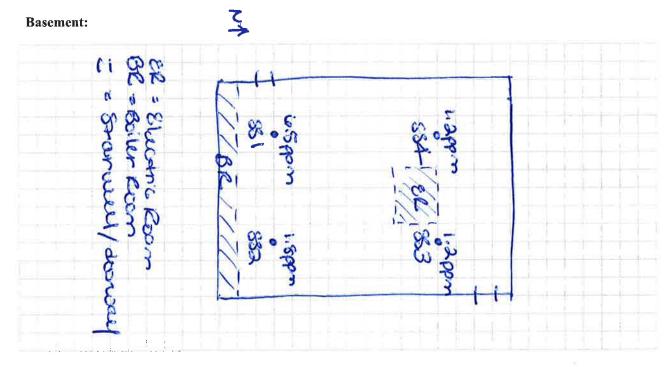
Preparer's Name LLSS i Ca Drobtoski Date/Time Prepared 10/4/17/1330
Preparer's Affiliation Consultant Phone No. 110-710-3038
Purpose of Investigation
1. OCCUPANT:
Interviewed: Y/N
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
Number of Occupants/persons at this location Age of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y/N
Last Name: Ludquet First Name: Grag
Address:
County: Chautauque
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use - Jaean+ Industrial Church Other:

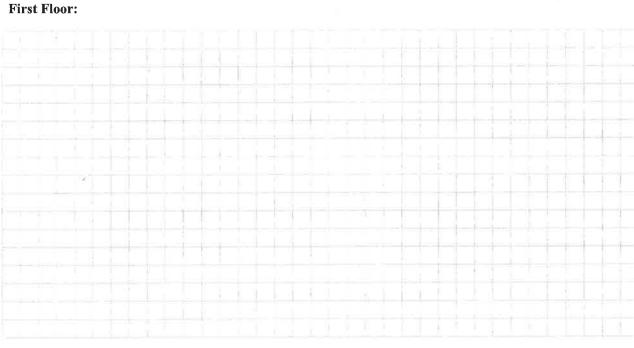
If the property is residential,	type? (Circle appropria	te response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how many?		
If the property is commercia		
Business Type(s) Voc	ant office	space
Does it include residences	(i.e., multi-use)? Y/N	If yes, how many?
Other characteristics:		
Number of floors	Build	ing age
Is the building insulated?	N How	air tight? Tight / (verage / Not Tight
		irflow patterns and qualitatively describe:
Airflow between floors		
(-		
Airflow near source		
Outdoor air infiltration		
Infiltration into air ducts		

5. BASEMENT AND CON	NSTRUCTION CH	ARACTERIST	ICS (Circle all that a	ipply)
a. Above grade construc	tion: wood fra	me concrete	stone	(brick)
b. Basement type:	full	crawlspa	ce slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovere	d covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with _	4:
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with _	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinishe	d partially finis	hed
j. Sump present?	Y / N			
k. Water in sump?	Y / N / not applies	able		
Basement/Lowest level depth	n below grade:	2 (feet)		
Identify potential soil vapor	entry points and ap	proximate size	(e.g., cracks, utility	ports, drains)
Secret open	g and a	ports i	n Ploor,	cracks Epholes
6. HEATING, VENTING a	and AIR CONDITION	ONING (Circle	all that apply)	
Type of heating system(s) use	ed in this building:	(circle all that a	apply – note primar	·y)
Hot air circulation Space Heaters Electric baseboard	Heat pum Stream ra Wood sto	diation R	ot water baseboard adiant floor outdoor wood boiler	Other
The primary type of fuel use	d is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal		erosene olar	*
Domestic hot water tank fuel	led by:			
Boiler/furnace located in:	Basement	utdoors M	Iain Floor	Other
Air conditioning:	Central Air W	indow units O	pen Windows	None

Are there air distribution ducts present?

Y/N

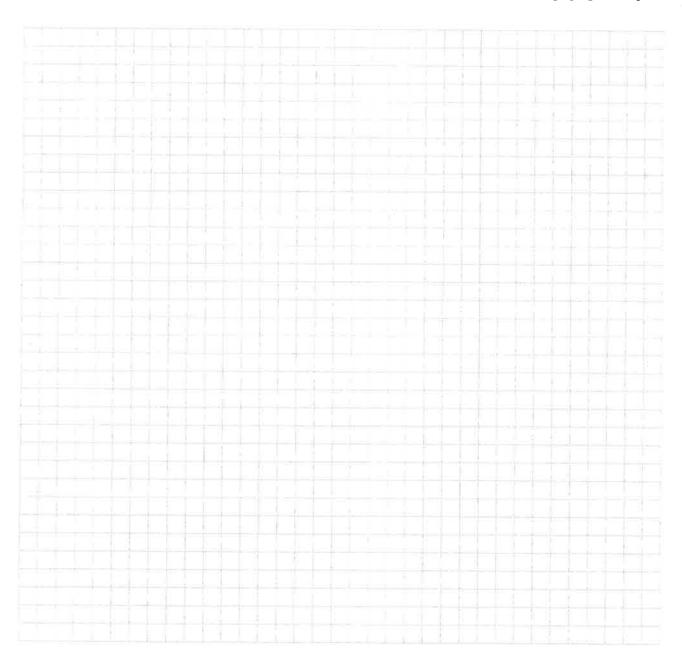

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.


	cests are clocated wants and anoughout			aust &
7. OCCUPA		asionally (Seldom	Almost Never
	•			
Level	General Use of Each Floor (e.g., familyro	om, bedroo	m, laundry,	workshop, storage)
Basement	181			
1 st Floor				
2 nd Floor	· · · · · · · · · · · · · · · · · · ·			
3 rd Floor				
4 th Floor	s			_
8. FACTOR	S THAT MAY INFLUENCE INDOOR AIR	OUALITY		
	an attached garage?		YN	
b. Does the	garage have a separate heating unit?		Y/N/NA	
•	oleum-powered machines or vehicles the garage (e.g., lawnmower, atv, car)		Y / N NA Please specif	У
d. Has the	building ever had a fire?		Y/N Whe	n?
e. Is a kero	sene or unvented gas space heater present?		Y/N Whe	re?
f. Is there a	a workshop or hobby/craft area?	Y / N	Where & Ty	pe?
g. Is there	smoking in the building?	Y 🔊	How frequer	itly?
h. Have cle	eaning products been used recently?	YN	When & Typ	e?
i. Have cos	metic products been used recently?	YN	When & Typ	pe?

J. Has painting/staining been done in the last 6 months?	Y / Where & When?
k. Is there new carpet, drapes or other textiles?	Y / Where & When?
l. Have air fresheners been used recently?	YN When & Type?
m. Is there a kitchen exhaust fan?	Y/N If yes, where vented?
n. Is there a bathroom exhaust fan?	Y/N If yes, where vented?
o. Is there a clothes dryer?	Y N If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y / When & Type?
Are there odors in the building? If yes, please describe:	YN
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y N auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work at a response)	dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Passive	e? Y/N Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driver	n Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentia	al emergency)
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to frid	ends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursemen	nt explained? Y/N
d. Relocation package provided and explained to resider	nts? Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.



12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Make & Model of field instrument used:	<u></u>

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product	Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
Bui	ding	Curren	re	1 vae	eent-no product-	8 40 14	PDA.
				ŭ.			
					1		
						-	

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX 3

Laboratory Reports

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

August 31, 2017

Shannon Dalton LaBella Associates 300 Pearl Street Suite 310 Buffalo, NY 14201

RE: Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Dear Shannon Dalton:

Enclosed are the analytical results for sample(s) received by the laboratory on August 16, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REVISION 1: Report re-issued on 8/31/17 to switch MW-1 and MW-2 IDs and to only report RCRA metals.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040 Project Manager

Enclosures

cc: Accounts Payable, LaBella Associates Adam Zebrowski, LaBella Associates

75 Broad Hollow Road Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051 New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282 South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L

Long Island Certification IDs

575 Broad Hollow Rd, Melville, NY 11747

New York Certification #: 10478 Primary Accrediting Body

New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Maryland Certification #: 208

Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

SAMPLE ANALYTE COUNT

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
7027422001	SB-1 12-14 FT	EPA 6010C	JMW	7	PACE-MV
		EPA 7471B	JLN	1	PACE-MV
		EPA 8270D by SIM	DSC	18	PASI-PA
		EPA 8260C	KGG	51	PACE-MV
		ASTM D2216-92M	DJS	1	PACE-MV
7027422002	SB-3 10-12 FT	EPA 6010C	JMW	7	PACE-MV
		EPA 7471B	JLN	1	PACE-MV
		EPA 8270D by SIM	DSC	18	PASI-PA
		EPA 8260C	KGG	51	PACE-MV
		ASTM D2216-92M	DJS	1	PACE-MV
7027422003	SB-5 10-12 FT	EPA 6010C	JMW	7	PACE-MV
		EPA 7471B	JLN	1	PACE-MV
		EPA 8270D by SIM	DSC	18	PASI-PA
		EPA 8260C	KGG	51	PACE-MV
		ASTM D2216-92M	DJS	1	PACE-MV
7027422004	MW-2	EPA 8270D by SIM	DSC	17	PASI-PA
		EPA 8260C/5030C	KGG	51	PACE-MV
7027422005	MW-1	EPA 8270D by SIM	DSC	17	PASI-PA
		EPA 8260C/5030C	KGG	51	PACE-MV

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Lab ID: 7027422001 Collected: 08/15/17 08:15 Received: 08/16/17 14:10 Sample: SB-1 12-14 FT Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 6010C Preparation Method: EPA 3050B **6010 MET ICP** Arsenic 14.3 mg/kg 0.75 08/22/17 12:58 08/23/17 12:47 7440-38-2 15.0 Barium 119 mg/kg 1 08/22/17 12:58 08/23/17 12:47 7440-39-3 D6 Cadmium 0.26 mg/kg 0.19 08/22/17 12:58 08/23/17 12:47 7440-43-9 1 Chromium 1.3 mg/kg 0.75 1 08/22/17 12:58 08/23/17 12:47 7440-47-3 18.9 0.37 08/22/17 12:58 08/23/17 12:47 Lead mg/kg 1 7439-92-1 D6 Selenium 1.4 mg/kg 0.75 08/22/17 12:58 08/23/17 12:47 7782-49-2 1 2.2 0.75 08/22/17 12:58 08/23/17 12:47 7440-22-4 M1 Silver mg/kg 1 Analytical Method: EPA 7471B Preparation Method: EPA 7471B 7471 Mercury < 0.063 0.063 08/18/17 12:24 08/18/17 18:39 7439-97-6 Mercury mg/kg 8270D MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3546 <92.5 92.5 ED Acenaphthene ug/kg 10 08/18/17 11:16 08/18/17 15:36 83-32-9 Acenaphthylene <92.5 92.5 10 08/18/17 11:16 08/18/17 15:36 208-96-8 ED ug/kg <92.5 92.5 10 ED Anthracene ug/kg 08/18/17 11:16 08/18/17 15:36 120-12-7 <92.5 92.5 10 ED Benzo(a)anthracene 08/18/17 11:16 08/18/17 15:36 56-55-3 ug/kg ED <92.5 92.5 10 08/18/17 11:16 08/18/17 15:36 50-32-8 Benzo(a)pyrene ug/kg 92.5 <92.5 10 08/18/17 11:16 08/18/17 15:36 205-99-2 FD Benzo(b)fluoranthene ug/kg <92.5 Benzo(g,h,i)perylene ug/kg 92.5 10 08/18/17 11:16 08/18/17 15:36 191-24-2 ED Benzo(k)fluoranthene <92.5 ug/kg 92.5 10 08/18/17 11:16 08/18/17 15:36 207-08-9 ED Chrysene <92.5 ug/kg 92.5 10 08/18/17 11:16 08/18/17 15:36 218-01-9 ED Dibenz(a,h)anthracene <92.5 92.5 08/18/17 11:16 08/18/17 15:36 53-70-3 ED ug/kg 10 Fluoranthene 92.5 08/18/17 11:16 08/18/17 15:36 206-44-0 ED <92.5 ug/kg 10 ug/kg Fluorene <92.5 92.5 10 08/18/17 11:16 08/18/17 15:36 86-73-7 ED Indeno(1,2,3-cd)pyrene <92.5 92.5 10 08/18/17 11:16 08/18/17 15:36 193-39-5 ED ug/kg <92.5 92.5 08/18/17 11:16 08/18/17 15:36 91-20-3 10 ED Naphthalene ug/kg <92.5 92.5 10 08/18/17 11:16 08/18/17 15:36 85-01-8 ED Phenanthrene ug/kg Pyrene <92.5 92.5 10 08/18/17 11:16 08/18/17 15:36 129-00-0 FD ug/kg Surrogates 2-Fluorobiphenyl (S) 74 % 35-141 10 08/18/17 11:16 08/18/17 15:36 321-60-8 75 % 64-141 08/18/17 11:16 08/18/17 15:36 1718-51-0 Terphenyl-d14 (S) 10 8260C MSV 5035A-L Low Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-L 1.1.1-Trichloroethane <3.4 ug/kg 3.4 1 08/24/17 07:02 08/24/17 10:07 71-55-6 1,1,2,2-Tetrachloroethane <3.4 ug/kg 3.4 1 08/24/17 07:02 08/24/17 10:07 79-34-5 M1 1.1.2-Trichloroethane <3.4 3.4 1 08/24/17 07:02 08/24/17 10:07 79-00-5 ug/kg 1,1,2-Trichlorotrifluoroethane <34 ug/kg 3 4 1 08/24/17 07:02 08/24/17 10:07 76-13-1 CC 1,1-Dichloroethane <34 ug/kg 34 1 08/24/17 07:02 08/24/17 10:07 75-34-3 CC 1,1-Dichloroethene <3.4 ug/kg 3.4 1 08/24/17 07:02 08/24/17 10:07 75-35-4 1,2,4-Trichlorobenzene <3.4 ug/kg 3.4 1 08/24/17 07:02 08/24/17 10:07 120-82-1 M1 1,2-Dibromo-3-chloropropane <3.4 ug/kg 3.4 1 08/24/17 07:02 08/24/17 10:07 96-12-8 1,2-Dibromoethane (EDB) <3.4 ug/kg 3.4 1 08/24/17 07:02 08/24/17 10:07 106-93-4 08/24/17 07:02 08/24/17 10:07 95-50-1 1,2-Dichlorobenzene <3.4 ug/kg 3.4 1 1.2-Dichloroethane <3.4 ug/kg 3.4 1 08/24/17 07:02 08/24/17 10:07 107-06-2 <3.4 3.4 08/24/17 07:02 08/24/17 10:07 78-87-5 1,2-Dichloropropane ug/kg

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Sample: SB-1 12-14 FT Lab ID: 7027422001 Collected: 08/15/17 08:15 Received: 08/16/17 14:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV 5035A-L Low Level	Analytical Meth	nod: EPA 8260C	Preparation Me	ethod: E	EPA 5035A-L			
1,3-Dichlorobenzene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	541-73-1	
1,4-Dichlorobenzene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	106-46-7	
2-Butanone (MEK)	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	78-93-3	
2-Hexanone	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	591-78-6	
4-Methyl-2-pentanone (MIBK)	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	108-10-1	
Acetone	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	67-64-1	
Benzene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	71-43-2	
Bromodichloromethane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	75-27-4	
Bromoform	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	75-25-2	
Bromomethane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	74-83-9	CC
Carbon disulfide	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	75-15-0	CC
Carbon tetrachloride	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	56-23-5	
Chlorobenzene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	108-90-7	
Chloroethane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	75-00-3	
Chloroform	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	67-66-3	
Chloromethane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	74-87-3	CC
Cyclohexane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	110-82-7	
Dibromochloromethane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	124-48-1	
Dichlorodifluoromethane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	75-71-8	CC,IH
Ethylbenzene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	100-41-4	
Isopropylbenzene (Cumene)	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	98-82-8	M1
Methyl acetate	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	79-20-9	CC,IH
Methyl-tert-butyl ether	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	1634-04-4	
Methylcyclohexane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	108-87-2	
Methylene Chloride	3.4J	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	75-09-2	CC
Styrene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	100-42-5	
Tetrachloroethene	39.2	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	127-18-4	D6
Toluene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	108-88-3	
Trichloroethene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	79-01-6	
Trichlorofluoromethane	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	75-69-4	
Vinyl chloride	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	75-01-4	CC
Xylene (Total)	<6.7	ug/kg	6.7	1	08/24/17 07:02	08/24/17 10:07	1330-20-7	
cis-1,2-Dichloroethene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	156-59-2	
cis-1,3-Dichloropropene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	10061-01-5	
trans-1,2-Dichloroethene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	156-60-5	
trans-1,3-Dichloropropene	<3.4	ug/kg	3.4	1	08/24/17 07:02	08/24/17 10:07	10061-02-6	
Surrogates		-						
Toluene-d8 (S)	115	%.	43-157	1	08/24/17 07:02	08/24/17 10:07	2037-26-5	
4-Bromofluorobenzene (S)	87	%.	34-145	1	08/24/17 07:02	08/24/17 10:07	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%.	33-150	1	08/24/17 07:02	08/24/17 10:07	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM D221	6-92M					

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Lab ID: 7027422002 Collected: 08/15/17 09:00 Received: 08/16/17 14:10 Sample: SB-3 10-12 FT Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 6010C Preparation Method: EPA 3050B **6010 MET ICP** Arsenic 12.7 mg/kg 0.59 08/22/17 12:58 08/23/17 13:22 7440-38-2 Barium 130 mg/kg 11.7 1 08/22/17 12:58 08/23/17 13:22 7440-39-3 Cadmium 0.33 mg/kg 0.15 08/22/17 12:58 08/23/17 13:22 7440-43-9 1 08/23/17 13:22 Chromium 8.9 mg/kg 0.59 1 08/22/17 12:58 7440-47-3 0.29 08/22/17 12:58 08/23/17 13:22 7439-92-1 Lead 14.6 mg/kg 1 0.59 Selenium 0.59J mg/kg 08/22/17 12:58 08/23/17 13:22 7782-49-2 1 2.4 0.59 08/22/17 12:58 08/23/17 13:22 7440-22-4 Silver mg/kg 1 Analytical Method: EPA 7471B Preparation Method: EPA 7471B 7471 Mercury <0.042 0.042 08/18/17 12:24 08/18/17 18:42 7439-97-6 Mercury mg/kg 8270D MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3546 <8.2 Acenaphthene ug/kg 8.2 1 08/18/17 11:16 08/18/17 16:29 83-32-9 Acenaphthylene <8.2 8.2 1 08/18/17 11:16 08/18/17 16:29 208-96-8 ug/kg <8.2 8.2 Anthracene ug/kg 1 08/18/17 11:16 08/18/17 16:29 120-12-7 <8.2 8.2 Benzo(a)anthracene ug/kg 08/18/17 11:16 08/18/17 16:29 56-55-3 1 <8.2 8.2 08/18/17 11:16 08/18/17 16:29 50-32-8 Benzo(a)pyrene ug/kg 1 8.2 9.1 08/18/17 11:16 08/18/17 16:29 205-99-2 Benzo(b)fluoranthene ug/kg 1 ip 8.2 Benzo(g,h,i)perylene <8.2 ug/kg 1 08/18/17 11:16 08/18/17 16:29 191-24-2 Benzo(k)fluoranthene <8.2 ug/kg 8.2 08/18/17 11:16 08/18/17 16:29 207-08-9 1 Chrysene 16.0 ug/kg 8.2 08/18/17 11:16 08/18/17 16:29 218-01-9 <8.2 8.2 08/18/17 11:16 08/18/17 16:29 53-70-3 Dibenz(a,h)anthracene ug/kg 1 <8.2 8.2 08/18/17 11:16 08/18/17 16:29 206-44-0 Fluoranthene ug/kg 1 ug/kg Fluorene <8.2 8.2 1 08/18/17 11:16 08/18/17 16:29 86-73-7 Indeno(1,2,3-cd)pyrene <8.2 8.2 08/18/17 11:16 08/18/17 16:29 193-39-5 ug/kg 1 125 8.2 08/18/17 11:16 08/18/17 16:29 91-20-3 Naphthalene ug/kg 1 12.0 8.2 08/18/17 11:16 08/18/17 16:29 85-01-8 Phenanthrene 1 ug/kg Pyrene 10.1 8.2 08/18/17 11:16 08/18/17 16:29 129-00-0 ug/kg 1 Surrogates 75 2-Fluorobiphenyl (S) % 35-141 1 08/18/17 11:16 08/18/17 16:29 321-60-8 Terphenyl-d14 (S) 103 % 64-141 08/18/17 11:16 08/18/17 16:29 1718-51-0 1 8260 MSV 5035A-H Med Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-H/5030C Acetone <175 175 2.07 08/23/17 07:57 08/23/17 11:05 67-64-1 CC ug/kg Benzene <175 175 2.07 08/23/17 07:57 08/23/17 11:05 71-43-2 ug/kg Bromodichloromethane <175 175 2 07 08/23/17 07:57 08/23/17 11:05 75-27-4 ug/kg Bromoform <175 175 2 07 08/23/17 07:57 08/23/17 11:05 75-25-2 ug/kg Bromomethane <175 ug/kg 175 2.07 08/23/17 07:57 08/23/17 11:05 74-83-9 CC,L2 2-Butanone (MEK) 175J ug/kg 175 2.07 08/23/17 07:57 08/23/17 11:05 78-93-3 Carbon disulfide <175 ug/kg 175 2.07 08/23/17 07:57 08/23/17 11:05 75-15-0 CC Carbon tetrachloride <175 ug/kg 175 2.07 08/23/17 07:57 08/23/17 11:05 56-23-5 Chlorobenzene <175 175 2.07 08/23/17 07:57 08/23/17 11:05 108-90-7 ug/kg <175 2.07 CC,L2 Chloroethane ug/kg 175 08/23/17 07:57 08/23/17 11:05 75-00-3 Chloroform <175 ug/kg 175 2.07 08/23/17 07:57 08/23/17 11:05 67-66-3 Chloromethane <175 175 2.07 08/23/17 07:57 08/23/17 11:05 74-87-3 CC ug/kg

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Sample: SB-3 10-12 FT Lab ID: 7027422002 Collected: 08/15/17 09:00 Received: 08/16/17 14:10 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV 5035A-H Med Level	Analytical Meth	nod: EPA 8260	0C Preparation Me	ethod: E	EPA 5035A-H/503	0C		
Cyclohexane	710	ug/kg	175	2.07	08/23/17 07:57	08/23/17 11:05	110-82-7	
1,2-Dibromo-3-chloropropane	<175	ug/kg	175	2.07	08/23/17 07:57	08/23/17 11:05	96-12-8	
Dibromochloromethane	<175	ug/kg	175	2.07	08/23/17 07:57	08/23/17 11:05	124-48-1	
1,2-Dibromoethane (EDB)	<175	ug/kg	175	2.07	08/23/17 07:57	08/23/17 11:05	106-93-4	
1,2-Dichlorobenzene	<175	ug/kg	175	2.07	08/23/17 07:57	08/23/17 11:05	95-50-1	
1,3-Dichlorobenzene	<175	ug/kg	175	2.07	08/23/17 07:57	08/23/17 11:05	541-73-1	
1,4-Dichlorobenzene	<175	ug/kg	175	2.07		08/23/17 11:05		
Dichlorodifluoromethane	<175	ug/kg	175	2.07		08/23/17 11:05		CC
I,1-Dichloroethane	<175	ug/kg	175	2.07		08/23/17 11:05		
I,2-Dichloroethane	<175	ug/kg	175	2.07		08/23/17 11:05		
1,1-Dichloroethene	<175	ug/kg	175	2.07		08/23/17 11:05		
cis-1,2-Dichloroethene	<175	ug/kg	175	2.07		08/23/17 11:05		
trans-1,2-Dichloroethene	<175	ug/kg	175	2.07		08/23/17 11:05		
1,2-Dichloropropane	<175	ug/kg	175	2.07		08/23/17 11:05		
cis-1,3-Dichloropropene	<175	ug/kg	175	2.07		08/23/17 11:05		
rans-1,3-Dichloropropene	<175	ug/kg	175	2.07		08/23/17 11:05		
Ethylbenzene	<175	ug/kg	175	2.07		08/23/17 11:05		
2-Hexanone	<175	ug/kg	175	2.07		08/23/17 11:05		
sopropylbenzene (Cumene)	<175	ug/kg	175	2.07		08/23/17 11:05		
Methyl acetate	<175	ug/kg	175	2.07		08/23/17 11:05		IH
Methylcyclohexane	3900	ug/kg	175	2.07		08/23/17 11:05		
Methylene Chloride	<175	ug/kg	175	2.07		08/23/17 11:05		
-Methyl-2-pentanone (MIBK)	<175	ug/kg	175	2.07		08/23/17 11:05		
Methyl-tert-butyl ether	<175	ug/kg	175	2.07		08/23/17 11:05		
Styrene	<175	ug/kg ug/kg	175	2.07		08/23/17 11:05		
,1,2,2-Tetrachloroethane	<175	ug/kg	175	2.07		08/23/17 11:05		
etrachloroethene	66100	ug/kg ug/kg	1750	20.7		08/23/17 11:40		
oluene	<175	ug/kg	175	2.07		08/23/17 11:05		
,2,4-Trichlorobenzene	<175	ug/kg ug/kg	175	2.07		08/23/17 11:05		
,1,1-Trichloroethane	<175 <175	ug/kg ug/kg	175	2.07		08/23/17 11:05		
I,1,2-Trichloroethane	<175	ug/kg	175	2.07		08/23/17 11:05		
richloroethene	<175	ug/kg ug/kg	175	2.07		08/23/17 11:05		
richloroetherie Frichlorofluoromethane	<175	ug/kg ug/kg	175	2.07		08/23/17 11:05		L2
,1,2-Trichlorotrifluoroethane	<175 <175	ug/kg ug/kg	175	2.07		08/23/17 11:05		LZ
/inyl chloride	<175 <175	ug/kg ug/kg	175	2.07		08/23/17 11:05		
(ylene (Total)	349J		349	2.07		08/23/17 11:05		
Surrogates	3433	ug/kg	549	2.01	00/25/11 01.51	00/23/17 11.03	1000-20-1	
Foluene-d8 (S)	95	%.	43-157	2.07	08/23/17 07:57	08/23/17 11:05	2037-26-5	
4-Bromofluorobenzene (S)	99	%.	34-145	2.07		08/23/17 11:05		
1,2-Dichloroethane-d4 (S)	90	%.	33-150	2.07		08/23/17 11:05		
Percent Moisture	Analytical Meth	nod: ASTM D2	2216-92M					
Damaant Maintura	20.0	0/	0.10	4		00/40/47 04.40		

Date: 08/31/2017 04:36 PM

0.10 1 Percent Moisture 20.0 08/18/17 21:13

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Lab ID: 7027422003 Collected: 08/15/17 10:25 Received: 08/16/17 14:10 Sample: SB-5 10-12 FT Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 6010C Preparation Method: EPA 3050B **6010 MET ICP** mg/kg Arsenic 4.6 0.54 08/22/17 12:58 08/23/17 13:27 7440-38-2 Barium 68.1 mg/kg 10.7 08/22/17 12:58 08/23/17 13:27 7440-39-3 1 Cadmium 0.13J mg/kg 0.13 08/22/17 12:58 08/23/17 13:27 7440-43-9 1 Chromium 3.6 mg/kg 0.54 1 08/22/17 12:58 08/23/17 13:27 7440-47-3 0.27 08/22/17 12:58 08/23/17 13:27 Lead 9.9 mg/kg 1 7439-92-1 0.54 Selenium 0.54 mg/kg 08/22/17 12:58 08/23/17 13:27 7782-49-2 1 1.5 0.54 08/22/17 12:58 08/23/17 13:27 7440-22-4 Silver mg/kg 1 Analytical Method: EPA 7471B Preparation Method: EPA 7471B 7471 Mercury <0.053 0.053 08/18/17 12:24 08/18/17 18:43 7439-97-6 Mercury mg/kg 8270D MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3546 <7.4 Acenaphthene ug/kg 7.4 08/18/17 11:16 08/18/17 16:47 83-32-9 Acenaphthylene <7.4 7.4 1 08/18/17 11:16 08/18/17 16:47 208-96-8 ug/kg <7.4 7.4 Anthracene ug/kg 08/18/17 11:16 08/18/17 16:47 120-12-7 1 <7.4 7.4 08/18/17 11:16 08/18/17 16:47 Benzo(a)anthracene 56-55-3 ug/kg 1 <7.4 7.4 08/18/17 11:16 08/18/17 16:47 50-32-8 Benzo(a)pyrene ug/kg 1 <7.4 7.4 08/18/17 11:16 08/18/17 16:47 205-99-2 Benzo(b)fluoranthene ug/kg 1 ip Benzo(g,h,i)perylene <7.4 ug/kg 7.4 1 08/18/17 11:16 08/18/17 16:47 191-24-2 Benzo(k)fluoranthene <7.4 ug/kg 7.4 08/18/17 11:16 08/18/17 16:47 207-08-9 Chrysene <7.4 ug/kg 7.4 08/18/17 11:16 08/18/17 16:47 218-01-9 08/18/17 11:16 08/18/17 16:47 53-70-3 Dibenz(a,h)anthracene <7.4 ug/kg 7.4 1 ug/kg 08/18/17 11:16 08/18/17 16:47 206-44-0 Fluoranthene <7.4 7.4 1 ug/kg Fluorene <7.4 7.4 08/18/17 11:16 08/18/17 16:47 86-73-7 1 Indeno(1,2,3-cd)pyrene <7.4 7.4 08/18/17 11:16 08/18/17 16:47 193-39-5 ug/kg 1 <7.4 7.4 08/18/17 11:16 08/18/17 16:47 91-20-3 Naphthalene ug/kg 1 <7.4 7.4 Phenanthrene ug/kg 1 Pyrene <7.4 7.4 08/18/17 11:16 08/18/17 16:47 129-00-0 ug/kg 1 Surrogates 2-Fluorobiphenyl (S) 79 % 35-141 1 08/18/17 11:16 08/18/17 16:47 321-60-8 % 111 64-141 08/18/17 11:16 08/18/17 16:47 1718-51-0 Terphenyl-d14 (S) 1 8260 MSV 5035A-H Med Level Analytical Method: EPA 8260C Preparation Method: EPA 5035A-H/5030C Acetone <50.9 50.9 1 08/23/17 07:57 08/23/17 12:25 67-64-1 CC ug/kg Benzene <50.9 50.9 08/23/17 07:57 08/23/17 12:25 71-43-2 ug/kg 1 Bromodichloromethane <50.9 50.9 08/23/17 07:57 08/23/17 12:25 75-27-4 ug/kg 1 Bromoform <50.9 ug/kg 50.9 1 08/23/17 07:57 08/23/17 12:25 75-25-2 Bromomethane <50.9 ug/kg 50.9 1 08/23/17 07:57 08/23/17 12:25 74-83-9 CC,L2 2-Butanone (MEK) <50.9 ug/kg 50.9 1 08/23/17 07:57 08/23/17 12:25 78-93-3 Carbon disulfide <50.9 ug/kg 50.9 1 08/23/17 07:57 08/23/17 12:25 75-15-0 CC Carbon tetrachloride <50.9 ug/kg 50.9 1 08/23/17 07:57 08/23/17 12:25 56-23-5 Chlorobenzene <50.9 50.9 1 08/23/17 07:57 08/23/17 12:25 108-90-7 ug/kg 50.9 CC,L2, Chloroethane <50.9 ug/kg 1 08/23/17 07:57 08/23/17 12:25 75-00-3 M0 Chloroform <50.9 50.9 1 08/23/17 07:57 08/23/17 12:25 67-66-3 ug/kg Chloromethane <50.9 50.9 08/23/17 07:57 08/23/17 12:25 74-87-3 CC ug/kg

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Sample: SB-5 10-12 FT Lab ID: 7027422003 Collected: 08/15/17 10:25 Received: 08/16/17 14:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV 5035A-H Med Level	Analytical Meth	nod: EPA 82600	C Preparation Me	ethod: E	EPA 5035A-H/5030	OC		
Cyclohexane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	110-82-7	
1,2-Dibromo-3-chloropropane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	96-12-8	
Dibromochloromethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	124-48-1	
1,2-Dibromoethane (EDB)	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	106-93-4	
1,2-Dichlorobenzene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	95-50-1	
1,3-Dichlorobenzene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	541-73-1	
1,4-Dichlorobenzene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	106-46-7	
Dichlorodifluoromethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	75-71-8	CC
1,1-Dichloroethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	75-34-3	
1,2-Dichloroethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	107-06-2	
1,1-Dichloroethene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	75-35-4	
cis-1,2-Dichloroethene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	156-59-2	
trans-1,2-Dichloroethene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	156-60-5	
1,2-Dichloropropane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	78-87-5	
cis-1,3-Dichloropropene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	10061-01-5	
rans-1,3-Dichloropropene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	10061-02-6	
Ethylbenzene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	100-41-4	
?-Hexanone	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	591-78-6	
sopropylbenzene (Cumene)	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	98-82-8	
Methyl acetate	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	79-20-9	IH
Nethylcyclohexane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	108-87-2	
Methylene Chloride	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	75-09-2	
-Methyl-2-pentanone (MIBK)	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	108-10-1	
Methyl-tert-butyl ether	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	1634-04-4	
Styrene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	100-42-5	
I,1,2,2-Tetrachloroethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	79-34-5	
Tetrachloroethene	2860	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	127-18-4	
Toluene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	108-88-3	
I,2,4-Trichlorobenzene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	120-82-1	
I,1,1-Trichloroethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	71-55-6	
I,1,2-Trichloroethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	79-00-5	
Trichloroethene	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	79-01-6	
Frichlorofluoromethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	75-69-4	L2
1,1,2-Trichlorotrifluoroethane	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	76-13-1	
/inyl chloride	<50.9	ug/kg	50.9	1	08/23/17 07:57	08/23/17 12:25	75-01-4	
(ylene (Total)	<102	ug/kg	102	1	08/23/17 07:57	08/23/17 12:25	1330-20-7	
Surrogates								
Toluene-d8 (S)	96	%.	43-157	1		08/23/17 12:25		
4-Bromofluorobenzene (S)	101	%.	34-145	1		08/23/17 12:25		
1,2-Dichloroethane-d4 (S)	93	%.	33-150	1	08/23/17 07:57	08/23/17 12:25	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM D22	216-92M					

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Sample: MW-2	Lab ID:	7027422004	Collected: 08/1	5/17 12:10	Received: 08	3/16/17 14:10	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytical I	Method: EPA 8	270D by SIM Prep	aration Me	ethod: EPA 35100	>		
Acenaphthene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 83-32-9	1j,A5
Anthracene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 120-12-7	1j, A5
Benzo(a)anthracene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 56-55-3	1j, A5
Benzo(a)pyrene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 50-32-8	1j, A5, L
Benzo(b)fluoranthene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 205-99-2	1j, A5
Benzo(g,h,i)perylene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 191-24-2	1j, A5
Benzo(k)fluoranthene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 207-08-9	1j, A5
Chrysene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 218-01-9	1j, A5
Dibenz(a,h)anthracene	<0.10	ug/L	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 53-70-3	1j, A5
Fluoranthene	<0.10	_	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 206-44-0	1j, A5
Fluorene	<0.10	_	0.1	0 1	08/18/17 13:59	08/18/17 20:0	1 86-73-7	1j, A5
Indeno(1,2,3-cd)pyrene	<0.10		0.1		08/18/17 13:59			1j, A5
Naphthalene	23.1	•	1.		08/18/17 13:59			1j, A5
Phenanthrene	<0.10	U	0.1		08/18/17 13:59			1j, A5
Pyrene	<0.10	· ·	0.1		08/18/17 13:59			1j,A5
Surrogates	-0.110	, ag, E	0.1		00/10/11 10:00	00/10/11 20:0	20 00 0	1,,, 10
2-Fluorobiphenyl (S)	56	%	19-12	3 1	08/18/17 13:59	08/18/17 20:0	1 321-60-8	
Terphenyl-d14 (S)	75		58-13	0 1	08/18/17 13:59	08/18/17 20:0	1 1718-51-0	
3260C Volatile Organics	Analytical I	Method: EPA 8	260C/5030C					
1,1,1-Trichloroethane	<1.0	ug/L	1.	0 1		08/21/17 13:1	7 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	· ·	1.			08/21/17 13:1		
1,1,2-Trichloroethane	<1.0	_	1.			08/21/17 13:1		
1,1,2-Trichlorotrifluoroethane	<1.0	· ·	1.			08/21/17 13:1		
1,1-Dichloroethane	<1.0	J	1.			08/21/17 13:1		
1,1-Dichloroethene	<1.0	· ·	1.			08/21/17 13:1		
1,2,4-Trichlorobenzene	<1.0	· ·	1.			08/21/17 13:1		
1,2-Dibromo-3-chloropropane	<1.0	_	1.			08/21/17 13:1		
1,2-Dibromoethane (EDB)	<1.0	· ·	1.			08/21/17 13:1		
1,2-Dichlorobenzene	<1.0	_	1.			08/21/17 13:1		
1,2-Dichloroethane	<1.0		1.			08/21/17 13:1		
1,2-Dichloropropane	<1.0	· ·	1.			08/21/17 13:1		
1,3-Dichlorobenzene	<1.0	U	1. 1.			08/21/17 13:1		
1,4-Dichlorobenzene	<1.0	· ·	1. 1.			08/21/17 13:1		
	5.0J	J	5.			08/21/17 13:1		СС
2-Butanone (MEK)		· ·				08/21/17 13:1		CC
2-Hexanone	< 5.0	•	5.					
4-Methyl-2-pentanone (MIBK)	<5.0	•	5.			08/21/17 13:1		
Acetone	31.6	•	5.			08/21/17 13:17		
Benzene	1.7	J	1.			08/21/17 13:1		
3romodichloromethane	<1.0	· ·	1.			08/21/17 13:1		
Bromoform	<1.0	· ·	1.			08/21/17 13:1		0.0
Bromomethane	<1.0	· ·	1.			08/21/17 13:1		CC
Carbon disulfide	<1.0	· ·	1.			08/21/17 13:1		
Carbon tetrachloride	<1.0	J	1.			08/21/17 13:1		
Chlorobenzene	<1.0	· ·	1.			08/21/17 13:1		
Chloroethane	<1.0	ug/L	1.			08/21/17 13:1	7 75-00-3	CC
Chloroform	<1.0	ug/L	1.	0 1		08/21/17 13:1	7 67-66-3	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Sample: MW-2	Lab ID: 702	7422004	Collected: 08/15/1	17 12:10	Received: 0	8/16/17 14:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Chloromethane	<1.0	ug/L	1.0	1		08/21/17 13:17	74-87-3	CC
Cyclohexane	749	ug/L	200	200		08/21/17 13:35	110-82-7	
Dibromochloromethane	<1.0	ug/L	1.0	1		08/21/17 13:17	124-48-1	
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		08/21/17 13:17	75-71-8	
Ethylbenzene	1.3	ug/L	1.0	1		08/21/17 13:17	100-41-4	
Isopropylbenzene (Cumene)	32.4	ug/L	1.0	1		08/21/17 13:17	98-82-8	
Methyl acetate	<1.0	ug/L	1.0	1		08/21/17 13:17	79-20-9	CC,IH
Methyl-tert-butyl ether	<1.0	ug/L	1.0	1		08/21/17 13:17	1634-04-4	CC
Methylcyclohexane	1290	ug/L	200	200		08/21/17 13:35	108-87-2	
Methylene Chloride	4.8	ug/L	1.0	1		08/21/17 13:17	75-09-2	CC
Styrene	<1.0	ug/L	1.0	1		08/21/17 13:17	100-42-5	
Tetrachloroethene	27100	ug/L	200	200		08/21/17 13:35	127-18-4	
Toluene	1.9	ug/L	1.0	1		08/21/17 13:17	108-88-3	
Trichloroethene	74.4	ug/L	1.0	1		08/21/17 13:17	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		08/21/17 13:17	75-69-4	
Vinyl chloride	<1.0	ug/L	1.0	1		08/21/17 13:17	75-01-4	
Xylene (Total)	61.8	ug/L	2.0	1		08/21/17 13:17	1330-20-7	
cis-1,2-Dichloroethene	33.7	ug/L	1.0	1		08/21/17 13:17	156-59-2	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/21/17 13:17	10061-01-5	
trans-1,2-Dichloroethene	2.5	ug/L	1.0	1		08/21/17 13:17	156-60-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/21/17 13:17	10061-02-6	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	119	%.	68-153	1		08/21/17 13:17	17060-07-0	
4-Bromofluorobenzene (S)	75	%.	79-124	1		08/21/17 13:17	460-00-4	S0
Toluene-d8 (S)	69	%.	69-124	1		08/21/17 13:17	2037-26-5	

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Sample: MW-1	Lab ID:	7027422005	Collected: 08/15	/17 15:30	Received: 08	3/16/17 14:10	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytical I	Method: EPA 8	270D by SIM Prepa	ration Me	thod: EPA 35100)		
Acenaphthene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	83-32-9	1j,A5
Anthracene	<0.10) ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 120-12-7	1j,A5
Benzo(a)anthracene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 56-55-3	1j,A5
Benzo(a)pyrene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 50-32-8	1j,A5,L
Benzo(b)fluoranthene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 205-99-2	1j, A5, ip
Benzo(g,h,i)perylene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 191-24-2	1j,A5
Benzo(k)fluoranthene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 207-08-9	1j, A5, ip
Chrysene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 218-01-9	1j, A5
Dibenz(a,h)anthracene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 53-70-3	1j, A5
Fluoranthene	<0.10	ug/L	0.10	1	08/18/17 13:59	08/18/17 20:18	3 206-44-0	1j, A5
Fluorene	<0.10	_	0.10	1	08/18/17 13:59	08/18/17 20:18	86-73-7	1j, A5
Indeno(1,2,3-cd)pyrene	<0.10		0.10	1	08/18/17 13:59	08/18/17 20:18	3 193-39-5	1j, A5
Naphthalene	0.11	Ŭ	0.10		08/18/17 13:59			1j, A5
Phenanthrene	<0.10	-	0.10	1	08/18/17 13:59			1j, A5
Pyrene	<0.10	Ŭ	0.10		08/18/17 13:59			1j, A5
Surrogates								.,,
2-Fluorobiphenyl (S)	79	9 %	19-123	1	08/18/17 13:59	08/18/17 20:18	3 321-60-8	
Terphenyl-d14 (S)	108	3 %	58-130	1	08/18/17 13:59	08/18/17 20:18	3 1718-51-0	
8260C Volatile Organics	Analytical I	Method: EPA 8	260C/5030C					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		08/21/17 11:46	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	Ŭ	1.0			08/21/17 11:46		
1,1,2-Trichloroethane	<1.0		1.0			08/21/17 11:46		
1,1,2-Trichlorotrifluoroethane	<1.0	Ŭ	1.0			08/21/17 11:46		
1,1-Dichloroethane	<1.0	U	1.0			08/21/17 11:46		
1,1-Dichloroethene	<1.0	_	1.0			08/21/17 11:46		
1,2,4-Trichlorobenzene	<1.0	Ŭ	1.0			08/21/17 11:46		
1,2-Dibromo-3-chloropropane	<1.0	U	1.0			08/21/17 11:46		
1,2-Dibromoethane (EDB)	<1.0	Ŭ	1.0			08/21/17 11:46		
1.2-Dichlorobenzene	<1.0	U	1.0			08/21/17 11:46		
1,2-Dichloroethane	<1.0		1.0			08/21/17 11:46		
1,2-Dichloropropane	<1.0	Ŭ	1.0			08/21/17 11:46		
1,3-Dichlorobenzene	<1.0	U	1.0			08/21/17 11:46		
1,4-Dichlorobenzene	<1.0	Ŭ	1.0			08/21/17 11:46		
2-Butanone (MEK)	<5.0	U	5.0			08/21/17 11:46		CC
2-Hexanone	<5.0	U	5.0			08/21/17 11:46		CC
2-nexamone 4-Methyl-2-pentanone (MIBK)	<5.0 <5.0	ū	5.0			08/21/17 11:46		
• • • • • • • • • • • • • • • • • • • •		ū						
Acetone	25.0	ū	5.0			08/21/17 11:46		
Benzene	<1.0	U	1.0			08/21/17 11:46		
Bromodichloromethane	<1.0	Ŭ	1.0			08/21/17 11:46		
Bromoform	<1.0	Ŭ	1.0			08/21/17 11:46		00
Bromomethane	<1.0	ū	1.0			08/21/17 11:46		CC
Carbon disulfide	2.7	Ŭ	1.0			08/21/17 11:46		
Carbon tetrachloride	<1.0	U	1.0			08/21/17 11:46		
Chlorobenzene	<1.0	Ŭ	1.0			08/21/17 11:46		
Chloroethane	<1.0	Ŭ	1.0			08/21/17 11:46		CC
Chloroform	<1.0	ug/L	1.0	1		08/21/17 11:46	67-66-3	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Sample: MW-1	Lab ID: 702	7422005	Collected: 08/15/1	7 15:30	Received: 08	8/16/17 14:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Chloromethane	<1.0	ug/L	1.0	1		08/21/17 11:46	74-87-3	CC
Cyclohexane	<1.0	ug/L	1.0	1		08/21/17 11:46	110-82-7	
Dibromochloromethane	<1.0	ug/L	1.0	1		08/21/17 11:46	124-48-1	
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		08/21/17 11:46	75-71-8	
Ethylbenzene	<1.0	ug/L	1.0	1		08/21/17 11:46	100-41-4	
Isopropylbenzene (Cumene)	<1.0	ug/L	1.0	1		08/21/17 11:46	98-82-8	
Methyl acetate	<1.0	ug/L	1.0	1		08/21/17 11:46	79-20-9	CC,IH
Methyl-tert-butyl ether	<1.0	ug/L	1.0	1		08/21/17 11:46	1634-04-4	CC
Methylcyclohexane	<1.0	ug/L	1.0	1		08/21/17 11:46	108-87-2	
Methylene Chloride	<1.0	ug/L	1.0	1		08/21/17 11:46	75-09-2	CC
Styrene	<1.0	ug/L	1.0	1		08/21/17 11:46	100-42-5	
Tetrachloroethene	1.3	ug/L	1.0	1		08/21/17 11:46	127-18-4	
Toluene	<1.0	ug/L	1.0	1		08/21/17 11:46	108-88-3	
Trichloroethene	1.6	ug/L	1.0	1		08/21/17 11:46	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		08/21/17 11:46	75-69-4	
Vinyl chloride	<1.0	ug/L	1.0	1		08/21/17 11:46	75-01-4	
Xylene (Total)	<2.0	ug/L	2.0	1		08/21/17 11:46	1330-20-7	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/21/17 11:46	156-59-2	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		08/21/17 11:46	10061-01-5	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		08/21/17 11:46	156-60-5	
trans-1,3-Dichloropropene Surrogates	<1.0	ug/L	1.0	1		08/21/17 11:46	10061-02-6	
1,2-Dichloroethane-d4 (S)	94	%.	68-153	1		08/21/17 11:46	17060-07-0	
4-Bromofluorobenzene (S)	100	%.	79-124	1		08/21/17 11:46	460-00-4	
Toluene-d8 (S)	101	%.	69-124	1		08/21/17 11:46	2037-26-5	

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

QC Batch: 35932 Analysis Method: EPA 7471B

QC Batch Method: EPA 7471B Analysis Description: 7471 Mercury

Associated Lab Samples: 7027422001, 7027422002, 7027422003

METHOD BLANK: 167597 Matrix: Solid

Associated Lab Samples: 7027422001, 7027422002, 7027422003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/kg <0.033 0.033 08/18/17 18:03

LABORATORY CONTROL SAMPLE: 167598

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 92 Mercury mg/kg .17 0.15 80-120

mg/kg .17 0.10

MATRIX SPIKE SAMPLE: 167599

7026805003 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.046 0.30 129 80-120 M1 mg/kg .23 Mercury

SAMPLE DUPLICATE: 167600

Date: 08/31/2017 04:36 PM

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Mercury
 mg/kg
 <0.046</td>
 <0.039</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

QC Batch: 36232 Analysis Method: EPA 6010C QC Batch Method: EPA 3050B Analysis Description: 6010 MET

Associated Lab Samples: 7027422001, 7027422002, 7027422003

METHOD BLANK: 168957 Matrix: Solid

Associated Lab Samples: 7027422001, 7027422002, 7027422003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	<0.50	0.50	08/23/17 12:37	
Barium	mg/kg	<10.0	10.0	08/23/17 12:37	
Cadmium	mg/kg	<0.12	0.12	08/23/17 12:37	
Chromium	mg/kg	< 0.50	0.50	08/23/17 12:37	
Lead	mg/kg	<0.25	0.25	08/23/17 12:37	
Selenium	mg/kg	< 0.50	0.50	08/23/17 12:37	
Silver	mg/kg	<0.50	0.50	08/23/17 12:37	

LABORATORY CONTROL SAMPLI	E: 168958	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	29.6	28.0	94	80-120	
Barium	mg/kg	198	197	100	80-120	
Cadmium	mg/kg	71.5	67.4	94	80-120	
Chromium	mg/kg	102	92.1	90	80-120	
Lead	mg/kg	139	149	107	80-120	
Selenium	mg/kg	60.6	58.1	96	80-120	
Silver	mg/kg	36.4	38.1	105	80-120	

MATRIX SPIKE SAMPLE:	168960						
		7027422001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	14.3	38.8	50.0	92	75-125	
Barium	mg/kg	119	38.8	158	103	75-125	
Cadmium	mg/kg	0.26	3.8	3.9	95	75-125	
Chromium	mg/kg	1.3	19.3	22.0	107	75-125	
Lead	mg/kg	18.9	38.8	53.0	88	75-125	
Selenium	mg/kg	1.4	58.1	55.1	92	75-125	
Silver	mg/kg	2.2	19.3	16.7	74	75-125 M	1

SAMPLE DUPLICATE: 168959

Date: 08/31/2017 04:36 PM

		7027422001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Arsenic	mg/kg	14.3	15.1	5	
Barium	mg/kg	119	92.1	25	D6
Cadmium	mg/kg	0.26	0.30	16	
Chromium	mg/kg	1.3	1.3	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

SAMPLE DUPLICATE: 168959 702742

		7027422001	Dup	
Parameter	Units	Result	Result	RPD Qualifiers
Lead	mg/kg	18.9	25.6	30 D6
Selenium	mg/kg	1.4	1.4	4
Silver	mg/kg	2.2	2.2	0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

QC Batch: 36603 Analysis Method: EPA 8260C

QC Batch Method: EPA 5035A-L South Method: EPA 5035A-L Low Level

Associated Lab Samples: 7027422001

METHOD BLANK: 170547 Matrix: Solid

Associated Lab Samples: 7027422001

·		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/kg	<1.8	1.8	08/24/17 08:21	<u> </u>
1,1,2,2-Tetrachloroethane	ug/kg	<1.8	1.8	08/24/17 08:21	
1,1,2-Trichloroethane	ug/kg	<1.8	1.8	08/24/17 08:21	
1,1,2-Trichlorotrifluoroethane	ug/kg	<1.8	1.8	08/24/17 08:21	CC
1,1-Dichloroethane	ug/kg	<1.8	1.8	08/24/17 08:21	CC
1,1-Dichloroethene	ug/kg	<1.8	1.8	08/24/17 08:21	
1,2,4-Trichlorobenzene	ug/kg	<1.8	1.8	08/24/17 08:21	
1,2-Dibromo-3-chloropropane	ug/kg	<1.8	1.8	08/24/17 08:21	
1,2-Dibromoethane (EDB)	ug/kg	<1.8	1.8	08/24/17 08:21	
1,2-Dichlorobenzene	ug/kg	<1.8	1.8	08/24/17 08:21	
1,2-Dichloroethane	ug/kg	<1.8	1.8	08/24/17 08:21	
1,2-Dichloropropane	ug/kg	<1.8	1.8	08/24/17 08:21	
1,3-Dichlorobenzene	ug/kg	<1.8	1.8	08/24/17 08:21	
1,4-Dichlorobenzene	ug/kg	<1.8	1.8	08/24/17 08:21	
2-Butanone (MEK)	ug/kg	<1.8	1.8	08/24/17 08:21	
2-Hexanone	ug/kg	<1.8	1.8	08/24/17 08:21	
4-Methyl-2-pentanone (MIBK)	ug/kg	<1.8	1.8	08/24/17 08:21	
Acetone	ug/kg	1.8J	1.8	08/24/17 08:21	
Benzene	ug/kg	<1.8	1.8	08/24/17 08:21	
Bromodichloromethane	ug/kg	<1.8	1.8	08/24/17 08:21	
Bromoform	ug/kg	<1.8	1.8	08/24/17 08:21	
Bromomethane	ug/kg	<1.8	1.8	08/24/17 08:21	CC
Carbon disulfide	ug/kg	<1.8	1.8	08/24/17 08:21	CC
Carbon tetrachloride	ug/kg	<1.8	1.8	08/24/17 08:21	
Chlorobenzene	ug/kg	<1.8	1.8	08/24/17 08:21	
Chloroethane	ug/kg	<1.8	1.8	08/24/17 08:21	
Chloroform	ug/kg	<1.8	1.8	08/24/17 08:21	
Chloromethane	ug/kg	<1.8	1.8	08/24/17 08:21	CC
cis-1,2-Dichloroethene	ug/kg	<1.8	1.8	08/24/17 08:21	
cis-1,3-Dichloropropene	ug/kg	<1.8	1.8	08/24/17 08:21	
Cyclohexane	ug/kg	<1.8	1.8	08/24/17 08:21	
Dibromochloromethane	ug/kg	<1.8	1.8	08/24/17 08:21	
Dichlorodifluoromethane	ug/kg	<1.8	1.8	08/24/17 08:21	CC,IH
Ethylbenzene	ug/kg	<1.8	1.8	08/24/17 08:21	
Isopropylbenzene (Cumene)	ug/kg	<1.8	1.8	08/24/17 08:21	
Methyl acetate	ug/kg	<1.8	1.8	08/24/17 08:21	CC,IH
Methyl-tert-butyl ether	ug/kg	<1.8	1.8	08/24/17 08:21	
Methylcyclohexane	ug/kg	<1.8	1.8	08/24/17 08:21	
Methylene Chloride	ug/kg	<1.8	1.8	08/24/17 08:21	CC
Styrene	ug/kg	<1.8	1.8	08/24/17 08:21	
Tetrachloroethene	ug/kg	<1.8	1.8	08/24/17 08:21	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

METHOD BLANK: 170547 Matrix: Solid

Associated Lab Samples: 7027422001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Toluene	ug/kg	<1.8	1.8	08/24/17 08:21	
trans-1,2-Dichloroethene	ug/kg	<1.8	1.8	08/24/17 08:21	
trans-1,3-Dichloropropene	ug/kg	<1.8	1.8	08/24/17 08:21	
Trichloroethene	ug/kg	<1.8	1.8	08/24/17 08:21	
Trichlorofluoromethane	ug/kg	<1.8	1.8	08/24/17 08:21	
Vinyl chloride	ug/kg	<1.8	1.8	08/24/17 08:21	CC
Xylene (Total)	ug/kg	<3.7	3.7	08/24/17 08:21	
1,2-Dichloroethane-d4 (S)	%.	107	33-150	08/24/17 08:21	
4-Bromofluorobenzene (S)	%.	104	34-145	08/24/17 08:21	
Toluene-d8 (S)	%.	92	43-157	08/24/17 08:21	

LABORATORY CONTROL SAMPLE:	170548					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	51.9	55.7	107	59-134	
1,1,2,2-Tetrachloroethane	ug/kg	51.9	47.6	92	69-132	
1,1,2-Trichloroethane	ug/kg	51.9	51.1	98	73-135	
1,1,2-Trichlorotrifluoroethane	ug/kg	51.9	44.6	86	45-156	CC
1,1-Dichloroethane	ug/kg	51.9	46.3	89	53-160	CC
1,1-Dichloroethene	ug/kg	51.9	45.7	88	47-152	
1,2,4-Trichlorobenzene	ug/kg	51.9	52.4	101	52-140	
1,2-Dibromo-3-chloropropane	ug/kg	51.9	50.1	97	57-140	
1,2-Dibromoethane (EDB)	ug/kg	51.9	53.5	103	76-138	
1,2-Dichlorobenzene	ug/kg	51.9	53.2	103	67-125	
1,2-Dichloroethane	ug/kg	51.9	53.2	103	65-143	
1,2-Dichloropropane	ug/kg	51.9	55.1	106	72-131	
1,3-Dichlorobenzene	ug/kg	51.9	54.8	106	64-124	
1,4-Dichlorobenzene	ug/kg	51.9	52.6	101	61-127	
2-Butanone (MEK)	ug/kg	51.9	35.1	68	52-164	
2-Hexanone	ug/kg	51.9	51.8	100	66-151	
4-Methyl-2-pentanone (MIBK)	ug/kg	51.9	48.6	94	63-154	
Acetone	ug/kg	51.9	38.8	75	23-196	
Benzene	ug/kg	51.9	53.4	103	65-129	
Bromodichloromethane	ug/kg	51.9	54.0	104	74-141	
Bromoform	ug/kg	51.9	55.3	107	59-136	
Bromomethane	ug/kg	51.9	38.4	74	32-182	CC
Carbon disulfide	ug/kg	51.9	42.2	81	26-160	CC
Carbon tetrachloride	ug/kg	51.9	59.5	115	57-135	
Chlorobenzene	ug/kg	51.9	53.9	104	62-136	
Chloroethane	ug/kg	51.9	56.8	110	50-159	
Chloroform	ug/kg	51.9	55.5	107	71-135	
Chloromethane	ug/kg	51.9	32.8	63	44-139	CC
cis-1,2-Dichloroethene	ug/kg	51.9	45.1	87	75-130	
cis-1,3-Dichloropropene	ug/kg	51.9	56.6	109	74-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

ABORATORY CONTROL SAMPLE:	170548					
Danamatan	I Indian	Spike	LCS	LCS	% Rec	O !:fi
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cyclohexane	ug/kg	51.9	49.9	96	21-139	
ibromochloromethane	ug/kg	51.9	56.5	109	71-133	
chlorodifluoromethane	ug/kg	51.9	32.8	63	10-155	CC,IH
thylbenzene	ug/kg	51.9	54.9	106	59-135	
opropylbenzene (Cumene)	ug/kg	51.9	58.0	112	56-129	
lethyl acetate	ug/kg	51.9	35.6	69	33-176	CC,IH
ethyl-tert-butyl ether	ug/kg	51.9	45.8	88	25-171	
ethylcyclohexane	ug/kg	51.9	51.8	100	24-141	
ethylene Chloride	ug/kg	51.9	40.0	77	50-164	CC
yrene	ug/kg	51.9	54.0	104	73-133	
trachloroethene	ug/kg	51.9	55.0	106	10-176	
luene	ug/kg	51.9	53.5	103	66-131	
ins-1,2-Dichloroethene	ug/kg	51.9	48.0	93	53-157	
ns-1,3-Dichloropropene	ug/kg	51.9	59.5	115	66-144	
ichloroethene	ug/kg	51.9	51.6	99	62-130	
ichlorofluoromethane	ug/kg	51.9	48.9	94	38-166	
nyl chloride	ug/kg	51.9	37.2	72	45-137	CC
lene (Total)	ug/kg	156	163	105	62-135	
2-Dichloroethane-d4 (S)	%.			100	33-150	
Bromofluorobenzene (S)	%.			104	34-145	
luene-d8 (S)	%.			100	43-157	

MATRIX SPIKE SAMPLE:	170550						
		7027422001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	<3.4	116	120	104	59-134	
1,1,2,2-Tetrachloroethane	ug/kg	<3.4	116	161	139	69-132	M1
1,1,2-Trichloroethane	ug/kg	<3.4	116	103	89	73-135	
1,1,2-Trichlorotrifluoroethane	ug/kg	<3.4	116	69.6	60	45-156	CC
1,1-Dichloroethane	ug/kg	<3.4	116	91.7	79	53-160	CC
1,1-Dichloroethene	ug/kg	<3.4	116	84.4	73	47-152	
1,2,4-Trichlorobenzene	ug/kg	<3.4	116	37.9	33	52-140	M1
1,2-Dibromo-3-chloropropane	ug/kg	<3.4	116	119	102	57-140	
1,2-Dibromoethane (EDB)	ug/kg	<3.4	116	110	95	76-138	
1,2-Dichlorobenzene	ug/kg	<3.4	116	93.8	81	67-125	
1,2-Dichloroethane	ug/kg	<3.4	116	119	103	65-143	
1,2-Dichloropropane	ug/kg	<3.4	116	117	101	72-131	
1,3-Dichlorobenzene	ug/kg	<3.4	116	105	90	64-124	
1,4-Dichlorobenzene	ug/kg	<3.4	116	107	92	61-127	
2-Butanone (MEK)	ug/kg	<3.4	116	73.4	63	52-164	
2-Hexanone	ug/kg	<3.4	116	144	124	66-151	
4-Methyl-2-pentanone (MIBK)	ug/kg	<3.4	116	113	97	63-154	
Acetone	ug/kg	<3.4	116	132	113	23-196	
Benzene	ug/kg	<3.4	116	117	101	65-129	
Bromodichloromethane	ug/kg	<3.4	116	113	97	74-141	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

MATRIX SPIKE SAMPLE:	170550						
		7027422001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	ug/kg	<3.4	116	108	93	59-136	
Bromomethane	ug/kg	<3.4	116	83.9	72	32-182 (CC
Carbon disulfide	ug/kg	<3.4	116	75.8	65	26-160 (CC
Carbon tetrachloride	ug/kg	<3.4	116	107	92	57-135	
Chlorobenzene	ug/kg	<3.4	116	113	97	62-136	
Chloroethane	ug/kg	<3.4	116	118	102	50-159	
Chloroform	ug/kg	<3.4	116	109	94	71-135	
Chloromethane	ug/kg	<3.4	116	62.4	54	44-139 (CC
cis-1,2-Dichloroethene	ug/kg	<3.4	116	91.1	78	75-130	
cis-1,3-Dichloropropene	ug/kg	<3.4	116	112	97	74-140	
Cyclohexane	ug/kg	<3.4	116	79.3	68	21-139	
Dibromochloromethane	ug/kg	<3.4	116	128	110	71-133	
Dichlorodifluoromethane	ug/kg	<3.4	116	65.1	56	10-155 (CC,IH
Ethylbenzene	ug/kg	<3.4	116	102	88	59-135	
sopropylbenzene (Cumene)	ug/kg	<3.4	116	154	133	56-129 I	И 1
Methyl acetate	ug/kg	<3.4	116	88.3	76	33-176 (CC,IH
Methyl-tert-butyl ether	ug/kg	<3.4	116	102	88	25-171	
Methylcyclohexane	ug/kg	<3.4	116	60.0	52	24-141	
Methylene Chloride	ug/kg	3.4J	116	85.5	72	50-164 (CC
Styrene	ug/kg	<3.4	116	96.8	83	73-133	
Tetrachloroethene	ug/kg	39.2	116	160	104	10-176	
Toluene	ug/kg	<3.4	116	101	87	66-131	
rans-1,2-Dichloroethene	ug/kg	<3.4	116	93.7	81	53-157	
rans-1,3-Dichloropropene	ug/kg	<3.4	116	115	99	66-144	
Trichloroethene	ug/kg	<3.4	116	97.0	84	62-130	
Trichlorofluoromethane	ug/kg	<3.4	116	91.1	79	38-166	
√inyl chloride	ug/kg	<3.4	116	73.8	64	45-137 (CC
Kylene (Total)	ug/kg	<6.7	348	309	89	62-135	
1,2-Dichloroethane-d4 (S)	%.				104	33-150	
4-Bromofluorobenzene (S)	%.				78	34-145	
Toluene-d8 (S)	%.				112	43-157	

SAMPLE	DUPLICATE:	170549

Date: 08/31/2017 04:36 PM

		7027422001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1-Trichloroethane	ug/kg	<3.4	<2.3		
1,1,2,2-Tetrachloroethane	ug/kg	<3.4	<2.3		
1,1,2-Trichloroethane	ug/kg	<3.4	<2.3		
1,1,2-Trichlorotrifluoroethane	ug/kg	<3.4	<2.3		CC
1,1-Dichloroethane	ug/kg	<3.4	<2.3		CC
1,1-Dichloroethene	ug/kg	<3.4	<2.3		
1,2,4-Trichlorobenzene	ug/kg	<3.4	<2.3		
1,2-Dibromo-3-chloropropane	ug/kg	<3.4	<2.3		
1,2-Dibromoethane (EDB)	ug/kg	<3.4	<2.3		
1,2-Dichlorobenzene	ug/kg	<3.4	<2.3		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

SAMPLE DUPLICATE: 170549			_		
		7027422001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers — ——
1,2-Dichloroethane	ug/kg	<3.4	<2.3		
1,2-Dichloropropane	ug/kg	<3.4	<2.3		
1,3-Dichlorobenzene	ug/kg	<3.4	<2.3		
1,4-Dichlorobenzene	ug/kg	<3.4	<2.3		
2-Butanone (MEK)	ug/kg	<3.4	<2.3		
2-Hexanone	ug/kg	<3.4	<2.3		
4-Methyl-2-pentanone (MIBK)	ug/kg	<3.4	<2.3		
Acetone	ug/kg	<3.4	<2.3		
Benzene	ug/kg	<3.4	<2.3		
Bromodichloromethane	ug/kg	<3.4	<2.3		
Bromoform	ug/kg	<3.4	<2.3		
Bromomethane	ug/kg	<3.4	<2.3		CC
Carbon disulfide	ug/kg	<3.4	<2.3		CC
Carbon tetrachloride	ug/kg	<3.4	<2.3		
Chlorobenzene	ug/kg	<3.4	<2.3		
Chloroethane	ug/kg	<3.4	<2.3		
Chloroform	ug/kg	<3.4	<2.3		
Chloromethane	ug/kg	<3.4	<2.3		CC
cis-1,2-Dichloroethene	ug/kg	<3.4	<2.3		
cis-1,3-Dichloropropene	ug/kg	<3.4	<2.3		
Cyclohexane	ug/kg	<3.4	<2.3		
Dibromochloromethane	ug/kg	<3.4	<2.3		
Dichlorodifluoromethane	ug/kg	<3.4	<2.3		CC,IH
Ethylbenzene	ug/kg	<3.4	<2.3		
Isopropylbenzene (Cumene)	ug/kg	<3.4	<2.3		
Methyl acetate	ug/kg	<3.4	<2.3		CC,IH
Methyl-tert-butyl ether	ug/kg	<3.4	<2.3		
Methylcyclohexane	ug/kg	<3.4	<2.3		
Methylene Chloride	ug/kg	3.4J	<2.3		CC
Styrene	ug/kg	<3.4	<2.3		
Tetrachloroethene	ug/kg	39.2	26.8	3	8 D6
Toluene	ug/kg	<3.4	<2.3		
trans-1,2-Dichloroethene	ug/kg	<3.4	<2.3		
trans-1,3-Dichloropropene	ug/kg	<3.4	<2.3		
Trichloroethene	ug/kg	<3.4	<2.3		
Trichlorofluoromethane	ug/kg	<3.4	<2.3		
Vinyl chloride	ug/kg	<3.4	<2.3		CC
Xylene (Total)	ug/kg	<6.7	<4.5		
1,2-Dichloroethane-d4 (S)	%.	107	124	2	25
4-Bromofluorobenzene (S)	%.	87	81	4	-6
Toluene-d8 (S)	%.	115	112	4	-2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

QC Batch: 36668 Analysis Method: EPA 8260C

QC Batch Method: EPA 5035A-H/5030C Analysis Description: 8260 MSV 5035A-H Med

Associated Lab Samples: 7027422002, 7027422003

METHOD BLANK: 170831 Matrix: Solid

Associated Lab Samples: 7027422002, 7027422003

·	Blan		Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/kg	<97.3	97.3	08/23/17 08:53	
1,1,2,2-Tetrachloroethane	ug/kg	<97.3	97.3	08/23/17 08:53	
1,1,2-Trichloroethane	ug/kg	<97.3	97.3	08/23/17 08:53	
1,1,2-Trichlorotrifluoroethane	ug/kg	<97.3	97.3	08/23/17 08:53	
1,1-Dichloroethane	ug/kg	<97.3	97.3	08/23/17 08:53	
1,1-Dichloroethene	ug/kg	<97.3	97.3	08/23/17 08:53	
1,2,4-Trichlorobenzene	ug/kg	<97.3	97.3	08/23/17 08:53	
1,2-Dibromo-3-chloropropane	ug/kg	<97.3	97.3	08/23/17 08:53	
1,2-Dibromoethane (EDB)	ug/kg	<97.3	97.3	08/23/17 08:53	
1,2-Dichlorobenzene	ug/kg	<97.3	97.3	08/23/17 08:53	
1,2-Dichloroethane	ug/kg	<97.3	97.3	08/23/17 08:53	
1,2-Dichloropropane	ug/kg	<97.3	97.3	08/23/17 08:53	
1,3-Dichlorobenzene	ug/kg	<97.3	97.3	08/23/17 08:53	
1,4-Dichlorobenzene	ug/kg	<97.3	97.3	08/23/17 08:53	
2-Butanone (MEK)	ug/kg	<97.3	97.3	08/23/17 08:53	
2-Hexanone	ug/kg	<97.3	97.3	08/23/17 08:53	
4-Methyl-2-pentanone (MIBK)	ug/kg	<97.3	97.3	08/23/17 08:53	
Acetone	ug/kg	<97.3	97.3	08/23/17 08:53	CC
Benzene	ug/kg	<97.3	97.3	08/23/17 08:53	
Bromodichloromethane	ug/kg	<97.3	97.3	08/23/17 08:53	
Bromoform	ug/kg	<97.3	97.3	08/23/17 08:53	
Bromomethane	ug/kg	<97.3	97.3	08/23/17 08:53	CC
Carbon disulfide	ug/kg	<97.3	97.3	08/23/17 08:53	CC
Carbon tetrachloride	ug/kg	<97.3	97.3	08/23/17 08:53	
Chlorobenzene	ug/kg	<97.3	97.3	08/23/17 08:53	
Chloroethane	ug/kg	<97.3	97.3	08/23/17 08:53	CC
Chloroform	ug/kg	<97.3	97.3	08/23/17 08:53	
Chloromethane	ug/kg	<97.3	97.3	08/23/17 08:53	CC
cis-1,2-Dichloroethene	ug/kg	<97.3	97.3	08/23/17 08:53	
cis-1,3-Dichloropropene	ug/kg	<97.3	97.3	08/23/17 08:53	
Cyclohexane	ug/kg	<97.3	97.3	08/23/17 08:53	
Dibromochloromethane	ug/kg	<97.3	97.3	08/23/17 08:53	
Dichlorodifluoromethane	ug/kg	<97.3	97.3	08/23/17 08:53	CC
Ethylbenzene	ug/kg	<97.3	97.3	08/23/17 08:53	
Isopropylbenzene (Cumene)	ug/kg	<97.3	97.3	08/23/17 08:53	
Methyl acetate	ug/kg	<97.3	97.3	08/23/17 08:53	IH
Methyl-tert-butyl ether	ug/kg	<97.3	97.3	08/23/17 08:53	
Methylcyclohexane	ug/kg	<97.3	97.3	08/23/17 08:53	
Methylene Chloride	ug/kg	<97.3	97.3	08/23/17 08:53	
Styrene	ug/kg	<97.3	97.3	08/23/17 08:53	
Tetrachloroethene	ug/kg	<97.3	97.3	08/23/17 08:53	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

METHOD BLANK: 170831 Matrix: Solid

Associated Lab Samples: 7027422002, 7027422003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Toluene	ug/kg	<97.3	97.3	08/23/17 08:53	
trans-1,2-Dichloroethene	ug/kg	<97.3	97.3	08/23/17 08:53	
trans-1,3-Dichloropropene	ug/kg	<97.3	97.3	08/23/17 08:53	
Trichloroethene	ug/kg	<97.3	97.3	08/23/17 08:53	
Trichlorofluoromethane	ug/kg	<97.3	97.3	08/23/17 08:53	
Vinyl chloride	ug/kg	<97.3	97.3	08/23/17 08:53	
Xylene (Total)	ug/kg	<195	195	08/23/17 08:53	
1,2-Dichloroethane-d4 (S)	%.	94	33-150	08/23/17 08:53	
4-Bromofluorobenzene (S)	%.	103	34-145	08/23/17 08:53	
Toluene-d8 (S)	%.	99	43-157	08/23/17 08:53	

LABORATORY CONTROL SAMPLE:	170832	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2580	2300	89	59-134	
1,1,2,2-Tetrachloroethane	ug/kg	2580	2210	86	69-132	
1,1,2-Trichloroethane	ug/kg	2580	2610	101	73-135	
1,1,2-Trichlorotrifluoroethane	ug/kg	2580	1850	72	45-156	
1,1-Dichloroethane	ug/kg	2580	2230	86	53-160	
1,1-Dichloroethene	ug/kg	2580	1830	71	47-152	
1,2,4-Trichlorobenzene	ug/kg	2580	2570	100	52-140	
1,2-Dibromo-3-chloropropane	ug/kg	2580	1890	73	57-140	
1,2-Dibromoethane (EDB)	ug/kg	2580	2680	104	76-138	
1,2-Dichlorobenzene	ug/kg	2580	2530	98	67-125	
1,2-Dichloroethane	ug/kg	2580	2480	96	65-143	
1,2-Dichloropropane	ug/kg	2580	2500	97	72-131	
1,3-Dichlorobenzene	ug/kg	2580	2530	98	64-124	
,4-Dichlorobenzene	ug/kg	2580	2510	97	61-127	
-Butanone (MEK)	ug/kg	2580	2090	81	52-164	
-Hexanone	ug/kg	2580	2260	88	66-151	
-Methyl-2-pentanone (MIBK)	ug/kg	2580	2310	90	63-154	
Acetone	ug/kg	2580	1970	77	23-196	CC
Benzene	ug/kg	2580	2400	93	65-129	
Bromodichloromethane	ug/kg	2580	2400	93	74-141	
Bromoform	ug/kg	2580	2440	95	59-136	
Bromomethane	ug/kg	2580	747	29	32-182	CC,L2
Carbon disulfide	ug/kg	2580	1570	61	26-160	CC
Carbon tetrachloride	ug/kg	2580	2200	85	57-135	
Chlorobenzene	ug/kg	2580	2620	102	62-136	
Chloroethane	ug/kg	2580	668	26	50-159	CC,L2
Chloroform	ug/kg	2580	2290	89	71-135	
Chloromethane	ug/kg	2580	1640	64	44-139	CC
cis-1,2-Dichloroethene	ug/kg	2580	2380	92	75-130	
cis-1,3-Dichloropropene	ug/kg	2580	2540	98	74-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

ABORATORY CONTROL SAMPLE:	170832					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cyclohexane	ug/kg	2580	2290	89	21-139	
Dibromochloromethane	ug/kg	2580	2470	96	71-133	
richlorodifluoromethane	ug/kg	2580	1380	54	10-155	CC
thylbenzene	ug/kg	2580	2560	100	59-135	
opropylbenzene (Cumene)	ug/kg	2580	2330	90	56-129	
lethyl acetate	ug/kg	2580	2220	86	33-176	IH
ethyl-tert-butyl ether	ug/kg	2580	2280	88	25-171	
ethylcyclohexane	ug/kg	2580	2440	95	24-141	
ethylene Chloride	ug/kg	2580	2110	82	50-164	
yrene	ug/kg	2580	2730	106	73-133	
trachloroethene	ug/kg	2580	2360	92	10-176	
uene	ug/kg	2580	2540	98	66-131	
ns-1,2-Dichloroethene	ug/kg	2580	2300	89	53-157	
ns-1,3-Dichloropropene	ug/kg	2580	2650	103	66-144	
chloroethene	ug/kg	2580	2490	97	62-130	
ichlorofluoromethane	ug/kg	2580	566	22	38-166	L2
nyl chloride	ug/kg	2580	1870	73	45-137	
lene (Total)	ug/kg	7730	7880	102	62-135	
-Dichloroethane-d4 (S)	%.			89	33-150	
Bromofluorobenzene (S)	%.			106	34-145	
oluene-d8 (S)	%.			98	43-157	

MATRIX SPIKE SAMPLE:	170833						
		7027422003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	<50.9	1270	1310	103	59-134	
1,1,2,2-Tetrachloroethane	ug/kg	<50.9	1270	1140	90	69-132	
1,1,2-Trichloroethane	ug/kg	<50.9	1270	1470	115	73-135	
1,1,2-Trichlorotrifluoroethane	ug/kg	<50.9	1270	1070	84	45-156	
1,1-Dichloroethane	ug/kg	<50.9	1270	1260	99	53-160	
1,1-Dichloroethene	ug/kg	<50.9	1270	1110	87	47-152	
1,2,4-Trichlorobenzene	ug/kg	<50.9	1270	1410	111	52-140	
1,2-Dibromo-3-chloropropane	ug/kg	<50.9	1270	1030	81	57-140	
1,2-Dibromoethane (EDB)	ug/kg	<50.9	1270	1470	116	76-138	
1,2-Dichlorobenzene	ug/kg	<50.9	1270	1350	106	67-125	
1,2-Dichloroethane	ug/kg	<50.9	1270	1300	102	65-143	
1,2-Dichloropropane	ug/kg	<50.9	1270	1350	106	72-131	
1,3-Dichlorobenzene	ug/kg	<50.9	1270	1370	107	64-124	
1,4-Dichlorobenzene	ug/kg	<50.9	1270	1360	107	61-127	
2-Butanone (MEK)	ug/kg	<50.9	1270	1180	92	52-164	
2-Hexanone	ug/kg	<50.9	1270	1180	93	66-151	
4-Methyl-2-pentanone (MIBK)	ug/kg	<50.9	1270	1260	99	63-154	
Acetone	ug/kg	<50.9	1270	1090	85	23-196 C	C
Benzene	ug/kg	<50.9	1270	1360	107	65-129	
Bromodichloromethane	ug/kg	<50.9	1270	1290	102	74-141	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

MATRIX SPIKE SAMPLE:	170833						
		7027422003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	 ug/kg	<50.9	1270	1160	91	59-136	
Bromomethane	ug/kg	<50.9	1270	476	37	32-182	CC
Carbon disulfide	ug/kg	<50.9	1270	906	71	26-160	CC
Carbon tetrachloride	ug/kg	<50.9	1270	1240	98	57-135	
Chlorobenzene	ug/kg	<50.9	1270	1420	111	62-136	
Chloroethane	ug/kg	<50.9	1270	420	33	50-159	CC,M0
Chloroform	ug/kg	<50.9	1270	1290	101	71-135	
Chloromethane	ug/kg	<50.9	1270	916	72	44-139	CC
cis-1,2-Dichloroethene	ug/kg	<50.9	1270	1320	104	75-130	
cis-1,3-Dichloropropene	ug/kg	<50.9	1270	1380	108	74-140	
Cyclohexane	ug/kg	<50.9	1270	1310	103	21-139	
Dibromochloromethane	ug/kg	<50.9	1270	1230	97	71-133	
Dichlorodifluoromethane	ug/kg	<50.9	1270	768	60	10-155	CC
Ethylbenzene	ug/kg	<50.9	1270	1410	110	59-135	
sopropylbenzene (Cumene)	ug/kg	<50.9	1270	1350	106	56-129	
Methyl acetate	ug/kg	<50.9	1270	1370	108	33-176	IH
Methyl-tert-butyl ether	ug/kg	<50.9	1270	1200	95	25-171	
Methylcyclohexane	ug/kg	<50.9	1270	1420	111	24-141	
Methylene Chloride	ug/kg	<50.9	1270	1140	89	50-164	
Styrene	ug/kg	<50.9	1270	1430	112	73-133	
Tetrachloroethene	ug/kg	2860	1270	3970	87	10-176	
Toluene	ug/kg	<50.9	1270	1440	113	66-131	
trans-1,2-Dichloroethene	ug/kg	<50.9	1270	1310	103	53-157	
trans-1,3-Dichloropropene	ug/kg	<50.9	1270	1430	112	66-144	
Trichloroethene	ug/kg	<50.9	1270	1440	113	62-130	
Trichlorofluoromethane	ug/kg	<50.9	1270	742	58	38-166	
Vinyl chloride	ug/kg	<50.9	1270	1080	85	45-137	
Xylene (Total)	ug/kg	<102	3810	4280	112	62-135	
1,2-Dichloroethane-d4 (S)	%.				91	33-150	
4-Bromofluorobenzene (S)	%.				100	34-145	
Toluene-d8 (S)	%.				95	43-157	

Date: 08/31/2017 04:36 PM

		7027422003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1-Trichloroethane	ug/kg	<50.9	<50.9		
1,1,2,2-Tetrachloroethane	ug/kg	<50.9	<50.9		
1,1,2-Trichloroethane	ug/kg	<50.9	<50.9		
1,1,2-Trichlorotrifluoroethane	ug/kg	<50.9	<50.9		
1,1-Dichloroethane	ug/kg	<50.9	<50.9		
1,1-Dichloroethene	ug/kg	<50.9	<50.9		
1,2,4-Trichlorobenzene	ug/kg	<50.9	<50.9		
1,2-Dibromo-3-chloropropane	ug/kg	<50.9	<50.9		
1,2-Dibromoethane (EDB)	ug/kg	<50.9	<50.9		
1,2-Dichlorobenzene	ug/kg	<50.9	<50.9		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

SAMPLE DUPLICATE: 170834		7027422003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dichloroethane	ug/kg		<50.9		
1,2-Dichloropropane	ug/kg	<50.9	<50.9		
1,3-Dichlorobenzene	ug/kg	<50.9	<50.9		
1,4-Dichlorobenzene	ug/kg	<50.9	<50.9		
2-Butanone (MEK)	ug/kg	<50.9	<50.9		
2-Hexanone	ug/kg	<50.9	<50.9		
4-Methyl-2-pentanone (MIBK)	ug/kg	<50.9	<50.9		
Acetone	ug/kg	<50.9	<50.9		CC
Benzene	ug/kg	<50.9	<50.9		
Bromodichloromethane	ug/kg	<50.9	<50.9		
Bromoform	ug/kg	<50.9	<50.9		
Bromomethane	ug/kg	<50.9	<50.9		CC
Carbon disulfide	ug/kg	<50.9	<50.9		CC
Carbon tetrachloride	ug/kg	<50.9	<50.9		
Chlorobenzene	ug/kg	<50.9	<50.9		
Chloroethane	ug/kg	<50.9	<50.9		CC
Chloroform	ug/kg	<50.9	<50.9		
Chloromethane	ug/kg	<50.9	<50.9		CC
cis-1,2-Dichloroethene	ug/kg	<50.9	<50.9		
cis-1,3-Dichloropropene	ug/kg	<50.9	<50.9		
Cyclohexane	ug/kg	<50.9	<50.9		
Dibromochloromethane	ug/kg	<50.9	<50.9		
Dichlorodifluoromethane	ug/kg	<50.9	<50.9		CC
Ethylbenzene	ug/kg	<50.9	<50.9		
Isopropylbenzene (Cumene)	ug/kg	<50.9	<50.9		
Methyl acetate	ug/kg	<50.9	<50.9		IH
Methyl-tert-butyl ether	ug/kg	<50.9	<50.9		
Methylcyclohexane	ug/kg	<50.9	<50.9		
Methylene Chloride	ug/kg	<50.9	<50.9		
Styrene	ug/kg	<50.9	<50.9		
Tetrachloroethene	ug/kg	2860	2770		3
Toluene	ug/kg	<50.9	<50.9		
trans-1,2-Dichloroethene	ug/kg	<50.9	<50.9		
trans-1,3-Dichloropropene	ug/kg	<50.9	<50.9		
Trichloroethene	ug/kg	<50.9	<50.9		
Trichlorofluoromethane	ug/kg	<50.9	<50.9		
Vinyl chloride	ug/kg	<50.9	<50.9		
Xylene (Total)	ug/kg	<102	<102		
1,2-Dichloroethane-d4 (S)	%.	93	95		1
4-Bromofluorobenzene (S)	%.	101	102		1
Toluene-d8 (S)	%.	96	97		1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

QC Batch: 36155 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Associated Lab Samples: 7027422004, 7027422005

METHOD BLANK: 168692 Matrix: Water

Associated Lab Samples: 7027422004, 7027422005

·	•	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	1.0	08/21/17 10:14	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	08/21/17 10:14	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	08/21/17 10:14	
1,1,2-Trichlorotrifluoroethane	ug/L	<1.0	1.0	08/21/17 10:14	
1,1-Dichloroethane	ug/L	<1.0	1.0	08/21/17 10:14	
1,1-Dichloroethene	ug/L	<1.0	1.0	08/21/17 10:14	
1,2,4-Trichlorobenzene	ug/L	<1.0	1.0	08/21/17 10:14	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	08/21/17 10:14	
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	08/21/17 10:14	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	08/21/17 10:14	
1,2-Dichloroethane	ug/L	<1.0	1.0	08/21/17 10:14	
1,2-Dichloropropane	ug/L	<1.0	1.0	08/21/17 10:14	
1,3-Dichlorobenzene	ug/L	<1.0	1.0	08/21/17 10:14	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	08/21/17 10:14	
2-Butanone (MEK)	ug/L	<5.0	5.0	08/21/17 10:14	CC
2-Hexanone	ug/L	<5.0	5.0	08/21/17 10:14	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	08/21/17 10:14	
Acetone	ug/L	<5.0	5.0	08/21/17 10:14	
Benzene	ug/L	<1.0	1.0	08/21/17 10:14	
Bromodichloromethane	ug/L	<1.0	1.0	08/21/17 10:14	
Bromoform	ug/L	<1.0	1.0	08/21/17 10:14	
Bromomethane	ug/L	<1.0	1.0	08/21/17 10:14	CC
Carbon disulfide	ug/L	<1.0	1.0	08/21/17 10:14	
Carbon tetrachloride	ug/L	<1.0	1.0	08/21/17 10:14	
Chlorobenzene	ug/L	<1.0	1.0	08/21/17 10:14	
Chloroethane	ug/L	<1.0	1.0	08/21/17 10:14	CC
Chloroform	ug/L	<1.0	1.0	08/21/17 10:14	
Chloromethane	ug/L	<1.0	1.0	08/21/17 10:14	CC
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	08/21/17 10:14	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	08/21/17 10:14	
Cyclohexane	ug/L	<1.0	1.0	08/21/17 10:14	
Dibromochloromethane	ug/L	<1.0	1.0	08/21/17 10:14	
Dichlorodifluoromethane	ug/L	<1.0	1.0	08/21/17 10:14	
Ethylbenzene	ug/L	<1.0	1.0	08/21/17 10:14	
Isopropylbenzene (Cumene)	ug/L	<1.0	1.0	08/21/17 10:14	
Methyl acetate	ug/L	<1.0	1.0	08/21/17 10:14	CC,IH
Methyl-tert-butyl ether	ug/L	<1.0	1.0	08/21/17 10:14	CC
Methylcyclohexane	ug/L	<1.0	1.0	08/21/17 10:14	
Methylene Chloride	ug/L	<1.0	1.0	08/21/17 10:14	CC
Styrene	ug/L	<1.0	1.0	08/21/17 10:14	
Tetrachloroethene	ug/L	<1.0	1.0	08/21/17 10:14	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

LABORATORY/OCNITROL CAMPUT

Date: 08/31/2017 04:36 PM

METHOD BLANK: 168692 Matrix: Water

Associated Lab Samples: 7027422004, 7027422005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Toluene	ug/L	<1.0	1.0	08/21/17 10:14	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	08/21/17 10:14	
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	08/21/17 10:14	
Trichloroethene	ug/L	<1.0	1.0	08/21/17 10:14	
Trichlorofluoromethane	ug/L	<1.0	1.0	08/21/17 10:14	
Vinyl chloride	ug/L	<1.0	1.0	08/21/17 10:14	
Xylene (Total)	ug/L	<2.0	2.0	08/21/17 10:14	
1,2-Dichloroethane-d4 (S)	%.	94	68-153	08/21/17 10:14	
4-Bromofluorobenzene (S)	%.	101	79-124	08/21/17 10:14	
Toluene-d8 (S)	%.	100	69-124	08/21/17 10:14	

LABORATORY CONTROL SAMPLE:	168693					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	51.4	103	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	45.3	91	74-121	
1,1,2-Trichloroethane	ug/L	50	48.5	97	80-117	
1,1,2-Trichlorotrifluoroethane	ug/L	50	41.9	84	60-140	
1,1-Dichloroethane	ug/L	50	48.9	98	83-151	
1,1-Dichloroethene	ug/L	50	41.0	82	45-146	
1,2,4-Trichlorobenzene	ug/L	50	50.5	101	66-116	
1,2-Dibromo-3-chloropropane	ug/L	50	42.6	85	74-119	
1,2-Dibromoethane (EDB)	ug/L	50	51.8	104	83-115	
1,2-Dichlorobenzene	ug/L	50	51.1	102	74-113	
1,2-Dichloroethane	ug/L	50	50.1	100	74-129	
1,2-Dichloropropane	ug/L	50	50.0	100	75-117	
1,3-Dichlorobenzene	ug/L	50	52.0	104	71-112	
1,4-Dichlorobenzene	ug/L	50	51.1	102	71-113	
2-Butanone (MEK)	ug/L	50	38.0	76	44-162 (CC
2-Hexanone	ug/L	50	45.2	90	32-183	
1-Methyl-2-pentanone (MIBK)	ug/L	50	43.7	87	69-132	
Acetone	ug/L	50	33.8	68	23-188	
Benzene	ug/L	50	49.7	99	73-119	
Bromodichloromethane	ug/L	50	52.4	105	78-117	
Bromoform	ug/L	50	55.5	111	65-122	
Bromomethane	ug/L	50	36.7	73	52-147 (CC
Carbon disulfide	ug/L	50	41.0	82	41-144	
Carbon tetrachloride	ug/L	50	52.2	104	59-120	
Chlorobenzene	ug/L	50	53.8	108	75-113	
Chloroethane	ug/L	50	40.7	81	49-151 (CC
Chloroform	ug/L	50	50.1	100	72-122	
Chloromethane	ug/L	50	37.0	74	46-144 (CC
cis-1,2-Dichloroethene	ug/L	50	50.6	101	72-121	
cis-1,3-Dichloropropene	ug/L	50	53.0	106	78-116	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

LABORATORY CONTROL SAMPLE:	168693	Cailea	1.00	1.00	0/ D	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Cyclohexane	ug/L		49.2	98	43-143	
Dibromochloromethane	ug/L	50	54.7	109	70-120	
Dichlorodifluoromethane	ug/L	50	39.2	78	22-154	
Ethylbenzene	ug/L	50	52.5	105	70-113	
Isopropylbenzene (Cumene)	ug/L	50	49.9	100	67-115	
Methyl acetate	ug/L	50	40.4	81	60-140	CC,IH
Methyl-tert-butyl ether	ug/L	50	46.9	94	72-131	CC
Methylcyclohexane	ug/L	50	50.4	101	60-140	
Methylene Chloride	ug/L	50	44.6	89	61-142	CC
Styrene	ug/L	50	54.5	109	72-118	
Tetrachloroethene	ug/L	50	50.5	101	60-128	
Toluene	ug/L	50	51.3	103	72-119	
trans-1,2-Dichloroethene	ug/L	50	50.6	101	56-142	
trans-1,3-Dichloropropene	ug/L	50	54.3	109	79-116	
Trichloroethene	ug/L	50	52.4	105	69-117	
Trichlorofluoromethane	ug/L	50	40.5	81	27-173	
Vinyl chloride	ug/L	50	39.9	80	43-143	
Xylene (Total)	ug/L	150	160	106	71-109	
1,2-Dichloroethane-d4 (S)	%.			96	68-153	
4-Bromofluorobenzene (S)	%.			101	79-124	
Toluene-d8 (S)	%.			101	69-124	

MATRIX SPIKE SAMPLE:	169551						
		7027360008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	50	47.5	95	65-118	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	40.1	80	74-121	
1,1,2-Trichloroethane	ug/L	<1.0	50	44.5	89	80-117	
1,1,2-Trichlorotrifluoroethane	ug/L	<1.0	50	36.8	74	60-140	
1,1-Dichloroethane	ug/L	<1.0	50	44.7	89	83-151	
1,1-Dichloroethene	ug/L	<1.0	50	39.1	78	45-146	
1,2,4-Trichlorobenzene	ug/L	<1.0	50	50.5	101	66-116	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	50	36.3	73	74-119 N	<i>1</i> 1
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	46.3	93	83-115	
1,2-Dichlorobenzene	ug/L	<1.0	50	44.8	90	74-113	
1,2-Dichloroethane	ug/L	<1.0	50	44.1	88	74-129	
1,2-Dichloropropane	ug/L	<1.0	50	45.9	92	75-117	
1,3-Dichlorobenzene	ug/L	<1.0	50	46.3	93	71-112	
1,4-Dichlorobenzene	ug/L	<1.0	50	45.6	91	71-113	
2-Butanone (MEK)	ug/L	<5.0	50	34.1	68	44-162 C	C
2-Hexanone	ug/L	<5.0	50	40.0	80	32-183	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	38.5	77	69-132	
Acetone	ug/L	15.2	50	34.3	38	23-188	
Benzene	ug/L	<1.0	50	46.1	92	73-119	
Bromodichloromethane	ug/L	<1.0	50	47.7	95	78-117	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

MATRIX SPIKE SAMPLE:	169551						
		7027360008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	ug/L	<1.0	50	47.3	95	65-122	
Bromomethane	ug/L	<1.0	50	32.0	64	52-147	CC
Carbon disulfide	ug/L	<1.0	50	33.8	68	41-144	
Carbon tetrachloride	ug/L	<1.0	50	47.8	96	59-120	
Chlorobenzene	ug/L	<1.0	50	47.9	96	75-113	
Chloroethane	ug/L	<1.0	50	33.8	68	49-151	CC
Chloroform	ug/L	<1.0	50	45.9	92	72-122	
Chloromethane	ug/L	<1.0	50	28.8	58	46-144	CC
cis-1,2-Dichloroethene	ug/L	<1.0	50	46.4	93	72-121	
cis-1,3-Dichloropropene	ug/L	<1.0	50	47.3	95	78-116	
Cyclohexane	ug/L	<1.0	50	94.8	190	43-143	M1
Dibromochloromethane	ug/L	<1.0	50	48.2	96	70-120	
Dichlorodifluoromethane	ug/L	<1.0	50	22.2	44	22-154	
Ethylbenzene	ug/L	<1.0	50	47.2	94	70-113	
sopropylbenzene (Cumene)	ug/L	<1.0	50	45.2	90	67-115	
Methyl acetate	ug/L	<1.0	50	80.7	161	60-140	CC,IH,M1
Methyl-tert-butyl ether	ug/L	<1.0	50	41.1	82	72-131	CC
Methylcyclohexane	ug/L	<1.0	50	50.5	101	60-140	
Methylene Chloride	ug/L	<1.0	50	40.2	80	61-142	CC
Styrene	ug/L	<1.0	50	48.7	97	72-118	
Tetrachloroethene	ug/L	4.0	50	46.6	85	60-128	
Toluene	ug/L	<1.0	50	46.8	94	72-119	
trans-1,2-Dichloroethene	ug/L	<1.0	50	47.1	94	56-142	
trans-1,3-Dichloropropene	ug/L	<1.0	50	48.4	97	79-116	
Trichloroethene	ug/L	<1.0	50	48.2	96	69-117	
Trichlorofluoromethane	ug/L	<1.0	50	37.0	74	27-173	
Vinyl chloride	ug/L	<1.0	50	34.1	68	43-143	
Xylene (Total)	ug/L	<2.0	150	142	95	71-109	
1,2-Dichloroethane-d4 (S)	%.				93	68-153	
4-Bromofluorobenzene (S)	%.				102	79-124	
Toluene-d8 (S)	%.				100	69-124	

Date: 08/31/2017 04:36 PM

		7027360010	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	<1.0		
1,1,2,2-Tetrachloroethane	ug/L	<1.0	<1.0		
1,1,2-Trichloroethane	ug/L	<1.0	<1.0		
1,1,2-Trichlorotrifluoroethane	ug/L	<1.0	<1.0		
1,1-Dichloroethane	ug/L	<1.0	<1.0		
1,1-Dichloroethene	ug/L	<1.0	<1.0		
1,2,4-Trichlorobenzene	ug/L	<1.0	<1.0		
1,2-Dibromo-3-chloropropane	ug/L	<1.0	<1.0		
1,2-Dibromoethane (EDB)	ug/L	<1.0	<1.0		
1,2-Dichlorobenzene	ug/L	<1.0	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

SAMPLE DUPLICATE: 169552			_	
Б.,	11.2	7027360010	Dup	0 115
Parameter	Units	Result	Result	RPD Qualifier
1,2-Dichloroethane	ug/L	<1.0	<1.0	
1,2-Dichloropropane	ug/L	<1.0	<1.0	
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	
2-Butanone (MEK)	ug/L	5.0J	5.0J	CC
2-Hexanone	ug/L	<5.0	<5.0	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	<5.0	
Acetone	ug/L	24.7	23.6	5
Benzene	ug/L	<1.0	<1.0	
Bromodichloromethane	ug/L	<1.0	<1.0	
Bromoform	ug/L	<1.0	<1.0	
Bromomethane	ug/L	<1.0	<1.0	CC
Carbon disulfide	ug/L	<1.0	1.3	
Carbon tetrachloride	ug/L	<1.0	<1.0	
Chlorobenzene	ug/L	<1.0	<1.0	
Chloroethane	ug/L	<1.0	<1.0	CC
Chloroform	ug/L	<1.0	<1.0	
Chloromethane	ug/L	<1.0	<1.0	CC
cis-1,2-Dichloroethene	ug/L	<1.0	<1.0	
cis-1,3-Dichloropropene	ug/L	<1.0	<1.0	
Cyclohexane	ug/L	<1.0	11.3	
Dibromochloromethane	ug/L	<1.0	<1.0	
Dichlorodifluoromethane	ug/L	<1.0	<1.0	
Ethylbenzene	ug/L	32.2	32.4	1
Isopropylbenzene (Cumene)	ug/L	1.9	1.9	1
Methyl acetate	ug/L	<1.0	<1.0	CC,IH
Methyl-tert-butyl ether	ug/L	<1.0	<1.0	CC
Methylcyclohexane	ug/L	3.9	3.7	5
Methylene Chloride	ug/L	<1.0	<1.0	CC
Styrene	ug/L	<1.0	<1.0	
Tetrachloroethene	ug/L	2.9	1.5	66 D6
Toluene	ug/L	5.1	5.1	0
trans-1,2-Dichloroethene	ug/L	<1.0	<1.0	
trans-1,3-Dichloropropene	ug/L	<1.0	<1.0	
Trichloroethene	ug/L	<1.0	<1.0	
Trichlorofluoromethane	ug/L	<1.0	<1.0	
Vinyl chloride	ug/L	<1.0	<1.0	
Xylene (Total)	ug/L	75.0	74.6	1
1,2-Dichloroethane-d4 (S)	%.	95	93	2
4-Bromofluorobenzene (S)	%.	101	102	1
Toluene-d8 (S)	%.	101	102	1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

QC Batch: 268784 Analysis Method: EPA 8270D by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270D/3546 MSSV PAH by SIM

Associated Lab Samples: 7027422001, 7027422002, 7027422003

METHOD BLANK: 1323116 Matrix: Solid

Associated Lab Samples: 7027422001, 7027422002, 7027422003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acenaphthene	ug/kg	<6.7	6.7	08/18/17 15:01	
Acenaphthylene	ug/kg	<6.7	6.7	08/18/17 15:01	
Anthracene	ug/kg	<6.7	6.7	08/18/17 15:01	
Benzo(a)anthracene	ug/kg	<6.7	6.7	08/18/17 15:01	
Benzo(a)pyrene	ug/kg	<6.7	6.7	08/18/17 15:01	
Benzo(b)fluoranthene	ug/kg	<6.7	6.7	08/18/17 15:01	
Benzo(g,h,i)perylene	ug/kg	<6.7	6.7	08/18/17 15:01	
Benzo(k)fluoranthene	ug/kg	<6.7	6.7	08/18/17 15:01	
Chrysene	ug/kg	<6.7	6.7	08/18/17 15:01	
Dibenz(a,h)anthracene	ug/kg	<6.7	6.7	08/18/17 15:01	
Fluoranthene	ug/kg	<6.7	6.7	08/18/17 15:01	
Fluorene	ug/kg	<6.7	6.7	08/18/17 15:01	
Indeno(1,2,3-cd)pyrene	ug/kg	<6.7	6.7	08/18/17 15:01	
Naphthalene	ug/kg	<6.7	6.7	08/18/17 15:01	
Phenanthrene	ug/kg	<6.7	6.7	08/18/17 15:01	
Pyrene	ug/kg	<6.7	6.7	08/18/17 15:01	
2-Fluorobiphenyl (S)	%	78	35-141	08/18/17 15:01	
Terphenyl-d14 (S)	%	112	64-141	08/18/17 15:01	

LABORATORY CONTROL SAMPLE:	1323117					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acenaphthene	ug/kg	133	110	83	43-113	
Acenaphthylene	ug/kg	133	131	98	41-114	
Anthracene	ug/kg	133	120	90	59-115	
Benzo(a)anthracene	ug/kg	133	133	100	62-122	
Benzo(a)pyrene	ug/kg	133	132	99	56-113	
Benzo(b)fluoranthene	ug/kg	133	123	92	43-138	
Benzo(g,h,i)perylene	ug/kg	133	125	94	47-143	
Benzo(k)fluoranthene	ug/kg	133	125	94	52-138	
Chrysene	ug/kg	133	115	86	64-119	
Dibenz(a,h)anthracene	ug/kg	133	132	99	59-133	
Fluoranthene	ug/kg	133	128	96	64-122	
Fluorene	ug/kg	133	117	88	46-114	
Indeno(1,2,3-cd)pyrene	ug/kg	133	131	98	59-132	
Naphthalene	ug/kg	133	107	80	47-108	
Phenanthrene	ug/kg	133	114	85	42-122	
Pyrene	ug/kg	133	127	95	64-117	
2-Fluorobiphenyl (S)	%			84	35-141	
Terphenyl-d14 (S)	%			107	64-141	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 13233			1323373						
			MS	MSD					٥, ٥		
		27422001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Acenaphthene	ug/kg	<92.5	186	185	123	132	66	71	43-113	7	
Acenaphthylene	ug/kg	<92.5	186	185	143	155	74	80	41-114	8	
Anthracene	ug/kg	<92.5	186	185	146	158	78	84	59-115	8	
Benzo(a)anthracene	ug/kg	<92.5	186	185	176	187	95	101	62-122	6	
Benzo(a)pyrene	ug/kg	<92.5	186	185	155	164	83	89	56-113	6	
Benzo(b)fluoranthene	ug/kg	<92.5	186	185	147	153	79	83	43-138	5	
Benzo(g,h,i)perylene	ug/kg	<92.5	186	185	150	157	76	81	47-143	5	
Benzo(k)fluoranthene	ug/kg	<92.5	186	185	147	158	79	86	52-138	7	
Chrysene	ug/kg	<92.5	186	185	142	150	77	81	64-119	5	
Dibenz(a,h)anthracene	ug/kg	<92.5	186	185	158	165	82	86	59-133	5	
Fluoranthene	ug/kg	<92.5	186	185	165	184	87	98	64-122	11	
Fluorene	ug/kg	<92.5	186	185	135	149	73	81	46-114	10	
ndeno(1,2,3-cd)pyrene	ug/kg	<92.5	186	185	155	162	80	85	59-132	5	
Naphthalene	ug/kg	<92.5	186	185	112	110	58	57	47-108	1	
Phenanthrene	ug/kg	<92.5	186	185	153	162	79	85	42-122	6	
Pyrene	ug/kg	<92.5	186	185	164	181	86	95	64-117	10	
2-Fluorobiphenyl (S)	%						62	67	35-141		
Гегрhenyl-d14 (S)	%						95	106	64-141		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

QC Batch: 268785 Analysis Method: EPA 8270D by SIM

QC Batch Method: EPA 3510C Analysis Description: 8270D Water PAH by SIM MSSV

Associated Lab Samples: 7027422004, 7027422005

METHOD BLANK: 1323122 Matrix: Water

Associated Lab Samples: 7027422004, 7027422005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acenaphthene	ug/L	<0.10	0.10	08/18/17 19:26	
Anthracene	ug/L	<0.10	0.10	08/18/17 19:26	
Benzo(a)anthracene	ug/L	<0.10	0.10	08/18/17 19:26	
Benzo(a)pyrene	ug/L	<0.10	0.10	08/18/17 19:26	
Benzo(b)fluoranthene	ug/L	<0.10	0.10	08/18/17 19:26	
Benzo(g,h,i)perylene	ug/L	<0.10	0.10	08/18/17 19:26	
Benzo(k)fluoranthene	ug/L	<0.10	0.10	08/18/17 19:26	
Chrysene	ug/L	<0.10	0.10	08/18/17 19:26	
Dibenz(a,h)anthracene	ug/L	<0.10	0.10	08/18/17 19:26	
Fluoranthene	ug/L	<0.10	0.10	08/18/17 19:26	
Fluorene	ug/L	<0.10	0.10	08/18/17 19:26	
Indeno(1,2,3-cd)pyrene	ug/L	<0.10	0.10	08/18/17 19:26	
Naphthalene	ug/L	<0.10	0.10	08/18/17 19:26	
Phenanthrene	ug/L	<0.10	0.10	08/18/17 19:26	
Pyrene	ug/L	<0.10	0.10	08/18/17 19:26	
2-Fluorobiphenyl (S)	%	93	19-123	08/18/17 19:26	
Terphenyl-d14 (S)	%	119	58-130	08/18/17 19:26	

LABORATORY CONTROL SAMPLE:	1323123					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acenaphthene	ug/L		1.6	79	48-104	
Anthracene	ug/L	2	1.9	93	49-112	
Benzo(a)anthracene	ug/L	2	2.1	107	63-109	
Benzo(a)pyrene	ug/L	2	2.1	105	51-98 L	.1
Benzo(b)fluoranthene	ug/L	2	2.1	105	41-139	
Benzo(g,h,i)perylene	ug/L	2	1.4	69	44-124	
Benzo(k)fluoranthene	ug/L	2	1.8	92	58-125	
Chrysene	ug/L	2	1.7	87	62-115	
Dibenz(a,h)anthracene	ug/L	2	1.7	86	55-124	
Fluoranthene	ug/L	2	2.1	103	65-112	
Fluorene	ug/L	2	1.8	88	49-108	
Indeno(1,2,3-cd)pyrene	ug/L	2	1.6	81	54-125	
Naphthalene	ug/L	2	1.5	73	42-107	
Phenanthrene	ug/L	2	1.7	87	50-109	
Pyrene	ug/L	2	2.0	101	64-109	
2-Fluorobiphenyl (S)	%			79	19-123	
Terphenyl-d14 (S)	%			115	58-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

QC Batch: 35934 Analysis Method: ASTM D2216-92M

QC Batch Method: ASTM D2216-92M Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 7027422001, 7027422002, 7027422003

SAMPLE DUPLICATE: 167601

Date: 08/31/2017 04:36 PM

 Percent Moisture
 Moisture
 7026752002 Result
 Dup Result
 RPD
 Qualifiers

 32.9
 34.4
 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PACE-MV Pace Analytical Services - Melville
PASI-PA Pace Analytical Services - Greensburg

SAMPLE QUALIFIERS

Sample: 7027422001

[1] Result confirmed by second analysis.

BATCH QUALIFIERS

Batch: 268858

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

Date: 08/31/2017 04:36 PM

- 1j Emulsions were present during the extraction of this sample. Appropriate mechanical means were employed to break up the emulsions and were successful.
- A5 Greater than 5% sediment in sample determined by visual observation. Aqueous portion decanted from the sediment and extracted.
- CC The continuing calibration for this compound is outside of method control limits. The result is estimated.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- ED Due to the extract's physical characteristics, the analysis was performed at dilution.
- IH This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

QUALIFIERS

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

ANALYTE QUALIFIERS

ip

Date: 08/31/2017 04:36 PM

L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
M0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
S0	Surrogate recovery outside laboratory control limits

Benzo(b)fluoranthene and benzo(k)fluoranthene were separated in the check standard but did not meet the resolution criteria in SW846 Method 8270D. Whereas sample results included are reported as individual isomers, the lab and the

customer must recognize them as an isomeric pair.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2171989-115-121 W 3RD ST

Pace Project No.: 7027422

Date: 08/31/2017 04:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7027422001	SB-1 12-14 FT	EPA 3050B	36232	EPA 6010C	36315
7027422002	SB-3 10-12 FT	EPA 3050B	36232	EPA 6010C	36315
7027422003	SB-5 10-12 FT	EPA 3050B	36232	EPA 6010C	36315
7027422001	SB-1 12-14 FT	EPA 7471B	35932	EPA 7471B	35937
7027422002	SB-3 10-12 FT	EPA 7471B	35932	EPA 7471B	35937
7027422003	SB-5 10-12 FT	EPA 7471B	35932	EPA 7471B	35937
7027422001	SB-1 12-14 FT	EPA 3546	268784	EPA 8270D by SIM	268840
7027422002	SB-3 10-12 FT	EPA 3546	268784	EPA 8270D by SIM	268840
7027422003	SB-5 10-12 FT	EPA 3546	268784	EPA 8270D by SIM	268840
7027422004	MW-2	EPA 3510C	268785	EPA 8270D by SIM	268858
7027422005	MW-1	EPA 3510C	268785	EPA 8270D by SIM	268858
7027422001	SB-1 12-14 FT	EPA 5035A-L	36603	EPA 8260C	36605
7027422002	SB-3 10-12 FT	EPA 5035A-H/5030C	36668	EPA 8260C	36670
7027422003	SB-5 10-12 FT	EPA 5035A-H/5030C	36668	EPA 8260C	36670
7027422004	MW-2	EPA 8260C/5030C	36155		
7027422005	MW-1	EPA 8260C/5030C	36155		
7027422001	SB-1 12-14 FT	ASTM D2216-92M	35934		
7027422002	SB-3 10-12 FT	ASTM D2216-92M	35934		
7027422003	SB-5 10-12 FT	ASTM D2216-92M	35934		

CHAIN-OF-CUSTODY / Analytical Request Document

WO#:7027422

Ö	
ields must be	
0	
S	
2	
-	
ö	
Ō	
4=	
E	
a	
O	
ம	
=	
. All relevant fie	
H-	
Z	
ш	
2	
3	
\approx	
ŏ	
EGAL DOCUMENT	
G	
щ	
(0	
6	
2	
22	
Ō	
4	
7	
- =	
in the	
O	
Φ	
드	

Pace Analytical www.pacelabs.com

ompleter

Pace Project No./ Lab I.D. (N/X) DRINKING WATER Samples Intact SAMPLE CONDITIONS OTHER (N/Y) Sealed Cooler Custody 8 (00-Received on Ice (Y/N) **GROUND WATER** Residual Chlorine (Y/N) O° ni qmeT in REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME 107/ STATE: Site Location NPDES DATE UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION Netals REEA 7 15-07 ¥ Buttelo, NY USEPA TEL+CR-SI VOLS Analysis Test 4 IN/A Company Name: Other Methanol Preservatives Na₂S₂O₃ to NaOH Shannon HCI Address: Pearl 3 on Pearl Pace Quote Reference: Pace Project Invoice Information: HNO³ [⊅]OS^ZH ace Profile #. Section C Unpreserved TIME Manager: # OF CONTAINERS 5 5 5 SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: PRINT Name of SAMPLER: Report To: A dam, Zelomas Ki TShomen Dalta +200-210 Washington st SAMPLE TEMP AT COLLECTION 15:30 DATE 9:8 10:25 12:10 8.18 TIME Sdaltone (abella p.com Copy To: COMPOSITE END/GRAB 5/6 8115 8/18 2000 5100 COLLECTED RELINQUISHED BY / AFFILIATION B/15 12:10 818 K.30 10:25 5.50 8.6 TIME COMPOSITE 5 DATE 5/10 Project Name: Khird - If S-121 W Third - Project Number: 98 9 Section B Required Project Information: MIG б Q J (G=GRAB C=COMP) SAMPLE TYPE A 4 4 (see valid codes to left) MATRIX CODE ORIGINAL Matrix Codes
MATRIX / CODE Drinking Water Water Waste Water labella pr.com Product Soil/Solid Oil Wipe Air Tissue Other Pagato Street 21-01 121-01 ADDITIONAL COMMENTS 17-14-51 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE アン SAMPLE ID Required Client Information Section A Required Client Information: Address: Sdalton @ 0-710-3043 Requested Due Date/TAT Company: La Bella Buffalo, 58-5 2-MW N-MW 53-53-1 Section D nail Page 39 of 40 2 # MHT 1 00 6 10 7 12

mportant Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any finotese not paid within 30 days

F-ALL-Q-020rev.07, 15-May-2007

	Sam	ple Co	onditio	n upon kece	sipt
Pace Analytical*					WO#:7027422
Long Inford Calendary	Client Nar	ne:		Projec	8 1 -
					PM: JSA Due Date: 08/23/17
Courier: Fed Ex UPS USPS Clien	t ∏Commerci	al 🗌 Pac	e Dthe	r .	CLIENT: LBA-B
Tracking #: 7744 989	8 326	sa			
Custody Seal on Cooler/Box Present: Yes	No			Seals intact: Y	
Packing Material: Bubble Wrap Bubble B	ags Ziploc	□None	_Other		Type of Ice: Wet Blue None
Thermometer Used: TH092	Correction	Factor:	0		Samples on ice, cooling process has begun
Cooler Temperature (°C):	Cooler Temp		Corrected	I (°C): 5.3	Date/Time 5035A kits placed in freezer
Temp should be above freezing to 6.0°C	-				5B 8/16/17
USDA Regulated Soil (N/A, water sample)				Date and Initials of	of person examining contents.
Did samples originate in a quarantine zone within the U	nited States: AL,	AR, CA, F	L, GA, ID, I	LA, MS, NC,	Did samples orignate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?	YES	NO	a	vr. LLC 040) and in	
If Yes to either question, fil	l out a Regula	ted Soil	Checklist	(F-L1-C-010) and n	nclude with SCUR/COC paperwork.
	<u> </u>	CDN-		1.	
Chain of Custody Present:	□Yes	□No		2.	
Chain of Custody Filled Out:	□Yes	□No		3.	
Chain of Custody Relinquished:	□Yes	□No		4.	
Sampler Name & Signature on COC:	□Yes	□No	□N/A	5.	
Samples Arrived within Hold Time:	☐Yes .	□No		6.	
Short Hold Time Analysis (<72hr):	□Yes	□No		7.	
Rush Turn Around Time Requested:	□Yes	ПИО			
Sufficient Volume: (Triple volume provided for MS/MSD	Yes	□No		8.	
Correct Containers Used:	□Yes	□No		9.	e .
-Pace Containers Used:	□Yes	□No .			
Containers Intact:	□Yes	□No		10.	ment is visible in the dissolved container.
Filtered volume received for Dissolved tests	□Yes	□Nó	ФИЛА		TIERLIS VISIDIE III LIIO GISSOLVOG GOMENTO.
Sample Labels match COC:	Yes	□No		12.	
-Includes date/time/ID/Analysis Matrix: SL W				E LINO	☐ H₂SO₄ ☐ NaOH ☐ HCI
All containers needing preservation have been checked	∐Yes	□No	DN/A	13. ☐ HNO₃	L 1,304 L 144011
pH paper Lot #			1	Commin #	
All containers needing preservation are found to be in			1	Sample #	
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,	□Yes	□No	DN/A		
NA OUR 40 Conside)			1		to the second the added
Exceptions: VOA, Coliform, TOC/DOC, Oil and Grease	,			Initial when complete	d: Lot # of added preservative: Date/Time preservative added
Per Method, VOA pH is checked after analysis					
Samples checked for dechlorination:	□Yes	□No	HN/A	14.	5
Residual chlorine strips Lot #			1	Positive for	Res, Chlorine? Y N .
Headspace in VOA Vials (>6mm):	□Yes	□No	_N/A	15.	
Trip Blank Present:	□Yes	□No '	□N/A	16.	*
Trip Blank Custody Seals Present	□Yes	□No	□N/A ·		
Pace Trip Blank Lot # (if applicable):					
Client Notification/ Resolution:				Field Data Required	1? Y / N
				Date/Tim	e:
Person Contacted Comments/ Resolution:			٠		
Comments Accordition.					
	2.04				
	100				

^{*} PM (Project Manager) review is documented electronically in LIMS.

ANALYTICAL REPORT

Lab Number: L1735924

Client: LaBella Associates, P.C.

300 Pearl Street

Suite 252

Buffalo, NY 14202

ATTN: Christopher Kibler Phone: (716) 551-6281

Project Name: VIA - JAMESTOWN

Project Number: 2172285 Report Date: 10/09/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), NJ NELAP (MA015), CT (PH-0141), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-13-00067), USFWS (Permit #LE2069641).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

L1735924 10/09/17

Lab Number: Report Date:

Project Name: VIA - JAMESTOWN

Project Number: 2172285

Receive Date 10/05/17 10/05/17 10/04/17 16:16 10/04/17 16:15 Collection Date/Time JAMESTOWN, NY JAMESTOWN, NY Sample Location SOIL_VAPOR SOIL_VAPOR Matrix Client ID SS1 SS2 L1735924-02 L1735924-01 Alpha Sample ID

10/05/17

10/04/17 16:30

JAMESTOWN, NY

SOIL_VAPOR

SS3

L1735924-03

SS4

L1735924-04

SOIL_VAPOR

JAMESTOWN, NY

10/04/17 16:40

Агена

Project Name: VIA - JAMESTOWN Lab Number: L1735924

Project Number: 2172285 **Report Date:** 10/09/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client S	Services a	it 800-	-624-9220	with an	y question	ıS.

Project Name: VIA - JAMESTOWN Lab Number: L1735924

Project Number: 2172285 Report Date: 10/09/17

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on October 3, 2017. The canister certification results are provided as an addendum.

L1735924-01 and -02: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

L1735924-03 and -04: The samples have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the samples.

L1735924-03 and -04 results for Acetone should be considered estimated due to co-elution with a non-target peak.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/09/17

Christopher J. Anderson

AIR

Project Number: 2172285

Lab Number:

L1735924

Report Date: 10/09/17

SAMPLE RESULTS

Lab ID: L1735924-01 D

Client ID: SS1

Sample Location: JAMESTOWN, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 10/07/17 00:54

Analyst: RY

Date Collected:	10/04/17 16:16
Date Received:	10/05/17

Field Prep: Not Specified

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield Lab									
Dichlorodifluoromethane	ND	2.00		ND	9.89			10	
Chloromethane	ND	2.00		ND	4.13			10	
Freon-114	ND	2.00		ND	14.0			10	
Vinyl chloride	ND	2.00		ND	5.11			10	
1,3-Butadiene	ND	2.00		ND	4.42			10	
Bromomethane	ND	2.00		ND	7.77			10	
Chloroethane	ND	2.00		ND	5.28			10	
Ethanol	ND	50.0		ND	94.2			10	
Vinyl bromide	ND	2.00		ND	8.74			10	
Acetone	114	10.0		271	23.8			10	
Trichlorofluoromethane	ND	2.00		ND	11.2			10	
Isopropanol	ND	5.00		ND	12.3			10	
1,1-Dichloroethene	ND	2.00		ND	7.93			10	
Tertiary butyl Alcohol	ND	5.00		ND	15.2			10	
Methylene chloride	ND	5.00		ND	17.4			10	
3-Chloropropene	ND	2.00		ND	6.26			10	
Carbon disulfide	34.2	2.00		107	6.23			10	
Freon-113	ND	2.00		ND	15.3			10	
trans-1,2-Dichloroethene	15.8	2.00		62.6	7.93			10	
1,1-Dichloroethane	ND	2.00		ND	8.09			10	
Methyl tert butyl ether	ND	2.00		ND	7.21			10	
2-Butanone	ND	5.00		ND	14.7			10	
cis-1,2-Dichloroethene	39.5	2.00		157	7.93			10	
Ethyl Acetate	ND	5.00		ND	18.0			10	

Project Number: 2172285

Lab Number:

L1735924

Report Date:

10/09/17

SAMPLE RESULTS

Lab ID: L1735924-01 D

Client ID: SS1

Sample Location: JAMESTOWN, NY

Date Collected: 10/04/17 16:16

Date Received: 10/05/17

Field Prep: Not Specified

	•	ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield Lab									
Chloroform	ND	2.00		ND	9.77			10	
Tetrahydrofuran	ND	5.00		ND	14.7			10	
1,2-Dichloroethane	ND	2.00		ND	8.09			10	
n-Hexane	2.30	2.00		8.11	7.05			10	
1,1,1-Trichloroethane	2.21	2.00		12.1	10.9			10	
Benzene	ND	2.00		ND	6.39			10	
Carbon tetrachloride	ND	2.00		ND	12.6			10	
Cyclohexane	ND	2.00		ND	6.88			10	
1,2-Dichloropropane	ND	2.00		ND	9.24			10	
Bromodichloromethane	ND	2.00		ND	13.4			10	
1,4-Dioxane	ND	2.00		ND	7.21			10	
Trichloroethene	343	2.00		1840	10.7			10	
2,2,4-Trimethylpentane	ND	2.00		ND	9.34			10	
Heptane	2.11	2.00		8.65	8.20			10	
cis-1,3-Dichloropropene	ND	2.00		ND	9.08			10	
4-Methyl-2-pentanone	ND	5.00		ND	20.5			10	
trans-1,3-Dichloropropene	ND	2.00		ND	9.08			10	
1,1,2-Trichloroethane	ND	2.00		ND	10.9			10	
Toluene	3.38	2.00		12.7	7.54			10	
2-Hexanone	ND	2.00		ND	8.20			10	
Dibromochloromethane	ND	2.00		ND	17.0			10	
1,2-Dibromoethane	ND	2.00		ND	15.4			10	
Tetrachloroethene	873	2.00		5920	13.6			10	
Chlorobenzene	ND	2.00		ND	9.21			10	
Ethylbenzene	ND	2.00		ND	8.69			10	
p/m-Xylene	ND	4.00		ND	17.4			10	
Bromoform	ND	2.00		ND	20.7			10	
Styrene	ND	2.00		ND	8.52			10	

Project Name: VIA - JAMESTOWN

Project Number: 2172285

Lab Number:

L1735924

Report Date:

10/09/17

SAMPLE RESULTS

Lab ID: L1735924-01 D

Client ID: SS1

Sample Location: JAMESTOWN, NY

Date Collected:

10/04/17 16:16

Date Received:

10/05/17

Field Prep:

Not Specified

	- '					- 1		
		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,1,2,2-Tetrachloroethane	ND	2.00		ND	13.7			10
o-Xylene	ND	2.00		ND	8.69			10
4-Ethyltoluene	ND	2.00		ND	9.83			10
1,3,5-Trimethylbenzene	ND	2.00		ND	9.83			10
1,2,4-Trimethylbenzene	ND	2.00		ND	9.83			10
Benzyl chloride	ND	2.00		ND	10.4			10
1,3-Dichlorobenzene	ND	2.00		ND	12.0			10
1,4-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2,4-Trichlorobenzene	ND	2.00		ND	14.8			10
Hexachlorobutadiene	ND	2.00		ND	21.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	73		60-140
Bromochloromethane	82		60-140
chlorobenzene-d5	77		60-140

Project Number: 2172285

Lab Number:

L1735924

Report Date: 10/09/17

SAMPLE RESULTS

Lab ID: L1735924-02 D

Client ID: SS2

Sample Location: JAMESTOWN, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 10/07/17 01:27

Analyst: RY

Date Collected:	10/04/17 16:15
Date Received:	10/05/17
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.564	0.400		2.79	1.98			2
Chloromethane	ND	0.400		ND	0.826			2
Freon-114	ND	0.400		ND	2.80			2
Vinyl chloride	ND	0.400		ND	1.02			2
1,3-Butadiene	ND	0.400		ND	0.885			2
Bromomethane	ND	0.400		ND	1.55			2
Chloroethane	ND	0.400		ND	1.06			2
Ethanol	ND	10.0		ND	18.8			2
Vinyl bromide	ND	0.400		ND	1.75			2
Acetone	21.5	2.00		51.1	4.75			2
Trichlorofluoromethane	ND	0.400		ND	2.25			2
sopropanol	ND	1.00		ND	2.46			2
1,1-Dichloroethene	ND	0.400		ND	1.59			2
Tertiary butyl Alcohol	ND	1.00		ND	3.03			2
Methylene chloride	ND	1.00		ND	3.47			2
3-Chloropropene	ND	0.400		ND	1.25			2
Carbon disulfide	6.34	0.400		19.7	1.25			2
Freon-113	ND	0.400		ND	3.07			2
trans-1,2-Dichloroethene	ND	0.400		ND	1.59			2
1,1-Dichloroethane	ND	0.400		ND	1.62			2
Methyl tert butyl ether	ND	0.400		ND	1.44			2
2-Butanone	ND	1.00		ND	2.95			2
cis-1,2-Dichloroethene	ND	0.400		ND	1.59			2
Ethyl Acetate	ND	1.00		ND	3.60			2

Project Number: 2172285

Lab Number:

L1735924

Report Date: 10/09/17

SAMPLE RESULTS

Lab ID: L1735924-02 D

Client ID: SS2

Sample Location: JAMESTOWN, NY

Date Collected: 10/04/17 16:15

Date Received: 10/05/17

Field Prep: Not Specified

Sample Location: 37 tiviL91				riola riop.			rtot opecine		
		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mans	field Lab								
Chloroform	ND	0.400		ND	1.95			2	
Tetrahydrofuran	ND	1.00		ND	2.95			2	
1,2-Dichloroethane	ND	0.400		ND	1.62			2	
n-Hexane	1.35	0.400		4.76	1.41			2	
1,1,1-Trichloroethane	1.77	0.400		9.66	2.18			2	
Benzene	0.614	0.400		1.96	1.28			2	
Carbon tetrachloride	ND	0.400		ND	2.52			2	
Cyclohexane	0.656	0.400		2.26	1.38			2	
1,2-Dichloropropane	ND	0.400		ND	1.85			2	
Bromodichloromethane	ND	0.400		ND	2.68			2	
1,4-Dioxane	ND	0.400		ND	1.44			2	
Trichloroethene	7.55	0.400		40.6	2.15			2	
2,2,4-Trimethylpentane	ND	0.400		ND	1.87			2	
Heptane	1.49	0.400		6.11	1.64			2	
cis-1,3-Dichloropropene	ND	0.400		ND	1.82			2	
4-Methyl-2-pentanone	ND	1.00		ND	4.10			2	
trans-1,3-Dichloropropene	ND	0.400		ND	1.82			2	
1,1,2-Trichloroethane	ND	0.400		ND	2.18			2	
Toluene	1.27	0.400		4.79	1.51			2	
2-Hexanone	ND	0.400		ND	1.64			2	
Dibromochloromethane	ND	0.400		ND	3.41			2	
1,2-Dibromoethane	ND	0.400		ND	3.07			2	
Tetrachloroethene	128	0.400		868	2.71			2	
Chlorobenzene	ND	0.400		ND	1.84			2	
Ethylbenzene	ND	0.400		ND	1.74			2	
o/m-Xylene	ND	0.800		ND	3.47			2	
Bromoform	ND	0.400		ND	4.14			2	
Styrene	ND	0.400		ND	1.70			2	

Project Name: VIA - JAMESTOWN

Project Number: 2172285

Lab Number:

L1735924

Report Date:

10/09/17

SAMPLE RESULTS

Lab ID: L1735924-02 D

Client ID: SS2

Sample Location: JAMESTOWN, NY

Date Collected:

10/04/17 16:15

Date Received:

10/05/17

Field Prep:

Not Specified

		ppbV		ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield Lab									
1,1,2,2-Tetrachloroethane	ND	0.400		ND	2.75			2	
o-Xylene	ND	0.400		ND	1.74			2	
4-Ethyltoluene	ND	0.400		ND	1.97			2	
1,3,5-Trimethylbenzene	ND	0.400		ND	1.97			2	
1,2,4-Trimethylbenzene	0.488	0.400		2.40	1.97			2	
Benzyl chloride	ND	0.400		ND	2.07			2	
1,3-Dichlorobenzene	ND	0.400		ND	2.40			2	
1,4-Dichlorobenzene	ND	0.400		ND	2.40			2	
1,2-Dichlorobenzene	ND	0.400		ND	2.40			2	
1,2,4-Trichlorobenzene	ND	0.400		ND	2.97			2	
Hexachlorobutadiene	ND	0.400		ND	4.27			2	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	80		60-140
Bromochloromethane	83		60-140
chlorobenzene-d5	81		60-140

Project Number: 2172285 Lab Number:

Date Collected:

Date Received:

Field Prep:

L1735924

10/04/17 16:30

Not Specified

10/05/17

Report Date: 10/09/17

SAMPLE RESULTS

Lab ID: L1735924-03 D

Client ID: SS3

Sample Location: JAMESTOWN, NY

Matrix: Soil_Vapor 48,TO-15 Anaytical Method: Analytical Date: 10/07/17 02:00

Analyst: R'	Y							
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab							
Dichlorodifluoromethane	0.484	0.400		2.39	1.98			2
Chloromethane	ND	0.400		ND	0.826			2
Freon-114	ND	0.400		ND	2.80			2
Vinyl chloride	ND	0.400		ND	1.02			2
1,3-Butadiene	0.858	0.400		1.90	0.885			2
Bromomethane	ND	0.400		ND	1.55			2
Chloroethane	ND	0.400		ND	1.06			2
Ethanol	ND	10.0		ND	18.8			2
Vinyl bromide	ND	0.400		ND	1.75			2
Acetone	21.5	2.00		51.1	4.75			2
Trichlorofluoromethane	ND	0.400		ND	2.25			2
Isopropanol	ND	1.00		ND	2.46			2
1,1-Dichloroethene	ND	0.400		ND	1.59			2
Tertiary butyl Alcohol	ND	1.00		ND	3.03			2
Methylene chloride	ND	1.00		ND	3.47			2
3-Chloropropene	ND	0.400		ND	1.25			2
Carbon disulfide	0.742	0.400		2.31	1.25			2
Freon-113	ND	0.400		ND	3.07			2
trans-1,2-Dichloroethene	ND	0.400		ND	1.59			2
1,1-Dichloroethane	ND	0.400		ND	1.62			2
Methyl tert butyl ether	ND	0.400		ND	1.44			2
2-Butanone	1.86	1.00		5.49	2.95			2

0.400

1.00

--

ND

ND

ND

ND

1.59

3.60

2

2

cis-1,2-Dichloroethene

Ethyl Acetate

Project Number: 2172285

Lab Number:

L1735924

Report Date:

10/09/17

SAMPLE RESULTS

Lab ID: L1735924-03 D

Client ID: SS3

Sample Location: JAMESTOWN, NY

Date Collected:

10/04/17 16:30

Date Received:

10/05/17

Field Prep: Not Specified

Sample Education. State of Carry,		137				1 1010	riot opecimed		
Darameter		Doculto	ppbV		Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Parameter Volatile Organics in Ai	ir - Mansfield I a	Results	RL	MDL	Results	KL	IVIDL	Qualifier	
-	ii - Marisiicia La								•
Chloroform		0.454	0.400		2.22	1.95			2
Tetrahydrofuran		ND	1.00		ND	2.95			2
1,2-Dichloroethane		ND	0.400		ND	1.62			2
n-Hexane		4.65	0.400		16.4	1.41			2
1,1,1-Trichloroethane		ND	0.400		ND	2.18			2
Benzene		1.56	0.400		4.98	1.28			2
Carbon tetrachloride		ND	0.400		ND	2.52			2
Cyclohexane		1.58	0.400		5.44	1.38			2
1,2-Dichloropropane		ND	0.400		ND	1.85			2
Bromodichloromethane		ND	0.400		ND	2.68			2
1,4-Dioxane		ND	0.400		ND	1.44			2
Trichloroethene		ND	0.400		ND	2.15			2
2,2,4-Trimethylpentane		0.620	0.400		2.90	1.87			2
Heptane		2.75	0.400		11.3	1.64			2
cis-1,3-Dichloropropene		ND	0.400		ND	1.82			2
4-Methyl-2-pentanone		ND	1.00		ND	4.10			2
trans-1,3-Dichloropropene		ND	0.400		ND	1.82			2
1,1,2-Trichloroethane		ND	0.400		ND	2.18			2
Toluene		3.12	0.400		11.8	1.51			2
2-Hexanone		ND	0.400		ND	1.64			2
Dibromochloromethane		ND	0.400		ND	3.41			2
1,2-Dibromoethane		ND	0.400		ND	3.07			2
Tetrachloroethene		2.27	0.400		15.4	2.71			2
Chlorobenzene		ND	0.400		ND	1.84			2
Ethylbenzene		ND	0.400		ND	1.74			2
p/m-Xylene		1.20	0.800		5.21	3.47			2
Bromoform		ND	0.400		ND	4.14			2
Styrene		ND	0.400		ND	1.70			2

Project Name: VIA - JAMESTOWN

Project Number: 2172285

Lab Number:

L1735924

Report Date:

10/09/17

SAMPLE RESULTS

Lab ID: L1735924-03 D

Client ID: SS3

Sample Location: JAMESTOWN, NY

Date Collected:

10/04/17 16:30

SS3

Date Received:

10/05/17

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,1,2,2-Tetrachloroethane	ND	0.400		ND	2.75			2
o-Xylene	0.582	0.400		2.53	1.74			2
4-Ethyltoluene	ND	0.400		ND	1.97			2
1,3,5-Trimethylbenzene	ND	0.400		ND	1.97			2
1,2,4-Trimethylbenzene	0.850	0.400		4.18	1.97			2
Benzyl chloride	ND	0.400		ND	2.07			2
1,3-Dichlorobenzene	ND	0.400		ND	2.40			2
1,4-Dichlorobenzene	ND	0.400		ND	2.40			2
1,2-Dichlorobenzene	ND	0.400		ND	2.40			2
1,2,4-Trichlorobenzene	ND	0.400		ND	2.97			2
Hexachlorobutadiene	ND	0.400		ND	4.27			2

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	77		60-140
Bromochloromethane	83		60-140
chlorobenzene-d5	85		60-140

Project Number: 2172285

Lab Number:

Date Collected:

Date Received:

Field Prep:

L1735924

10/04/17 16:40

Not Specified

10/05/17

Report Date: 10/09/17

SAMPLE RESULTS

Lab ID: L1735924-04 D

Client ID: SS4

Sample Location: JAMESTOWN, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 10/07/17 02:32

Analyst: RY

Analyst: RY								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air -	Mansfield Lab							
Dichlorodifluoromethane	0.820	0.500		4.05	2.47			2.5
Chloromethane	ND	0.500		ND	1.03			2.5
Freon-114	ND	0.500		ND	3.49			2.5
Vinyl chloride	ND	0.500		ND	1.28			2.5
1,3-Butadiene	ND	0.500		ND	1.11			2.5
Bromomethane	ND	0.500		ND	1.94			2.5
Chloroethane	ND	0.500		ND	1.32			2.5
Ethanol	ND	12.5		ND	23.6			2.5
Vinyl bromide	ND	0.500		ND	2.19			2.5
Acetone	33.1	2.50		78.6	5.94			2.5
Trichlorofluoromethane	ND	0.500		ND	2.81			2.5
Isopropanol	ND	1.25		ND	3.07			2.5
1,1-Dichloroethene	ND	0.500		ND	1.98			2.5
Tertiary butyl Alcohol	ND	1.25		ND	3.79			2.5
Methylene chloride	ND	1.25		ND	4.34			2.5
3-Chloropropene	ND	0.500		ND	1.57			2.5
Carbon disulfide	0.875	0.500		2.72	1.56			2.5
Freon-113	ND	0.500		ND	3.83			2.5
trans-1,2-Dichloroethene	ND	0.500		ND	1.98			2.5
1,1-Dichloroethane	ND	0.500		ND	2.02			2.5
Methyl tert butyl ether	ND	0.500		ND	1.80			2.5
2-Butanone	1.51	1.25		4.45	3.69			2.5

0.500

1.25

--

ND

ND

ND

ND

1.98

4.50

--

2.5

2.5

cis-1,2-Dichloroethene

Ethyl Acetate

Project Number: 2172285

Lab Number:

L1735924

Report Date:

10/09/17

SAMPLE RESULTS

Lab ID: L1735924-04 D

Client ID: SS4

Sample Location: JAMESTOWN, NY

Date Collected: 10/04/17 16:40

Date Received: 10/05/17

Field Prep: Not Specified

	,			/ . O				
Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mans		RL	WIDL	Results	NL .	IVIDL	Qualifier	
Chloroform	ND	0.500		ND	2.44			2.5
Tetrahydrofuran	ND ND	1.25		ND	3.69			2.5
1,2-Dichloroethane	ND ND	0.500		ND	2.02			2.5
n-Hexane	4.10	0.500		14.4	1.76			2.5
1,1,1-Trichloroethane	ND	0.500		ND	2.73			2.5
Benzene	1.22	0.500		3.90	1.60			2.5
Carbon tetrachloride	ND	0.500		3.90 ND	3.15			2.5
Cyclohexane								
1,2-Dichloropropane	1.59	0.500		5.47	1.72			2.5
Bromodichloromethane	ND	0.500		ND	2.31			2.5
	ND	0.500		ND	3.35			2.5
1,4-Dioxane	ND	0.500		ND	1.80			2.5
Trichloroethene	ND	0.500		ND	2.69			2.5
2,2,4-Trimethylpentane	ND	0.500		ND	2.34			2.5
Heptane	3.04	0.500		12.5	2.05			2.5
cis-1,3-Dichloropropene	ND	0.500		ND	2.27			2.5
4-Methyl-2-pentanone	ND	1.25		ND	5.12			2.5
trans-1,3-Dichloropropene	ND	0.500		ND	2.27			2.5
1,1,2-Trichloroethane	ND	0.500		ND	2.73			2.5
Toluene	2.99	0.500		11.3	1.88			2.5
2-Hexanone	ND	0.500		ND	2.05			2.5
Dibromochloromethane	ND	0.500		ND	4.26			2.5
1,2-Dibromoethane	ND	0.500		ND	3.84			2.5
Tetrachloroethene	1.59	0.500		10.8	3.39			2.5
Chlorobenzene	ND	0.500		ND	2.30			2.5
Ethylbenzene	ND	0.500		ND	2.17			2.5
p/m-Xylene	1.46	1.00		6.34	4.34			2.5
Bromoform	ND	0.500		ND	5.17			2.5
Styrene	ND	0.500		ND	2.13			2.5

Project Name: VIA - JAMESTOWN

Project Number: 2172285 Lab Number:

L1735924

Report Date:

10/09/17

SAMPLE RESULTS

Lab ID: L1735924-04 D

SS4

Client ID: Sample Location: JAMESTOWN, NY

Date Collected:

10/04/17 16:40

Date Received:

10/05/17

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,1,2,2-Tetrachloroethane	ND	0.500		ND	3.43			2.5
o-Xylene	0.668	0.500		2.90	2.17			2.5
4-Ethyltoluene	ND	0.500		ND	2.46			2.5
1,3,5-Trimethylbenzene	ND	0.500		ND	2.46			2.5
1,2,4-Trimethylbenzene	0.842	0.500		4.14	2.46			2.5
Benzyl chloride	ND	0.500		ND	2.59			2.5
1,3-Dichlorobenzene	ND	0.500		ND	3.01			2.5
1,4-Dichlorobenzene	ND	0.500		ND	3.01			2.5
1,2-Dichlorobenzene	ND	0.500		ND	3.01			2.5
1,2,4-Trichlorobenzene	ND	0.500		ND	3.71			2.5
Hexachlorobutadiene	ND	0.500		ND	5.33			2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	77		60-140
Bromochloromethane	76		60-140
chlorobenzene-d5	82		60-140

L1735924

Project Name: Lab Number: VIA - JAMESTOWN

Project Number: 2172285 Report Date: 10/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 10/06/17 15:04

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	-04 Batch	: WG10498	30-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

L1735924

Project Name: Lab Number: VIA - JAMESTOWN

Project Number: 2172285 Report Date: 10/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 10/06/17 15:04

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - N	Mansfield Lab for samp	ole(s): 01-	04 Batch:	WG10498	30-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

L1735924

Project Name: Lab Number: VIA - JAMESTOWN

Project Number: 2172285 Report Date: 10/09/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 10/06/17 15:04

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	04 Batch	ո։ WG10498	30-4			
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

L1735924 10/09/17 Lab Number: Report Date:

VIA - JAMESTOWN 2172285 Project Number: Project Name:

LCS **Recovery Volatile Organics in Air - Mansfield Lab Associated sample(s):	LCS %Recovery ociated sample(s)	Qual	LCSD	Qual	%Recovery Limits	RPD	Qual	RPD Limits
	88 6				70-130			
	73				70-130			
	66				70-130			
	82				70-130			
	16				70-130			
	74				70-130			
	84				70-130			
	83				70-130			
	70				70-130			
	68				70-130			
	84				70-130			
	88				70-130			
	06				70-130			
	06				70-130			
	76				70-130			
	109				70-130			
	74		ı		70-130			
	121		ı		70-130			
	96				70-130			
	85				70-130			
	80		·		70-130	ı		
	87		ı		70-130			

L1735924 Lab Number:

Project Number:

10/09/17 Report Date: VIA - JAMESTOWN 2172285 Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Associated sample(s):	ab Associated sample(s):	01-04	Batch: WG1049830-3	130-3				
1,1-Dichloroethene	103		,		70-130			
tert-Butyl Alcohol	06		1		70-130			
Methylene chloride	102				70-130			
3-Chloropropene	16				70-130			
Carbon disulfide	87				70-130			
1,1,2-Trichloro-1,2,2-Trifluoroethane	104				70-130			
trans-1,2-Dichloroethene	63				70-130			
1,1-Dichloroethane	96				70-130			
Methyl tert butyl ether	96				70-130			
Vinyl acetate	114				70-130			
2-Butanone	63				70-130			
cis-1,2-Dichloroethene	96				70-130			
Ethyl Acetate	16				70-130			
Chloroform	105				70-130			
Tetrahydrofuran	92				70-130			
2,2-Dichloropropane	101				70-130			
1,2-Dichloroethane	116				70-130			
n-Hexane	100				70-130			
Isopropyl Ether	91				70-130			
Ethyl-Tert-Butyl-Ether	94		1		70-130	ı		
1,1,1-Trichloroethane	122		ı		70-130			
1,1-Dichloropropene	66		1		70-130	ı		
Benzene	96		ı		70-130			

VIA - JAMESTOWN

2172285

Project Number: Project Name:

L1735924 10/09/17 Lab Number: Report Date:

	Qual	
	RPD	
/ STACCOVER &	Limits	
	Qual	
1001	"Recovery	
	Qual	
201	%Recovery	
	- Parameter	
	y Qual	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Associated sample(s):	ciated sample(s):	01-04	Batch: WG1049830-3	10-3				
Carbon tetrachloride	129				70-130			
Cyclohexane	96				70-130			
Tertiary-Amyl Methyl Ether	06				70-130			
Dibromomethane	86				70-130			
1,2-Dichloropropane	96				70-130			
Bromodichloromethane	116				70-130			
1,4-Dioxane	92				70-130			
Trichloroethene	100				70-130			
2,2,4-Trimethylpentane	86				70-130			
Methyl Methacrylate	123				70-130			
Heptane	105				70-130			
cis-1,3-Dichloropropene	108				70-130			
4-Methyl-2-pentanone	111				70-130			
trans-1,3-Dichloropropene	76				70-130			
1,1,2-Trichloroethane	104				70-130			
Toluene	84				70-130			
1,3-Dichloropropane	82		ı		70-130			
2-Hexanone	68				70-130			
Dibromochloromethane	100		ı		70-130			
1,2-Dibromoethane	88				70-130			
Butyl Acetate	74				70-130			
Octane	75		ı		70-130			
Tetrachloroethene	92				70-130			

L1735924 10/09/17 Lab Number: Report Date:

VIA - JAMESTOWN 2172285 Project Number: Project Name:

RPD	Limits	
	Qual	
	RPD	
"Recovery	Limits	
	Qual	
TCSD	%Recovery	
	Qual	
SO7	%Recovery	
	Parameter	

 $\stackrel{>}{>}$

Parameter	%Recovery	Qual	%Recovery		Qual	Limits	RPD	Qual	Limits
Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04	sociated sample(s):	01-04	Batch: WG1049830-3	31049830-3	8				
1,1,1,2-Tetrachloroethane	88		•			70-130			
Chlorobenzene	87		'			70-130	•		
Ethylbenzene	88		•			70-130			
p/m-Xylene	06					70-130			
Bromoform	66		•			70-130			
Styrene	87					70-130			
1,1,2,2-Tetrachloroethane	91		•			70-130			
o-Xylene	92		•			70-130			
1,2,3-Trichloropropane	85		'			70-130			
Nonane (C9)	88		•			70-130			
Isopropylbenzene	87		•			70-130			
Bromobenzene	82					70-130			
o-Chlorotoluene	82		•			70-130			
n-Propylbenzene	84		•			70-130			
p-Chlorotoluene	80		•			70-130			
4-Ethyltoluene	88		•			70-130			
1,3,5-Trimethylbenzene	94		•			70-130			
tert-Butylbenzene	68		•			70-130			
1,2,4-Trimethylbenzene	96		•			70-130			
Decane (C10)	87		1			70-130			
Benzyl chloride	92		•			70-130	ı		
1,3-Dichlorobenzene	94		•			70-130	1		
1,4-Dichlorobenzene	93		•			70-130	,		

L1735924 10/09/17 Lab Number: Report Date:

> 2172285 Project Number:

VIA - JAMESTOWN

Project Name:

	SO7		TCSD		"Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG1049830-3	ociated sample(s):	01-04	Batch: WG1049830	-3				
sec-Butylbenzene	88		·		70-130			
p-Isopropyltoluene	83				70-130			
1,2-Dichlorobenzene	93				70-130			
n-Butylbenzene	94				70-130			
1,2-Dibromo-3-chloropropane	92		ı		70-130			
Undecane	91				70-130			
Dodecane (C12)	93				70-130			

70-130 70-130

103

68 94 102

1,2,3-Trichlorobenzene

Naphthalene

Hexachlorobutadiene

1,2,4-Trichlorobenzene

70-130 70-130

Lab Duplicate Analysis
Batch Quality Control

VIA - JAMESTOWN

2172285

Project Number: Project Name:

L1735924 10/09/17 Lab Number: Report Date:

RPD Limits	2	(!! !!
2	e co	: (
Udd	7	
٠ - -	OIIIIS	
Dunlicate Samula	Duplicate Salliple	
Mative Semple	Native Sample	
amotor	מוועועו	(

Parameter	Native Sample	Duplicate Sample Units	Units	RPD	RPD Qual Limits	Limits
Volatile Organics in Air - Mansfield Lab Associated sample(Associated sample(s): 01-04	s): 01-04 QC Batch ID: WG1049830-5 QC Sample: L1735459-02 Client ID: DUP Sample	QC Sample:	L1735459-	02 Client ID:	DUP Sample
Vinyl chloride	QN	ND	Vdqq	NC		25
1,1-Dichloroethene	9.74	10.2	Vdqq	വ		25
1,1-Dichloroethane	QN	ND	Vdqq	NC		25
cis-1,2-Dichloroethene	26.1	25.1	Vddd	4		25
1,2-Dichloroethane	QN	ND	Vdqq	NC		25
1,1,1-Trichloroethane	4.54	5.10	Vddd	12		25
Trichloroethene	1530	1600	Vddd	4		25
Tetrachloroethene	7.44	6.82	Vdqq	6		25

Serial_No:10091713:32 **Lab Number:** L1735924

VIA - JAMESTOWN

Project Name:

Project Number: 2172285

Report Date: 10/09/17

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In % RPD	% RPD
L1735924-01	SS1	0800	Flow 4	10/03/17	250558					Pass	0.6	9.4	4
L1735924-01	SSI	481	2.7L Can	10/03/17	250558	L1734697-02	Pass	-30.0	-5.9				
L1735924-02	SS2	0923	Flow 4	10/03/17	250558					Pass	8.9	8.3	7
L1735924-02	SS2	489	2.7L Can	10/03/17	250558	L1734697-02	Pass	-30.0	-2.1				
L1735924-03	5S3	0258	Flow 4	10/03/17	250558					Pass	9.0	9.4	4
L1735924-03	553	399	2.7L Can	10/03/17	250558	250558 L1734697-02	Pass	-30.0	-7.5				
L1735924-04	5.54	8900	Flow 4	10/03/17	250558					Pass	8.8	10.0	13
L1735924-04	SS4	1735	2.7L Can	10/03/17	250558	250558 L1734697-02	Pass	-30.0	-7.0	1			

Project Name: Lab Number: L1734697

Project Number: CANISTER QC BAT Report Date: 10/09/17

Air Canister Certification Results

Lab ID: L1734697-02 Date Collected: 09/27/17 16:00

Client ID: CAN 384 SHELF 9 Date Received: 09/28/17

Sample Location: Field Prep: Not Specified

Matrix: Air Anaytical Method: 48,TO-15

Analytical Date: 48,10-15

Analytical Date: 09/28/17 19:21

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: Lab Number: L1734697

Project Number: CANISTER QC BAT Report Date: 10/09/17

Air Canister Certification Results

Lab ID: L1734697-02 Date Collected: 09/27/17 16:00

Client ID: CAN 384 SHELF 9 Date Received: 09/28/17
Sample Location: Field Prep: Not Specified

						- 1		
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1734697

Project Name: Lab Number:

Project Number: CANISTER QC BAT Report Date: 10/09/17

Air Canister Certification Results

Lab ID: L1734697-02 Date Collected: 09/27/17 16:00

Client ID: CAN 384 SHELF 9 Date Received: 09/28/17
Sample Location: Field Prep: Not Specified

•						•		•
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: Lab

Lab Number: L1734697

Project Number: CANISTER QC BAT Report Date: 10/09/17

Air Canister Certification Results

Lab ID: L1734697-02
Client ID: CAN 384 SHELF 9

Sample Location:

Date Collected:

09/27/17 16:00

Date Received:

09/28/17

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: Lab Number: L1734697

Project Number: CANISTER QC BAT Report Date: 10/09/17

Air Canister Certification Results

Lab ID: Date Collected: L1734697-02 09/27/17 16:00

Client ID: CAN 384 SHELF 9 Date Received: 09/28/17

Sample Location: Field Prep: Not Specified

 ppbV ug/m3 Dilution Factor Results RL MDL Qualifier Parameter Results RLMDL

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	82		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	86		60-140

Project Name: Lab Number: L1734697

Project Number: CANISTER QC BAT Report Date: 10/09/17

Air Canister Certification Results

Lab ID: L1734697-02 Date Collected: 09/27/17 16:00

Client ID: CAN 384 SHELF 9 Date Received: 09/28/17

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 09/28/17 19:21

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1

Project Name: Lab Number: L1734697

Project Number: CANISTER QC BAT Report Date: 10/09/17

Air Canister Certification Results

Lab ID: L1734697-02 Date Collected: 09/27/17 16:00

Client ID: CAN 384 SHELF 9 Date Received: 09/28/17
Sample Location: Field Prep: Not Specified

F						- 1		
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1

L1734697

Project Name: Lab Number:

Project Number: CANISTER QC BAT Report Date: 10/09/17

Air Canister Certification Results

Lab ID: L1734697-02 Date Collected: 09/27/17 16:00

Client ID: CAN 384 SHELF 9 Date Received: 09/28/17
Sample Location: Field Prep: Not Specified

							•	0 0 0 0
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
1,2,3-Trichloropropane	ND	0.020		ND	0.121			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	94		60-140

VIA - JAMESTOWN Project Name:

Project Number: 2172285

Lab Number: L1735924 Serial_No:10091713:32 Report Date: 10/09/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Absent Cooler N/A

Container Information	rmation				Temp		Frozen	
Container ID	Container ID Container Type	Cooler	Н	Н	deg C Pres	Sea!	Date/Time	Analysis(*)
L1735924-01A	Canister - 2.7 Liter	N/A	AN		>	Absent		TO15-LL(30)
L1735924-02A	Canister - 2.7 Liter	N/A	NA		>	Absent		TO15-LL(30)
L1735924-03A	Canister - 2.7 Liter	N/A	NA		>	Absent		TO15-LL(30)
L1735924-04A	Canister - 2.7 Liter	N/A	NA		>	Absent		TO15-LL(30)

Project Name: VIA - JAMESTOWN Lab Number: L1735924
Project Number: 2172285 Report Date: 10/09/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name: VIA - JAMESTOWN Lab Number: L1735924

Project Number: 2172285 Report Date: 10/09/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:VIA - JAMESTOWNLab Number:L1735924Project Number:2172285Report Date:10/09/17

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

1 Job #: 61735924	mation	ent info PO #:			Regulatory Requirements/Report Limits	riogiani		Sign			01-0	01/10	Sample Comments (i.e. PID)									born vision of section of the sectio	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time	guities are resolved. All samples	Submitted are subject to reprine a Terms and Conditions. See reverse side.
ALPHA Job #:	s Billing Information	☐ Same as Client info			Regulatory	State/red		SISVIVIA	AINAL		ISES	ED CK	API DI	8	2	R.	X			\				Date/Time:	16117 ond
Date Rec'd in Lab: \(\mathcal{O} \left(\mathcal{O} \right) \)	Report Information - Data Deliverables	D FAX	☐ ADEx Criteria Checker:	(Default based on Regulatory Criteria Indicated) Other Formats:	□ EMAIL (standard pdf report)	☐ Additional Deliverables:	Report to: (if different than Project Manager)					Filled Out	n ID ID-Flow	80 Je Fel 481 0080	8V J.D EL 489 0928	2 JLO 61 349 0256	ीक				· in		Container Type	Received By:	of the state of th
AIR ANALYSIS PAGE 1 OF 1	Project Information	Project Name: VIR-Jamestoon		Project#: 2172285	Project Manager:	ALPHA Quote #:	Turn-Around Time	Standard RUSH (only continued if pre-approved)	e Due:	lents:		st Be	Initial Final	10/417 1215 1616 30 A63	30 LOS	101417 1380 Was 30 8.62 W	NO 1919 OF OPON ODE 11-11-11-11		المعمد			AA = Ambient Air (Indoor/Outdoor)	SV = Soil VaporLandfill Gas/SVE Other = Please Specify	Relinquished By: Date/Time	105/17/6:10
	USTODY	sfield, MA 02048 FAX: 508-822-3288		Client: La Bella, Association			Phone: 716-551- 6281		Email: CKibler @ I aballape Gon	Other Project Specific Requirements/Comments:			ALPHA Lab ID (Lab Use Only)	35924-01 881	02 852	03 883						44	*SAMPLE MATRIX CODES SV	V	Page 41 of 41

ANALYTICAL REPORT

Lab Number: L1737991

Client: LaBella Associates, P.C.

300 Pearl Street

Suite 252

Buffalo, NY 14202

ATTN: Adam Zebrowski Phone: (716) 551-6281

Project Name: W. THIRD ST. & WASHINGTON ST.

Project Number: 2172285 Report Date: 10/30/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L1737991 10/30/17

Lab Number: Report Date:

Project Name: W. THIRD ST. & WASHINGTON ST.

Project Number: 2172285

Alpha			Sample	Collection	
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L1737991-01	SB-6 14-15FT	SOIL	115-121 W. THIRD ST. & 200-210 WASHINGTON ST.	10/19/17 08:30	10/19/17
L1737991-02	SB-7 14-15FT	SOIL	115-121 W. THIRD ST. & 200-210 WASHINGTON ST.	10/19/17 09:15	10/19/17
L1737991-03	SB-8 11-12FT	SOIL	115-121 W. THIRD ST. & 200-210 WASHINGTON ST.	10/19/17 10:35	10/19/17
L1737991-04	SB-9 10-11FT	SOIL	115-121 W. THIRD ST. & 200-210 WASHINGTON ST.	10/19/17 11:00	10/19/17
L1737991-05	SB-10 12-13FT	SOIL	115-121 W. THIRD ST. & 200-210 WASHINGTON ST.	10/19/17 11:15	10/19/17
L1737991-06	SB-11 10-11FT	SOIL	115-121 W. THIRD ST. & 200-210 WASHINGTON ST.	10/19/17 11:30	10/19/17
L1737991-07	SB-12 12-13FT	SOIL	115-121 W. THIRD ST. & 200-210 WASHINGTON ST.	10/19/17 12:00	10/19/17
L1737991-08	SB-13 10-11FT	SOIL	115-121 W. THIRD ST. & 200-210	10/19/17 12:30	10/19/17

WASHINGTON ST.

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any question	S.
<i>y</i> 1	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1737991-05 was analyzed as a High Level Methanol in order to quantitate the sample within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial Low Level analysis. The results of both analyses are reported.

L1737991-05: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (136%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report. The results are not considered to be biased.

The WG1057026-5 Method Blank, associated with L1737991-01 through -05, has concentrations above the reporting limits for bromomethane. Since the sample(s) were non-detect to the RL for these target analytes, no further actions were taken. The results of the original analysis are reported.

The WG1057026-3/-4 LCS/LCSD recoveries, associated with L1737991-01 through -05, are below the individual acceptance criteria for bromoform (68%/65%), 2-hexanone (65%/66%), and 1,2-dibromo-3-chloropropane (59%/59%), but within the overall method allowances. The results of the associated samples are reported; however, all results are considered to have a potentially low bias for these compounds.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kara Soroko

Authorized Signature:

Title: Technical Director/Representative

Date: 10/30/17

ORGANICS

VOLATILES

Project Name: Lab Number: W. THIRD ST. & WASHINGTON ST. L1737991

Project Number: Report Date: 2172285 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-01 D2 Date Collected: 10/19/17 08:30

Client ID: Date Received: SB-6 14-15FT 10/19/17 Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 10/29/17 10:00

Analyst: JC Percent Solids: 92%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by 8260/5035 - Westborough Lab								
Tetrachloroethene	55000		ug/kg	310	95.	20		
Surrogate			% Recovery	Qualifier		otance teria		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	91	70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-01 D Date Collected: 10/19/17 08:30

Client ID: SB-6 14-15FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil
Analytical Method: 1,8260C

Analytical Date: 10/27/17 13:06

Analyst: JC Percent Solids: 92%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	1600	260	10
1,1-Dichloroethane	ND		ug/kg	240	42.	10
Chloroform	ND		ug/kg	240	58.	10
Carbon tetrachloride	ND		ug/kg	160	54.	10
1,2-Dichloropropane	ND		ug/kg	550	36.	10
Dibromochloromethane	ND		ug/kg	160	28.	10
1,1,2-Trichloroethane	ND		ug/kg	240	49.	10
Tetrachloroethene	59000	E	ug/kg	160	47.	10
Chlorobenzene	ND		ug/kg	160	55.	10
Trichlorofluoromethane	ND		ug/kg	780	65.	10
1,2-Dichloroethane	ND		ug/kg	160	39.	10
1,1,1-Trichloroethane	ND		ug/kg	160	55.	10
Bromodichloromethane	ND		ug/kg	160	48.	10
trans-1,3-Dichloropropene	ND		ug/kg	160	33.	10
cis-1,3-Dichloropropene	ND		ug/kg	160	36.	10
Bromoform	ND		ug/kg	630	37.	10
1,1,2,2-Tetrachloroethane	ND		ug/kg	160	47.	10
Benzene	ND		ug/kg	160	30.	10
Toluene	ND		ug/kg	240	31.	10
Ethylbenzene	400		ug/kg	160	27.	10
Chloromethane	ND		ug/kg	780	68.	10
Bromomethane	ND		ug/kg	310	53.	10
Vinyl chloride	ND		ug/kg	310	49.	10
Chloroethane	ND		ug/kg	310	50.	10
1,1-Dichloroethene	ND		ug/kg	160	58.	10
trans-1,2-Dichloroethene	ND		ug/kg	240	38.	10
Trichloroethene	ND		ug/kg	160	47.	10
1,2-Dichlorobenzene	ND		ug/kg	780	28.	10
1,3-Dichlorobenzene	ND		ug/kg	780	34.	10
1,4-Dichlorobenzene	ND		ug/kg	780	28.	10

10/19/17 08:30

Date Collected:

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-01 D

Client ID: SB-6 14-15FT Date Received: 10/19/17 Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - V	Vestborough Lab					
	ND		,,	040	0.4	40
Methyl tert butyl ether	ND		ug/kg	310	24.	10
p/m-Xylene	1800		ug/kg	310	55.	10
o-Xylene	340		ug/kg	310	53.	10
cis-1,2-Dichloroethene	ND		ug/kg	160	54.	10
Styrene	ND		ug/kg	310	63.	10
Dichlorodifluoromethane	ND		ug/kg	1600	78.	10
Acetone	ND		ug/kg	1600	360	10
Carbon disulfide	ND		ug/kg	1600	170	10
2-Butanone	ND		ug/kg	1600	110	10
4-Methyl-2-pentanone	ND		ug/kg	1600	38.	10
2-Hexanone	ND		ug/kg	1600	100	10
Bromochloromethane	ND		ug/kg	780	56.	10
1,2-Dibromoethane	ND		ug/kg	630	31.	10
1,2-Dibromo-3-chloropropane	ND		ug/kg	780	62.	10
Isopropylbenzene	1200		ug/kg	160	30.	10
1,2,3-Trichlorobenzene	ND		ug/kg	780	39.	10
1,2,4-Trichlorobenzene	ND		ug/kg	780	34.	10
Methyl Acetate	ND		ug/kg	3100	73.	10
Cyclohexane	870	J	ug/kg	3100	68.	10
1,4-Dioxane	ND		ug/kg	6300	2300	10
Freon-113	ND		ug/kg	3100	81.	10
Methyl cyclohexane	5100		ug/kg	630	38.	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	91	70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-02 D2 Date Collected: 10/19/17 09:15

Client ID: SB-7 14-15FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/29/17 10:26

Analyst: JC Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westborough Lab							
Tetrachloroethene	83000		ug/kg	520	160	20	
Methyl cyclohexane	100000		ug/kg	2100	120	20	

Surrogate	% Recovery	eptance Priteria
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	106	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	89	70-130

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 09:15

Client ID: SB-7 14-15FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/27/17 13:32

Analyst: JC Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westl	oorough Lab					
Methylene chloride	ND		ug/kg	2600	430	10
1,1-Dichloroethane	ND		ug/kg	390	70.	10
Chloroform	ND		ug/kg	390	96.	10
Carbon tetrachloride	ND		ug/kg	260	90.	10
1,2-Dichloropropane	ND		ug/kg	910	60.	10
Dibromochloromethane	ND		ug/kg	260	46.	10
1,1,2-Trichloroethane	ND		ug/kg	390	82.	10
Tetrachloroethene	84000	E	ug/kg	260	79.	10
Chlorobenzene	ND		ug/kg	260	91.	10
Trichlorofluoromethane	ND		ug/kg	1300	110	10
1,2-Dichloroethane	ND		ug/kg	260	64.	10
1,1,1-Trichloroethane	ND		ug/kg	260	91.	10
Bromodichloromethane	ND		ug/kg	260	80.	10
trans-1,3-Dichloropropene	ND		ug/kg	260	54.	10
cis-1,3-Dichloropropene	ND		ug/kg	260	60.	10
Bromoform	ND		ug/kg	1000	62.	10
1,1,2,2-Tetrachloroethane	ND		ug/kg	260	78.	10
Benzene	140	J	ug/kg	260	50.	10
Toluene	290	J	ug/kg	390	51.	10
Ethylbenzene	3600		ug/kg	260	44.	10
Chloromethane	ND		ug/kg	1300	110	10
Bromomethane	ND		ug/kg	520	88.	10
Vinyl chloride	ND		ug/kg	520	82.	10
Chloroethane	ND		ug/kg	520	82.	10
1,1-Dichloroethene	ND		ug/kg	260	97.	10
trans-1,2-Dichloroethene	66	J	ug/kg	390	63.	10
Trichloroethene	2100		ug/kg	260	79.	10
1,2-Dichlorobenzene	ND		ug/kg	1300	47.	10
1,3-Dichlorobenzene	ND		ug/kg	1300	57.	10
1,4-Dichlorobenzene	ND		ug/kg	1300	47.	10

10/19/17 09:15

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-02 D Date Collected:

Client ID: SB-7 14-15FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

•					•	•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - W	/estborough Lab						
Methyl tert butyl ether	ND		ug/kg	520	40.	10	
p/m-Xylene	21000		ug/kg	520	92.	10	
o-Xylene	2600		ug/kg	520	88.	10	
cis-1,2-Dichloroethene	ND		ug/kg	260	89.	10	
Styrene	ND		ug/kg	520	100	10	
Dichlorodifluoromethane	ND		ug/kg	2600	130	10	
Acetone	ND		ug/kg	2600	600	10	
Carbon disulfide	ND		ug/kg	2600	290	10	
2-Butanone	ND		ug/kg	2600	180	10	
4-Methyl-2-pentanone	ND		ug/kg	2600	64.	10	
2-Hexanone	ND		ug/kg	2600	170	10	
Bromochloromethane	ND		ug/kg	1300	93.	10	
1,2-Dibromoethane	ND		ug/kg	1000	52.	10	
1,2-Dibromo-3-chloropropane	ND		ug/kg	1300	100	10	
Isopropylbenzene	2700		ug/kg	260	51.	10	
1,2,3-Trichlorobenzene	ND		ug/kg	1300	66.	10	
1,2,4-Trichlorobenzene	ND		ug/kg	1300	56.	10	
Methyl Acetate	ND		ug/kg	5200	120	10	
Cyclohexane	27000		ug/kg	5200	110	10	
1,4-Dioxane	ND		ug/kg	10000	3800	10	
Freon-113	ND		ug/kg	5200	130	10	
Methyl cyclohexane	100000	E	ug/kg	1000	63.	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	117	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	85	70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-03 Date Collected: 10/19/17 10:35

Client ID: SB-8 11-12FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/27/17 13:59

Analyst: JC Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	estborough Lab					
Methylene chloride	ND		ug/kg	330	55.	1
1,1-Dichloroethane	ND		ug/kg	50	9.0	1
Chloroform	ND		ug/kg	50	12.	1
Carbon tetrachloride	ND		ug/kg	33	12.	1
1,2-Dichloropropane	ND		ug/kg	120	7.6	1
Dibromochloromethane	ND		ug/kg	33	5.9	1
1,1,2-Trichloroethane	ND		ug/kg	50	10.	1
Tetrachloroethene	2800		ug/kg	33	10.	1
Chlorobenzene	ND		ug/kg	33	12.	1
Trichlorofluoromethane	ND		ug/kg	170	14.	1
1,2-Dichloroethane	ND		ug/kg	33	8.2	1
1,1,1-Trichloroethane	ND		ug/kg	33	12.	1
Bromodichloromethane	ND		ug/kg	33	10.	1
trans-1,3-Dichloropropene	ND		ug/kg	33	6.9	1
cis-1,3-Dichloropropene	ND		ug/kg	33	7.7	1
Bromoform	ND		ug/kg	130	7.9	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	33	9.9	1
Benzene	ND		ug/kg	33	6.4	1
Toluene	ND		ug/kg	50	6.5	1
Ethylbenzene	ND		ug/kg	33	5.7	1
Chloromethane	ND		ug/kg	170	14.	1
Bromomethane	27	J	ug/kg	67	11.	1
Vinyl chloride	ND		ug/kg	67	10.	1
Chloroethane	ND		ug/kg	67	10.	1
1,1-Dichloroethene	ND		ug/kg	33	12.	1
trans-1,2-Dichloroethene	ND		ug/kg	50	8.0	1
Trichloroethene	ND		ug/kg	33	10.	1
1,2-Dichlorobenzene	ND		ug/kg	170	6.1	1
1,3-Dichlorobenzene	ND		ug/kg	170	7.3	1
1,4-Dichlorobenzene	ND		ug/kg	170	6.1	1

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 10:35

Client ID: SB-8 11-12FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - We	stborough Lab						
Methyl tert butyl ether	5.6	J	ug/kg	67	5.1	1	
p/m-Xylene	ND		ug/kg	67	12.	1	
o-Xylene	ND		ug/kg	67	11.	1	
cis-1,2-Dichloroethene	ND		ug/kg	33	11.	1	
Styrene	ND		ug/kg	67	13.	1	
Dichlorodifluoromethane	ND		ug/kg	330	17.	1	
Acetone	ND		ug/kg	330	76.	1	
Carbon disulfide	ND		ug/kg	330	37.	1	
2-Butanone	ND		ug/kg	330	23.	1	
4-Methyl-2-pentanone	ND		ug/kg	330	8.1	1	
2-Hexanone	ND		ug/kg	330	22.	1	
Bromochloromethane	ND		ug/kg	170	12.	1	
1,2-Dibromoethane	ND		ug/kg	130	6.6	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	170	13.	1	
Isopropylbenzene	ND		ug/kg	33	6.5	1	
1,2,3-Trichlorobenzene	ND		ug/kg	170	8.4	1	
1,2,4-Trichlorobenzene	ND		ug/kg	170	7.2	1	
Methyl Acetate	ND		ug/kg	670	15.	1	
Cyclohexane	ND		ug/kg	670	14.	1	
1,4-Dioxane	ND		ug/kg	1300	480	1	
Freon-113	ND		ug/kg	670	17.	1	
Methyl cyclohexane	ND		ug/kg	130	8.0	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	92	70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 11:00

Client ID: SB-9 10-11FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/27/17 14:25

Analyst: BD Percent Solids: 92%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	estborough Lab					
Methylene chloride	ND		ug/kg	470	78.	1
1,1-Dichloroethane	ND		ug/kg	71	13.	1
Chloroform	ND		ug/kg	71	17.	1
Carbon tetrachloride	ND		ug/kg	47	16.	1
1,2-Dichloropropane	ND		ug/kg	160	11.	1
Dibromochloromethane	ND		ug/kg	47	8.3	1
1,1,2-Trichloroethane	ND		ug/kg	71	15.	1
Tetrachloroethene	7400		ug/kg	47	14.	1
Chlorobenzene	ND		ug/kg	47	16.	1
Trichlorofluoromethane	ND		ug/kg	240	20.	1
1,2-Dichloroethane	ND		ug/kg	47	12.	1
1,1,1-Trichloroethane	ND		ug/kg	47	16.	1
Bromodichloromethane	ND		ug/kg	47	14.	1
trans-1,3-Dichloropropene	ND		ug/kg	47	9.8	1
cis-1,3-Dichloropropene	ND		ug/kg	47	11.	1
Bromoform	ND		ug/kg	190	11.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	47	14.	1
Benzene	ND		ug/kg	47	9.1	1
Toluene	ND		ug/kg	71	9.2	1
Ethylbenzene	ND		ug/kg	47	8.0	1
Chloromethane	ND		ug/kg	240	20.	1
Bromomethane	40	J	ug/kg	94	16.	1
Vinyl chloride	ND		ug/kg	94	15.	1
Chloroethane	ND		ug/kg	94	15.	1
1,1-Dichloroethene	ND		ug/kg	47	18.	1
trans-1,2-Dichloroethene	ND		ug/kg	71	11.	1
Trichloroethene	ND		ug/kg	47	14.	1
1,2-Dichlorobenzene	ND		ug/kg	240	8.6	1
1,3-Dichlorobenzene	ND		ug/kg	240	10.	1
1,4-Dichlorobenzene	ND		ug/kg	240	8.6	1

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 11:00

Client ID: SB-9 10-11FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	tborough Lab					
Methyl tert butyl ether	8.3	J	ug/kg	94	7.2	1
p/m-Xylene	ND		ug/kg	94	16.	1
o-Xylene	ND		ug/kg	94	16.	1
cis-1,2-Dichloroethene	ND		ug/kg	47	16.	1
Styrene	ND		ug/kg	94	19.	1
Dichlorodifluoromethane	ND		ug/kg	470	24.	1
Acetone	ND		ug/kg	470	110	1
Carbon disulfide	ND		ug/kg	470	52.	1
2-Butanone	ND		ug/kg	470	32.	1
4-Methyl-2-pentanone	ND		ug/kg	470	12.	1
2-Hexanone	ND		ug/kg	470	31.	1
Bromochloromethane	ND		ug/kg	240	17.	1
1,2-Dibromoethane	ND		ug/kg	190	9.4	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	240	19.	1
Isopropylbenzene	ND		ug/kg	47	9.1	1
1,2,3-Trichlorobenzene	ND		ug/kg	240	12.	1
1,2,4-Trichlorobenzene	ND		ug/kg	240	10.	1
Methyl Acetate	ND		ug/kg	940	22.	1
Cyclohexane	ND		ug/kg	940	20.	1
1,4-Dioxane	ND		ug/kg	1900	680	1
Freon-113	ND		ug/kg	940	24.	1
Methyl cyclohexane	ND		ug/kg	190	11.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	91	70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 11:15

Client ID: SB-10 12-13FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/27/17 03:05

Analyst: MV Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westbo	rough Lab					
Methylene chloride	ND		ug/kg	4.9	0.81	1
1,1-Dichloroethane	ND		ug/kg	0.74	0.13	1
Chloroform	ND		ug/kg	0.74	0.18	1
Carbon tetrachloride	ND		ug/kg	0.49	0.17	1
1,2-Dichloropropane	ND		ug/kg	1.7	0.11	1
Dibromochloromethane	ND		ug/kg	0.49	0.09	1
1,1,2-Trichloroethane	ND		ug/kg	0.74	0.15	1
Tetrachloroethene	490	E	ug/kg	0.49	0.15	1
Chlorobenzene	ND		ug/kg	0.49	0.17	1
Trichlorofluoromethane	ND		ug/kg	2.5	0.20	1
1,2-Dichloroethane	ND		ug/kg	0.49	0.12	1
1,1,1-Trichloroethane	ND		ug/kg	0.49	0.17	1
Bromodichloromethane	ND		ug/kg	0.49	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	0.49	0.10	1
cis-1,3-Dichloropropene	ND		ug/kg	0.49	0.11	1
Bromoform	ND		ug/kg	2.0	0.12	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49	0.15	1
Benzene	6.2		ug/kg	0.49	0.10	1
Toluene	0.84		ug/kg	0.74	0.10	1
Ethylbenzene	5.6		ug/kg	0.49	0.08	1
Chloromethane	ND		ug/kg	2.5	0.21	1
Bromomethane	ND		ug/kg	0.98	0.17	1
Vinyl chloride	ND		ug/kg	0.98	0.16	1
Chloroethane	ND		ug/kg	0.98	0.16	1
1,1-Dichloroethene	ND		ug/kg	0.49	0.18	1
trans-1,2-Dichloroethene	0.35	J	ug/kg	0.74	0.12	1
Trichloroethene	ND		ug/kg	0.49	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.5	0.09	1
1,3-Dichlorobenzene	ND		ug/kg	2.5	0.11	1
1,4-Dichlorobenzene	ND		ug/kg	2.5	0.09	1

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 11:15

Client ID: SB-10 12-13FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

•					•	•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - We	stborough Lab						
Methyl tert butyl ether	ND		ug/kg	0.98	0.08	1	
p/m-Xylene	31		ug/kg	0.98	0.17	1	
o-Xylene	12		ug/kg	0.98	0.17	1	
cis-1,2-Dichloroethene	ND		ug/kg	0.49	0.17	1	
Styrene	ND		ug/kg	0.98	0.20	1	
Dichlorodifluoromethane	ND		ug/kg	4.9	0.25	1	
Acetone	16		ug/kg	4.9	1.1	1	
Carbon disulfide	ND		ug/kg	4.9	0.54	1	
2-Butanone	ND		ug/kg	4.9	0.34	1	
4-Methyl-2-pentanone	ND		ug/kg	4.9	0.12	1	
2-Hexanone	ND		ug/kg	4.9	0.33	1	
Bromochloromethane	ND		ug/kg	2.5	0.18	1	
1,2-Dibromoethane	ND		ug/kg	2.0	0.10	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.5	0.19	1	
Isopropylbenzene	25		ug/kg	0.49	0.10	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.5	0.12	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.5	0.10	1	
Methyl Acetate	ND		ug/kg	9.8	0.23	1	
Cyclohexane	140		ug/kg	9.8	0.21	1	
1,4-Dioxane	ND		ug/kg	20	7.1	1	
Freon-113	ND		ug/kg	9.8	0.25	1	
Methyl cyclohexane	570	E	ug/kg	2.0	0.12	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	126		70-130	
4-Bromofluorobenzene	136	Q	70-130	
Dibromofluoromethane	72		70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-05 Date Collected: 10/19/17 11:15

Client ID: SB-10 12-13FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/27/17 12:40

Analyst: JC Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High - V	Vestborough Lab)				
Methylene chloride	ND		ug/kg	380	63.	1
1,1-Dichloroethane	ND		ug/kg	57	10.	1
Chloroform	ND		ug/kg	57	14.	1
Carbon tetrachloride	ND		ug/kg	38	13.	1
1,2-Dichloropropane	ND		ug/kg	130	8.7	1
Dibromochloromethane	ND		ug/kg	38	6.7	1
1,1,2-Trichloroethane	ND		ug/kg	57	12.	1
Tetrachloroethene	1600		ug/kg	38	12.	1
Chlorobenzene	ND		ug/kg	38	13.	1
Trichlorofluoromethane	ND		ug/kg	190	16.	1
1,2-Dichloroethane	ND		ug/kg	38	9.4	1
1,1,1-Trichloroethane	ND		ug/kg	38	13.	1
Bromodichloromethane	ND		ug/kg	38	12.	1
trans-1,3-Dichloropropene	ND		ug/kg	38	8.0	1
cis-1,3-Dichloropropene	ND		ug/kg	38	8.8	1
Bromoform	ND		ug/kg	150	9.1	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	38	11.	1
Benzene	32	J	ug/kg	38	7.4	1
Toluene	ND		ug/kg	57	7.5	1
Ethylbenzene	27	J	ug/kg	38	6.5	1
Chloromethane	ND		ug/kg	190	17.	1
Bromomethane	27	J	ug/kg	77	13.	1
Vinyl chloride	ND		ug/kg	77	12.	1
Chloroethane	ND		ug/kg	77	12.	1
1,1-Dichloroethene	ND		ug/kg	38	14.	1
trans-1,2-Dichloroethene	ND		ug/kg	57	9.2	1
Trichloroethene	ND		ug/kg	38	12.	1
1,2-Dichlorobenzene	ND		ug/kg	190	7.0	1
1,3-Dichlorobenzene	ND		ug/kg	190	8.4	1
1,4-Dichlorobenzene	ND		ug/kg	190	7.0	1

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 11:15

Client ID: SB-10 12-13FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	n - Westborough Lab					
Methyl tert butyl ether	ND		ug/kg	77	5.9	1
p/m-Xylene	160		ug/kg	77	13.	1
o-Xylene	64	J	ug/kg	77	13.	1
cis-1,2-Dichloroethene	ND		ug/kg	38	13.	1
Styrene	ND		ug/kg	77	15.	1
Dichlorodifluoromethane	ND		ug/kg	380	19.	1
Acetone	ND		ug/kg	380	88.	1
Carbon disulfide	ND		ug/kg	380	42.	1
2-Butanone	ND		ug/kg	380	26.	1
4-Methyl-2-pentanone	ND		ug/kg	380	9.4	1
2-Hexanone	ND		ug/kg	380	26.	1
Bromochloromethane	ND		ug/kg	190	14.	1
1,2-Dibromoethane	ND		ug/kg	150	7.6	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	190	15.	1
Isopropylbenzene	79		ug/kg	38	7.4	1
1,2,3-Trichlorobenzene	ND		ug/kg	190	9.6	1
1,2,4-Trichlorobenzene	ND		ug/kg	190	8.2	1
Methyl Acetate	ND		ug/kg	770	18.	1
Cyclohexane	200	J	ug/kg	770	16.	1
1,4-Dioxane	ND		ug/kg	1500	550	1
Freon-113	ND		ug/kg	770	20.	1
Methyl cyclohexane	1200		ug/kg	150	9.2	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	90	70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 11:30

Client ID: SB-11 10-11FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/27/17 03:33

Analyst: MV Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	5.4	0.89	1
1,1-Dichloroethane	ND		ug/kg	0.81	0.14	1
Chloroform	ND		ug/kg	0.81	0.20	1
Carbon tetrachloride	ND		ug/kg	0.54	0.18	1
1,2-Dichloropropane	ND		ug/kg	1.9	0.12	1
Dibromochloromethane	ND		ug/kg	0.54	0.10	1
1,1,2-Trichloroethane	ND		ug/kg	0.81	0.17	1
Tetrachloroethene	35		ug/kg	0.54	0.16	1
Chlorobenzene	ND		ug/kg	0.54	0.19	1
Trichlorofluoromethane	ND		ug/kg	2.7	0.22	1
1,2-Dichloroethane	ND		ug/kg	0.54	0.13	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.19	1
Bromodichloromethane	ND		ug/kg	0.54	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.54	0.11	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.12	1
Bromoform	ND		ug/kg	2.2	0.13	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.16	1
Benzene	ND		ug/kg	0.54	0.10	1
Toluene	ND		ug/kg	0.81	0.10	1
Ethylbenzene	ND		ug/kg	0.54	0.09	1
Chloromethane	ND		ug/kg	2.7	0.23	1
Bromomethane	ND		ug/kg	1.1	0.18	1
Vinyl chloride	ND		ug/kg	1.1	0.17	1
Chloroethane	ND		ug/kg	1.1	0.17	1
1,1-Dichloroethene	ND		ug/kg	0.54	0.20	1
trans-1,2-Dichloroethene	0.33	J	ug/kg	0.81	0.13	1
Trichloroethene	1.2		ug/kg	0.54	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.7	0.10	1
1,3-Dichlorobenzene	ND		ug/kg	2.7	0.12	1
1,4-Dichlorobenzene	ND		ug/kg	2.7	0.10	1

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 11:30

Client ID: SB-11 10-11FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	tborough Lab					
Methyl tert butyl ether	ND		ug/kg	1.1	0.08	1
p/m-Xylene	ND		ug/kg	1.1	0.19	1
o-Xylene	ND		ug/kg	1.1	0.18	1
cis-1,2-Dichloroethene	ND		ug/kg	0.54	0.18	1
Styrene	ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane	ND		ug/kg	5.4	0.27	1
Acetone	1.4	J	ug/kg	5.4	1.2	1
Carbon disulfide	ND		ug/kg	5.4	0.59	1
2-Butanone	ND		ug/kg	5.4	0.37	1
4-Methyl-2-pentanone	ND		ug/kg	5.4	0.13	1
2-Hexanone	ND		ug/kg	5.4	0.36	1
Bromochloromethane	ND		ug/kg	2.7	0.19	1
1,2-Dibromoethane	ND		ug/kg	2.2	0.11	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.7	0.21	1
Isopropylbenzene	ND		ug/kg	0.54	0.10	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.7	0.14	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.7	0.12	1
Methyl Acetate	ND		ug/kg	11	0.25	1
Cyclohexane	ND		ug/kg	11	0.23	1
1,4-Dioxane	ND		ug/kg	22	7.8	1
Freon-113	ND		ug/kg	11	0.28	1
Methyl cyclohexane	0.40	J	ug/kg	2.2	0.13	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	102	70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 12:00

Client ID: SB-12 12-13FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/27/17 04:00

Analyst: MV Percent Solids: 81%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westbor	ough Lab					
Methylene chloride	ND		ug/kg	6.1	1.0	1
1,1-Dichloroethane	ND		ug/kg	0.92	0.16	1
Chloroform	ND		ug/kg	0.92	0.23	1
Carbon tetrachloride	ND		ug/kg	0.61	0.21	1
1,2-Dichloropropane	ND		ug/kg	2.1	0.14	1
Dibromochloromethane	ND		ug/kg	0.61	0.11	1
1,1,2-Trichloroethane	ND		ug/kg	0.92	0.19	1
Tetrachloroethene	ND		ug/kg	0.61	0.18	1
Chlorobenzene	ND		ug/kg	0.61	0.21	1
Trichlorofluoromethane	ND		ug/kg	3.1	0.26	1
1,2-Dichloroethane	ND		ug/kg	0.61	0.15	1
1,1,1-Trichloroethane	ND		ug/kg	0.61	0.21	1
Bromodichloromethane	ND		ug/kg	0.61	0.19	1
trans-1,3-Dichloropropene	ND		ug/kg	0.61	0.13	1
cis-1,3-Dichloropropene	ND		ug/kg	0.61	0.14	1
Bromoform	ND		ug/kg	2.4	0.14	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.61	0.18	1
Benzene	ND		ug/kg	0.61	0.12	1
Toluene	ND		ug/kg	0.92	0.12	1
Ethylbenzene	ND		ug/kg	0.61	0.10	1
Chloromethane	ND		ug/kg	3.1	0.27	1
Bromomethane	ND		ug/kg	1.2	0.21	1
Vinyl chloride	ND		ug/kg	1.2	0.19	1
Chloroethane	ND		ug/kg	1.2	0.19	1
1,1-Dichloroethene	ND		ug/kg	0.61	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	0.92	0.15	1
Trichloroethene	ND		ug/kg	0.61	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	3.1	0.11	1
1,3-Dichlorobenzene	ND		ug/kg	3.1	0.13	1
1,4-Dichlorobenzene	ND		ug/kg	3.1	0.11	1

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 12:00

Client ID: SB-12 12-13FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by 8260/5035 - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	1.2	0.09	1			
p/m-Xylene	ND		ug/kg	1.2	0.22	1			
. ,									
o-Xylene	ND		ug/kg	1.2	0.21	1			
cis-1,2-Dichloroethene	ND		ug/kg	0.61	0.21	1			
Styrene	ND		ug/kg	1.2	0.25	1			
Dichlorodifluoromethane	ND		ug/kg	6.1	0.31	1			
Acetone	2.6	J	ug/kg	6.1	1.4	1			
Carbon disulfide	ND		ug/kg	6.1	0.68	1			
2-Butanone	ND		ug/kg	6.1	0.42	1			
4-Methyl-2-pentanone	ND		ug/kg	6.1	0.15	1			
2-Hexanone	ND		ug/kg	6.1	0.41	1			
Bromochloromethane	ND		ug/kg	3.1	0.22	1			
1,2-Dibromoethane	ND		ug/kg	2.4	0.12	1			
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.1	0.24	1			
Isopropylbenzene	ND		ug/kg	0.61	0.12	1			
1,2,3-Trichlorobenzene	ND		ug/kg	3.1	0.15	1			
1,2,4-Trichlorobenzene	ND		ug/kg	3.1	0.13	1			
Methyl Acetate	ND		ug/kg	12	0.28	1			
Cyclohexane	ND		ug/kg	12	0.26	1			
1,4-Dioxane	ND		ug/kg	24	8.8	1			
Freon-113	ND		ug/kg	12	0.32	1			
Methyl cyclohexane	ND		ug/kg	2.4	0.15	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	106	70-130	

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-08 Date Collected: 10/19/17 12:30

Client ID: SB-13 10-11FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/26/17 22:04

Analyst: KD Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methylene chloride	ND		ug/kg	5.1	0.84	1
1,1-Dichloroethane	ND		ug/kg	0.76	0.14	1
Chloroform	ND		ug/kg	0.76	0.19	1
Carbon tetrachloride	ND		ug/kg	0.51	0.18	1
1,2-Dichloropropane	ND		ug/kg	1.8	0.12	1
Dibromochloromethane	ND		ug/kg	0.51	0.09	1
1,1,2-Trichloroethane	ND		ug/kg	0.76	0.16	1
Tetrachloroethene	ND		ug/kg	0.51	0.15	1
Chlorobenzene	ND		ug/kg	0.51	0.18	1
Trichlorofluoromethane	ND		ug/kg	2.5	0.21	1
1,2-Dichloroethane	ND		ug/kg	0.51	0.12	1
1,1,1-Trichloroethane	ND		ug/kg	0.51	0.18	1
Bromodichloromethane	ND		ug/kg	0.51	0.16	1
trans-1,3-Dichloropropene	ND		ug/kg	0.51	0.10	1
cis-1,3-Dichloropropene	ND		ug/kg	0.51	0.12	1
Bromoform	ND		ug/kg	2.0	0.12	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.51	0.15	1
Benzene	ND		ug/kg	0.51	0.10	1
Toluene	ND		ug/kg	0.76	0.10	1
Ethylbenzene	ND		ug/kg	0.51	0.09	1
Chloromethane	ND		ug/kg	2.5	0.22	1
Bromomethane	ND		ug/kg	1.0	0.17	1
Vinyl chloride	ND		ug/kg	1.0	0.16	1
Chloroethane	ND		ug/kg	1.0	0.16	1
1,1-Dichloroethene	ND		ug/kg	0.51	0.19	1
trans-1,2-Dichloroethene	ND		ug/kg	0.76	0.12	1
Trichloroethene	ND		ug/kg	0.51	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.5	0.09	1
1,3-Dichlorobenzene	ND		ug/kg	2.5	0.11	1
1,4-Dichlorobenzene	ND		ug/kg	2.5	0.09	1

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 12:30

Client ID: SB-13 10-11FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - We	estborough Lab						
Methyl tert butyl ether	ND		ug/kg	1.0	0.08	1	
p/m-Xylene	ND		ug/kg	1.0	0.18	1	
o-Xylene	ND		ug/kg	1.0	0.17	1	
cis-1,2-Dichloroethene	1.3		ug/kg	0.51	0.17	1	
Styrene	ND		ug/kg	1.0	0.20	1	
Dichlorodifluoromethane	ND		ug/kg	5.1	0.25	1	
Acetone	ND		ug/kg	5.1	1.2	1	
Carbon disulfide	ND		ug/kg	5.1	0.56	1	
2-Butanone	ND		ug/kg	5.1	0.35	1	
4-Methyl-2-pentanone	ND		ug/kg	5.1	0.12	1	
2-Hexanone	ND		ug/kg	5.1	0.34	1	
Bromochloromethane	ND		ug/kg	2.5	0.18	1	
1,2-Dibromoethane	ND		ug/kg	2.0	0.10	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.5	0.20	1	
Isopropylbenzene	ND		ug/kg	0.51	0.10	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.5	0.13	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.5	0.11	1	
Methyl Acetate	ND		ug/kg	10	0.24	1	
Cyclohexane	ND		ug/kg	10	0.22	1	
1,4-Dioxane	ND		ug/kg	20	7.3	1	
Freon-113	ND		ug/kg	10	0.26	1	
Methyl cyclohexane	ND		ug/kg	2.0	0.12	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	108	70-130	

L1737991

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number:

Project Number: 2172285 Report Date: 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/26/17 21:37

Analyst: KD

Methylene chloride ND ug/kg 1.0 1.6 1,1-Dichloroethane ND ug/kg 1.5 0.27 Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 3.5 0.23 Dibromochlororepane ND ug/kg 1.0 0.18 1,2-Dichloropropane ND ug/kg 1.0 0.18 1,1,2-Trichloroethane ND ug/kg 1.0 0.31 Tichoroethane ND ug/kg 1.0 0.30 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.35 Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 Bromoform ND ug/kg 1.0 0.21 cls-1,3-Dichloropropene ND ug/k	Parameter	Result	Qualifier	Units	RL		MDL
1,1-Dichloroethane ND ug/kg 1.5 0.27 Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.0 0.34 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.18 1,1,2-Trichloroethane ND ug/kg 1.0 0.31 Etrachloroethene ND ug/kg 1.0 0.30 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.21 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND </td <td>olatile Organics by 8260/5035 -</td> <td>Westborough</td> <td>Lab for sa</td> <td>mple(s):</td> <td>05-08</td> <td>Batch:</td> <td>WG1056967-5</td>	olatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	05-08	Batch:	WG1056967-5
Chloroform ND ug/kg 1.5 0.37 Carbon tetrachloride ND ug/kg 1.0 0.34 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.18 1,1,2-Trichloroethane ND ug/kg 1.5 0.31 Tetrachloroethane ND ug/kg 1.0 0.30 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.35 Trichloroethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 1.0 0.24 1,1,2,2-Tetrachloroethane ND<	Methylene chloride	ND		ug/kg	10		1.6
Carbon tetrachloride ND ug/kg 1.0 0.34 1,2-Dichloropropane ND ug/kg 3.5 0.23 Dibromochloromethane ND ug/kg 1.0 0.18 1,1,2-Trichloroethane ND ug/kg 1.5 0.31 Tetrachloroethane ND ug/kg 1.0 0.30 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 1.0 0.35 Trichloroethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.17 Tolluene ND ug/	1,1-Dichloroethane	ND		ug/kg	1.5		0.27
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	1.5		0.37
Ditromochloromethane ND ug/kg 1.0 0.18 1,1,2-Trichloroethane ND ug/kg 1.5 0.31 Tetrachloroethene ND ug/kg 1.0 0.30 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.42 1,2-Dichloroethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 1.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.17 Chloromethane ND	Carbon tetrachloride	ND		ug/kg	1.0		0.34
1,1,2-Trichloroethane ND ug/kg 1.5 0.31 Tetrachloroethene ND ug/kg 1.0 0.30 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.42 1,2-Dichloroethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 1.0 0.23 Bromoform ND ug/kg 1.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg	1,2-Dichloropropane	ND		ug/kg	3.5		0.23
Tetrachloroethene ND ug/kg 1.0 0.30 Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.42 1,2-Dichloroethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 1.0 0.23 Bromoform ND ug/kg 1.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 5.0 0.44 Bromomethane ND ug/kg	Dibromochloromethane	ND		ug/kg	1.0		0.18
Chlorobenzene ND ug/kg 1.0 0.35 Trichlorofluoromethane ND ug/kg 5.0 0.42 1,2-Dichloroethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromodform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.32 Chloroethane ND ug/kg	1,1,2-Trichloroethane	ND		ug/kg	1.5		0.31
Trichlorofluoromethane ND ug/kg 5.0 0.42 1,2-Dichloroethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 Chloroethene ND ug/kg 1.	Tetrachloroethene	ND		ug/kg	1.0		0.30
1,2-Dichloroethane ND ug/kg 1.0 0.25 1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 Chloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg	Chlorobenzene	ND		ug/kg	1.0		0.35
1,1,1-Trichloroethane ND ug/kg 1.0 0.35 Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1	Trichlorofluoromethane	ND		ug/kg	5.0		0.42
Bromodichloromethane ND ug/kg 1.0 0.31 trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 5.0<	1,2-Dichloroethane	ND		ug/kg	1.0		0.25
trans-1,3-Dichloropropene ND ug/kg 1.0 0.21 cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 5.0 0.18	1,1,1-Trichloroethane	ND		ug/kg	1.0		0.35
cis-1,3-Dichloropropene ND ug/kg 1.0 0.23 Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Bromodichloromethane	ND		ug/kg	1.0		0.31
Bromoform ND ug/kg 4.0 0.24 1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.21
1,1,2,2-Tetrachloroethane ND ug/kg 1.0 0.30 Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	cis-1,3-Dichloropropene	ND		ug/kg	1.0		0.23
Benzene ND ug/kg 1.0 0.19 Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Bromoform	ND		ug/kg	4.0		0.24
Toluene ND ug/kg 1.5 0.20 Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		0.30
Ethylbenzene ND ug/kg 1.0 0.17 Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Benzene	ND		ug/kg	1.0)	0.19
Chloromethane ND ug/kg 5.0 0.44 Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Toluene	ND		ug/kg	1.5		0.20
Bromomethane ND ug/kg 2.0 0.34 Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Ethylbenzene	ND		ug/kg	1.0		0.17
Vinyl chloride ND ug/kg 2.0 0.32 Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Chloromethane	ND		ug/kg	5.0		0.44
Chloroethane ND ug/kg 2.0 0.32 1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Bromomethane	ND		ug/kg	2.0)	0.34
1,1-Dichloroethene ND ug/kg 1.0 0.37 trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Vinyl chloride	ND		ug/kg	2.0)	0.32
trans-1,2-Dichloroethene ND ug/kg 1.5 0.24 Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	Chloroethane	ND		ug/kg	2.0)	0.32
Trichloroethene ND ug/kg 1.0 0.30 1,2-Dichlorobenzene ND ug/kg 5.0 0.18	1,1-Dichloroethene	ND		ug/kg	1.0)	0.37
1,2-Dichlorobenzene ND ug/kg 5.0 0.18	trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.24
	Trichloroethene	ND		ug/kg	1.0		0.30
1,3-Dichlorobenzene ND ug/kg 5.0 0.22	1,2-Dichlorobenzene	ND		ug/kg	5.0		0.18
	1,3-Dichlorobenzene	ND		ug/kg	5.0		0.22

L1737991

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number:

Project Number: 2172285 Report Date: 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/26/17 21:37

Analyst: KD

Parameter	Result	Qualifier	Units	RL	-	MDL
olatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	05-08	Batch:	WG1056967-5
1,4-Dichlorobenzene	ND		ug/kg	5.0)	0.18
Methyl tert butyl ether	ND		ug/kg	2.0)	0.15
p/m-Xylene	ND		ug/kg	2.0)	0.35
o-Xylene	ND		ug/kg	2.0)	0.34
cis-1,2-Dichloroethene	ND		ug/kg	1.0)	0.34
Styrene	ND		ug/kg	2.0)	0.40
Dichlorodifluoromethane	ND		ug/kg	10		0.50
Acetone	ND		ug/kg	10		2.3
Carbon disulfide	ND		ug/kg	10		1.1
2-Butanone	ND		ug/kg	10		0.69
4-Methyl-2-pentanone	ND		ug/kg	10		0.24
2-Hexanone	ND		ug/kg	10		0.67
Bromochloromethane	ND		ug/kg	5.0)	0.36
1,2-Dibromoethane	ND		ug/kg	4.0)	0.20
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0)	0.40
Isopropylbenzene	ND		ug/kg	1.0)	0.19
1,2,3-Trichlorobenzene	ND		ug/kg	5.0)	0.25
1,2,4-Trichlorobenzene	ND		ug/kg	5.0)	0.22
Methyl Acetate	ND		ug/kg	20		0.46
Cyclohexane	ND		ug/kg	20		0.43
1,4-Dioxane	ND		ug/kg	40		14.
Freon-113	ND		ug/kg	20		0.51
Methyl cyclohexane	ND		ug/kg	4.0)	0.24

L1737991

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number:

Project Number: 2172285 Report Date: 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/26/17 21:37

Analyst: KD

Parameter	Result	Qualifier	Units	RL	_	MDL	
Volatile Organics by 8260/5035 - W	estborough	Lab for sar	nple(s):	05-08	Batch:	WG1056967-5	

		Α	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	112		70-130	

L1737991

Project Name: Lab Number: W. THIRD ST. & WASHINGTON ST.

Project Number: Report Date: 2172285 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8260C

10/29/17 09:34

Analyst: JC

Wolatile Organics by 8260/5035 - Westborough Lab for sample(s): 01-02 Batch: WG1057026-10 Methylene chloride ND ug/kg 500 82. 1,1-Dichloroethane ND ug/kg 75 14. Chloroform ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 50 17. 1,12-Dichloropropane ND ug/kg 50 8.8 1,1,2-Trichloropropane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 250 21. 1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. Irans-1,3-Dichloropropene ND ug/kg 50 12. Bromoform	Parameter	Result	Qualifier	Units	RL	i	MDL	
1,1-Dichloroethane	Volatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	01-02	Batch:	WG1057026-10	
Chloroform ND ug/kg 75 18. Carbon tetrachloride ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 180 11. Dibromochloromethane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 50 16. Tetrachloroethane ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 17. Trichloroethane ND ug/kg 50 12. 1,2-Dichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>500</td> <td>)</td> <td>82.</td> <td></td>	Methylene chloride	ND		ug/kg	500)	82.	
Carbon tetrachloride ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 180 11. Dibromochloromethane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 50 16. Tetrachloroethane ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 12. 1,2-Dichloroethane ND ug/kg 50 12. 1,1-1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50 15. Benzene ND ug/kg 50 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>75</td> <td></td> <td>14.</td> <td>_</td>	1,1-Dichloroethane	ND		ug/kg	75		14.	_
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	75		18.	
Dibromochloromethane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 75 16. Tetrachloroethane ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50	Carbon tetrachloride	ND		ug/kg	50		17.	
Tetrachloroethane	1,2-Dichloropropane	ND		ug/kg	180)	11.	
Tetrachloroethene ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 250 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 8.5 Chloromethane ND ug/kg 50 8.5 Chloromethane ND ug/kg 100 17.	Dibromochloromethane	ND		ug/kg	50		8.8	
Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 250 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 16.	1,1,2-Trichloroethane	ND		ug/kg	75		16.	
Trichlorofluoromethane ND ug/kg 250 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 50 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100	Tetrachloroethene	ND		ug/kg	50		15.	
1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50<	Chlorobenzene	ND		ug/kg	50		17.	
1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 50 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg <t< td=""><td>Trichlorofluoromethane</td><td>ND</td><td></td><td>ug/kg</td><td>250</td><td>)</td><td>21.</td><td></td></t<>	Trichlorofluoromethane	ND		ug/kg	250)	21.	
Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.6 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 50 8.5 Chloromethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 15. Trichloroethene ND ug/kg 50 15. <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>50</td> <td></td> <td>12.</td> <td></td>	1,2-Dichloroethane	ND		ug/kg	50		12.	
trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 15. Trichloroethene ND ug/kg 50 15. Ly-Dichlorobenzene ND ug/kg 250	1,1,1-Trichloroethane	ND		ug/kg	50		18.	
cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 15. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Bromodichloromethane	ND		ug/kg	50		15.	
Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 19. Trichloroethene ND ug/kg 50 15. Trichlorobenzene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	trans-1,3-Dichloropropene	ND		ug/kg	50		10.	
1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	cis-1,3-Dichloropropene	ND		ug/kg	50		12.	
Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Bromoform	ND		ug/kg	200)	12.	
Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	1,1,2,2-Tetrachloroethane	ND		ug/kg	50		15.	
Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Benzene	ND		ug/kg	50		9.6	
Chloromethane ND ug/kg 250 22. Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Toluene	ND		ug/kg	75		9.8	_
Bromomethane 72 J ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Ethylbenzene	ND		ug/kg	50		8.5	
Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Chloromethane	ND		ug/kg	250)	22.	
Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Bromomethane	72	J	ug/kg	100)	17.	
1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Vinyl chloride	ND		ug/kg	100)	16.	
trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Chloroethane	ND		ug/kg	100)	16.	
TrichloroetheneNDug/kg5015.1,2-DichlorobenzeneNDug/kg2509.1	1,1-Dichloroethene	ND		ug/kg	50		19.	
1,2-Dichlorobenzene ND ug/kg 250 9.1	trans-1,2-Dichloroethene	ND		ug/kg	75		12.	
	Trichloroethene	ND		ug/kg	50		15.	
1,3-Dichlorobenzene ND ug/kg 250 11.	1,2-Dichlorobenzene	ND		ug/kg	250)	9.1	
	1,3-Dichlorobenzene	ND		ug/kg	250)	11.	

L1737991

Project Name: Lab Number: W. THIRD ST. & WASHINGTON ST.

Project Number: Report Date: 2172285 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8260C

10/29/17 09:34

Analyst: JC

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01-02	Batch:	WG1057026-10
1,4-Dichlorobenzene	ND		ug/kg	250)	9.1
Methyl tert butyl ether	ND		ug/kg	100)	7.6
p/m-Xylene	ND		ug/kg	100)	18.
o-Xylene	ND		ug/kg	100)	17.
cis-1,2-Dichloroethene	ND		ug/kg	50		17.
Styrene	ND		ug/kg	100)	20.
Dichlorodifluoromethane	ND		ug/kg	500)	25.
Acetone	ND		ug/kg	500)	110
Carbon disulfide	ND		ug/kg	500)	55.
2-Butanone	ND		ug/kg	500)	34.
4-Methyl-2-pentanone	ND		ug/kg	500)	12.
2-Hexanone	ND		ug/kg	500)	33.
Bromochloromethane	ND		ug/kg	250)	18.
1,2-Dibromoethane	ND		ug/kg	200)	10.
1,2-Dibromo-3-chloropropane	ND		ug/kg	250)	20.
Isopropylbenzene	ND		ug/kg	50		9.7
1,2,3-Trichlorobenzene	ND		ug/kg	250)	12.
1,2,4-Trichlorobenzene	ND		ug/kg	250)	11.
Methyl Acetate	ND		ug/kg	100	0	23.
Cyclohexane	ND		ug/kg	100	0	22.
1,4-Dioxane	ND		ug/kg	200	0	720
Freon-113	ND		ug/kg	100	0	26.
Methyl cyclohexane	ND		ug/kg	200)	12.

Project Name: W. THIRD ST. & WASHINGTON ST. **Lab Number:** L1737991

Project Number: 2172285 Report Date: 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C

Analytical Date: 10/29/17 09:34

Analyst: JC

Parameter	Result	Qualifier	Units	RI	-	MDL
Volatile Organics by 8260/5035 - W	estborough/	Lab for sai	mple(s):	01-02	Batch:	WG1057026-10

		Acceptance	
Surrogate	%Recovery Q	ualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	92	70-130	

L1737991

Project Name: W. THIRD ST. & WASHINGTON ST. **Lab Number:**

Project Number: 2172285 Report Date: 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/27/17 08:44

Analyst: MV

		Qualifier	Units	RL		MDL	
olatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01-05	Batch:	WG1057026-5	
Methylene chloride	ND		ug/kg	500)	82.	
1,1-Dichloroethane	ND		ug/kg	75		14.	
Chloroform	ND		ug/kg	75		18.	
Carbon tetrachloride	ND		ug/kg	50		17.	
1,2-Dichloropropane	ND		ug/kg	180)	11.	
Dibromochloromethane	ND		ug/kg	50		8.8	
1,1,2-Trichloroethane	ND		ug/kg	75		16.	
Tetrachloroethene	ND		ug/kg	50		15.	
Chlorobenzene	ND		ug/kg	50		17.	
Trichlorofluoromethane	ND		ug/kg	250)	21.	
1,2-Dichloroethane	ND		ug/kg	50		12.	
1,1,1-Trichloroethane	ND		ug/kg	50		18.	
Bromodichloromethane	ND		ug/kg	50		15.	
trans-1,3-Dichloropropene	ND		ug/kg	50		10.	
cis-1,3-Dichloropropene	ND		ug/kg	50		12.	
Bromoform	ND		ug/kg	200)	12.	
1,1,2,2-Tetrachloroethane	ND		ug/kg	50		15.	
Benzene	ND		ug/kg	50		9.6	
Toluene	ND		ug/kg	75		9.8	
Ethylbenzene	ND		ug/kg	50		8.5	
Chloromethane	ND		ug/kg	250)	22.	
Bromomethane	100		ug/kg	100)	17.	
Vinyl chloride	ND		ug/kg	100)	16.	
Chloroethane	ND		ug/kg	100)	16.	
1,1-Dichloroethene	ND		ug/kg	50		19.	
trans-1,2-Dichloroethene	ND		ug/kg	75		12.	
Trichloroethene	ND		ug/kg	50		15.	
1,2-Dichlorobenzene	ND		ug/kg	250)	9.1	
1,3-Dichlorobenzene	ND		ug/kg	250)	11.	

L1737991

Lab Number:

Project Name: W. THIRD ST. & WASHINGTON ST.

Project Number: 2172285 Report Date: 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/27/17 08:44

Analyst: MV

Parameter	Result	Qualifier	Units	RL		MDL	
olatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	01-05	Batch:	WG1057026-5	
1,4-Dichlorobenzene	ND		ug/kg	250)	9.1	
Methyl tert butyl ether	ND		ug/kg	100)	7.6	
p/m-Xylene	ND		ug/kg	100)	18.	
o-Xylene	ND		ug/kg	100)	17.	
cis-1,2-Dichloroethene	ND		ug/kg	50		17.	
Styrene	ND		ug/kg	100)	20.	
Dichlorodifluoromethane	ND		ug/kg	500)	25.	
Acetone	ND		ug/kg	500)	110	
Carbon disulfide	ND		ug/kg	500)	55.	
2-Butanone	ND		ug/kg	500)	34.	
4-Methyl-2-pentanone	ND		ug/kg	500)	12.	
2-Hexanone	ND		ug/kg	500)	33.	
Bromochloromethane	ND		ug/kg	250)	18.	
1,2-Dibromoethane	ND		ug/kg	200)	10.	
1,2-Dibromo-3-chloropropane	ND		ug/kg	250)	20.	
Isopropylbenzene	ND		ug/kg	50		9.7	
1,2,3-Trichlorobenzene	ND		ug/kg	250)	12.	
1,2,4-Trichlorobenzene	ND		ug/kg	250)	11.	
Methyl Acetate	ND		ug/kg	100	0	23.	
Cyclohexane	ND		ug/kg	100	0	22.	
1,4-Dioxane	ND		ug/kg	200	0	720	
Freon-113	ND		ug/kg	100	0	26.	
Methyl cyclohexane	ND		ug/kg	200)	12.	

L1737991

Lab Number:

Project Name: W. THIRD ST. & WASHINGTON ST.

Project Number: 2172285 Report Date: 10/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/27/17 08:44

Analyst: MV

Parameter	Result	Qualifier	Units	RI	L	MDL	
Volatile Organics by 8260/5035 - W	/estborough	Lab for sa	mple(s):	01-05	Batch:	WG1057026-5	

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	91	70-130
Dibromofluoromethane	92	70-130

W. THIRD ST. & WASHINGTON ST.

L1737991 10/30/17 Lab Number: Report Date:

2172285 Project Number: Project Name:

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	r RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westborough Lab Associated sar	gh Lab Associated sample(s): 05-08		Batch: WG1056967-3 WG1056967-4	56967-4		
Methylene chloride	68	88	70-130	-		30
1,1-Dichloroethane	94	94	70-130	0		30
Chloroform	95	95	70-130	0		30
Carbon tetrachloride	66	66	70-130	0		30
1,2-Dichloropropane	93	94	70-130	_		30
Dibromochloromethane	68	88	70-130	~		30
1,1,2-Trichloroethane	93	63	70-130	0		30
Tetrachloroethene	96	91	70-130	വ		30
Chlorobenzene	92	92	70-130	0		30
Trichlorofluoromethane	95	88	70-139	ω		30
1,2-Dichloroethane	96	96	70-130	0		30
1,1,1-Trichloroethane	86	86	70-130	0		30
Bromodichloromethane	94	93	70-130	-		30
trans-1,3-Dichloropropene	87	06	70-130	Ж		30
cis-1,3-Dichloropropene	93	94	70-130	-		30
Bromoform	84	88	70-130	വ		30
1,1,2,2-Tetrachloroethane	98	98	70-130	0		30
Benzene	93	63	70-130	0		30
Toluene	06	68	70-130	-		30
Ethylbenzene	93	93	70-130	0		30
Chloromethane	86	26	52-130	-		30
Bromomethane	93	84	57-147	10		30
Vinyl chloride	68	68	67-130	0		30

W. THIRD ST. & WASHINGTON ST.

L1737991 10/30/17 Lab Number: Report Date:

2172285 Project Number: Project Name:

RPD	Limits	
	Qual	
	RPD	
%Recovery	Limits	
	Qual	
TCSD	%Recovery	
	Qual	
SD7	%Recovery	
	Parameter	

Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 05-08 Batch: WG1056967-3 WG1056967-4

Chloroethane	107	78	50-151	31	Q 30
1,1-Dichloroethene	79	80	65-135	, —	30
trans-1,2-Dichloroethene	95	94	70-130	,	30
Trichloroethene	26	96	70-130	-	30
1,2-Dichlorobenzene	06	06	70-130	0	30
1,3-Dichlorobenzene	92	92	70-130	0	30
1,4-Dichlorobenzene	06	91	70-130	, —	30
Methyl tert butyl ether	92	94	66-130	2	30
p/m-Xylene	93	95	70-130	2	30
o-Xylene	94	93	70-130	-	30
cis-1,2-Dichloroethene	26	93	70-130	4	30
Styrene	06	92	70-130	2	30
Dichlorodifluoromethane	103	66	30-146	4	30
Acetone	88	80	54-140	10	30
Carbon disulfide	73	75	59-130	33	30
2-Butanone	98	94	70-130	6	30
4-Methyl-2-pentanone	79	82	70-130	4	30
2-Hexanone	76	75	70-130	1	30
Bromochloromethane	100	86	70-130	2	30
1,2-Dibromoethane	06	92	70-130	2	30
1,2-Dibromo-3-chloropropane	78	62	68-130	_	30
Isopropylbenzene	06	06	70-130	0	30
1,2,3-Trichlorobenzene	98	92	70-130	7	30

Project Name: W. THIRD ST. & WASHINGTON ST.

taging control

Lab Number:

Report Date: 10/30/17

L1737991

Project Number: 2172285

RPD Limits Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 05-08 Batch: WG1056967-3 WG1056967-4

70-130 1 30	51-146 1 30			50-139 2 30	
93	92	101	82	92	101
92	63	102	87	06	103
1,2,4-Trichlorobenzene	Methyl Acetate	Cyclohexane	1,4-Dioxane	Freon-113	Methyl cyclobexane

Surrogate	LCS %Recovery (LCSD Qual %Recovery	Qual	Acceptance Criteria
1,2-Dichloroethane-d4	86	86		70-130
Toluene-d8	86	86		70-130
4-Bromofluorobenzene	96	76		70-130
Dibromofluoromethane	101	101		70-130

W. THIRD ST. & WASHINGTON ST.

L1737991 10/30/17 Lab Number: Report Date:

2172285 Project Number: Project Name:

RPD	Limits	
	Qual	
	RPD	
"Recovery	Limits	
	Qual	
TCSD	%Recovery	
	Qual	
SO7	%Recovery	
	Parameter	

Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s):		01-05 Batch: \	Batch: WG1057026-3 WG1057026-4	-4	
Methylene chloride	82	80	70-130	2	30
1,1-Dichloroethane	93	06	70-130	3	30
Chloroform	96	91	70-130	4	30
Carbon tetrachloride	82	77	70-130	9	30
1,2-Dichloropropane	96	06	70-130	9	30
Dibromochloromethane	75	73	70-130	3	30
1,1,2-Trichloroethane	86	96	70-130	2	30
Tetrachloroethene	92	87	70-130	9	30
Chlorobenzene	94	06	70-130	4	30
Trichlorofluoromethane	93	88	70-139	9	30
1,2-Dichloroethane	95	68	70-130	7	30
1,1,1-Trichloroethane	68	98	70-130	3	30
Bromodichloromethane	82	78	70-130	വ	30
trans-1,3-Dichloropropene	80	78	70-130	က	30
cis-1,3-Dichloropropene	85	82	70-130	4	30
Bromoform	O 89	99	Q 70-130	വ	30
1,1,2,2-Tetrachloroethane	93	91	70-130	2	30
Benzene	96	06	70-130	9	30
Toluene	91	98	70-130	9	30
Ethylbenzene	96	91	70-130	4	30
Chloromethane	93	98	52-130	80	30
Bromomethane	130	120	57-147	∞	30
Vinyl chloride	102	94	67-130	8	30

W. THIRD ST. & WASHINGTON ST.

Project Name:

L1737991 10/30/17 Lab Number: Report Date:

> 2172285 Project Number:

RPD Limits Qua/ RPD%Recovery Limits Qual "Recovery Qual "Recovery

30 30 co 2 Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 01-05 Batch: WG1057026-3 WG1057026-4 70-130 70-130 70-130 50-151 65-135 70-130 70-130 106 92 93 06 85 92 91 118 83 94 4 96 96 94 trans-1,2-Dichloroethene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,1-Dichloroethene Trichloroethene Chloroethane Parameter

30 30 30 30

c

66-130 70-130 70-130

68 93

92 96 96 96

Methyl tert butyl ether

p/m-Xylene o-Xylene

3

70-130

92

cis-1,2-Dichloroethene

92

W. THIRD ST. & WASHINGTON ST.

Lab Number: L1737991

Project Number: 2172285

Project Name:

Report Date: 10/30/17

	Qual	
	RPD	
%Recovery	Limits	
	Qual	
TCSD	%Recovery	
	Qual	
SO7	%Recovery	
	Parameter	

RPD Limits

Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 01-05 Batch: WG1057026-3 WG1057026-4

1,2,4-Trichlorobenzene	94	68	70-130	2	30
Methyl Acetate	87	98	51-146		30
Cyclohexane	95	06	59-142	2	30
1,4-Dioxane	106	104	65-136	2	30
Freon-113	87	88	50-139		30
Methyl cyclohexane	86	92	70-130	9	30

Surrogate	LCS %Recovery (LCSD Qual %Recovery	Qual	Acceptance Criteria
1,2-Dichloroethane-d4	26	96		70-130
Toluene-d8	86	86		70-130
4-Bromofluorobenzene	92	92		70-130
Dibromofluoromethane	100	66		70-130

W. THIRD ST. & WASHINGTON ST.

2172285 Project Number: Project Name:

L1737991 10/30/17 Lab Number: Report Date:

Parameter	"Recovery	Qual	"Recovery	Qual	Limits	RPD	Qual

RPD Limits Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 01-02 Batch: WG1057026-8 WG1057026-9 "Recovery TCSD SO7

Methylene chloride	82	84	70-130	2	30
1,1-Dichloroethane	66	86	70-130	_	30
Chloroform	26	96	70-130	-	30
Carbon tetrachloride	06	68	70-130	-	30
1,2-Dichloropropane	66	66	70-130	0	30
Dibromochloromethane	74	77	70-130	4	30
1,1,2-Trichloroethane	93	66	70-130	9	30
Tetrachloroethene	101	102	70-130	-	30
Chlorobenzene	86	86	70-130	0	30
Trichlorofluoromethane	105	103	70-139	2	30
1,2-Dichloroethane	06	06	70-130	0	30
1,1,1-Trichloroethane	96	95	70-130	1	30
Bromodichloromethane	84	83	70-130	-	30
trans-1,3-Dichloropropene	62	81	70-130	က	30
cis-1,3-Dichloropropene	87	98	70-130	1	30
Bromoform	O 99	89	Q 70-130	က	30
1,1,2,2-Tetrachloroethane	91	93	70-130	2	30
Benzene	101	100	70-130	_	30
Toluene	96	96	70-130	-	30
Ethylbenzene	100	101	70-130	-	30
Chloromethane	103	101	52-130	2	30
Bromomethane	120	124	57-147	က	30
Vinyl chloride	117	113	67-130	က	30

W. THIRD ST. & WASHINGTON ST.

Lab Number: L1737991 Report Date: 10/30/17

Project Number: 2172285

Project Name:

RPD "Recovery TCSD SO7

			1						1
Parameter	"Recovery	Qual	%Recovery	very	Qual 1	Limits	RPD	Qual	Limits
Volatile Organics by 8260/5035 - Westborough Lab Associat	gh Lab Associate	ed sample(s):	01-02	Batch:	WG1057026-8): 01-02 Batch: WG1057026-8 WG1057026-9			

Chloroethane	122		115		50-151	9	30
1,1-Dichloroethene	105		105		65-135	0	30
trans-1,2-Dichloroethene	102		102		70-130	0	30
Trichloroethene	105		102		70-130	3	30
1,2-Dichlorobenzene	26		86		70-130	_	30
1,3-Dichlorobenzene	86		66		70-130	-	30
1,4-Dichlorobenzene	76		66		70-130	2	30
Methyl tert butyl ether	87		68		66-130	2	30
p/m-Xylene	102		103		70-130	_	30
o-Xylene	66		100		70-130	_	30
cis-1,2-Dichloroethene	66		100		70-130	_	30
Styrene	86		100		70-130	2	30
Dichlorodifluoromethane	96		96		30-146	-	30
Acetone	70		62		54-140	12	30
Carbon disulfide	88		87		59-130	-	30
2-Butanone	91		103		70-130	12	30
4-Methyl-2-pentanone	80		77		70-130	4	30
2-Hexanone	71		71		70-130	0	30
Bromochloromethane	94		96		70-130	-	30
1,2-Dibromoethane	85		68		70-130	2	30
1,2-Dibromo-3-chloropropane	26	O	28	O	68-130	4	30
Isopropylbenzene	94		96		70-130	2	30
1,2,3-Trichlorobenzene	06		92		70-130	2	30

W. THIRD ST. & WASHINGTON ST. Project Name:

2172285

Project Number:

L1737991 Lab Number:

10/30/17 Report Date:

RPD	Limits
	Qual
	RPD
%Recovery	Limits
	Qual
TCSD	%Recovery
	Qual
SO7	%Recovery
	Parameter

Volatile Organics by 8260/5035 - Westborough Lab Associated sample(s): 01-02 Batch: WG1057026-8 WG1057026-9

1,2,4-Trichlorobenzene	94	94	70-130	0	30
Methyl Acetate	98	82	51-146	വ	30
Cyclohexane	108	109	59-142	~	30
1,4-Dioxane	102	103	65-136	~	30
Freon-113	107	108	50-139	~	30
Methyl cyclohexane	111	110	70-130	-	30

Surrogate	LCS %Recovery Q	LCSD Qual %Recovery	Qual	Acceptance Criteria
1.2-Dichloroethane-d4	65	93		70-130
Toluene-d8	86	86		70-130
4-Bromofluorobenzene	91	93		70-130
Dibromofluoromethane	66	66		70-130
Dibromofluoromethane	66	66		~

INORGANICS & MISCELLANEOUS

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-01 Date Collected: 10/19/17 08:30

Client ID: SB-6 14-15FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	91.7		%	0.100	NA	1	-	10/26/17 10:05	121,2540G	RI

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

 Lab ID:
 L1737991-02
 Date Collected:
 10/19/17 09:15

 Client ID:
 SB-7 14-15FT
 Date Received:
 10/19/17

Client ID: SB-7 14-15FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 Field Prep: Not Specified

Matrix: Soil

Analytical Method Dilution Date Date Factor Prepared Analyzed MDL Parameter Result Qualifier Units RL Analyst General Chemistry - Westborough Lab Solids, Total % 0.100 NA 1 10/26/17 10:05 121,2540G RΙ

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

 Lab ID:
 L1737991-03
 Date Collected:
 10/19/17 10:35

 Client ID:
 SB-8 11-12FT
 Date Received:
 10/19/17

Client ID: SB-8 11-12FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 Field Prep: Not Specified

Matrix: Soil

Analytical Method Dilution Date Date Factor Prepared Analyzed MDL Parameter Result Qualifier Units RL Analyst General Chemistry - Westborough Lab Solids, Total % 0.100 NA 1 10/26/17 10:05 121,2540G RΙ

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

 Lab ID:
 L1737991-04
 Date Collected:
 10/19/17 11:00

 Client ID:
 SB-9 10-11FT
 Date Received:
 10/19/17

Client ID: SB-9 10-11FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lak									
Solids, Total	92.3		%	0.100	NA	1	-	10/26/17 10:05	121,2540G	RI

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-05 Date Collected: 10/19/17 11:15
Client ID: SB-10 12-13FT Date Received: 10/19/17

Client ID: SB-10 12-13FT Date Received: 10/19/17
Sample Location: 115-121 W. THIRD ST. & 200-210 Field Prep: Not Specified

Matrix: Soil

Analytical Method Dilution Date Date Factor Prepared Analyzed MDL Parameter Result Qualifier Units RL Analyst General Chemistry - Westborough Lab Solids, Total % 0.100 NA 1 10/26/17 10:05 121,2540G RΙ

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-06 Date Collected: 10/19/17 11:30

Client ID: SB-11 10-11FT Date Received: 10/19/17

Sample Location: 115-121 W. THIRD ST. & 200-210 Field Prep: Not Specified

Matrix: Soil

Analytical Method Dilution Date Date Factor Prepared Analyzed MDL Parameter Result Qualifier Units RL Analyst General Chemistry - Westborough Lab Solids, Total 87.6 % 0.100 NA 1 10/26/17 10:05 121,2540G RΙ

Project Name: Lab Number: W. THIRD ST. & WASHINGTON ST. L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-07 Date Collected: 10/19/17 12:00

SB-12 12-13FT Client ID: Date Received: 10/19/17 Sample Location: 115-121 W. THIRD ST. & 200-210

Not Specified Field Prep: Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lat)								
Solids, Total	81.4		%	0.100	NA	1	-	10/26/17 10:05	121,2540G	RI

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991

Project Number: 2172285 Report Date: 10/30/17

SAMPLE RESULTS

Lab ID: L1737991-08 Date Collected: 10/19/17 12:30

SB-13 10-11FT Client ID: Date Received: 10/19/17 Sample Location: 115-121 W. THIRD ST. & 200-210

Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	79.9		%	0.100	NA	1	-	10/26/17 10:05	121,2540G	RI

Lab Duplicate Analysis
Batch Quality Control

W. THIRD ST. & WASHINGTON ST.

2172285

Project Number: Project Name:

L1737991 Lab Number:

10/30/17 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual	RPD Limits	
Seneral Chemistry - Westborough Lab Associated sample((s): 01-08): WG1056504-1	OC Sample:	L1737875-01	Client ID:	DUP Sample	
Solids, Total	89.8	90.1	%	0		20	

W. THIRD ST. & WASHINGTON ST. Project Name:

Project Number: 2172285

Lab Number: L1737991 Serial_No:10301716:58

Report Date: 10/30/17

NYTCL-8260HLW(14) NYTCL-8260HLW(14) NYTCL-8260HLW(14)

Analysis(*)

NYTCL-8260HLW(14) NYTCL-8260HLW(14) NYTCL-8260HLW(14)

TS(7)

NYTCL-8260HLW(14) NYTCL-8260HLW(14) NYTCL-8260HLW(14)

TS(7)

NYTCL-8260HLW(14) NYTCL-8260HLW(14) NYTCL-8260HLW(14)

TS(7)

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Custody Seal Cooler Information Cooler

20-OCT-17 03:55 20-OCT-17 03:52 20-OCT-17 03:52 20-OCT-17 03:55 20-OCT-17 03:52 Date/Time Frozen Absent Pres Seal Temp deg C 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Final pH Н ¥ ¥ ₹ ₹ ₹ ¥ ¥ ξ ξ ξ ₹ ¥ ₹ ₹ ₹ ¥ ¥ ¥ ₹ ₹ ₹ ₹ ¥ Cooler Plastic 2oz unpreserved for TS Container Type Vial MeOH preserved Absent Vial MeOH preserved Vial MeOH preserved Vial MeOH preserved Vial MeOH preserved Vial water preserved Vial water preserved Vial water preserved Vial water preserved vial MeOH preserved Vial water preserved Container Information Container ID L1737991-01A L1737991-01B L1737991-01C L1737991-01D L1737991-02A L1737991-02B L1737991-02C L1737991-02D L1737991-03B L1737991-03C L1737991-03D L1737991-04A L1737991-04B L1737991-04C L1737991-04D L1737991-05A L1737991-05B L1737991-05C L1737991-05D L1737991-06A L1737991-06B L1737991-06C L1737991-03A

NYTCL-8260HLW(14) NYTCL-8260HLW(14)

NYTCL-8260HLW(14)

NYTCL-8260H(14), NYTCL-8260HLW(14) NYTCL-8260H(14),NYTCL-8260HLW(14) NYTCL-8260H(14), NYTCL-8260HLW(14)

Page 55 of 62

Project Name: W. THIRD ST. & WASHINGTON ST. Project Number: 2172285

Serial_No:10301716:58 *Lab Number:* L1737991

Report Date: 10/30/17

Container Information	ormation		Initial F	inal Te	dme			Frozen	
Container ID	Container Type	Cooler		р На	deg C Pres S	res	Seal	Date/Time	Analysis(*)
L1737991-06D	Plastic 2oz unpreserved for TS	⋖	Ϋ́		3.0 Υ		Absent		TS(7)
L1737991-07A	Vial MeOH preserved	⋖	N A		3.0	>	Absent		NYTCL-8260HLW(14)
L1737991-07B	Vial water preserved	⋖	N A		3.0	>	Absent	20-OCT-17 03:52	NYTCL-8260HLW(14)
L1737991-07C	Vial water preserved	⋖	N A		3.0	>	Absent	20-OCT-17 03:52	NYTCL-8260HLW(14)
L1737991-07D	Plastic 2oz unpreserved for TS	⋖	N A		3.0	>	Absent		TS(7)
L1737991-08A	Vial MeOH preserved	⋖	N A		3.0	>	Absent		NYTCL-8260HLW(14)
L1737991-08B	Vial water preserved	∢	N A		3.0	>	Absent	20-OCT-17 03:52	NYTCL-8260HLW(14)

NYTCL-8260HLW(14)

20-OCT-17 03:52

Absent

3.0

¥

Ϋ́

∢ ∢

Plastic 2oz unpreserved for TS

Vial water preserved

L1737991-08C L1737991-08D

Absent

TS(7)

Project Name:W. THIRD ST. & WASHINGTON ST.Lab Number:L1737991Project Number:2172285Report Date:10/30/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name:W. THIRD ST. & WASHINGTON ST.Lab Number:L1737991Project Number:2172285Report Date:10/30/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: W. THIRD ST. & WASHINGTON ST. Lab Number: L1737991
Project Number: 2172285 Report Date: 10/30/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10301716:58

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahweh, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawands, NY 14150: 275 Cooper Ave, Suite 105	ey Rd, Suite 5 Way ooper Ave, Suite 10	95	Page		Date Rec'd in Lab	0/20/6)	ALPHA Job #	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Defiverables		H(37441	-
TEL: 508-898-9220 FAX: 508-898-9193	TEL 508-822-9300 FAX: 506-822-3288	Project Name: 5- 21 W.	B	8	o Washing		ASP-A		Same as Client Info	
Cirent Information		Project # 2,7228r		aird 51 22	1017.00	6200-210 Wanger	Equis (1 File) Other) EQUIS (4 File)	## Od.	_
Client ABe Ila A	ASSOCICITY ,	(Use Project name as Project #)	roject #)				Regulatory Requirement	ment	Disposal Site Information	-
8	Per St	Project Manager: Adam	-	Zebrowski			□ NY TOGS	NY Part 375	Planea identific halous languista of	
140	2	ALPHAQuote #:					AWQ Standards	NY CP-51	applicable disposal facilities.	_
1-01C et	10-3045	Turn-Around Time		BOLL BO			NY Restricted Use	se Other	Disposal Facility.	-
	Total los	Standard		Due Date:			NY Unrestricted Use	Use	N.J.	
There add This	id Della Co	TILL WICE COLUMN (only if pre approved)	7	# of Days:			NYC Sewer Discharge	charge	Other:	
Other project specific requirements/commants:	previously analyze	d by Alpha				V.	ANALYSIS		Sample Filtration	
		2015					55		Done to do	2000
Please specify Metals or TAL	TAL.						90/		Lab to do	111 - 112
						Ī			(Please Specify holow)	No.
ALPHA Lab ID (Lab Use Only)	San	Sample ID	Callection	ction	Sample	Sampler's	121		Charles Grando agent d	No. BE
33901 _ ~	300	000	Cale	aum	Manny	cioniii			Sample Specific Comments	
1	100	+0.4		8	18	3	,			
2 4	Z	+51-1	L1161/0	7:12	Soil	SO				
	111	ナナン	DIAIL	0:35	Soil	S	¥			_
1		1	11/9/17	11.00	Sevi	08	+			_
1		1994	10119117		5011	> OS	+			_
1	7	#1	C116/10	1:30	Soll	80				_
10-	7	2-13++	116/6)	12.00	1105	SU	,			_
5 30-	58-13 10	さがっ	בווטווסן	D. 350	18	8				
Preservative Code: Cor A = None P = B = HCl A =	ar Code do der Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015	o: MA935 o: MA015		Conta	Container Type			Please print clearly, legibly	
	ria Cup				Pre	Preservative			and completely, camples can not be logged in and turnaround time clock will not	
F = MeOH C = G = NaHSO. O =	C = Cube O = Other	Relinquished By	3y:	Date/Time	me	/ / Reo	Recéived Bv:	/ Date/Time	start until any ambiguities are resolved. BY EXECUTING	
B B B B B B B B B B B B B B B B B B B	E = Encore D = BOD Bottle	Many Poly	2 Tall	11/6/10	16:30	West of the second	Change and	10/9/17 45:30	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
m No. ne of the American	10000						1		TERMS & CONDITIONS.	
FORTH NO. 01-25 HC (rev. 30-Sept-2013)	01-2013)				\		J		(See reverse side.)	

I:\VOLATILES\Charlie\2017\171026N\ Data Path

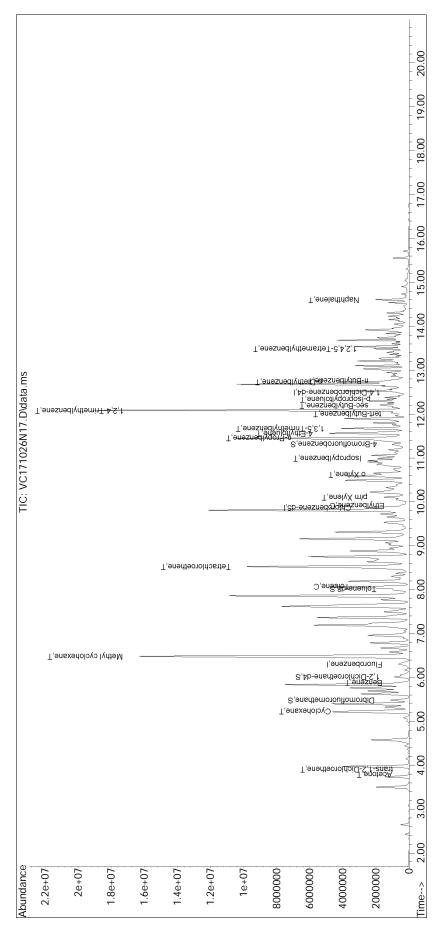
VC171026N17.D Data File

3:05 27 Oct 2017 Acg On

am

CHARLIE: MV Operator

Sample


11737991-05,31,12.7,5,,b WG1056967,ICAL14108 17 Sample Multiplier: ALS Vial Misc

Time: Oct Quant

)ct 27 05:52:53 2017
: I:\VOLATILES\Charlie\2017\171026N\C 171019 8260.m Method Quant Quant

VOLATILES BY GC/MS Title

Thu Oct 19 18:18:03 Initial Calibration QLast Update Response via - Megamix plus Diox26N\VC171026N01.D• 8260-CurveSoil Sub List

2017 11:07:17 Oct Fri 8260.m C_171019

ANALYTICAL REPORT

Lab Number: L1738251

Client: LaBella Associates, P.C.

300 Pearl Street

Suite 252

Buffalo, NY 14202

ATTN: Adam Zebrowski Phone: (716) 551-6281

Project Name: 115-121 W THIRD ST&200-210 W.S

Project Number: 2172285 Report Date: 10/31/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L1738251 10/31/17

Lab Number: Report Date:

115-121 W THIRD ST&200-210 W.S 2172285 Project Name:

Project Number:

Client ID	Matrix WATED	Sample Location 115-121 W THIRD ST & 200-210	Collection Date/Time	Receive Date
PMW-3	WATER	WASHINGTON ST., JAMESTOWN, NY 115-121 W THIRD ST. & 200-210	10/20/17 10:20	10/20/17
TRIP BLANK	WATER	WASHINGTON ST., JAMESTOWN, NY 115-121 W THIRD ST. & 200-210	10/20/17 00:00	10/20/17
		WASHINGTON ST., JAMESTOWN, NY		

Project Name: 115-121 W THIRD ST&200-210 W.S Lab Number: L1738251

Project Number: 2172285 Report Date: 10/31/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

	Please contact	Client Services	at 800-624-9220	with any questi	ons
--	----------------	-----------------	-----------------	-----------------	-----

Project Name: 115-121 W THIRD ST&200-210 W.S Lab Number: L1738251

Project Number: 2172285 Report Date: 10/31/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1738251-03: A sample identified as "TRIP BLANK" was received but not listed on the Chain of Custody. This sample was not analyzed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Whall Un. Union Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 10/31/17

ORGANICS

VOLATILES

Project Name: Lab Number: 115-121 W THIRD ST&200-210 W.S L1738251

Project Number: Report Date: 2172285 10/31/17

SAMPLE RESULTS

Lab ID: L1738251-01 D Date Collected: 10/20/17 09:10

Client ID: Date Received: PMW-1 10/20/17

Sample Location: 115-121 W THIRD ST. & 200-210 WASHINGTON ST., Field Prep: Not Specified

JAMESTOWN, NY

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 10/26/17 16:46

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 500 140 200 Chloroform ND ug/l 500 140 200 Carbon tetrachloride ND ug/l 100 27. 200 1,2-Dichloropropane ND ug/l 100 30. 200 Dibromochloromethane ND ug/l 300 100 200 Tetrachloroethane ND ug/l 100 36. 200 Chlorobersene ND ug/l 500 140 200 Tirchlorofluoromethane ND ug/l 500 140 200 1,2-Dichloropropane ND ug/l 500 140 200 1,1-Trichlorfluoromethane ND ug/l 500 140 200 1,1-Trichloropropenta ND ug/l 500 140 200 Bromodichloropropene ND ug/l 100 33. 200 Errachloroethane ND ug/l 100 <t< td=""><td>Volatile Organics by GC/MS - Wes</td><td>tborough Lab</td><td></td><td></td><td></td><td></td><td></td></t<>	Volatile Organics by GC/MS - Wes	tborough Lab					
1,1-Dichloroethane ND ug/l 500 140 200 Chloroform ND ug/l 500 140 200 Carbon tetrachloride ND ug/l 100 27. 200 1,2-Dichloropropane ND ug/l 100 30. 200 Dibromochloromethane ND ug/l 300 100 200 Tetrachloroethane ND ug/l 100 36. 200 Chlorobersene ND ug/l 500 140 200 Tirchlorofluoromethane ND ug/l 500 140 200 1,2-Dichloropropane ND ug/l 500 140 200 1,1-Trichlorfluoromethane ND ug/l 500 140 200 1,1-Trichloropropenta ND ug/l 500 140 200 Bromodichloropropene ND ug/l 100 33. 200 Errachloroethane ND ug/l 100 <t< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/l</td><td>500</td><td>140</td><td>200</td></t<>	Methylene chloride	ND		ug/l	500	140	200
Carbon tetrachloride ND ug/l 100 27. 200 1,2-Dichloropropane ND ug/l 200 27. 200 Dibromochloromethane ND ug/l 100 30. 200 1,1,2-Trichloroethane ND ug/l 300 100 200 Tetrachloroethane 36000 ug/l 500 140 200 Trichloroethane ND ug/l 500 140 200 Trichloroethane ND ug/l 500 140 200 1,1,1-Trichloroethane ND ug/l 500 140 200 1,1,1-Trichloroethane ND ug/l 500 140 200 Bromodichloromethane ND ug/l 100 38. 200 Bromodichloromethane ND ug/l 100 38. 200 Bromoform ND ug/l 100 33. 200 Bromoform ND ug/l 100 33.	1,1-Dichloroethane	ND			500	140	200
1,2-Dichloropropane ND ug/l 200 27. 200 200 27. 200	Chloroform	ND		ug/l	500	140	200
Dibromochloromethane ND ug/l 100 30. 200 1,1,2-Trichloroethane ND ug/l 300 100 200 1,1,2-Trichloroethane ND ug/l 300 100 200 1,1,2-Trichloroethane ND ug/l 500 140 200 1,1,1-Trichloroethane ND ug/l 100 38. 200 1,1,1-Trichloroethane ND ug/l 100 38. 200 1,1,2-Dichloropropene ND ug/l 100 33. 200 1,1,2-Dichloropropene ND ug/l 100 29. 200 1,1,2-Dichloropropene ND ug/l 100 33. 200 1,1,2-Dichloropropene ND ug/l 100 33. 200 1,1,2-Dichloroethane ND ug/l 100 33. 200 1,1,2-Dichloroethane ND ug/l 100 33. 200 1,1,2-Dichloroethane ND ug/l 500 140 200 1,1,2-Dichloroet	Carbon tetrachloride	ND		ug/l	100	27.	200
1,1,2-Trichloroethane ND ug/l 300 100 200	1,2-Dichloropropane	ND		ug/l	200	27.	200
Tetrachloroethene 36000 ug/l 100 36. 200 Chlorobenzene ND ug/l 500 140 200 Trichlorofluoromethane ND ug/l 500 140 200 1,2-Dichloroethane ND ug/l 500 140 200 1,1,1-Trichloroethane ND ug/l 500 140 200 Bromodichloromethane ND ug/l 100 38. 200 trans-1,3-Dichloropropene ND ug/l 100 38. 200 cis-1,3-Dichloropropene ND ug/l 100 33. 200 cis-1,3-Dichloropropene ND ug/l 100 33. 200 Bromoform ND ug/l 100 33. 200 Bromoform ND ug/l 100 33. 200 Trichloroethane ND ug/l 400 130 200 1,1,2,2-Tetrachloroethane ND ug/l 100 32. 200 Benzene ND ug/l 100 32. 200 Toluene ND ug/l 500 140 200 Enchylbenzene ND ug/l 500 140 200 Chloromethane ND ug/l 500 140 200 Chloroethane ND ug/l 500 140 200 Trichloroethene ND ug/l 500 140 200	Dibromochloromethane	ND		ug/l	100	30.	200
Chlorobenzene ND ug/l 500 140 200 Trichlorofluoromethane ND ug/l 500 140 200 1,2-Dichloroethane ND ug/l 100 26. 200 1,1,1-Trichloroethane ND ug/l 500 140 200 Bromodichloromethane ND ug/l 100 38. 200 trans-1,3-Dichloropropene ND ug/l 100 33. 200 Bromoform ND ug/l 400 130 200 Bromoform ND ug/l 400 130 200 Bromoform ND ug/l 100 33. 200 Bromoform ND ug/l 100 33. 200 Benzene ND ug/l 100 32. 200 Toluene ND ug/l 500 140 200 Ethylbenzene ND ug/l 500 140 200	1,1,2-Trichloroethane	ND		ug/l	300	100	200
Trichlorofluoromethane ND ug/l 500 140 200 1,2-Dichloroethane ND ug/l 100 26. 200 1,1,1-Trichloroethane ND ug/l 500 140 200 Bromodichloromethane ND ug/l 100 38. 200 trans-1,3-Dichloropropene ND ug/l 100 33. 200 Gis-1,3-Dichloropropene ND ug/l 100 29. 200 Bromoform ND ug/l 100 29. 200 Bromoform ND ug/l 100 33. 200 1,1,2,2-Tetrachloroethane ND ug/l 100 33. 200 1,1,2,2-Tetrachloroethane ND ug/l 100 33. 200 Eltylbenzene ND ug/l 100 32. 200 Toluene ND ug/l 100 32. 200 Eltylbenzene ND ug/l 500 140 200 Eltylbenzene ND ug/l 500 140 200 Eltylbenzene ND ug/l 500 140 200 Chloromethane ND ug/l 500 140 200 Chloromethane ND ug/l 500 140 200 Chloromethane ND ug/l 500 140 200 Chloroethane ND ug/l 500 140 200 Chloroethane ND ug/l 500 140 200 Toluene ND ug/l 500 140 200 Trichloroethene ND ug/l 500 140 200	Tetrachloroethene	36000		ug/l	100	36.	200
1,2-Dichloroethane ND ug/l 100 26. 200 1,1,1-Trichloroethane ND ug/l 500 140 200 Bromodichloromethane ND ug/l 100 38. 200 Bromodichloropropene ND ug/l 100 33. 200 Itans-1,3-Dichloropropene ND ug/l 100 29. 200 Bromoform ND ug/l 400 130 200 Bromoform ND ug/l 100 33. 200 Bromoform ND ug/l 100 33. 200 Bromoform ND ug/l 100 33. 200 Benzene ND ug/l 100 32. 200 Toluene ND ug/l 500 140 200 Ethylbenzene ND ug/l 500 140 200 Bromomethane ND ug/l 500 140 200 Bromomethane ND ug/l 500 140 200 Bromomethane ND ug/l 500 140 200 Chloroethane ND ug/l 500 140 200 Chloroethene ND ug/l 500 140 200 C	Chlorobenzene	ND		ug/l	500	140	200
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	500	140	200
Bromodichloromethane	1,2-Dichloroethane	ND		ug/l	100	26.	200
trans-1,3-Dichloropropene ND ug/l 100 33. 200 cis-1,3-Dichloropropene ND ug/l 100 29. 200 Bromoform ND ug/l 400 130 200 1,1,2,2-Tetrachloroethane ND ug/l 100 33. 200 Benzene ND ug/l 100 32. 200 Toluene ND ug/l 500 140 200 Ethylbenzene ND ug/l 500 140 200 Chloromethane ND ug/l 500 140 200 Bromomethane ND ug/l 500 140 200 Vinyl chloride ND ug/l 500 140 200 Chloroethane ND ug/l 500 140 200 Chloroethane ND ug/l 500 140 200 1,1-Dichloroethene ND ug/l 500 140 200	1,1,1-Trichloroethane	ND		ug/l	500	140	200
ND	Bromodichloromethane	ND		ug/l	100	38.	200
Bromoform	trans-1,3-Dichloropropene	ND		ug/l	100	33.	200
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/l	100	29.	200
Benzene ND ug/l 100 32. 200 Toluene ND ug/l 500 140 200 Ethylbenzene ND ug/l 500 140 200 Chloromethane ND ug/l 500 140 200 Bromomethane ND ug/l 500 140 200 Vinyl chloride ND ug/l 200 14. 200 Chloroethane ND ug/l 500 140 200 1,1-Dichloroethene ND ug/l 500 140 200 trans-1,2-Dichloroethene ND ug/l 500 140 200 Trichloroethene 96 J ug/l 500 140 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	Bromoform	ND		ug/l	400	130	200
Toluene ND ug/l 500 140 200 Ethylbenzene ND ug/l 500 140 200 Chloromethane ND ug/l 500 140 200 Bromomethane ND ug/l 500 140 200 Vinyl chloride ND ug/l 200 14. 200 Chloroethane ND ug/l 500 140 200 1,1-Dichloroethene ND ug/l 100 34. 200 trans-1,2-Dichloroethene ND ug/l 500 140 200 Trichloroethene 96 J ug/l 500 140 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	1,1,2,2-Tetrachloroethane	ND		ug/l	100	33.	200
Ethylbenzene ND ug/l 500 140 200 Chloromethane ND ug/l 500 140 200 Bromomethane ND ug/l 500 140 200 Vinyl chloride ND ug/l 200 14. 200 Chloroethane ND ug/l 500 140 200 1,1-Dichloroethene ND ug/l 100 34. 200 trans-1,2-Dichloroethene ND ug/l 500 140 200 Trichloroethene 96 J ug/l 100 35. 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	Benzene	ND		ug/l	100	32.	200
Chloromethane ND ug/l 500 140 200 Bromomethane ND ug/l 500 140 200 Vinyl chloride ND ug/l 200 14. 200 Chloroethane ND ug/l 500 140 200 1,1-Dichloroethene ND ug/l 100 34. 200 trans-1,2-Dichloroethene ND ug/l 500 140 200 Trichloroethene 96 J ug/l 100 35. 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	Toluene	ND		ug/l	500	140	200
ND	Ethylbenzene	ND		ug/l	500	140	200
Vinyl chloride ND ug/l 200 14. 200 Chloroethane ND ug/l 500 140 200 1,1-Dichloroethene ND ug/l 100 34. 200 trans-1,2-Dichloroethene ND ug/l 500 140 200 Trichloroethene 96 J ug/l 100 35. 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	Chloromethane	ND		ug/l	500	140	200
Chloroethane ND ug/l 500 140 200 1,1-Dichloroethene ND ug/l 100 34. 200 trans-1,2-Dichloroethene ND ug/l 500 140 200 Trichloroethene 96 J ug/l 100 35. 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	Bromomethane	ND		ug/l	500	140	200
1,1-Dichloroethene ND ug/l 100 34. 200 trans-1,2-Dichloroethene ND ug/l 500 140 200 Trichloroethene 96 J ug/l 100 35. 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	Vinyl chloride	ND		ug/l	200	14.	200
trans-1,2-Dichloroethene ND ug/l 500 140 200 Trichloroethene 96 J ug/l 100 35. 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	Chloroethane	ND		ug/l	500	140	200
Trichloroethene 96 J ug/l 100 35. 200 1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	1,1-Dichloroethene	ND		ug/l	100	34.	200
1,2-Dichlorobenzene ND ug/l 500 140 200 1,3-Dichlorobenzene ND ug/l 500 140 200	trans-1,2-Dichloroethene	ND		ug/l	500	140	200
1,3-Dichlorobenzene ND ug/l 500 140 200	Trichloroethene	96	J	ug/l	100	35.	200
	1,2-Dichlorobenzene	ND		ug/l	500	140	200
1,4-Dichlorobenzene ND ug/l 500 140 200	1,3-Dichlorobenzene	ND		ug/l	500	140	200
	1,4-Dichlorobenzene	ND		ug/l	500	140	200

Dilution Factor

MDL

Project Name: 115-121 W THIRD ST&200-210 W.S Lab Number: L1738251

Project Number: 2172285 Report Date: 10/31/17

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L1738251-01 D Date Collected: 10/20/17 09:10

Client ID: PMW-1 Date Received: 10/20/17
Sample Location: 115-121 W THIRD ST. & 200-210 WASHINGTON ST., Field Prep: Not Specified

Result

JAMESTOWN, NY

Parameter

i didilictoi	rtooun	Qualifici	Omio	• • • •		Dilation Lactor	
Volatile Organics by GC/MS - Westbe	orough Lab						
Methyl tert butyl ether	ND		ug/l	500	140	200	
p/m-Xylene	ND		ug/l	500	140	200	
o-Xylene	ND		ug/l	500	140	200	
cis-1,2-Dichloroethene	ND		ug/l	500	140	200	
Styrene	ND		ug/l	500	140	200	
Dichlorodifluoromethane	ND		ug/l	1000	200	200	
Acetone	400	J	ug/l	1000	290	200	
Carbon disulfide	ND		ug/l	1000	200	200	
2-Butanone	ND		ug/l	1000	390	200	
4-Methyl-2-pentanone	ND		ug/l	1000	200	200	
2-Hexanone	ND		ug/l	1000	200	200	
Bromochloromethane	ND		ug/l	500	140	200	
1,2-Dibromoethane	ND		ug/l	400	130	200	
1,2-Dibromo-3-chloropropane	ND		ug/l	500	140	200	
Isopropylbenzene	ND		ug/l	500	140	200	
1,2,3-Trichlorobenzene	ND		ug/l	500	140	200	
1,2,4-Trichlorobenzene	ND		ug/l	500	140	200	
Methyl Acetate	ND		ug/l	400	47.	200	
Cyclohexane	ND		ug/l	2000	54.	200	
1,4-Dioxane	ND		ug/l	50000	12000	200	
Freon-113	ND		ug/l	500	140	200	
Methyl cyclohexane	ND		ug/l	2000	79.	200	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	100	70-130	

L1738251

10/31/17

Not Specified

Project Name: 115-121 W THIRD ST&200-210 W.S

Project Number: 2172285

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1738251-02 Date Collected: 10/20/17 10:20 Client ID: Date Received: PMW-3 10/20/17

Sample Location: 115-121 W THIRD ST. & 200-210 WASHINGTON ST.,

Field Prep: JAMESTOWN, NY

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 10/25/17 17:53

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 115-121 W THIRD ST&200-210 W.S Lab Number: L1738251

Project Number: 2172285 Report Date: 10/31/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/20/17 10:20

Client ID: PMW-3 Date Received: 10/20/17
Sample Location: 115-121 W THIRD ST. & 200-210 WASHINGTON ST., Field Prep: Not Specified

JAMESTOWN, NY Result Qualifier Units RI MDI Dilution Factor

•						•	•
Parameter	JAMESTOWN, NY	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organic	s by GC/MS - Westborough	Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	e	ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluorometha	ane	ND		ug/l	5.0	1.0	1
Acetone		3.3	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone)	ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chlorop	propane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzen	ne	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzen	ne	ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	100	70-130	

L1738251

Project Name: 115-121 W THIRD ST&200-210 W.S Lab Number:

Project Number: 2172285 Report Date: 10/31/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/25/17 09:52

arameter	Result	Qualifier Unit	s	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02	Batch:	WG1056460-5
Methylene chloride	ND	ug	/I	2.5	0.70
1,1-Dichloroethane	ND	ug	/I	2.5	0.70
Chloroform	ND	ug	/I	2.5	0.70
Carbon tetrachloride	ND	ug	/I	0.50	0.13
1,2-Dichloropropane	ND	ug	/I	1.0	0.14
Dibromochloromethane	ND	ug	/I	0.50	0.15
1,1,2-Trichloroethane	ND	ug	/I	1.5	0.50
Tetrachloroethene	ND	ug	/I	0.50	0.18
Chlorobenzene	ND	ug	/I	2.5	0.70
Trichlorofluoromethane	ND	ug	/I	2.5	0.70
1,2-Dichloroethane	ND	ug	/I	0.50	0.13
1,1,1-Trichloroethane	ND	ug	/I	2.5	0.70
Bromodichloromethane	ND	ug	/I	0.50	0.19
trans-1,3-Dichloropropene	ND	ug	/I	0.50	0.16
cis-1,3-Dichloropropene	ND	ug	/I	0.50	0.14
Bromoform	ND	ug	/I	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug	/I	0.50	0.17
Benzene	ND	ug	/I	0.50	0.16
Toluene	ND	ug	/I	2.5	0.70
Ethylbenzene	ND	ug	/I	2.5	0.70
Chloromethane	ND	ug	/I	2.5	0.70
Bromomethane	ND	ug	/I	2.5	0.70
Vinyl chloride	ND	ug	/I	1.0	0.07
Chloroethane	ND	ug	/I	2.5	0.70
1,1-Dichloroethene	ND	ug	/I	0.50	0.17
trans-1,2-Dichloroethene	ND	ug	/I	2.5	0.70
Trichloroethene	ND	ug	/I	0.50	0.18
1,2-Dichlorobenzene	ND	ug	/I	2.5	0.70
1,3-Dichlorobenzene	ND	ug	/I	2.5	0.70

L1738251

Lab Number:

Project Name: 115-121 W THIRD ST&200-210 W.S

Project Number: 2172285 Report Date: 10/31/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/25/17 09:52

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lat	o for samp	le(s): 02	2 Batch:	WG1056460-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

Project Name: 115-121 W THIRD ST&200-210 W.S **Lab Number:** L1738251

Project Number: 2172285 Report Date: 10/31/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/25/17 09:52

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - We	stborough La	ab for sampl	e(s): 02	Batch:	WG1056460-5

		Acceptance	
Surrogate	%Recovery 0	Qualifier Criteria	
1.2-Dichloroethane-d4	112	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	100	70-130	

L1738251

Project Name: 115-121 W THIRD ST&200-210 W.S **Lab Number:**

Project Number: 2172285 Report Date: 10/31/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/26/17 08:16

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	Westborough La	o for sample(s): 0	1 Batch:	WG1056605-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L1738251

Lab Number:

Project Name: 115-121 W THIRD ST&200-210 W.S

Project Number: 2172285 Report Date: 10/31/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/26/17 08:16

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough La	o for sample(s): 01	Batch:	WG1056605-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 115-121 W THIRD ST&200-210 W.S **Lab Number:** L1738251

Project Number: 2172285 Report Date: 10/31/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/26/17 08:16

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - W	estborough La	ab for samp	le(s): 01	Batch:	WG1056605-5

		Acceptance	
Surrogate	%Recovery Quality	fier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	99	70-130	

L1738251 10/31/17 Lab Number: Report Date:

115-121 W THIRD ST&200-210 W.S 2172285 Project Number: Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s):	ab Associated s	sample(s): 02		Batch: WG1056460-3 WG1056460-4	G1056460-4			
Methylene chloride	88		87		70-130	-		20
1,1-Dichloroethane	16		68		70-130	2		20
Chloroform	06		88		70-130	2		20
Carbon tetrachloride	83		81		63-132	2		20
1,2-Dichloropropane	93		92		70-130	-		20
Dibromochloromethane	85		85		63-130	0		20
1,1,2-Trichloroethane	94		93		70-130			20
Tetrachloroethene	84		83		70-130	-		20
Chlorobenzene	88		87		75-130	-		20
Trichlorofluoromethane	83		80		62-150	4		20
1,2-Dichloroethane	96		96		70-130	0		20
1,1,1-Trichloroethane	98		98		67-130	0		20
Bromodichloromethane	68		68		67-130	0		20
trans-1,3-Dichloropropene	98		82		70-130	-		20
cis-1,3-Dichloropropene	68		87		70-130	2		20
Bromoform	98		98		54-136	0		20
1,1,2,2-Tetrachloroethane	91		91		67-130	0		20
Benzene	88		98		70-130	2		20
Toluene	87		98		70-130	_		20
Ethylbenzene	06		88		70-130	2		20
Chloromethane	67		19		64-130	0		20
Bromomethane	98		83		39-139	4		20
Vinyl chloride	77		74		55-140	4		20

L1738251 10/31/17 Lab Number: Report Date:

115-121 W THIRD ST&200-210 W.S 2172285 Project Number: Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s):	ab Associated s	ample(s): 02		056460-3	Batch: WG1056460-3 WG1056460-4			
Chloroethane	16		96		55-138			20
1,1-Dichloroethene	84		81		61-145	4		20
trans-1,2-Dichloroethene	98		84		70-130	2		20
Trichloroethene	06		98		70-130	വ		20
1,2-Dichlorobenzene	68		87		70-130	2		20
1,3-Dichlorobenzene	88		87		70-130	—		20
1,4-Dichlorobenzene	68		87		70-130	2		20
Methyl tert butyl ether	88		88		63-130	0		20
p/m-Xylene	06		06		70-130	0		20
o-Xylene	06		06		70-130	0		20
cis-1,2-Dichloroethene	88		88		70-130	0		20
Styrene	06		06		70-130	0		20
Dichlorodifluoromethane	61		28		36-147	വ		20
Acetone	88		63		58-148	9		20
Carbon disulfide	77		74		51-130	4		20
2-Butanone	98		83		63-138	4		20
4-Methyl-2-pentanone	92		92		59-130	0		20
2-Hexanone	06		63		57-130	က		20
Bromochloromethane	94		91		70-130	က		20
1,2-Dibromoethane	06		06		70-130	0		20
1,2-Dibromo-3-chloropropane	80		77		41-144	4		20
Isopropylbenzene	06		88		70-130	2		20
1,2,3-Trichlorobenzene	96		93		70-130	က		20

L1738251 10/31/17 Report Date:

Lab Number:

115-121 W THIRD ST&200-210 W.S 2172285 Project Number: Project Name:

Para

RPD	Limits		20	20	20	
	RPD Qual					
	RPD		2	2	33	
	Limits	WG1056460-4	70-130	70-130	70-130	
	Qual	056460-3				
TCSD	%Recovery	2 Batch: WG1	87	100	92	
	Qual	sample(s): 02				
SO7	"Recovery Qui	b Associated	68	86	96	
	Parameter	Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1056460-3 WG1056460-4	1,2,4-Trichlorobenzene	Methyl Acetate	Cyclohexane	

20 20 20

56-162 70-130 70-130

84 86

100 87 89

92

Methyl cyclohexane

1,4-Dioxane Freon-113

Surrogate	LCS %Recovery Q	LCSD Qual %Recovery	Qual	Acceptance Criteria
1,2-Dichloroethane-d4	115	117		70-130
Toluene-d8	100	66		70-130
4-Bromofluorobenzene	100	66		70-130
Dibromofluoromethane	101	101		70-130

115-121 W THIRD ST&200-210 W.S

L1738251 10/31/17 Lab Number: Report Date:

> 2172285 Project Number:

Project Name:

DDD % P. 050 00

Volatile Organics by GCMS - Westborrough Lab Associated sample(s): 10 learner broaders Batch WC1056605-3 TO-130 TO 20 Habethyene chloride 95 70-130 7 20 Chlochtranelhane 100 92 70-130 7 20 Chlochtranelhane 100 93 70-130 7 20 1.1. 2-Urbehorenblane 98 89 70-130 5 20 Distributionmentane 97 92 70-130 5 20 Chorketerstane 100 92 70-130 5 20 Characthocothorenethane 97 88 70-130 6 20 Titchtochtranethane 100 92 70-130 6 20 Titchtochtranethane 100 92 70-130 6 20 L1.2-Dichtarcethane 100 94 70-130 6 20 Unitational broaders 100 94 70-130 6 20 Unitational broaders 100 94	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
95 86 70-130 10 100 92 70-130 8 100 93 70-130 7 94 87 63-132 8 96 88 63-130 13 100 95 70-130 13 100 95 70-130 10 89 84 62-150 10 98 84 62-150 11 100 92 75-130 8 100 92 75-130 8 100 92 75-130 8 100 92 75-130 8 100 94 70-130 13 100 94 70-130 9 94 67-130 9 100 94 70-130 9 96 90 70-130 12 100 93 70-130 8 100 94 70-130 9	s by GC/MS - Wes	stborough Lab Associated			056605-3	WG1056605-4			
100 93 70-130 8 100 93 70-130 7 94 87 63-132 8 110 97 70-130 13 100 95 70-130 11 100 95 70-130 11 100 92 70-130 10 89 70-130 18 9 100 94 70-130 13 100 94 70-130 13 100 94 70-130 9 99 88 70-130 12 100 94 70-130 12 100 94 70-130 9 100 94 70-130 12 100 94 70-130 12 100 94 70-130 7 100 94 70-130 12 100 93 70-130 7 100 93 7 <t< td=""><td>oride</td><td>96</td><td></td><td>98</td><td></td><td>70-130</td><td>10</td><td></td><td>20</td></t<>	oride	96		98		70-130	10		20
horitet 94 87 63-132 8 6 70-140 70 120 120 120 120 120 120 120 120 120 12	hane	100		92		70-130	∞		20
plantide 94 87 63-132 8 opane 110 97 70-130 13 opanethane 98 88 63-130 11 bethare 100 95 70-130 5 enere 97 88 70-130 10 mether 100 92 75-130 8 matchane 120 70-130 18 bane 120 70-130 18 bane 100 94 67-130 9 bethane 100 94 70-130 13 otopropene 100 94 70-130 13 otopropene 100 94 67-130 9 bidrocethane 100 94 67-130 9 ce 70-130 12 9 bidrocethane 100 94 67-130 9 ce 100 93 70-130 7 ce 100		100		93		70-130	7		20
opanet 110 97 70-130 13 multhane 98 63-130 11 seltanet 100 95 70-130 5 ee 70-130 70-130 10 10 e 100 92 75-130 8 10 nnethane 120 100 70-130 6 7 hane 120 100 70-130 8 7 8 nochtane 100 95 67-130 6 7 8 8 13 8 8 13 8 13 8 13 8 13 13 8 13 13 13 13 13 13 13 13 13 14 13 14	chloride	94		87		63-132	∞		20
moethane 98 63-130 111 bethane 100 95 70-130 5 tene 70 88 70-130 5 tene 100 92 75-130 8 methane 89 84 6-150 6 thane 120 100 70-130 18 nucltiane 100 95 67-130 9 thane 100 94 70-130 6 optopene 100 94 70-130 6 nkloroethane 100 94 70-130 6 pkloroethane 98 70-130 6 7 ten 70 94 67-130 6 7 ten 70 94 70-130 6 7 ten 78 90 70-130 7 8 ten 78 70-130 8 7 ten 75 70 91-130	propane	110		16		70-130	13		20
enthane 100 95 70-130 5 eneme 97 88 70-130 10 e 1100 92 75-130 88 methane 89 84 62-150 66 hane 120 100 67-130 88 ordehane 100 94 70-130 73 orderbane 100 94 70-130 65 orderbane 100 94 70-130 65 orderbane 100 94 70-130 65 hlorocethane 100 94 67-130 66 se 70-130 70-130 70-130 70-130 e 70-130 70-130 70-130 70-130 e 75 70-130 77-130 77-130 e 75 70-130 77-130 77-130 e 75 70-130 77-130 77-130 e 75 70-130 77-130	romethane	86		88		63-130	11		20
entered 97 88 70-130 100 entered 100 92 75-130 8 methane 89 84 62-150 6 hane 120 100 6-130 6 bethane 100 95 67-130 9 omethane 100 94 70-130 13 copropene 100 94 70-130 6 hloroethane 100 94 67-130 6 hloroethane 100 94 67-130 6 hloroethane 100 94 67-130 6 e 98 90 70-130 7 e 78 70-130 7 7 e 78 70-130 8 7 e	roethane	100		95		70-130	2		20
e 100 92 75-130 8 methane 89 84 62-150 6 hane 120 100 70-130 18 bethane 98 90 67-130 9 more thane 100 94 70-130 6 nor opropene 97 89 54-136 9 hlor cethane 100 94 6-130 6 hlor cethane 100 94 6-130 6 hlor cethane 100 94 6-130 6 e 78 70-130 7 9 e 78 70-130 7 9 e 75 64-130 7 9 e 75 64-130 7 9	thene	16		88		70-130	10		20
numethane 89 84 62-150 66 hane 120 100 70-130 18 bethane 98 67-130 9 67-130 9 omethane 100 88 70-130 6 7 ropropene 97 89 54-136 9 6 hloroethane 100 94 67-130 6 9 hloroethane 100 94 67-130 6 9 hloroethane 100 94 67-130 6 9 hloroethane 99 88 70-130 7 12 e 70 88 70-130 7 12 e 70 64-130 7 12 12 e 75 64-130 8 7 12 12 e 76 74 12 12 12 12 12 12 12 12 12 12 12	ene	100		92		75-130	∞		20
hane 120 100 70-130 18 bethane 98 67-130 9 methane 100 98 70-130 5 loropropene 94 70-130 6 ropropene 97 89 54-136 9 hloroethane 100 94 67-130 6 hloroethane 99 88 70-130 7 e 78 70-130 7 e 78 70-130 7 e 78 70-130 7 e 72 64-130 8 e 75 70-130 7 e 75 70-130 7 e 75 70-130 7 e 75 89 7 e 74 55-140 8	romethane	68		84		62-150	9		20
verthane 98 90 67-130 94 smethane 100 95 67-130 55 loropropene 100 94 70-130 6 ropropene 97 89 54-136 9 hloroethane 100 94 67-130 6 pos 99 88 70-130 7 e 78 72 64-130 7 e 75 64-130 8 7 e 75 70-130 7 7 e 75 64-130 8 7 e 75 70-130 7 7 e 75 70-130 7 7 e 75 64-130 7 7 e 75 74 55-140 8 7	ethane	120		100		70-130	18		20
nnethane 100 95 67-130 5 loropropene 100 88 70-130 13 ropropene 100 94 70-130 6 hloroethane 99 94 67-130 6 hloroethane 99 88 70-130 9 e 70 93 70-130 7 he 78 64-130 8 7 he 75 64-130 8 7 he 75 74-130 8 7	roethane	86		06		67-130	6		20
loropropene 100 88 70-130 13 ropropene 100 94 70-130 6 Alloroethane 100 94 67-130 6 Alloroethane 98 70-130 6 7 Alloroethane 99 88 70-130 7 12 Rel 70 93 70-130 7 12	romethane	100		95		67-130	2		20
ropropene 100 94 70-130 6 Alforroethane 97 54-136 9 Alforroethane 100 94 67-130 6 Alforroethane 99 88 70-130 9 Alforroethane 100 93 70-130 7 Ale 78 70-130 7 8 Ale 75 64-130 8 7 Ale 75 70-130 7 8 Ale 75 64-130 8 7	chloropropene	100		88		70-130	13		20
hloroethane 97 89 54-136 9 hloroethane 100 94 67-130 6 98 90 70-130 9 100 93 70-130 7 10 72 64-130 8 10 75 64-130 8 10 75 8 7 10 80 74 8	loropropene	100		94		70-130	9		20
Alloroethane 100 94 67-130 6 98 90 70-130 9 100 93 70-130 7 10 93 70-130 7 10 72 64-130 8 10 75 70 8 10 74 85-139 7		16		68		54-136	6		20
pg 90 70-130 9 pg 88 70-130 12 lo 93 70-130 7 le 72 64-130 8 le 75 70 39-139 7 le 80 74 55-140 8	achloroethane	100		94		67-130	9		20
ee 70-130 70-130 12 re 700 93 70-130 7 re 78 64-130 8 re 75 70 8 re 70 39-139 7 re 80 74 8		86		06		70-130	6		20
Include 93 70-130 7 Include 78 64-130 8 Include 75 70 39-139 7 Include 80 74 55-140 8		66		88		70-130	12		20
Ie 78 64-130 8 ie 75 70 39-139 7 80 74 55-140 8	ā	100		93		70-130	7		20
le 75 70 39-139 7 7 80 74 55-140 8	ane	78		72		64-130	∞		20
80 74 55-140 8	ane	75		70		39-139	7		20
	d)	80		74		55-140	∞		20

L1738251 10/31/17 Lab Number: Report Date:

115-121 W THIRD ST&200-210 W.S 2172285 Project Number: Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s):	Lab Associated s	sample(s): 01		056605-3	Batch: WG1056605-3 WG1056605-4			
Chloroethane	26		06		55-138	7		20
1,1-Dichloroethene	88		83		61-145	9		20
trans-1,2-Dichloroethene	93		98		70-130	∞		20
Trichloroethene	100		91		70-130	6		20
1,2-Dichlorobenzene	100		92		70-130	∞		20
1,3-Dichlorobenzene	100		93		70-130	7		20
1,4-Dichlorobenzene	100		92		70-130	∞		20
Methyl tert butyl ether	100		92		63-130	∞		20
p/m-Xylene	105		96		70-130	10		20
o-Xylene	110		96		70-130	15		20
cis-1,2-Dichloroethene	96		88		70-130	6		20
Styrene	105		96		70-130	10		20
Dichlorodifluoromethane	29		62		36-147	∞		20
Acetone	100		68		58-148	12		20
Carbon disulfide	80		74		51-130	8		20
2-Butanone	95		94		63-138	-		20
4-Methyl-2-pentanone	110		96		59-130	14		20
2-Hexanone	110		86		57-130	12		20
Bromochloromethane	100		94		70-130	9		20
1,2-Dibromoethane	100		91		70-130	6		20
1,2-Dibromo-3-chloropropane	94		84		41-144	11		20
Isopropylbenzene	100		92		70-130	∞		20
1,2,3-Trichlorobenzene	110		100		70-130	10		20

Lab Control Sample Analysis

Batch Quality Control

115-121 W THIRD ST&200-210 W.S

2172285

Project Number:

Project Name:

L1738251 10/31/17 Lab Number: Report Date:

	Qual	
	RPD	
"Recovery	Limits	
	Qual	
TCSD	%Recovery	
	Qual	
SO7	%Recovery	
	Parameter	

RPD Limits

20 20 20 20 20 20 7 ∞ 2 ∞ 9 Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1056605-3 WG1056605-4 70-130 70-130 70-130 56-162 70-130 100 82 94 66 95 93 110 100 100 100 92 92 1,2,4-Trichlorobenzene Methyl Acetate Cyclohexane 1,4-Dioxane Freon-113

70-130

Methyl cyclohexane

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
1,2-Dichloroethane-d4	110	116		70-130
Toluene-d8	66	66		70-130
4-Bromofluorobenzene	76	86		70-130
Dibromofluoromethane	100	102		70-130

115-121 W THIRD ST&200-210 W.S Project Name:

Project Number: 2172285

Lab Number: L1738251 Serial_No:10311711:32 Report Date: 10/31/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Custody Seal Cooler Information Cooler

Absent

Container Information	ormation		Initial	Final	Temb			Frozen		
Container ID	Container Type	Cooler	Н	Н	deg C Pres Seal	Pres	Sea!	Date/Time	Analysis(*)	
L1738251-01A	Vial HCl preserved	⋖	N A		4.3	>	Absent		NYTCL-8260(14)	
L1738251-01B	Vial HCl preserved	۷	NA		4.3	>	Absent		NYTCL-8260(14)	
L1738251-01C	Vial HCI preserved	⋖	NA		4.3	>	Absent		NYTCL-8260(14)	
L1738251-02A	Vial HCI preserved	⋖	NA		4.3	>	Absent		NYTCL-8260(14)	
L1738251-02B	Vial HCI preserved	⋖	NA		4.3	>	Absent		NYTCL-8260(14)	
L1738251-02C	Vial HCI preserved	⋖	NA		4.3	>	Absent		NYTCL-8260(14)	
L1738251-03A	Vial HCl preserved	۷	NA		4.3	>	Absent		ARCHIVE()	
L1738251-03B	Vial HCI preserved	4	NA		4.3	>	Absent		ARCHIVE()	

 Project Name:
 115-121 W THIRD ST&200-210 W.S
 Lab Number:
 L1738251

 Project Number:
 2172285
 Report Date:
 10/31/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081

Data Qualifiers

and 8082.

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Serial_No:10311711:32

 Project Name:
 115-121 W THIRD ST&200-210 W.S
 Lab Number:
 L1738251

 Project Number:
 2172285
 Report Date:
 10/31/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:10311711:32

 Project Name:
 115-121 W THIRD ST&200-210 W.S
 Lab Number:
 L1738251

 Project Number:
 2172285
 Report Date:
 10/31/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10311711:32

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

10	NEW YORK	Service Centers			Page	90				
Ацэня	CHAIN OF CUSTODY	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14190: 275 Cooper Ave, Suite 105	by Rd, Suite 5 Way coper Ave, Suite	105		of .	Date Rec'd	Tr 101 17	ALPHA Job #	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information				1	Deliverables	1 2 0	Billing Information	s Ó
TEL 508-898-9220 FAX: 508-898-9193	TEL. 508-822-9300 FAX: 508-822-3288	Project Name: 115-124 W Third St & 20020 Was Angthe St	W Thord	SY#2007U(S Was fing	李红		ASP-B	Same as Client Info	
Client Information	THE STATE OF THE PARTY OF THE P	Project Location: U.S. 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,		St 4200-Louiselhayton st	Sashayton S	+ dingstims	☐ EQuIS (1 File)	EQuIS (4 File)	# Od	
Client LorBella	affella Associates	(Use Project name as Project #)	roject #)				Regulatory Requirement	ent	Disposal Site Information	
Address: 300 Pec-	S-(S)	Project Manager: Adam		Zebowski			NY TOGS	NY Part 375	Disperse infootific health in the second	
flalo, NY		ALPHAQuote #:					AWQ Standards	NY CP-51	applicable disposal facilities.	
Phone: 716-716	16-710-3013	Turn-Around Time	1	TOP ST	SACCOUNT.	The state of	NY Restricted Use		Disposal Facility:	1
7			N N	Due Date	io.		NY Unrestricted Use	28	AN N	#
ii: Sda Hond	Email: Sda Hon Polo Doellak. com	Rush (only if pre approved)		# of Days:	.Si		NYC Sewer Discharge	arge	Other	
se samples have	These samples have been previously analyzed by Alpha	ed by Alpha					ANALYSIS		Sample Filtration	L
er project specifi	Other project specific requirements/comments:	ents:								0-0-
Please specify Metals or TAL	s or TAL.						5		Lab to do	
							:20		(Please Specify helow)	0
ALPHA Lab ID	San	Sample ID	S	Collection	Sample	0)	۸ ٦,			
1010101	JANA A		Date	Time	Matrix	Initials)L		Sample Specific Comments	- 0
200	12/21		2/2	2:5	NOR	25	×			3
60	S-MWA		10710	:20	WOHEN	8	×		3	- I
Preservative Code: A = None B = HCt C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass G = Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015	o: MA935		S	Container Type Preservative			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not	
F = MeOH G = NaHSO,	C = Cube	Relinquished By:	3%, 0	Date	Date/Time	ω.	Received By:	Date/Time	start until any ambiguities are resolved. BY EXECUTING	
HOBN	E = Encore D = BOD Bottle	Barren Rich	200 0/ - 101	102/01	21:51	Shame of the same	Laure 10	300	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS	.02
Form No: 01-25 HC (rev. 30-Sept-2013)	0-Sept-2013)								(See reverse side.)	_

February 9, 2018

Mr. Gregory Linquist GPatti Enterprises, LLC 115 Livingston Avenue Jamestown, New York 14701

Re: Supplemental Soil Investigation

Jamestown Brewery

115-121 West 3rd Street and 200-210 Washington Street

Jamestown, New York

Dear Mr. Linquist:

LaBella Associates, D.P.C (LaBella) conducted supplementary soil investigations at the Site (Figure 1) on December 22, 2017 and January 11 and 12, 2018 to further evaluate the subsurface conditions at the Site. LaBella's scope of work included advancement of seven hand-auger soil borings up to five feet below the ground surface (ft bgs) and 20 direct-push soil borings to depths of between 12 and 24 ft bgs on the southern portion of the Site and east of the Site Building in the asphalt-paved parking areas. Figures 2 depicts the locations of the aforementioned borings including previously-advanced borings at the Site associated with this overall investigation.

Non-native materials at the Site consisted of asphalt followed by a gravel sub-base and a gravelly fill material including brick throughout various depths within the borings advanced. Native soils at the Site mainly consisted of brown and gray clayey silts. Saturated conditions were encountered in SB-21-SB-24, SB-30, SB-32 and SB-33 at depths ranging between 8 and 20 ft bgs. Field evidence of impairment in the form of petroleum-type odors and elevated photoionization readings were identified in SB-21, SB-22 and SB-30-SB-33 at depths ranging between 11 and 20 ft bgs. A copy of the field boring logs is included in Appendix 1.

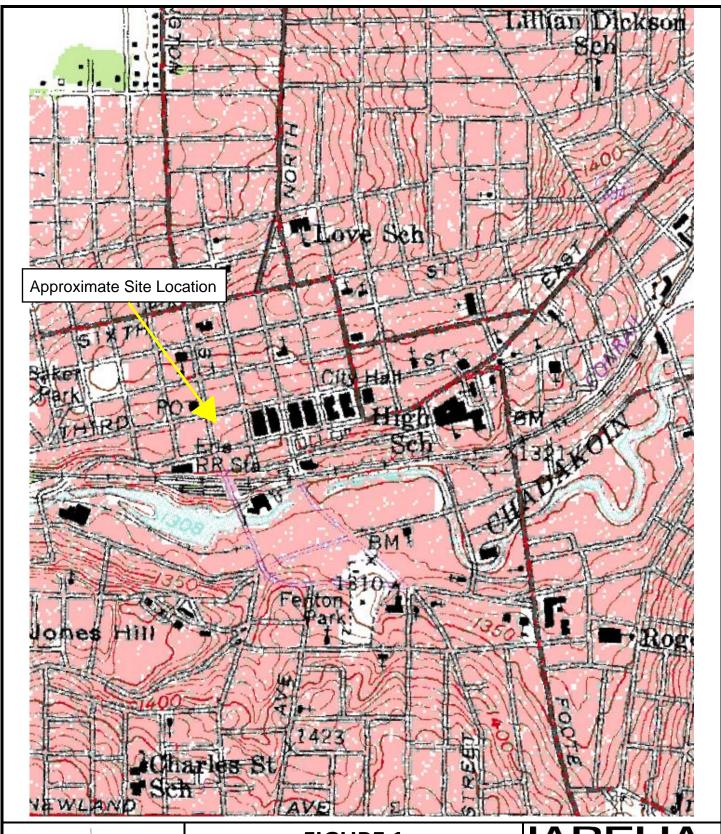
Laboratory soil analytical results do not suggest the presence of semi-volatile organic compounds or metals in the Site subsurface soils. One volatile organic compound (m/p-Xylenes) was identified at a concentration of 270 micrograms per kilogram (ug/kg) in SB-23 only slightly exceeding the NYSDEC Commissioner Policy (CP)-51 Soil Cleanup Guidance of 260 ug/kg. Tetrachloroethene (PCE) was identified at a concentration of 240,000 ug/kg in SB-30 exceeding the NYSDEC Part 375 Commercial Use Soil Cleanup Objective (SCO) of 150,000 ug/kg. It should also be noted that while below NYSDEC Part 375 Commercial Use SCO, a PCE concentration of 120,000 ug/kg was identified in SB-23. A summary of the laboratory soil analytical results is included in Table 1 and copies of the laboratory analytical reports are included in Appendix 2.

We appreciate the opportunity to serve your professional environmental engineering needs. If you have any questions please do not hesitate to contact me at (716) 840-2548.

Respectfully submitted,

LABELLA ASSOCIATES, D.P.C.

Adam Zebrowski Project Manager


Environmental Professional

Chris Kibler

Senior Environmental Analyst Environmental Professional

FIGURES

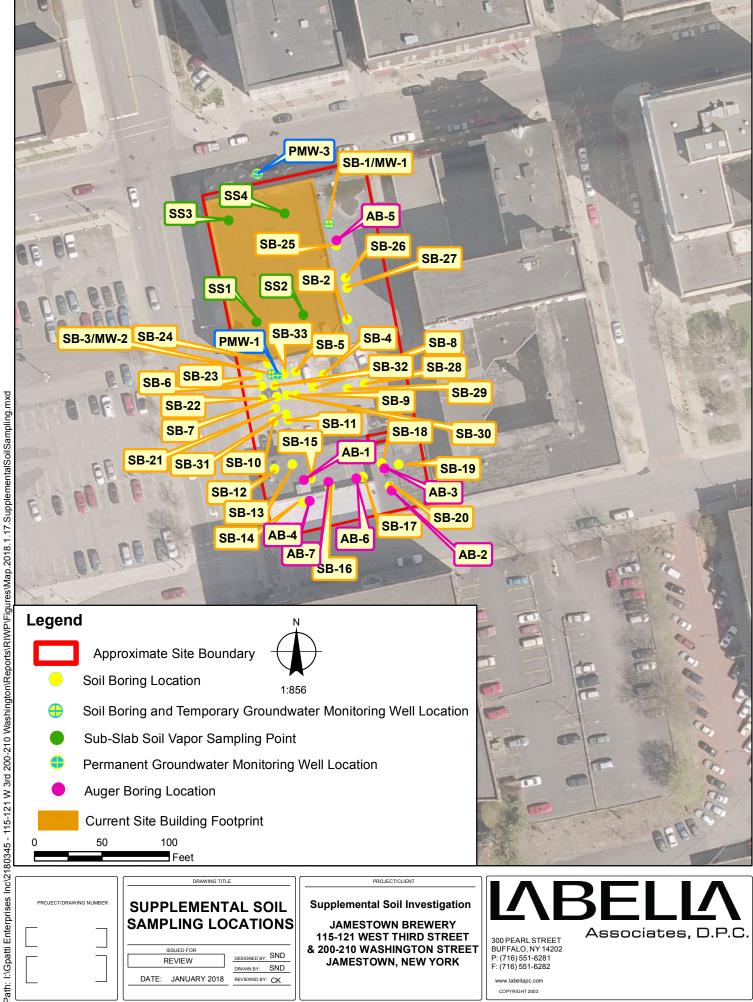


FIGURE 1 SITE LOCATION MAP

Jamestown Brewery
115-121 West Third Street and 200-210 Washington Street
Jamestown, New York

MBELLA

www.labellapc.com COPYRIGHT 2003

DRAWN BY: SND REVIEWED BY: CK

DATE:

JANUARY 2018

TABLES

Table 1

115-121 West Third Street and 200-210 Washington Street

Jamestown, New York

Supplemental Soil Investigation

Summary of Subsurface Soil Analytical Results

Sample ID	AB-1	AB-2	AB-4	AB-5	AB-7	SB-16	SB-17	SB-18	SB-19	SB-20	SB-21	SB-22	SB-23	SB-26	SB-28	SB-29	SB-30		Part 375
Depth (ft bgs)	0.25-0.5	1-2	0.25-0.5	1-2	0.25-0.5	2-5	2-5	1-4	2-5	1-4	14-15	15-16	15-16	0.5-2	0.5-2	3-5	14-15	CP-51 SCG	Commercial Use
Sample Date	12/22/2017				12/22/2017							1/11/2018	1/11/2018	1/12/2018	1/12/2018	1/12/2018	1/12/2018		SCOs
Volatile Organic Compounds (µg/kg)							-//	7/23/2323	-,,	, _,,	7,22,2020	_,,	2/22/2020	-//	-,,	-,,	_,,		0000
Acetone	NA	NA	NA	NA	NA	<	<	<	<	<	<	<	<	<	<	<	<	NL	500,000
Benzene	NA NA	NA	NA NA	NA	NA NA	<	<	<	<	<	<	<	<	<	<	<	<	60	44.000
Bromethane	NA NA	NA	NA NA	NA	NA NA	<	<	<	<	<	<	<	<	<	<	<	<	NL	NL NL
Cyclohexane	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	8.2 J	420 J	17,000	NA	NA	NA	810 J	NL	NL
cis-1,2-Dichloroethene	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	0.72	<	<	NA	NA	NA NA	<	NL	500,000
trans-1,2-Dichloroethene	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	2.7	<	<	NA NA	NA	NA NA	<	NL NL	500,000
Ethylbenzene	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	0.9	<	<	NA	NA	NA	<	1,000	390,000
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.41 J	26 J	1,100	NA	NA	NA	<	2,300	NL
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	21	1,900	58,000	NA	NA	NA	5,100 J	NL	NL
Methylene chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<	130 J	2,900 J	NA	NA	NA	6,700 J	NL	500,000
Methyl ethyl ketone (2-Butanone)	NA	NA	NA	NA	NA	<	<	<	<	<	<	<	<	<	<	<	<	NL	500,000
Methyl-tert-butyl-ether	NA	NA	NA	NA	NA	<	<	<	<	<	<	<	<	<	<	<	<	930	500,000
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	550 E	710	120,000	NA	NA	NA	240,000	NL	150,000
Toluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.51	<	<	NA	NA	NA	<	700	500,000
Trichloroethene	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	7.1	<	<	NA	NA	NA	<	NL	200.000
m/p - Xylenes	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.2	<	270 J	NA	NA	NA	<	260*	500.000*
o - Xylenes	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.5	<	<	NA	NA	NA	<	260*	500.000*
Semi-Volatile Organic Compounds (µg			1									I						1	,
Acenaphthene	<	33 J	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	20.000	500,000
Anthracene	<	150	35 J	<	<	<	<	<	<	<	<	<	<	<	<	<	<	100,000	500,000
Benzo(a)anthracene	99 J	360	120	<	130	<	<	<	<	79 J	<	<	<	<	<	<	<	1,000	5,600
Benzo(b)fluoranthene	150	410	140	<	190	<	<	<	<	110 J	<	<	<	42 J	<	<	<	1,000	5,600
Benzo(k)fluoranthene	49 J	140	50 J	<	58 J	<	<	<	<	<	<	<	<	<	<	<	<	800	56,000
Benzo(g,h,i)perylene	89 J	200	84 J	<	150	<	<	<	<	100 J	<	<	<	150	<	<	<	100,000	500,000
Benzo(a)pyrene	100 J	290	110 J	<	160	<	<	<	<	<	<	<	<	<	<	<	<	1,000	1,000
Biphenyl	<	<	<	<	<	<	<	<	<	<	54 J	<	<	<	<	<	250 J	NL	NL NL
Chrysene	130	360	120	<	130	<	<	40 J	<	92 J	<	<	<	39 J	<	<	<	1,000	56,000
Dibenzo(a,h)anthracene	<	55 J	21 J	<	33 J	<	<	<	<	<	<	<	<	<	<	<	<	330	560
Fluoranthene	270	940	240		210		<	58 J	<	180 J	<	<	<	<	<	<	<	100,000	500,000
Fluorene	<	48 J	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	30,000	500,000
Indeno(1,2,3-cd)pyrene	86 J	220	88 J		140 J		<	<	<	60 J	<	<	<	34 J	<	<	<	500	5,600
Naphthalene	<	24 J	<	<	<	<	<	<	<	<	1.600	120 J	<	<	<	<	1.100	12,000	500,000
Phenanthrene	130	760	140		81 J		<	<	<	130 J	<	<	<	<	<	<	<	100,000	500,000
Pyrene	220	720	200	<	200	<	<	46 J	<	150 J	<	<	<	<	<	<	<	100,000	500,000
2-Methylnaphthalene	<	<	<	<	<	<	<	<	<	<	1,700	160 J	900	<	<	<	3,500	NL	NL
Metals (mg/kg)	· · · · · · · · · · · · · · · · · · ·	<u> </u>		•		•				<u> </u>	-,,,,,,				-		-,500	· · · · · · · · · · · · · · · · · · ·	.,_
Arsenic	8.59	7.99	7.36	7.58	6.9	8.48	11.8	9.12	9.9	10	NA	NA	NA	7.75	8.31	12.6	NA	NL	16
Barium	73.2	83.6	69.1	36.5	81.1	64.2	79.5	99.5	93.4	73.6	NA	NA	NA	38.8	118	25.5	NA	NL	400
Cadmium	0.1 J	0.162 J	0.073 J	0.06 J	0.101 J	0.639	1.05	0.757	0.962	0.796	NA	NA	NA	0.622	0.584	0.687	NA	NL	9.3
Chromium	9.51	8.81	7.68	7.85	9.11	7.91	16.3	11.4	14.6	8.15	NA	NA	NA	7.56	9.96	8.97	NA	NL	400/1,500**
Lead	74.7	267	18	10.6	20.7	36	7.12	13.8	7.52	134	NA	NA	NA	10	114	12.2	NA	NL	1,000
Mercury	0.29	0.48	0.07	0.01 J	0.04 J	0.04 J	< <	<	< <	0.3	NA NA	NA NA	NA NA	<	0.45	0.04 J	NA NA	NL	2.8
Selenium	0.502 J	0.554 J	0.405 J	0.386 J	0.438 J	0.172 J	<	0.168	<	0.156 J	NA NA	NA NA	NA NA	<	0.579 J	0.167 J	NA	NL	1,500
Silver	< 0.302 1	< <	< 0.403 1	< 0.3601	< 0.4361	0.172 J	<	0.168	<	0.156 J	NA NA	NA NA	NA NA	<	0.579 J	0.167 J	NA	NL NL	1,500
CD 51 SCG = New York State Department of Environm											11/7	INA	INA	`	0.3/31	0.1073	INA	INL	1,300

CP-51 SCG = New York State Department of Environmental Conservation (NYSDEC) Commissioner Policy, 51 (CP-51) Soil Cleanup Guidance (SCG) for Gasoline and Fuel Oil Contaminated Soils, Tables 2 and 3 (December 2010)

NYSDEC Part 375 Commercial Use Soil Cleanup Objectives (SCOs), Table 375-6.8(b) (December 2006)

Concentrations in gray exceed Part 375 Commericial Use SCOs

Concentrations in bold exceed CP-51 SCG

< = Not detected

NL = Not listed

NA = Not analyzed

ft bgs = Feet below the ground surface

μg/kg = Micrograms per kilogram

mg/kg = Milligrams per kilogram

J = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample

E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of instrument

* = Guidance for total xylenes

^{** =} Chromium, hexavalent/Chromium, trivalent (The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.)

APPENDIX 1

Field Logs

LABELLA REPRESENTITIVE: S. Dalton

Engineering Architecture Environmental Planning Phase II ESA

Sheet 1 of

JOB: 2180345 Checked by:

BORING: AB-1

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

END DATE: 12/22/17

TIME: 9:30 to

DATUM:

CONTRACTOR: LaBella Envir. LLc
DRILLER:

TYPE OF DRILL RIG: DRIVE SAMPLER TYPE: AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

START DATE: 12/22/17

	1					
DATE	GROUNDW/ DEPTH	ATER ENCO WELL INSTALLED	WE	LL ID	NOTES:	
					3	0.25-0.5 brown clay silt mixed with gravel (m,m)
0.25-0.5		6	0.3		No odors or staining	0-0.25 asphalt
0.25-0.5			(Parts per million)		No oden	0.0.25
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
			SAMPLE			

300 Pearl Street, Suite 130

Engineering Architecture Environmental

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: AB-2**

Sheet 1 of **JOB:** 2180345 Checked by:

CONTRACTOR: LaBella Envir. LLc	TIME: 10:15	to
DRILLER:	DATUM:	

LABELLA REPRESENTITIVE: S. Dalton START DATE: 12/22/17 END DATE: 12/22/17 TYPE OF DRILL RIG: **DRIVE SAMPLER TYPE:**

AUGER SIZ	ZE AND TY	PE:				INSIDE DIAMETER: ~
OVERBUR	DEN SAMF	PLING METH	OD: Dire	ct Push		OTHER:
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0.25-1		12	0		No odors or staining	0-0.25 asphalt
1-2		12	0		No odors or staining	0.25-1 light brown sandy silt mixed with gravel (m,m)
					3	1-1.5 brown sandy silt mixed with gravel (m,m)
						1.5-2 brown gray clay silt mixed with gravel (m,m)
G	ROUNDW	ATER ENCOL	JNTERED		NOTES:	
DATE	DEPTH	WELL INSTALLED	WE	LL ID		

300 Pearl Street, Suite 130

Engineering Architecture Environmental

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: AB-3**

Sheet 1 of **JOB:** 2180345 Checked by:

CONTRACTOR: LaBella Envir. LLc			TIME: 11:00	to
DRILLER:			DATUM:	
LABELLA REPRESENTITIVE: S. Dalton	START DATE: 12/22/17	END DATE: 12/22/17		

TYPE OF DRILL RIG: DRIVE SAMPLER TYPE: AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBUR	DEN SAME	LING METH	IOD: Dire	ct Push		OTHER:
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0.25-1		6	0		No odors or staining	0-0.25 asphalt
						0.25-1 brown clay silt mixed with gravel (m,m)
	BOLINDW.	ATER ENCO	INITEDED		NOTES:	
DATE	DEPTH	WELL INSTALLED	WE	LL ID	INOILS.	

TEST BORING LOG Phase II ESA

115-121 West Third Street and 200-210

BORING: AB-4

Sheet 1 of 1 **JOB:** 2180345

300 Pearl Street, Suite 130 Washington Street, Jamestown, New York Checked by: CK CONTRACTOR: LaBella Envir. LLc TIME: 11:20 DRILLER: DATUM: LABELLA REPRESENTITIVE: S. Dalton START DATE: 12/22/17 END DATE: 12/22/17 TYPE OF DRILL RIG: **DRIVE SAMPLER TYPE: AUGER SIZE AND TYPE:** INSIDE DIAMETER: ~ OVERBURDEN SAMPLING METHOD: Direct Push OTHER: **SAMPLE** SAMPLE PID FIELD STRATA **DEPTH BLOW REMARKS** VISUAL CLASSIFICATION RECOVERY SCREEN CHANGE (Feet) **COUNT** (Inches) (Parts per million) 0.25-0.5 6 0 No odors 0-0.25 asphalt or staining 0.25-0.5 brown clay silt mixed with gravel (m,m)

	G	ROUNDWA	TER ENCOU	NTERED	NOTES:
	DATE	DEPTH	WELL	WELL ID	
L			INSTALLED		

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: AB-5**

Sheet 1 of 1 **JOB:** 2180345 Checked by: CK

TIME: 12:00 to

DATUM:

CONTRACTOR: LaBella Envir. LLc

300 Pearl Street, Suite 130

TYPE OF DRILL RIG:

AUGER SIZE AND TYPE:

DRILLER:

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 12/22/17

END DATE: 12/22/17

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OVERBUR	URDEN SAMPLING METHOD: Direct Push				OTHER:					
			SAMPLE							
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION				
0.25-1		12	0		No odors or staining	0-0.25 asphalt				
1-2		12	0		No odors or staining	0.25-2 brown sandy silt (m,m)				
6	ROLIND\//	ATER ENCO	IINTERED		NOTES:					
DATE	DEPTH	WELL	WE	LL ID	140123.					

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

BORING: AB-6

Sheet 1 of JOB: 2180345 Checked by: CK

TIME: 13:10 to

CONTRACTOR: LaBella Envir. LL	С
-------------------------------	---

300 Pearl Street, Suite 130

DRILLER:

DATUM:

LABELLA REPRESENTITIVE: S. Dalton START DATE: 12/22/17 END DATE: 12/22/17

TYPE OF DRILL RIG: DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

UVERBUR	DEN SAIVII	PLING MET		ct Pusn	UTHEK:					
			SAMPLE							
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION				
0.25-0.5		6	0		No odors	0-0.25 asphalt				
					or staining	0 0.25 d3phdit				
					Or Stairing	0.25-2 brown clay silt (m,w)				
						0.23-2 brown clay sitt (III,w)				
						1				
		ATER ENCO			NOTES:					
DATE	DEPTH	WELL		LL ID						
		INSTALLED)							

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: AB-7**

Sheet 1 of 1 **JOB:** 2180345 Checked by: CK

TIME: 13:50 to

DATUM:

CONTRACTOR: LaBella Envir. LLc

DRILLER:

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 12/22/17 END DATE: 12/22/17

TYPE OF DRILL RIG: AUGER SIZE AND TYPE:

300 Pearl Street, Suite 130

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OTHER:

			SAMPLE			
DEPTH	BLOW	SAMPLE	PID FIELD	STRATA	REMARKS	VISUAL CLASSIFICATION
(Feet)	COUNT	RECOVERY (Inches)	SCREEN (Parts per	CHANGE		
		(IIICIIE3)	million)			
0.25-0.5		6	0		No odors	0-0.25 asphalt
					or staining	
						0.25-0.5 brown clay silt (m,w)
						-
						-
G	ROUNDW	ATER ENCO	UNTERED	l	NOTES:	
DATE	DEPTH	WELL	WE	LL ID		
		INSTALLED				

TEST BORING LOG Phase II ESA

END DATE:

Sheet 1 of 2 **JOB:** 2180345 Checked by: CK

BORING: SB-14

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TIME: 9:00 to

DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

TYPE OF DRILL RIG:

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

AUGER SIZE AND TYPE:

OVERBUR	RDEN SAME	PLING METH	HOD: Dire	ct Push		OTHER:
SAMPLE						
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-0.5		6			No odors or staining	0-0.5 asphalt
0.5-1		6	0		or staining	0.5-1 brown sandy silt (m,m)
1-1.5		6	0			1-3 brown sandy silt mixed with gravel (m,m)
1.5-2		6	0			3-4 dark brown sandy silt mixed with gravel (m,m)
2-2.5		6	0			
2.5-3		6	0			4-6 brown sandy silt mixed with gravel (m,m)
3-3.5		6	0			6-7 brown sandy silt mixed with red brick (m,m)
3.5-4		6	0			7-8 gray brown clay silt mixed with gravel (m,m)
4-5		6	0			8-10 dark brown clay silt mixed with gravel (m,m)
5-6		6	0			10-12 brown clay silt mixed with gravel (m,m)
6-7		6	0			To 12 Storm stay stire mixed with graves (myin)
7-8		6	0			
8-9		5	0			
9-10		5	0			
10-11		5	0			
11-12		5	0			
12-13		5	0			
13-14		5	0			
14-15		5	0			
G	ROUNDW	ATER ENCO	UNTERED		NOTES:	
DATE	DEPTH	WELL	LL WELL ID		Sample colle	ected at 1-4 feet

TEST BORING LOG Phase II ESA

Washington Street, Jamestown, New York

115-121 West Third Street and 200-210

BORING: SB-14

Sheet 2 of 2 **JOB:** 2180345 Checked by: CK

CONTRACTOR: SJB Services, Inc.

LABELLA REPRESENTITIVE: S. Dalton

DRILLER: Art Koske

300 Pearl Street, Suite 130

START DATE: 1/11/18

TIME: 9:00 to

DATUM:

TYPE OF DRILL RIG: 6620 DT

DRIVE SAMPLER TYPE:

END DATE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~ OVERBURDEN SAMPLING METHOD: Direct Push OTHER: **SAMPLE** SAMPLE PID FIELD STRATA **DEPTH BLOW REMARKS** VISUAL CLASSIFICATION **RECOVERY** SCREEN CHANGE (Feet) COUNT (Inches) (Parts per million) 15-16 6 0.4 No odors 12-13 brown silt mixed with gravel (m,m) or staining 16-16.5 1.2 6 13-16 red brown clay silt mixed with gravel (m,m) 16.5-17 1.0 6 16-20 light brown sandy silt mixed with gravel (m,m) 17-17.5 6 1.0 17.5-18 0.5 6 18-18.5 0.7 6 18.5-19 0.3 6 19-19.5 6 0.2 19.5-20 6 0.1

G	ROUNDWA	TER ENCOU	NTERED	NOTES:
DATE	DEPTH	WELL	WELL ID	Sample collected at 1-4 feet
		INSTALLED		

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-15**

Sheet 1 of 2 **JOB:** 2180345 Checked by: CK

TIME: 9:30 to DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18 END DATE:

DRIVE SAMPLER TYPE:

TYPE OF DRILL RIG: 6620 DT AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push				ct Push		OTHER:	
	SAMPLE						
DEPTH (Feet)	BLOW	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION	
0-0.5		6			No odors or staining	0-0.5 asphalt	
0.5-1		6	0.1		or stairing	0.5-1 gray clay silt mixed with gravel (m,m)	
1-1.5		6	0			1-3 brown clay silt mixed with gravel (m,m)	
1.5-2		6	0			3-4 brown silt clay (m,m,m)	
2-2.5		6	0				
2.5-3		6	0			4-5 light brown clay (l,s,m)	
3-3.5		6	0			5-6 asphalt mixed with light brown clay (l,s,m)	
3.5-4		6	0			6-10 light brown clay (l,s,m)	
4-4.5		6	0			10-12 dark brown clay mixed with gravel (I,s,m)	
4.5-5		6	0				
5-5.5		6	0				
5.5-6		6	0				
6-6.5		7	0				
6.5-7		7	0.1				
7-7.5		7	0.2				
7.5-8		7	0				
8-9		7	0				
9-10		7	0				
10-11		7	0				
	GROUNDWATER ENCOUNTERED				NOTES:		
DATE	DEPTH	WELL INSTALLED		LL ID	Sample colle	ected at 1-4 feet	
					1		

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-15**

Sheet 2 of 2 **JOB:** 2180345 Checked by: CK

TIME: 9:30 to

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

AUGER SIZE AND TYPE:

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

DATUM:

TYPE OF DRILL RIG: 6620 DT **DRIVE SAMPLER TYPE:**

INSIDE DIAMETER: ~

END DATE:

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

SAMPLE SAMPLE PID FIELD STRATA **DEPTH BLOW REMARKS** VISUAL CLASSIFICATION **RECOVERY** SCREEN CHANGE (Feet) **COUNT** (Inches) (Parts per million) 11-12 7 0 No odors 12-14 brown gray silt clay mixed with gravel (m,m,m) or staining 12-13 7 0 14-16 brown orange silty clay (m,m,m) 13-14 7 0 14-15 7 0 15-16 7 0 **GROUNDWATER ENCOUNTERED NOTES:** DATE DEPTH WELL WELL ID Sample collected at 1-4 feet INSTALLED

CONTRACTOR: SJB Services, Inc.

TYPE OF DRILL RIG: 6620 DT

Engineering Architecture Environmental Planning Phase II ESA

BORING: SB-16

Sheet 1 of 2 JOB: 2180345 Checked by: CK

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TIME: 10:00 to

DATUM:

DRILLER: Art Koske

DRILLER: ALL KOSKE

AUGER SIZE AND TYPE:

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

DRIVE SAMPLER TYPE:

END DATE:

INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push				ct Push	OTHER:			
		:	SAMPLE					
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION		
0-0.5		6			No odors or staining	0-0.5 asphalt		
0.5-1		6	0.1		or stairing	0.5-1 brown clay silt with gravel (m,m)		
1-1.5		6	0.2			1-2 white brown clay silt mixed with gravel(m,m)		
1.5-2		6	0			2-3 gray brown clay silt mixed with gravel (m,m)		
2-2.5		6	0					
2.5-3		6	0.1			3-4 brown orange clay silt mixed with gravel (m,m)		
3-3.5		6	0.1			4-9 brown clay (l,s,m) 9-10 gray clay (l,s,m) 10-11 brown clay (l,s,m)		
3.5-4		6	0.2					
4-4.5		6	0.6					
4.5-5		6	0.9					
5-5.5		6	1.2			11-12 brown silty clay (m,m)		
5.5-6		6	1.1					
6-6.5		6	1.2					
6.5-7		6	0.5					
7-7.5		6	0.6					
7.5-8		6	0.9					
8-9		6	0.5					
9-10		6	0.6					
10-11		6	0.4					
	ROHNDW	ATER ENCO	IINTERED		NOTES:			
DATE	DEPTH	WELL	WE	ILL ID		ected at 2-5 feet		
		INSTALLED						
	1				l .			

TEST BORING LOG
Phase II ESA

Sheet 2 of 2 JOB: 2180345 Checked by: CK

BORING: SB-16

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TIME: 10:00 to

DATUM:

DRILLER: Art Koske

AUGER SIZE AND TYPE:

LABELLA REPRESENTITIVE: S. Dalton

CONTRACTOR: SJB Services, Inc.

START DATE: 1/11/18

8 END DATE:

TYPE OF DRILL RIG: 6620 DT

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OTHER:

BLOW COUNT	SAMPLE	SAMPLE PID FIELD	T			
		PID FIFI D				
	RECOVERY (Inches)	SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION	
	6	0.3		No odors	12-16 brown clay (l,s,m)	
	6	0.2		or stanning		
	6	0.5				
	6	0.5				
	6	0.2				
ROUNDW	ATER ENCC	UNTERED		NOTES:	,	
DATE DEPTH WELL WELL ID			Sample collected at 2-5 feet			
		ROUNDWATER ENCO	6 0.5 6 0.2	ROUNDWATER ENCOUNTERED DEPTH WELL WELL ID	6 0.5 6 0.5 6 0.2	

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

BORING: SB-17

Sheet 1 of 2 JOB: 2180345 Checked by: CK

TIME: 10:30 to

DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

END DATE:

TYPE OF DRILL RIG: 6620 DT DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBUR	DEN SAMI	PLING METH	100: Dire	ct Push		OTHER:	
			SAMPLE				
DEPTH	BLOW	SAMPLE RECOVERY	PID FIELD SCREEN	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION	
(Feet)	COUNT	(Inches)	(Parts per million)	CIT/WOL			
0-0.5		6			No odors or staining	0-0.5 asphalt	
0.5-1		6	0.9			0.5-1 brown sandy silt (m,m)	
1-1.5		6	0.9			1-2 light brown silt mixed with gravel (m,m)	
1.5-2		6	0.8			2-4 brown clay mixed with gravel (I,s,m)	
2-2.5		6	1.0				
2.5-3		6	0.5			4-6 brown clay mixed with gravel (I,s,m)	
3-3.5		6	0.2			6-8 brown clay silt mixed with gravel (m,m)	
3.5-4		6	0.3			8-10 brown gray silty clay mixed with gravel (I,s,m)	
4-5		7	0.1			10-11 brown silty clay mixed with gravel (l,s,m)	
5-6		7	0.2			11-12 brown sandy silt (m,m)	
6-7		7	0				
7-8		7	0				
8-9		6	0.6				
9-10		6	0.1				
10-11		6	0				
11-12		6	1.1				
12-13		6	0.6				
13-14		6	1.2				
14-15		6	0		NOTES:		
	GROUNDWATER ENCOUNTERED						
DATE	DEPTH	WELL INSTALLED	WELL ID		Sample collected at 2-5 feet		

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

BORING: SB-17

Sheet 2 of 2 JOB: 2180345 Checked by: CK

CONTRACTOR: SJB Services, Inc.

LABELLA REPRESENTITIVE: S. Dalton

DRILLER: Art Koske

300 Pearl Street, Suite 130

START DATE: 1/11/18

TIME: 10:30 to

DATUM:

END DATE:

TYPE OF DRILL RIG: 6620 DT DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push						OTHER:
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
15-16		6	0		No odors	
					or staining	
	GROUNDWATER ENCOUNTERED				NOTES:	
DATE	DEPTH	WELL		ELL ID		cted at 2-5 feet
		INSTALLED			Jampie colle	oled at 2 3 leet

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-18**

TIME: 11:00 to

DATUM:

Sheet 1 of 1 **JOB:** 2180345 Checked by: CK

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

DRIVE SAMPLER TYPE:

END DATE:

TYPE OF DRILL RIG: 6620 DT AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

JVLNDUN	DEN SAMI	LING WELL	HOD. DITE	ct Pusii		OTHER:
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-0.5		6			No odors or staining	0-0.5 asphalt
0.5-1		6	0.9		or stanning	0.5-1.5 dark brown sandy silt mixed with gravel (m,m)
1-1.5		6	1.1			1.5-2 brown sandy silt mixed with gravel (m,m)
1.5-2		6	0			2-2.5 white gray sandy silt mixed with gravel (m,m)
2-2.5		6	0			
2.5-3		6	0			2.5-4 brown sandy silt mixed with gravel (m,m)
3-3.5		6	0			4-12 no recovery
3.5-4		6	0			
4-12		0				
	BUINDW	ATER ENICO	I INITEDED		NOTES:	
DATE DEPTH WELL WELL ID INSTALLED		Sample collected at 1-4 feet				

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

BORING: SB-19

Sheet 1 of 2 JOB: 2180345 Checked by: CK

TIME: 11:15 to DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

END DATE:

TYPE OF DRILL RIG: 6620 DT DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBUF	OVERBURDEN SAMPLING METHOD: Direct Push					OTHER:
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-0.5		6	1		No odors or staining	0-0.5 asphalt
0.5-1		6	0.9		or stanning	0.5-2.5 brown orange sandy silt mixed with gravel (m,m)
1-1.5		6	0.5			2.5-3 light brown silt mixed with gravel (m,m)
1.5-2		6	0.1			3-4 gray brown clay silt mixed with gravel (m,m)
2-2.5		6	0.1			
2.5-3		6	0			4-5 brown gray clay silt mixed with gravel (m,m)
3-3.5		6	0			5-7 brown sandy silt (m,m)
3.5-4		6	0			7-8 brown clay mixed with gravel (l,s,m)
4-5		7	0.3			8-10 brown clay silt (m,m)
5-6		7	0.4			10-12 brown gray clay silt (m,m)
6-7		7	0.4			
7-8		7	0.4			12-16 brown clay silt mixed with gravel (m,m)
8-9		6	1.3			
9-10		6	0.5			
10-11		6	0.1			
11-12		6	0.1			
12-13		7	0			
13-14		7	0			
14-15		7	0.3			
G	ROUNDW	ATER ENCO	UNTERED		NOTES:	
DATE	DEPTH	WELL	/ELL WELL ID		4	ected at 2-5 feet

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-19**

Sheet 2 of 2 **JOB:** 2180345 Checked by: CK

TIME: 11:15 to DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18 END DATE:

DRIVE SAMPLER TYPE:

TYPE OF DRILL RIG: 6620 DT AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push			OTHER:			
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
15-16		7	0		No odors	
					or staining	
						1
		ATER ENCO			NOTES:	
DATE	DATE DEPTH WELL WELL ID		Sample colle	cted at 2-5 feet		
		INSTALLED)			

TEST BORING LOG Phase II ESA

BORING: SB-20

Sheet 1 of 2 **JOB:** 2180345

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

Checked by: CK TIME: 11:40 to

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton START DATE: 1/11/18 DATUM:

END DATE:

TYPE OF DRILL RIG: 6620 DT

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OVERDOR	DEIN SHIVII	LING MILTI	IOD. DITE	Ct r usii	•	OTTILN.
		SAMPLE				
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-0.5		5			No odors or staining	0-0.5 asphalt
0.5-1		5	0.5		or stanning	0.5-2.5 brown yellow clay silt mixed with gravel (m,m)
1-1.5		5	0.1			2.5-3 light brown clay silt mixed with gravel (m,m)
1.5-2		5	0			3-3.5 red brick
2-2.5		5	0			
2.5-3		5	0.2			3.5-4 brown clay silt (m,m)
3-3.5		4				4-6 brown gray clay (m,m,m)
3.5-4		5	0			6-8 light brown clay mixed with gravel (m,m)
4-5		7	0.6			8-10 brown clay silt (m,m)
5-6		7	0.1			10-12 light brown clay silt mixed with gravel (m,m)
6-7		7	0.2			
7-8		7	0			12-14 dark brown clay silt mixed with gravel (m,m)
8-9		6	0.6			14-16 light brown clay silt mixed with gravel (m,m)
9-10		6	0			
10-11		6	0			
11-12		6	0			
12-13		7	0			
13-14		7	0			
14-15		7	0			
G	ROUNDW	ATER ENCO	UNTERED		NOTES:	
DATE	DEPTH	WELL WELL ID INSTALLED		Sample collected at 1-4 feet		

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-20**

Sheet 2 of 2 **JOB:** 2180345 Checked by: CK

TIME: 11:40 to

DATUM:

CONTRACTOR: SJB Services, Inc.

TYPE OF DRILL RIG: 6620 DT

AUGER SIZE AND TYPE:

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18 END DATE:

DRIVE SAMPLER TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

SAMPLE SAMPLE PID FIELD STRATA **DEPTH BLOW REMARKS** VISUAL CLASSIFICATION RECOVERY SCREEN CHANGE (Feet) **COUNT** (Inches) (Parts per million) 7 0 No odors 15-16 or staining **GROUNDWATER ENCOUNTERED** NOTES: DATE DEPTH WELL WELL ID Sample collected at 1-4 feet **INSTALLED**

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

BORING: SB-21

Sheet 1 of 2 JOB: 2180345 Checked by: CK

TIME: 12:15 to DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

END DATE:

TYPE OF DRILL RIG: 6620 DT DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push				CL PUSII	OTHER:				
DEPTH	BLOW	SAMPLE	SAMPLE PID FIELD	STRATA	REMARKS	VISUAL CLASSIFICATION			
(Feet)	COUNT	RECOVERY (Inches)	SCREEN (Parts per million)	CHANGE					
0-0.5		6			No odors or staining	0-0.5 asphalt			
0.5-1		6	0.6		or staming	0.5-1 orange rock			
1-1.5		6	0.3			1-2 light brown clay silt mixed with gravel (m,m)			
1.5-2		6	0.6			2-4 white brown clay silt mixed with gravel (m,m)			
2-2.5		6	0.9						
2.5-3		6	0.9			4-10 light brown clay silt mixed with gravel (m,m)			
3-3.5		6	0.6			10-12 brown sandy silt (m,m)			
3.5-4		6	0.7			12-13 brown clay silt mixed with gravel (m,m)			
4-5		6	0.5			13-16 gray silty clay (m,m,m)			
5-6		6	0.6						
6-7		6	0.5						
7-8		6	0.1						
8-9		6	0.7						
9-10		7	0.6						
10-11		7	0.9						
11-12		7	0.5						
12-13		5	1.5						
13-14		5	128.8						
14-15		5	1,193		Petroleum odor, no				
	ROHNDW/	L ΔTFR FNCO	 INTERED		staining NOTES:				
DATE	DATE DEPTH WELL WELL ID INSTALLED					cted at 14-15 feet			

TEST BORING LOG Phase II ESA

BORING: SB-21

Sheet 2 of 2 **JOB:** 2180345 Checked by: CK

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TIME: 12:15 to

DATUM:

DRILLER: Art Koske

LABELLA REPRESENTITIVE: S. Dalton

CONTRACTOR: SJB Services, Inc.

START DATE: 1/11/18

END DATE:

TYPE OF DRILL RIG: 6620 DT

DRIVE SAMPLER TYPE: AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBUR	RDEN SAMF	PLING METH	HOD: Dire	ct Push		OTHER:
SAMPLE						
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
15-16		5	373		Petroleum odor, no	16-20 brown silty clay mixed with gravel (m,w)
16-18		5	39.7		staining	20-24 no recovery
18-20		5	23.5		No odors or staining	
20-24		0				
<i>(</i> -	ROLINDW/	ATER ENCO	IINTERED		NOTES:	
DATE DEPTH WELL WELL ID INSTALLED			LL ID	Sample collected at 14-15 feet		

TEST BORING LOG Phase II ESA

BORING: SB-22

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York Sheet 1 of 2 **JOB:** 2180345 Checked by: CK

CONTRACTOR: SJB Services, Inc.

LABELLA REPRESENTITIVE: S. Dalton

DRILLER: Art Koske

300 Pearl Street, Suite 130

START DATE: 1/11/18

TIME: 13:00 to

DATUM:

TYPE OF DRILL RIG: 6620 DT

END DATE:

DRIVE SAMPLER TYPE: AUGER SIZE AND TYPE: INSIDE DIAMETER: ~ OTHER:

OVERBURDEN SAMPLING METHOD: Direct Push **SAMPLE** SAMPLE PID FIELD STRATA **DEPTH BLOW REMARKS** VISUAL CLASSIFICATION **RECOVERY** SCREEN **CHANGE** (Feet) COUNT (Inches) (Parts per million) 0-0.5 6 No odors 0-0.5 asphalt or staining 0.5-1 6 1.7 0.5-1.5 brown black clay mixed with gravel (I,s,m) 1-1.5 7.6 6 1.5-4 brown red clay (l,s,m) 1.5-2 6 3.3 4-5 brown orange clay (m,m,m) 2-2.5 6 8.6 5-6 light brown clay silt mixed with gravel (m,m) 2.5-3 6 7.6 3-3.5 1.2 6-8 brown silty clay mixed with gravel (m,m,m) 6 3.5-4 6 1.5 8-10 brown clay silt mixed with gravel (m,m) 4-5 0.9 6 10-11 gray silt clay mixed with gravel (m,m,m) 5-6 6 0.7 11-12 gray clay (l,s,m) 6-7 6 0.3 12-15 brown clay mixed with gravel (m,m,m) 7-8 6 1.3 8-9 6 1.3 9-10 7 0.1 10-11 7 0.4 11-12 7 0.8 12-13 5 1.1 Petroleum odor, no 13-14 22.9 5 staining 14-15 2.5 **GROUNDWATER ENCOUNTERED** NOTES: DATE DFPTH WELL WFII ID Sample collected at 15-16 feet **INSTALLED**

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-22**

Sheet 2 of 2 **JOB:** 2180345 Checked by: CK

TIME: 13:00 to DATUM:

CONTRACTOR: SJB Services, Inc.

TYPE OF DRILL RIG: 6620 DT

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

END DATE: **DRIVE SAMPLER TYPE:**

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERRIBDEN SAMBLING METHOD: Direct Duch OTHED:

OVERBUR	DEN SAMI	PLING MET	HOD: Dire	ct Push		OTHER:		
	SAMPLE							
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION		
15-16		5	234.5		Petroleum odor, no	15-16 gray clay silt (m,m)		
16-17		5	270		staining	16-20 brown clay silt (m,w)		
17-18		5	612			20-24 no recovery		
18-19		5	12.2					
19-20		5	2					
20-24		0						
GROUNDWATER ENCOUNTERED					NOTES:			
DATE	DEPTH	WELL INSTALLED		LL ID	Sample colle	Sample collected at 15-16 feet		

Phase II ESA

BORING: SB-23

Sheet 1 of 1

END DATE:

JOB: 2180345 Checked by: CK

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TEST BORING LOG

TIME: 13:40 to

DATUM:

DRILLER: Art Koske

CONTRACTOR: SJB Services, Inc.

TYPE OF DRILL RIG: 6620 DT

AUGER SIZE AND TYPE:

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

DRIVE SAMPLER TYPE:

INSIDE DIAMETER: ~

JAL CLASSIFICATION nixed with gravel (m,m) (m,m,m) mixed with gravel (m,m,m)		
nixed with gravel (m,m) (m,m,m)		
(m,m,m)		
(m,m,m)		
miyed with gravel im m mi		
n)		
y mixed with gravel (m,m,m)		
(m,m,m)		
NOTES: Sample collected at 15-16 feet		

CONTRACTOR: SJB Services, Inc.

TYPE OF DRILL RIG: 6620 DT

Engineering Architecture Environmental

TEST BORING LOG Phase II ESA

BORING: SB-24

Sheet 1 of 2

JOB: 2180345 Checked by: CK

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TIME: 13:40 to

DATUM:

DRILLER: Art Koske

AUGER SIZE AND TYPE:

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/11/18

DRIVE SAMPLER TYPE:

END DATE:

INSIDE DIAMETER: ~

OVERBURDEN SAMPLI	NG METHOD:	Direct Push	OTHER:
OVERDORDEN SAME	ING INLTITUD.	DITECT LASII	OTTILIN.

OVERBUR	RBURDEN SAMPLING METHOD: Direct Push			ct Push		OTHER:
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-0.5		3			No odors or staining	0-0.5 asphalt
0.5-1		3	0.5		or stanning	0.5-1 brown clay silt mixed with gravel (m,m)
1-2		6	1.0			1-2 dark brown gray clay mixed with gravel (m,m,m)
2-3		6	0.4			2-3 white brown clay silt mixed with gravel (m,m)
3-4		6	0.5			
4-5		5	0.7			3-4 brown clay silt mixed with gravel (m,m)
5-6		5	1.3			4-5 dark brown clay silt mixed with gravel (m,m)
6-7		5	0.8			5-8 brown clay mixed with gravel (m,m,m)
7-8		5	1.4			8-10 dark gray silty clay (m,m,m)
8-9		6	0.2			10-11 dark gray silty clay mixed with gravel (m,m)
9-10		6	12.9			
10-11		6	11.6			11-12 brown silty clay mixed with gravel (m,m,m)
11-12		6	8.4			12-16 brown silty clay (m,m,m)
12-13		7	2.2			
13-14		7	2.1			
14-15		7	2.7			
15-16		7	8.4			
16-17		2	0			
17-18		2	0			
	ROUNDW	ATER ENCO	<u>UNTERE</u> D		NOTES:	
DATE	DEPTH	WELL INSTALLED		LL ID		

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

BORING: SB-24

Sheet 2 of 2 JOB: 2180345 Checked by: CK

CONTRACTOR: SJB Services, Ir	nc.
------------------------------	-----

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton START DATE: 1/11/18

TIME: 13:40 to

DATUM:

END DATE:

TYPE OF DRILL RIG: 6620 DT	DRIVE SAMPLER TYPE:
AUGER SIZE AND TYPE:	INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

OVERBURDEN SAMPLING METHOD: DIrect Push					1	OTHER:
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
18-19			0		No odors	16-20 gray silty clay (h,s,w)
19-20			0		or staining	
DATE	ROUNDW/ DEPTH	JNDWATER ENCOUNTERED EPTH WELL WELL ID INSTALLED		NOTES:		

TEST BORING LOG Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-25**

Sheet 1 of 1 JOB: 2180345 Checked by: CK

TIME: 8:30 to

DATUM:

CONTRACTOR: SJB Services, Inc.

TYPE OF DRILL RIG: 6620 DT

AUGER SIZE AND TYPE:

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18 END DATE:

DRIVE SAMPLER TYPE:

INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

SAMPLE SAMPLE PID FIELD STRATA **DEPTH BLOW REMARKS** VISUAL CLASSIFICATION **RECOVERY** SCREEN **CHANGE** (Feet) COUNT (Inches) (Parts per million) 0-0.5 3.5 No odors 0-0.5 asphalt or staining 0.5-1 3.5 1.2 0.5-4 brown clay mixed with gravel (l,s,m) 1-2 7 1.8 4-6 brown clay silt mixed with gravel (m,m,m) 2-3 7 0.9 6-6.5 red brick 3-4 7 2.2 6.5-7 asphalt 4-5 7 0 5-6 7 0 7-8 light brown sandy silt mixed with gravel (m,m,m) 6-7 7 8-9 brown clay mixed with gravel (m,m,m) 7-8 7 0.4 9-12 orange brown clay mixed with gravel (m,m,m) 8-9 5 1.4 9-10 5 1.7 10-11 5 0.6 11-12 5 2.7 **GROUNDWATER ENCOUNTERED** NOTES: DATE DFPTH WELL WELL ID Sample collected at 0.5-2 feet **INSTALLED**

Phase II ESA

Sheet 1 of 1

BORING: SB-26

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TEST BORING LOG

JOB: 2180345 Checked by: CK

CONTRACTOR: SJB Services, Inc. TIME: 9:00 to DRILLER: Art Koske DATUM:

LABELLA REPRESENTITIVE: S. Dalton START DATE: 1/12/18 END DATE:

TYPE OF DRILL RIG: 6620 DT **DRIVE SAMPLER TYPE: AUGER SIZE AND TYPE:** INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push				ct Push	OTHER:		
			SAMPLE				
DEPTH (Feet)	BLOW	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION	
0-0.5		7	-		No odors or staining	0-0.5 asphalt	
0.5-1		7	3.1		or stanning	0.5-1 light brown gray sandy silt mixed with gravel (m,m)	
1-2		7	0.6			1-4 brown silty clay mixed with gravel (I,s,m)	
2-3		7	1.1			4-5.5 brown silty clay mixed with gravel (I,s,m)	
3-4		7	2.2				
4-5		10	0.7			5.5-6 red brick	
5-6		10	-				
		ATER ENCO			NOTES:		
DATE	DEPTH	WELL INSTALLED		ELL ID	Sample collected at 0.5-2 feet Refusal at 6 feet due to red brick		

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-27**

Sheet 1 of 1 **JOB:** 2180345 Checked by: CK

TIME: 9:20 to

DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18

DRIVE SAMPLER TYPE:

END DATE:

TYPE OF DRILL RIG: 6620 DT **AUGER SIZE AND TYPE:** INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push					OTHER:		
		SAMPLE					
DEPTH (Feet)	BLOW	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION	
0-0.5		3.5			No odors or staining	0-0.5 asphalt	
0.5-1		3.5	1.2		or stanning	0.5-1 brown sandy silt mixed with gravel (m,m)	
1-2		7	2.2			1-4 brown orange silty sand mixed with gravel (m,m)	
2-3		7	0.6			6-7 asphalt and brick	
3-4		7	1.9				
4-5		8	0.5			7-8 brown orange clay silt mixed with gravel (m,m)	
5-6		8	2.8			8-10 brown clay silt mixed with gravel (m,m)	
6-7		8				10-11 brown gray clay (m,m,m)	
7-8		8	2.7			11-12 dark brown black clay (m,m,m)	
8-9		6	1.9				
9-10		6	1.2				
10-11		6	2.1				
11-12		6	1.7				
G	ROUNDW	ATER ENCC	UNTERED		NOTES:		
DATE	DEPTH	WELL INSTALLE		LL ID			

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

BORING: SB-28

Sheet 1 of 1 JOB: 2180345 Checked by: CK

TIME: 9:50 to DATUM:

CONTRACTOR: SJB Services, Inc.

TYPE OF DRILL RIG: 6620 DT

AUGER SIZE AND TYPE:

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18 END DATE:

DRIVE SAMPLER TYPE:
INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

OVERBUR	JRDEN SAMPLING METHOD: DIrect Push				UTHER:			
			SAMPLE	1	_			
DEPTH (Feet)	BLOW	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION		
0-0.5		4			No odors or staining	0-0.5 asphalt		
0.5-1		4	4.1			0.5-1 gray silty clay mixed with gravel (m,m,m)		
1-2		8	0.8			1-3 orange brown clay (l,s,m)		
2-3		8	0.6			3-4 light brown clay silt mixed with gravel (m,m)		
3-4		8	2.3					
4-5		6	3.3			4-5 brown clay silt mixed with gravel (m,m)		
5-6		6	0			5-7 brown silt mixed with gravel (m,m)		
6-7		6	0			7-8 brown clay silt mixed with gravel (m,m)		
7-8		6	0.9			8-10 brown clay silt (m,m)		
8-9		8	0.1			10-12 gray sandy silt mixed with gravel (m,m)		
9-10		8	1.2					
10-11		8	0					
11-12		8	0					
G		ATER ENCC			NOTES:			
DATE	DEPTH	WELL INSTALLEI		LL ID	Sample collected at 0.5-2 feet			
					1			

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-29**

Sheet 1 of 1 **JOB:** 2180345 Checked by: CK

TIME: 10:20 to DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18

END DATE:

TYPE OF DRILL RIG: 6620 DT **DRIVE SAMPLER TYPE:** AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push						OTHER:	
		(SAMPLE				
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION	
0-0.5		4.5			No odors or staining	0-0.5 asphalt	
0.5-1		4.5	2.1		or starring	0.5-1 brown clay silt (m,m)	
1-2		9	0.9			1-2 orange brown clay (m,m,m)	
2-3		9	4.2			2-3 brown clay silt mixed with gravel (m,m)	
3-4		9	2.8				
4-5		8	3.98			3-4 brown gray clay silt mixed with gravel (m,m)	
5-6		8	3.1			4-8 light brown clay silt mixed with gravel (m,m)	
6-7		8	0.9			8-10 brown clay silt mixed with gravel (m,m)	
7-8		8	2.3			10-12 gray sandy silt mixed with gravel (m,m)	
8-9		7	2.9				
9-10		7	2.7				
10-11		7	2.3				
11-12		7	3.1				
	SPOLINIDAY	ATED ENCO	UNITEDED		NOTEC		
		ATER ENCO			NOTES:		
DATE	DEPTH	WELL INSTALLED		ELL ID	Sample collected at 3-5 feet		

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-30**

Sheet 1 of 1 **JOB:** 2180345 Checked by: CK

TIME: 10:50 to DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18

END DATE:

TYPE OF DRILL RIG: 6620 DT **DRIVE SAMPLER TYPE:** AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push				ct Push		OTHER:
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-0.5		4			No odors or staining	0-0.5 asphalt
0.5-1		4	2.3		or stanning	0.5-1 brown gray clay silt (m,m)
1-2		8	3.6			1-2 brown orange clay (l,s,m)
2-3		8	1.3			2-5 light brown clay silt mixed with gravel (m,m)
3-4		8	2.5			
4-5		9	1.9			5-6 white gray brown clay silt mixed with gravel (m,m)
5-6		9	2.5			6-9 light brown clay silt mixed with gravel (m,m)
6-7		9	0.6			9-10 brown clay silt (m,m)
7-8		9	1.2			10-14 brown clay silt mixed with gravel (m,m)
8-9		9	0.9			14-16 gray clay silt (m,w)
9-10		9	3.4			
10-11		9	1.3			16-20 brown clay silt mixed with gravel (m,w)
11-12		9	35			
12-13		7	20.5		Petroleum odor, no	
13-14		7	4.1		staining	
14-15		7	845			
15-16		7	30.1			
16-18		5	40.1		No odors or staining	
18-20		5	35.2		or stanning	
G	ROUNDW	ATER ENCO	UNTERED		NOTES:	
DATE	DEPTH	WELL INSTALLED		LL ID	Sample colle	ected at 14-15 feet

TEST BORING LOG

Phase II ESA

BORING: SB-31

Sheet 1 of 1

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

Checked by: CK
TIME: 11:30 to

JOB: 2180345

DATUM:

 ${\tt CONTRACTOR: SJB \ Services, Inc.}$

TYPE OF DRILL RIG: 6620 DT

DRILLER: Art Koske

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18 END DATE:

DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

OVERBUI	TOEN SAIVII	PLING WIET	חטט. טוופ	ct Pusii		OTHER.
			SAMPLE			
DEPTH (Feet)	BLOW	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-0.5		4			No odors or staining	0-0.5 asphalt
0.5-1		4	1.6		or stanning	0.5-1 dark brown black clay silt mixed with gravel (m,m)
1-2		8	1.8			1-2 dark brown clay with orange streaks (m,m,m)
2-3		8	10.1			2-4 light brown clay silt mixed with gravel (m,m)
3-4		8	1.0			
4-5		6	0.5			4-5 light brown clay silt mixed with gravel (m,m)
5-6		6	0.7		5-6 gray clay silt mixed with gravel (m,n	5-6 gray clay silt mixed with gravel (m,m)
6-7		6	2.0			6-12 brown clay silt mixed with gravel (m,m)
7-8		6	2.3			12-16 brown clay silt mixed with gravel (m,w)
8-12		4	1.0			
12-13		6	1.2			
13-14		6	1.7			
14-15		6	8.0		Petroleum	
15-16		6	35		odor, no staining	
						_
						_
	CDOLINION	ATED ENCO	N INITEDES		NOTES	
	1	ATER ENCC			NOTES:	
DATE	DEPTH	WELL INSTALLEI		ELL ID		
					1	

Phase II ESA

Washington Street, Jamestown, New York

115-121 West Third Street and 200-210

BORING: SB-32

Sheet 1 of 1 JOB: 2180345 Checked by: CK

TIME: 12:00 to DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18

END DATE:

TYPE OF DRILL RIG: 6620 DT DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

OVERBUR	RBURDEN SAMPLING METHOD: Direct Push					OTHER:
		9	SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
0-0.5		3			No odors or staining	0-0.5 asphalt
0.5-1		3	0.7		or staming	0.5-1 brown clay silt mixed with gravel (m,m)
1-2		6	0.6			1-2 dark brown sandy silt mixed with gravel (m,w)
2-3		6	1.3			2-5 brown clay silt mixed with gravel (m,m)
3-4		6	0.9			
4-5		7	0			5-6 dark brown clay silt mixed with gravel (m,m)
5-6		7	1.0			6-15 brown clay silt mixed with gravel (m,m)
6-7		7	1.2			15-16 gray clay silt mixed with gravel (m,w)
7-8		7	2.0			16-20 brown clay silt mixed with gravel (m,w)
8-9		7	0			
9-10		7	1.2			
10-11		7	0.2			
11-12		7	0.8			
12-13		7	1.0			
13-14		7	2.6			
14-15		7	7.5		Petroleum odor, no	
15-16		7	347		staining	
16-17		6	14.5		No odors or staining	
17-18		6	12.0			
		ATER ENCO			NOTES:	
DATE	DEPTH	WELL INSTALLED		LL ID		

TEST BORING LOG

Phase II ESA

Sheet 2 of 2 JOB: 2180345 Checked by: CK

BORING: SB-32

300 Pearl Street, Suite 130

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York

TIME: 11:30 to

DATUM:

CONTRACTOR: SJB Services, Inc.
DRILLER: Art Koske

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18

END DATE:

TYPE OF DRILL RIG: 6620 DT DRIVE SAMPLER TYPE:

AUGER SIZE AND TYPE: INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

		_				·
			SAMPLE			
DEPTH (Feet)	BLOW COUNT	SAMPLE RECOVERY (Inches)	PID FIELD SCREEN (Parts per million)	STRATA CHANGE	REMARKS	VISUAL CLASSIFICATION
18-19		6	22.4		Petroleum odor, no	18-20 brown silt mixed with gravel (m,w)
19-20		6	15.1		staining	
DATE	ROUNDW/ DEPTH	ATER ENCO WELL INSTALLED	WE	LL ID	NOTES:	
		INSTALLED				

TEST BORING LOG

Phase II ESA

115-121 West Third Street and 200-210 Washington Street, Jamestown, New York **BORING: SB-33**

Sheet 1 of 1 **JOB:** 2180345 Checked by: CK

TIME: 12:40 to DATUM:

CONTRACTOR: SJB Services, Inc.

DRILLER: Art Koske

300 Pearl Street, Suite 130

LABELLA REPRESENTITIVE: S. Dalton

START DATE: 1/12/18

END DATE:

TYPE OF DRILL RIG: 6620 DT **DRIVE SAMPLER TYPE: AUGER SIZE AND TYPE:** INSIDE DIAMETER: ~

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

OVERBUR	IDEN SAIVI	PLING WIET	HOD. DIFE	ct Pusii	•	OTHER.
DEPTH	BLOW	SAMPLE	SAMPLE PID FIELD	STRATA	REMARKS	VISUAL CLASSIFICATION
(Feet)	COUNT	RECOVERY (Inches)	SCREEN (Parts per million)	CHANGE	KLIVIAKKS	VISUAL CLASSIFICATION
0-0.5		4			No odors or staining	0-0.5 asphalt
0.5-1		4	0.6		or stanning	0.5-2 brown clay silt mixed with gravel (m,m)
1-2		8	1.2			2-4 dark brown clay silt mixed with gravle (m,m)
2-3		8	1.1			4-5 dark brown clay silt (m,m)
3-4		8	1.6			
4-5		7	0.6		-	5-8 brown orange clay silt mixed with gravel (m,m)
5-6		7	1.7		-	8-12 brown clay silt mixed with gravel (m,m)
6-7		7	0			12-18 brown clay silt mixed with gravel (m,w)
7-8		7	0			18-20 gray clay silt (m,w)
8-9		7	0			
9-10		7	0			
10-11		7	8.8			
11-12		7	34.7		Petroleum odor, no staining	
12-16		4	3.5		No odors	
16-17		4	0.4		or staining	
17-18		4	2.8		1	
18-19		4	8.2		1	
19-20		4	7.0			
	BOLINDA	ATER ENCO) INTEDED		NOTES:	
DATE	DEPTH	WELL		ELL ID	4	at ad at 11 12 fact
DAIL	DEFIII	INICTALLE		10	Sample colle	cted at 11-12 feet

DATE	DEPTH	WELL	WELL ID
		INSTALLED	

APPENDIX 2

Laboratory Reports

ANALYTICAL REPORT

Lab Number: L1747441

Client: LaBella Associates, P.C.

300 Pearl Street

Suite 252

Buffalo, NY 14202

ATTN: Adam Zebrowski Phone: (716) 551-6281

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345 Report Date: 12/26/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1747441 **Report Date:** 12/26/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1747441-01	AB-1 0.25-0.5 FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 09:30	12/22/17
L1747441-02	AB-2 0.25-1FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 10:15	12/22/17
L1747441-03	AB-2 1-2FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 10:15	12/22/17
L1747441-04	AB-3 0.25-0.5 FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 11:00	12/22/17
L1747441-05	AB-4 0.25-0.5 FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 11:20	12/22/17
L1747441-06	AB-5 0.25-1 FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 12:00	12/22/17
L1747441-07	AB-5 1-2 FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 12:00	12/22/17
L1747441-08	AB-6 0.25-0.5 FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 13:10	12/22/17
L1747441-09	AB-7 0.25-0.5 FT	SOIL	115-121 W 3RD ST. + 200-210 WASHINGTON ST.	12/22/17 13:50	12/22/17

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1747441

Project Number: 2180345 **Report Date:** 12/26/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client S	Services	at 800-	-624-9220) with a	any que	estions.	

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1747441

Project Number: 2180345 Report Date: 12/26/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/26/17

Melissa Cripps Melissa Cripps

ORGANICS

SEMIVOLATILES

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 12/22/17 09:30

Lab Number:

Report Date:

Lab ID: L1747441-01
Client ID: AB-1 0.25-0.5 FT

Sample Location: 115-121 W 3RD ST. + 200-210 WASHINGTON ST.

Date Received: 12/22/17
Field Prep: Not Specified

L1747441

12/26/17

Extraction Method:EPA 3546

Extraction Date: 12/23/17 02:48

Matrix: Soil Analytical Method: 1,827

Analytical Method: 1,8270D Analytical Date: 12/23/17 16:52

Analyst: EK
Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	ND		ug/kg	150	19.	1
Fluoranthene	270		ug/kg	110	21.	1
Naphthalene	ND		ug/kg	180	22.	1
Benzo(a)anthracene	99	J	ug/kg	110	21.	1
Benzo(a)pyrene	100	J	ug/kg	150	45.	1
Benzo(b)fluoranthene	150		ug/kg	110	31.	1
Benzo(k)fluoranthene	49	J	ug/kg	110	30.	1
Chrysene	130		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	28.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	89	J	ug/kg	150	22.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	130		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	86	J	ug/kg	150	26.	1
Pyrene	220		ug/kg	110	18.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	86		23-120	
2-Fluorobiphenyl	86		30-120	
4-Terphenyl-d14	91		18-120	

L1747441

12/26/17

12/23/17 02:48

12/22/17

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 12/22/17 10:15

Lab Number:

Report Date:

Date Received:

Extraction Date:

Lab ID: L1747441-03
Client ID: AB-2 1-2FT

Sample Location: 115-121 W 3RD ST. + 200-210 WASHINGTON ST. Field Prep: Not Specified

Extraction Method:EPA 3546

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 12/23/17 17:18

Analyst: EK Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	oorough Lab					
Acenaphthene	33	J	ug/kg	150	19.	1
Fluoranthene	940		ug/kg	110	22.	1
Naphthalene	24	J	ug/kg	190	23.	1
Benzo(a)anthracene	360		ug/kg	110	21.	1
Benzo(a)pyrene	290		ug/kg	150	46.	1
Benzo(b)fluoranthene	410		ug/kg	110	32.	1
Benzo(k)fluoranthene	140		ug/kg	110	30.	1
Chrysene	360		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	150		ug/kg	110	37.	1
Benzo(ghi)perylene	200		ug/kg	150	22.	1
Fluorene	48	J	ug/kg	190	18.	1
Phenanthrene	760		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	55	J	ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	220		ug/kg	150	26.	1
Pyrene	720		ug/kg	110	19.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	101		23-120	
2-Fluorobiphenyl	98		30-120	
4-Terphenyl-d14	104		18-120	

L1747441

12/26/17

12/23/17 02:48

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 12/22/17 11:20

Lab Number:

Report Date:

Extraction Date:

Lab ID: L1747441-05 Client ID: AB-4 0.25-0.5 FT

Sample Location: 115-121 W 3RD ST. + 200-210 WASHINGTON ST. Field Prep:

Date Received: 12/22/17
Field Prep: Not Specified
Extraction Method: EPA 3546

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 12/23/17 17:45

Analyst: EK
Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Fluoranthene	240		ug/kg	110	20.	1
Naphthalene	ND		ug/kg	180	22.	
Benzo(a)anthracene	120		ug/kg	110	20.	1
Benzo(a)pyrene	110	J	ug/kg	140	44.	1
Benzo(b)fluoranthene	140		ug/kg	110	30.	1
Benzo(k)fluoranthene	50	J	ug/kg	110	28.	1
Chrysene	120		ug/kg	110	18.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	35	J	ug/kg	110	35.	1
Benzo(ghi)perylene	84	J	ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	17.	1
Phenanthrene	140		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	21	J	ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	88	J	ug/kg	140	25.	1
Pyrene	200		ug/kg	110	18.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	96		23-120	
2-Fluorobiphenyl	100		30-120	
4-Terphenyl-d14	87		18-120	

L1747441

12/26/17

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 12/22/17 12:00

Lab Number:

Report Date:

Lab ID: L1747441-07
Client ID: AB-5 1-2 FT

Sample Location: 115-121 W 3RD ST. + 200-210 WASHINGTON ST.

Date Received: 12/22/17
Field Prep: Not Specified

Extraction Method:EPA 3546

Matrix: Soil Extraction Date: 12/23/17 02:48

Analytical Method: 1,8270D
Analytical Date: 12/23/17 18:11

Analyst: EK
Percent Solids: 92%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Fluoranthene	ND		ug/kg	110	20.	1
Naphthalene	ND		ug/kg	180	22.	1
Benzo(a)anthracene	ND		ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	140	44.	1
Benzo(b)fluoranthene	ND		ug/kg	110	30.	1
Benzo(k)fluoranthene	ND		ug/kg	110	28.	1
Chrysene	ND		ug/kg	110	18.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	ND		ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	17.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1
Pyrene	ND		ug/kg	110	18.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	87		23-120	
2-Fluorobiphenyl	93		30-120	
4-Terphenyl-d14	92		18-120	

L1747441

12/26/17

12/22/17

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 12/22/17 13:50

Lab Number:

Report Date:

Lab ID: L1747441-09 Client ID: AB-7 0.25-0.5 FT

Date Received: 115-121 W 3RD ST. + 200-210 WASHINGTON ST. Field Prep: Not Specified

Extraction Method: EPA 3546 Matrix: Soil Extraction Date: 12/23/17 02:48

Analytical Method: 1,8270D Analytical Date: 12/23/17 18:37

Analyst: ΕK Percent Solids: 88%

Sample Location:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
			_			
Acenaphthene	ND		ug/kg	150	19.	1
Fluoranthene	210		ug/kg	110	21.	1
Naphthalene	ND		ug/kg	190	23.	1
Benzo(a)anthracene	130		ug/kg	110	21.	1
Benzo(a)pyrene	160		ug/kg	150	46.	1
Benzo(b)fluoranthene	190		ug/kg	110	31.	1
Benzo(k)fluoranthene	58	J	ug/kg	110	30.	1
Chrysene	130		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	150		ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	18.	1
Phenanthrene	81	J	ug/kg	110	23.	1
Dibenzo(a,h)anthracene	33	J	ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	140	J	ug/kg	150	26.	1
Pyrene	200		ug/kg	110	18.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	87		23-120	
2-Fluorobiphenyl	92		30-120	
4-Terphenyl-d14	83		18-120	

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

L1747441

Report Date:

12/26/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 12/23/17 13:48

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 12/22/17 18:59

arameter	Result	Qualifier	Units	RL	MDL
semivolatile Organics by GC/M VG1076021-1	S - Westborough	Lab for sa	ample(s):	01,03,05,07,09	Batch:
Acenaphthene	ND		ug/kg	130	17.
Fluoranthene	ND		ug/kg	98	19.
Naphthalene	ND		ug/kg	160	20.
Benzo(a)anthracene	ND		ug/kg	98	18.
Benzo(a)pyrene	ND		ug/kg	130	40.
Benzo(b)fluoranthene	ND		ug/kg	98	27.
Benzo(k)fluoranthene	ND		ug/kg	98	26.
Chrysene	ND		ug/kg	98	17.
Acenaphthylene	ND		ug/kg	130	25.
Anthracene	ND		ug/kg	98	32.
Benzo(ghi)perylene	ND		ug/kg	130	19.
Fluorene	ND		ug/kg	160	16.
Phenanthrene	ND		ug/kg	98	20.
Dibenzo(a,h)anthracene	ND		ug/kg	98	19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.
Pyrene	ND		ug/kg	98	16.

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg

L1747441

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

Project Number: 2180345 Report Date: 12/26/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 12/23/17 13:48 Extraction Date: 12/22/17 18:59

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS -	Westborougl	h Lab for s	ample(s):	01,03,05,07,09	Batch:
WG1076021-1					

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	75	25-120
Phenol-d6	79	10-120
Nitrobenzene-d5	69	23-120
2-Fluorobiphenyl	82	30-120
2,4,6-Tribromophenol	71	10-136
4-Terphenyl-d14	84	18-120

Lab Control Sample Analysis Batch Quality Control

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1747441

Report Date: 12/26/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s):	01,03,05,07,09	Batch:	WG1076021-2	WG1076021-3		
Acenaphthene	71		72		31-137	1		50
Fluoranthene	81		82		40-140	1		50
Naphthalene	82		80		40-140	2		50
Benzo(a)anthracene	82		82		40-140	0		50
Benzo(a)pyrene	88		92		40-140	4		50
Benzo(b)fluoranthene	86		87		40-140	1		50
Benzo(k)fluoranthene	88		87		40-140	1		50
Chrysene	81		83		40-140	2		50
Acenaphthylene	103		95		40-140	8		50
Anthracene	80		84		40-140	5		50
Benzo(ghi)perylene	97		97		40-140	0		50
Fluorene	73		76		40-140	4		50
Phenanthrene	77		82		40-140	6		50
Dibenzo(a,h)anthracene	94		95		40-140	1		50
Indeno(1,2,3-cd)pyrene	98		97		40-140	1		50
Pyrene	79		79		35-142	0		50

12/26/17

Lab Control Sample Analysis

Project Name: 115-121 W 3RD ST+200-210 W. ST

Batch Quality Control

Lab Number: L1747441

Project Number: 2180345

Report Date:

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,03,05,07,09 Batch: WG1076021-2 WG1076021-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
2-Fluorophenol	83	79	25-120
Phenol-d6	87	81	10-120
Nitrobenzene-d5	80	77	23-120
2-Fluorobiphenyl	90	86	30-120
2,4,6-Tribromophenol	80	82	10-136
4-Terphenyl-d14	79	78	18-120

METALS

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1747441

Project Number: Report Date: 2180345 12/26/17

SAMPLE RESULTS

mg/kg

0.437

Lab ID: L1747441-01 Date Collected: 12/22/17 09:30

Client ID: AB-1 0.25-0.5 FT Date Received: 12/22/17 Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specified

Matrix: Soil

ND

Silver, Total

Percent Solids: 89% Dilution Date Date Prep **Analytical** Method Prepared Method Factor **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab 8.59 Arsenic, Total mg/kg 0.437 0.091 1 12/23/17 08:00 12/26/17 11:17 EPA 3050B 1,6010C PS 73.2 0.076 1 1,6010C PS Barium, Total mg/kg 0.437 12/23/17 08:00 12/26/17 11:17 EPA 3050B J 1 1,6010C PS Cadmium, Total 0.100 0.437 0.043 12/23/17 08:00 12/26/17 11:17 EPA 3050B mg/kg Chromium, Total 9.51 mg/kg 0.437 0.042 1 12/23/17 08:00 12/26/17 11:17 EPA 3050B 1,6010C PS 74.7 0.117 1 12/23/17 08:00 12/26/17 11:17 EPA 3050B 1,6010C PS Lead, Total mg/kg 2.18 Mercury, Total 0.29 0.07 0.02 1 12/23/17 11:00 12/26/17 11:13 EPA 7471B 1,7471B MG mg/kg J 1,6010C Selenium, Total 0.502 mg/kg 0.874 0.113 1 12/23/17 08:00 12/26/17 11:17 EPA 3050B PS

0.124

1

12/23/17 08:00 12/26/17 11:17 EPA 3050B

1,6010C

PS

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1747441

Project Number: 2180345 Report Date: 12/26/17

SAMPLE RESULTS

Lab ID: L1747441-03 Date Collected: 12/22/17 10:15

Client ID: AB-2 1-2FT Date Received: 12/22/17

Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specified

Matrix: Soil Percent Solids: 88%

Dilution Date Date Prep **Analytical** Method Prepared Method Factor **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Arsenic, Total 7.99 mg/kg 0.436 0.091 1 12/23/17 08:00 12/26/17 11:22 EPA 3050B 1,6010C PS 83.6 0.076 1 1,6010C PS Barium, Total mg/kg 0.436 12/23/17 08:00 12/26/17 11:22 EPA 3050B J 1 1,6010C PS Cadmium, Total 0.162 0.436 0.043 12/23/17 08:00 12/26/17 11:22 EPA 3050B mg/kg Chromium, Total 8.81 mg/kg 0.436 0.042 1 12/23/17 08:00 12/26/17 11:22 EPA 3050B 1,6010C PS 12/23/17 08:00 12/26/17 11:22 EPA 3050B 267 0.117 1 1,6010C PS Lead, Total mg/kg 2.18 Mercury, Total 0.48 0.07 0.02 1 12/23/17 11:00 12/26/17 11:19 EPA 7471B 1,7471B MG mg/kg Selenium, Total 0.554 J mg/kg 0.873 0.113 1 12/23/17 08:00 12/26/17 11:22 EPA 3050B 1,6010C PS Silver, Total ND mg/kg 0.436 0.124 1 12/23/17 08:00 12/26/17 11:22 EPA 3050B 1,6010C PS

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1747441

Project Number: 2180345 Report Date: 12/26/17

SAMPLE RESULTS

Lab ID: L1747441-05 Date Collected: 12/22/17 11:20

Client ID: AB-4 0.25-0.5 FT Date Received: 12/22/17
Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specified

Matrix: Soil

Percent Solids: 91%

Parameter Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	7.36		mg/kg	0.431	0.090	1	12/23/17 08:00	12/26/17 13:05	EPA 3050B	1,6010C	PS
Barium, Total	69.1		mg/kg	0.431	0.075	1	12/23/17 08:00	12/26/17 13:05	EPA 3050B	1,6010C	PS
Cadmium, Total	0.073	J	mg/kg	0.431	0.042	1	12/23/17 08:00	12/26/17 13:05	EPA 3050B	1,6010C	PS
Chromium, Total	7.68		mg/kg	0.431	0.041	1	12/23/17 08:00	12/26/17 13:05	EPA 3050B	1,6010C	PS
Lead, Total	18.0		mg/kg	2.15	0.115	1	12/23/17 08:00	12/26/17 13:05	EPA 3050B	1,6010C	PS
Mercury, Total	0.07		mg/kg	0.07	0.01	1	12/23/17 11:00	12/26/17 11:20	EPA 7471B	1,7471B	MG
Selenium, Total	0.405	J	mg/kg	0.862	0.111	1	12/23/17 08:00	12/26/17 13:05	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.431	0.122	1	12/23/17 08:00	12/26/17 13:05	EPA 3050B	1,6010C	PS

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1747441

Project Number: 2180345 Report Date: 12/26/17

SAMPLE RESULTS

Lab ID: L1747441-07 Date Collected: 12/22/17 12:00

Client ID: AB-5 1-2 FT Date Received: 12/22/17

Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specified Matrix: Soil

Matrix: Soil Percent Solids: 92%

Dilution Date Date Prep **Analytical** Method Prepared Method Factor **Analyzed** Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Arsenic, Total 7.58 mg/kg 0.429 0.089 1 12/23/17 08:00 12/26/17 13:09 EPA 3050B 1,6010C PS 36.5 0.075 1 1,6010C PS Barium, Total mg/kg 0.429 12/23/17 08:00 12/26/17 13:09 EPA 3050B J 1 1,6010C PS Cadmium, Total 0.060 0.429 0.042 12/23/17 08:00 12/26/17 13:09 EPA 3050B mg/kg Chromium, Total 7.85 mg/kg 0.429 0.041 1 12/23/17 08:00 12/26/17 13:09 EPA 3050B 1,6010C PS 10.6 0.115 1 12/23/17 08:00 12/26/17 13:09 EPA 3050B 1,6010C PS Lead, Total mg/kg 2.14 Mercury, Total 0.01 J 0.07 0.01 1 12/23/17 11:00 12/26/17 11:22 EPA 7471B 1,7471B MG mg/kg Selenium, Total 0.386 J mg/kg 0.858 0.111 1 12/23/17 08:00 12/26/17 13:09 EPA 3050B 1,6010C PS Silver, Total ND mg/kg 0.429 0.121 1 12/23/17 08:00 12/26/17 13:09 EPA 3050B 1,6010C PS

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1747441

Project Number: Report Date: 2180345 12/26/17

SAMPLE RESULTS

mg/kg

0.438

Lab ID: L1747441-09 Date Collected: 12/22/17 13:50

Client ID: AB-7 0.25-0.5 FT Date Received: 12/22/17 Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specified

Matrix: Soil

ND

Silver, Total

Percent Solids: 88% Dilution Date Date Prep **Analytical** Method Prepared Method Factor **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Arsenic, Total 6.90 mg/kg 0.438 0.091 1 12/23/17 08:00 12/26/17 13:14 EPA 3050B 1,6010C PS 0.076 1 1,6010C PS Barium, Total 81.1 mg/kg 0.438 12/23/17 08:00 12/26/17 13:14 EPA 3050B J 1 1,6010C PS Cadmium, Total 0.101 0.438 0.043 12/23/17 08:00 12/26/17 13:14 EPA 3050B mg/kg Chromium, Total 9.11 mg/kg 0.438 0.042 1 12/23/17 08:00 12/26/17 13:14 EPA 3050B 1,6010C PS 20.7 0.117 1 12/23/17 08:00 12/26/17 13:14 EPA 3050B 1,6010C PS Lead, Total mg/kg 2.19 Mercury, Total 0.04 J 0.07 0.02 1 12/23/17 11:00 12/26/17 11:24 EPA 7471B 1,7471B MG mg/kg Selenium, Total 0.438 J mg/kg 0.876 0.113 1 12/23/17 08:00 12/26/17 13:14 EPA 3050B 1,6010C PS

0.124

1

12/23/17 08:00 12/26/17 13:14 EPA 3050B

1,6010C

PS

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1747441

Report Date: 12/26/17

Method Blank Analysis Batch Quality Control

Parameter	Result C	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sa	mple(s):	01,03,05,	07,09 E	Batch: V	VG1076082	-1			
Arsenic, Total	ND		mg/kg	0.400	0.083	1	12/23/17 08:00	12/26/17 10:40	1,6010C	PS
Barium, Total	ND		mg/kg	0.400	0.070	1	12/23/17 08:00	12/26/17 10:40	1,6010C	PS
Cadmium, Total	ND		mg/kg	0.400	0.039	1	12/23/17 08:00	12/26/17 10:40	1,6010C	PS
Chromium, Total	0.040	J	mg/kg	0.400	0.038	1	12/23/17 08:00	12/26/17 10:40	1,6010C	PS
Lead, Total	ND		mg/kg	2.00	0.107	1	12/23/17 08:00	12/26/17 10:40	1,6010C	PS
Selenium, Total	ND		mg/kg	0.800	0.103	1	12/23/17 08:00	12/26/17 10:40	1,6010C	PS
Silver, Total	ND		mg/kg	0.400	0.113	1	12/23/17 08:00	12/26/17 10:40	1,6010C	PS

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01,03,05,	07,09	Batch: V	VG1076084	-1			
Mercury, Total	ND	mg/kg	0.08	0.02	1	12/23/17 11:00	12/26/17 10:59	1,7471B	MG

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1747441

Report Date: 12/26/17

Parameter	LCS %Recovery 0	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01,03,05,07,09	Batch: WG1076082-2	SRM Lot Number: D098-540			
Arsenic, Total	101	-	83-117	-		
Barium, Total	97	-	82-118	-		
Cadmium, Total	98	-	82-117	-		
Chromium, Total	101	-	83-119	-		
Lead, Total	96	-	82-117	-		
Selenium, Total	100	-	78-121	-		
Silver, Total	100	-	80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01,03,05,07,09	Batch: WG1076084-2	SRM Lot Number: D098-540			
Mercury, Total	109	-	50-149	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1747441

Report Date: 12/26/17

Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual	Recovery Limits	RPD (RPD Qual Limits
b Associated san	nple(s): 01,0	3,05,07,09	QC Batch ID	: WG107	76082-3	QC Sample: L17453	22-07 Clie	nt ID: M	S Sample
1.96	9.91	11.7	98		-	-	75-125	-	20
13.4	165	181	101		-	-	75-125	-	20
0.163J	4.21	4.24	101		-	-	75-125	-	20
17.9	16.5	39.4	130	Q	-	-	75-125	-	20
7.01	42.1	50.6	103		-	-	75-125	-	20
0.301J	9.91	9.28	94		-	-	75-125	-	20
ND	24.8	26.3	106		-	-	75-125	-	20
b Associated sam	nple(s): 01,0	3,05,07,09	QC Batch ID	: WG107	76084-3	QC Sample: L17453	22-07 Clie	nt ID: M	S Sample
0.03J	0.134	0.19	142	Q	-	-	80-120	-	20
	Sample D Associated sam 1.96 13.4 0.163J 17.9 7.01 0.301J ND D Associated sam	Sample Added b Associated sample(s): 01,0 1.96 9.91 13.4 165 0.163J 4.21 17.9 16.5 7.01 42.1 0.301J 9.91 ND 24.8 b Associated sample(s): 01,0	Sample Added Found b Associated sample(s): 01,03,05,07,09 1.96 9.91 11.7 13.4 165 181 0.163J 4.21 4.24 17.9 16.5 39.4 7.01 42.1 50.6 0.301J 9.91 9.28 ND 24.8 26.3 b Associated sample(s): 01,03,05,07,09	Sample Added Found %Recovery b Associated sample(s): 01,03,05,07,09 QC Batch ID 1.96 9.91 11.7 98 13.4 165 181 101 0.163J 4.21 4.24 101 17.9 16.5 39.4 130 7.01 42.1 50.6 103 0.301J 9.91 9.28 94 ND 24.8 26.3 106 b Associated sample(s): 01,03,05,07,09 QC Batch ID	Sample Added Found %Recovery Qual b Associated sample(s): 01,03,05,07,09 QC Batch ID: WG107 1.96 9.91 11.7 98 13.4 165 181 101 0.163J 4.21 4.24 101 17.9 16.5 39.4 130 Q 7.01 42.1 50.6 103 0.301J 9.91 9.28 94 ND 24.8 26.3 106	Sample Added Found %Recovery Qual Found b Associated sample(s): 01,03,05,07,09 QC Batch ID: WG1076082-3 1.96 9.91 11.7 98 - 13.4 165 181 101 - 0.163J 4.21 4.24 101 - 17.9 16.5 39.4 130 Q - 7.01 42.1 50.6 103 - - 0.301J 9.91 9.28 94 - - ND 24.8 26.3 106 - Associated sample(s): 01,03,05,07,09 QC Batch ID: WG1076084-3	Sample Added Found %Recovery Qual Found %Recovery Qual b Associated sample(s): 01,03,05,07,09 QC Batch ID: WG1076082-3 QC Sample: L17453 1.96 9.91 11.7 98 - - - 13.4 165 181 101 - - - 0.163J 4.21 4.24 101 - - - 17.9 16.5 39.4 130 Q - - 7.01 42.1 50.6 103 - - - 0.301J 9.91 9.28 94 - - - ND 24.8 26.3 106 - - - Associated sample(s): 01,03,05,07,09 QC Batch ID: WG1076084-3 QC Sample: L17453	Sample Added Found %Recovery Qual Found %Recovery Qual Limits b Associated sample(s): 01,03,05,07,09 QC Batch ID: WG1076082-3 QC Sample: L1745322-07 Clie 1.96 9.91 11.7 98 - - - 75-125 13.4 165 181 101 - - - 75-125 0.163J 4.21 4.24 101 - - - 75-125 17.9 16.5 39.4 130 Q - - 75-125 7.01 42.1 50.6 103 - - 75-125 0.301J 9.91 9.28 94 - - 75-125 ND 24.8 26.3 106 - - - 75-125 Dealth Associated sample(s): 01,03,05,07,09 QC Batch ID: WG1076084-3 QC Sample: L1745322-07 Clie	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Control of the property b Associated sample(s): 01,03,05,07,09 QC Batch ID: WG1076082-3 QC Sample: L1745322-07 Client ID: MS 1.96 9.91 11.7 98 - - - 75-125 - 13.4 165 181 101 - - - 75-125 - 0.163J 4.21 4.24 101 - - - 75-125 - 17.9 16.5 39.4 130 Q - - 75-125 - 7.01 42.1 50.6 103 - - - 75-125 - 0.301J 9.91 9.28 94 - - - 75-125 - ND 24.8 26.3 106 - - - 75-125 - Associated sample(s): 01,03,05,07,09 QC Batch ID: WG1076084-3 QC

Lab Duplicate Analysis Batch Quality Control

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

L1747441

Panas

Report Date: 12/26/17

Parameter	Native Sar	mple Du	ıplicate Sampl	e Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s)	: 01,03,05,07,09	QC Batch ID: W	VG1076082-4	QC Sample:	L1745322-07	Client ID:	DUP Sample
Arsenic, Total	1.96		2.42	mg/kg	21	Q	20
Barium, Total	13.4		24.3	mg/kg	58	Q	20
Cadmium, Total	0.163J		0.280J	mg/kg	NC		20
Chromium, Total	17.9		34.9	mg/kg	64	Q	20
Lead, Total	7.01		15.5	mg/kg	75	Q	20
Selenium, Total	0.301J		0.280J	mg/kg	NC		20
Silver, Total	ND		ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sample(s)	: 01,03,05,07,09	QC Batch ID: W	VG1076084-4	QC Sample:	L1745322-07	Client ID:	DUP Sample
Mercury, Total	0.03J		0.03J	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1747441

Project Number: 2180345 Report Date: 12/26/17

SAMPLE RESULTS

Lab ID: L1747441-01 Date Collected: 12/22/17 09:30

Client ID: AB-1 0.25-0.5 FT Date Received: 12/22/17

Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	88.8		%	0.100	NA	1	-	12/23/17 08:19	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1747441

Project Number: 2180345 Report Date: 12/26/17

SAMPLE RESULTS

Lab ID: L1747441-03 Date Collected: 12/22/17 10:15

Client ID: AB-2 1-2FT Date Received: 12/22/17

Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lab)								
Solids, Total	88.3		%	0.100	NA	1	-	12/23/17 08:19	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1747441

Project Number: 2180345 Report Date: 12/26/17

SAMPLE RESULTS

Lab ID: L1747441-05 Date Collected: 12/22/17 11:20

 Client ID:
 AB-4 0.25-0.5 FT
 Date Received:
 12/22/17

 Sample Location:
 115-121 W 3RD ST. + 200-210 WA
 Field Prep:
 Not Specified

Matrix: Soil

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total 91.0 % 0.100 NA 1 12/23/17 08:19 121,2540G RΙ

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1747441

Project Number: 2180345 Report Date: 12/26/17

SAMPLE RESULTS

Lab ID: L1747441-07 Date Collected: 12/22/17 12:00

Client ID: AB-5 1-2 FT Date Received: 12/22/17

Client ID: AB-5 1-2 FT Date Received: 12/22/17
Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specification Service States of the Company o

Sample Location: 115-121 W 3RD ST. + 200-210 WA Field Prep: Not Specified Matrix: Soil

Analytical Method **Dilution** Date Date Factor Prepared Analyzed Result Qualifier Units RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total 91.6 % 0.100 NA 1 12/23/17 08:19 121,2540G RΙ

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1747441

Project Number: 2180345 Report Date: 12/26/17

SAMPLE RESULTS

Lab ID: L1747441-09 Date Collected: 12/22/17 13:50

 Client ID:
 AB-7 0.25-0.5 FT
 Date Received:
 12/22/17

 Sample Location:
 115-121 W 3RD ST. + 200-210 WA
 Field Prep:
 Not Specified

Matrix: Soil

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total 87.5 % 0.100 NA 1 12/23/17 08:19 121,2540G RΙ

L1747441

Lab Duplicate Analysis
Batch Quality Control

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

ality Control Lab Number:

Report Date: 12/26/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Associated s 0.25-0.5 FT	ample(s): 01,03,05,07,09	QC Batch ID: WG107612	8-1 QC Sa	mple: L17	47441-01 (Client ID: AB-1	
Solids, Total	88.8	86.8	%	2		20	

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1747441

Report Date: 12/26/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1747441-01A	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1747441-01B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		NYTCL-8270(14),TS(7)
L1747441-02A	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		HOLD-METAL(180)
L1747441-02B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)
L1747441-03A	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1747441-03B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		NYTCL-8270(14),TS(7)
L1747441-04A	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		HOLD-METAL(180)
L1747441-04B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)
L1747441-05A	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1747441-05B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		NYTCL-8270(14),TS(7)
L1747441-06A	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		HOLD-METAL(180)
L1747441-06B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)
L1747441-07A	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1747441-07B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		NYTCL-8270(14),TS(7)
L1747441-08A	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		HOLD-METAL(180)
L1747441-08B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)
L1747441-09A	Glass 120ml/4oz unpreserved	А	NA		2.4	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1747441-09B	Glass 120ml/4oz unpreserved	Α	NA		2.4	Υ	Absent		NYTCL-8270(14),TS(7)

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1747441

 Project Number:
 2180345
 Report Date:
 12/26/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1747441

 Project Number:
 2180345
 Report Date:
 12/26/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1747441

 Project Number:
 2180345
 Report Date:
 12/26/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12261716:21

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Conters Mahwah, NJ 07430: 35 Whi Albany, NY 12205: 14 Walk Tonawanda, NY 14150: 275 Project Information Project Name: 15-	er Way 6 Cooper Ave, Suite 1	7++200	-210 Na	shinata).	1		50	12/	2 ASF	3/17	Billing I	nformation ime as Client I	
Client Information	11.11.11.11.11.11.11.11.11.11.11.11.11.	Project Location: 115 Project # 21803	-121 W3rd	St +20	10-510 IVI	ash vistans.		EQu Othe	IS (1 File) r] EQu	ılS (4 File)	PO#		
Client: La Bella As		(Use Project name as					Reg	ulatory	Requirer	nent			Disposa	al Site Informal	tion
Address: 300 PCO	r st	Project Manager: ALPHAQuote #:	dan Ze ba	Msti			F	NY TO	OGS Standards	F		Part 375 P-51	Control of the Control of the	fentify below loca e disposal faciliti	
Phone: 710-7/0-	3043	Turn-Around Time			1000			NY R	stricted Us	e [Othe	r	Disposal	Facility:	
Fax:		Nush (only if pre appro-	lard wed)	Due Date	e: s: 1 day	term	F	NY U	restricted l Sewer Disc	Use	4		☐ NJ		IY
These samples have b	The second secon	10.00			0.00	1011	ANA	LYSIS		-			-	Filtration	T
Other project specific	c requirements/com	ments:						T _		T		Т			0
emuil to	CHOBL CO	la bellu pr con	-com 1				SVOCS	Metal					Lab	to do ration	t a l
							-						(0)		0
ALPHA Lab ID (Lab Use Only)	s	ample ID	17.000	ection	Sample Matrix	Sampler's Initials	CPSI	RCKA						Specify below	1
January I	AB-1 0.25	-0.5 ft	Date	Time			-			+	-	-	Sample S	Specific Comme	ints (9)
4744 6			12/27/17	9:30	Soil	20	~	X		+	-		-	11015	
27		-164	12/22/7		Sov	SD	1	4	_	-	-		ON	HOLL)
EX.	AB-2 1-2		D.177 In		Soil	SD	×	4	_	+	-		8		
	483 0	25-asft	12/27/17		Soul	SD	K	×		+			ON	HOID	
45		25-0.5 FF	12/22/10	THE RESERVE OF THE PERSON NAMED IN	Son	SD	K	¥		-					
127	14/13/2017/ADD	0.25-18+	12/22/17	12:00	Soil	SD	X	*					ON	HOLD)
- 0/		1-2.54	12/22/17	12'0	Soil	SP	X	N							
57	The state of the s	.25-0.5A	12/22/17		Sal	SD	X.	k .					ON	HOLD	>
100,	AB-7	0.25-0.59	12/22/17	13:50	1102	SD	X	<						- V. F. N. & A. S. S.	
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification Mansfield: Certification			Con	tainer Type						×	and co	print clearly, lempletely. Sam	
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup				P	reservative							turnaro	ound time clock	40.000 100.000 100.000
F = MeOH	C = Cube	Relinquishe	d Bur	Date	/Time			-45						ntil any ambigu	
3 = NaHSO ₄	O = Other E = Encore	100			/Time		-	ed By:		-		Time	THUC	ed, BY EXECU COC, THE CLI	
$H = Na_2S_2O_3$ C/E = Zn Ac/NaOH D = Other	D = BOD Bottle	V. · ·	Pey Apr	12/22/17		auduy	til	ey !	2 C			7 003K	HAS R	EAD AND AG BOUND BY A	REES LPHA'S
Form No: 01-25 HC (rev. 30	0-Sept-2013)	V											Sec. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	everse side.)	1100

ANALYTICAL REPORT

Lab Number: L1801264

Client: LaBella Associates, P.C.

300 Pearl Street

Suite 252

Buffalo, NY 14202

ATTN: Adam Zebrowski Phone: (716) 551-6281

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345 Report Date: 01/19/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264 **Report Date:** 01/19/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1801264-01	SB-14 2-3 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 09:00	01/12/18
L1801264-02	SB-15 2-3 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 09:30	01/12/18
L1801264-03	SB-16 2-5 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 10:00	01/12/18
L1801264-04	SB-17 2-5 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 10:30	01/12/18
L1801264-05	SB-18 1-4 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 11:00	01/12/18
L1801264-06	SB-19 2-5 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 11:15	01/12/18
L1801264-07	SB-20 1-4 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 11:40	01/12/18
L1801264-08	SB-21 14-15 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 12:15	01/12/18
L1801264-09	SB-22 15-16 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 13:00	01/12/18
L1801264-10	SB-23 15-16 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/11/18 13:40	01/12/18
L1801264-11	SB-30 14-15 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/12/18 10:50	01/12/18
L1801264-12	SB-33 15-16 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/12/18 12:40	01/12/18
L1801264-13	SB-26 0.5-2 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/12/18 09:00	01/12/18
L1801264-14	SB-28 0.5-2 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/12/18 09:50	01/12/18
L1801264-15	SB-29 3-5 FT	SOIL	115-121 W. THIRD ST., & 200-210 WASHINGTON ST.	01/12/18 10:20	01/12/18

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

 Project Number:
 2180345
 Report Date:
 01/10/18

Project Number: 2180345 Report Date: 01/19/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

 Project Number:
 2180345
 Report Date:
 01/19/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The Client IDs and analyses performed were specified by the client.

Volatile Organics

L1801264-08 was analyzed as a High Level Methanol in order to quantitate the sample within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial Low Level analysis. The results of both analyses are reported.

Semivolatile Organics

L1801264-03, -04, -05, -06, -07, -14 and -15: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

L1801264-11: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 01/19/18

ORGANICS

VOLATILES

L1801264

01/19/18

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 12:15

Report Date:

Lab ID: L1801264-08 Client ID: Date Received: 01/12/18 SB-21 14-15 FT

115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 01/18/18 14:52

Analyst: ΑD Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westl	oorough Lab					
Methylene chloride	ND		ug/kg	4.6	0.77	1
1,1-Dichloroethane	ND		ug/kg	0.70	0.12	1
Chloroform	ND		ug/kg	0.70	0.17	1
Carbon tetrachloride	ND		ug/kg	0.46	0.16	1
1,2-Dichloropropane	ND		ug/kg	1.6	0.10	1
Dibromochloromethane	ND		ug/kg	0.46	0.08	1
1,1,2-Trichloroethane	ND		ug/kg	0.70	0.14	1
Tetrachloroethene	550	E	ug/kg	0.46	0.14	1
Chlorobenzene	ND		ug/kg	0.46	0.16	1
Trichlorofluoromethane	ND		ug/kg	2.3	0.19	1
1,2-Dichloroethane	ND		ug/kg	0.46	0.11	1
1,1,1-Trichloroethane	ND		ug/kg	0.46	0.16	1
Bromodichloromethane	ND		ug/kg	0.46	0.14	1
trans-1,3-Dichloropropene	ND		ug/kg	0.46	0.10	1
cis-1,3-Dichloropropene	ND		ug/kg	0.46	0.11	1
Bromoform	ND		ug/kg	1.8	0.11	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.46	0.14	1
Benzene	ND		ug/kg	0.46	0.09	1
Toluene	0.51	J	ug/kg	0.70	0.09	1
Ethylbenzene	0.90		ug/kg	0.46	0.08	1
Chloromethane	ND		ug/kg	2.3	0.20	1
Bromomethane	ND		ug/kg	0.93	0.16	1
Vinyl chloride	ND		ug/kg	0.93	0.15	1
Chloroethane	ND		ug/kg	0.93	0.15	1
1,1-Dichloroethene	ND		ug/kg	0.46	0.17	1
trans-1,2-Dichloroethene	2.7		ug/kg	0.70	0.11	1
Trichloroethene	7.1		ug/kg	0.46	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.08	1
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.10	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.08	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-08 Date Collected: 01/11/18 12:15

Client ID: SB-21 14-15 FT Date Received: 01/12/18 Sample Location: Field Prep: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	tborough Lab					
Methyl tert butyl ether	ND		ug/kg	0.93	0.07	1
p/m-Xylene	6.2		ug/kg	0.93	0.16	 1
o-Xylene	1.5		0 0	0.93	0.16	1
cis-1,2-Dichloroethene	0.72		ug/kg	0.93	0.16	1
,			ug/kg			
Styrene	ND		ug/kg	0.93	0.19	1
Dichlorodifluoromethane	ND		ug/kg	4.6	0.23	1
Acetone	ND		ug/kg	4.6	1.1	1
Carbon disulfide	ND		ug/kg	4.6	0.51	1
2-Butanone	ND		ug/kg	4.6	0.32	1
4-Methyl-2-pentanone	ND		ug/kg	4.6	0.11	1
2-Hexanone	ND		ug/kg	4.6	0.31	1
Bromochloromethane	ND		ug/kg	2.3	0.16	1
1,2-Dibromoethane	ND		ug/kg	1.8	0.09	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.3	0.18	1
Isopropylbenzene	0.41	J	ug/kg	0.46	0.09	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.12	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.10	1
Methyl Acetate	ND		ug/kg	9.3	0.22	1
Cyclohexane	8.2	J	ug/kg	9.3	0.20	1
1,4-Dioxane	ND		ug/kg	18	6.7	1
Freon-113	ND		ug/kg	9.3	0.24	1
Methyl cyclohexane	21		ug/kg	1.8	0.11	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	91	70-130	

L1801264

01/19/18

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 12:15

Report Date:

Lab ID: L1801264-08

Client ID: Date Received: 01/12/18 SB-21 14-15 FT Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 01/19/18 08:18

Analyst: MV Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	n - Westborough Lab)				
Methylene chloride	150	J	ug/kg	350	58.	1
1,1-Dichloroethane	ND		ug/kg	53	9.6	1
Chloroform	ND		ug/kg	53	13.	1
Carbon tetrachloride	ND		ug/kg	35	12.	1
1,2-Dichloropropane	ND		ug/kg	120	8.1	1
Dibromochloromethane	ND		ug/kg	35	6.2	1
1,1,2-Trichloroethane	ND		ug/kg	53	11.	1
Tetrachloroethene	2000		ug/kg	35	11.	1
Chlorobenzene	ND		ug/kg	35	12.	1
Trichlorofluoromethane	ND		ug/kg	180	15.	1
1,2-Dichloroethane	ND		ug/kg	35	8.7	1
1,1,1-Trichloroethane	ND		ug/kg	35	12.	1
Bromodichloromethane	ND		ug/kg	35	11.	1
trans-1,3-Dichloropropene	ND		ug/kg	35	7.4	1
cis-1,3-Dichloropropene	ND		ug/kg	35	8.2	1
Bromoform	ND		ug/kg	140	8.4	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	35	10.	1
Benzene	ND		ug/kg	35	6.8	1
Toluene	ND		ug/kg	53	6.9	1
Ethylbenzene	ND		ug/kg	35	6.0	1
Chloromethane	ND		ug/kg	180	15.	1
Bromomethane	ND		ug/kg	71	12.	1
Vinyl chloride	ND		ug/kg	71	11.	1
Chloroethane	ND		ug/kg	71	11.	1
1,1-Dichloroethene	ND		ug/kg	35	13.	1
trans-1,2-Dichloroethene	ND		ug/kg	53	8.5	1
Trichloroethene	ND		ug/kg	35	11.	1
1,2-Dichlorobenzene	ND		ug/kg	180	6.4	1
1,3-Dichlorobenzene	ND		ug/kg	180	7.7	1
1,4-Dichlorobenzene	ND		ug/kg	180	6.4	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-08 Date Collected: 01/11/18 12:15

Date Received: Client ID: SB-21 14-15 FT 01/12/18 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	n - Westborough Lab					
Methyl tert butyl ether	ND		ug/kg	71	5.4	1
p/m-Xylene	ND		ug/kg	71	12.	1
o-Xylene	ND		ug/kg	71	12.	1
cis-1,2-Dichloroethene	ND		ug/kg	35	12.	1
Styrene	ND		ug/kg	71	14.	1
Dichlorodifluoromethane	ND		ug/kg	350	18.	1
Acetone	ND		ug/kg	350	81.	1
Carbon disulfide	ND		ug/kg	350	39.	1
2-Butanone	ND		ug/kg	350	24.	1
4-Methyl-2-pentanone	ND		ug/kg	350	8.6	1
2-Hexanone	ND		ug/kg	350	24.	1
Bromochloromethane	ND		ug/kg	180	13.	1
1,2-Dibromoethane	ND		ug/kg	140	7.0	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	180	14.	1
Isopropylbenzene	ND		ug/kg	35	6.9	1
1,2,3-Trichlorobenzene	ND		ug/kg	180	8.9	1
1,2,4-Trichlorobenzene	ND		ug/kg	180	7.6	1
Methyl Acetate	ND		ug/kg	710	16.	1
Cyclohexane	ND		ug/kg	710	15.	1
1,4-Dioxane	ND		ug/kg	1400	510	1
Freon-113	ND		ug/kg	710	18.	1
Methyl cyclohexane	ND		ug/kg	140	8.5	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	85	70-130	

L1801264

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-09 Date Collected: 01/11/18 13:00

Client ID: Date Received: 01/12/18 SB-22 15-16 FT

115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 01/19/18 08:43

Analyst: MV Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	tborough Lab					
Methylene chloride	130	J	ug/kg	600	98.	1
1,1-Dichloroethane	ND		ug/kg	89	16.	1
Chloroform	ND		ug/kg	89	22.	1
Carbon tetrachloride	ND		ug/kg	60	20.	1
1,2-Dichloropropane	ND		ug/kg	210	14.	1
Dibromochloromethane	ND		ug/kg	60	10.	1
1,1,2-Trichloroethane	ND		ug/kg	89	19.	1
Tetrachloroethene	710		ug/kg	60	18.	1
Chlorobenzene	ND		ug/kg	60	21.	1
Trichlorofluoromethane	ND		ug/kg	300	25.	1
1,2-Dichloroethane	ND		ug/kg	60	15.	1
1,1,1-Trichloroethane	ND		ug/kg	60	21.	1
Bromodichloromethane	ND		ug/kg	60	18.	1
trans-1,3-Dichloropropene	ND		ug/kg	60	12.	1
cis-1,3-Dichloropropene	ND		ug/kg	60	14.	1
Bromoform	ND		ug/kg	240	14.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	60	18.	1
Benzene	ND		ug/kg	60	12.	1
Toluene	ND		ug/kg	89	12.	1
Ethylbenzene	ND		ug/kg	60	10.	1
Chloromethane	ND		ug/kg	300	26.	1
Bromomethane	ND		ug/kg	120	20.	1
Vinyl chloride	ND		ug/kg	120	19.	1
Chloroethane	ND		ug/kg	120	19.	1
1,1-Dichloroethene	ND		ug/kg	60	22.	1
trans-1,2-Dichloroethene	ND		ug/kg	89	14.	1
Trichloroethene	ND		ug/kg	60	18.	1
1,2-Dichlorobenzene	ND		ug/kg	300	11.	1
1,3-Dichlorobenzene	ND		ug/kg	300	13.	1
1,4-Dichlorobenzene	ND		ug/kg	300	11.	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-09 Date Collected: 01/11/18 13:00

Client ID: Date Received: 01/12/18 SB-22 15-16 FT Sample Location: Field Prep: Not Specified 115-121 W. THIRD ST., & 200-210 WASHINGTON ST.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - We	estborough Lab						
Methyl tert butyl ether	ND		ug/kg	120	9.1	1	
p/m-Xylene	ND		ug/kg	120	21.	1	
o-Xylene	ND		ug/kg	120	20.	1	
cis-1,2-Dichloroethene	ND		ug/kg	60	20.	1	
Styrene	ND		ug/kg	120	24.	1	
Dichlorodifluoromethane	ND		ug/kg	600	30.	1	
Acetone	ND		ug/kg	600	140	1	
Carbon disulfide	ND		ug/kg	600	66.	1	
2-Butanone	ND		ug/kg	600	41.	1	
4-Methyl-2-pentanone	ND		ug/kg	600	14.	1	
2-Hexanone	ND		ug/kg	600	40.	1	
Bromochloromethane	ND		ug/kg	300	21.	1	
1,2-Dibromoethane	ND		ug/kg	240	12.	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	300	24.	1	
Isopropylbenzene	26	J	ug/kg	60	12.	1	
1,2,3-Trichlorobenzene	ND		ug/kg	300	15.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	300	13.	1	
Methyl Acetate	ND		ug/kg	1200	28.	1	
Cyclohexane	420	J	ug/kg	1200	26.	1	
1,4-Dioxane	ND		ug/kg	2400	860	1	
Freon-113	ND		ug/kg	1200	31.	1	
Methyl cyclohexane	1900		ug/kg	240	14.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	87	70-130	

L1801264

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: D Date Collected: 01/11/18 13:40 L1801264-10

Client ID: Date Received: 01/12/18 SB-23 15-16 FT

115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 01/19/18 09:09

Analyst: MV Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	stborough Lab					
Methylene chloride	2900	J	ug/kg	7500	1200	20
1,1-Dichloroethane	ND		ug/kg	1100	200	20
Chloroform	ND		ug/kg	1100	280	20
Carbon tetrachloride	ND		ug/kg	750	260	20
1,2-Dichloropropane	ND		ug/kg	2600	170	20
Dibromochloromethane	ND		ug/kg	750	130	20
1,1,2-Trichloroethane	ND		ug/kg	1100	240	20
Tetrachloroethene	120000		ug/kg	750	230	20
Chlorobenzene	ND		ug/kg	750	260	20
Trichlorofluoromethane	ND		ug/kg	3800	310	20
1,2-Dichloroethane	ND		ug/kg	750	180	20
1,1,1-Trichloroethane	ND		ug/kg	750	260	20
Bromodichloromethane	ND		ug/kg	750	230	20
trans-1,3-Dichloropropene	ND		ug/kg	750	160	20
cis-1,3-Dichloropropene	ND		ug/kg	750	170	20
Bromoform	ND		ug/kg	3000	180	20
1,1,2,2-Tetrachloroethane	ND		ug/kg	750	220	20
Benzene	ND		ug/kg	750	140	20
Toluene	ND		ug/kg	1100	150	20
Ethylbenzene	ND		ug/kg	750	130	20
Chloromethane	ND		ug/kg	3800	330	20
Bromomethane	ND		ug/kg	1500	250	20
Vinyl chloride	ND		ug/kg	1500	240	20
Chloroethane	ND		ug/kg	1500	240	20
1,1-Dichloroethene	ND		ug/kg	750	280	20
trans-1,2-Dichloroethene	ND		ug/kg	1100	180	20
Trichloroethene	ND		ug/kg	750	230	20
1,2-Dichlorobenzene	ND		ug/kg	3800	140	20
1,3-Dichlorobenzene	ND		ug/kg	3800	160	20
1,4-Dichlorobenzene	ND		ug/kg	3800	140	20

01/19/18

Report Date:

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345

SAMPLE RESULTS

Lab ID: L1801264-10 D Date Collected: 01/11/18 13:40

Client ID: SB-23 15-16 FT Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by 8260/5035 - Westborough Lab								
Methyl tert butyl ether	ND		ug/kg	1500	120	20		
p/m-Xylene	270	J	ug/kg	1500	260	20		
o-Xylene	ND		ug/kg	1500	250	20		
cis-1,2-Dichloroethene	ND		ug/kg	750	260	20		
Styrene	ND		ug/kg	1500	300	20		
Dichlorodifluoromethane	ND		ug/kg	7500	380	20		
Acetone	ND		ug/kg	7500	1700	20		
Carbon disulfide	ND		ug/kg	7500	830	20		
2-Butanone	ND		ug/kg	7500	520	20		
4-Methyl-2-pentanone	ND		ug/kg	7500	180	20		
2-Hexanone	ND		ug/kg	7500	500	20		
Bromochloromethane	ND		ug/kg	3800	270	20		
1,2-Dibromoethane	ND		ug/kg	3000	150	20		
1,2-Dibromo-3-chloropropane	ND		ug/kg	3800	300	20		
Isopropylbenzene	1100		ug/kg	750	150	20		
1,2,3-Trichlorobenzene	ND		ug/kg	3800	190	20		
1,2,4-Trichlorobenzene	ND		ug/kg	3800	160	20		
Methyl Acetate	ND		ug/kg	15000	350	20		
Cyclohexane	17000		ug/kg	15000	330	20		
1,4-Dioxane	ND		ug/kg	30000	11000	20		
Freon-113	ND		ug/kg	15000	390	20		
Methyl cyclohexane	58000		ug/kg	3000	180	20		

% Recovery	Acceptance Qualifier Criteria
89	70-130
107	70-130
106	70-130
87	70-130
	89 107 106

L1801264

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

D

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

L1801264-11

Date Collected: 01/12/18 10:50

Client ID: SB-30 14-15 FT Date Received: 01/12/18

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Matrix: Soil
Analytical Method: 1,8260C

Analytical Date: 01/19/18 09:35

Analyst: MV Percent Solids: 79%

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	6700	J	ug/kg	16000	2700	40
1,1-Dichloroethane	ND		ug/kg	2400	440	40
Chloroform	ND		ug/kg	2400	600	40
Carbon tetrachloride	ND		ug/kg	1600	560	40
1,2-Dichloropropane	ND		ug/kg	5600	370	40
Dibromochloromethane	ND		ug/kg	1600	280	40
1,1,2-Trichloroethane	ND		ug/kg	2400	500	40
Tetrachloroethene	240000		ug/kg	1600	490	40
Chlorobenzene	ND		ug/kg	1600	560	40
Trichlorofluoromethane	ND		ug/kg	8100	670	40
1,2-Dichloroethane	ND		ug/kg	1600	400	40
1,1,1-Trichloroethane	ND		ug/kg	1600	560	40
Bromodichloromethane	ND		ug/kg	1600	500	40
trans-1,3-Dichloropropene	ND		ug/kg	1600	340	40
cis-1,3-Dichloropropene	ND		ug/kg	1600	370	40
Bromoform	ND		ug/kg	6400	380	40
1,1,2,2-Tetrachloroethane	ND		ug/kg	1600	480	40
Benzene	ND		ug/kg	1600	310	40
Toluene	ND		ug/kg	2400	310	40
Ethylbenzene	ND		ug/kg	1600	270	40
Chloromethane	ND		ug/kg	8100	700	40
Bromomethane	ND		ug/kg	3200	540	40
Vinyl chloride	ND		ug/kg	3200	510	40
Chloroethane	ND		ug/kg	3200	510	40
1,1-Dichloroethene	ND		ug/kg	1600	600	40
trans-1,2-Dichloroethene	ND		ug/kg	2400	390	40
Trichloroethene	ND		ug/kg	1600	490	40
1,2-Dichlorobenzene	ND		ug/kg	8100	290	40
1,3-Dichlorobenzene	ND		ug/kg	8100	350	40
1,4-Dichlorobenzene	ND		ug/kg	8100	290	40

01/12/18 10:50

Date Collected:

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-11 D

Client ID: SB-30 14-15 FT Date Received: 01/12/18

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - W	estborough Lab						
Methyl tert butyl ether	ND		ug/kg	3200	250	40	
p/m-Xylene	ND		ug/kg	3200	570	40	
o-Xylene	ND		ug/kg	3200	540	40	
cis-1,2-Dichloroethene	ND		ug/kg	1600	550	40	
Styrene	ND		ug/kg	3200	650	40	
Dichlorodifluoromethane	ND		ug/kg	16000	810	40	
Acetone	ND		ug/kg	16000	3700	40	
Carbon disulfide	ND		ug/kg	16000	1800	40	
2-Butanone	ND		ug/kg	16000	1100	40	
4-Methyl-2-pentanone	ND		ug/kg	16000	390	40	
2-Hexanone	ND		ug/kg	16000	1100	40	
Bromochloromethane	ND		ug/kg	8100	580	40	
1,2-Dibromoethane	ND		ug/kg	6400	320	40	
1,2-Dibromo-3-chloropropane	ND		ug/kg	8100	640	40	
Isopropylbenzene	ND		ug/kg	1600	310	40	
1,2,3-Trichlorobenzene	ND		ug/kg	8100	400	40	
1,2,4-Trichlorobenzene	ND		ug/kg	8100	350	40	
Methyl Acetate	ND		ug/kg	32000	750	40	
Cyclohexane	810	J	ug/kg	32000	700	40	
1,4-Dioxane	ND		ug/kg	64000	23000	40	
Freon-113	ND		ug/kg	32000	830	40	
Methyl cyclohexane	5100	J	ug/kg	6400	390	40	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	89	70-130	

L1801264

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

Project Number: 2180345 **Report Date:** 01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/18/18 08:22

olatile Organics by 8260/5035 - Methylene chloride	Westborough ND ND	Lab for sam	ple(s):	80	Batch:	WG1081910-5
·						
	ND		ug/kg		10	1.6
1,1-Dichloroethane			ug/kg		1.5	0.27
Chloroform	ND		ug/kg		1.5	0.37
Carbon tetrachloride	ND		ug/kg		1.0	0.34
1,2-Dichloropropane	ND		ug/kg		3.5	0.23
Dibromochloromethane	ND		ug/kg		1.0	0.18
1,1,2-Trichloroethane	ND		ug/kg		1.5	0.31
Tetrachloroethene	ND		ug/kg		1.0	0.30
Chlorobenzene	ND		ug/kg		1.0	0.35
Trichlorofluoromethane	ND		ug/kg		5.0	0.42
1,2-Dichloroethane	ND		ug/kg		1.0	0.25
1,1,1-Trichloroethane	ND		ug/kg		1.0	0.35
Bromodichloromethane	ND		ug/kg		1.0	0.31
trans-1,3-Dichloropropene	ND		ug/kg		1.0	0.21
cis-1,3-Dichloropropene	ND		ug/kg		1.0	0.23
Bromoform	ND		ug/kg		4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg		1.0	0.30
Benzene	ND		ug/kg		1.0	0.19
Toluene	ND		ug/kg		1.5	0.20
Ethylbenzene	ND		ug/kg		1.0	0.17
Chloromethane	ND		ug/kg		5.0	0.44
Bromomethane	ND		ug/kg		2.0	0.34
Vinyl chloride	ND		ug/kg		2.0	0.32
Chloroethane	ND		ug/kg		2.0	0.32
1,1-Dichloroethene	ND		ug/kg		1.0	0.37
trans-1,2-Dichloroethene	ND		ug/kg		1.5	0.24
Trichloroethene	ND		ug/kg		1.0	0.30
1,2-Dichlorobenzene	ND		ug/kg		5.0	0.18
1,3-Dichlorobenzene	ND		ug/kg		5.0	0.22

Project Number: 2180345 **Report Date:** 01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/18/18 08:22

Parameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/5035 -	Westborough	Lab for sar	nple(s):	80	Batch:	WG1081910-5
1,4-Dichlorobenzene	ND		ug/kg		5.0	0.18
Methyl tert butyl ether	ND		ug/kg		2.0	0.15
p/m-Xylene	ND		ug/kg		2.0	0.35
o-Xylene	ND		ug/kg		2.0	0.34
cis-1,2-Dichloroethene	ND		ug/kg		1.0	0.34
Styrene	ND		ug/kg		2.0	0.40
Dichlorodifluoromethane	ND		ug/kg		10	0.50
Acetone	ND		ug/kg		10	2.3
Carbon disulfide	ND		ug/kg		10	1.1
2-Butanone	ND		ug/kg		10	0.69
4-Methyl-2-pentanone	ND		ug/kg		10	0.24
2-Hexanone	ND		ug/kg		10	0.67
Bromochloromethane	ND		ug/kg		5.0	0.36
1,2-Dibromoethane	ND		ug/kg		4.0	0.20
1,2-Dibromo-3-chloropropane	ND		ug/kg		5.0	0.40
Isopropylbenzene	ND		ug/kg		1.0	0.19
1,2,3-Trichlorobenzene	ND		ug/kg		5.0	0.25
1,2,4-Trichlorobenzene	ND		ug/kg		5.0	0.22
Methyl Acetate	ND		ug/kg		20	0.46
Cyclohexane	ND		ug/kg		20	0.43
1,4-Dioxane	ND		ug/kg		40	14.
Freon-113	ND		ug/kg		20	0.51
Methyl cyclohexane	ND		ug/kg		4.0	0.24

Project Number: 2180345 **Report Date:** 01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/18/18 08:22

Parameter	Result	Qualifier	Units		RL	MDL
Volatile Organics by 8260/5035 - W	estborough/	Lab for sai	mple(s):	08	Batch:	WG1081910-5

		-	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	91		70-130	

Project Number: 2180345 **Report Date:** 01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/19/18 07:52

		Qualifier	Units	RL	MDI	<u> </u>
olatile Organics by EPA 5035 High	n - Westbor	ough Lab fo	or sample(s):	08-11	Batch:	WG1082225-5
Methylene chloride	120	J	ug/kg	500	82	
1,1-Dichloroethane	ND		ug/kg	75	14	
Chloroform	ND		ug/kg	75	18	
Carbon tetrachloride	ND		ug/kg	50	17	
1,2-Dichloropropane	ND		ug/kg	180	11	
Dibromochloromethane	ND		ug/kg	50	8.8	3
1,1,2-Trichloroethane	ND		ug/kg	75	16	
Tetrachloroethene	ND		ug/kg	50	15	
Chlorobenzene	ND		ug/kg	50	17	
Trichlorofluoromethane	ND		ug/kg	250	21	
1,2-Dichloroethane	ND		ug/kg	50	12	
1,1,1-Trichloroethane	ND		ug/kg	50	18	
Bromodichloromethane	ND		ug/kg	50	15	
trans-1,3-Dichloropropene	ND		ug/kg	50	10	
cis-1,3-Dichloropropene	ND		ug/kg	50	12	
Bromoform	ND		ug/kg	200	12	
1,1,2,2-Tetrachloroethane	ND		ug/kg	50	15	
Benzene	ND		ug/kg	50	9.6	6
Toluene	ND		ug/kg	75	9.8	3
Ethylbenzene	ND		ug/kg	50	8.8	5
Chloromethane	ND		ug/kg	250	22	
Bromomethane	21	J	ug/kg	100	17	•
Vinyl chloride	ND		ug/kg	100	16	i.
Chloroethane	ND		ug/kg	100	16	i.
1,1-Dichloroethene	ND		ug/kg	50	19	·
trans-1,2-Dichloroethene	ND		ug/kg	75	12	
Trichloroethene	ND		ug/kg	50	15	
1,2-Dichlorobenzene	ND		ug/kg	250	9.	1
1,3-Dichlorobenzene	ND		ug/kg	250	11	

Project Number: 2180345 **Report Date:** 01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/19/18 07:52

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Hi	gh - Westbord	ough Lab fo	or sample(s):	08-11	Batch: WG1082225-5
1,4-Dichlorobenzene	ND		ug/kg	250	9.1
Methyl tert butyl ether	ND		ug/kg	100	7.6
p/m-Xylene	ND		ug/kg	100	18.
o-Xylene	ND		ug/kg	100	17.
cis-1,2-Dichloroethene	ND		ug/kg	50	17.
Styrene	ND		ug/kg	100	20.
Dichlorodifluoromethane	ND		ug/kg	500	25.
Acetone	ND		ug/kg	500	110
Carbon disulfide	ND		ug/kg	500	55.
2-Butanone	ND		ug/kg	500	34.
4-Methyl-2-pentanone	ND		ug/kg	500	12.
2-Hexanone	ND		ug/kg	500	33.
Bromochloromethane	ND		ug/kg	250	18.
1,2-Dibromoethane	ND		ug/kg	200	10.
1,2-Dibromo-3-chloropropane	ND		ug/kg	250	20.
Isopropylbenzene	ND		ug/kg	50	9.7
1,2,3-Trichlorobenzene	ND		ug/kg	250	12.
1,2,4-Trichlorobenzene	ND		ug/kg	250	11.
Methyl Acetate	ND		ug/kg	1000	23.
Cyclohexane	ND		ug/kg	1000	22.
1,4-Dioxane	ND		ug/kg	2000	720
Freon-113	ND		ug/kg	1000	26.
Methyl cyclohexane	ND		ug/kg	200	12.

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/19/18 07:52

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 High	n - Westbord	ough Lab fo	or sample(s):	08-11	Batch: WG1082225-5

	Acceptance					
Surrogate	%Recovery 0	Qualifier Criteria				
1,2-Dichloroethane-d4	87	70-130				
Toluene-d8	104	70-130				
4-Bromofluorobenzene	101	70-130				
Dibromofluoromethane	87	70-130				

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

Report Date: 01/19/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by 8260/5035 - W	estborough Lab Associa	ted sample(s):	08 Batch: W	VG1081910-3	WG1081910-4			
Methylene chloride	78		80		70-130	3	30	
1,1-Dichloroethane	88		88		70-130	0	30	
Chloroform	82		83		70-130	1	30	
Carbon tetrachloride	81		81		70-130	0	30	
1,2-Dichloropropane	91		92		70-130	1	30	
Dibromochloromethane	90		93		70-130	3	30	
1,1,2-Trichloroethane	94		97		70-130	3	30	
Tetrachloroethene	86		86		70-130	0	30	
Chlorobenzene	88		89		70-130	1	30	
Trichlorofluoromethane	81		80		70-139	1	30	
1,2-Dichloroethane	78		80		70-130	3	30	
1,1,1-Trichloroethane	81		82		70-130	1	30	
Bromodichloromethane	82		84		70-130	2	30	
trans-1,3-Dichloropropene	93		96		70-130	3	30	
cis-1,3-Dichloropropene	84		86		70-130	2	30	
Bromoform	99		100		70-130	1	30	
1,1,2,2-Tetrachloroethane	102		105		70-130	3	30	
Benzene	85		85		70-130	0	30	
Toluene	91		92		70-130	1	30	
Ethylbenzene	92		93		70-130	1	30	
Chloromethane	93		92		52-130	1	30	
Bromomethane	79		77		57-147	3	30	
Vinyl chloride	86		86		67-130	0	30	

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

Report Date: 01/19/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westborou	ugh Lab Associat	ed sample(s):	08 Batch:	WG1081910-3	WG1081910-4			
Chloroethane	80		80		50-151	0	30	
1,1-Dichloroethene	81		80		65-135	1	30	
trans-1,2-Dichloroethene	81		81		70-130	0	30	
Trichloroethene	80		81		70-130	1	30	
1,2-Dichlorobenzene	90		90		70-130	0	30	
1,3-Dichlorobenzene	90		90		70-130	0	30	
1,4-Dichlorobenzene	90		90		70-130	0	30	
Methyl tert butyl ether	74		77		66-130	4	30	
p/m-Xylene	90		91		70-130	1	30	
o-Xylene	91		92		70-130	1	30	
cis-1,2-Dichloroethene	80		81		70-130	1	30	
Styrene	89		90		70-130	1	30	
Dichlorodifluoromethane	80		79		30-146	1	30	
Acetone	110		99		54-140	11	30	
Carbon disulfide	82		82		59-130	0	30	
2-Butanone	108		108		70-130	0	30	
4-Methyl-2-pentanone	97		103		70-130	6	30	
2-Hexanone	98		101		70-130	3	30	
Bromochloromethane	79		81		70-130	3	30	
1,2-Dibromoethane	86		90		70-130	5	30	
1,2-Dibromo-3-chloropropane	87		93		68-130	7	30	
Isopropylbenzene	94		94		70-130	0	30	
1,2,3-Trichlorobenzene	85		87		70-130	2	30	

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

L1801264

Report Date:

01/19/18

_	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by 8260/5035 - Westboroug	h Lab Associat	ed sample(s):	08 Batch:	WG1081910-3	WG1081910-4			
1,2,4-Trichlorobenzene	86		87		70-130	1		30
Methyl Acetate	100		104		51-146	4		30
Cyclohexane	101		101		59-142	0		30
1,4-Dioxane	99		104		65-136	5		30
Freon-113	91		90		50-139	1		30
Methyl cyclohexane	93		93		70-130	0		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	94	96	70-130
Toluene-d8	104	105	70-130
4-Bromofluorobenzene	101	102	70-130
Dibromofluoromethane	90	90	70-130

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

Report Date: 01/19/18

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recove / Qual Limits	•	RPD Qual Limits
olatile Organics by EPA 5035 High - West	borough Lab Ass	ociated sample(s): 08-11	Batch: WG1082225-3	WG1082225-4	
Methylene chloride	97	104	70-130	7	30
1,1-Dichloroethane	85	85	70-130	0	30
Chloroform	82	81	70-130	1	30
Carbon tetrachloride	80	78	70-130	3	30
1,2-Dichloropropane	90	89	70-130	1	30
Dibromochloromethane	92	92	70-130	0	30
1,1,2-Trichloroethane	94	94	70-130	0	30
Tetrachloroethene	88	88	70-130	0	30
Chlorobenzene	89	89	70-130	0	30
Trichlorofluoromethane	76	75	70-139	1	30
1,2-Dichloroethane	75	76	70-130	1	30
1,1,1-Trichloroethane	80	78	70-130	3	30
Bromodichloromethane	82	82	70-130	0	30
trans-1,3-Dichloropropene	92	94	70-130	2	30
cis-1,3-Dichloropropene	86	86	70-130	0	30
Bromoform	100	103	70-130	3	30
1,1,2,2-Tetrachloroethane	100	101	70-130	1	30
Benzene	84	84	70-130	0	30
Toluene	91	92	70-130	1	30
Ethylbenzene	91	92	70-130	1	30
Chloromethane	87	84	52-130	4	30
Bromomethane	83	77	57-147	8	30
Vinyl chloride	81	79	67-130	3	30

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

Report Date: 01/19/18

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recove V Qual Limits	ry RPD	RPD Qual Limits
olatile Organics by EPA 5035 High - Wes	stborough Lab Ass	ociated sample(s): 08-11	Batch: WG1082225-3 V	VG1082225-4	
Chloroethane	78	67	50-151	15	30
1,1-Dichloroethene	82	80	65-135	2	30
trans-1,2-Dichloroethene	81	79	70-130	3	30
Trichloroethene	80	80	70-130	0	30
1,2-Dichlorobenzene	90	92	70-130	2	30
1,3-Dichlorobenzene	90	92	70-130	2	30
1,4-Dichlorobenzene	90	91	70-130	1	30
Methyl tert butyl ether	77	75	66-130	3	30
p/m-Xylene	91	91	70-130	0	30
o-Xylene	92	92	70-130	0	30
cis-1,2-Dichloroethene	82	80	70-130	2	30
Styrene	90	90	70-130	0	30
Dichlorodifluoromethane	73	70	30-146	4	30
Acetone	97	94	54-140	3	30
Carbon disulfide	80	79	59-130	1	30
2-Butanone	103	98	70-130	5	30
4-Methyl-2-pentanone	99	98	70-130	1	30
2-Hexanone	96	96	70-130	0	30
Bromochloromethane	83	80	70-130	4	30
1,2-Dibromoethane	88	88	70-130	0	30
1,2-Dibromo-3-chloropropane	89	88	68-130	1	30
Isopropylbenzene	94	96	70-130	2	30
1,2,3-Trichlorobenzene	88	89	70-130	1	30

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

L1801264 01/19/18

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - Westbo	rough Lab Ass	ociated sample	e(s): 08-11 B	atch: WG10)82225-3 WG108	32225-4		
1,2,4-Trichlorobenzene	87		89		70-130	2		30
Methyl Acetate	100		95		51-146	5		30
Cyclohexane	97		94		59-142	3		30
1,4-Dioxane	104		99		65-136	5		30
Freon-113	88		86		50-139	2		30
Methyl cyclohexane	90		90		70-130	0		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	90	88	70-130
Toluene-d8	103	104	70-130
4-Bromofluorobenzene	101	102	70-130
Dibromofluoromethane	91	89	70-130

SEMIVOLATILES

L1801264

01/19/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 10:00

Lab Number:

Report Date:

Lab ID: L1801264-03 Client ID: SB-16 2-5 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Date Received: 01/12/18

Field Prep: Not Specified Extraction Method: EPA 3546

Extraction Date: 01/16/18 07:29

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 01/17/18 00:25

Analyst: TT Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab					
Acenaphthene	ND		ug/kg	300	39.	1
Hexachlorobenzene	ND		ug/kg	230	43.	1
Bis(2-chloroethyl)ether	ND		ug/kg	340	52.	1
2-Chloronaphthalene	ND		ug/kg	380	38.	1
3,3'-Dichlorobenzidine	ND		ug/kg	380	100	1
2,4-Dinitrotoluene	ND		ug/kg	380	76.	1
2,6-Dinitrotoluene	ND		ug/kg	380	65.	1
Fluoranthene	ND		ug/kg	230	44.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	380	41.	1
4-Bromophenyl phenyl ether	ND		ug/kg	380	58.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	460	65.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	410	38.	1
Hexachlorobutadiene	ND		ug/kg	380	56.	1
Hexachlorocyclopentadiene	ND		ug/kg	1100	340	1
Hexachloroethane	ND		ug/kg	300	62.	1
Isophorone	ND		ug/kg	340	49.	1
Naphthalene	ND		ug/kg	380	46.	1
Nitrobenzene	ND		ug/kg	340	56.	1
NDPA/DPA	ND		ug/kg	300	43.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	380	59.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	380	130	1
Butyl benzyl phthalate	ND		ug/kg	380	96.	1
Di-n-butylphthalate	ND		ug/kg	380	72.	1
Di-n-octylphthalate	ND		ug/kg	380	130	1
Diethyl phthalate	ND		ug/kg	380	35.	1
Dimethyl phthalate	ND		ug/kg	380	80.	1
Benzo(a)anthracene	ND		ug/kg	230	43.	1
Benzo(a)pyrene	ND		ug/kg	300	93.	1
Benzo(b)fluoranthene	ND		ug/kg	230	64.	1
Benzo(k)fluoranthene	ND		ug/kg	230	61.	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 10:00 L1801264-03

Client ID: Date Received: 01/12/18 SB-16 2-5 FT Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Pren Not Specified

Sample Location:	115-121 W. THIRD ST., & 200-2	10 WASHINGTO	N ST.	Field Prep):	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westborough Lab					
Chrysene	ND		ug/kg	230	40.	1
Acenaphthylene	ND		ug/kg	300	59.	1
Anthracene	ND		ug/kg	230	74.	1
Benzo(ghi)perylene	ND		ug/kg	300	45.	1
Fluorene	ND		ug/kg	380	37.	1
Phenanthrene	ND		ug/kg	230	46.	1
Dibenzo(a,h)anthracene	ND		ug/kg	230	44.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	300	53.	1
Pyrene	ND		ug/kg	230	38.	1
Biphenyl	ND		ug/kg	870	88.	1
4-Chloroaniline	ND		ug/kg	380	69.	1
2-Nitroaniline	ND		ug/kg	380	73.	1
3-Nitroaniline	ND		ug/kg	380	72.	1
4-Nitroaniline	ND		ug/kg	380	160	1
Dibenzofuran	ND		ug/kg	380	36.	1
2-Methylnaphthalene	ND		ug/kg	460	46.	1
1,2,4,5-Tetrachlorobenzei	ne ND		ug/kg	380	40.	1
Acetophenone	ND		ug/kg	380	47.	1
2,4,6-Trichlorophenol	ND		ug/kg	230	72.	1
p-Chloro-m-cresol	ND		ug/kg	380	57.	1
2-Chlorophenol	ND		ug/kg	380	45.	1
2,4-Dichlorophenol	ND		ug/kg	340	61.	1
2,4-Dimethylphenol	ND		ug/kg	380	120	1
2-Nitrophenol	ND		ug/kg	820	140	1
4-Nitrophenol	ND		ug/kg	530	160	1
2,4-Dinitrophenol	ND		ug/kg	1800	180	1
4,6-Dinitro-o-cresol	ND		ug/kg	990	180	1
Pentachlorophenol	ND		ug/kg	300	84.	1
Phenol	ND		ug/kg	380	57.	1
2-Methylphenol	ND		ug/kg	380	59.	1
3-Methylphenol/4-Methylp	phenol ND		ug/kg	550	60.	1
2,4,5-Trichlorophenol	ND		ug/kg	380	73.	1
Carbazole	ND		ug/kg	380	37.	1
Atrazine	ND		ug/kg	300	130	1
Benzaldehyde	ND		ug/kg	500	100	1
Caprolactam	ND		ug/kg	380	120	1
2,3,4,6-Tetrachloropheno	I ND		ug/kg	380	77.	1

Dilution Factor

MDL

RL

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 10:00 L1801264-03

Date Received: Client ID: SB-16 2-5 FT 01/12/18 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

Semivolatile Organics by GC/MS - Westborough Lab

Parameter

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	98	25-120
Phenol-d6	103	10-120
Nitrobenzene-d5	103	23-120
2-Fluorobiphenyl	98	30-120
2,4,6-Tribromophenol	102	10-136
4-Terphenyl-d14	84	18-120

Qualifier

Units

L1801264

01/19/18

01/16/18 07:29

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 10:30

Lab Number:

Report Date:

Extraction Date:

Lab ID: L1801264-04 Client ID: SB-17 2-5 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST.

Date Received: 01/12/18
Field Prep: Not Specified

Extraction Method: EPA 3546

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 01/17/18 00:51

Analyst: TT
Percent Solids: 81%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	320	41.	1		
Hexachlorobenzene	ND		ug/kg	240	45.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	360	54.	1		
2-Chloronaphthalene	ND		ug/kg	400	40.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	400	110	1		
2,4-Dinitrotoluene	ND		ug/kg	400	80.	1		
2,6-Dinitrotoluene	ND		ug/kg	400	68.	1		
Fluoranthene	ND		ug/kg	240	46.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	400	43.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	400	61.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	480	68.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	430	40.	1		
Hexachlorobutadiene	ND		ug/kg	400	58.	1		
Hexachlorocyclopentadiene	ND		ug/kg	1100	360	1		
Hexachloroethane	ND		ug/kg	320	64.	1		
Isophorone	ND		ug/kg	360	52.	1		
Naphthalene	ND		ug/kg	400	48.	1		
Nitrobenzene	ND		ug/kg	360	59.	1		
NDPA/DPA	ND		ug/kg	320	45.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	400	62.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	400	140	1		
Butyl benzyl phthalate	ND		ug/kg	400	100	1		
Di-n-butylphthalate	ND		ug/kg	400	76.	1		
Di-n-octylphthalate	ND		ug/kg	400	140	1		
Diethyl phthalate	ND		ug/kg	400	37.	1		
Dimethyl phthalate	ND		ug/kg	400	84.	1		
Benzo(a)anthracene	ND		ug/kg	240	45.	1		
Benzo(a)pyrene	ND		ug/kg	320	97.	1		
Benzo(b)fluoranthene	ND		ug/kg	240	67.	1		
Benzo(k)fluoranthene	ND		ug/kg	240	64.	1		

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-04 Date Collected: 01/11/18 10:30

Client ID: Date Received: 01/12/18 SB-17 2-5 FT Sample Location: Field Prep: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Not Specified

Sample Location. 115-12	1 W. IHIKD 31., & 200-21	U WASHING	TON ST.	rieiu rie	; ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC	/MS - Westborough Lab					
Chrysene	ND		ug/kg	240	41.	1
Acenaphthylene	ND		ug/kg	320	62.	1
Anthracene	ND		ug/kg	240	78.	1
Benzo(ghi)perylene	ND		ug/kg	320	47.	1
Fluorene	ND		ug/kg	400	39.	1
Phenanthrene	ND		ug/kg	240	48.	1
Dibenzo(a,h)anthracene	ND		ug/kg	240	46.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	320	56.	1
Pyrene	ND		ug/kg	240	40.	1
Biphenyl	ND		ug/kg	910	92.	1
4-Chloroaniline	ND		ug/kg	400	72.	1
2-Nitroaniline	ND		ug/kg	400	77.	1
3-Nitroaniline	ND		ug/kg	400	75.	1
4-Nitroaniline	ND		ug/kg	400	160	1
Dibenzofuran	ND		ug/kg	400	38.	1
2-Methylnaphthalene	ND		ug/kg	480	48.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	400	42.	1
Acetophenone	ND		ug/kg	400	49.	1
2,4,6-Trichlorophenol	ND		ug/kg	240	76.	1
p-Chloro-m-cresol	ND		ug/kg	400	59.	1
2-Chlorophenol	ND		ug/kg	400	47.	1
2,4-Dichlorophenol	ND		ug/kg	360	64.	1
2,4-Dimethylphenol	ND		ug/kg	400	130	1
2-Nitrophenol	ND		ug/kg	860	150	1
4-Nitrophenol	ND		ug/kg	560	160	1
2,4-Dinitrophenol	ND		ug/kg	1900	180	1
4,6-Dinitro-o-cresol	ND		ug/kg	1000	190	1
Pentachlorophenol	ND		ug/kg	320	88.	1
Phenol	ND		ug/kg	400	60.	1
2-Methylphenol	ND		ug/kg	400	62.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	570	62.	1
2,4,5-Trichlorophenol	ND		ug/kg	400	76.	1
Carbazole	ND		ug/kg	400	39.	1
Atrazine	ND		ug/kg	320	140	1
Benzaldehyde	ND		ug/kg	530	110	1
Caprolactam	ND		ug/kg	400	120	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	400	80.	1
· · · · · · · · · · · · · · · · · · ·			~5'''8			

Dilution Factor

MDL

RL

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 10:30 L1801264-04

SB-17 2-5 FT Date Received: Client ID: 01/12/18 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

Semivolatile Organics by GC/MS - Westborough Lab

Parameter

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	94	25-120
Phenol-d6	98	10-120
Nitrobenzene-d5	97	23-120
2-Fluorobiphenyl	91	30-120
2,4,6-Tribromophenol	99	10-136
4-Terphenyl-d14	78	18-120

Qualifier

Units

L1801264

01/19/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 11:00

Lab Number:

Report Date:

Lab ID: L1801264-05 Client ID: SB-18 1-4 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST.

Date Received: 01/12/18
Field Prep: Not Specified

Extraction Method:EPA 3546

Extraction Date: 01/16/18 07:29

Matrix: Soil
Analytical Method: 1,8270D

Analytical Date: 01/17/18 03:23

Analyst: TT
Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	310	40.	1		
Hexachlorobenzene	ND		ug/kg	230	43.	1	_	
Bis(2-chloroethyl)ether	ND		ug/kg	340	52.	1		
2-Chloronaphthalene	ND		ug/kg	380	38.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	380	100	1		
2,4-Dinitrotoluene	ND		ug/kg	380	77.	1		
2,6-Dinitrotoluene	ND		ug/kg	380	66.	1		
Fluoranthene	58	J	ug/kg	230	44.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	380	41.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	380	58.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	460	66.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	410	38.	1		
Hexachlorobutadiene	ND		ug/kg	380	56.	1		
Hexachlorocyclopentadiene	ND		ug/kg	1100	350	1		
Hexachloroethane	ND		ug/kg	310	62.	1		
Isophorone	ND		ug/kg	340	50.	1		
Naphthalene	ND		ug/kg	380	47.	1		
Nitrobenzene	ND		ug/kg	340	57.	1		
NDPA/DPA	ND		ug/kg	310	44.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	380	59.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	380	130	1		
Butyl benzyl phthalate	ND		ug/kg	380	97.	1		
Di-n-butylphthalate	ND		ug/kg	380	73.	1		
Di-n-octylphthalate	ND		ug/kg	380	130	1		
Diethyl phthalate	ND		ug/kg	380	36.	1		
Dimethyl phthalate	ND		ug/kg	380	81.	1		
Benzo(a)anthracene	ND		ug/kg	230	43.	1		
Benzo(a)pyrene	ND		ug/kg	310	94.	1		
Benzo(b)fluoranthene	ND		ug/kg	230	65.	1		
Benzo(k)fluoranthene	ND		ug/kg	230	61.	1		

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-05 Date Collected: 01/11/18 11:00

Client ID: SB-18 1-4 FT Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Sample Location:	115-121 W. THIRD S	Т., & 200-21	0 WASHING	TON ST.	Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westbor	ough Lab					
Chrysene		40	J	ug/kg	230	40.	1
Acenaphthylene		ND		ug/kg	310	59.	1
Anthracene		ND		ug/kg	230	75.	1
Benzo(ghi)perylene		ND		ug/kg	310	45.	1
Fluorene		ND		ug/kg	380	37.	1
Phenanthrene		ND		ug/kg	230	47.	1
Dibenzo(a,h)anthracene		ND		ug/kg	230	44.	1
Indeno(1,2,3-cd)pyrene		ND		ug/kg	310	54.	1
Pyrene		46	J	ug/kg	230	38.	1
Biphenyl		ND		ug/kg	880	89.	1
4-Chloroaniline		ND		ug/kg	380	70.	1
2-Nitroaniline		ND		ug/kg	380	74.	1
3-Nitroaniline		ND		ug/kg	380	72.	1
4-Nitroaniline		ND		ug/kg	380	160	1
Dibenzofuran		ND		ug/kg	380	36.	1
2-Methylnaphthalene		ND		ug/kg	460	46.	1
1,2,4,5-Tetrachlorobenze	ne	ND		ug/kg	380	40.	1
Acetophenone		ND		ug/kg	380	48.	1
2,4,6-Trichlorophenol		ND		ug/kg	230	73.	1
p-Chloro-m-cresol		ND		ug/kg	380	57.	1
2-Chlorophenol		ND		ug/kg	380	45.	1
2,4-Dichlorophenol		ND		ug/kg	340	62.	1
2,4-Dimethylphenol		ND		ug/kg	380	130	1
2-Nitrophenol		ND		ug/kg	830	140	1
4-Nitrophenol		ND		ug/kg	540	160	1
2,4-Dinitrophenol		ND		ug/kg	1800	180	1
4,6-Dinitro-o-cresol		ND		ug/kg	1000	180	1
Pentachlorophenol		ND		ug/kg	310	84.	1
Phenol		ND		ug/kg	380	58.	1
2-Methylphenol		ND		ug/kg	380	60.	1
3-Methylphenol/4-Methylp	phenol	ND		ug/kg	550	60.	1
2,4,5-Trichlorophenol		ND		ug/kg	380	74.	1
Carbazole		ND		ug/kg	380	37.	1
Atrazine		ND		ug/kg	310	130	1
Benzaldehyde		ND		ug/kg	510	100	1
Caprolactam		ND		ug/kg	380	120	1
2,3,4,6-Tetrachloropheno	I	ND		ug/kg	380	78.	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 11:00 L1801264-05

SB-18 1-4 FT Date Received: Client ID: 01/12/18 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

RL Parameter Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	67	25-120
Phenol-d6	69	10-120
Nitrobenzene-d5	68	23-120
2-Fluorobiphenyl	66	30-120
2,4,6-Tribromophenol	67	10-136
4-Terphenyl-d14	56	18-120

L1801264

01/19/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 11:15

Lab Number:

Report Date:

Lab ID: L1801264-06
Client ID: SB-19 2-5 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST.

Matrix: Soil
Analytical Method: 1,8270D

Analytical Date: 01/17/18 01:16

Analyst: TT Percent Solids: 86%

Date Received:	01/12/18
Field Prep:	Not Specified
Extraction Method	d:EPA 3546
Extraction Date:	01/16/18 07:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	310	40.	1
Hexachlorobenzene	ND		ug/kg	230	43.	1
Bis(2-chloroethyl)ether	ND		ug/kg	350	52.	1
2-Chloronaphthalene	ND		ug/kg	390	38.	1
3,3'-Dichlorobenzidine	ND		ug/kg	390	100	1
2,4-Dinitrotoluene	ND		ug/kg	390	77.	1
2,6-Dinitrotoluene	ND		ug/kg	390	66.	1
Fluoranthene	ND		ug/kg	230	44.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	390	41.	1
4-Bromophenyl phenyl ether	ND		ug/kg	390	59.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	460	66.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	420	39.	1
Hexachlorobutadiene	ND		ug/kg	390	56.	1
Hexachlorocyclopentadiene	ND		ug/kg	1100	350	1
Hexachloroethane	ND		ug/kg	310	62.	1
Isophorone	ND		ug/kg	350	50.	1
Naphthalene	ND		ug/kg	390	47.	1
Nitrobenzene	ND		ug/kg	350	57.	1
NDPA/DPA	ND		ug/kg	310	44.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	390	60.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	390	130	1
Butyl benzyl phthalate	ND		ug/kg	390	97.	1
Di-n-butylphthalate	ND		ug/kg	390	73.	1
Di-n-octylphthalate	ND		ug/kg	390	130	1
Diethyl phthalate	ND		ug/kg	390	36.	1
Dimethyl phthalate	ND		ug/kg	390	81.	1
Benzo(a)anthracene	ND		ug/kg	230	44.	1
Benzo(a)pyrene	ND		ug/kg	310	94.	1
Benzo(b)fluoranthene	ND		ug/kg	230	65.	1
Benzo(k)fluoranthene	ND		ug/kg	230	62.	1

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 11:15

Client ID: SB-19 2-5 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Sample Location. 115-121	W. INIKU 31., & 200-21	U WASI IING	TON ST.	rieiu rie	: ρ .	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/N	MS - Westborough Lab					
Chrysene	ND		ug/kg	230	40.	1
Acenaphthylene	ND		ug/kg	310	60.	1
Anthracene	ND		ug/kg	230	75.	1
Benzo(ghi)perylene	ND		ug/kg	310	45.	1
Fluorene	ND		ug/kg	390	38.	1
Phenanthrene	ND		ug/kg	230	47.	1
Dibenzo(a,h)anthracene	ND		ug/kg	230	45.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	310	54.	1
Pyrene	ND		ug/kg	230	38.	1
Biphenyl	ND		ug/kg	880	90.	1
4-Chloroaniline	ND		ug/kg	390	70.	1
2-Nitroaniline	ND		ug/kg	390	74.	1
3-Nitroaniline	ND		ug/kg	390	73.	1
4-Nitroaniline	ND		ug/kg	390	160	1
Dibenzofuran	ND		ug/kg	390	36.	1
2-Methylnaphthalene	ND		ug/kg	460	47.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	390	40.	1
Acetophenone	ND		ug/kg	390	48.	1
2,4,6-Trichlorophenol	ND		ug/kg	230	73.	1
p-Chloro-m-cresol	ND		ug/kg	390	58.	1
2-Chlorophenol	ND		ug/kg	390	46.	1
2,4-Dichlorophenol	ND		ug/kg	350	62.	1
2,4-Dimethylphenol	ND		ug/kg	390	130	1
2-Nitrophenol	ND		ug/kg	830	140	1
4-Nitrophenol	ND		ug/kg	540	160	1
2,4-Dinitrophenol	ND		ug/kg	1800	180	1
4,6-Dinitro-o-cresol	ND		ug/kg	1000	180	1
Pentachlorophenol	ND		ug/kg	310	85.	1
Phenol	ND		ug/kg	390	58.	1
2-Methylphenol	ND		ug/kg	390	60.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	560	60.	1
2,4,5-Trichlorophenol	ND		ug/kg	390	74.	1
Carbazole	ND		ug/kg	390	38.	1
Atrazine	ND		ug/kg	310	140	1
Benzaldehyde	ND		ug/kg	510	100	1
Caprolactam	ND		ug/kg	390	120	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	390	78.	1
					-	

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 11:15 L1801264-06

Date Received: Client ID: 01/12/18 SB-19 2-5 FT 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

RL Parameter Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	97	25-120
Phenol-d6	102	10-120
Nitrobenzene-d5	102	23-120
2-Fluorobiphenyl	101	30-120
2,4,6-Tribromophenol	100	10-136
4-Terphenyl-d14	87	18-120

Project Name: 115-121 W 3RD ST+200-210 W. ST

01/17/18 06:22

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 11:40

Lab Number:

Report Date:

Field Prep:

Lab ID: L1801264-07 Client ID: SB-20 1-4 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Date Received: 01/12/18 Not Specified

L1801264

01/19/18

Extraction Method: EPA 3546 Soil

Matrix: Extraction Date: 01/16/18 07:29 Analytical Method: 1,8270D

Analyst: TT Percent Solids: 88%

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	ND		ug/kg	300	39.	1
Hexachlorobenzene	ND		ug/kg	220	42.	1
Bis(2-chloroethyl)ether	ND		ug/kg	340	51.	1
2-Chloronaphthalene	ND		ug/kg	380	37.	1
3,3'-Dichlorobenzidine	ND		ug/kg	380	100	1
2,4-Dinitrotoluene	ND		ug/kg	380	75.	1
2,6-Dinitrotoluene	ND		ug/kg	380	64.	1
Fluoranthene	180	J	ug/kg	220	43.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	380	40.	1
4-Bromophenyl phenyl ether	ND		ug/kg	380	57.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	450	64.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	410	38.	1
Hexachlorobutadiene	ND		ug/kg	380	55.	1
Hexachlorocyclopentadiene	ND		ug/kg	1100	340	1
Hexachloroethane	ND		ug/kg	300	61.	1
Isophorone	ND		ug/kg	340	49.	1
Naphthalene	ND		ug/kg	380	46.	1
Nitrobenzene	ND		ug/kg	340	56.	1
NDPA/DPA	ND		ug/kg	300	43.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	380	58.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	380	130	1
Butyl benzyl phthalate	ND		ug/kg	380	95.	1
Di-n-butylphthalate	ND		ug/kg	380	71.	1
Di-n-octylphthalate	ND		ug/kg	380	130	1
Diethyl phthalate	ND		ug/kg	380	35.	1
Dimethyl phthalate	ND		ug/kg	380	79.	1
Benzo(a)anthracene	79	J	ug/kg	220	42.	1
Benzo(a)pyrene	ND		ug/kg	300	92.	1
Benzo(b)fluoranthene	110	J	ug/kg	220	63.	1
Benzo(k)fluoranthene	ND		ug/kg	220	60.	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 11:40 L1801264-07

Client ID: Date Received: 01/12/18 SB-20 1-4 FT Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Pren Not Specified

Sample Location:	115-121 W. THIRD	ST., & 200-21	0 WASHING	TON ST.	Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westb	orough Lab					
Chrysene		92	J	ug/kg	220	39.	1
Acenaphthylene		ND		ug/kg	300	58.	1
Anthracene		ND		ug/kg	220	73.	1
Benzo(ghi)perylene		100	J	ug/kg	300	44.	1
Fluorene		ND		ug/kg	380	36.	1
Phenanthrene		130	J	ug/kg	220	46.	1
Dibenzo(a,h)anthracene		ND		ug/kg	220	43.	1
Indeno(1,2,3-cd)pyrene		60	J	ug/kg	300	52.	1
Pyrene		150	J	ug/kg	220	37.	1
Biphenyl		ND		ug/kg	860	87.	1
4-Chloroaniline		ND		ug/kg	380	68.	1
2-Nitroaniline		ND		ug/kg	380	72.	1
3-Nitroaniline		ND		ug/kg	380	71.	1
4-Nitroaniline		ND		ug/kg	380	160	1
Dibenzofuran		ND		ug/kg	380	36.	1
2-Methylnaphthalene		ND		ug/kg	450	45.	1
1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	380	39.	1
Acetophenone		ND		ug/kg	380	46.	1
2,4,6-Trichlorophenol		ND		ug/kg	220	71.	1
p-Chloro-m-cresol		ND		ug/kg	380	56.	1
2-Chlorophenol		ND		ug/kg	380	44.	1
2,4-Dichlorophenol		ND		ug/kg	340	60.	1
2,4-Dimethylphenol		ND		ug/kg	380	120	1
2-Nitrophenol		ND		ug/kg	810	140	1
4-Nitrophenol		ND		ug/kg	530	150	1
2,4-Dinitrophenol		ND		ug/kg	1800	180	1
4,6-Dinitro-o-cresol		ND		ug/kg	980	180	1
Pentachlorophenol		ND		ug/kg	300	83.	1
Phenol		ND		ug/kg	380	57.	1
2-Methylphenol		ND		ug/kg	380	58.	1
3-Methylphenol/4-Methylp	henol	ND		ug/kg	540	59.	1
2,4,5-Trichlorophenol		ND		ug/kg	380	72.	1
Carbazole		ND		ug/kg	380	36.	1
Atrazine		ND		ug/kg	300	130	1
Benzaldehyde		ND		ug/kg	500	100	1
Caprolactam		ND		ug/kg	380	110	1
2,3,4,6-Tetrachlorophenol		ND		ug/kg	380	76.	1
				-			

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-07 Date Collected: 01/11/18 11:40

SB-20 1-4 FT Date Received: Client ID: 01/12/18 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

RL Parameter Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	77	25-120
Phenol-d6	80	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	74	30-120
2,4,6-Tribromophenol	83	10-136
4-Terphenyl-d14	66	18-120

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 12:15

Lab Number:

Report Date:

Field Prep:

Lab ID: L1801264-08 Client ID: SB-21 14-15 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Date Received: 01/12/18 Not Specified

L1801264

01/19/18

Extraction Method: EPA 3546

Extraction Date: 01/16/18 00:29

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 01/17/18 01:42

Analyst: TT Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	ND		ug/kg	150	20.	1	
Hexachlorobenzene	ND		ug/kg	110	21.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	32.	1	
Fluoranthene	ND		ug/kg	110	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	32.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	540	170	1	
Hexachloroethane	ND		ug/kg	150	31.	1	
Isophorone	ND		ug/kg	170	24.	1	
Naphthalene	1600		ug/kg	190	23.	1	
Nitrobenzene	ND		ug/kg	170	28.	1	
NDPA/DPA	ND		ug/kg	150	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	65.	1	
Butyl benzyl phthalate	ND		ug/kg	190	48.	1	
Di-n-butylphthalate	ND		ug/kg	190	36.	1	
Di-n-octylphthalate	ND		ug/kg	190	64.	1	
Diethyl phthalate	ND		ug/kg	190	18.	1	
Dimethyl phthalate	ND		ug/kg	190	40.	1	
Benzo(a)anthracene	ND		ug/kg	110	21.	1	
Benzo(a)pyrene	ND		ug/kg	150	46.	1	
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1	

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-08 Date Collected: 01/11/18 12:15

Client ID: SB-21 14-15 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Sample Location:	115-121 W. THIRD ST., & 200-2	210 WASHING	STON ST.	Field Pre	p:	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organi	ics by GC/MS - Westborough Lab						
Chrysene	ND		ug/kg	110	20.	1	
Acenaphthylene	ND		ug/kg	150	29.	1	
Anthracene	ND		ug/kg	110	37.	1	
Benzo(ghi)perylene	ND		ug/kg	150	22.	1	
Fluorene	ND		ug/kg	190	18.	1	
Phenanthrene	ND		ug/kg	110	23.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1	
Pyrene	ND		ug/kg	110	19.	1	
Biphenyl	54	J	ug/kg	430	44.	1	
4-Chloroaniline	ND		ug/kg	190	34.	1	
2-Nitroaniline	ND		ug/kg	190	36.	1	
3-Nitroaniline	ND		ug/kg	190	36.	1	
4-Nitroaniline	ND		ug/kg	190	78.	1	
Dibenzofuran	ND		ug/kg	190	18.	1	
2-Methylnaphthalene	1700		ug/kg	230	23.	1	
1,2,4,5-Tetrachlorobenzen	ne ND		ug/kg	190	20.	1	
Acetophenone	ND		ug/kg	190	23.	1	
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1	
p-Chloro-m-cresol	ND		ug/kg	190	28.	1	
2-Chlorophenol	ND		ug/kg	190	22.	1	
2,4-Dichlorophenol	ND		ug/kg	170	30.	1	
2,4-Dimethylphenol	ND		ug/kg	190	62.	1	
2-Nitrophenol	ND		ug/kg	410	71.	1	
4-Nitrophenol	ND		ug/kg	260	77.	1	
2,4-Dinitrophenol	ND		ug/kg	910	88.	1	
4,6-Dinitro-o-cresol	ND		ug/kg	490	91.	1	
Pentachlorophenol	ND		ug/kg	150	42.	1	
Phenol	ND		ug/kg	190	28.	1	
2-Methylphenol	ND		ug/kg	190	29.	1	
3-Methylphenol/4-Meth	henol ND		ug/kg	270	30.	1	
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1	
Carbazole	ND		ug/kg	190	18.	1	
Atrazine	ND		ug/kg	150	66.	1	
Benzaldehyde	ND		ug/kg	250	51.	1	
Caprolactam	ND		ug/kg	190	58.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	190	38.	1	

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

CAMPLE DECLITE

SAMPLE RESULTS

Lab ID: L1801264-08 Date Collected: 01/11/18 12:15

Client ID: SB-21 14-15 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	66	25-120
Phenol-d6	69	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	66	30-120
2,4,6-Tribromophenol	62	10-136
4-Terphenyl-d14	65	18-120

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 13:00

Lab Number:

Report Date:

Lab ID: L1801264-09
Client ID: SB-22 15-16 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST.

Date Received: 01/12/18
Field Prep: Not Specified

L1801264

01/19/18

Extraction Method:EPA 3546

Extraction Date: 01/16/18 00:29

Matrix: Soil
Analytical Method: 1,8270D

Analytical Date: 01/17/18 02:07

Analyst: TT Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Acenaphthene	ND		ug/kg	160	21.	1	
Hexachlorobenzene	ND		ug/kg	120	23.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	180	28.	1	
2-Chloronaphthalene	ND		ug/kg	200	20.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	200	54.	1	
2,4-Dinitrotoluene	ND		ug/kg	200	41.	1	
2,6-Dinitrotoluene	ND		ug/kg	200	35.	1	
Fluoranthene	ND		ug/kg	120	23.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	200	22.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	200	31.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	35.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	220	20.	1	
Hexachlorobutadiene	ND		ug/kg	200	30.	1	
Hexachlorocyclopentadiene	ND		ug/kg	580	180	1	
Hexachloroethane	ND		ug/kg	160	33.	1	
Isophorone	ND		ug/kg	180	26.	1	
Naphthalene	120	J	ug/kg	200	25.	1	
Nitrobenzene	ND		ug/kg	180	30.	1	
NDPA/DPA	ND		ug/kg	160	23.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	70.	1	
Butyl benzyl phthalate	ND		ug/kg	200	51.	1	
Di-n-butylphthalate	ND		ug/kg	200	38.	1	
Di-n-octylphthalate	ND		ug/kg	200	69.	1	
Diethyl phthalate	ND		ug/kg	200	19.	1	
Dimethyl phthalate	ND		ug/kg	200	43.	1	
Benzo(a)anthracene	ND		ug/kg	120	23.	1	
Benzo(a)pyrene	ND		ug/kg	160	50.	1	
Benzo(b)fluoranthene	ND		ug/kg	120	34.	1	
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1	

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 13:00 L1801264-09

Client ID: Date Received: 01/12/18 SB-22 15-16 FT Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Pren Not Specified

Sample Location:	115-121 W. THIRD ST., & 200-2	210 WASHING	TON ST.	Field Pre	p:	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organi	ics by GC/MS - Westborough Lab						
Chrysene	ND		ug/kg	120	21.	1	
Acenaphthylene	ND		ug/kg	160	31.	1	
Anthracene	ND		ug/kg	120	40.	1	
Benzo(ghi)perylene	ND		ug/kg	160	24.	1	
Fluorene	ND		ug/kg	200	20.	1	
Phenanthrene	ND		ug/kg	120	25.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1	
Pyrene	ND		ug/kg	120	20.	1	
Biphenyl	ND		ug/kg	460	47.	1	
4-Chloroaniline	ND		ug/kg	200	37.	1	
2-Nitroaniline	ND		ug/kg	200	39.	1	
3-Nitroaniline	ND		ug/kg	200	38.	1	
4-Nitroaniline	ND		ug/kg	200	84.	1	
Dibenzofuran	ND		ug/kg	200	19.	1	
2-Methylnaphthalene	160	J	ug/kg	240	24.	1	
1,2,4,5-Tetrachlorobenzer	ne ND		ug/kg	200	21.	1	
Acetophenone	ND		ug/kg	200	25.	1	
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1	
p-Chloro-m-cresol	ND		ug/kg	200	30.	1	
2-Chlorophenol	ND		ug/kg	200	24.	1	
2,4-Dichlorophenol	ND		ug/kg	180	33.	1	
2,4-Dimethylphenol	ND		ug/kg	200	67.	1	
2-Nitrophenol	ND		ug/kg	440	76.	1	
4-Nitrophenol	ND		ug/kg	280	83.	1	
2,4-Dinitrophenol	ND		ug/kg	980	95.	1	
4,6-Dinitro-o-cresol	ND		ug/kg	530	98.	1	
Pentachlorophenol	ND		ug/kg	160	45.	1	
Phenol	ND		ug/kg	200	31.	1	
2-Methylphenol	ND		ug/kg	200	31.	1	
3-Methylphenol/4-Methylp	henol ND		ug/kg	290	32.	1	
2,4,5-Trichlorophenol	ND		ug/kg	200	39.	1	
Carbazole	ND		ug/kg	200	20.	1	
Atrazine	ND		ug/kg	160	71.	1	
Benzaldehyde	ND		ug/kg	270	55.	1	
Caprolactam	ND		ug/kg	200	62.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	200	41.	1	

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 13:00 L1801264-09

SB-22 15-16 FT Client ID: Date Received: 01/12/18 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

RL Parameter Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	74	25-120
Phenol-d6	76	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	71	30-120
2,4,6-Tribromophenol	74	10-136
4-Terphenyl-d14	68	18-120

L1801264

01/19/18

01/12/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/11/18 13:40

Lab Number:

Report Date:

Date Received:

Lab ID: L1801264-10 Client ID: SB-23 15-16 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Extraction Method: EPA 3546 Matrix: Soil Extraction Date: 01/16/18 00:29

Analytical Method: 1,8270D Analytical Date: 01/17/18 05:56

Analyst: TT

Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	tborough Lab					
Acenaphthene	ND		ug/kg	150	19.	1
Hexachlorobenzene	ND		ug/kg	110	21.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	25.	1
2-Chloronaphthalene	ND		ug/kg	190	19.	1
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1
2,6-Dinitrotoluene	ND		ug/kg	190	32.	1
Fluoranthene	ND		ug/kg	110	22.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	32.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1
Hexachlorobutadiene	ND		ug/kg	190	28.	1
Hexachlorocyclopentadiene	ND		ug/kg	540	170	1
Hexachloroethane	ND		ug/kg	150	30.	1
Isophorone	ND		ug/kg	170	24.	1
Naphthalene	ND		ug/kg	190	23.	1
Nitrobenzene	ND		ug/kg	170	28.	1
NDPA/DPA	ND		ug/kg	150	21.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	65.	1
Butyl benzyl phthalate	ND		ug/kg	190	47.	1
Di-n-butylphthalate	ND		ug/kg	190	36.	1
Di-n-octylphthalate	ND		ug/kg	190	64.	1
Diethyl phthalate	ND		ug/kg	190	17.	1
Dimethyl phthalate	ND		ug/kg	190	39.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	46.	1
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 13:40 L1801264-10

Client ID: Date Received: 01/12/18 SB-23 15-16 FT Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Pren Not Specified

Parameter Semivolatile Organics Chrysene	by GC/MS - Westborough Lab ND ND		Jnits RL	. MDL	Dilution Factor
	ND	uį			
Chrysene		u			
	ND		g/kg 11	0 20.	1
Acenaphthylene		uį	g/kg 15	0 29.	1
Anthracene	ND	u	g/kg 11	0 37.	1
Benzo(ghi)perylene	ND	uį	g/kg 15	0 22.	1
Fluorene	ND	uį	g/kg 19	0 18.	1
Phenanthrene	ND	uį	g/kg 11	0 23.	1
Dibenzo(a,h)anthracene	ND	uį	g/kg 11	0 22.	1
Indeno(1,2,3-cd)pyrene	ND	uį	g/kg 15	0 26.	1
Pyrene	ND	uį	g/kg 11	0 19.	1
Biphenyl	ND	uį	g/kg 43	0 44.	1
4-Chloroaniline	ND	u	g/kg 19	0 34.	1
2-Nitroaniline	ND	u	g/kg 19	0 36.	1
3-Nitroaniline	ND	u	g/kg 19	0 35.	1
4-Nitroaniline	ND	uį	g/kg 19	0 78.	1
Dibenzofuran	ND	u	g/kg 19	0 18.	1
2-Methylnaphthalene	900	u	g/kg 22	0 23.	1
1,2,4,5-Tetrachlorobenzene	ND	u	g/kg 19	0 20.	1
Acetophenone	ND	uį	g/kg 19	0 23.	1
2,4,6-Trichlorophenol	ND	u	g/kg 11	0 36.	1
p-Chloro-m-cresol	ND	u	g/kg 19	0 28.	1
2-Chlorophenol	ND	u	g/kg 19	0 22.	1
2,4-Dichlorophenol	ND	u	g/kg 17	0 30.	1
2,4-Dimethylphenol	ND	u	g/kg 19	0 62.	1
2-Nitrophenol	ND	u	g/kg 40	0 71.	1
4-Nitrophenol	ND	u	g/kg 26	0 77.	1
2,4-Dinitrophenol	ND	u	g/kg 90	0 88.	1
4,6-Dinitro-o-cresol	ND	u	g/kg 49	0 90.	1
Pentachlorophenol	ND	u	g/kg 15	0 41.	1
Phenol	ND	u	g/kg 19	0 28.	1
2-Methylphenol	ND	u	g/kg 19	0 29.	1
3-Methylphenol/4-Methylphenol	DI ND	u	g/kg 27	0 29.	1
2,4,5-Trichlorophenol	ND	u	g/kg 19	0 36.	1
Carbazole	ND	uį	g/kg 19	0 18.	1
Atrazine	ND	uį	g/kg 15	0 66.	1
Benzaldehyde	ND	u	g/kg 25	0 51.	1
Caprolactam	ND	u	g/kg 19	0 57.	1
2,3,4,6-Tetrachlorophenol	ND	uį	g/kg 19	0 38.	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 13:40 L1801264-10

Date Received: Client ID: SB-23 15-16 FT 01/12/18 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

RL Parameter Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	77	25-120
Phenol-d6	80	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	80	30-120
2,4,6-Tribromophenol	78	10-136
4-Terphenyl-d14	79	18-120

L1801264

01/19/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/12/18 10:50

Lab Number:

Report Date:

Lab ID: D L1801264-11

Date Received: Client ID: SB-30 14-15 FT 01/12/18 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Sample Location:

Extraction Method: EPA 3546 Matrix: Soil Extraction Date: 01/16/18 00:29

Analytical Method: 1,8270D Analytical Date: 01/18/18 03:16

Analyst: CB Percent Solids: 79%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westl	oorough Lab					
Acenaphthene	ND		ug/kg	830	110	5
Hexachlorobenzene	ND		ug/kg	620	120	5
Bis(2-chloroethyl)ether	ND		ug/kg	940	140	5
2-Chloronaphthalene	ND		ug/kg	1000	100	5
3,3'-Dichlorobenzidine	ND		ug/kg	1000	280	5
2,4-Dinitrotoluene	ND		ug/kg	1000	210	5
2,6-Dinitrotoluene	ND		ug/kg	1000	180	5
Fluoranthene	ND		ug/kg	620	120	5
4-Chlorophenyl phenyl ether	ND		ug/kg	1000	110	5
4-Bromophenyl phenyl ether	ND		ug/kg	1000	160	5
Bis(2-chloroisopropyl)ether	ND		ug/kg	1200	180	5
Bis(2-chloroethoxy)methane	ND		ug/kg	1100	100	5
Hexachlorobutadiene	ND		ug/kg	1000	150	5
Hexachlorocyclopentadiene	ND		ug/kg	3000	940	5
Hexachloroethane	ND		ug/kg	830	170	5
Isophorone	ND		ug/kg	940	140	5
Naphthalene	1100		ug/kg	1000	130	5
Nitrobenzene	ND		ug/kg	940	150	5
NDPA/DPA	ND		ug/kg	830	120	5
n-Nitrosodi-n-propylamine	ND		ug/kg	1000	160	5
Bis(2-ethylhexyl)phthalate	ND		ug/kg	1000	360	5
Butyl benzyl phthalate	ND		ug/kg	1000	260	5
Di-n-butylphthalate	ND		ug/kg	1000	200	5
Di-n-octylphthalate	ND		ug/kg	1000	350	5
Diethyl phthalate	ND		ug/kg	1000	96.	5
Dimethyl phthalate	ND		ug/kg	1000	220	5
Benzo(a)anthracene	ND		ug/kg	620	120	5
Benzo(a)pyrene	ND		ug/kg	830	250	5
Benzo(b)fluoranthene	ND		ug/kg	620	180	5
Benzo(k)fluoranthene	ND		ug/kg	620	170	5

01/12/18 10:50

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-11 D Date Collected:

Client ID: SB-30 14-15 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Sample Location:	115-121 W. THIRD S	ST., & 200-210 WASHINGTON ST.		Field Prep:		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westbo	rough Lab					
Chrysene		ND		ug/kg	620	110	5
Acenaphthylene		ND		ug/kg	830	160	5
Anthracene		ND		ug/kg	620	200	5
Benzo(ghi)perylene		ND		ug/kg	830	120	5
Fluorene		ND		ug/kg	1000	100	5
Phenanthrene		ND		ug/kg	620	130	5
Dibenzo(a,h)anthracene		ND		ug/kg	620	120	5
Indeno(1,2,3-cd)pyrene		ND		ug/kg	830	140	5
Pyrene		ND		ug/kg	620	100	5
Biphenyl		250	J	ug/kg	2400	240	5
4-Chloroaniline		ND		ug/kg	1000	190	5
2-Nitroaniline		ND		ug/kg	1000	200	5
3-Nitroaniline		ND		ug/kg	1000	200	5
4-Nitroaniline		ND		ug/kg	1000	430	5
Dibenzofuran		ND		ug/kg	1000	99.	5
2-Methylnaphthalene		3500		ug/kg	1200	120	5
1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	1000	110	5
Acetophenone		ND		ug/kg	1000	130	5
2,4,6-Trichlorophenol		ND		ug/kg	620	200	5
p-Chloro-m-cresol		ND		ug/kg	1000	160	5
2-Chlorophenol		ND		ug/kg	1000	120	5
2,4-Dichlorophenol		ND		ug/kg	940	170	5
2,4-Dimethylphenol		ND		ug/kg	1000	340	5
2-Nitrophenol		ND		ug/kg	2200	390	5
4-Nitrophenol		ND		ug/kg	1400	420	5
2,4-Dinitrophenol		ND		ug/kg	5000	480	5
4,6-Dinitro-o-cresol		ND		ug/kg	2700	500	5
Pentachlorophenol		ND		ug/kg	830	230	5
Phenol		ND		ug/kg	1000	160	5
2-Methylphenol		ND		ug/kg	1000	160	5
3-Methylphenol/4-Methylp	henol	ND		ug/kg	1500	160	5
2,4,5-Trichlorophenol		ND		ug/kg	1000	200	5
Carbazole		ND		ug/kg	1000	100	5
Atrazine		ND		ug/kg	830	360	5
Benzaldehyde		ND		ug/kg	1400	280	5
Caprolactam		ND		ug/kg	1000	320	5
2,3,4,6-Tetrachlorophenol		ND		ug/kg	1000	210	5

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: D Date Collected: 01/12/18 10:50 L1801264-11

SB-30 14-15 FT Client ID: Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

RL Parameter Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	57	25-120
Phenol-d6	53	10-120
Nitrobenzene-d5	97	23-120
2-Fluorobiphenyl	55	30-120
2,4,6-Tribromophenol	50	10-136
4-Terphenyl-d14	45	18-120

L1801264

01/19/18

01/16/18 00:29

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/12/18 09:00

Lab Number:

Report Date:

Lab ID: L1801264-13 Client ID: SB-26 0.5-2 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep:

Date Received: 01/12/18 Not Specified Extraction Method: EPA 3546

Matrix: Soil Analytical Method: 1,8270D Analytical Date:

Extraction Date: 01/17/18 06:47

Analyst: TT Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	ND		ug/kg	140	19.	1			
Hexachlorobenzene	ND		ug/kg	110	20.	1			
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1			
2-Chloronaphthalene	ND		ug/kg	180	18.	1			
3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1			
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1			
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1			
Fluoranthene	ND		ug/kg	110	21.	1			
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1			
4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1			
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1			
Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1			
Hexachlorobutadiene	ND		ug/kg	180	26.	1			
Hexachlorocyclopentadiene	ND		ug/kg	520	160	1			
Hexachloroethane	ND		ug/kg	140	29.	1			
Isophorone	ND		ug/kg	160	23.	1			
Naphthalene	ND		ug/kg	180	22.	1			
Nitrobenzene	ND		ug/kg	160	27.	1			
NDPA/DPA	ND		ug/kg	140	20.	1			
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1			
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1			
Butyl benzyl phthalate	ND		ug/kg	180	46.	1			
Di-n-butylphthalate	ND		ug/kg	180	34.	1			
Di-n-octylphthalate	ND		ug/kg	180	61.	1			
Diethyl phthalate	ND		ug/kg	180	17.	1			
Dimethyl phthalate	ND		ug/kg	180	38.	1			
Benzo(a)anthracene	ND		ug/kg	110	20.	1			
Benzo(a)pyrene	ND		ug/kg	140	44.	1			
Benzo(b)fluoranthene	42	J	ug/kg	110	30.	1			
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1			

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 09:00

Client ID: SB-26 0.5-2 FT Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Sample Location:	115-121 W. THIRD S	115-121 W. THIRD ST., & 200-210 W		WASHINGTON ST.		ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westbo	rough Lab						
Chrysene		39	J	ug/kg	110	19.	1	
Acenaphthylene		ND		ug/kg	140	28.	1	
Anthracene		ND		ug/kg	110	35.	1	
Benzo(ghi)perylene		150		ug/kg	140	21.	1	
Fluorene		ND		ug/kg	180	18.	1	
Phenanthrene		ND		ug/kg	110	22.	1	
Dibenzo(a,h)anthracene		ND		ug/kg	110	21.	1	
Indeno(1,2,3-cd)pyrene		34	J	ug/kg	140	25.	1	
Pyrene		ND		ug/kg	110	18.	1	
Biphenyl		ND		ug/kg	410	42.	1	
4-Chloroaniline		ND		ug/kg	180	33.	1	
2-Nitroaniline		ND		ug/kg	180	35.	1	
3-Nitroaniline		ND		ug/kg	180	34.	1	
4-Nitroaniline		ND		ug/kg	180	75.	1	
Dibenzofuran		ND		ug/kg	180	17.	1	
2-Methylnaphthalene		ND		ug/kg	220	22.	1	
1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	180	19.	1	
Acetophenone		ND		ug/kg	180	22.	1	
2,4,6-Trichlorophenol		ND		ug/kg	110	34.	1	
p-Chloro-m-cresol		ND		ug/kg	180	27.	1	
2-Chlorophenol		ND		ug/kg	180	21.	1	
2,4-Dichlorophenol		ND		ug/kg	160	29.	1	
2,4-Dimethylphenol		ND		ug/kg	180	60.	1	
2-Nitrophenol		ND		ug/kg	390	68.	1	
4-Nitrophenol		ND		ug/kg	250	74.	1	
2,4-Dinitrophenol		ND		ug/kg	870	84.	1	
4,6-Dinitro-o-cresol		ND		ug/kg	470	87.	1	
Pentachlorophenol		ND		ug/kg	140	40.	1	
Phenol		ND		ug/kg	180	27.	1	
2-Methylphenol		ND		ug/kg	180	28.	1	
3-Methylphenol/4-Methylp	phenol	ND		ug/kg	260	28.	1	
2,4,5-Trichlorophenol		ND		ug/kg	180	35.	1	
Carbazole		ND		ug/kg	180	18.	1	
Atrazine		ND		ug/kg	140	63.	1	
Benzaldehyde		ND		ug/kg	240	49.	1	
Caprolactam		ND		ug/kg	180	55.	1	
2,3,4,6-Tetrachloropheno	 	ND		ug/kg	180	36.	1	

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 09:00 L1801264-13

Client ID: Date Received: 01/12/18 SB-26 0.5-2 FT 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

RL Parameter Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	67	25-120
Phenol-d6	72	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	73	30-120
2,4,6-Tribromophenol	68	10-136
4-Terphenyl-d14	71	18-120

L1801264

01/19/18

01/12/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/12/18 09:50

Lab ID: L1801264-14
Client ID: SB-28 0.5-2 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: N

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 01/17/18 04:14

Analyst: TT Percent Solids: 80%

NGTON ST.	Field Prep:	Not Specified				
	Extraction Method:EPA 3546					
	Extraction Date:	01/16/18 07:29				

Lab Number:

Report Date:

Date Received:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	330	43.	1
Hexachlorobenzene	ND		ug/kg	250	46.	1
Bis(2-chloroethyl)ether	ND		ug/kg	370	56.	1
2-Chloronaphthalene	ND		ug/kg	410	41.	1
3,3'-Dichlorobenzidine	ND		ug/kg	410	110	1
2,4-Dinitrotoluene	ND		ug/kg	410	82.	1
2,6-Dinitrotoluene	ND		ug/kg	410	71.	1
Fluoranthene	ND		ug/kg	250	47.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	410	44.	1
4-Bromophenyl phenyl ether	ND		ug/kg	410	63.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	500	70.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	440	41.	1
Hexachlorobutadiene	ND		ug/kg	410	60.	1
Hexachlorocyclopentadiene	ND		ug/kg	1200	370	1
Hexachloroethane	ND		ug/kg	330	67.	1
Isophorone	ND		ug/kg	370	54.	1
Naphthalene	ND		ug/kg	410	50.	1
Nitrobenzene	ND		ug/kg	370	61.	1
NDPA/DPA	ND		ug/kg	330	47.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	410	64.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	410	140	1
Butyl benzyl phthalate	ND		ug/kg	410	100	1
Di-n-butylphthalate	ND		ug/kg	410	78.	1
Di-n-octylphthalate	ND		ug/kg	410	140	1
Diethyl phthalate	ND		ug/kg	410	38.	1
Dimethyl phthalate	ND		ug/kg	410	87.	1
Benzo(a)anthracene	ND		ug/kg	250	46.	1
Benzo(a)pyrene	ND		ug/kg	330	100	1
Benzo(b)fluoranthene	ND		ug/kg	250	69.	1
Benzo(k)fluoranthene	ND		ug/kg	250	66.	1

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 09:50 L1801264-14

Client ID: Date Received: 01/12/18 SB-28 0.5-2 FT Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Pren Not Specified

Sample Location:	115-121 W. THIRD ST., & 200-2	ON ST.	Field Prepa	:	Not Specified		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westborough Lab						
Chrysene	ND		ug/kg	250	43.	1	
Acenaphthylene	ND		ug/kg	330	64.	1	
Anthracene	ND		ug/kg	250	80.	1	
Benzo(ghi)perylene	ND		ug/kg	330	48.	1	
Fluorene	ND		ug/kg	410	40.	1	
Phenanthrene	ND		ug/kg	250	50.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	250	48.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	330	58.	1	
Pyrene	ND		ug/kg	250	41.	1	
Biphenyl	ND		ug/kg	940	96.	1	
4-Chloroaniline	ND		ug/kg	410	75.	1	
2-Nitroaniline	ND		ug/kg	410	80.	1	
3-Nitroaniline	ND		ug/kg	410	78.	1	
4-Nitroaniline	ND		ug/kg	410	170	1	
Dibenzofuran	ND		ug/kg	410	39.	1	
2-Methylnaphthalene	ND		ug/kg	500	50.	1	
1,2,4,5-Tetrachlorobenzei	ne ND		ug/kg	410	43.	1	
Acetophenone	ND		ug/kg	410	51.	1	
2,4,6-Trichlorophenol	ND		ug/kg	250	78.	1	
p-Chloro-m-cresol	ND		ug/kg	410	61.	1	
2-Chlorophenol	ND		ug/kg	410	49.	1	
2,4-Dichlorophenol	ND		ug/kg	370	66.	1	
2,4-Dimethylphenol	ND		ug/kg	410	140	1	
2-Nitrophenol	ND		ug/kg	890	160	1	
4-Nitrophenol	ND		ug/kg	580	170	1	
2,4-Dinitrophenol	ND		ug/kg	2000	190	1	
4,6-Dinitro-o-cresol	ND		ug/kg	1100	200	1	
Pentachlorophenol	ND		ug/kg	330	91.	1	
Phenol	ND		ug/kg	410	62.	1	
2-Methylphenol	ND		ug/kg	410	64.	1	
3-Methylphenol/4-Methylp	phenol ND		ug/kg	590	65.	1	
2,4,5-Trichlorophenol	ND		ug/kg	410	79.	1	
Carbazole	ND		ug/kg	410	40.	1	
Atrazine	ND		ug/kg	330	140	1	
Benzaldehyde	ND		ug/kg	540	110	1	
Caprolactam	ND		ug/kg	410	120	1	
2,3,4,6-Tetrachloropheno	ND ND		ug/kg	410	83.	1	

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 09:50 L1801264-14

Date Received: Client ID: 01/12/18 SB-28 0.5-2 FT 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

RL Parameter Qualifier Units MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	78	25-120
Phenol-d6	81	10-120
Nitrobenzene-d5	82	23-120
2-Fluorobiphenyl	86	30-120
2,4,6-Tribromophenol	84	10-136
4-Terphenyl-d14	76	18-120

L1801264

01/19/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

SAMPLE RESULTS

Date Collected: 01/12/18 10:20

Lab Number:

Report Date:

Lab ID: L1801264-15
Client ID: SB-29 3-5 FT

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST.

Date Received: 01/12/18
Field Prep: Not Specified

Extraction Method: EPA 3546

Extraction Date: 01/16/18 07:29

Matrix: Soil

Analytical Method: 1,8270D Analytical Date: 01/17/18 02:33

Analyst: TT Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	310	40.	1
Hexachlorobenzene	ND		ug/kg	230	43.	1
Bis(2-chloroethyl)ether	ND		ug/kg	340	52.	1
2-Chloronaphthalene	ND		ug/kg	380	38.	1
3,3'-Dichlorobenzidine	ND		ug/kg	380	100	1
2,4-Dinitrotoluene	ND		ug/kg	380	77.	1
2,6-Dinitrotoluene	ND		ug/kg	380	66.	1
Fluoranthene	ND		ug/kg	230	44.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	380	41.	1
4-Bromophenyl phenyl ether	ND		ug/kg	380	58.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	460	65.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	410	38.	1
Hexachlorobutadiene	ND		ug/kg	380	56.	1
Hexachlorocyclopentadiene	ND		ug/kg	1100	350	1
Hexachloroethane	ND		ug/kg	310	62.	1
Isophorone	ND		ug/kg	340	50.	1
Naphthalene	ND		ug/kg	380	47.	1
Nitrobenzene	ND		ug/kg	340	57.	1
NDPA/DPA	ND		ug/kg	310	44.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	380	59.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	380	130	1
Butyl benzyl phthalate	ND		ug/kg	380	96.	1
Di-n-butylphthalate	ND		ug/kg	380	73.	1
Di-n-octylphthalate	ND		ug/kg	380	130	1
Diethyl phthalate	ND		ug/kg	380	35.	1
Dimethyl phthalate	ND		ug/kg	380	80.	1
Benzo(a)anthracene	ND		ug/kg	230	43.	1
Benzo(a)pyrene	ND		ug/kg	310	93.	1
Benzo(b)fluoranthene	ND		ug/kg	230	64.	1
Benzo(k)fluoranthene	ND		ug/kg	230	61.	1

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 10:20

Client ID: SB-29 3-5 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Sample Location:	: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST.		Field Prep):	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organi	ics by GC/MS - Westborough Lab					
Chrysene	ND		ug/kg	230	40.	1
Acenaphthylene	ND		ug/kg	310	59.	1
Anthracene	ND		ug/kg	230	75.	1
Benzo(ghi)perylene	ND		ug/kg	310	45.	1
Fluorene	ND		ug/kg	380	37.	1
Phenanthrene	ND		ug/kg	230	46.	1
Dibenzo(a,h)anthracene	ND		ug/kg	230	44.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	310	53.	1
Pyrene	ND		ug/kg	230	38.	1
Biphenyl	ND		ug/kg	870	89.	1
4-Chloroaniline	ND		ug/kg	380	70.	1
2-Nitroaniline	ND		ug/kg	380	74.	1
3-Nitroaniline	ND		ug/kg	380	72.	1
4-Nitroaniline	ND		ug/kg	380	160	1
Dibenzofuran	ND		ug/kg	380	36.	1
2-Methylnaphthalene	ND		ug/kg	460	46.	1
1,2,4,5-Tetrachlorobenzer	ne ND		ug/kg	380	40.	1
Acetophenone	ND		ug/kg	380	47.	1
2,4,6-Trichlorophenol	ND		ug/kg	230	73.	1
p-Chloro-m-cresol	ND		ug/kg	380	57.	1
2-Chlorophenol	ND		ug/kg	380	45.	1
2,4-Dichlorophenol	ND		ug/kg	340	62.	1
2,4-Dimethylphenol	ND		ug/kg	380	130	1
2-Nitrophenol	ND		ug/kg	830	140	1
4-Nitrophenol	ND		ug/kg	540	160	1
2,4-Dinitrophenol	ND		ug/kg	1800	180	1
4,6-Dinitro-o-cresol	ND		ug/kg	1000	180	1
Pentachlorophenol	ND		ug/kg	310	84.	1
Phenol	ND		ug/kg	380	58.	1
2-Methylphenol	ND		ug/kg	380	59.	1
3-Methylphenol/4-Methylp	henol ND		ug/kg	550	60.	1
2,4,5-Trichlorophenol	ND		ug/kg	380	73.	1
Carbazole	ND		ug/kg	380	37.	1
Atrazine	ND		ug/kg	310	130	1
Benzaldehyde	ND		ug/kg	500	100	1
Caprolactam	ND		ug/kg	380	120	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	380	77.	1

Dilution Factor

MDL

RL

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 10:20 L1801264-15

Date Received: Client ID: 01/12/18 SB-29 3-5 FT 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Sample Location: Field Prep: Not Specified

Semivolatile Organics by GC/MS - Westborough Lab

Parameter

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	88	25-120
Phenol-d6	95	10-120
Nitrobenzene-d5	94	23-120
2-Fluorobiphenyl	92	30-120
2,4,6-Tribromophenol	105	10-136
4-Terphenyl-d14	88	18-120

Qualifier

Units

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

L1801264

Report Date:

01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 01/16/18 15:00

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 01/16/18 00:29

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS -	· Westborough	n Lab for s	sample(s):	03-11,13-15	Batch:	WG1081113-
Acenaphthene	ND		ug/kg	130	17.	
Hexachlorobenzene	ND		ug/kg	99	18.	
Bis(2-chloroethyl)ether	ND		ug/kg	150	22.	
2-Chloronaphthalene	ND		ug/kg	160	16.	
3,3'-Dichlorobenzidine	ND		ug/kg	160	44.	
2,4-Dinitrotoluene	ND		ug/kg	160	33.	
2,6-Dinitrotoluene	ND		ug/kg	160	28.	
Fluoranthene	ND		ug/kg	99	19.	
4-Chlorophenyl phenyl ether	ND		ug/kg	160	18.	
4-Bromophenyl phenyl ether	ND		ug/kg	160	25.	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	28.	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	16.	
Hexachlorobutadiene	ND		ug/kg	160	24.	
Hexachlorocyclopentadiene	ND		ug/kg	470	150	
Hexachloroethane	ND		ug/kg	130	27.	
Isophorone	ND		ug/kg	150	21.	
Naphthalene	ND		ug/kg	160	20.	
Nitrobenzene	ND		ug/kg	150	24.	
NDPA/DPA	ND		ug/kg	130	19.	
n-Nitrosodi-n-propylamine	ND		ug/kg	160	26.	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160	57.	
Butyl benzyl phthalate	ND		ug/kg	160	42.	
Di-n-butylphthalate	ND		ug/kg	160	31.	
Di-n-octylphthalate	ND		ug/kg	160	56.	
Diethyl phthalate	ND		ug/kg	160	15.	
Dimethyl phthalate	ND		ug/kg	160	35.	
Benzo(a)anthracene	ND		ug/kg	99	19.	
Benzo(a)pyrene	ND		ug/kg	130	40.	
Benzo(b)fluoranthene	ND		ug/kg	99	28.	

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

L1801264

Report Date:

01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 01/16/18 15:00

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 01/16/18 00:29

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	IS - Westborougl	n Lab for s	ample(s):	03-11,13-15	Batch:	WG1081113-
Benzo(k)fluoranthene	ND		ug/kg	99	26.	
Chrysene	ND		ug/kg	99	17.	
Acenaphthylene	ND		ug/kg	130	26.	
Anthracene	ND		ug/kg	99	32.	
Benzo(ghi)perylene	ND		ug/kg	130	19.	
Fluorene	ND		ug/kg	160	16.	
Phenanthrene	ND		ug/kg	99	20.	
Dibenzo(a,h)anthracene	ND		ug/kg	99	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.	
Pyrene	ND		ug/kg	99	16.	
Biphenyl	ND		ug/kg	380	38.	
4-Chloroaniline	ND		ug/kg	160	30.	
2-Nitroaniline	ND		ug/kg	160	32.	
3-Nitroaniline	ND		ug/kg	160	31.	
4-Nitroaniline	ND		ug/kg	160	68.	
Dibenzofuran	ND		ug/kg	160	16.	
2-Methylnaphthalene	ND		ug/kg	200	20.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160	17.	
Acetophenone	ND		ug/kg	160	20.	
2,4,6-Trichlorophenol	ND		ug/kg	99	31.	
p-Chloro-m-cresol	ND		ug/kg	160	25.	
2-Chlorophenol	ND		ug/kg	160	20.	
2,4-Dichlorophenol	ND		ug/kg	150	27.	
2,4-Dimethylphenol	ND		ug/kg	160	55.	
2-Nitrophenol	ND		ug/kg	360	62.	
4-Nitrophenol	ND		ug/kg	230	68.	
2,4-Dinitrophenol	ND		ug/kg	790	77.	
4,6-Dinitro-o-cresol	ND		ug/kg	430	79.	
Pentachlorophenol	ND		ug/kg	130	36.	

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

L1801264

Report Date:

01/19/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 01/16/18 15:00

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 01/16/18 00:29

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - 1	Westborough	n Lab for s	sample(s):	03-11,13-15	Batch:	WG1081113-
Phenol	ND		ug/kg	160	25.	
2-Methylphenol	ND		ug/kg	160	26.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	
2,4,5-Trichlorophenol	ND		ug/kg	160	32.	
Carbazole	ND		ug/kg	160	16.	
Atrazine	ND		ug/kg	130	58.	
Benzaldehyde	ND		ug/kg	220	45.	
Caprolactam	ND		ug/kg	160	50.	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	160	33.	

Tentatively Identified Compounds		
No Tentatively Identified Compounds	ND	ug/kg

		Acceptance	
Surrogate	%Recovery Qu	alifier Criteria	
2-Fluorophenol	87	25-120	
Phenol-d6	95	10-120	
Nitrobenzene-d5	92	23-120	
2-Fluorobiphenyl	93	30-120	
2,4,6-Tribromophenol	92	10-136	
4-Terphenyl-d14	103	18-120	

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS -	- Westborough Lab Associa	ated sample(s):	03-11,13-15	Batch: Wo	G1081113-2 \	NG1081113-3		
Acenaphthene	90		93		31-137	3		50
Hexachlorobenzene	90		92		40-140	2		50
Bis(2-chloroethyl)ether	87		84		40-140	4		50
2-Chloronaphthalene	89		88		40-140	1		50
3,3'-Dichlorobenzidine	59		56		40-140	5		50
2,4-Dinitrotoluene	95		98		40-132	3		50
2,6-Dinitrotoluene	92		93		40-140	1		50
Fluoranthene	95		94		40-140	1		50
4-Chlorophenyl phenyl ether	90		93		40-140	3		50
4-Bromophenyl phenyl ether	96		95		40-140	1		50
Bis(2-chloroisopropyl)ether	121		121		40-140	0		50
Bis(2-chloroethoxy)methane	88		88		40-117	0		50
Hexachlorobutadiene	89		88		40-140	1		50
Hexachlorocyclopentadiene	81		82		40-140	1		50
Hexachloroethane	84		86		40-140	2		50
Isophorone	90		90		40-140	0		50
Naphthalene	87		88		40-140	1		50
Nitrobenzene	92		91		40-140	1		50
NDPA/DPA	94		95		36-157	1		50
n-Nitrosodi-n-propylamine	96		95		32-121	1		50
Bis(2-ethylhexyl)phthalate	97		97		40-140	0		50
Butyl benzyl phthalate	101		101		40-140	0		50
Di-n-butylphthalate	95		96		40-140	1		50

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - \	Westborough Lab Associated sample(s): 03-11,13-15	Batch: WG1081113-2	WG1081113-3	
Di-n-octylphthalate	103	102	40-140	1	50
Diethyl phthalate	94	96	40-140	2	50
Dimethyl phthalate	95	93	40-140	2	50
Benzo(a)anthracene	90	92	40-140	2	50
Benzo(a)pyrene	100	100	40-140	0	50
Benzo(b)fluoranthene	94	95	40-140	1	50
Benzo(k)fluoranthene	97	95	40-140	2	50
Chrysene	91	90	40-140	1	50
Acenaphthylene	94	93	40-140	1	50
Anthracene	92	93	40-140	1	50
Benzo(ghi)perylene	104	102	40-140	2	50
Fluorene	94	94	40-140	0	50
Phenanthrene	91	91	40-140	0	50
Dibenzo(a,h)anthracene	100	100	40-140	0	50
Indeno(1,2,3-cd)pyrene	106	104	40-140	2	50
Pyrene	98	95	35-142	3	50
Biphenyl	89	90	54-104	1	50
4-Chloroaniline	46	44	40-140	4	50
2-Nitroaniline	94	94	47-134	0	50
3-Nitroaniline	66	64	26-129	3	50
4-Nitroaniline	86	88	41-125	2	50
Dibenzofuran	92	93	40-140	1	50
2-Methylnaphthalene	91	91	40-140	0	50

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Assoc	iated sample(s):	03-11,13-15	Batch:	WG1081113-2	WG1081113-3		
1,2,4,5-Tetrachlorobenzene	87		85		40-117	2		50
Acetophenone	88		88		14-144	0		50
2,4,6-Trichlorophenol	94		95		30-130	1		50
p-Chloro-m-cresol	100		100		26-103	0		50
2-Chlorophenol	92		92		25-102	0		50
2,4-Dichlorophenol	95		95		30-130	0		50
2,4-Dimethylphenol	97		97		30-130	0		50
2-Nitrophenol	88		87		30-130	1		50
4-Nitrophenol	117	Q	117	Q	11-114	0		50
2,4-Dinitrophenol	60		67		4-130	11		50
4,6-Dinitro-o-cresol	86		89		10-130	3		50
Pentachlorophenol	86		87		17-109	1		50
Phenol	92	Q	91	Q	26-90	1		50
2-Methylphenol	94		93		30-130.	1		50
3-Methylphenol/4-Methylphenol	94		94		30-130	0		50
2,4,5-Trichlorophenol	97		98		30-130	1		50
Carbazole	93		94		54-128	1		50
Atrazine	108		108		40-140	0		50
Benzaldehyde	72		70		40-140	3		50
Caprolactam	125		122		15-130	2		50
2,3,4,6-Tetrachlorophenol	93		94		40-140	1		50

Project Name: 115-121 W 3RD ST+200-210 W. ST

Lab Number: L1801264

Project Number: 2180345 Report Date:

01/19/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 03-11,13-15 Batch: WG1081113-2 WG1081113-3

Surrogate	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	90	89	25-120
Phenol-d6	95	94	10-120
Nitrobenzene-d5	93	91	23-120
2-Fluorobiphenyl	94	92	30-120
2,4,6-Tribromophenol	96	92	10-136
4-Terphenyl-d14	100	99	18-120

PCBS

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: L1801264-04 01/11/18 10:30

Client ID: Date Received: 01/12/18 SB-17 2-5 FT

Sample Location: Field Prep: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Not Specified

Extraction Method: EPA 3546 Matrix: Soil Extraction Date: 01/16/18 22:38

Analytical Method: 1,8082A Cleanup Method: EPA 3665A Analytical Date: 01/18/18 05:07 Cleanup Date: 01/17/18

Analyst: WR Cleanup Method: EPA 3660B Percent Solids: 81% Cleanup Date: 01/17/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
	ND		,,	40.4		,		
Aroclor 1016	ND		ug/kg	40.1	4.54	1	Α	
Aroclor 1221	ND		ug/kg	40.1	6.10	1	Α	
Aroclor 1232	ND		ug/kg	40.1	3.94	1	Α	
Aroclor 1242	ND		ug/kg	40.1	4.90	1	Α	
Aroclor 1248	ND		ug/kg	40.1	4.50	1	Α	
Aroclor 1254	ND		ug/kg	40.1	3.27	1	Α	
Aroclor 1260	ND		ug/kg	40.1	4.18	1	Α	
Aroclor 1262	ND		ug/kg	40.1	3.29	1	Α	
Aroclor 1268	ND		ug/kg	40.1	2.84	1	Α	
PCBs, Total	ND		ug/kg	40.1	2.84	1	Α	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		30-150	Α
Decachlorobiphenyl	45		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	58		30-150	В
Decachlorobiphenyl	49		30-150	В

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 11:00

Client ID: SB-18 1-4 FT Date Received: 01/12/18

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified Extraction Method:EPA 3546

 Matrix:
 Soil
 Extraction Date:
 01/16/18 22:38

 Analytical Method:
 1,8082A
 Cleanup Method:
 EPA 3665A

 Analytical Date:
 01/18/18 05:20
 Cleanup Date:
 01/17/18

Analytical Date: 01/18/18 05:20 Cleanup Date: 01/17/18

Analyst: WR Cleanup Method: EPA 3660B

Percent Solids: 86% Cleanup Date: 01/17/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/kg	37.0	4.20	1	Α
Aroclor 1221	ND		ug/kg	37.0	5.63	1	Α
Aroclor 1232	ND		ug/kg	37.0	3.64	1	Α
Aroclor 1242	ND		ug/kg	37.0	4.53	1	Α
Aroclor 1248	ND		ug/kg	37.0	4.15	1	Α
Aroclor 1254	ND		ug/kg	37.0	3.02	1	Α
Aroclor 1260	ND		ug/kg	37.0	3.86	1	Α
Aroclor 1262	ND		ug/kg	37.0	3.04	1	Α
Aroclor 1268	ND		ug/kg	37.0	2.62	1	А
PCBs, Total	ND		ug/kg	37.0	2.62	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Calumn
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		30-150	Α
Decachlorobiphenyl	53		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	65		30-150	В

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-13 Date Collected: 01/12/18 09:00

Client ID: SB-26 0.5-2 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST. & 200-210 WASHINGTON ST. Field Prep: Not Specified

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified Extraction Method: EPA 3546

Matrix: Soil Extraction Date: 01/16/18 22:38
Analytical Method: 1,8082A Cleanup Method: EPA 3665A
Analytical Date: 01/18/18 05:34 Cleanup Date: 01/17/18

Analytical Date: 01/18/18 05:34 Cleanup Date: 01/17/18

Analyst: WR Cleanup Method: EPA 3660B

Percent Solids: 90% Cleanup Date: 01/17/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westborough Lab							
Aroclor 1016	ND		ug/kg	34.8	3.95	1	А
Aroclor 1221	ND		ug/kg	34.8	5.30	1	Α
Aroclor 1232	ND		ug/kg	34.8	3.42	1	А
Aroclor 1242	ND		ug/kg	34.8	4.26	1	Α
Aroclor 1248	ND		ug/kg	34.8	3.90	1	Α
Aroclor 1254	ND		ug/kg	34.8	2.84	1	А
Aroclor 1260	ND		ug/kg	34.8	3.63	1	Α
Aroclor 1262	ND		ug/kg	34.8	2.86	1	Α
Aroclor 1268	ND		ug/kg	34.8	2.46	1	Α
PCBs, Total	ND		ug/kg	34.8	2.46	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	A
Decachlorobiphenyl	47		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	61		30-150	В

Project Name: Lab Number: 115-121 W 3RD ST+200-210 W. ST L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 09:50 L1801264-14

Client ID: Date Received: 01/12/18 SB-28 0.5-2 FT

Sample Location: Field Prep: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Not Specified

Extraction Method: EPA 3546

Matrix: Soil Extraction Date: 01/16/18 22:38 Analytical Method: 1,8082A Cleanup Method: EPA 3665A

Analytical Date: 01/18/18 05:47 Cleanup Date: 01/17/18 Analyst: WR Cleanup Method: EPA 3660B Percent Solids: 80% Cleanup Date: 01/17/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug/kg	40.5	4.59	1	А
Aroclor 1221	ND		ug/kg	40.5	6.16	1	A
Aroclor 1232	ND		ug/kg	40.5	3.98	1	А
Aroclor 1242	ND		ug/kg	40.5	4.95	1	Α
Aroclor 1248	ND		ug/kg	40.5	4.54	1	Α
Aroclor 1254	ND		ug/kg	40.5	3.30	1	А
Aroclor 1260	ND		ug/kg	40.5	4.22	1	Α
Aroclor 1262	ND		ug/kg	40.5	3.33	1	Α
Aroclor 1268	ND		ug/kg	40.5	2.86	1	Α
PCBs, Total	ND		ug/kg	40.5	2.86	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	47		30-150	A
Decachlorobiphenyl	33		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	45		30-150	В
Decachlorobiphenyl	44		30-150	В

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 10:20

Client ID: SB-29 3-5 FT Date Received: 01/12/18

Sample Location: 115-121 W. THIRD ST., & 200-210 WASHINGTON ST. Field Prep: Not Specified

Extraction Method:EPA 3546

Matrix:SoilExtraction Date:01/16/18 22:38Analytical Method:1,8082ACleanup Method:EPA 3665AAnalytical Date:01/18/18 06:01Cleanup Date:01/17/18

Analyst: WR Cleanup Method: EPA 3660B Percent Solids: 84% Cleanup Date: 01/17/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Assolut 4040	ND			20.0	4.24	4	۸
Aroclor 1016	ND		ug/kg	38.0	4.31	1	Α
Aroclor 1221	ND		ug/kg	38.0	5.79	1	Α
Aroclor 1232	ND		ug/kg	38.0	3.74	1	Α
Aroclor 1242	ND		ug/kg	38.0	4.66	1	Α
Aroclor 1248	ND		ug/kg	38.0	4.27	1	Α
Aroclor 1254	ND		ug/kg	38.0	3.10	1	Α
Aroclor 1260	ND		ug/kg	38.0	3.97	1	Α
Aroclor 1262	ND		ug/kg	38.0	3.13	1	Α
Aroclor 1268	ND		ug/kg	38.0	2.69	1	Α
PCBs, Total	ND		ug/kg	38.0	2.69	1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	Α
Decachlorobiphenyl	37		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	66		30-150	В
Decachlorobiphenyl	58		30-150	В

L1801264

Lab Number:

Project Name: 115-121 W 3RD ST+200-210 W. ST

1,8082A

01/17/18 12:03

Project Number: 2180345 **Report Date:** 01/19/18

Method Blank Analysis
Batch Quality Control

Batch Quality Control

Analytical Date: 01/1 Analyst: WR

Analytical Method:

Extraction Method: EPA 3546
Extraction Date: 01/16/18 20:21
Cleanup Method: EPA 3665A
Cleanup Date: 01/17/18
Cleanup Method: EPA 3660B
Cleanup Date: 01/17/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls WG1081401-1	s by GC - Westboroug	h Lab for sa	imple(s):	04-05,13-15	Batch:	
Aroclor 1016	ND		ug/kg	31.3	3.55	Α
Aroclor 1221	ND		ug/kg	31.3	4.76	Α
Aroclor 1232	ND		ug/kg	31.3	3.08	А
Aroclor 1242	ND		ug/kg	31.3	3.83	А
Aroclor 1248	ND		ug/kg	31.3	3.51	Α
Aroclor 1254	ND		ug/kg	31.3	2.55	Α
Aroclor 1260	ND		ug/kg	31.3	3.27	А
Aroclor 1262	ND		ug/kg	31.3	2.57	А
Aroclor 1268	ND		ug/kg	31.3	2.22	А
PCBs, Total	ND		ug/kg	31.3	2.22	А

		Acceptano	ce
Surrogate	%Recovery Qual	ifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86	30-150	Α
Decachlorobiphenyl	97	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	80	30-150	В
Decachlorobiphenyl	105	30-150	В

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

L1801264

Report Date:

01/19/18

	LCS		LCSD		%Recovery	•		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ated sample(s)	: 04-05,13-15	Batch:	WG1081401-2	WG1081401-3			
Aroclor 1016	75		79		40-140	5		50	Α
Aroclor 1260	101		97		40-140	4		50	А

Surrogate	LCS %Recovery G	LCSD Qual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	81	81	30-150 A
Decachlorobiphenyl	99	100	30-150 A
2,4,5,6-Tetrachloro-m-xylene	74	79	30-150 B
Decachlorobiphenyl	106	115	30-150 B

METALS

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

 Lab ID:
 L1801264-03
 Date Collected:
 01/11/18 10:00

 Client ID:
 SB-16 2-5 FT
 Date Received:
 01/12/18

Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil Percent Solids: 86%

Dilution Date Date Prep Analytical Method Factor Prepared Method **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Arsenic, Total 8.48 mg/kg 0.453 0.094 1 01/17/18 08:20 01/17/18 14:09 EPA 3050B 1,6010C LC 64.2 0.079 1 01/17/18 08:20 01/17/18 14:09 EPA 3050B 1,6010C LC Barium, Total mg/kg 0.453 1 1,6010C LC Cadmium, Total 0.639 0.453 0.044 01/17/18 08:20 01/17/18 14:09 EPA 3050B mg/kg LC Chromium, Total 7.91 mg/kg 0.453 0.044 1 01/17/18 08:20 01/17/18 14:09 EPA 3050B 1,6010C 36.0 2.26 0.121 1 01/17/18 08:20 01/17/18 14:09 EPA 3050B 1,6010C LC Lead, Total mg/kg Mercury, Total 0.04 J 0.07 0.02 1 01/17/18 06:00 01/17/18 19:12 EPA 7471B 1,7471B EΑ mg/kg J LC Selenium, Total 0.172 mg/kg 0.906 0.117 1 01/17/18 08:20 01/17/18 14:09 EPA 3050B 1,6010C 01/17/18 08:20 01/17/18 14:09 EPA 3050B Silver, Total ND mg/kg 0.453 0.128 1 1,6010C LC

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-04 Date Collected: 01/11/18 10:30

Client ID: SB-17 2-5 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil
Percent Solids: 81%

reiteili 30ilus.	01/6					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Motole Man	ofiold Lob										
Total Metals - Man	sileid Lab										
Arsenic, Total	11.8		mg/kg	0.471	0.098	1	01/17/18 08:20	0 01/17/18 14:13	EPA 3050B	1,6010C	LC
Barium, Total	79.5		mg/kg	0.471	0.082	1	01/17/18 08:20	0 01/17/18 14:13	EPA 3050B	1,6010C	LC
Cadmium, Total	1.05		mg/kg	0.471	0.046	1	01/17/18 08:20	01/17/18 14:13	EPA 3050B	1,6010C	LC
Chromium, Total	16.3		mg/kg	0.471	0.045	1	01/17/18 08:20	01/17/18 14:13	EPA 3050B	1,6010C	LC
Lead, Total	7.12		mg/kg	2.36	0.126	1	01/17/18 08:20	0 01/17/18 14:13	EPA 3050B	1,6010C	LC
Mercury, Total	ND		mg/kg	0.08	0.02	1	01/17/18 06:00	01/17/18 19:14	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	0.942	0.122	1	01/17/18 08:20	01/17/18 14:13	EPA 3050B	1,6010C	LC
Silver, Total	ND		mg/kg	0.471	0.133	1	01/17/18 08:20	01/17/18 14:13	EPA 3050B	1,6010C	LC

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1801264

Project Number: Report Date: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-05 Date Collected: 01/11/18 11:00

Client ID: SB-18 1-4 FT Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil

ND

mg/kg

0.443

Silver, Total

Percent Solids: 86% Dilution Date Date Prep Analytical Method Factor Prepared Method **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Arsenic, Total 9.12 mg/kg 0.443 0.092 1 01/17/18 08:20 01/17/18 14:18 EPA 3050B 1,6010C LC 99.5 0.077 1 01/17/18 08:20 01/17/18 14:18 EPA 3050B 1,6010C LC Barium, Total mg/kg 0.443 0.757 1 1,6010C LC Cadmium, Total 0.443 0.043 01/17/18 08:20 01/17/18 14:18 EPA 3050B mg/kg LC Chromium, Total 11.4 mg/kg 0.443 0.043 1 01/17/18 08:20 01/17/18 14:18 EPA 3050B 1,6010C 13.8 0.119 1 01/17/18 08:20 01/17/18 14:18 EPA 3050B 1,6010C LC Lead, Total mg/kg 2.21 Mercury, Total ND 0.08 0.02 1 01/17/18 06:00 01/17/18 19:15 EPA 7471B 1,7471B EΑ mg/kg J LC Selenium, Total 0.168 mg/kg 0.886 0.114 1 01/17/18 08:20 01/17/18 14:18 EPA 3050B 1,6010C 01/17/18 08:20 01/17/18 14:18 EPA 3050B

0.125

1

1,6010C

LC

L1801264

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-06 Date Collected: 01/11/18 11:15

Client ID: SB-19 2-5 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil

Percent Solids: 86%

Dilution Date Date Prep Analytical
Percent Solids: 86%

Dilution Date Date Prep Analytical Method Me

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	9.90		mg/kg	0.460	0.096	1	01/17/18 08:20	01/17/18 14:22	EPA 3050B	1,6010C	LC
Barium, Total	93.4		mg/kg	0.460	0.080	1	01/17/18 08:20	01/17/18 14:22	EPA 3050B	1,6010C	LC
Cadmium, Total	0.962		mg/kg	0.460	0.045	1	01/17/18 08:20	01/17/18 14:22	EPA 3050B	1,6010C	LC
Chromium, Total	14.6		mg/kg	0.460	0.044	1	01/17/18 08:20	01/17/18 14:22	EPA 3050B	1,6010C	LC
Lead, Total	7.52		mg/kg	2.30	0.123	1	01/17/18 08:20	01/17/18 14:22	EPA 3050B	1,6010C	LC
Mercury, Total	ND		mg/kg	0.07	0.02	1	01/17/18 06:00	01/17/18 19:17	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	0.920	0.119	1	01/17/18 08:20	01/17/18 14:22	EPA 3050B	1,6010C	LC
Silver, Total	ND		mg/kg	0.460	0.130	1	01/17/18 08:20	01/17/18 14:22	EPA 3050B	1,6010C	LC

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

Project Number: 2180345 **Report Date:** 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 11:40

Client ID: SB-20 1-4 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil

Percent Solids: 88% Dilution Date Date Prep Analytical

Total Metals - Mansfield Lab Arsenic, Total 10.0 mg/kg 0.435 0.090 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Barium, Total 73.6 mg/kg 0.435 0.076 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Cadmium, Total 0.796 mg/kg 0.435 0.043 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Chromium, Total 8.15 mg/kg 0.435 0.042 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Lead, Total 134 mg/kg 2.17 0.116 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Mercury, Total 0.30 mg/kg 0.07 0.02 1 01/17/18 08:20 01/17/18 19:19 EPA 7471B 1,7471B EA Selenium, Total 0.156 J mg/kg 0.869 0.112 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC	Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Barium, Total 73.6 mg/kg 0.435 0.076 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Cadmium, Total 0.796 mg/kg 0.435 0.043 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Chromium, Total 8.15 mg/kg 0.435 0.042 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Lead, Total 134 mg/kg 2.17 0.116 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Mercury, Total 0.30 mg/kg 0.07 0.02 1 01/17/18 06:00 01/17/18 19:19 EPA 7471B 1,7471B EA Selenium, Total 0.156 J mg/kg 0.869 0.112 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC	Total Metals - Ma	nsfield Lab										
Cadmium, Total 0.796 mg/kg 0.435 0.043 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Chromium, Total 8.15 mg/kg 0.435 0.042 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Lead, Total 134 mg/kg 2.17 0.116 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Mercury, Total 0.30 mg/kg 0.07 0.02 1 01/17/18 06:00 01/17/18 19:19 EPA 7471B 1,7471B EA Selenium, Total 0.156 J mg/kg 0.869 0.112 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC	Arsenic, Total	10.0		mg/kg	0.435	0.090	1	01/17/18 08:2	0 01/17/18 15:01	EPA 3050B	1,6010C	LC
Chromium, Total 8.15 mg/kg 0.435 0.042 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Lead, Total 134 mg/kg 2.17 0.116 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Mercury, Total 0.30 mg/kg 0.07 0.02 1 01/17/18 06:00 01/17/18 19:19 EPA 7471B 1,7471B EA Selenium, Total 0.156 J mg/kg 0.869 0.112 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC	Barium, Total	73.6		mg/kg	0.435	0.076	1	01/17/18 08:2	0 01/17/18 15:01	EPA 3050B	1,6010C	LC
Lead, Total 134 mg/kg 2.17 0.116 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC Mercury, Total 0.30 mg/kg 0.07 0.02 1 01/17/18 06:00 01/17/18 19:19 EPA 7471B 1,7471B EA Selenium, Total 0.156 J mg/kg 0.869 0.112 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC	Cadmium, Total	0.796		mg/kg	0.435	0.043	1	01/17/18 08:2	0 01/17/18 15:01	EPA 3050B	1,6010C	LC
Mercury, Total 0.30 mg/kg 0.07 0.02 1 01/17/18 06:00 01/17/18 19:19 EPA 7471B 1,7471B EA Selenium, Total 0.156 J mg/kg 0.869 0.112 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC	Chromium, Total	8.15		mg/kg	0.435	0.042	1	01/17/18 08:2	0 01/17/18 15:01	EPA 3050B	1,6010C	LC
Selenium, Total 0.156 J mg/kg 0.869 0.112 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC	Lead, Total	134		mg/kg	2.17	0.116	1	01/17/18 08:2	0 01/17/18 15:01	EPA 3050B	1,6010C	LC
	Mercury, Total	0.30		mg/kg	0.07	0.02	1	01/17/18 06:0	0 01/17/18 19:19	EPA 7471B	1,7471B	EA
Silver, Total ND mg/kg 0.435 0.123 1 01/17/18 08:20 01/17/18 15:01 EPA 3050B 1,6010C LC	Selenium, Total	0.156	J	mg/kg	0.869	0.112	1	01/17/18 08:2	0 01/17/18 15:01	EPA 3050B	1,6010C	LC
	Silver, Total	ND		mg/kg	0.435	0.123	1	01/17/18 08:2	0 01/17/18 15:01	EPA 3050B	1,6010C	LC

01/17/18 08:20 01/17/18 15:05 EPA 3050B

L1801264

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

mg/kg

0.432

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

 Lab ID:
 L1801264-13
 Date Collected:
 01/12/18 09:00

 Client ID:
 SB-26 0.5-2 FT
 Date Received:
 01/12/18

Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil

ND

Silver, Total

Percent Solids: 90% Dilution Date Date Prep Analytical Method Factor Prepared Method **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab 7.75 Arsenic, Total mg/kg 0.432 0.090 1 01/17/18 08:20 01/17/18 15:05 EPA 3050B 1,6010C LC 38.8 0.075 1 01/17/18 08:20 01/17/18 15:05 EPA 3050B 1,6010C LC Barium, Total mg/kg 0.432 0.622 1 1,6010C LC Cadmium, Total 0.432 0.042 01/17/18 08:20 01/17/18 15:05 EPA 3050B mg/kg LC Chromium, Total 7.56 mg/kg 0.432 0.042 1 01/17/18 08:20 01/17/18 15:05 EPA 3050B 1,6010C 10.0 0.116 1 01/17/18 08:20 01/17/18 15:05 EPA 3050B 1,6010C LC Lead, Total mg/kg 2.16 Mercury, Total ND 0.07 0.02 1 01/17/18 06:00 01/17/18 19:21 EPA 7471B 1,7471B EΑ mg/kg LC Selenium, Total ND 0.864 0.111 1 01/17/18 08:20 01/17/18 15:05 EPA 3050B 1,6010C mg/kg

0.122

1

1,6010C

LC

01/17/18 08:20 01/17/18 15:10 EPA 3050B

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

 Lab ID:
 L1801264-14
 Date Collected:
 01/12/18 09:50

 Client ID:
 SB-28 0.5-2 FT
 Date Received:
 01/12/18

Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil Percent Solids: 80%

ND

mg/kg

0.483

Silver, Total

Dilution Date Date Prep Analytical Method Factor Prepared Method **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Arsenic, Total 8.31 mg/kg 0.483 0.100 1 01/17/18 08:20 01/17/18 15:10 EPA 3050B 1,6010C LC 118 0.084 1 01/17/18 08:20 01/17/18 15:10 EPA 3050B 1,6010C LC Barium, Total mg/kg 0.483 0.584 0.047 1 1,6010C LC Cadmium, Total 0.483 01/17/18 08:20 01/17/18 15:10 EPA 3050B mg/kg LC Chromium, Total 9.96 mg/kg 0.483 0.046 1 01/17/18 08:20 01/17/18 15:10 EPA 3050B 1,6010C 114 2.41 0.129 1 01/17/18 08:20 01/17/18 15:10 EPA 3050B 1,6010C LC Lead, Total mg/kg Mercury, Total 0.45 0.08 0.02 1 01/17/18 06:00 01/17/18 19:23 EPA 7471B 1,7471B EΑ mg/kg J LC Selenium, Total 0.579 mg/kg 0.966 0.124 1 01/17/18 08:20 01/17/18 15:10 EPA 3050B 1,6010C

0.137

1

1,6010C

LC

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-15 Date Collected: 01/12/18 10:20

Client ID: SB-29 3-5 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil Percent Solids: 84%

Dilution Date Date Prep Analytical Method Prepared Method Factor **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Arsenic, Total 12.6 mg/kg 0.464 0.097 1 01/17/18 08:20 01/17/18 15:14 EPA 3050B 1,6010C LC 25.5 0.081 1 01/17/18 08:20 01/17/18 15:14 EPA 3050B 1,6010C LC Barium, Total mg/kg 0.464 0.687 0.046 1 1,6010C LC Cadmium, Total 0.464 01/17/18 08:20 01/17/18 15:14 EPA 3050B mg/kg LC Chromium, Total 8.97 mg/kg 0.464 0.045 1 01/17/18 08:20 01/17/18 15:14 EPA 3050B 1,6010C 12.2 2.32 0.124 1 01/17/18 08:20 01/17/18 15:14 EPA 3050B 1,6010C LC Lead, Total mg/kg Mercury, Total 0.04 J 0.08 0.02 1 01/17/18 06:00 01/17/18 19:25 EPA 7471B 1,7471B EΑ mg/kg J LC Selenium, Total 0.167 mg/kg 0.928 0.120 1 01/17/18 08:20 01/17/18 15:14 EPA 3050B 1,6010C 01/17/18 08:20 01/17/18 15:14 EPA 3050B Silver, Total ND mg/kg 0.464 0.131 1 1,6010C LC

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

Report Date: 01/19/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s)	03-07,13-	15 Bate	ch: WG	1081461-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	01/17/18 06:00	01/17/18 18:57	1,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for s	ample(s):	03-07,13-	15 Bate	ch: WG	1081465-1				
Arsenic, Total	ND		mg/kg	0.400	0.083	1	01/17/18 08:20	01/17/18 13:41	1,6010C	LC
Barium, Total	ND		mg/kg	0.400	0.070	1	01/17/18 08:20	01/17/18 13:41	1,6010C	LC
Cadmium, Total	ND		mg/kg	0.400	0.039	1	01/17/18 08:20	01/17/18 13:41	1,6010C	LC
Chromium, Total	0.052	J	mg/kg	0.400	0.038	1	01/17/18 08:20	01/17/18 13:41	1,6010C	LC
Lead, Total	ND		mg/kg	2.00	0.107	1	01/17/18 08:20	01/17/18 13:41	1,6010C	LC
Selenium, Total	ND		mg/kg	0.800	0.103	1	01/17/18 08:20	01/17/18 13:41	1,6010C	LC
Silver, Total	ND		mg/kg	0.400	0.113	1	01/17/18 08:20	01/17/18 13:41	1,6010C	LC

Prep Information

Digestion Method: EPA 3050B

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1

L1801264

Report Date:

01/19/18

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 03-07,13-15	Batch: WG1081461-2	SRM Lot Number: D098-540			
Mercury, Total	102	-	50-149	-		
Total Metals - Mansfield Lab Associated sample	(s): 03-07,13-15	Batch: WG1081465-2	SRM Lot Number: D098-540			
Arsenic, Total	94	-	83-117	-		
Barium, Total	100	-	82-118	-		
Cadmium, Total	99	-	82-117	-		
Chromium, Total	95	-	83-119	-		
Lead, Total	92	-	82-117	-		
Selenium, Total	92	-	78-121	-		
Silver, Total	99	-	80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found		Recovery Limits		RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 03-0	07,13-15	QC Batch ID: V	VG1081	461-3	QC Sample: L1801460-0	1 Client I	D: MS Sample	
Mercury, Total	ND	0.18	0.24	134	Q	-	-	80-120	-	20
Total Metals - Mansfield Lab	Associated san	nple(s): 03-0	07,13-15	QC Batch ID: V	VG1081	465-3	QC Sample: L1801460-0	01 Client I	D: MS Sample	
Arsenic, Total	1.61	13.4	11.8	76		-	-	75-125	-	20
Barium, Total	32.7	224	238	92		-	-	75-125	-	20
Cadmium, Total	0.326J	5.7	5.31	93		-	-	75-125	-	20
Chromium, Total	7.70	22.4	27.0	86		-	-	75-125	-	20
Lead, Total	5.67	57	54.8	86		-	-	75-125	-	20
Selenium, Total	ND	13.4	10.2	76		-	-	75-125	-	20
Silver, Total	ND	33.6	30.4	91		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264

Parameter	Native Sample	Duplicate Sar	nple Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associate	ed sample(s): 03-07,13-15 QC Bat	tch ID: WG1081461-4	QC Sample: L1801	460-01 Clier	nt ID: DUP Sample
Mercury, Total	ND	ND	mg/kg	NC	20
Total Metals - Mansfield Lab Associate	ed sample(s): 03-07,13-15 QC Bat	tch ID: WG1081465-4	QC Sample: L1801	460-01 Clier	nt ID: DUP Sample
Arsenic, Total	1.61	1.57	mg/kg	3	20
Barium, Total	32.7	30.5	mg/kg	7	20
Cadmium, Total	0.326J	0.386J	mg/kg	NC	20
Chromium, Total	7.70	7.48	mg/kg	3	20
Lead, Total	5.67	5.78	mg/kg	2	20
Selenium, Total	ND	ND	mg/kg	NC	20
Silver, Total	ND	ND	mg/kg	NC	20

INORGANICS & MISCELLANEOUS

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1801264

Report Date: Project Number: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: L1801264-03 01/11/18 10:00

SB-16 2-5 FT Client ID: Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-21

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	85.8		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1801264

Report Date: Project Number: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/11/18 10:30 L1801264-04

SB-17 2-5 FT Client ID: Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-21

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	80.8		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-05 Date Collected: 01/11/18 11:00

Client ID: SB-18 1-4 FT Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	85.9		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

L1801264

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

Report Date: Project Number: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: L1801264-06 01/11/18 11:15

SB-19 2-5 FT Client ID: Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-21

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	85.5		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST **Lab Number:** L1801264

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-07 Date Collected: 01/11/18 11:40

Client ID: SB-20 1-4 FT Date Received: 01/12/18
Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep: Not Specified

Matrix: Soil

Analytical Method **Dilution** Date Date Factor Prepared Analyzed Result Qualifier Units RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Solids, Total 87.8 % 0.100 NA 1 01/16/18 14:47 121,2540G RΙ

L1801264

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

Project Number: 2180345 Report Date: 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-08
Client ID: SB-21 14-15 FT

Client ID: SB-21 14-15 FT Date Received: Sample Location: 115-121 W. THIRD ST., & 200-21 Field Prep:

Matrix: Soil

Date Collected: 01/11/18 12:15

Date Received: 01/12/18
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Solids, Total	86.1		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1801264

Report Date: Project Number: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: L1801264-09 01/11/18 13:00

SB-22 15-16 FT Client ID: Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-21 Not Specified

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	rough Lab)								
Solids, Total	81.8		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

L1801264

Project Number: 2180345

Report Date:

01/19/18

SAMPLE RESULTS

Lab ID: L1801264-10 SB-23 15-16 FT Client ID:

Date Collected: Date Received: 01/11/18 13:40

Sample Location: 115-121 W. THIRD ST., & 200-21

01/12/18

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	1								
Solids, Total	87.0		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

L1801264

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

Report Date: Project Number: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: L1801264-11 01/12/18 10:50 SB-30 14-15 FT

Client ID: Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-21 Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	78.6		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

L1801264

Project Number: 2180345

Report Date:

01/19/18

SAMPLE RESULTS

Lab ID: L1801264-13 SB-26 0.5-2 FT Client ID:

Sample Location: 115-121 W. THIRD ST., & 200-21

Matrix: Soil Date Collected:

01/12/18 09:00

Date Received: 01/12/18 Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	90.4		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number: L1801264

Report Date: Project Number: 2180345 01/19/18

SAMPLE RESULTS

Lab ID: Date Collected: 01/12/18 09:50 L1801264-14

SB-28 0.5-2 FT Client ID: Date Received: 01/12/18 Sample Location: 115-121 W. THIRD ST., & 200-21

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	79.6		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Project Name: 115-121 W 3RD ST+200-210 W. ST Lab Number:

L1801264

Project Number: 2180345

Report Date: 01/19/18

SAMPLE RESULTS

Lab ID: L1801264-15 SB-29 3-5 FT

Client ID:

Sample Location: 115-121 W. THIRD ST., & 200-21

Matrix: Soil Date Collected: 01/12/18 10:20

Date Received: 01/12/18

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab)								
Solids, Total	84.3		%	0.100	NA	1	-	01/16/18 14:47	121,2540G	RI

Lab Duplicate Analysis
Batch Quality Control

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number:

Report Date:

L1801264

01/19/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp FT	ble(s): 03-11,13-15	QC Batch ID: WG1081311-1	QC Sample	L180126	64-03 Clie	ent ID: SB-16 2-5
Solids, Total	85.8	85.7	%	0		20

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Lab Number: L1801264
Report Date: 01/19/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1801264-01A	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		HOLD-WETCHEM()
L1801264-01B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		HOLD-METAL(180)
L1801264-01C	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		HOLD-8082()
L1801264-01D	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		HOLD-8082()
L1801264-02A	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		HOLD-WETCHEM()
L1801264-02B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		HOLD-METAL(180)
L1801264-02C	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		HOLD-8082()
L1801264-02D	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		HOLD-8082()
L1801264-03A	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)
L1801264-03B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1801264-03C	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)
L1801264-03D	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)
L1801264-04A	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)
L1801264-04B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1801264-04C	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14),NYTCL-8082(14)
L1801264-04D	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14),NYTCL-8082(14)
L1801264-05A	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)
L1801264-05B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1801264-05C	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14),NYTCL-8082(14)
L1801264-05D	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14),NYTCL-8082(14)

Lab Number: L1801264

Report Date: 01/19/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Container Info	Information		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L1801264-06A	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)		
L1801264-06B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)		
L1801264-06C	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)		
L1801264-06D	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)		
L1801264-07A	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)		
L1801264-07B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)		
L1801264-07C	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)		
L1801264-07D	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)		
L1801264-08A	Vial MeOH preserved	Α	NA		3.0	Y	Absent		NYTCL-8260HLW-R2(14),NYTCL-8260H- R2(14)		
L1801264-08B	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	NYTCL-8260HLW-R2(14),NYTCL-8260H- R2(14)		
L1801264-08C	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	NYTCL-8260HLW-R2(14),NYTCL-8260H- R2(14)		
L1801264-08D	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)		
L1801264-08E	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)		
L1801264-09A	Vial MeOH preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260HLW-R2(14)		
L1801264-09B	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	NYTCL-8260HLW-R2(14)		
L1801264-09C	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	NYTCL-8260HLW-R2(14)		
L1801264-09D	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)		
L1801264-09E	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)		
L1801264-10A	Vial MeOH preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260HLW-R2(14)		
L1801264-10B	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	NYTCL-8260HLW-R2(14)		
L1801264-10C	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	NYTCL-8260HLW-R2(14)		
L1801264-10D	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)		
L1801264-10E	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)		
L1801264-11A	Vial MeOH preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260HLW-R2(14)		
L1801264-11B	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	NYTCL-8260HLW-R2(14)		
L1801264-11C	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	NYTCL-8260HLW-R2(14)		

Lab Number: L1801264

Report Date: 01/19/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1801264-11D	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)
L1801264-11E	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)
L1801264-12A	Vial MeOH preserved	Α	NA		3.0	Υ	Absent		HOLD-8260HLW(14)
L1801264-12B	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	HOLD-8260HLW(14)
L1801264-12C	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	HOLD-8260HLW(14)
L1801264-12D	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		HOLD-WETCHEM()
L1801264-12E	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		HOLD-8270(14)
L1801264-13A	Vial MeOH preserved	Α	NA		3.0	Υ	Absent		HOLD-8260HLW(14)
L1801264-13B	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	HOLD-8260HLW(14)
L1801264-13C	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	HOLD-8260HLW(14)
L1801264-13D	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)
L1801264-13D1	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)
L1801264-13E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1801264-13F	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8082(14)
L1801264-13G	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)
L1801264-14A	Vial MeOH preserved	Α	NA		3.0	Υ	Absent		HOLD-8260HLW(14)
L1801264-14B	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	HOLD-8260HLW(14)
L1801264-14C	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	HOLD-8260HLW(14)
L1801264-14D	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)
L1801264-14D1	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)
L1801264-14E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1801264-14F	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8082(14)
L1801264-14G	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)
L1801264-15A	Vial MeOH preserved	Α	NA		3.0	Υ	Absent		HOLD-8260HLW(14)
L1801264-15B	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	HOLD-8260HLW(14)
L1801264-15C	Vial water preserved	Α	NA		3.0	Υ	Absent	13-JAN-18 08:55	HOLD-8260HLW(14)
L1801264-15D	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)

Lab Number: L1801264

Report Date: 01/19/18

Project Name: 115-121 W 3RD ST+200-210 W. ST

Project Number: 2180345

Container Information			Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L1801264-15D1	Plastic 2oz unpreserved for TS	Α	NA		3.0	Υ	Absent		TS(7)		
L1801264-15E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)		
L1801264-15F	Glass 60mL/2oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8082(14)		
L1801264-15G	Glass 120ml/4oz unpreserved	Α	NA		3.0	Υ	Absent		NYTCL-8270(14)		

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

 Project Number:
 2180345
 Report Date:
 01/19/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

 Project Number:
 2180345
 Report Date:
 01/19/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 115-121 W 3RD ST+200-210 W. ST
 Lab Number:
 L1801264

 Project Number:
 2180345
 Report Date:
 01/19/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Page 1 of 1

Published Date: 1/8/2018 4:15:49 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, EA 351.1, SM4500P-B, EA 351.1, SM500P-B, EA 351.1, SM500P-B, E SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	105	Pag	je of			Rec'd	1),	3/18		ALPHA Job#
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	4 - 30	27 951 9	BU STEEL		Deliv	erable	s	NAC S	9 3	NAME OF STREET	Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 15-12	I WTW	342	2007)101	sa va netos		ASP-	A		ASP-	В	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 115-1					17	EQui	S (1 File	(e)	EQui	S (4 File)	PO#
Client Information	HOLD BY BY	Project # 219 624	S	110131 000	D-SIO MAN	HIND IND.	15	Other		(C)			
Client: / or Bel In Asso	cides	(Use Project name as Pr					Regu		Require	ment	WINT N	55 5	Disposal Site Information
Address: 300 Po		Project Manager: Q26	-1	D Ichall Co	r com			NY TO			NY Pa	rt 375	
Buffalo, NY		ALPHAQuote #:	- CAURI E	- ID-DOITUED	C.I OI		15	AWQ S	Standard	s [NY CF		Please identify below location of applicable disposal facilities.
Phone: 710-710-	3043	Turn-Around Time	1000	- 10	A SOUTH	10 10 10 10	Ī		stricted (Other		Disposal Facility:
Fax:	0-12	Standard		Due Dat	0.	0.00	In		restricted				□ NJ □ NY
	Slavel harm	Rush (only if pre approved	The state of the s	# of Day			lΗ		ewer Dis				
	peen previously analyz			# OI Day	3.		ANA	LYSIS	GWO! DIS	caage			Other:
	c requirements/comn						Alva	1		_	_		Sample Filtration
TCL VOLS Libe	is indicate no. Please emuil	to CKIDIERE K			ves in the	teraco-e	705	Modals		SOCS			Done Lab to do Preservation Lab to do
Please specify Metals ALPHA Lab ID			Coll	ection	Sample	Sampler's	15 7	RA IN	CBS	7			(Please Specify below)
(Lab Use Only)	Sa	imple ID	Date	Time	Matrix	Initials	12	Z	I				Sample Specific Comments
01264-01	58-14	2-3 ft	1/11/18	9:00	Soil	SD	4	V	V				ran Hold.
-03	58-15	2-35+	11111118	9:30	Soil	D	4	X	x				MAI LAND
	58-16 3	3-45+	1/11/18	10:00	Soil	SP	V	4	X				AN HOLD
-04		244	1111/18	10.30	501	50	1	×	1				MINIM
-05	53-18	2-3ft	1/11/18	11:00	110	50	4	8	£	$\overline{}$			On HAB
-06	50-19	3-464	MINHR	11:15	Soil	50	X	K	X	+	+	\neg	ON HAID
-67-66°1	58-20	Z-3 ft	1//1//8	11:40	Sell	50	×	4	4				DO MOID
-08	53-21	14-15++	1/1/1/8	12:15	Soil	SO	X		1	X	+	_	ON HOLD
709	53-22	15-110CH	1/11/18	13:00	Soil	50	X	-	_	χ.	+	_	CA HOLD
10	53-23	15-Roft	1/11/18	13:40	Soil	20	X	-	-	C	1	-	ON THE
Preservative Code:	Container Code	Westboro: Certification No		12 10	901	N. C.	_	-			+	_	CALL SILVED
A = None B = HCI	P = Plastic				Con	tainer Type					1 1		Please print clearly, legibly
C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification No	0: MAU15		-			-	-	-	+		and completely. Samples can not be logged in and
D = H2SO4	G = Glass				F	reservative		- 1			1 1		turnaround time clock will no
E = NaOH F = MeOH	B = Bacteria Cup C = Cube									+	\perp		start until any ambiguities are
G = NaHSO ₄	O = Other	Relinquished B	By:		/Time		Receiv	ed By:		1.	Date/	ime	resolved. BY EXECUTING THIS COC, THE CLIENT
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	AMAC AA	_	1/12/18	17:15	Am An		AH	a p	177	13/18	01:00	HAS READ AND AGREES
Form No: 01-25 HC (rev. 30 age 116 of 117	0-Sept-2013)								1				(See reverse side.)

Westborough, MA 01581 8 Walkup Dr.	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	5	Pag	e of			Rec'o		13)18		ALPHA Job # L18013.64 Billing Information
TEL: 508-896-9220 FAX: 506-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: JMM Project Location: NF Project # 218034	21 NT	rover st	- * 200°	20Wall	4930	ASP- EQuil Othe	S (1 F	ile)	_ ASI	P-B ulS (4 File)	Same as Client Info
Client La Bell 4	A Societes	(Use Project name as Pr					Regu	Constitution of the last	-	rement		E 15 9101	Disposal Site Information
Address: 300 Peo			am Zeb	MURIC:			NY TOGS						Please identify below location of applicable disposal facilities.
Phone: 116-710 Fax: Email: Sdalfo	-30-13	Turn-Around Time Standard Rush (only if pre approved		Due Date			NY Restricted Use Other NY Unrestricted Use NYC Sewer Discharge						Disposal Facility: NJ NY Other:
These samples have be				ii oi baja	,		ANA	LYSIS					Sample Filtration
Other project specific							1			Т		T	0
Please specify Metals	or TAL.						VOCS	SUDCS	RA Metuu	·Br			Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	S	ample ID	Colle Date	ction Time	Sample Matrix	Sampler's Initials	70	72	2	8			Sample Specific Comments
61264-9731 -13 -14 -15	58-30 58-33 58-26 58-26 58-29 58-29	15-115+ 05-16+ 05-16+ 3-44+	MUIB MUIB MUIB	9:00	SON SON SON SON SON	50 50 50	888	XXXX	XXX	X X			ON HOLD ON HOLD ON HOLD ON HOLD
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle		o: MA015	Date/ 17/12/18	P	Preservative	Receiv	ed By:			Date 1/2/17	a/Time 17:15 01:7-0	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

APPENDIX 2

Qualifications

LaBella Project Personnel

LaBella Staff Member	Title	Phone Number
Greg Senecal	Environmental Director	585-295-6243
Rob Napieralski	Environmental Operations Manager	716-551-6283
Adam Zebrowski	Project Manager	716-840-2548
Daniel Noll	Design Team Leader	585-295-6611
Chris Kibler	Senior Environmental Analyst	716-768-3184
Richard Rote	Health and Safety Director	585-295-6241
Shannon Dalton	Environmental Analyst	716-710-3043

CHMM

Certified Hazardous Materials Manager

EDUCATION

State University of New York at Syracuse, School of Environmental Science and Forestry: BS, Environmental Science

State University of New York at Cobleskill: AAS, Fisheries and Wildlife Technology

CERTIFICATION/ REGISTRATION

Certified Hazardous Materials Manager

Certified Hazardous Waste Operations & Emergency Response (40-Hour OSHA Health and Safety Training 29)

GREG SENECAL

Director, Environmental Division

Greg is Director of Environmental Services and is a Certified Hazardous Materials Manager responsible for the direction of all environmental investigation projects undertaken by the firm. He has over 25 years of experience in designing, managing, and conducting numerous site assessments, remedial projects, Brownfield redevelopment projects, groundwater monitoring well installations, test pit excavations, underground petroleum storage tank removals, and spill cleanups. Greg coordinates staffing and client relationships for many of the firm's environmental clients. This effort includes working closely with the client, and forming the best technical project teams for the diverse array of environmental consulting and engineering services offered by the firm.

PHASE I/II INTRO:

As Director of Environmental Services, Greg is responsible for the direction of all environmental investigation projects undertaken by the firm. Greg has over 25 years of experience scoping, scheduling, and reviewing Phase I Environmental Site Assessments, Phase II Environmental Site Assessments, and remedial efforts undertaken by the firm. Greg is a Certified Hazardous Materials Manager (CHMM) and has extensive experience in the field of Environmental Management relating to Phase I and Phase II Environmental Site Assessments, remediation, and environmental compliance evaluations. Greg has conducted or supervised over 3,000 Phase I Environmental Site Assessments, as the firm has averaged performing 550 assessments per year.

Ithaca Chainworks: Brownfield Redevelopment Project - Ithaca, NY

Greg has designed all of the purchasers environmental due diligence efforts for this project. The Chainworks project involves the purchase and redevelopment of Ithaca's largest Industrial Complex. The project Site is a state superfund listed property that encompasses 98 acres and houses 900,000 of vacant industrial building space. Greg worked very closely with the purchaser and the purchasers environmental legal team to negotiate with the seller and the

NYSDEC. The out come of these negotiations was an agreement to hold the purchaser harmless for the contamination that exists at the property. An agreement was designed and signed by the seller, that requires the seller to conduct all environmental clean up to meet restricted residential levels. Cleanup has been ongoing since the late 1990's and is expected to be complete in approximately twenty years.

Monoco Oil Brownfield Cleanup & Redevelopment - Pittsford, NY

Greg has been responsible for

directing all environmental services associated with the NYSDEC Brownfield Cleanup Program for this project. This complex environmental project involves the cleanup and demolition of a 20-acre blighted vacant oil refinery. The redevelopment plan for the project includes redevelopment of an upscale waterfront apartment and town home complex along the Canal. Greg has conducted NYSDEC, NYSDOH, and local negotiations for many aspects of the project. Public participation and communication has been paramount to the project success.

Former Emerson Street Landfill: Redevelopment Programs -Rochester, NY

Greg is Client Manager for these studies which have been ongoing for the past 15 years. Greg functions a liaison between the City of Rochester and the owners of 66 buildings that have been constructed on the 260 acre landfill footprint. Tasks include:

- -Development of environmental cost premiums for projects that are being completed on the landfill:
- -Development of a fill management protocol for redevelopment projects;
- -Direction of soil vapor intrusion studies as required by the NYSDEC for the 66 buildings that have been redeveloped on the landfill footprint;
- -Formation of technical teams to design sub slab soil vapor mitigation systems for buildings and building additions that are being constructed on the landfill footprint;
- -Directed environmental efforts for the expansion at a City of Rochester High School that is

located on the landfill footprint.

Monroe County Environmental Testing Term Agreement Monroe County, NY

As Director of Environmental Services, Greg has been responsible for the successful completion of over 12 years of term agreements (with annual renewals) for hazardous materials inspection and abatement design with Monroe County. Greg's responsibilities typically include meeting with the County, understanding the needs of the environmental project and forming the best possible project team to meet the County's needs. Recent assignments include environmental evaluation of three Sites for the County Crime Lab, and the asbestos inspection, design, and abatement monitoring for a New Downtown Monroe Community College Campus at a former Kodak headquarters building.

City of Rochester: Brownfield Assistance Program Term Agreement (4 Consecutive Terms) - Rochester, NY

Greg serves as the Client
Manager who directs all of the
projects under the term. Projects
range from Phase I Environmental
Site Assessments to Site
Characterizations, Remedial
Cost Estimates, and Brownfield
Cleanups. Greg works with the
City and the individual property
owner to design and implement
investigative programs
and evaluate clean up and
redevelopment options.

690 St. Paul Street: NYSDEC Brownfield Cleanup Project -Rochester, NY

Greg is serving as the project director for this multi-faceted Brownfield investigation and

cleanup project. Greg acts as the liaison between the building owners, the former owner (Bausch & Lomb), the Building tenant (City of Rochester School District), and the numerous regulatory agencies involved in the project. This project includes a large SVI investigation, design and installation of a SVI mitigation system, monthly performance monitoring of indoor, sub slab, and exterior air, and communication of the above results to the agencies, tenants, and various stakeholder groups this project also included several IRM's for the removal of orphan tanks and petroleum impacted soils. The RI is currently focusing on the identification and delineation of suspected TCE plumes on the property and under the building structures.

Buffalo Avenue Industrial Corridor Brownfield Opportunity Area: Pre-Nomination Study -Niagara Falls, NY

Greg served as the project director for this 1500 acre, 2500 industrial parcel Brownfield Opportunity Area Project. Greg coordinated the effort between LaBella's Planning and environmental division. He also oversaw the schedule and public outreach components of the project.

Vacuum Oil/South Genesee Brownfield Opportunity Area: Pre-Nomination Study -Rochester, NY

Director of the Project Team for the City of to prepare a pre-nomination study for the proposed Vacuum Oil-South Genesee River Corridor Brownfield Opportunity Area. LaBella developed mapping that allowed for the Brownfield Opportunity Area boundaries to be established in a logical manner at the 56 acre 1.2 mile long corridor along the Genesee River. LaBella conducted economic and demographic research for the project site and gathered zoning, occupancy, and environmental information for potential underutilized Brownfield properties within the BOA.

Oswego River Corridor BOA - Oswego County, NY

Environmental Division Director for this 1,300 acre BOA on the Lake Ontario and Oswego River waterfronts. The project will focus on opportunities to redevelop strategic sites on the waterfront, downtown and underutilized or contaminated brownfields.

Town of Tonawanda: Tonawanda BOA - Tonawanda, NY

Environmental Division Director responsible for technical environmental services for this 1,000 acre BOA on the Niagara River.

Foster Wheeler Plant: Site Characterization - Dansville, NY

Project Manager for this due diligence investigation, which consisted of a complete Phase I Environmental Site Assessment and Phase II Site Characterization.

Port of Rochester Redevelopment Project: Phase II Site Characterization -Rochester, NY

Project Manager for complete Phase II Site Characterization, which involved sub surface characterization of approximately 38 acres. Greg directed the environmental team who received a beneficial re-use determination to re use 80,000 cubic yards of iron foundry slag as on site fill.

Bureau of Water, Lighting, & Parking Meter Operations - Rochester, NY

Greg served as Client Manager to remediate the Water Bureau site to obtain regulatory closure or inactivation. The project scope includes the redevelopment of the current site for reuse as a new facility for the operations center.

CSXT Train Derailment & Hazardous Materials Spill -Rochester, NY

Project Manager responsible for review of all delineation reports, implementation of additional delineation studies, review of remedial work plans, and oversight of all facets of the execution of IRM as it related to achieving a cleanup that would limit long term liability for the City and allow for the planned redevelopment to occur.

Rochester Rhinos Stadium: Brownfield Redevelopment -Rochester, NY

Greg served as Project Manager of the NYSDEC Voluntary Cleanup of this prominent urban redevelopment site. The voluntary clean was based around a soils management plan approach that included the re-use of approximately sixty thousand yards of low level petroleum contaminated soils as on site fill under parking lots and in landscaped berm areas of the property.

Seneca Nation: USEPA Brownfield Cleanup Grant

Client Manager responsible for the preparation of a USEPA funded Brownfield Cleanup. The site consists of a vacant rail yard that is contaminated with diesel fuel and heavy metals. The cleanup involves removal and ex-situ bio-remediation of petroleum impacted soils and an environmental management approach that allows for the reuse of railroad ballast and shallow soil impacted with low levels of heavy metals and semi volatile organic compounds as fill under paved parking lots.

NYSDOT: Hazardous Waste Projects, Region 4, Region 5 -State of New York

Project Manager responsible for the development of a characterization workplan to satisfy City, NYSDEC, NYSDOH, MCEMC, and NYSDOT requirements, and implementation of a multiple phase work plan including: shallow soil sampling, test pitting, drilling, geo-probing, and groundwater monitoring well installation. Greg also served as the environmental liaison. between LaBella Associates, the NYSDOT, the NYSDEC, and the City of Rochester. In addition, he provided direction of investigative and remedial work and evaluation of contamination levels and impacts. Greg was responsible for final report preparation for the City and the NYSDEC.

Automotive Service Center: Voluntary Cleanup Investigation - Rochester, NY

Project Manager responsible for the delineation of an area of impairment for the client, and the release of future environmental liability for the client from the NYSDEC.

Pennsylvania Act II Site

C P GCertified professional Geologist

EDUCATION

Boston University: BA, Geology (Hydrogeology)

ORGANIZATIONS

American Institute of Professional Geologists

Association of Groundwater Scientists and Engineers

ROBERT NAPIERALSKI

Buffalo Regional Manager

Rob is the Buffalo Regional Manager for Environmental Services. With more than 25 years of professional consulting experience for public and private sector clients involving a wide range of environmental, infrastructure and transportation projects, his background includes extensive experience with: SEQRA/NEPA compliance and documentation, Regulatory compliance and permitting, Environmental due diligence assessments, Brownfield investigation, remediation and redevelopment, Solid waste management facility permitting and monitoring, Municipal infrastructure planning, design and construction, and Locally administered, federally funded transportation projects.

Responsibilities include project management, business development and client management.

Petroleum Brownfields Inventory - Niagara County, NY

Principal-in-Charge for the preparation of an inventory of petroleum Brownfield sites throughout Niagara County under a USEPA assessment grant. The work included review of existing Brownfield databases and state and federal records: community outreach; surveys of municipalities; conversion of the inventory into GIS; and preparation of site evaluation worksheets for identified sites. The site evaluation worksheets were ultimately used to rank sites for prioritization for funding environmental site assessments with the remainder of the County's USEPA grant and other grant programs.

Brownfield Cleanup Program RI/ AA, A&A Metals Site - Perry, NY

Principal/Project Manager for the investigation of former industrial site under the Brownfield Cleanup Program (BCP). The site is located along the Silver Lake

outlet, functioned as a metal tank manufacturing facility for over 50 years and is currently slated for redevelopment as an alternative energy incubator. Rob was responsible for the management of technical staff and subcontractors, completion of the risk assessment, technical review of project deliverables and communications with the Client and NYSDEC.

Brownfield Redevelopment Project, Covanta Rail-to-Truck Intermodal Facility - Niagara Falls, NY

Project Manager for the accelerated investigation, remediation and redevelopment of a 15-acre former industrial site for use as a Rail-to-Truck Intermodal Facility (RTIF). The project is being advanced under the Brownfield Cleanup Program (BCP) and has involved the completion of a Remedial Investigation (RI); development of a NYSDEC-approved Remedial Action Work Plan to address a

range of contamination, including radioactive slag; obtaining site plan approval for the proposed development; and completing site and architectural design of the RTIF. The remedial design and site design efforts were fully integrated to produce a cleanup plan that dovetails with the site development plan and optimizes the project schedule.

Chautauqua County: Brownfield Assessment, Demonstration Pilot Program - Chautauqua County, NY

Responsible for the management of programmatic and technical services provided in support of this EPA Brownfield Pilot Program under a multi-year contract. Duties included the management of technical staff and subcontractors involved in the assessment, investigation, and remedial planning for multiple Brownfield sites. Responsibilities also included participation in the County's Brownfield Task Force and community involvement program, as well as assisting the County with the preparation of quarterly progress reports for submittal to EPA. Project required extensive communication with regulatory personnel from EPA and NYSDEC, as well as public officials and agencies. (E13/200)

Niagara Region Brownfield Coalition: Grant Management Services

Principal-in-Charge for a multiyear contract to assist the Niagara Region Brownfield Coalition (NRBC), consisting of the Cities of Buffalo and Niagara Falls and Erie and Niagara Counties, with the management and implementation of a USEPA-funded Brownfield Showcase Community Grant. Responsible for providing programmatic and site specific technical and strategic assistance to coalition members relative to site prioritization and assessment, funding and regulatory programs, and community/agency outreach.

Brownfield Opportunity Area: Step 1 Pre-Nomination Study -City of Dunkirk, NY

Principal-in-Charge for the BOA Pre-Nomination Study which focused on a large former steel manufacturing complex within the City of Dunkirk. The scope of the Step 1 BOA program includes identifying a manageable study area; completing community outreach activities; completing an inventory of Brownfield sites; identifying current and historic uses of the study area; describing current conditions within the proposed BOA; and assembling a vision for the successful redevelopment of the area. Responsible for general oversight of contractual, budgetary, scheduling and quality assurance/quality control aspects of the project, as well as periodic communications with the client, NYSDOS and NYSDEC.

Brownfield Opportunity Area: Step 1 Pre-Nomination Study -City of Olean, NY

Principal-in-Charge for the BOA Pre-Nomination Study that focuses on a 500-acre area within the northwestern portion of the City of Olean that was formerly occupied by a large petroleum refinery complex. The scope of the Step 1 BOA program includes identifying a manageable study area; completing community outreach activities; completing an inventory of Brownfield sites; identifying current and historic uses of the study area; describing

current conditions within the proposed BOA; and assembling a vision for the successful redevelopment of the area. Additionally, the work includes the preparation of conceptual redevelopment plans to assist with the advancement of the remediation of a portion of the study area by a responsible private party. Responsible for general oversight of contractual, budgetary, scheduling and quality assurance/quality control aspects of the project, as well as periodic communications with the client, NYSDOS and NYSDEC.

Brownfield Opportunity Area: Step 2 Nomination Study - City of Lackawanna, NY

Principal/Project Manager for the BOA Nomination study focusing on 2,000-acres that encompass the former Bethlehem Steel site and First Ward of the City of Lackawanna. Responsible for the management of technical staff and subconsultants involved in environmental and infrastructure analysis, market and economic studies, conceptual planning efforts, and stakeholder and public consultation.

Brownfield Opportunity Area: Step 2 Nomination Study, Highland Area - City of Niagara Falls, NY

Principal-in-Charge for the environmental and infrastructure characterization and analysis portion of an area-wide redevelopment planning study of the Highland Area of Niagara Falls. Assisted the City with a successful BOA grant application, providing \$375,000 to complete a redevelopment plan for this 560-acre area community that contains a high concentration of Brownfield sites. As a

subconsultant to an international planning firm, analyzed environmental and infrastructure constraints and opportunities to assist in the development of the redevelopment plan.

Brownfield Opportunity Area: Step 1 Pre-Nomination Study, Chadakoin River Corridor - City of Jamestown, NY

Principal-in-Charge for characterization and preliminary analysis of redevelopment opportunities within a 600-acre segment of the Chadakoin River corridor, which extends through the industrial spine of the City of Jamestown. Responsible for guiding community and stakeholder outreach programs, efforts to characterize existing conditions within the project corridor and the analysis of redevelopment opportunities and constraints.

Brownfield Opportunity Area: Step 1 Pre-Nomination Study -City of Lockport, NY

Principal-in-Charge for the BOA Pre-Nomination Study that focuses on the two primary stream corridors in the City of Lockport: the Erie Canal and 18-Mile Creek. The scope of the Step 1 BOA program includes identifying a manageable study area; completing community outreach activities; completing an inventory of Brownfield sites; identifying current and historic uses of the study area; describing current conditions within the proposed BOA; and assembling a vision for the successful redevelopment of the area. Responsible for general oversight of contractual, budgetary, scheduling and quality assurance/quality control aspects of the project, as well as

periodic communications with the client. NYSDOS and NYSDEC.

Brownfield Redevelopment Feasibility Study, Former ALCO Complex - Dunkirk, NY

Project Manager for the analysis of redevelopment potential for the 30-acre site of a former locomotive manufacturing complex. Project involved the building condition assessment of a 300,000 SF building complex to determine potential for rehabilitation and/or adaptive reuse, as well as the comparative analysis of demolition and rehabilitation costs. Project also included the development of conceptual site plans for several reuse alternatives, and coordination of strategic planning process to identify critical issues (e.g., funding shortfalls, environmental liability, flow of ownership complications) and strategies for addressing said issues.

Brownfield Reuse Assessment: Flintkote Complex - Lockport, NY

Project Manager for the assessment of an abandoned manufacturing complex to determine the potential for reuse of the remaining structures. Project involved a structural evaluation and development of order of magnitude cost estimates for the rehabilitation of portions of the building complex. Recommendations and cost estimates for asbestos abatement and demolition were ultimately made.

Niagara Metals Facility: Brownfield Redevelopment -Niagara Falls, NY

Principal-in-Charge for the first phase of redevelopment of

the 53-acre former Airco Speer Carbon Graphite site in the City of Niagara Falls, NY. Obtained site plan approval and special use permit to construct the new headquarters and recycling facility for Niagara Metals on this Class 3 Inactive Hazardous Waste Site. Project required the review and evaluation of historical environmental reports, coordination with the NYSDEC Division of Environmental Remediation, SEQRA documentation, site plan preparation and presentation to the City Planning Board.

Assessment of Brownfield Site - Brocton, NY

Project Manager for the Phase I ESA and asbestos and lead-based paint survey of a 100,000 SF former food processing facility. This work was performed in conjunction with the potential remediation, demolition and redevelopment of the property. It served as the basis for the development of a 1996 Clean Water/Clean Air Bond Act Environmental Restoration Project Application for Investigation submitted to the NYSDEC on behalf of the County.

Brownfield Site Evaluation, Abandoned Steel Plant Complex

- Lackawanna, NY

Responsible for the evaluation of a former fully integrated steel plant that encompasses more than 1,000 acres along the waterfront to the south of Buffalo. Technical responsibilities include the review of existing site data to define site conditions and the magnitude and extent of contamination, chemicals and wastes. Duties also include determination of probable cleanup levels, and

the oversight of technical staff involved in the screening of remedial alternatives, remedial cost estimating, and reporting. Responsibilities also include expert testimony and analysis of potential funding opportunities via insurance asset recovery.

Phase I/II Environmental Site Assessments, Brownfield Pilot Sites - Niagara Falls, NY

Project Manager for the Phase I/ II ESAs of two Brownfield sites funded via a Supplemental **EPA Brownfield Assessment** Demonstration Pilot. The Phase I ESAs were performed in accordance with ASTM E-1527, while the Phase II ESAs were in accordance with site-specific work plans prepared pursuant to EPA requirements. Responsible for client and regulatory communications, public meetings, management of technical staff and subcontractors, and technical review of project deliverables (e.g., work plans, health and safety plans, ESA reports).

Phase II Environmental Site Assessment, Brownfield Site Jamestown, NY

Project Manager for the Phase II ESA of the site of a former metal office furniture manufacturing complex located in the main industrial corridor of the City of Jamestown. This project involved the drilling and installation of seven monitoring wells and the collection and chemical analysis of groundwater, soil, and river sediment samples. Negotiated a No Further Action letter from the NYSDEC to facilitate site redevelopment.

Phase II Environmental Site Assessment, Brownfield Site Jamestown, NY

Project Manager for the Phase II ESA of a former furniture manufacturing facility site located in the main industrial corridor of the City of Jamestown. This project involved the investigation of potential impacts to groundwater following the discovery and removal of a number of leaking fuel oil USTs. The results of this investigation were utilized to verify the successful completion of site remediation activities and clear the site for redevelopment.

Remedial Investigation/ Alternatives Analysis (RI/AA) Program, Edgewood Warehouse: - Dunkirk, NY

Principal-in-Charge for the RI/AA of a former locomotive manufacturing facility advanced under the New York State Environmental Restoration Program (ERP). The scope of the RI program includes the characterization of potentially contaminated fill, soil, sediments, building materials and groundwater. The project also involves the identification and detailed analysis of remedial alternatives available to address the affected media.

Remedial Investigation/ Alternatives Analysis (RI/AA) and Interim Remedial Measures (IRMs), Electruk Site -Town of Lockport, NY

Principal-in-Charge for the implementation of an RI/AA program and IRMs at a former battery manufacturing facility advanced under the New York State Environmental Restoration Program (ERP). The scope of the RI program included the characterization of soil, sediment, surface water, and groundwater potentially contaminated with

lead and VOCs. The project also involved the identification and detailed analysis of remedial alternatives available to address the affected media. The IRM activities included the removal of contaminated sediment and water and the closure of drainage features.

Remedial Investigation/ Alternatives Analysis Program (RI/AA), Former Niagara Motors Site - Dunkirk, NY

Quality Assurance Officer for the RI/AA of an abandoned fouracre site formerly utilized for the manufacture of marine engines. Project is being performed under the New York State Environmental Restoration Program (ERP). Responsibilities include review of project Quality Assurance Plan, implementation of project audits, Quality Assurance reviews of project staff and subcontractors involved in site characterization and remedial alternatives analysis, as well as client and regulatory communications. Duties also include technical review of project plans, reports and estimates.

Remedial Investigation/ Alternatives Analysis Program (RI/AA), Former Felmont Oil Site - Olean, NY

Quality Assurance Officer for the RI/AA of a 22-acre former oil refining, storage, and distribution facility under the New York State Environmental Restoration Program (ERP). The scope of the RI program includes a passive soil gas survey, a geophysical survey, and the characterization of potentially contaminated fill, soil, groundwater, surface water, and sediment. The project involves the identification and detailed analysis of remedial alternatives

ROBERT NAPIERALSKI

available to address the affected media. Responsibilities included client and regulatory communications, implementation of community involvement plan, coordination of project staff and subcontractors, and technical review of project plans and reports.

Remedial Investigation/ Alternatives Analysis (RI/AA) Program, Youngstown Cold Storage - Youngstown, NY

Principal-in-Charge for the RI/ AA of a former apple storage facility adjacent to a public park that is being advanced under the New York State Environmental Restoration Program (ERP). The scope of the RI program included the characterization of fill, soil, and groundwater potentially contaminated with arsenic and PCBs, and building materials that contain asbestos. The project involves the identification and detailed analysis of remedial alternatives available to address the affected media. Responsibilities included client and regulatory communications, and the technical review of project plans and reports.

Remedial Investigation/ Alternatives Analysis Program (RI/AA), Former C&B Dry Cleaner Site - Jamestown, NY

Principal-in-charge for the RI/AA of an abandoned commercial site formerly occupied by a dry cleaning facility. Project was performed under the New York State Environmental Restoration Program (ERP) and involved the onsite and offsite delineation of subsurface PCE contamination, implementation of an IRM to address vapor intrusion in a neighboring business, and the development of a remedy

consisting of soil removal and insitu treatment. Responsibilities included the technical review of project plans, reports and estimates, as well as extensive interaction with regulatory officials.

Remedial Investigation/ Alternatives Analysis (RI/AA) and Interim Remedial Measures (IRM) Program, Bristol Avenue Site - Lockport, NY

Principal-in-Charge for the implementation of an RI/AA and IRM program at a commercial site that formerly contained petroleum bulk storage (PBS) facilities. Project is being advanced under the New York State Environmental Restoration Program (ERP) and involves the delineation of subsurface petroleum contamination, implementation of an IRM to remove petroleum-contaminated soil, and the selection of a long term remedy that is supportive of reuse of the site for commercial purposes.

Chautauqua County Department of Public Facilities Site Investigation/Remedial Alternatives Report (SI/RAR), Brownfield Site - Dunkirk, NY

Project Manager for the SI/ RAR of an abandoned 12-acre site utilized for heavy industrial purposes since the early 1900s. This project was completed under the New York State Environmental Restoration Program (ERP). The scope of the SI program included a radiological survey and the characterization of fill, soil, groundwater, surface water, building components, and drainage systems contaminated with chlorinated solvents, PCBs and lead. The project involved the identification and detailed

analysis of remedial alternatives available to address the affected media. Responsibilities included client and regulatory communications, implementation of community involvement plan, technical and administrative oversight of project staff and subcontractors, technical review of project plans and reports. Duties also included the coordination of efforts to obtain cleanup funding via insurance asset recovery.

Site Investigation/Remedial Alternatives Report (SI/RAR), Former Industrial Site - Buffalo, NY

Quality Assurance Officer for the SI/RAR of a 16-acre site formerly occupied by a fertilizer manufacturing facility and later developed as a public park. This project was completed under the NYS ERP. Responsibilities include technical and administrative oversight of project staff and subcontractors involved in site characterization and remedial alternatives analysis. as well as client and regulatory communications. Duties also include technical review of project plans, reports and estimates.

Site Investigation/Remedial Alternatives Report (SI/RAR), Flintkote Site - Lockport, NY

Project Manager for the SI/RAR of an abandoned six-acre site utilized for industrial purposes since the 1880s. This project was completed under the NYS ERP. Responsibilities include technical and administrative oversight of project staff and subcontractors involved in site characterization and remedial alternatives analysis, as well as client and regulatory communications.

Duties also include technical review of project plans, reports and estimates, and analysis of potential funding opportunities via insurance asset recovery. Project also requires close communication with County planning agency to ensure integration of end use planning and remedial alternative selection.

Site Investigation/Remedial Alternatives (SI/RAR) Report, Brownfield Site - Brocton, NY

Project Manager for the SI/RAR of a former food processing facility under the New York State Environmental Restoration Program (ERP). This project involved the investigation of soil, fill, groundwater, building surfaces and components, and drainage systems at this 70,000 SF facility, as well as the evaluation of appropriate remedial alternatives to address contamination identified in onsite fill and drainage systems. Responsibilities included client and regulatory communications, technical and administrative oversight of project staff and subcontractors, and technical review of project plans and reports.

Site Investigation/Remedial Alternatives Report (SI/RAR), Brownfield Site - Town of Ellicott, NY

Project Manager for the SI/RAR for an abandoned industrial site in Chautauqua County, NY under the Brownfield Program. Assisted municipal representatives with the preparation of a complete application for State financial assistance through the assembly of a Statement of Work (SOW) and detailed cost estimate that was approved by the NYSDEC,

Division of Environmental Remediation. Also responsible for the design of the site investigation program and the management of technical staff involved in the preparation of the SI/RAR Work Plan, including the Field Sampling Plan, QA/QC Plan, Health and Safety Plan, and Citizen Participation Plan.

Buffalo Niagara International Airport (BNIA): Remedial Action Summary Report, Landside Expansion Project -Cheektowaga, NY

Responsible for managing the preparation of the postconstruction, remedial action summary report for the BNIA east access improvements and parking expansion project, much of which was constructed on a NYSDEC Inactive Hazardous Waste Site, the former Westinghouse Site. The report was submitted to the NYSDEC to certify that remedial activities conducted in connection with soil and groundwater contamination encountered during construction of new access roads and parking areas were conducted in accordance with applicable standards, criteria and/or quidance.

Assessment, Remediation and Demolition, Brownfield Site -Jamestown, NY

Project Manager for the assessment and demolition of a 150,000 SF abandoned manufacturing facility. Project involved a Phase I ESA of the property and pre-demolition inspection of a building complex comprised of six structures. Responsibilities included the preparation of plans and specifications for environmental remediation, asbestos abatement

and building demolition, bid administration, and monitoring of contractor activities.

Remedial Construction Administration and Oversight, Former Welch Foods Site -Brocton, NY

Principal-in-Charge responsible for the remediation and demolition of a former food processing facility. The \$1.2M project is being completed under the New York State Environmental Restoration Program (ERP). The work includes the demolition of the existing building, the cleanup of contaminated sediments and soil, and the removal of asbestoscontaining materials.

Remedial Design/Remedial Construction, Former Roblin Steel Site - Dunkirk, NY

Principal-in-Charge for \$1.5M cleanup of former steel plant site under the New York State Environmental Restoration Program (ERP). Project was completed in two phases involving the removal of contaminated soil and fill, insitu groundwater remediation of chlorinated solvents and placement of a soil cover system.

Remedial Design and Oversight, Franczyk Park - Buffalo, NY

Principal-in-Charge for the implementation of a Pre-Design Investigation; the preparation of the Remedial Action Work Plan, contract documents, and technical specifications; and the oversight and administration of the remediation of this 16-acre Brownfield site. The work is being completed under a New York State Environmental Restoration Program (ERP) grant. The remediation includes soil excavation and off-site disposal,

installation of an interceptor trench, the placement of a clean soil cover, and the design and installation of new park equipment.

Jamestown Gateway Intermodal Station and Visitor Center: Riverwalk Connector Trail -Jamestown, NY

Principal-in-Charge for preliminary/final design and construction phases of this locally administered federal aid project involving the rehabilitation of a national historic register-listed train station and extension of a recreational trail along the Chadakoin River in the City of Jamestown. Project required intense coordination with multiple funding and approval agencies including, FHWA, FTA, NYSDOT and SHPO. Design and environmental approvals were hinged on the negotiation of a Programmatic Agreement relative to historic preservation elements, and were obtained within a 6-month timeframe to meet funding program requirements.

Niagara County Community College: New Entrance Road Sanborn, NY

Principal-in-Charge for the design of a new 2,900 LF entrance road off of NY Route 31 to Niagara County Community College (NCCC). The roadway is intended to provide a separate access for trucks entering to the service area, to provide access and parking to campus sports facilities at the east end of the campus, and to complete a circulatory roadway system around the campus to improve emergency vehicle access and response times. Project involved a wetland delineation and reconfiguration of preliminary roadway alignment to

avoid wetland impacts.

Millennium Parkway: Industrial Access Road Project - Dunkirk, NY

Principal-in-Charge for environmental and engineering services provided for a new access road intended to improve access from Interstate 90 to the existing Chadwick Bay Industrial Park in the Towns of Dunkirk and Sheridan, New York, This \$10 million locally administered federal aid project involves extensive agency, stakeholder and public coordination; a comprehensive alternatives analysis; preparation of a NEPA/ SEQRA documentation: and preliminary through final design services.

Transportation Planning, Feasibility Studies - Chautauqua, Cattaraugus and Allegany Counties, NY

Principal-in-Charge for three transportation studies commissioned by the Southern Tier West Regional Planning and Development Board. These included a preliminary corridor planning study for the Route 60/62 corridor in Chautauqua County for the purpose of analyzing a City of Jamestown bypass, and a preliminary feasibility study for an east-west highway corridor extending through the northern regions of Cattaraugus through Allegany County.

Environmental Impact Statement (EIS), Williamsville Toll Barrier Improvement Project - Western NY

Project Manager responsible for managing the preparation of the EIS pursuant to NEPA and SEQRA for the development of

a modern mainline toll barrier on the New York State Thruway (I-90) to the northeast of the Buffalo metropolitan area. Key components of this \$80 million project include the analysis of a 17-mile study corridor for potential relocation sites, as well as the evaluation of potential impacts to travel patterns on a regional level. Duties have included the implementation of a public/agency scoping process, coordination with State and Federal regulatory agencies and local government agencies, and the management of technical staff and subconsultants involved in the development and analysis of alternatives, as well as natural and human resource impact evaluation.

Progress Drive Reconstruction - Dunkirk, NY

Principal-in-Charge for design and construction phase services for the reconstruction of Progress Drive in the City and Town of Dunkirk, New York. This \$2.5M project is being funded through a grant from the US Department of Commerce, Economic Development Administration and includes the realignment of Middle Road and reconfiguration of multiple intersections to enable connection of Progress Drive with Millennium Parkway in the future.

New York State Department of Transportation, Region 5: Environmental and Hazardous Waste/Contaminated Materials Screening, Six LDSA Bridge Projects - Region 5, NY

Managed the environmental screening and hazardous waste/contaminated materials screening for six bridge replacement or rehabilitation projects conducted under the Local Design Service

Agreement (LDSA) Program in NYSDOT Region 5. Screenings were performed in accordance with the procedures outlined in the NYSDOT Environmental Procedures manual, as well as ASTM Practice E 1527. Required SEQRA and NEPA documentation was prepared, as were applicable State and Federal permit applications.

City of Buffalo: Hazardous Waste/Contaminated Materials Assessment, South Park Avenue Lift Bridge - Erie County, NY

Managed the environmental investigation of a former industrial property situated adjacent to the South Park Avenue Lift Bridge over the Buffalo River and slated for acquisition by the City of Buffalo for the construction of a new ancillary electrical building. The investigation involved the drilling of a series of test borings and the installation of groundwater monitoring wells to enable the collection and chemical analysis of soil and groundwater samples. Based upon the results of the investigation, recommendations were developed to minimize worker exposure to contaminated fill material during the construction of the new infrastructure and building.

Industrial Access Road Feasibility Study - Fredonia, NY

Project Manager for the feasibility study associated with a new 0.7 mile access road between NY State Route 60 and an active manufacturing facility. Project involved the review of soil suitability, drainage, wetlands, threatened/endangered species, cultural resources, traffic, noise, and existing utilities to aid in alignment selection.

Winsor Street Reconstruction - City of Jamestown, NY

Principal-in-Charge for the reconstruction of Winsor Street in the City of Jamestown. Project involved roadway and utility design, the preparation of plans and specifications, bid administration, and construction phase services.

Handicap Ramp Improvement Project - Jamestown, NY

Principal-in-Charge for construction inspection services provided to the City of Jamestown for a city-wide handicap ramp improvement project. Responsible for client communications and the coordination of inspection staff.

Dunkirk Waterfront Recreational Trail - Dunkirk, NY

Principal-in-Charge for environmental, survey, design and construction phase services for a 3-mile long recreational trail extending along the Lake Erie waterfront in the City of Dunkirk, New York. This project links three of the City's waterfront parks, including Point Gratiot, Veterans and Wright Parks and is funded by New York State Office of Parks, Recreation and Historic Preservation and federal transportation grants.

Outer Harbor Greenbelt, Recreational Trail - Buffalo, NY

Principal-in-Charge for construction services provided for the Port Greenbelt Shoreline Restoration project completed for the Niagara Frontier Transportation Authority. Project involved the construction of shoreline improvements for a public park and asphalt pathway

along 5,500 LF of Lake Erie shoreline.

Environmental Impact Statement, Limestone Quarry -Cheektowaga, NY

Project Manager for the modification of the Mined Land Reclamation Permit for a limestone quarry encompassing the relocation of onsite stone processing and asphalt production facilities and the mining of an additional 40 acres of the site. The project involved the preparation of an Environmental Impact Statement pursuant to SEQRA. This entailed numerous detailed human and natural resource studies, including air quality and noise modeling, blasting studies, and the assessment of potential impacts to property values. Responsibilities included extensive communication with regulatory officials, the oversight of project staff and subconsultants, and the technical review of project deliverables.

Generic Environmental Impact Statement, Infrastructure Design, Business Park Development - Tonawanda, NY

Principal-in-Charge for environmental and engineering services provided for a public sector, 92-acre business park development project, including GEIS preparation, and sewer and water infrastructure design. Project involved coordination with a multi-member steering committee and multiple local, state and federal agencies. Studies performed in support of the GEIS included wetland delineation, Stage 1A/B cultural resource survey, and traffic impact study.

Niagara-Wheatfield Central

School District: Draft Environmental Impact Statement (DEIS) - Niagara, NY

Project Manager responsible for the preparation of the DEIS pursuant to SEQRA and New York State Education Department requirements for the development of a new elementary school. Directed technical staff and subconsultants during the characterization and evaluation of impacts to human and natural resources.

Environmental Impact Statement Review (EIS) -Lancaster, NY

Performed third party technical and procedural reviews of the draft and final EIS for a proposed 870,000 SF warehouse and distribution facility on 136 acres of undeveloped farmland. Involved in assisting with the preparation of the Positive Findings Statement.

Supplemental Environmental Impact Statement (SEIS), Commercial Plaza - Amherst, NY

Project Manager for the preparation of a SEIS for the expansion of a retail plaza in the Town of Amherst. The expansion consisted of 67,000 SF of additional retail space and 8,000 SF of restaurant space. Significant issues evaluated in the SEIS included potential impacts to traffic, wetlands, drainage and visual resources.

Environmental Impact Assessment (EIA), Pharmaceutical Manufacturing Facility Expansion - Grand Island, NY

Completed Parts 1, 2, and 3 of the SEQRA full Environmental Assessment Form (EAF) for the rezoning of 15 acres of undeveloped land to accommodate the 140,000 SF expansion of an existing pharmaceutical manufacturing facility. The proposed development included administrative offices and manufacturing, distribution and wastewater treatment facilities. Part 3 of the full EAF consisted of a detailed report describing the project setting and proposed development, and thoroughly analyzed the severity and importance of potential impacts identified in connection with the project. Issues analyzed in the report included air quality. water services, historical and archaeological resources, traffic. visual and aesthetic resources. land use and zoning, noise, community services, historical and archaeological resources, and socioeconomics. Following review of the EIA, the Lead Agency issued a Negative Declaration for the project, signifying that the project would not result in any significant adverse environmental impacts and that a DEIS was not required.

Environmental Impact Assessment, Brownfield Restoration and Redevelopment - Falconer, NY

Project Manager responsible for assisting the Lead Agency, Chautaugua County Industrial Development Agency, with the environmental review pursuant to SFQRA of an environmental restoration and redevelopment project at a Brownfield site. The project consisted of the environmental remediation of residual contamination at an abandoned industrial site under a Voluntary Cleanup Agreement between the NYSDEC and the developer, and the subsequent redevelopment of the property for manufacturing use. Prepared

Parts 1, 2 and 3 of the full Environmental Assessment Form (EAF). Part 3 of the full EAF consisted of a detailed report describing the environmental setting of the project, the proposed remediation program, and the proposed 160,000 SF development. Assisted the Lead Agency in the preparation and filing of a Negative Declaration for the project signifying that the project would not result in any significant adverse impacts and that a DEIS would not be reauired.

Environmental Assessment Forms (EAF), Multiple Projects -New York State

Prepared short and full EAFs pursuant to SEQRA for numerous projects across New York State ranging from mining projects to telecommunication tower development sites.

Phase I & II Environmental Site Assessments

Chautauqua County Department of Public Facilities: Term Environmental Services -Chautauqua County, NY

Program Manager for environmental services provided under 11 consecutive one-year term contracts. He managed technical staff, subconsultants and subcontractors involved in environmental assignments including Phase I and II environmental site assessments. UST removal, environmental impact assessment and analysis for business/industrial park developments, Brownfield redevelopment, grant preparation and administration, and regulatory compliance. He was responsible for contract administration, technical review

of project deliverables, Client consultation, public presentations and outreach, and regulatory communications.

Vapor Intrusion Assessment, Commercial Plaza - Alden, NY

Project Manager for a Vapor Intrusion Assessment (VIA) of a commercial plaza that formerly contained a dry-cleaning business. Project involved the collection and laboratory analysis of sub-slab vapor and indoor air samples; the evaluation of the resulting data relative to applicable regulatory guidance; and the preparation of a technical report with recommendations for mitigation.

Site Investigation, Commercial Property - West Seneca, NY

Principal-in-Charge for the investigation of a commercial property containing purifier waste from a manufactured gas plant. The work was implemented in an effort to fully characterize the fill materials at the site and was performed in response to concern by the NYSDEC. Project involved the development and implementation of a NYSDEC-approved investigation work plan.

Environmental Analysis, Historic Canal District - City of Utica, NY

Project Manager for the environmental assessment of the City of Utica's historic canal district, an area that encompasses approximately 30 city blocks. Responsible for the oversight of staff conducting an ASTM-type assessment, which identified 23 sites with environmental concerns, and the categorization of the relative level of concern associated with each of these sites. Outlined potential impacts to redevelopment options for the

City to aid in the redevelopment planning process, and provided recommendations for additional site specific studies and Brownfield funding opportunities.

Vapor Intrusion Assessment, Adaptive Re-use Project -Lockport, NY

Project Manager for a Vapor Intrusion Assessment (VIA) of a former industrial building in connection with adaptive re-use for mixed use purposes. Project involved the collection and laboratory analysis of sub-slab vapor and indoor air samples; the evaluation of the resulting data relative to applicable regulatory guidance; and the preparation of a technical report.

Phase I Environmental Site Assessments, Telecommunication Tower Sites - New York State

Responsible for the coordination and review of Phase I ESAs of over 90 sites proposed for the development of telecommunication towers. These ESAs were performed in accordance with ASTM E-1527 and were completed within an aggressive three-month schedule.

Phase I/II Environmental Site Assessment, City Block -Jamestown, NY

Project Manager for the Phase I/II ESAs of a city block located adjacent to a new downtown ice arena. The site is slated for redevelopment and currently contains several commercial buildings and surface parking lots. Assessments were performed in accordance with ASTM E-1527 and involved site inspections, historic land use and records

review, and interviews with past, present and adjacent land owners. This Phase I ESA resulted in the identification of numerous recognized environmental conditions in connection with the subject property including the potential for subsurface petroleum contamination, and the potential for past discharge solvents and other chemicals based on historical land use. The Phase II portion of the project involved the drilling and installation of eight test borings (four of the test borings contained groundwater monitoring wells), and the collection and chemical analysis of groundwater, and soil samples.

Phase I Environmental Site Assessments (ESA) -Various Locations, New York State

Conducted numerous
Phase I ESAs for commercial
property transfers. Performed
assessments in accordance with
American Society for Testing
and Materials (ASTM) Standards
and involved site inspections,
historical land use and records
review, and interviews with
past, present and adjacent
land owners. Projects required
extensive interaction with clients
and financial institutions.

Phase I/II Environmental Site Assessment - Buffalo, NY

Performed an ESA of vacant land situated in a former industrial sector of Buffalo, NY in association with the proposed commercial development of the property. Extensive historical research indicated that the property had at one time been occupied by support facilities related to aircraft manufacturing and numerous

USTs had been present on the property. To further define potential liabilities associated with the site, a surface geophysical survey to detect buried metal objects was performed and was supplemented by a drilling program designed to characterize soil and groundwater conditions at the site.

Phase I Environmental Site Assessment (ESA) - Hamburg, NY

Performed a Phase I ESA of an industrial facility involved in the manufacture of fiberglass reinforced plastic (FRP) tanks and towers for the chemical industry. This Phase I ESA resulted in the identification of numerous recognized environmental conditions in connection with the subject property including the improper storage of hazardous chemicals and wastes, the discharge of hazardous waste and petroleum products to the subsurface, and leaking aboveground storage tanks.

Phase I Environmental Site Assessment (ESA) - East Northport, NY

Performed a Phase I ESA of an industrial facility involved in the inspection, repair and reconditioning of aircraft life support equipment. This Phase I ESA was conducted in accordance with ASTM E-1527 and resulted in the identification of numerous recognized environmental conditions including improper storage of hazardous chemicals, hazardous waste, low-level radioactive waste, the discharge of spent solvents to the subsurface, the presence of five underground storage tanks, and the lack of a process wastewater management system meeting applicable local and state regulations.

Phase I Environmental Site Assessment (ESA), Industrial Site - Dunkirk, NY

Project Manager for the Phase I ESA of a seven acre industrial site that was originally developed as part of a Civil War era railroad locomotive manufacturing complex. The purpose of this ESA was to assist the Chautauqua County Industrial Development Agency in evaluating the feasibility of pursuing a site investigation grant under the NYSDEC Brownfield Program pursuant to the Clean Water/ Clean Air Bond Act of 1996. Based upon the historical records and information obtained as a result of site reconnaissance. interviews with former employees, and a regulatory record search, numerous environmental concerns were identified in connection with the subject site. These concerns included documented hazardous waste discharges, groundwater contamination and the potential presence of underground storage tanks.

Investigation and Remediation, Fleet Vehicle Maintenance Facility - Waterport, NY

Project Manager for the subsurface investigation of petroleum contamination at an active fleet vehicle maintenance and repair facility operated by the New York State Office of Parks, Recreation and Historic Preservation. The investigation was designed to delineate the extent of soil and groundwater contamination, was conducted in accordance with a NYSDEC-approved work plan, and involved completion of a soil gas survey,

drilling and installation of test probes and monitoring wells, and the chemical analysis of soil and groundwater samples. Implemented NYSDEC-approved in situ groundwater treatment program using Oxygen Release Compound (ORC) coupled with a quarterly monitoring program.

Phase II Environmental Investigation - Buffalo, NY

Conducted a Phase II investigation of a manufacturing facility contaminated with heavy metals and polynuclear aromatics (PNA). Project involved soil, sediment and storm water characterization that revealed PNA and metals contamination in a storm water control system. Developed program for storm sewer remediation and prepared Remedial Action Plan for regulatory agency review.

Phase II Environmental Investigation - Buffalo, NY

Conducted a Phase II investigation of an industrial site located adjacent to several listed inactive hazardous waste sites. Developed and implemented a NYSDEC approved subsurface investigation plan which entailed the installation of seven groundwater monitoring wells, the excavation of test pits, and the collection and analysis of groundwater, surface water and soil samples. Prepared a report identifying the type and extent of contamination, potential contaminant sources and possible pathways of migration.

Subsurface Investigation, Fuel Dispensing Facility -Amherst, NY

Project Manager for the subsurface investigation of inactive retail dispensing facility

involving the delineation of soil contamination, installation of shallow and bedrock monitoring wells to characterize groundwater quality, and the assessment of appropriate remedial alternatives. Project involved preparation of investigation plan for regulatory agency review, as well as extensive client relations.

Phase II Environmental Site Assessment (ESA) - East Northport, NY

Project Manager for the Phase II ESA of an active industrial facility conducted to investigate potential contamination associated with the historical use of the facility, numerous USTs, and the subsurface discharge of spent solvents. This Phase II ESA involved the advancement of 17 test probes to enable the collection and field screening of continuous soil samples, and the chemical analysis of soil samples. The resulting report identified several areas of soil contamination and was utilized to define the scope of remedial measures required to complete the transfer of ownership of the facility.

Phase II Environmental Site Assessment - Hamburg, NY

Based upon a review of a Phase I ESA, developed and conducted a Phase II ESA at the site on an automotive service and repair facility contaminated with hydraulic oil. Project involved the drilling of 26 test borings and the installation of three groundwater monitoring wells for the purpose of characterizing physical and chemical subsurface conditions. Developed program for soil remediation involving the decommissioning and removal of belowground hydraulic lifts

and an oil/water separator, as well as the excavation and off-site disposal of petroleumcontaminated soil.

Phase I/II Environmental Site Assessment - Cheektowaga, NY

Project Manager for the Phase I/ II ESA of an abandoned aircraft controls manufacturing facility proposed for commercial redevelopment. Based upon the results of the Phase I ESA that indicated the potential presence of a UST and solvent releases, a Phase II ESA was conducted to confirm the presence or absence of contamination. In response to the detection of asbestos containing building materials during the Phase I ESA, a predemolition asbestos survey was also conducted. The Phase II ESA included the completion of a surface geophysical survey and the advancement of 17 test probes to enable the collection, field screening and chemical analysis of soil samples. This investigation resulted in the detection of TCE contamination in soil proximal to the facility's service entrance.

Risk Based Corrective Action (RBCA) Evaluation, Automobile Dealership - Town of Hamburg, NY

Project Manager for the evaluation of a petroleum-impacted site using the RBCA process outlined in the NYSDEC Draft Interim Procedures for Inactivation of Petroleum-Impacted Sites. This project involved the identification of complete exposure pathways and the calculation of Site Specific Target Levels (SSTLs) for residual contamination that are protective of human health and the environment under current and

future site use scenarios. This evaluation demonstrated that levels of residual contamination in groundwater at the site are below the calculated risk-based thresholds, and received NYSDEC technical approval.

Phase II Environmental Site Assessment (ESA), Maintenance and Storage Yard - Falconer, NY

Project Manager for the investigation of a public works maintenance and storage yard involving the drilling of a series of test borings and the installation of eight groundwater monitoring wells to investigate potential subsurface contamination identified as a result of a Phase I ESA. As a result of this investigation, soil contamination in connection with the historical storage and dispensing of liquid asphalt was identified, as was groundwater contamination emanating from an off-site source.

Phase I/II Environmental Site Assessment (ESA) - Lancaster, NY

Project Manager for the Phase I/II ESA of an active industrial facility containing a chrome-plating operation. This work involved the advancement of soil probes and the installation of groundwater monitoring wells to characterize subsurface conditions, as well as the sampling and analysis of drain, sump and sewer sediments/fluids. Developed and implemented a remediation plan involving the proper abandonment of a dry well, removal of an in-floor oil sump, the removal of contaminated sewer sediments, the remediation of petroleum-contaminated soil, and the modification of the facility's wastewater collection

and conveyance system.
Following regulatory review
of the confirmatory sampling
results, the site was given closed
status signifying the satisfactory
completion of the remedial
program.

Phase II Environmental Site Assessment - Dunkirk, NY

Project Manager for the Phase II ESA of an abandoned industrial site proposed for redevelopment by adjacent industry. The scope of the investigation included the drilling and installation of nine monitoring wells and seven additional test borings to characterize subsurface conditions. Additionally, the inspection and sampling of numerous drains, sumps, vaults, and potential PCB containing electrical equipment located on the property was conducted. Based on the results of the investigation, recommendations for site remediation were developed.

New York Power Authority: NAPL Investigation, NYPA Right-of-Way - Niagara Falls, NY

Principal-in-Charge for an investigation designed to delineate non-aqueous phase liquids (NAPL) within the NYPA Lewiston Power Project conduit right-of-way in the vicinity of Royal Avenue. The project included the review of historical documents, drilling of overburden and bedrock test borings, collection of characterization samples, and preparation of work plan and final reports.

Building Demolition, Food Processing Plant - Town of Ripley, NY

Principal-in-Charge for the design, bidding and construction

phases of a building demolition project involving a 26,000 SF concrete block/wood/steel structure. Project involved demolition design; preparation of plans, specifications and contract documents; bid administration; and oversight of demolition. Project also involves removal of asbestos containing materials and drums/containers of chemicals.

Building Demolition, Former Randolph Foundry - Village of Randolph, NY

Principal-in-Charge for the design and preparation of contract documents for the demolition of a 25,000 SF former foundry and machine shop. The work was completed under a New York State Environmental Restoration Program grant as an Interim Remedial Measure. The project included removal of asbestos containing materials, foundry sand and containers of chemicals and the demolition and disposal of the building.

Building Demolition, Former Roblin Steel Plant - Dunkirk, NY

Principal-in-Charge for the design, bidding and construction phases of a building demolition project involving a 90,000 SF former steel mill building. Scope of services includes demolition and asbestos abatement design; preparation of plans, specifications and contract documents; bid administration; and oversight of demolition. Contract documents were prepared in accordance with NYS Environmental Restoration Program requirements for this brownfield redevelopment project.

Building Demolition, Former Alumax Extrusion Facility -

Dunkirk, NY

Principal-in-Charge for the design, bidding and construction phases of a building demolition project involving a 143,000 SF former industrial complex. Scope of services includes demolition and asbestos abatement design; preparation of plans, specifications and contract documents; bid administration; and oversight of demolition at this brownfield redevelopment site.

Building Demolition, Former Edgewood Warehouse -Dunkirk, NY

Principal-in-Charge for the design, bidding and construction phases of a building demolition project involving a 165,000 SF former industrial building. Scope of services included demolition and asbestos abatement design and the preparation of plans, specifications and contract documents.

Manufacturing Facility, Decommissioning/Demolition -Tonawanda, NY

Principal-in-Charge for design and oversight services provided for the decommissioning and demolition of a 75,000 SF portion of an active manufacturing facility. Project included the removal and disposal of contaminated sediment, decommissioning of numerous pits and sumps, asbestos abatement. abandonment of portions of the existing mechanical and electrical systems, structural closure and restoration of new exterior building walls. Demolition of multiple buildings, including a tall chimney, was conducted without disruption of ongoing plant operations.

Asbestos Survey of Commercial Site - Tonawanda, NY

Project Manager for the Phase I ESA and Asbestos Survey of a commercial site containing two buildings encompassing 100,000 SF. The project was completed in support of the acquisition and renovation of the buildings.

Pre-Renovation Survey, Commercial Building -Jamestown. NY

Project Manager for the asbestoscontaining material (ACM) and lead-based paint (LBP) survey of a commercial building slated for renovation and reuse as the headquarters of the Chautauqua Area Rural Transit System (CARTS). The project involved the review of available building plans, an inspection of the structure, the sampling and laboratory analysis of suspect ACM and LBP, the evaluation and presentation of the resulting data in a technical report, and cost estimating for abatement.

Pre-Demolition Asbestos Surveys, Numerous Redevelopment Sites - State of New York

Project Manager for the predemolition survey of numerous commercial redevelopment sites containing multiple structures. Responsibilities included the coordination of multiple survey crews involved in building inspections and sample collection, the review of data resulting from the analysis of samples via polarized light microscopy (PLM), and the compilation of final reports identifying the location, type and quantity of asbestos containing building materials.

Asbestos and Lead-Based

Paint Survey, Harness Racing Complex - Batavia, NY

Project Manager for the Phase I ESA of a 45-acre harness racing complex. Responsible for managing asbestos and lead-based paint inspections of five buildings encompassing 117,000 SF in conjunction with planned demolition and renovation activities at the complex.

Pre-Demolition Survey, Food Processing Facility - Brocton, NY

Project Manager for the predemolition asbestos survey of the abandoned portion of a former food processing facility encompassing approximately 70,000 SF. The survey involved the review of historical building plans, the collection and laboratory analysis of hundreds of samples of suspect asbestoscontaining material, technical report preparation and abatement cost estimating.

Pre-Demolition Environmental Assessment and Decommissioning Program, Industrial Facility - Tonawanda, NY

Principal-in-Charge for the environmental assessment and decommissioning program performed at an active industrial complex in support of the planned demolition of unused portions of the facility. Responsibilities included consultation with the Client and their legal counsel relative to environmental conditions at the site and corresponding implications with respect to regulatory requirements, risk management and the demolition project. Also provided oversight of project team and subcontractors conducting sitespecific sampling and analysis,

pre-demolition asbestos surveys, and the cleanup and closure of an outdoor electrical substation and a number of process pits and sumps.

Chautauqua Lake Watershed: Watershed Management Project - Chautauqua County, NY

Principal-in-Charge for the development of a management program for the Chautauqua Lake watershed. The project includes community outreach; identification and evaluation of areas with acute erosion issues; GIS database development; technical assistance to municipalities and private entities; and educational seminars.

Aquifer Study, Landfill Site - Cattaraugus County, NY

Participated in the design and execution of a drilling, well installation and pump test program to determine the areal extent and hydrologic properties of a valley fill aquifer, as well as its hydraulic connection to an adjacent landfill site. The relationship of the subject aquifer was also evaluated relative to a nearby primary aquifer based upon available literature and mapping.

Storm Water Pollution Prevention Plans, Various Facilities - New York State

Managed the preparation of Storm Water Pollution Prevention Plans for over 10 industrial facilities in western and central New York. Plans were prepared in accordance with State Pollutant Discharge Elimination System (SPDES) regulations pertaining to industrial storm water discharge, and involved the review of site activities, potential contaminants utilized or stored at the facility, current storm water management practices, and the development of best management practices to minimize storm water pollution.

Wetland Delineations - Various Locations, New York State

Project Manager for the investigation and delineation of Federal jurisdictional wetlands in accordance with the 1987 Manual issued by the US Army Corps of Engineers (USCOE). Projects ranged from residential and commercial developments to several airport expansions, and involved the preparation of reports characterizing and delineating upland and wetland communities encountered during field investigations, the completion of joint State and Federal permit applications, and extensive interaction with NYSDEC and USCOE representatives.

Hydrogeologic Appraisal - Clarence, NY

Characterized the existing hydrogeologic resources on and adjacent to the site of a proposed 75,000 SF manufacturing facility, and identified and evaluated potential impacts to these resources associated with project development. The design of the project included the installation of several water supply wells to provide the facility with cooling water directly to groundwater. This study included an evaluation of impacts to a nearby unconsolidated aquifer and an underlying bedrock aquifer, and was incorporated in the Environmental Impact Statement for the project.

Brass Foundry: Storm Water Management System, Evaluation and Redesign - Elmira, NY

Project Manager for the investigation and redesign of the storm water management system at a 100+ year old foundry site to improve site drainage, enable the proper closure of numerous dry wells, and assist in achieving pollution prevention initiatives. This work involved the topographic survey of the site, delineation of the existing storm water conveyance system for which no historical plans existed, storm water calculations, and design modifications to the onsite collection and conveyance systems. As part of this program, a closure plan complying with the Underground Injection Control Program (UICP) was developed for the on-site industrial drainage wells.

ISG Lackawanna LLC: Industrial Facility SPDES Monitoring - Lackawanna, NY

Principal-in-Charge for weekly, monthly and quarterly SPDES monitoring conducted at galvanizing and rolling mills operated by ISG. Supervised staff involved in sample collection, laboratory coordination and Discharge Monitoring Report (DMR) preparation. Also provided technical support relative to permit compliance and other waste disposal issues.

Water Line Replacement - Town of Lancaster, NY

Principal-in-Charge for design and construction phase services provided in conjunction with the replacement of 7,800-LF of waterline in the Town of Lancaster.

Evaluation of Waste Water Treatment Plant Discharges Wellsville. NY

Principal-in-Charge for the

evaluation of wastewater treatment plant influent consisting of sanitary sewage and leachate and the resulting discharges from the plant. The project included the evaluation of existing information, the collection of wastewater samples for analysis, performance of calculations of Maximum Allowable Headworks Loadings, and establishment of pretreatment discharge limitations and a protocol for acceptance of new or increased discharges.

Mined Land Reclamation Permit Modification, Quarry Expansion -Shelby, NY

Project Manager for the modification of the Mine Land Reclamation Permit enabling an 11.3 acre expansion of an existing 95-acre limestone and dolomite quarry. Conducted hydrogeologic, noise and blasting studies to assess potential impacts to nearby residences, stream and wetlands and prepared revised Mining Plan Map. Project also involved close coordination with NYSDEC. **USACOE** and NYSOPRHP regarding stream crossing, wetland and cultural resource issues. Additionally, technical support was also provided for procurement of a Special Use Permit from the Town of Shelby to address recently enacted local zoning law relative to mining.

Mining Permit - Wheatfield, NY

Prepared a 6 NYCRR Part 420-426 Mining Permit Application and Mined Land Use Plan for a 20-acre surface unconsolidated mine. The mining plan involved the excavation of over 300,000 cubic yards of clay for use off site, while the reclamation plan

entailed the use of the affected land for storm water retention ponds for a proposed residential subdivision.

Limestone Quarry Expansion - Cheektowaga, NY

Project Manager for the development of a revised Reclamation Plan pursuant to 6 NYCRR Part 420-426 for the 65-acre expansion of an existing limestone quarry. The reclamation objective outlined in the graphical and written plans consisted of a lake surrounded by mixed-use development.

Mining Permit - Waterloo, NY

Project Manager for the preparation of a Mining Permit Application and Mined Land Use Plan for a 35-acre surface unconsolidated mine. The mining plan involved the extraction of 850,000 cubic yards of clay to be used in conjunction with the operation and closure of an adjacent solid waste landfill, while the reclamation plan consisted of the creation of a storm water retention pond surrounded by graded, revegetated land suitable for a return to agricultural use or for commercial development.

Mining Permit - Phelps, NY

Project Manager for the preparation of a Mining Permit Application and Mined Land Use Plan for a 9-acre surface unconsolidated mine. The mining plan involved the extraction of 200,000 cubic yards of sand and gravel to be used in conjunction with the operation and closure of a nearby solid waste landfill, while the reclamation plan provided for graded, revegetated land suitable for residential development and/or recreational use.

Draft Environmental Impact Statement (DEIS), Limestone Quarry Expansion -Cheektowaga, NY

Project Manager responsible for the preparation of a DEIS pursuant to SEQRA for the rezoning of 140 acres of undeveloped land to accommodate the expansion of an existing limestone quarry. Detailed investigations of the following natural and human resources were completed in support of the DEIS: hydrogeology, air quality, ecology, wetlands, traffic, noise, land use and rezoning, archaeology, and aesthetics. Evaluation of potential impacts to an adjacent Critical Environmental Area (CEA) and two adjacent waste disposal facilities was also required.

Mining Permit Modification, Limestone Quarry -Cheektowaga, NY

Project Manager for the modification of the Mined Land Reclamation Permit for a limestone quarry encompassing the relocation of onsite stone processing and asphalt production facilities and the mining of an additional 40 acres of the site. Responsibilities included extensive communication with regulatory officials and the negotiation of special MLR permit conditions.

Ripley Interstate Development Site, Warehouse/Distribution Center, Site Planning and Shovel-Ready Status - Ripley, NY

Principal-in-Charge for site planning and preliminary design services for a 200-acre interstate site in the Town of Ripley that is being marketed for the development of a 1,000,000 SF warehouse/distribution center. Oversaw pre-acquisition environmental site assessments of multiple parcels, the development and evaluation of multiple site plan alternatives, traffic impact analysis and the modeling and preliminary design of stormwater management facilities. Also, assisted the Chautauqua County IDA with the process of obtaining shovel-ready status through ESDC.

Buffalo Lakeside Commerce, Park Industrial/Business Park Site, Planning and Design, Phase III - Buffalo, NY

Principal-in-Charge for the site planning and infrastructure design for Phase III of the Buffalo Lakeside Commerce Park, which is a 275-acre brownfield redevelopment project. Project involves the layout of parcels, roadways and utilities; SEQRA compliance/documentation; geotechnical investigation; wetland permitting; the design of roadways, waterlines, sanitary sewer and pump station, and stormwater management facilities; the preparation of plans and specifications; bid and construction administration: and construction inspection. Extensive coordination with NYSDEC to ensure compliance with brownfield soil/fill management plan is also required.

Phase III, Country View Estates - Jamestown, NY

Principal-in-Charge for roadway and utility design and construction phase services provided for a 15-acre residential subdivision. Project included topographic survey, design of 1,200 LF of roadway and the design of stormwater

ROBERT NAPIERALSKI

management facilities. Bid documents and cost estimates were prepared and construction support was provided.

Business Park Development, Environmental Assessment and Conceptual Design - Ripley, NY

Project Manager for the environmental review and conceptual design of a 42acre business park. Managed technical staff and subconsultants involved with natural and human resource studies including ecological survey, wetland delineation, Stage 1A cultural resource survey, and traffic impact study. The results of these studies were used to develop concept plans for the proposed development that minimized impacts while optimizing the developable area.

Geotechnical Engineering Investigation - Geneseo, NY

Supervised the drilling of test borings and the installation of piezometers as part of the geotechnical investigation for the design of surface facilities associated with a proposed subterranean salt mine. Responsibilities included classifying soil samples and logging rock cores, piezometer placement, and the collection of groundwater samples for chemical analysis.

Geotechnical Engineering Investigations, Development Sites - New York State

Supervised the collection of data for use in foundation design for several sites proposed for the development of restaurant, hotel and institutional facilities. Responsibilities included the supervision of drilling activities, the classification of soil samples,

piezometer design and placement, and the preparation of reports characterizing existing hydrogeologic conditions.

Former Industrial Site Investigation & Cleanup -Cheektowaga, NY

Project Manager for the Phase I/ II ESA and subsequent cleanup of a commercial property in connection with a real estate transaction. Recognized Environmental Conditions (RECs) identified as a result of the Phase I ESA were investigated and contamination was delineated in subsurface fill and sediment occurring within an on-site drainage ditch. Worked closely with the purchaser and owner to develop and implement a remedial program to address contamination and enable the transaction to proceed. The cleanup was completed in accordance with a NYSDEC approved work plan and spill file closure was achieved.

Technology Incubator Development Site - Dunkirk, NY

Principal-in-Charge for environmental services provided in conjunction with the development of a \$5 million high technology incubator facility in Dunkirk, NY. Project involved the investigation and cleanup of subsurface petroleum contamination in order to prepare the site for redevelopment.

Jamestown Community College: Investigation and Remediation of Petroleum Spill Site -Jamestown, NY

Project Manager for a multiphased investigation of a former truck terminal site slated for redevelopment as part of Jamestown Community College's Manufacturing Technology Institute. Subsurface petroleum contamination was delineated and cleanup was completed in accordance with a NYSDEC approved remedial work plan. Responsibilities include regulatory negotiations, client communications and coordination and technical oversight of staff and subcontractors.

Industrial Facility, PCB Remediation - Buffalo, NY

Developed and managed the implementation of the Post-Cleanup Sampling Program, pursuant to TSCA, following the completion of remedial activities at a PCB spill site in an industrial section of Buffalo, NY. Following EPA approval of sampling design, which employed a statistical sampling scheme developed by the Midwest Research Institute, supervised sample collection and implementation of a QA/QC program. Directed additional remedial measures to reduce contaminant levels to within acceptable levels and verified compliance with federal standards. Prepared Spill Remediation Report in order to document and certify remedial efforts. Report was submitted to and accepted by NYSDEC and USEPA.

Groundwater Remediation, Federal Leaking Underground Storage Tank (LUST) - Various Sites, NY

Managed the design, installation and monitoring of several groundwater extraction and treatment systems at LUST sites owned and operated by the Federal Government. Systems utilized included a mobile unit equipped with oil/water separator, total

suspended solids filtration, and liquid phase granular activated carbon components. Projects involved periodic monitoring of treatment system effluent and the procurement of applicable discharge approvals from State regulatory agencies.

Remedial Action Plan (RAP) -Hamburg, NY

Prepared a RAP for regulatory review and negotiated clean-up requirements for the voluntary remediation of petroleumcontaminated soil at an automotive dealership, repair and service facility. Managed the implementation of the remedial program which involved the decommissioning and removal of 18 leaking belowground hydraulic lifts and the excavation and off-site disposal of over 3,000 tons of soil contaminated with hydraulic oil and waste oil. The project also involved the removal of an old oil/water separator and replacement with a new unit meeting current regulatory requirements for separation, as well as the removal of several previously undiscovered USTs. A field laboratory was utilized throughout the project to define the limits of contaminated soil and to verify that clean-up levels were achieved. The project was completed without suspending the daily operations of the facility.

Industrial Facility, Underground Storage Tank (UST) Closures -Lockport, NY

Project Manager for the closure of two inactive USTs occurring at an industrial facility involved in the manufacture and machining of parts for the paper industry. Following the removal of residual product and sludge, the tanks were removed and cleaned

for proper off-site disposal. Visually contaminated soil encountered in the tank cavities was also excavated for disposal at an appropriately permitted off-site facility. Confirmatory samples were collected from the tank cavities and chemically analyzed to verify compliance with regulatory levels. A report summarizing tank closure activities and documenting the quantity and final disposition of wastes generated as a result of the project was submitted to and accepted by the NYSDEC who issued a No Further Action letter.

Industrial Facility PCB, Drum and Tank Remediation -

Elmira, NY

Supervised the remedial program at a former steel foundry that involved the disassembly and removal of eight leaking transformers from on-site buildings to a secure staging/ contaminant area for draining and transport to an off-site disposal facility. The project also entailed the overpacking and secure staging of numerous drums containing hazardous substances and petroleum products encountered throughout the 19acre site, and the proper closure of eight aboveground storage tanks ranging in size from 250 to 6,000 gallons.

Abandoned Industrial Facility Soil Remediation -

Cheektowaga, NY

Prepared a Remedial Action Plan (RAP) under the NYSDEC Voluntary Cleanup Program for the remediation of an inactive industrial site contaminated with chlorinated solvents. Following regulatory approval of the Remedial Action Plan, managed the remedial program consisting of the proper closure of an inactive UST, extraction and on-site treatment of contaminated groundwater in the area of concern, excavation of contaminated soil for offsite treatment and disposal, and the further investigation of down-gradient groundwater conditions. The program also involved the development and implementation of community and site-specific health and safety plans requiring continuous air monitoring for particulate and organic vapor levels.

Allegany County Landfill Environmental Monitoring Program - Angelica, NY

Project Manager for the environmental monitoring program at a 24-acre municipal solid waste landfill. Responsible for the supervision of technical staff involved in the evaluation, management and reporting of quarterly and annual groundwater, surface water,

Characterization: Soil and Groundwater Remediation -Coudersport, Pennsylvania

Greg was Project Manager for a Pennsylvania Department of Environmental Protection Act II Voluntary Cleanup project. The site consisted of approximately five acres of land, two vacant gas stations and an agricultural chemical retail store.

Former Trucking Maintenance Facility: Phase II Site Characterization and Remedial Measures - Bloomfield, NY

Project Manager for a multiphased site characterization and remedial effort. Greg was responsible for the oversight of the spill closure, design of a sub slab venting system, removal of 800 tons of impaired soil, and negotiations with the NYSDEC.

CHMMCertified Hazardous Materials
Manager

EDUCATION

University at Buffalo: BS, Environmental Science

Erie Community College: AS, General Studies

CERTIFICATION/ REGISTRATION

HAZWOPER 40-hour Certificate

Accredited Environmental Professional

ADAM ZEBROWSKI

Environmental Technician

Adam Zebrowski is an Environmental Project Manager with eight years of professional consulting experience on projects throughout the Northeastern United States with a variety of developers, financial institutions, attorneys, municipalities, and county clients. Adam's background includes experience with the following: Management of over 2,000 Phase I Environmental Site Assessments (ESAs) & Transaction Screen Assessments, Management of over 300 Phase II ESAs, Underground Storage Tank Removal/Closure, Remediation and management of petroleum and hazardous substances Sites, Technologically Enhanced Naturally Occurring Radioactive Materials, Soil vapor intrusion assessment and mitigation, and Hazardous building materials.

Adam's responsibilities include project management, business development, and client management.

USEPA Priority Brownfield Sites, Niagara County, NY

Adam has successfully assisted the Niagara County Department of Economic Development assess environmental liabilities associated with underutilized. environmentally problematic properties throughout Niagara County, New York. The assessments completed typically include properties with significant environmental liens or tax delinquency with histories including hazardous waste disposal sites, abandoned gasoline filling stations automotive repair facilities, and historical manufacturing facilities. Services provided to the Niagara County Department of Economic Development often include Phase I ESA's, assessment or delineation of subsurface soil and groundwater impact, vapor intrusion, Technologically Enhanced Naturally Occurring Radioactive Materials, and hazardous building materials. These projects require the

strictest quality controls and are subject to USEPA review and approval. Adam has successfully assisted the Niagara County Department of Economic Development in evaluating environmental risk prior to tax foreclosure or redevelopment initiatives of several properties throughout Niagara County.

Automotive Dealership, Niagara Falls, NY

Adam assisted a purchasing entity evaluate environmental liabilities associated with an automotive dealership located in Niagara Falls, New York. Environmental concerns identified at the property included a historical gasoline filling station located on a noncontiguous parcel associated with the greater dealership operation, approximately 20 inground hydraulic lifts, historical underground storage tanks, and long-term automotive repair operations. During subsurface

exploration activities, it was revealed that the property was overlain with slag exhibiting elevated gamma radiation levels. In addition, slag in one portion of the Site was intermixed with apparent industrial waste. Adam was successful in assisting his Client's evaluation of the environmental liability associated with the property, exploration and implementation of remedial and engineering control options, and obtaining bank financing to purchase the property.

Construction Services - Northeast United States

Adam has experience managing numerous construction Plan Specification Reviews, Draw Inspections, and Property Condition Assessment projects throughout the northeast. Such services were primarily completed for financial institutions for lending purposes or property transactions.

Urban Redevelopment Project, Buffalo. NY

Adam provided environmental assessment services to a developer for redevelopment of 28 underutilized parcels of land within a portion of the City of Buffalo undergoing urban revitalization. LaBella provided environmental consulting services prior to the client retaining ownership of the properties. These included a Phase I ESA and a National Environmental Policy Act review. Furthermore, Adam explored remedial design options with the Client to be implemented concurrent with development activities to address various gasoline filling station operations, automotive repair operations, dry cleaners, and blacksmith operations historically

conducted at the Site.

Environmental Due Diligence: Automotive Dealerships — Northern Ohio

Adam was retained to conduct environmental due diligence services on behalf of his client. a finical institution, to evaluate a portfolio of six large automotive car dealerships located in the Cleveland and Canton metropolitan areas. Operations at each automotive dealerships included large scale automotive repair and collision repair. The Sites generally included legacy environmental issues related to historical resales associated with in-ground hydraulic lifts, oilwater separators, and petroleum bulk storage. In addition, one of the dealerships were on land historically occupied with a large scale industrial operation, previous automotive and truck repair operations, and two gasoline filling stations. Adam assisted the client assess the environmental risk associated with each Site and conducted a Phase II Environmental Site Assessment to evaluate the environmental concerns identified.

Low-Income Housing Redevelopment — Corning, NY

Adam provided consulting services for redevelopment of a 30 structure low-income housing development in Corning, New York. The property was developed in the 1950's, was in various stages of disrepair, and redevelopment of the Site was desired by the local community. Adam assessed hazardous building materials within the Site Buildings prior to demolition, prepared several Phase I ESA's, and

evaluated the Site for wetlands and endangered species in compliance with New York State Homes and Community Renewal requirements. Furthermore, Adam helped the client explore options for handling suspected hazardous fill materials historically imported to the Site.

Hazardous Building Materials -Various, NY

Adam Zebrowski has interfaced directly with LaBella's hazardous building materials specialists on various hazardous building material projects and has been responsible for maintaining project goals, work product quality, schedule, client relations. and field personnel. Adam has provided his clients such services to assess regulatory, environmental, and financial liabilities associated with property transactions, tax foreclosures, building demolition and renovation projects, and compliance with the Asbestos Hazard Emergency Response Act.

Iberdrola USA: SPCC - Various, NY

Adam Zebrowski managed preparation of Spill Prevention Control and Countermeasure (SPCC) plans for 85 New York State Electric and Gas (NYSEG) electrical substations located throughout Western New York. The SPCC scope of work for each electrical substation included an inventory of oil containing electrical equipment and total oil volume, documentation of secondary oil containment measures, evaluation of local topographic conditions, locating nearby potential water body receptors, and preparation of a SPCC plan report. The purpose of each SPCC plan is to determine

whether on-site controls (i.e. secondary containment such as berms or concrete containment structures) would adequately contain an oil release in the event of electrical equipment failure, and in the event the such controls were inadequate, to identify approximate surface flow characteristics and local at risk water bodies. Obstacles associated with the project included the volume of substations to be assessed, the large geographical distribution of the substations, and strict schedule demands which required all aspects of the project to be completed within four-six weeks. The SPCC plans were successfully completed and delivered to the client within the schedule required.

Talisman USA: Well Pad Assessments - Various, NY

Adam Zebrowski managed completion of several Environmental Natural Gas Well Pad Assessments on behalf of Talisman Energy USA. The scope of work for the assessments included a visual assessment of each well pad, review of Talisman Energy USA well records, New York State Department of Environmental Conservation (NYSDEC) records, well permits, historical records (i.e. historical aerial photography, historical atlases, Sanborn maps, etc.), natural gas well lease agreements, completion of an American Society for Testing and Materials 1527 compliant regulatory records review, interviews with Talisman Energy USA representatives and the property owner, and preparation of a report summarizing the results of the assessment. The purpose of the assessments were to determine site specific

reclamation requirements subsequent natural gas well extraction activities. LaBella successfully completed the assessments meeting Talisman Energy USA requirements, project schedules, and budget. In addition, LaBella assisted Talisman Energy USA to characterize well cuttings previously buried at several well pads to determine well cutting disposal requirements.

PHASE I ESA'S

Phase I Environmental Site Assessments - Northeastern United States

Adam has managed over 2,000 Phase I ESAs. Transaction Screens, and RSRAs on a wide variety of residential, commercial. industrial, and manufacturing facilities including gasoline stations, repair shops, dry cleaners, apartment complexes, office buildings, and restaurants for various financial institutions. developers, municipalities. attorneys, and non-profit groups. Adam has conducted these assessments throughout the United States with particular project focus on the States of New York, Pennsylvania, and Ohio.

Phase II Environmental Site Assessments - Northeastern United States

Adam has managed over 300 Phase II ESAs throughout the Northeastern United States for various financial institutions, developers, municipalities, attorneys, and non-profit groups. Adam has completed investigation of historic and active industrial/manufacturing operations, retail petroleum operations, petroleum distribution facilities, automotive and collision repair facilities,

hazardous waste disposal sites, landfills, drycleaners, printing operations, orchards, blacksmiths, technologically enhanced naturally occurring radioactive materials (TENORM) sites. Adam has extensive experience with investigation methods including exploratory test pit excavations, direct push soil borings, soil vapor sampling, groundwater monitoring well installation and sampling. Adam has conducted assessments throughout the United States with particular project focus on the states of New York, Pennsylvania, Ohio, Maryland, and New Jersey.

Former Dry Cleaners - Buffalo & Batavia, NY

As project manager, Adam completed a Phase I ESA at two commercial retail plazas. Based on the results of the Phase I ESA's, both properties were historically utilized as dry cleaning operations. Vapor intrusion assessment were completed and concentrations of chlorinated solvents were identified in vapor samples collected from both properties at concentrations above regulatory guidance values.

Fuel Oil Underground Storage Tank Assessment - Rochester, NV

As project manager, Adam completed a Phase I ESA at a commercial property for a real estate purchase. Based on the results of the Phase I ESA, one fuel oil underground storage tank was removed at the site without subsurface sampling. Adam managed completion of a Phase II assessment proximate the former fuel oil UST at an accelerated schedule. As no subsurface impact was identified,

the property transaction was completed within the desired schedule of the client.

NYSDEC: Former Petroleum Distribution Facility - Buffalo, NY

On behalf of the New York State Department of Environmental Conservation (NYSDEC), Adam provided project and field management services to characterize the subsurface conditions of a large petroleum distribution facility containing dozens of historic and current underground storage tanks. The property owner was absent and the property was owned by the City of Buffalo for back taxes. Due to the previous use of the property, the City of Buffalo could not find a party interested in purchasing the property. As such, the NYSDEC funded by federal stimulus money requested that a subsurface investigation be completed to characterize the property. Based on the results of initial and subsequent investigations, extensive petroleum related contamination was identified. Adam collaborated with the NYSDEC Region 9 Spills Division and a private developer to identify the likely extent of the petroleum contamination. The property was ultimately purchased by the private developer from the City of Buffalo and enrolled in the NYSDEC Brownfield Cleanup Program.

Marina Property - Dunkirk, NY

As project and field manager, Adam completed a site wide subsurface investigation to determine the subsurface conditions on a large marina property located in Dunkirk, New York. Historical use of the property included a gasoline

filling station, oil storage and an asphalt plant. Furthermore, large portions of the property received fill material from unknown sources. Based on the results of the investigation, extensive petroleum related subsurface impact was discovered. As the purpose of the investigation was to provide due diligence for a potential purchaser of the property, Adam explored various remedial options and cost estimates to assist his client determine an appropriate purchase price for the property and assess the risk associated with property ownership. The property was ultimately enrolled in the NYSDEC Brownfield Cleanup Program.

Former Petroleum Distribution Facility - Berlin, NJ

As project manager, Adam managed a Site Investigation (SI) of a petroleum distribution and truck repair facility in anticipation that the property would be accepted into the New Jersev Department of Environmental Protection (NJDEP) Site Remediation Program. Based on the results of the investigation, several areas of petroleum impacted soil and groundwater were identified at the property. Although portions of the groundwater contamination was clearly the result of onsite operations, a VOC plume appeared to be migrating onto a portion of the site from an adjoining property utilized as a gasoline filling station. As releases were documented at the adjoining gasoline filling station, Adam assisted his client in exploring methods to determine the origin of the groundwater contamination migrating on-site and ultimately the liable party. The property was subsequently

accepted into the NJDEP Site Remediation Program.

Railroad Car Manufacturer -Pueblo West, CO

As project manager, Adam managed a site wide subsurface investigation of a manufacturer of railroad cars in Colorado. In addition, an up-gradient chemical manufacturing facility with documented releases had reportedly impacted the local groundwater table. Based on the results of the investigation, Adam was able to determine that the groundwater beneath the subject property had not been impacted. However, arsenic was detected in soils collected from across the site at concentrations above Colorado Department of Public Health and the Environment (CDPHE) guidance and published background levels. Through communication with the CDPHE and the United States Environmental Protection Agency, Adam was able to advise his client that the arsenic concentrations were likely due to a localized elevated arsenic condition and therefore not likely the result of on-site operations.

Apartment Complex - Buffalo,

As project and field manager,
Adam completed a site wide
subsurface investigation of
a large apartment complex
located in the City of Buffalo. The
property was redeveloped as an
apartment complex in the 1960's
and was historically comprised
of several city blocks which
included various manufacturing
and industrial operations.
Based on the result of initial
and subsequent investigations,
several areas of semi-volatile
organic compound (SVOC)

contamination was identified and delineated. As the purpose of the investigation was to provide due diligence for a potential purchaser of the property, Adam explored various remedial options and cost estimates to assist his client determine an appropriate purchase price for the property and assess the risk associated with property ownership.

Historic Gasoline Station -Canandaigua, NY

As project and field manager, Adam completed a subsurface investigation to investigate a historic gasoline station located in Canandaigua, New York. Based on the results, petroleum contaminated soil and groundwater was identified and a spill was reported to the NYSDEC. At the request of the NYSDEC, Adam designed a subsequent subsurface investigation to determine the extent of the subsurface soil and groundwater impact. Based on the results of both studies, the NYSDEC "closed" the spill and did not require further work.

Former Automotive Dealership -Baltimore, MD

As project manager, Adam managed the removal of a large oil/water separator at a vacant automotive dealership. The purpose of the UST removal was to prepare the property for sale to another party. During excavation activities, it was discovered that the reported oil/water separator discharged directly to the ground. Extensive petroleum contaminated soil was encountered and a case was opened by the Maryland Department of the Environment (MDE) Oil Control Program. At the request of the MDE,

approximately 800 tons of contaminated soil was removed from the property. On behalf of the property owner, Adam corresponded with the MDE to gain "closure" of the case and the property was sold.

Automotive Repair Facility -Cheektowaga, NY

As project and field manager, Adam was retained to remove three underground storage tanks (USTs) from an automotive repair facility located in Cheektowaga, New York. The purpose of the UST removal was to prepare the property for sale to another party. During UST removal activities, petroleum impacted soil was discovered and a spill was reported to the NYSDEC. At the completion of the project, a total of seven USTs and approximately 1,000-tons of petroleum impacted soil was removed from the property. Based on the work completed, the NYSDEC spill was "closed" and the client successfully sold the property.

Automotive Dealership -Honeoye Falls, NY

As the previous dealership structure was destroyed by fire, the property was being redeveloped with a new dealership facility. During demolition activities in-ground hydraulic lifts were removed from within the building footprint, and petroleum impacted soil was encountered by the general contractor. As such the NYSDEC was notified and a spill was assigned to the site. Adam provided oversight services to the general contractor for removal of approximately 1,500-tons of impacted soil from the property associated with the in-ground hydraulic lifts, former trench

drains and oil water separator. Upon removal of the soil, the general contractor was able to complete the new structure. The NYSDEC spill associated with the site remained open as continued groundwater monitoring was required prior to spill closure.

Former Tin Smith - Buffalo, NY

As project and field manager, Adam completed an initial subsurface investigation at a convenient store property that was historically developed with an automotive repair facility and an associated gasoline UST, a varnish shop and a tin shop. The purpose of the investigation was to provide due diligence services for a lending institution which was accepting the property as part of a real estate portfolio as collateral for a commercial loan. Upon completion of the initial investigation, concentrations of SVOCs, lead and mercury were detected at concentrations above NYSDEC guidance within soil samples collected. A subsequent investigation was designed by Adam which successfully delineated the extent of the SVOC and metal impact. As such, approximately 100 tons of contaminated soil was excavated from the property. Upon completion of the work, the lending institution accepted the property as collateral.

Former Gasoline Station Properties - New York City, NY

Adam managed quarterly groundwater sampling and injection events at two former gasoline filling stations for a period of almost three years. Both sites were active New York State Department of Environmental Conservation (NYSDEC) spill sites. Remedial

ADAM ZEBROWSKI

efforts at the properties included removal of underground storage tanks, removal of petroleum impacted soil, and in-situ groundwater remediation in accordance with NYSDEC requirements.

Former Manufacturing Plant - Gates, NY

As project and field manager, Adam completed a subsurface investigation on behalf of the owner of the facility to characterize the subsurface conditions prior to sale of the property to another party. Based on the results of the subsurface investigation, chlorinated solvent impacted soil and groundwater was identified beneath the facility. As such, Adam completed a vapor intrusion assessment of the building which identified a vapor intrusion issue. Adam designed an extensive subsequent vapor intrusion study to delineate the extent of the vapor impact beneath the building and assisted the property owner with implementing corrective action consisting of a sub-slab depressurization system. As no further work was required, the property owner successfully sold the property.

PE

Professional Engineer New York

EDUCATION

Clarkson University: BS, Chemical Engineering

CERTIFICATION/ REGISTRATION

OSHA 40-Hour Certified Hazardous Waste Site Worker Training

OSHA 8-Hour Certified Hazardous Waste Site Worker Refresher Training

DAN NOLL

Brownfield Program Manager

Dan has over 18 years of experience with environmental projects at industrial/manufacturing facilities and environmental investigation projects for a variety of clients including developers, financial institutions, industrial clients, and municipalities. Dan has managed numerous Phase II Environmental Site Assessments and remediation projects such as groundwater monitoring programs, soil vapor investigations, test pit investigations, geo-probe investigations, underground storage tank removals, soil removals, bio-cell remediations, and in-situ groundwater remediation. He also has experience with the design and installation oversight of mitigation systems. In addition, Dan has assisted industrial, municipal and agricultural clients with permitting and annual reporting for State Pollution Discharge Elimination System (SPDES) permits, Part 360 Land Application permits, Composting permits, and Petroleum Bulk Storage (PBS) registrations.

Springs Land Company: Carriage Cleaners BCP Site — Rochester, NY

As Project Manager, Dan completed a Brownfield Cleanup Program (BCP) Application & Work Plan to conduct a Remedial Investigation at a former dry cleaning facility. A soil, groundwater, and soil gas study was undertaken to develop remedial costs and assist with redeveloping the property. Subsequently, an Interim Remedial Measure was completed to remove the source area of impacts from the Site. Dan completed a remedial alternatives analysis for selecting a treatment approach for the residual groundwater plume. Dan also attended Town Board Meetings regarding this project.

American Siepmann Corporation: Former Manufacturing Facility BCP Site — Henrietta, NY Dan was the Project Manager for this Brownfield Cleanup Program (BCP) Site and has overseen the installation of a groundwater monitoring well network and subsequent routine sampling as part of a Monitored Natural Attenuation (MNA) program for remediation of chlorinated groundwater impacts at the Site.

Stern Family Limited Partnership: Former Manufacturing Facility BCP Site — Rochester, NY

Dan was the Project Engineer for this BCP Site, which underwent a Remedial Investigation, Interim Remedial Measures, and installation of a sub-slab depressurization system. Dan completed and stamped the Final Engineering Report required to obtain the Certificate of Completion for the property owner, allowing them to obtain their tax credits.

RJ Dorschel Corporation: Former Gasoline/Service Station BCP Site — Rochester, NY

Dan was the Project Manager for this BCP Site, which included Remedial Investigations at two adjoining parcels, implementation of Interim Remedial Measures, and development of the Final Engineering Report and Site Management Plan. The project also included implementation of necessary Citizen Participation requirements. The project ultimately obtained the Certificate of Completion and thus the NYS tax credits.

One Flint Street Associates: Vacuum Oil BCP Site — Rochester, NY

Dan was the Project Manager for this Brownfield site that is the oldest oil refinery in the United States. The current project includes developing a remedial investigation plan for two parcels that have had a history of oil refining since the 1800s. The remedial investigation was designed to fill data gaps from previous studies in order to minimize cost to the Client.

Genesee Valley Real Estate: Former Bausch & Lomb Facility BCP Site — Rochester, NY

Dan is Project Manager for this Brownfield site that served as a manufacturing facility from the 1930s to the 1970s. The project includes a Remedial Investigation (RI) of a four-acre parcel with ten areas of concern identified based on historic information. The RI identified four areas requiring remedial actions and Interim Remedial Measures have been completed in three of the locations. The areas of remediation included petroleum impacted soil and groundwater

with free floating petroleum product, and chlorinated solvent contamination including bedrock impacts at depth. A remedial alternatives analysis is being completed to determine a final remedy for the site.

Former Corning Hospital — Corning, New York

Dan was the project manager for completion of a Phase II Environmental Site Assessment at the Former Corning Hospital and 8 associated adjacent properties. A soil boring and groundwater monitoring program was implemented to identify subsurface impacts associated with former uses of the site including gasoline filling stations and former railroad.

Bajrangee, Inc.: Comfort Inn – BCP Site — Rochester, NY

Dan was the Project Manager for this Brownfield site that included a design phase investigation to determine the extent of remedial work. The remediation work included excavation of chlorinated solvent impacts to soil and groundwater from the basement of the building. This included proper shoring design to facilitate the removal action. A second phase of the remediation included injection of treatment chemicals to address downgradient groundwater impacts.

Alexander Associates: Former Genesee Hospital — Rochester, NY

Dan was Project Manager for a Phase II ESA of a former hospital campus and adjoining parking garage. This assessment included evaluating potential impacts from the hospital chemical storage area, backup generators and associated fuel tanks, and historical site uses which included a former car dealership and service center. The Phase II ESA progressed in to the remediation of a NYSDEC Spill prior to redevelopment of the property. The investigation and remediation work obtained closure of a 20+ year old spill in less than 6-months.

DeCarolis Truck Rental: Petroleum Spill Site Remediation — Rochester, NY

Dan was Project Engineer for this site, responsible for the coordination of the removal/disposal of approximately 800 tons of petroleum impacted soil and development of a confirmatory soil sampling program. Dan also coordinated work with NYSDEC and completed post removal monitoring in order to close the spill file.

City of Rochester: Petroleum Soil Removal & Oxygen Injection System — Rochester, NY

As Project Engineer, Dan developed a soil and groundwater study to investigate former underground storage tanks at a former gasoline/ auto repair facility. A remedial alternatives analysis was conducted to evaluate several options for remediating soil and groundwater at the site including light non-aqueous phase liquid. Dan followed this project through remediation which consisted of removing about 1,500 cy of soil and designing/installing an oxygen injection system to remediate groundwater over time.

Hoselton: Petroleum Spill Remediation — Rochester, NY

Dan was project manager for

this project which included the removal and disposal of approximately 900 tons of petroleum impacted soil. Dan negotiated closure of the spill file with NYSDEC by addressing off-site contaminant migration by injection of treatment chemicals at the property line.

Mizkan Americas: Lagoon Design/Construction and SPDES Permitting — Lyndonville, NY

Dan served as the Project Manager and Engineer for the design and construction assistance for a 700,000 gallon lagoon to store food-grade wastewater. The objective was to reduce facility costs by discharge of food-grade wastewater to local sprayfields. The lagoon was designed and installed in accordance with NYSDEC requirements in order to store wastewater during the nonspraying season. This is a 20+ year old client who built their existing lagoon with LaBella's assistance in 1987. Project also includes permitting through NYSDEC SPDES (State Pollution Discharge Elimination System) Program.

Leo Dickson and Sons, Inc.: Land Application and Composting Permits — Bath, NY

Dan managed a project to permit a facility for composting of wastewater biosolids. The project included developing a report for NYSDEC to document design details for the facility, facility operations, and proposed monitoring. The facility received a NYSDEC Part 360 Composting Permit. In addition, Dan continues to provide annual reporting services for ensuring the facility operates within the permit conditions. He also assists this client with the annual reporting

and permit renewals of a 2,000+ acre land application project under NYSDEC Part 360 solid waste regulations. The land application work includes permitting approximately 16 municipal facilities for land application.

City of Hornell: Land Application Reporting, Permit Renewals and Modifications — Hornell, NY

Project Manager and Engineer responsible for assisting the City of Hornell with their annual Land Application Reporting, permit renewals and modifications to their permit for over 20 years. In addition to completing each annual report in the past five years, LaBella also recently assisted the City of Hornell with their Permit Renewal (May 2010) and a Permit Modification (July 2011). LaBella has assisted the City of Hornell for the past 20 years with permitting approximately 498 acres of land for their biosolids application work. Hornell conducts land applications via subsurface injection and typically applies 700,000 to 1 Million gallons annually. In 2011, LaBella assisted Hornell with permitting approximately 204 acres of land. LaBella assisted with all aspects of the process including coordinating with agencies, wetland issues, test pitting, soil sampling, etc. LaBella's work with the City of Hornell has provided us with significant experience in quickly determining issues that require resolution/clarification as a first step prior to completing the application process.

Former Emerson Power Transmission Facility — Ithaca, NY

Dan completed a detailed review

of this 100-acre site with 800,000 sq. ft. of manufacturing space. The site is in the NYSDEC Inactive Hazardous Waste Disposal Site registry and was a heavy industrial facility for over 100 years. The facility closed in 2009 and Dan is the project manager for environmental due diligence activities for a potential buyer. The facility has known issues with chlorinated solvents in bedrock and with significant off-site impacts. The overall project will include a detailed and in-depth environmental site assessment with sampling for soil, bedrock. groundwater, soil gas, sediments, and surface waters in order to document any impacts above NYSDEC criteria and thus limit liability for the purchaser.

City of Rochester: Genesee River Dredging Project — Rochester, NY

Dan managed a project to permit three areas for dredging near the mouth of the Genesee River. The project included evaluating the previous dredging operations in the area, the existing sediment sampling data, sediment levels, discharge points in the area to be dredged and 3-D modeling of the sediments for accurate volume calculations. This information was summarized in a presentation to NYSDEC and the Army Corp of Engineers in order to streamline the permitting process and determine any additional requirements for obtaining a permit. Subsequent to the presentation, Dan developed the permit and submitted them to the Client for signature, and then approval by regulatory agencies.

MRB Group: Sediment Sampling Project — Erie Canal, NY

Dan managed a project to pre-

characterize sediment in the Erie Canal in order to determine the depth and volume of sediment in the work area, as well as the waste disposal requirements. This work was conducted prior to a utility line installation project in order to determine the feasibility of the project and the associated costs.

Dansville Properties, Inc.: Former Foster Wheeler Facility — Dansville, NY

Dan managed the effort to close out existing NYSDEC and EPA permits for the former facility and subsequently obtained permits for the new facility, which included multiple industrial companies operating throughout the campus. The permitting effort included obtaining: a sewer use permit from the local municipality, a SPDES Multi-Sector General Permit, RCRA Generator ID, Title V Air Permit, and PBS Registration.

Buckingham Properties: Manufacturing Facility — Rochester, NY

Dan assisted a developer that purchased a former Bausch & Lomb manufacturing facility to obtain a SPDES Permit for Industrial Discharges. This project included assessing the new operations and discussion of the Site with NYSDEC to determine the appropriate permits for the facility, since multiple tenants with various operations were in operation at the Site.

City of Rochester: Port Marina — Rochester NY

Dan assisted with the environmental investigation of the City of Rochester Port Marina. This project included evaluating the extent of slag fill materials that would require proper management during any redevelopment work. The extent of slag was evaluated by implementing

a grid pattern of soil borings and using the resulting data to develop a 3-dimensional model of the subsurface at the Site. This model was used to generate volumes of material to be disturbed during redevelopment and estimate the cost burden of the environmental portion of the project. This project also included evaluating the magnitude and permitting of a massive dewatering program to allow the mass excavation to be completed.

City of Rochester: Former Forestry Building — Rochester, NY

Dan managed a project to evaluate the extent of mercury impacts at a former City of Rochester Forestry operations building. The project included multiple rounds of sampling at various depths in order to determine the extent of mercury impacted soils that required removal prior to redevelopment of the Site by a local manufacturing company.

Valeo North America: Former Valeo Facility — Rochester, NY

Dan managed Remedial Investigations of two areas of potential contamination at this former manufacturing facility. These assessments included evaluating bedrock groundwater for plating waste impacts (metals and chlorinated solvents). These evaluations were complicated by the fact that multiple industrial companies were in operation at the Site in the past and thus requiring LaBella to provide a focused assessment to only evaluate potential Valeo responsibilities.

City of Rochester: NYSDEC Legacy Site Soil Vapor Intrusion Project — Rochester, NY

Dan is Project Manager for this project which includes evaluating soil vapor intrusion from a former 230-acre municipal landfill with methane gas and chlorinated solvent impacts. The landfill was converted into an industrial park after closure in 1971 and is now developed with 45 separate parcels and over 2,000,000 square feet of building space. This challenging project included obtaining access from 27 different property owners and conducting site assessments at each facility and separately evaluating groundwater impacts over approximately 20acre area. The results of this work determined the cost burden and liability of the City for addressing soil vapor intrusion. LaBella utilized all of the following mitigation approaches for minimizing this significant cost burden to the City: sealing of floors, vapor barriers, subslab depressurization systems and building pressurization depending on building conditions/uses.

City of Rochester: Vacuum Oil Brownfield Opportunity Area — Rochester, NY

Dan was Project Engineer for this project and his role was to develop a Pre-Nomination Study Report to facilitate entering the area into the NYSDEC Brownfield Opportunity Area program. The pre-nomination study included evaluating demographics of the area, current and past property uses, property ownership, area-wide utilities, etc. The pre-nomination report was approved by NYS Department of State and a grant was approved for the next phase of the BOA program.

Yates County: Environmental Restoration Program — Penn Yan, NY

Dan was project manager for this Environmental Restoration Program site that included completing a Remedial Investigation at the site and developing a Site Management Plan to guide future redevelopment in-conjunction with remediation. This project turned a liability into an asset for the County.

Monroe County: Crime Lab Property Acquisition — Rochester, NY

Dan was project manager for this project which included conducting Phase I ESAs and Phase II ESAs at three properties being considered for development by the County for a new crime lab facility. The project included investigation and remedial cost estimates for the County to use in property acquisition negotiations. After property selection, Dan assisted with implementation of a remedial program that included removal of over 3,000 tons of NYSDEC Regulated Solid Waste. In addition, he designed and oversaw installation of a sub-slab depressurization system for addressing soil vapor intrusion concerns at the approximate 11,000 square foot new building.

City of Rochester: Fill Relocation and Sub-Slab Mitigation System — Rochester, NY

Dan was project manager for this project which relocated approximately 3,000 cubic yards of fill material from a development site that is located on a former landfill operated by the City of Rochester. This work was conducted for the City but on private property. The fill was relocated and placed in a soil berm on City property with NYSDEC approval. In addition, Dan designed and oversaw construction of a subslab depressurization system for the new 8,000 square foot building.

City of Rochester: Bureau of Water, Lighting, and Parking Meter Operations — Rochester, NY

As Environmental Engineer, Dan worked on the redevelopment of the current site for reuse as a new facility for the operations center, which included the following tasks: delineate the extent of soil and groundwater contamination, evaluate potential remediation options, develop a Comprehensive Action

Plan (CAP), assist in the development of remediation specifications, and identify the scope of potential Interim Remedial Measures (IRMs) at the site.

935 West Broad Street Petroleum Spill Site Characterization and Corrective Action — Rochester, NY

As Project Engineer, Dan developed a soil and groundwater study to investigate former underground storage tanks at a former gasoline/auto repair facility. A remedial alternatives analysis was conducted to evaluate several options for remediating soil and groundwater at the site including light non-aqueous phase liquid. Dan followed this project through remediation which consisted of removing about 1,500 cy of soil and installing an oxygen injection system to remediate groundwater over time.

EDUCATION

University at Buffalo: BA, Geography-Physical and Environmental Systems

ORGANIZATIONS

New York State Commercial Association of Realtors

CERTIFICATION/ REGISTRATION

Environmental Professional

OSHA 40-hour HAZWOPER

OSHA 8-Hour HAZWOPER Refresher January, 2017

Princeton Groundwater Pollution and Hydrology Training

CHRIS KIBLER

Environmental Analyst

Chris is a Project Scientist with several years of professional consulting experience. Working with financial institutions, attorneys, private developers and municipalities, he conducts ESAs in support of real estate transactions and brownfield redevelopment initiatives. Chris' experience includes historical and regulatory records review, field sampling and data collection using a variety of techniques and equipment; the review and evaluation of field and laboratory analytical data; and the preparation of technical reports defining potential environmental liabilities and, if warranted, remedial options.

In addition, Chris has experience managing projects encompassing Phase II Site Assessments, brownfield investigation, remediation and redevelopment, underground storage tank (UST) removal, vapor intrusion, geophysical surveys, and tank tightness testing. Furthermore, he has working knowledge of regulatory criteria/compliance relating to projects within several states including New York, Pennsylvania, Maryland, New Jersey, Ohio, Delaware and Virginia.

Phase I Environment Site Assessments - Northeastern United States

Performed numerous Phase I ESAs and Transaction Screens on a wide variety of residential, commercial, industrial, and manufacturing facilities including gasoline stations, repair shops, apartment complexes, office buildings, and restaurants including but not limited to the following groups:

Financial Institutions

Bank of Akron, Bank of the Fingerlakes, Canandaigua National Bank, Citizens Bank, Community Bank, NA, Evans Bank, Five Star Bank, JP Morgan Chase Bank, Key Bank, Lakeshore Savings, Lyons National Bank, M&T Bank, Northwest Bank, PNC Bank

Municipal & Government Clients

Niagara County Department of Economic Development, Niagara County Refuse Disposal District, New York State Department of Environmental Conservation, Seneca Nation of Indians

Development & Construction Companies

Benderson Development, Buffalo Niagara Riverkeeper, Phillips Lytle, LP, The Benchmark Group, Ciminelli Real Estate Corporation

Phase II Environmental Site Assessments - Barker Chemical - Barker, New York

A site-wide investigation was completed to determine conditions at the former Barker Chemical in Barker, New York. Such included testing of surface water, groundwater, surface soil and subsurface soil at the Site.

Historical use of the property included manufacturing and distribution of fungicides and herbicides. The results of this investigation were utilized to identify viable remedial options for the Site and potentially clear it for redevelopment.

2020 River Road - Wheatfield, New York

A site-wide investigation was completed to determine conditions at the property located at 2020 River Road, Wheatfield, New York. Such included environmental and radiological testing of surface soil at the site. In addition, test pits were conducted throughout the property including environmental and radiological testing of the subsurface soil. Historically, the property was utilized for filling purposes including industrialtype wastes such as slag, ash, cinders, fire-brick, coal and foundry sand. The results of this investigation were utilized to determine if the Town of Wheatfield could redevelop the property into a public park.

Carr's Warehouse - Batavia, New York

A site-wide investigation was completed to determine conditions at the property in Batavia, New York. Such included subsurface soil and groundwater testing at the site. The results of this investigation were utilized to evaluate reuse options for the property through the City of Batavia's Brownfield Opportunity Area Program Grant.

Vapor Intrusion Assessment-Commercial Plaza - Alden, New York

Vapor intrusion assessment of a commercial plaza which

historically contained dry cleaning operations. Included the collection and laboratory analysis of sub-slab vapor and indoor air samples; the evaluation of the resulting data relative to applicable regulatory guidance; and the preparation of a technical report with recommendations for mitigation.

120-Acre GMCH Site - Lockport, New York

A site-wide investigation was completed to determine conditions at the site located in Lockport, New York, prior to acquisition of the property. Such included environmental and radiological testing of surface soil, subsurface soil and sediment.

Della Penna Site - Batavia, New York

A site-wide investigation was completed to determine conditions at the property in Batavia, New York. Such included subsurface soil and groundwater testing at the site. The results of this investigation were utilized to evaluate reuse options for the property through the City of Batavia's Brownfield Opportunity Area Program Grant.

Delta Sonic - Buffalo, New York

A site-wide investigation was completed to determine conditions at the property in Buffalo, New York. Such included subsurface soil and groundwater testing at the site. The results of the investigation were utilized to assist in the replacement of the fuel assets at the facility.

Brownfield Redevelopment Project, Covanta Rail-to-Truck Intermodal Facility - Niagara Falls, New York

Field Manager for the accelerated investigation, remediation and redevelopment for a 15-acre former industrial site for use as a Rail-to-Truck Intermodal Facility (RTIF). The project is being advanced under the Brownfield Cleanup Program (BCP) and has involved the completion of a Remedial Investigation; development of a NYSDEC-approved Remedial Action Work Plan to address a range of contamination, including radioactive slag; obtaining site plan approval for the proposed development; and completing site and architectural design of the RTIF. The remedial design and site design efforts were fully integrated to produce a cleanup plan that coincides with the site development plan and optimizes the project schedule.

Brownfield Opportunity Area Step 1 Nomination Study Batavia Central Corridor - Batavia, New York

Environmental Analyst for the characterization and analysis of environmental conditions and redevelopment opportunities within a 250-acre area in the center of the City of Batavia.

USEPA Brownfield Site-Philadelphia Furniture -Salamanca, New York

A site-wide investigation was completed to determine conditions at the property due to historical operations of concern and fill placement. Such included environmental testing of the surface and subsurface soil, and groundwater at the site. The results of this investigation were utilized to evaluate redevelopment options for the property through the USEPA Brownfield Assessment Grant Program.

Track 266 Relocation Easement - Niagara Falls, New York

Field manager responsible for environmental and radiological monitoring during the remediation of soil/fill and relocation of CSX Track 266 at the property. Additional responsibilities included oversight, management of personnel and document preparation.

Occidental Chemical Corporation: Hydrogen Line Excavation - Niagara Falls, New York

Field manager responsible for environmental and radiological monitoring during the excavation of, and installation of a protection casing over a hydrogen line. Additional responsibilities included oversight, management of personnel and document preparation.

Niagara County Refuse Disposal District Monitoring - Lockport, New York

Implementation of fieldwork and reporting for the quarterly monitoring program at the Niagara County Refuse Disposal District's active and closed landfills. The work includes the performance of gas monitoring, leachate and groundwater sampling, data summary and evaluation, and quarterly and annual reporting.

Global Concepts Charter School - Lackawanna, New York

Lead was detected in the potable drinking water from ten outlets at the property. Subsequently, these locations were fitted with Brita filtration systems. Following installation of such, Chris served as the field technician for the collection and laboratory analysis of ten potable water samples

from each of the ten source outlets previously identified with lead concentrations of concern. The samples were assessed in accordance with USEPA sampling protocols by collecting a first draw sample from each outlet. It was determined thereafter that installation of the Brita filters successfully remedied the previously-identified lead levels of concern at the Site.

MS, CIH
Master of Science
Certified Industrial Hygienist

EDUCATION

University of Rochester: MS, Industrial Hygiene

St. Lawrence University: BS, Geology

ORGANIZATIONS

American Industrial Hygiene Association

American Board of Industrial Hygiene

Air & Waste Management

American Society of Safety Engineers

CERTIFICATION/ REGISTRATION

NC Asbestos Inspector & Abatement Designer

40 Hour Hazwaste

RICK ROTE

Senior Industrial Hygienist

Rick is a Certified Industrial Hygienist with a background in occupational and public safety. He brings to his projects an expertise in asbestos, lead, PCB and the management of hazardous materials. Projects have included building surveys, hazard assessments, abatement project planning, and project inspection and monitoring. Rick manages LaBella's in-house laboratory for asbestos air and bulk samples, as well as managing air monitoring projects. His responsibility is to identify environmental impacts, and design and manage appropriate environmental responses for these projects.

Beard Hall Asbestos Inspection, UNC Chapel Hill, Chapel Hill NC

Rick completed a comprehensive inspection of the second and third floors of the building and the attic in support of a major renovation. Existing inspection and abatement documentation was carefully reviewed and utilized to prevent duplicate sampling. An inspection report for asbestos, lead paint, mercury and perchlorates was provided and abatement options were reviewed. Abatement drawings and specifications were prepared separately but in conjunction with the larger renovation project. SCO approval was received without need for modification.

The work was completed under an Open Ended Design Services Agreement with the University. Contract services include inspection for regulated building materials such as asbestos, lead paint, mercury, and PCB, and abatement design services in support of the preparation of bid documents.

Pre-renovation Asbestos Inspection | Carolinas Telco

Federal Credit Union | Charlotte, NC

A comprehensive building asbestos inspection was completed, except for the roof, to assist with renovation design feasibility and to provide an approximate abatement cost estimate. The building is a main branch and office, and was in active use when the inspection was completed. Pipe insulation and floor tile were identified. and the exterior is sided with thick asbestos cement panels. Abatement design, including abatement drawings and specifications, is anticipated.

Wallace House Renovation | Mitchell Community College | Statesville, NC

Project Manager responsible for a pre-renovation asbestos inspection of a historic building used for arts instruction.

Abatement of flooring and pipe insulation was required as part of the extensive renovation to convert the one-time residence to an alumni support and meeting facility.

Blue Heel Development |

Huntersville, NC

Rick was Project Manager of a Phase I and an asbestos inspection required for the development of a site and the construction of town homes. The Phase I uncovered the presence of a UST and the asbestos inspection revealed the presence of several asbestos-containing materials. Rick managed the abatement design and tank removal projects.

Community Medicine Foundation, Inc | Rock Hill, SC

Rick managed a series of projects facilitating the preparation of a site for the construction of a new medical services building. The projects included a Phase I, Phase II, geotechnical services, asbestos inspection & abatement design, UST removal and building demolition. Due to the use of federal grant money, a NEPA Environmental Assessment was required for the project Site. Construction of the new building began after successful completion of these projects.

BeeBee Station | RG&E Rochester, NY

Rick served as Project Manager for Regulated Building Material abatement design for the abatement required prior to the demolition of a dozen support buildings and associated exterior piping. Existing inspection reports were reviewed. deficiencies identified and data gaps filled with additional investigation and sampling. Abatement drawings and specifications were prepared for bid. Asbestos-containing materials were field marked for easy identification to aid both the bid and the abatement process.

College Town, LLC | Asbestos, PCB & Lead Inspection, Design, & Monitoring for Building Demolition Rochester, NY

Project Manager for hazardous materials management services provided to CollegeTown, LLC for the demolition of 3 large commercial buildings in preparation for the development of the new College Town Project site. Rick was responsible for the management of all services, including building inspection, abatement design, variance development and submission, bid document preparation, bid support and project and air monitoring.

Rick's team prepared site-specific variances proposing methods allowing safe demolition with non-friable asbestos in-place, saving the project significant time and money.

Asbestos Term Agreement | Rochester Housing Authority Rochester, NY

Rick manages LaBella Associates' Term Agreement (4 consecutive years) for Asbestos Management Services. His responsibilities include coordinating scheduling and supervising field work, abatement design, variance development, reviewing final reports and contract management. Services include Project and Air Monitoring during abatement. Projects have ranged from single family homes to multi-building residential complexes.

Wegmans Food Markets | M&T Bank Pre-demo Abatement Rochester, NY

Rick was the project manager for the regulated building materials inspection and abatement design required to accomplish the demolition of the 7 story bank and the adjacent parking garage. The inspection revealed sprayon fireproofing and other ACMs. as well as extensive use of PCB caulk around the exterior of both structures and on the interior side of windows. Fireproofing was identified between structural steel and exterior pre-fabricated cement panels, requiring partial demolition of the panels to gain access for abatement in otherwise inaccessible locations. This was a unique and challenging project, requiring innovative design and flexible response.

Wegmans Food Markets | Asbestos Inspection, Design, & Monitoring for Store Demolition Rochester, NY

Project Manager for hazardous materials management services provided to Wegmans for over 15 years, including the demolition of buildings at 10 retail store sites. Rick is responsible for the management of all services, including building inspection, abatement design, bid document preparation, bid support and project and air monitoring.

Rick's team has provided the same services for pre-renovation projects that have occurred in Wegmans stores, as well a number of leased spaces.

Monroe Community College Downtown Campus | Monroe County | Rochester, NY

Project Manager responsible for all regulated building materials inspection and abatement design services to support required abatement for the conversion of former Kodak Office Building space into the MCC Downtown Campus. This scope required a floor-by-floor investigation of 250,000 square feet of office space and mechanical rooms for asbestos-containing materials, lead-based paint (LBP), PCB-containing items, mercury and others. Coordination and phasing considerations were important due to the multiple work areas across the seven floors and rooftop.

LaBella completed the investigation and determination of suspect ACMs discovered at the Site. Samples of suspect materials were collected and submitted to our inhouse laboratory for analysis. Abatement drawings and specifications were prepared for bidding. The inspection and abatement design work for this 3 million dollar abatement/demolition project was completed within the original budget.

Environmental Testing Term Agreement | Monroe County Rochester, NY

Rick is the Project Manager for LaBella's term agreement service (with annual renewals since 1999) for hazardous materials inspection and abatement design with Monroe County. Projects range from small utility spaces to large multi-story commercial complexes. Recently completed projects include: MCC multi-year window replacement project, Monroe County Jail (asbestos & lead paint testing), MCC Field House Addition, Monroe Community Hospital renovations and Faith Wing roof replacement.

Asbestos Inspection and Abatement Design | University of

Rochester | SWBR

Project Manager for asbestos and lead paint inspection, and abatement design services supporting renovation of the coffee shop lounge in Wilson Hall. The lounge area, the Lobby below and the entrance way were inspected for asbestos and lead paint. Abatement specifications and drawings were prepared for the project bid documents.

Asbestos Inspection and Abatement Design | University of Rochester | HBT Architects

Project Manager for asbestos and lead paint inspection, and abatement design services supporting renovation of a pair of bathrooms. The bathrooms and associated chases were inspected for asbestos and lead paint. Abatement specifications and drawings were prepared for the project bid documents.

Asbestos Inspection and Abatement Design | University of Rochester | SWBR

Project Manager for asbestos and lead paint inspection, and abatement design services supporting a classroom and office space renovation project in Gavett Hall. Inspections were completed in various spaces that would be impacted by the project. Abatement specifications and drawings were prepared for the abatement required for the renovations.

Asbestos Inspection and Abatement Design | Gates Chili Central School District Gates, NY

Project Manager for asbestos and lead paint inspection, and abatement design services related to improvements and modifications to 10 buildings. Asbestos and lead management services have been provided for an on-going series projects since 2009. The project work requires coordination between the project team, school staff, and several architectural firms.

Asbestos Inspection and Abatement Design | Greece Central School District Greece, NY

Project Manager of the Team providing pre-renovation asbestos inspection and abatement design services for the district-wide Excel II Capital Improvement Project. Extensive renovations will impact asbestos in nearly every school. AHERA records are reviewed, spaces inspected, reports written, specifications prepared and abatement drawings created for each affected school.

Mills II | Urban League of Rochester, Economic Development Corporation Rochester, NY

Rick was the project manager of lead and asbestos services for a rehab project converting a section of vacant street side shops and housing into multiple housing units. Inspection and lead remediation design services were provided. Architecturally important wooden door and window parts were saved, deleaded, painted and re-installed. Worker safety required interim lead clearance testing during different phases of construction, and final clearance testing was performed for each of 21 housing units.

Asbestos Abatement Design | Fredric Douglas Building University of Rochester, Rochester, NY

Project Manager and lead

abatement designer for Phase I of a major building renovation project. A thorough review of a recently completing building asbestos inspection preceded the preparation of detailed abatement drawings for 4 floors of the building. Abatement specifications were also prepared for the bid package.

Asbestos Inspection, Design, and Monitoring for Renovation | Rush Henrietta Central School District Henrietta, NY

Project Manager for regulated building materials management services provided to the school district for the renovation of six schools. Services, including hazardous materials inspection, abatement design, bid document preparation, bid support and project and air monitoring, have been provided over a 10 year period.

Asbestos Term Agreement | NYSDOT Statewide, NY

Rick managed LaBella Associates' six Term Agreements for Asbestos Management, spanning over 20 years. His responsibilities included coordinating scheduling and supervising field work, reviewing final reports and contract management. Services are provided to four regions and included asbestos sampling, analysis, Project Design, Project Monitoring and Air Monitoring. Over the six consecutive term agreements, Rick's group has inspected hundreds of bridges and completed over one hundred pre-demolition surveys of other structures. (1990 - 2010)

Asbestos Inspection and Abatement Design | Hilton Central School District Hilton, NY

Project Manager for asbestos

and lead paint inspection, and abatement design services in support of the District 2013 Capital Improvements project. Five schools and the Facilities & Transportation buildings were inspected for the project. Abatement specifications and drawings were prepared in response to the planned renovations.

Asbestos Inspection and Abatement Design | Dansville Central School District Dansville, NY

Project Manager for asbestos and lead paint inspection, and abatement design services in support of the District 2012 Capital Improvements project. The Primary, Elementary and High Schools were inspected for the project. Abatement specifications and drawings were prepared in response to the planned renovations.

Asbestos Inspection and Abatement Design | Spencerport Central School District Spencerport, NY

Project Manager for asbestos and lead paint inspection, and abatement design services in support of projects at several different schools in 2012 and 2013. Inspections were completed in various spaces that would be impacted by the projects. Abatement specifications and drawings were prepared in response to the planned renovations.

Asbestos Inspection and Abatement Design | Rochester Joint Schools Construction Board Rochester, NY

Project Manager for asbestos, PCB and lead paint inspection, and abatement design services in support of major renovation projects at School 28 and Edison Technical School. The presence of spray-on insulation required careful inspection methods and PCB caulk presented challenging design issues at School 28. Abatement specifications and drawings were prepared in response to the planned renovations at both schools.

Asbestos Inspection | English Village Apartments Rochester, NY

Project Manager for asbestos and lead paint inspection of a limited number of units to develop an Asbestos-containing Materials report that was representative of 550 units present at the site. The client's requirement for an accurate abatement cost estimate and sufficient documentation for bidding and abatement were successfully satisfied (2003).

Monroe County Water Authority | 2010 Roof Replacement Projects Rochester, NY

Rick was the Project Manager for an asbestos inspection and abatement design project required for roof replacements at two facilities. Testing was completed, specs and drawings prepared, and a cost estimate generated for both sites. Project Monitoring services were provided for one roof project completed in 2010.

Environmental Services | NYST Statewide, NY

Project Manager for a multidisciplined professional service agreement. Responsibilities included supervising asbestos inspections, testing, abatement design, Project Monitoring and contract management.

Holy Family Catholic Community | Hazardous Materials Pre-Demo Inspection, Abatement & Demo Design Rochester, NY

A hazardous materials pre-demo inspection was performed at the St. Joseph School. Abatement and demolition design and bid support services were provided. Project Monitoring was performed during abatement and construction management services were provided during demolition.

Asbestos Inspection and Abatement Design for Pioch Hall, Basil Hall, and Science Center | St. John Fisher College Rochester, NY

Project Manager for the asbestos inspections and abatement design services. Planned renovations and selective demolition required inspection and testing materials likely to be disturbed by the project. The project required coordination with college staff, the contractor and school schedules.

Bureau of Water, Lighting, and Parking Meter Operations Rochester, NY

Rick served as Project Manager, where pre-existing asbestos inspection reports were field verified, and previously untested materials were sampled and submitted for analysis. The buildings were assessed for lead, mercury lamps and PCBs. A detailed cost estimate, abatement specifications, and drawings were prepared.

Port of Rochester Redevelopment Rochester, NY

Project Manager for the asbestos inspection, abatement design and project monitoring services were a component of a much larger project involving the design and construction of a new ferry and customs terminal at the Port of Rochester

Former Photech Plant Predemolition Inspection | City of Rochester - Rochester, NY

Project Manager for the comprehensive inspection of hazardous and Regulated Building Materials at a 3 acre former industrial site, abandoned for many years. Inspection and design were hampered by years of vandalism and widespread industrial chemical contamination. Staff completed inspections, prepared a predemo report, abatement drawings, specifications, provided bid support, and project and air monitoring.

Hazardous Materials Inspection and Testing | Garlock Sealing Technologies Palmyra, NY

Rick was Project Manager for the comprehensive hazardous materials inspection and testing of an 80 year old industrial building slated for a complete renovation. Specifications and drawings were prepared for the abatement of ACM, PCB, and mercury-containing items.

SUNY Fredonia | Alumni Hall Bathroom Updates Fredonia, NY

Project Manager of inspection and abatement design services for the management of asbestos, PCB, lead and mercury related to the rehabilitation of eight student bathrooms in Alumni Hall. Tile floors and walls were cored to determine the presence of asbestos-containing waterproofing. Specifications and drawings were prepared for the abatement of asbestos, lead and mercury -containing light bulbs.

Abatement was completed in the spring of 2011. LaBella provided project and air monitoring services during abatement of asbestos plaster ceilings and insulated light fixtures from the eight bathrooms.

Erdman Anthony | State University at Buffalo, Cary, Farber, & Sherman Halls | AM/ PM Services Buffalo, NY

Project Manager for all air and project monitoring required during the abatement of pipe insulation, duct insulation, floor tile, and caulk for a facilities upgrade project at Cary, Farber & Sherman Halls. Coordination and phasing considerations were important due to the building remaining occupied and the need for multiple work areas across three buildings.

DASNY | SUNY Oswego, Onondaga Hall | ACM and Lead Inspection and Testing Oswego,

Rick was the manager of the asbestos and lead inspection and testing efforts required for this project. The planned work presented the potential for impact of asbestos-containing materials (ACM) and lead-based paint. Rick conducted the lead inspection and assisted with the asbestos inspection of bathrooms in this high rise dormitory. A major renovation project for the upgrade of bathrooms and restrooms in the dorm required new fixtures, finishes and plumbing. Abatement specifications and drawings are being prepared for the abatement of confirmed ACM; all paint coatings were found to be lead-free.

iKon 5 | SUNY Alfred, Harder Hall

| AM/PM Services (2010) Alfred, NY

Project Manager for the air and project monitoring services required during the abatement of acoustical ceiling coating and floor tile at Harder Hall. Abatement was completed in several work areas during the summer months of 2010. Additional suspect materials were discovered during construction, including the identification of suspected pipe insulation in a steam tunnel and foundation wall waterproofing. LaBella assisted with the collection of bulk samples. Samples of suspect materials were submitted to our in-house laboratory for analysis and rush turn around. PCM air samples were also analyzed at the LaBella laboratory.

Hall Partnership | SUNY Alfred, McMahon Hall | AM/PM Services Alfred, NY

Rick was responsible for the successful completion of all air and project monitoring required during the abatement of pipe insulation, floor tile, and other ACM at McMahon Hall. During construction other suspect materials were identified; samples were collected and tested in the LaBella laboratory. An incidental disturbance of pipe insulation was identified, delimited, and quantified. Advice and oversight was provided during the response to the disturbance.

SUNY Alfred | Greenhouses, Asbestos Inspection, Abatement Design, & Demolition Specifications Alfred, NY

Project Manager for the asbestos and lead inspection and testing of three greenhouses slated for demolition. Specifications and drawings were prepared for abatement and subsequent demolition.

HOK | SUNY Geneseo, Greene Hall | AM/PM Services Geneseo, NV

Rick was Project Manager responsible for overseeing all air and project monitoring required during the abatement of pipe insulation, floor tile, asbestos & PCB caulk and other ACM at Greene Hall.

Feasibility Study | Newark Housing Authority Newark, NY

Project Manager for a feasibility study for the conversion of 13 buildings and over 1million s.f. of floor space to day treatment and senior assisted housing. A comprehensive asbestos inspection was completed for 7 buildings and nearly half the floor space to prepare abatement cost estimates as part of the feasibility study.

Asbestos Inspection and Abatement | Boylan Brown Rochester, NY

Project Manager for the inspection of 5,000 s.f. of professional building in preparation for demolition.

Prepared abatement design and specifications for removal of ACM, light ballasts, and refrigeration.

Services included pre-bid support and walkthrough, AM/PM during abatement.

SUCF 12338 | SUNY Potsdam | Upgrade Site Utilities Phase 3 Potsdam, NY

Project scope consisted of the upgrade and reconstruction of site infrastructure including roadways, parking lots, sidewalks, site storm drainage systems, and site accessory elements

on the campus. Rick acted as Project Manager of inspections and testing necessary to determine the presence of asbestos-containing materials such as caulks, joint fillers, Transite, waterproofing, etc in the structures impacted by these improvements. LaBella provided abatement design services, which included the preparation of the specification sections and abatement drawings.

SUCF 02352 | SUNY Brockport | Infrastructure Improvements Brockport, NY

Rick acted as Project Manager of the pre-renovation regulated building materials sampling survey and the abatement design for this project. Rick managed the air and project monitoring required during construction.

HEALTH & SAFETY

Rick, LaBella's Laboratory
Director, is an industrial hygienist
certified in the Comprehensive
Practice of Industrial Hygiene. He
has been providing health, safety
and environmental services to
LaBella clients for 20 years. Prior
to joining LaBella Associates,
he worked over 10 years for
Eastman Kodak Company. Rick
has conducted a wide variety of
industrial hygiene investigations
including:

Industrial Hygiene Walk-Through Surveys, OSHA Personnel Exposure Studies, Noise Exposure Studies, OSHA Compliance Programs and Audits, Asbestos Site Surveys, Indoor Air Quality Studies, Mold Assessment and Testing, Non-ionizing Radiation Surveys, and Health & Safety Plans for Hazardous Waste Sites.

Rick has performed exposure studies for a wide variety of agents, from carcinogens and heavy metals to simple irritants and asphyxiates. He is routinely called upon to complete indoor air quality studies, including the assessment of 'Toxic Mold' contamination and potential for occupant exposure. In some studies, computerized data acquisition is used, allowing for complex data analysis and graphical representations of results. In another area of data management, he designed and helped to develop a database for tracking employee exposure histories and training.

Rick has prepared corporate programs for compliance with OSHA regulations such as Confined Space, Lock Out/Tag Out, Respiratory Protection, Hazard Communication, asbestos, lead and others.

Health & Safety Training

Rick has extensive experience with employee health and safety training programs. He has provided Hazard Communication, Right to Know and Hazard Awareness training courses for many large organizations. Average class sizes ranged from 10 - 30 people. Some of the training courses Rick has prepared and presented are:

Lead, Hazard Communication, Hearing Conservation, Confined Space Entry, Respiratory Protection, Lock Out/Tag Out, and Lab Safety.

Legionella Assessment – 2 Projects - RIT, Contact: David Armanini, (585) 475-2040, daaehs@rit.edu

An assessment of several

ventilation systems serving a main campus building was conducted after standing water was recognized to be present within system components. Several systems had condensation pans which, by design, collected and held pooled water several inches deep. The water in these systems was tested for Legionella, and Legionella was not detected. Two other systems had large diameter return air ducts placed well below grade in the basement of the building. Groundwater was naturally infiltrating and collecting in low areas of duct. The infiltrating water was tested at several locations and found to contain non-viable Legionella and evidence of bacterial slime. Cleaning of the duct and remediation of the water infiltration was recommended. Specifications were prepared for appropriate cleaning methods.

Water samples were collected from condensation pans from two ventilation systems in the Student Alumni Union Building, and air samples were collected in several areas served by those ventilations systems. Legionella was detected by the PCR method at low levels in both sets of samples. Facilities took immediate steps to reduce ventilation and treat the contained water in the systems. Water and air sampling were repeated several times using viable analytical methods until consecutive clean samples confirmed that Legionella was no longer present.

Astra Zeneca | Environmental, Health & Safety Management

Project Manager for on-site environmental, health & safety management services to a large pharmaceutical research facility through a four year contract.
LaBella's personnel were
responsible for day to day health
& safety responsibilities, including
facility inspections, accident
investigation and reporting,
chemical exposure monitoring,
compliance program updates and
employee training. LaBella was
also responsible for the on-going
collection and disposal of all
chemical and biological wastes
generated at the facility.

The contract terminated when the company relocated to an out of state facility. LaBella managed the environmental shut down operations of the facility. Labs and storage areas were inspected for remaining chemicals. Unused chemicals and chemical wastes were marshaled in selected areas and sorted in preparation for lab pack disposal. Disposal contractors were interviewed and the chemical disposal was bid out. Non-hazardous laboratory equipment and supplies were collected in selected areas. and made available to local schools and clinics free of charge. Lab hoods were tested for contaminated residues and cleaned as appropriate. Dumpsters were ordered for the disposal of non-hazardous materials. A cleaning company was contracted to complete a final clean to leave the space as required in the lease.

Nazareth College | HSE Compliance Services

Project Manager for the assessment of compliance with OSHA and environmental regulations and exposure monitoring in the Art Department. A Spill Prevention Control & Countermeasure Plan and a Laboratory.

Rick has performed exposure studies for a wide variety of agents, from carcinogens and heavy metals to simple irritants and asphyxiates. He is routinely called upon to complete indoor air quality studies, including the assessment of 'Toxic Mold' contamination and potential for occupant exposure. In some studies, computerized data acquisition is used, allowing for complex data Chemical Hygiene Plan were developed to assist with compliance measures.

Elmira Psychiatric Center | NYSOGS Elmira, NY

Project Manager for the comprehensive assessment of radon across the entire facility. Results were reported and at-risk spaces were identified. After consideration of site characteristics, space usage, and existing ventilation performance, a design for a comprehensive ventilation upgrade was provided.

UCB Manufacturing

Project Manager for the assessment of occupational exposures to methylene chloride and dust during the production of two pharmaceutical products. Several different production phases were monitored for both products. Both 8-hr Time Weighted Averages and Short Term Exposure Limit concentrations were determined for each phase. Ventilation evaluations and recommendations were provided to improve contaminant capture and reduce exposures.

Pfaulder, US, Inc.

A number of air monitoring studies have been completed to determine exposure concentrations to metals, silica and solvent vapors across a variety of production operations. The work has been completed as a component of the company's Safety Management Program.

LaBella updated Pfaudler's Confined Space Program by reevaluating the plant for confined space hazards, preparing a new program manual and written entry procedures. The plant was also evaluated for Lock-Out/Tag Out hazards. All powered equipment was assessed and a new Lock-Out/ Tag-Out Program was prepared, including written Lock-Out/Tag Out procedures. LaBella has provided employee training in these programs and Hazcom on a regular basis.

NYSDOT | Fredonia Maintenance Residency Fredonia, NY

Volatile Organic Compounds were scanned using SUMA canisters and Method TO-15 to achieve very low detection levels in response to employee concerns over sub-slab gasoline and fuel oil contamination. Sample data was compiled and presented in an industrial hygiene format for presentation to employees. Vapor concentrations were concluded to be low enough to not present the potential for adverse health effects.

Nexpress/Kodak

Project Manager for the assessment of occupational exposures to solvents and noise during the development of coating equipment and processes. Ventilation evaluations and design services were provided to improve performance. Respiratory protection program training and

fit testing were provided to new users.

City of Rochester Indoor Air Quality Studies | City of Rochester Rochester, NY

Project Manager for Indoor Air Quality studies, including toxic mold investigations, which been performed at a number of city facilities. Studies have been triggered by employee complaints of upper respiratory irritation, dry scratchy eyes, illness, odors and stale air. Testing was completed for specific contaminants based on conditions identified during the initial walk-through evaluation. Ventilation system design and function are also evaluated. All work was carried out in close association with the Environmental Services Department, including the development of corrective actions.

Childtime | Various Sites Upstate, NY

LaBella completed visual inspections and assessments for mold contamination at 10 sites across Upstate New York. Contaminated areas were delineated, limited sampling was completed, remediation recommendations were provided and a remediation specification was prepared. During and post remediation inspections were performed with clearance testing done as needed.

RIT | Indoor Air Quality Study Rochester, NY

Industrial Hygienist and investigator for several Indoor Air Quality and mold studies performed at a number of campus buildings. Studies have been triggered by employee,

faculty and student complaints of upper respiratory irritation, dry scratchy eyes, illness, odors and stale air. Investigations include observation, interviews and testing. Testing assesses ventilation effectiveness, contaminant concentrations, and mold types and concentrations. Recommendations are provided for improved air quality and mold remediation.

UCB Manufacturing | Occupational Exposure Monitoring of Methylene Chloride and Dust Rochester, NY

Project Manager for the assessment of occupational exposures to methylene chloride and dust during the production of two pharmaceutical products. Several different production phases were monitored for both products. Both 8-hr Time Weighted Averages and Short Term Exposure Limit concentrations were determined for each phase. Ventilation evaluations and recommendations were provided to improve contaminant capture and reduce exposures.

Optimation Technology | Hexavalent Chromium Concentrations during Welding Rochester, NY

Project Manager retained in response to new OSHA regulations, personal exposure monitoring was completed during a variety of stainless steel welding tasks to determine exposure concentrations of hexavalent chromium. Standard welding operations were evaluated with excellent ventilation controls in the work areas. Exposure concentrations did not exceed OSHA limits.

Wegmans Food Markets, Inc. | Project Manager, Employee Exposure Assessment Rochester, NY

LaBella measured the concentrations of several different solvents and dark room chemicals to assess employee exposures during various printing operations. The exhaust ventilation system was evaluated for effectiveness. Recommendations were provided on chemical handling and modifications to the exhaust system.

Indoor Air Quality

LaBella has completed numerous indoor air quality studies in a variety of environments in response to employee complaints such as, upper respiratory tract irritation, odors, headaches and a high rate of illness. Building design, ventilation, equipment, and operations are evaluated for factors which could contribute to poor indoor air quality. Testing has included agents such as carbon dioxide, volatile organic compounds, solvents, dust, noise and bioaerosols. Recommendations for remediation and ventilation improvements are provided.

Employee Exposure

Personal and area samples were taken to measure employee exposures to ammonia and dust at a large egg farm. Full shift dosimetry was performed with data logging. Time history graphs were used to identify specific high exposure tasks.

Indoor Air Quality

Warehouse guards had expressed concern about exposure to engine exhaust and particulate. Personal sampling was conducted to determine employee exposure concentrations to respirable dust, carbon monoxide, and nitrogen dioxide. Recommendations were made for modifications to the guard house ventilation system to help reduce particulate and exhaust gas infiltration.

Warren County Public Safety Facility

A community noise study was completed to address neighbor complaints about noise from a recently installed roof top chiller. Measurements were taken at several locations revealing that noise from the chiller was only slightly higher than ambient noise levels.

Affinity Realty Partners, LLC

Radon monitoring was performed to satisfy lender requirements at this and many other apartment complexes. Testing needs are assessed and monitoring is completed quickly and efficiently.

American Motive Power

Project manger for on-site provision of environmental, health & safety services. Plant operations were reviewed and investigated; Hazcom, Lockout/ Tagout, Respiratory Protection, waste management and air permit programs were developed. Employee training was provided as required. Employees were monitored to determine exposure concentrations to noise and solvents.

Nestle Purina

Completed employee exposure monitoring for two corrosive irritants used during routine cleaning of processing equipment. The client needed

immediate support to respond to employee concerns about the process. Samples were taken for several employee tasks during the B shift within one week of the request to complete the work, the final report was provided two weeks later.

SUNY Fredonia

The Fenner House Admissions
Office was assessed for mold
contamination in response to
occupant concerns. Inspection
and sampling determined that
occupied areas were in good
condition, but that the basement
needed some corrective
actions. The inspection revealed
several areas and aspects of
water infiltration, leading to
recommendations for better
drainage and other methods to
prevent the reoccurrence of mold
growth.

APD Engineering

Community noise studies have been completed in several upstate locations in support of the placement and development of large retail establishments. Follow up noise studies have been completed to support retail store response to neighbor noise complaints.

Residential

Rick has conducted many industrial hygiene studies and exposure evaluations on operations where lead exposure was a concern, and appreciates how easily serious lead exposures can occur. Rick manages the staff responsible for inspections and risk assessments required for compliance with EPA and HUD lead paint guidelines for housing inspections and abatement clearance.

Industrial

Rick has conducted many industrial hygiene studies and exposure evaluations on operations where lead exposure was a concern. The types of operations studied include production, maintenance and demolition. Specific operations include: part finishing, hand and wave soldering for circuit board manufacturing, lead chromate painting operations, incinerator maintenance and ash handling operations, lead smelting, and demolition of lead paint coated steel structures. Rick has experience with the HUD lead paint guidelines for home inspections and abatement clearance

City of Rochester | Lead Paint Program Rochester, NY

Rick has managed LaBella Associates participation in the City Lead Paint Program as a provider of 3rd party Clearance testing following hazard reduction activities. Nearly 100 Clearance Certifications have been completed within the last 6 years.

School Campus Conversion to Housing | Providence Housing Rochester, NY

This large project involves the conversion of a former Parrish and private school campus to program housing. Rick managed the provision of lead and asbestos inspection and abatement design services.

Lead testing was completed in 5 different campus buildings that were converted to housing. The project also included limited risk assessments, interim lead clearance and final clearance testing in each completed

housing unit.

DASNY | SUNY Oswego, Onondaga Hall | ACM and Lead Inspection and Testing Oswego, NY

Rick was the manager of the asbestos and lead inspection and testing efforts required for this project. The planned work presented the potential for impact of asbestos-containing materials (ACM) and lead-based paint. Rick conducted the lead inspection and assisted with the asbestos inspection of bathrooms in this high rise dormitory. A major renovation project for the upgrade of bathrooms and restrooms in the dorm required new fixtures, finishes and plumbing. Abatement specifications and drawings are being prepared for the abatement of confirmed ACM: all paint coatings were found to be lead-free.

Asbestos Abatement and Inspection | Gates Chili Central School District Gates, NY

Project Manager for asbestos and lead paint inspection, and abatement design related to improvements and modifications to 10 buildings. The projects required coordination between the project team, school staff, and several architectural firms. Lead considerations included inspection, testing, abatement design, interim and final clearance tests.

Astra Zeneca

Rick and his staff had full responsibility for ongoing health, safety and environmental compliance at a pharmaceutical research operation for over 4 years, until site relocation out of state. The project was

initiated with a comprehensive audit of operations, followed by correction of deficiencies and management of ongoing compliance with all applicable OSHA, FPA, DFC and NRC requirements. Responsibilities included safety audits, training and management; pest inspections and management; and Hazwaste management. Hazwaste management included waste characterization, container labeling, lab pack preparation, scheduling removal, review of manifests and annual reporting.

Hazardous Waste Management

Rick has completed audits and provided consulting assistance to a variety of industries on practices and issues relating to hazardous waste disposal and management. Industry experience includes polymer processing, spray painting, silk screening, plating and varied solvent use.

Air Emission Compliance

Rick is a certified third party compliance inspector for the NYS DEC in the dry cleaner perchloroethylene inspection program. The certified inspector acts as an agent of the DEC in performing annual Part 232 compliance inspections. Rick has performed many Part 201, 228 and Title V compliance determinations for a variety of industries. He has also reviewed and prepared Risk Management Plans for the accidental release of toxic materials.

OSHA Safety Compliance

Rick routinely provides OSHA compliance audits and performance reviews. He prepares compliance programs and consults with industries on their implementation. Rick also

provides employee training for most OSHA safety programs. Example safety programs include Confined Space, Lock Out/Tag Out, Hazcom, Lead, Asbestos, Emergency Evacuation, Laboratory Safety and many more.

Attic Cleanup, South Buffalo Charter School Buffalo, NY

Rick served as Project Manager for an indoor air quality study and the cleanup of a bird contaminated attic space in the main school building. Cleanup methods were proposed and reviewed. Air sampling before, during and after cleanup documented successful cleanup and control methods.

Port of Rochester Redevelopment Rochester, NY

Project Manager of asbestos and environmental management services associated with the design and construction of a new ferry and customs terminal at the Port of Rochester. A large building slated for renovation was contaminated with bird carcass and several inches of bird feces. Rick managed the asbestos inspection and the abatement design for the proper removal of both the asbestos and bird residues.

Pole Barn Cleanup, Greece Central School District Rochester, NY

Rick reviewed conditions associated with the reconstruction of a transportation pole barn that had bird feces in the attic spaces. A specification was developed to inform the contractor of the hazard and to specify control conditions intended to protect adjacent school property from emissions

and impact from the cleanup work.

EDUCATION Alfred University: BA, Environmental Studies

Training

CERTIFICATIONS / REGISTRATIONS OSHA 40 Hour HAZWOPER

SHANNON DALTON

Environmnetal Analyst

Shannon is an Environmental Analyst in LaBella's Environmental group. Shannon's experience includes Phase I and Phase II Environmental Site Assessments (ESAs). Shannon's field work experience includes soil and groundwater sampling, soil characterization, low-flow groundwater sampling with peristaltic pumps, SVI testing, groundwater sampling, and soil screening with a photo-ionization detector. In addition, Shannon generates GIS site investigation maps and groundwater contour maps for Phase II ESA's and Brownfield Cleanup Sites.

Landfill Monitoring

Allegany County Landfill: Groundwater Monitoring 2017 to current - Angelica, NY

Responsible for groundwater, storm water, sediment and leachate sampling; laboratory data assessment; and preparation of quarterly and annual water quality monitoring reports.

City of Olean: Ischua Landfill Water Quality Monitoring 2016-current - Olean, NY

Responsible for providing sampling, analysis and reporting services associated with water quality monitoring at the closed landfill.

Phase II Environmental Site Assessments

Shannon has performed numerous Phase II ESAs for a wide variety of commercial properties including current and historical automotive repair, historical dry cleaner facilities and offices.

408 47th Street, Niagara Falls, NY– Bank of Akron 616 West Avenue, Lockport, NY-Best Brothers Development

136 Orchard Park Road., West Seneca New York- Kim and Kevin Jacobi

8503 Main Street, Clarence, NY – Steuben Trust Company

18 & 22 Tonawanda Street, Buffalo, NY—Tonawanda Street Holdings LLC

11075 Walden Avenue, Alden, New York—Barclay Damon

4401 Transit Road, Amherst, NY—Evans Bank

115-121 West Third Street and 200-210 Washington Street, Jamestown, NY—Evans Bank

South Park, Buffalo, NY—Kyle Zick Landscape Architecture, Inc.

202 Rhode Island Street, Buffalo, NY—Sadoff Development LLC

Vapor Intrusion Assessments

211 Hertel Avenue, Buffalo, NY— Hodgson Russ LLP

400 North Main Street, Holland, NY—Draper Trucking

518-520 Elmwood Avenue & 288-292 West Utica Street, Buffalo, NY —Sinatra & Company Real Estate

1000-1004 Elmwood Avenue, Buffalo, NY—Sinatra & Company Real Estate

1116-1124 Elmwood Avenue & 577 Forest Avenue, Buffalo, NY— Sinatra & Company Real Estate

1256-1260 Hertel Avenue, Buffalo, NY—Sinatra & Company Real Estate

11075 Walden Avenue, Alden, NY—Barclay Damon

Phase I Environmental Site Assessments

Shannon has experience conducting numerous
Environmental Site Assessments.
Site assessments include evaluation of environmental liability associated with properties such as warehouses, gas stations, colleges, commercial properties, and residential homes. Shannon has completed environmental assessments for the following groups:

Financial Institutions

Alden State Bank
Bank of Akron
Caliber Commercial Brokerage
ESL Federal Credit Union
First Niagara Bank
Five Star Bank
Lakeshore Savings Bank
Upstate National Bank
Steuben Trust Company
Tompkins Bank of Castile

Companies

Ellicott Development Ryan Homes The NRP Group

Non Profit Organizations

The Nature Conservancy Western New York Land Conservancy

Municipal & Government Clients

Town of Shelby

Internship Experience

Niagara Frontier Transportation Authority (NFTA) - Buffalo, New York

Shannon served as an environmental engineer intern on various projects. Shannon prepared tables and summaries by compiling and analyzing four years of glycol treatment discharge sampling results for the Buffalo Niagara International Airport engineered wetlands. Shannon also assisted with providing spill database status updates and petroleum bulk storage registration applications. Shannon complied data from the NFTA print shop and calculated potential VOC emissions compared to regulatory thresholds.

APPENDIX 3

BCP Contact List Information

Contact List Information

Municipal and County Contacts						
Name	• • • • • • • • • • • • • • • • • • •					
Mr. Sam Teresi	City of Jamestown Mayor	City of Jamestown Municipal				
		Building				
		200 E. 3 rd St.				
		Jamestown, NY 14701				
Mr. Gregory P. Rabb	City of Jamestown Common	518 Lakeview Ave.				
President	Council	Jamestown, NY 14701				
Mr. Brent Sheldon		83 Durant Ave.				
		Jamestown, NY 14701				
Mr. Anthony Dolce		38 Clyde Ave.				
-		Jamestown, NY 14701				
Ms. Vickye James		809 Lafayette St.				
-		Jamestown, NY 14701				
Ms. Marie Carrubba		19 Widrig Ave.				
		Jamestown, NY 14701				
Ms. Maria B. Jones		455 Broadhead Ave.				
		Jamestown, NY 14701				
Mr. Tom Nelson		21 Hunter St.				
		Jamestown, NY 14701				
Ms. Kimberly A. Ecklund		32 Harris Ave.				
		Jamestown, NY 14701				
Mr. George S. Spitale		67 Camp St.				
		Jamestown, NY 14701				
Mr. Vince DeJoy	City of Jamestown Urban	City of Jamestown Municipal				
	Renewal Agency, Executive	Building				
	Secretary	200 E. 3 rd St.				
		Jamestown, NY 14701				
Ms. Stephanie Wright	City of Jamestown Urban	City of Jamestown Municipal				
	Renewal Agency, Economic	Building				
	Development Coordinator	200 E. 3 rd St.				
		Jamestown, NY 14701				
Mr. Vincent E. Horrigan	Chautauqua County Executive	Gerace Office Building				
		3 N. Erie St.				
		Mayville, NY 14757				
Mr. Kevin Sanvidge	Chautauqua County	201 W. 3 rd St., Suite 115				
	Department of Planning &	Jamestown, NY 14701				
	Economic Development,					
	Director					

Adjacent Property Owners			
Direction	on Property Address Owner Contact Information		
North	200 W. 3 rd St.	Star Hotels LLC	
		3940 Southwestern Blvd.	
		Orchard Park, NY 14127	
	114-122 W. 3rd St.	HSG Chadakoin	
		411 Winsor St.	
		Jamestown, NY 14701	
East	111 W. 3 rd St.	Thomas D. Johnson	
		600 Baker St., Apt. 5	
		Jamestown, NY 14701	
	101-103 W. 3rd St.	Jamestown Development Corp., IV, LLC	
		200 Harrison St.	
		Jamestown, NY 14701	
	201 Cherry St.	Pearl City Arts Building, LLC	
		205 Cherry St.	
		Jamestown, NY 14701	
South	107-109 W. 2 nd St.	Covenant Manor Apartments, LLC	
8111 Rockside Rd., Suite 20		8111 Rockside Rd., Suite 200	
		Cleveland, OH 44125	
	111 W. 2 nd St.	U.S. Commercial Habitat Co.	
		2407 South Hill Dr.	
		Jamestown, NY 14701	
West	201 W. 3 rd St.	LLC 201 West Third St.	
		4 Centre Dr.	
		Orchard Park, NY 14127	

Site Owner

GPatti Enterprises, LLC 115 Livingston Avenue Jamestown, NY 14701

Public Water Supply

Jamestown Board of Public Utilities Water Division 92 Steele Street Jamestown, NY 14701 (716) 661-1660

Document Repository

James Prendergast Library: Reference Department 509 Cherry Street Jamestown, New York 14701 (716) 484-7135

Local Media

The Post-Journal P.O. Box 3386 Jamestown, NY 14702 (716) 487-1111

Nearby Daycare

YWCA Child Care 401 North Main Street Jamestown, NY 14701 (716) 488-2237

APPENDIX 4

Community Air Monitoring Plan

Site Community Air Monitoring Plan

Location:

Jamestown Brewery 115-121 West Third Street Jamestown, New York

Prepared for:

Mr. Gregory Lunquist GPatti Enterprises, LLC 115 Livingston Street Jamestown, New York 14701

LaBella Project No. 2180345 July 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	RESPONSIBILITIES	
	ACTIVITIES COVERED	
	WORK AREA ACCESS AND SITE CONTROLS	
5.0	VOLATILE ORGANIC COMPOUND MONITORING	1
	PARTICUL ATE MONITORING	

List of Attachments

Attachment 1: NYSDOH Community Air Monitoring Plan Attachment 2: NYSDEC Fugitive Dust and Particulate Monitoring Plan

1.0 INTRODUCTION

The purpose of this Site Community Air Monitoring Plan (CAMP) is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of remedial work activities at the Site located at 115-121 West Third in the City of Jamestown, Chautauqua County, New York. This Site-Specific Air Monitoring Program (SSAMP) is not intended for use in establishing action levels for worker respiratory protection.

This SSAMP requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust), at the downwind perimeter of each designated work area when certain activities are in progress at the Site. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the SSAMP will help to confirm that work activities have not spread contamination off-site through the air.

2.0 RESPONSIBILITIES

This SSAMP is applicable to the remedial activities of contractors, engineers, consultants, facility employees, and their authorized visitors. The Project Manager shall implement the provisions of this SSAMP for the duration of the project. It is the responsibility of all remedial workers to follow the requirements of this SSAMP, and all applicable air safety procedures.

3.0 ACTIVITIES COVERED

The activities covered under this SSAMP include the following:

- Management of environmental investigation and remediation activities
- Environmental monitoring
- Collection of samples
- Management of excavated soil and liquid waste (groundwater)

4.0 WORK AREA ACCESS AND SITE CONTROLS

The contractor(s) will have primary responsibility for work area access and site control.

5.0 VOLATILE ORGANIC COMPOUND MONITORING

Monitoring for VOCs will be implemented in accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan, which is included in Attachment 1.

6.0 PARTICULATE MONITORING

Monitoring for dust will be implemented in accordance with the NYSDOH Generic Community Air Monitoring Plan (Attachment 1) as well as New York State Department of Environmental Conservation's Fugitive Dust and Particulate Monitoring (Attachment 2).

l:\GPATTI ENTERPRISES INC\2180345 - 115-121 W 3RD 200-210 WASHINGTON\REPORTS\RIWP\APPENDIX 4 - CAMP\RIWP CAMP_JAMESTOWN BREWERY.DOCX

ATTACHMENT 1

NYSDOH Community Air Monitoring Plan

Attachment 1 New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

Final DER-10 Page 204 of 226

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- 4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

Final DER-10 Page 205 of 226

- 1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- 2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
- 3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Final DER-10 Page 206 of 226

ATTACHMENT 2

NYSDEC Fugitive Dust and Particulate Monitoring Plan

Attachment 2 Fugitive Dust and Particulate Monitoring

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

- Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.
- Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.
- Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:
 - (a) Objects to be measured: Dust, mists or aerosols;
 - (b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);
- (c) Precision (2-sigma) at constant temperature: +/- 10 :g/m3 for one second averaging; and +/- 1.5 g/m3 for sixty second averaging;
 - (d) Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3:m, g= 2.5, as aerosolized);
 - (e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;
 - (f) Particle Size Range of Maximum Response: 0.1-10;
 - (g) Total Number of Data Points in Memory: 10,000;
- (h) Logged Data: Each data point with average concentration, time/date and data point number
- (i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;
- Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;
 - (k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;
 - (1) Operating Temperature: -10 to 50° C (14 to 122° F);
- (m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.
- In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.
 - 5. The action level will be established at 150 ug/m3 (15 minutes average). While conservative,

this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.

- 6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potentialsuch as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.
- The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:
 - (a) Applying water on haul roads:
 - (b) Wetting equipment and excavation faces;
 - (c) Spraying water on buckets during excavation and dumping;
 - (d) Hauling materials in properly tarped or watertight containers;
 - (e) Restricting vehicle speeds to 10 mph;
 - (f) Covering excavated areas and material after excavation activity ceases; and
 - (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150 ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

Final DER-10 Page 208 of 226 May 2010

APPENDIX 5

Quality Control Plan

Quality Control (QC) Program

Location:

Jamestown Brewery 115-121 West Third Street and 200-210 Washington Street Jamestown, New York

Prepared For:

GPatti Enterprises, LLC 115 Livingston Avenue Jamestown, New York

LaBella Project No. 2180345

July 2018

Olympic Towers, 300 Pearl Street, Suite 130 | Buffalo, NY 14202 | p 716-551-6281 | f 716-551-6282

Table of Contents

1.0	INTRODUCTION	1
2.0	QUALITY CONTROL OBJECTIVES	1
2.1	Accuracy	
2.2	Precision	
2.3	Completeness	
2.4 2.5	Representativeness Comparability	
3.0	MEASUREMENT OF DATA QUALITY	
3.1	Accuracy	
3.2	Precision	
3.3	Completeness	4
3.4	Representativeness	4
4.0	QUALITY CONTROL TARGETS	5
5.0	SAMPLING PROCEDURES	5
6.0	SOIL & GROUNDWATER INVESTIGATION	5
6.1	Soil Borings, and Well Installation	5
	1.1 Investigation Equipment	
	1.2 Investigation Techniques	
_	1.3 Artificial Sand Pack	
_	1.5 Grout Mixture	
_	1.6 Surface Protection	
6.	.1.7 Surveying	
6.	1.8 Well Development	7
7.0	GEOLOGIC LOGGING AND SAMPLING	8
8.0	GROUNDWATER SAMPLING PROCEDURES	9
9.0	MANAGEMENT OF INVESTIGATIVE-DERIVED WASTE	10
10.0	DECONTAMINATION	11
11.0	SAMPLE CONTAINERS	12
12.0	SAMPLE CUSTODY	14
12.1	· · · · · · · · · · · · · · · · · · ·	
12.2		
12.3	. 6	
12.4 12.5	, , ,	
12.6		
12.7		
13.0	LABORATORY REQUIREMENTS AND DELIVERABLES	16
14 0	DOCUMENTATION	17

Table of Contents (continued)

	Page
14.1 Sample Identification	
15.0 CORRECTIONS TO DOCUMENTATION	
15.1 Notebook	
16.0 SAMPLE HANDLING, PACKAGING, AND SHIPPING	
16.1 Sample Packaging	20
17.0 CALIBRATION PROCEDURES AND FREQUENCY	20
18.0 FIELD INSTRUMENTATION 18.1 Photovac/MiniRae PID. 18.3 Conductance, Temperature, and pH Tester. 18.4 Turbidity Meter.	
19.0 INTERNAL QUALITY CONTROL CHECKS	21
19.1 Blank Samples	21
19.4 Quality Control Check Samples	

1.0 INTRODUCTION

LaBella's Quality Control (QC) Program is an integral part of its approach to environmental investigations. By maintaining a rigorous QC program, our firm is able to provide accurate and reliable data. QC also provides safe working conditions for all on-Site workers.

The QC program contains procedures which allow for the proper collection and evaluation of data and documents that QC procedures have been followed during field investigations. The QC program presents the methodology and measurement procedures used in collecting quality field data. This methodology includes the proper use of equipment, documentation of sample collection, and sample handling procedures.

Procedures used in the firm's QC program are compatible with federal, state, and local regulations, as well as, appropriate professional and technical standards.

This QC program has been organized into the following areas:

- QC Objectives and Checks
- Field Equipment, Handling, and Calibration
- Sampling Techniques
- Sample Handling and Packaging

It should be noted that project-specific work plans (e.g., Remedial Investigation Work Plans) may have project specific details that will differ from the procedures in this QC program. In such cases, the project-specific work plan should be followed (subsequent to regulatory approval).

2.0 QUALITY CONTROL OBJECTIVES

The United States Environmental Protection Agency (USEPA) has identified five general levels of analytical data quality as being potentially applicable to site investigations conducted under comprehensive environmental response compensation and liability act (CERCLA). These levels are summarized below:

- Level I Field screening. This level is characterized by the use of portable instruments, which can provide real-time data to assist in the optimization of sampling point locations and for health and safety support. Data can be generated regarding the presence or absence of certain contaminants (especially volatiles) at sampling locations.
- Level II Field analysis. This level is characterized by the use of portable analytical instruments, which can be used on site or in mobile laboratories stationed near a site (close-support labs). Depending upon the types of contaminants, sample matrix, and personnel skills, qualitative and quantitative data can be obtained.

- Level III Laboratory analysis using methods other than the Contract Laboratory Program (CLP) Routine Analytical Services (RAS). This level is used primarily in support of engineering studies using standard USEPA-approved procedures. Some procedures may be equivalent to CLP RAS, without the CLP requirements for documentation.
- Level IV CLP Routine Analytical Services. This level is characterized by rigorous QC protocols and documentation and provides qualitative and quantitative analytical data. Some regions have obtained similar support via their own regional laboratories, university laboratories, or other commercial laboratories.
- Level V Non-standard methods. Analyses, which may require method modification and/or development. CLP Special Analytical Services (SAS) are considered Level V.

Unless stated otherwise, all data will be generated in accordance with Level IV. When CLP methodology is not available, federal and state approved methods will be utilized. Level III will be utilized, as necessary, for non-CLP RAS work which may include ignitability, corrosivity, reactivity, EP toxicity, and other state approved parameters for characterization. Level I will be used throughout the RI for health and safety monitoring activities.

All measurements will be made to provide that analytical results are representative of the media and conditions measured. Unless otherwise specified, all data will be calculated and reported in units consistent with other organizations reporting similar data to allow comparability of data bases among organizations. Data will be reported in micrograms per liter (μ g/L) and milligrams (μ g/L) for aqueous samples, and μ g/kilogram (kg) and mg/kg (dry weight) for soils, or otherwise as applicable.

The characteristics of major importance for the assessment of generated data are accuracy, precision, completeness, representativeness, and comparability. Application of these characteristics to specific projects is addressed later in this document. The characteristics are defined below.

2.1 Accuracy

Accuracy is the degree of agreement of a measurement or average of measurements with an accepted reference or "true" value and is a measure of bias in the system.

2.2 Precision

Precision is the degree of mutual agreement among individual measurements of a given parameter.

2.3 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected to be obtained under correct normal conditions.

2.4 Representativeness

Representativeness expresses the degree to which data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition

Careful choice and use of appropriate methods in the field will ensure that samples are representative. This is relatively easy with water or air samples since these components are homogeneously dispersed. In soil and sediment, contaminants are unlikely to be evenly distributed, and thus it is important for the sampler and analyst to exercise good judgment when removing a sample.

2.5 Comparability

Comparability expresses the confidence with which one data set can be compared to another. The data sets may be inter- or intra- laboratory.

3.0 MEASUREMENT OF DATA QUALITY

3.1 Accuracy

Accuracy of a particular analysis is measured by assessing its performance with "known" samples. These "knowns" take the form of EPA standard reference materials, or laboratory prepared solutions of target analytes spiked into a pure water or sample matrix. In the case of gas chromatography (GC) or GC/MS (mass spectrometry) analyses, solutions of surrogate compounds are used. These solutions can be spiked into every sample and are designed to mimic the behavior of target analytes without interfering with their determination.

In each case the recovery of the analyte is measured as a percentage, correcting for analytes known to be present in the original sample if necessary, as in the case of a matrix spike analysis. For EPA supplied known solutions, this recovery is compared to the published data that accompany the solution.

For the firm's prepared solutions, the recovery is compared to EPA-developed data or the firm's historical data as available. For surrogate compounds, recoveries are compared to EPA CLP acceptable recovery tables.

If recoveries do not meet required criteria, then the analytical data for the batch (or, in the case of surrogate compounds, for the individual sample) are considered potentially inaccurate. The analyst or his supervisor must initiate an investigation of the cause of the problem and take corrective action. This can include recalibration of the instrument, reanalysis of the QC sample, reanalysis of the samples in the batch, or flagging the data as suspect if the problems cannot be resolved. For highly contaminated samples, recovery of the matrix spike may depend on sample homogeneity. As a rule, analyses are not corrected for recovery of matrix spike or surrogate compounds.

3.2 Precision

Precision of a particular analysis is measured by assessing its performance with duplicate or replicate samples. Duplicate samples are pairs of samples taken in the field and transported to the laboratory as distinct samples. Their identity as duplicates is typically not known to the laboratory. For most purposes, precision is determined by the analysis of replicate pairs (i.e., two samples prepared at the laboratory from one original sample). Often in replicate analysis the sample chosen for replication does not contain target analytes so that quantitation of precision is impossible. For EPA CLP analyses, replicate pairs of spiked samples, known as matrix spike/matrix spike duplicate samples, are used for precision studies. This has the advantage that two real positive values for a target analyte can be compared.

Precision is calculated in terms of Relative Percent Difference (RPD).

- Where X_1 and X_2 represent the individual values found for the target analyte in the two replicate analyses or in the matrix spike/matrix spike duplicate analyses.
- RPDs must be compared to the method RPD for the analysis. The analyst or his supervisor must investigate the cause of RPDs outside stated acceptance limits. This may include a visual inspection of the sample for non-homogeneity, analysis of check samples, etc. Follow-up action may include sample reanalysis or flagging of the data as suspect if problems cannot be resolved.
- During the data review and validation process, field duplicate RPDs are assessed as a measure of the total variability of both field sampling and laboratory analysis.

3.3 Completeness

Completeness for each parameter is calculated as follows:

The firm's target value for completeness for all parameters is 100%. A completeness value of 95% will be considered acceptable. Incomplete results will be reported to the site managers. In planning the field sample collection, the site manager will plan to collect field duplicates from identified critical areas. This procedure should assure 100% completeness for these areas.

3.4 Representativeness

The characteristic of representativeness is not quantifiable. Subjective factors to be taken into account are as follows:

- The degree of homogeneity of a site;
- The degree of homogeneity of a sample taken from one point in a site; and
- The available information on which a sampling plan is based.

To maximize representativeness of results, sampling techniques and sample locations will be carefully chosen so that they provide laboratory samples representative of the site and the specific area. Within the laboratory, precautions are taken to extract from the sample bottle an aliquot representative of the whole sample. This includes premixing the sample and discarding pebbles from soil samples.

4.0 QUALITY CONTROL TARGETS

Target values for detection limit, percent spike recovery and percent "true" value of known check standards, and RPD of duplicates/replicates are included in the QCP, Analytical Procedures. Note that tabulated values are not always attainable. Instances may arise where high sample concentrations, non-homogeneity of samples, or matrix interferences preclude achievement of target detection limits or other quality control criteria. In such instances, the firm will report reasons for deviations from these detection limits or noncompliance with quality control criteria.

5.0 SAMPLING PROCEDURES

This section describes the sampling procedures to be utilized for each environmental medium that will be collected and analyzed in accordance with appropriate state and federal requirements. All procedures described are consistent with EPA sampling procedures as described in SW-846, third edition, September 1986, and subsequent updates. All samples will be delivered to the laboratory and analyzed within the holding times specified by the analytical method.

6.0 SOIL & GROUNDWATER INVESTIGATION

The groundwater sampling plan outlined in this subsection has been prepared in general accordance with RCRA Groundwater Monitoring Technical Enforcement Guidance Document 9950.1 (September 1986), Office of Solid Waste and Emergency Response.

Prior to drilling, all drill sites will be cleared with appropriate utility companies to avoid potential accidents relating to underground utilities.

6.1 Soil Borings, and Well Installation

6.1.1 Investigation Equipment

Direct Push Geoprobe Soil Borings and Monitoring Wells:

Soil borings and monitoring wells may be advanced with a Geoprobe direct push sampling system. The use of direct push technology allows for rapid sampling, observation, and characterization of relatively shallow overburden soils. The Geoprobe utilizes a four-foot or five-foot Macrocore sampler, with disposable polyethylene sleeves. Soil cores will be retrieved in four-foot or five-foot sections, and can be easily cut from polyethylene sleeves for observation and sampling. The Macrocore

sampler will be decontaminated between samples and borings using an alconox and water solution. Any investigation derived waste generated during the advancement of soil borings and monitoring well installations will be containerized and characterized for proper disposal.

6.1.2 Investigation Techniques

Direct Push Advanced Borings:

Prior to initiating drilling activities, the Geoprobe, Macrocore, drive rods and/or other pertinent equipment will be steam cleaned or washed with an alconox and water solution. This cleaning procedure will also be used between each boring. Throughout and after the cleaning processes, direct contact between the equipment and the ground surface will be avoided. Plastic sheeting and/or clean support structures (e.g., pallets, sawhorses) will be used. All sampling equipment will be steam cleaned or washed with an alconox and water solution upon completion of the investigation and prior to leaving the site.

Soil borings will be advanced with a 2-inch (or larger) inside diameter (ID) direct push Macrocore through overburden soils. Drilling fluids, other than water from a NYSDEC-approved source, will be no allowed without special consideration and agreement of the NYSDEC. The use of lubricants is also not allowed unless approved by the NYSDEC representative.

It will be the responsibility of the consultant to arrange for the appropriate drilling equipment to be present at the site. Standby time to arrange for additional equipment or a water supply will not be allowed unless caused by unexpected site conditions.

During the drilling, a photoionization detector (PID) will be used to screen soils cores retrieved from the Macrocores.

Direct Push Geoprobe advanced groundwater-monitoring wells typically utilize 1.25-inch threaded flush joint PVC pipe with 0.010-inch slotted screen. However, well construction will vary by project and will be specified in the project-specific work plan. PVC piping used for risers and screens will conform to the requirements of American Society for Testing and Materials (ASTM)-D 1785 Schedule 40 pipe, and shall bear markings that will identify the material as which is specified. All materials used to construct the wells will be ASTM approved. Solvent PVC glue shall not be used at any time in the construction of the wells. The bottom of the screen shall be sealed with a treated cap or plus. No lead shot or lead wool is to be employed in sealing the bottom of the well or for sealant at any point in the well. All risers and screens shall be set round, plumb and true to line.

6.1.3 Artificial Sand Pack

When utilized, granular backfill will be chemically and texturally clean, inert, siliceous, and of appropriate grain size for the screen slot size and the host environment. The sand pack will be installed using a tremie pipe, when possible (i.e., a tremie pipe may not fit into smaller, 2-in. diameter boreholes). When utilized, the well screen and casing will be installed, and the sand pack

placed around the screen and casing to a depth extending 2-ft. or at least 25 percent of the screen length above the top of the screen.

6.1.4 Bentonite Seal

A minimum 2-ft. thick seal of tamped bentonite pellets will be placed directly on top of the sand pack, and care will be taken to avoid bridging. In the event that Site geology does not allow for a 2-ft. seal (e.g., only 1-ft. of space remains between the top of the sand pack and ground surface), the remaining space in the annulus will be filled with bentonite. The seal will be measured immediately after placement, without allowance for swelling.

6.1.5 Grout Mixture

Upon completion of the bentonite seal, the well may be grouted with a non-shrinking cement grout (e.g., Volclay^R) mix to be placed from the top of the bentonite seal to the ground surface. The cement grout shall consist of a mixture of Portland cement (ASTM C 150) and water, in the proportion of not more than 7 gallons of clean water per bag of cement (1 cubic foot or 94 pounds). Additionally, 3% by weight of bentonite powder shall be added, if permitted.

6.1.6 Surface Protection

At all times during the progress of the work, precautions shall be used to prevent tampering with or the entrance of foreign material into the well. Upon completion of the well, a suitable lockable cap shall be installed to prevent material from entering the well. Where permanent wells are to be installed, the well riser shall be protected by a flush mounted road box set into a concrete pad. A concrete pad, sloped away from the well, shall be constructed around the flush mount road box at ground level.

Any well that is to be temporarily removed from service or left incomplete due to delay in construction shall be capped with a watertight cap and equipped with a "vandal-proof" cover, satisfying applicable NYSDEC regulations or recommendations.

6.1.7 Surveying

Coordinates and elevations will be established for each monitoring well and sampling location. Elevations to the closest 0.01 foot shall be used for the survey. These elevations shall be referenced to a regional, local, or project-specific datum. USGS benchmarks will be used whenever available. The location, identification, coordinates, and elevations of the wells will be plotted on maps with a scale large enough to show their location with reference to other structures at each site.

6.1.8 Well Development

After completion of the well, but not sooner than 24 hours after grouting is completed, development will be accomplished using pumping, bailing, or surge blocking. No dispersing agents, acids, disinfectants, or other additives will be used during development or introduced into the well at any

other time. During development, water will be removed throughout the entire water column by periodically lowering and raising the pump intake (or bailer stopping point).

Development water will be either properly contained and treated as waste until the results of chemical analysis of samples are obtained or discharged on Site as determined by the Site-specific work plans and/or consultation with the NYSDEC representatives on Site.

The development process will continue until a stabilization of pH, specific conductance, temperature, and turbidity (goal of <50 Nephelometric Turbitiy Units (NTUs)) of the discharge is achieved for three consecutive intervals following the removal of a minimum of 110% of the water lost during drilling, or three well volumes; whichever is greater. In the event that limited recharge does not allow for the recovery of all drilling water lost in the well or three (3) well volumes, the well will be allowed to stabilize to conditions deemed representative of groundwater conditions. Stabilization periods will vary by project but will be confirmed with the NYSDEC prior to sampling.

7.0 GEOLOGIC LOGGING AND SAMPLING

At each investigative location, borings will be advanced through overburden using either a drill rig and hollow-stem auger or direct push technology. Soils will be evaluated for visual and olfactory evidence of impairment (i.e., staining, odors, and elevated PID readings) by a geologist, engineer or qualified Environmental Professional. Sampling devices will be decontaminated according to procedures outlined in the Decontamination section of this document. When required, samples will be stored in glass jars until they are needed for testing or the project is complete.

If hydrogeologic conditions are favorable for well installation at a depth less than design, the well may be installed at the boring or coring termination depth. In the event that maximum design depth is reached and hydrogeologic conditions are not suitable for well installation, the maximum drilling depth may be revised. Hydrogeologic suitability for well placement will be determined by the supervising geologist, engineer or qualified Environmental Professional in consultation with NYSDEC, based on thickness and estimated hydraulic conductivity of the saturated zone encountered. If necessary, the borehole will be advanced to water or abandoned.

Boulders and bedrock encountered during well installation may be cored by standard diamond-core drilling methods using an "NX" size core barrel. All rock cores recovered will be logged by a geologist, labeled and stored in wooden core boxes. The cores will be stored by the firm until the project is completed or for at least one year. Drilling logs will be prepared by an experienced geologist or engineer, who will be present during all drilling operations. One copy of each field boring and well construction log and groundwater data, will typically be submitted as part of the investigation summary report (e.g., Remedial Investigation Report). The value shall be calculated for each 5-foot section. Information provided in the logs shall include, but not be limited to, the following:

- Date, test hole identification, and project identification;
- Name of individual developing the log;

- Name of driller and assistant(s);
- Drill, make and model, auger size;
- Identification of alternative drilling methods used and justification thereof (e.g., rotary drilling with a specific bit type to remove material from within the hollow stem augers);
- Standard penetration test (ASTM D-1586) blow counts;
- Field diagram of each monitoring well installed with the depth to bottom of screen, top of screen, and pack, bentonite seal, etc.:
- Reference elevation for all depth measurements;
- Depth of each change of stratum;
- Thickness of each stratum;
- Identification of the material of which each stratum is composed, according to the USCS system or standard rock nomenclature, as appropriate;
- Depth interval from which each sample was taken;
- Depth at which hole diameters (bit sizes) change;
- Depth at which groundwater is encountered;
- Depth to static water level and changes in static water level with well depth;
- Total depth of completed well;
- Depth or location of any loss of tools or equipment;
- Location of any fractures, joints, faults, cavities, or weathered zones;
- Depth of any grouting or sealing;
- Nominal hole diameters;
- Amount of cement used for grouting or sealing;
- Depth and type of well casing;
- Description of well screen (to include depth, length, location, diameter, slot sizes, material, and manufacturer);
- Any sealing-off of water-bearing strata;
- Static water level upon completion of the well and after development;
- Drilling date or dates;
- · Construction details of well; and
- An explanation of any variations from the work plan.

8.0 GROUNDWATER SAMPLING PROCEDURES

The groundwater in all new monitoring wells will be allowed to stabilize for at least 24-hours following development. Water levels will be measured to within 0.01 feet prior to purging and sampling. Sampling of each well will typically be accomplished via active sampling.

Active Sampling:

Purging will be completed prior to active sampling. During purging, the following will be recorded in field books or groundwater sampling logs:

- date
- purge start time

- weather conditions
- PID reading immediately after the well cap is removed
- presence of NAPL, if any, and approximate thickness
- Hq
- dissolved oxygen
- temperature
- specific conductance
- depth of well
- · depth to water
- estimated water volume
- purge end time
- volume of water purged

In general, wells will be purged until the pH, conductivity, temperature, and turbidity of the water being pumped from the well have stabilized with a turbidity goal of 50 NTU. All wells will be purged of at least three well volumes or to dryness.

All groundwater samples and their accompanying QC samples will be run for VOCs using NYSDEC Analytical Services Protocol (ASP; revised July 2005 and subsequent amendments or revisions).

9.0 MANAGEMENT OF INVESTIGATIVE-DERIVED WASTE

Investigation-derived waste (IDW) may include the following:

- Drill cuttings, discarded soil samples, drilling mud solids, and used sample containers;
- Well development and purge waters and discarded groundwater samples;
- Decontamination waters and associated solids;
- Soiled disposable personal protective equipment (PPE);
- Used disposable sampling equipment;
- Used plastic sheeting and aluminum foil;
- Other equipment or materials that either contain or have been in contact with potentiallyimpacted environmental media.

Waste materials anticipated to be generated during the implementation of this RIWP include soil generated from soil borings, groundwater generated from development and sampling of the wells, and decontamination water generated from decontaminating field equipment. These waste materials will be spread across the Site surface in the vicinity of the investigation location from which the soils originated, or allowed to infiltrate back into the subsurface of the Site in the vicinity of the sample location from which the material originated. Personal protective equipment, disposable bailers, and similar equipment may be disposed as municipal waste. Procedures will be implemented to prevent soils and water generated during investigation activities from leaving the Site.

10.0 DECONTAMINATION

Sampling methods and equipment have been chosen to minimize decontamination requirements and to prevent the possibility of cross-contamination. Decontamination of equipment will be performed between discrete sampling locations. Equipment used to collect samples between composite sample locations will not require decontamination between collection of samples. All investigation equipment will be decontaminated after the completion of each location. Special attention will be given to the drilling assembly and augers.

Non-disposable equipment will be decontaminated between each sampling event. The sampler will be cleaned prior to each use, by one of the following procedures:

- Initially cleaned of all foreign matter;
- Sanitized with a steam cleaner;

OR

- Initially cleaned of all foreign matter;
- Scrubbed with brushes in alconox solution;
- Rinsed; and
- Allowed to air dry

Sampling equipment / bottleware constructed of aluminum foil, low density polyethylene (LDPE), glass or Teflon will *not* be used and the sampling containers will not come into contact with these materials during groundwater sampling associated with PFAS.

All groundwater sampling will be completed in a manner to minimize potential cross-contamination of the samples by completing all work as identified below. Because PFAS are found in numerous everyday items, the following special precautions will be taken during all sampling activities:

- Acceptable materials for sampling include stainless steel, high density polyethylene (HDPE),
 PVC, silicone, acetate and polypropylene
- No use of Teflon®-containing materials (e.g., Teflon® tubing, bailers, tape, sample jar lid liners, plumbing paste)
- No Tyvek® clothing will be worn onsite
- Clothing that contains polytetrafluorethylene (PTFE, GORE-TEX®, etc.) or that have been waterproofed with PFC materials will not be worn on-site.
- All clothing worn by sampling personnel must have been laundered multiple times. Clothing must not be laundered with fabric softener.
- No Post-It® notes will be brought onsite
- No fast food wrappers, disposable cups or microwave popcorn will be brought on-site.
- No use of chemical (blue) ice packs will be allowed.
- No use of aluminum foil, low density polyethylene (LDPE), glass or PTFE materials will be allowed.

- No use of Sharpies®, rather ball point pens will be utilized.
- No use of sunscreen, insect repellants, cosmetic, lotions or moisturizers will be allowed by sampling personnel the day of sampling.
- If any of the above items are handled by the field personnel prior to sampling activities, field personnel will wash their hands thoroughly with soap and water prior to any sampling activities.
- Powder-free nitrile gloves will be worn during all sample collection activities.

11.0 SAMPLE CONTAINERS

The containers required for sampling activities are pre-washed and ordered directly from a laboratory, which has the containers prepared in accordance with USEPA bottle washing procedures. The following tables detail sample volumes, containers, preservation and holding time for typical analytes.

Table 11-1
Water Samples

Type of Analysis	Type and Size Container	Number of Containers of and Sample Volume (per sample)	Preservation	Maximum Holding Time
Volatile organic compounds (VOCs)	40-milliliter (ml) glass vial with Teflon- backed septum	Two; fill completely, no air space	Cool to 4 degrees (°) Celsius (C) (ice in cooler), Hydrochloric acid to pH <2	7 days
Semi volatile organic compounds (SVOCs)	1,000-ml amber glass jar	One; fill completely	Cool to 4° C (ice in cooler)	7/40 days
Metals	500-ml polyethylene	One; fill completely	Cool to 4° C (Nitric acid to pH <2	6 months
Pesticides	1,000-ml amber glass jar	One; fill completely	Cool to 4° C (ice in cooler)	7/40 days
Herbicides	1,000-ml amber glass jar	One; fill completely	Cool to 4° C (ice in cooler)	7/40 days
Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfo nic Acid (PFOS)	250-ml high density polyethylene (HDPE) container with Teflon- free lined caps	Three; fill completely	Cool to 4° C (ice in cooler), preserved with Trizma	14 days
1, 4 dioxane	500-ml amber bottles	Two; fill completely	Cool to 4° C (ice in cooler)	7/40 days

TABLE 11-2 Soil Samples

Type of Analysis	Type and Size of Container	Number of Containers and Sample Volume (per sample)	Preservation	Maximum Holding Time
VOCs	40-ml glass vial with Teflon-backed septum	Three, fill with five grams of soil using soil syringe	Cool to 4° C (ice in cooler). Two with 10 ml deionized (DI) water or 5 ml sodium bisulfate, one with five ml methanol	14 days
SVOCs, PCBs, and Pesticides	8- ounce (oz.), glass jar with Teflon-lined cap	One, fill as completely as possible	Cool to 4° C (ice in cooler)	7 days
Metals	8-oz. glass jar with Teflon-lined cap	One; fill completely	Cool to 4° C (ice in cooler)	Must be extracted within 10 days; analyzed with 30 days

 $[\]ensuremath{^{*}}\xspace$ Holding time is based on the times from verified time of sample collection.

Note: All sample bottles will be prepared in accordance with USEPA bottle washing procedures.

TABLE 11-3 List of Major Instruments for Sampling and Analysis

- MiniRae 3000 PID
- YSI Professional Plus Multi-Parameter Instrument Conductivity, pH, ORP, and Temperature
- LaMotte 2020we Portable Turbidity Meter
- Hewlett Packard (HP) 1000 computer with RTE-6 operating system; and HP 9144 computer with RTE-4 operating system
 equipped with Aquarius software for control and data acquisition from gas chromatograph/mass spectrometer (GC/MS)
 systems; combined wiley and National Bureau of Standards (NBS) mass spectral library; and data archiving on magnetic
 tape
- Viriam 6000 and 37000 gas chromatrographs equipped with flame ionization, electron capture, photoionization and wall
 detectors as appropriate for various analyses,, and interfaced to Variam DS604 or D5634 data systems for processing
 data.
- Spectra-Physics Model SP 4100 and SP 4270 and Variam 4270 cam puting integrators
- Perkin Eimer (PE) 3000% and 3030% fully Automated Atomic Absorption Spectrophotometers (AAS) with Furnace Atomizer and background correction system
- PE Plasma II Inductively Coupled Argon Plasma (ICAP) Spectre meter with PE7500 laboratory computer
- Dionex 20001 ion chromatograph with conductivity detector for anion analysis, with integrating recorder

12.0 SAMPLE CUSTODY

This section describes standard operating procedures for sample identification and chain-of-custody to be utilized for all field activities. The purpose of these procedures is to ensure that the quality of the samples is maintained during their collection, transportation, and storage through analysis. All chain-of-custody requirements comply with standard operating procedures indicated in USEPA sample handling protocol.

Sample identification documents must be carefully prepared so that sample identification and chain-of-custody can be maintained and sample disposition controlled. Sample identification documents include:

- Field notebooks,
- Sample label.
- Custody seals, and
- Chain-of-custody records.

12.1 Chain-of-Custody

The primary objective of the chain-of-custody procedures is to provide an accurate written or computerized record that can be used to trace the possession and handling of a sample from collection to completion of all required analyses. A sample is in custody if it is:

- In someone's physical possession;
- In someone's view;
- Locked up; or
- Kept in a secured area that is restricted to authorized personnel.

12.2 Field Custody Procedures

- As few persons as possible should handle samples.
- Sample bottles will be obtained pre-cleaned from a source such as I-Chem. Coolers or boxes containing cleaned bottles should be sealed with a custody tape seal during transport to the field or while in storage prior to use.
- The sample collector is personally responsible for the care and custody of samples collected until they are transferred to another person or dispatched properly under chain-of-custody rules.
- The sample collector will record sample data in the notebook.
- The site manager will determine whether proper custody procedures were followed during the fieldwork and decide if additional samples are required.

12.3 Sample Tags

Sample tags attached to or affixed around the sample container must be used to properly identify all samples collected in the field. The sample tags are to be placed on the bottles so as not to obscure any QC lot numbers on the bottles; sample information must be printed in a legible manner using waterproof ink. Field identification must be sufficient to enable cross-reference with the logbook. For chain-of-custody purposes, all QC samples are subject to exactly the same custodial procedures and documentation as "real" samples.

12.4 Transfer of Custody and Shipment

- The coolers in which the samples are packed must be accompanied by a chain-of-custody record. When transferring samples, the individuals relinquishing and receiving them must sign, date, and note the time on the chain-of-custody record. This record documents sample custody transfer
- Shipping containers must be sealed with custody seals for shipment to the laboratory. The
 method of shipment, name of courier, and other pertinent information are entered in the
 "Remarks" section of the chain-of-custody record and traffic reports.

- All shipments must be accompanied by the chain-of-custody record identifying their contents.
 The original record accompanies the shipment. The other copies are distributed appropriately to the site manager.
- If sent by mail, the package is registered with return receipt requested. If sent by common carrier, a bill of lading is used. Freight bills, Postal Service receipts, and bill of lading are retained as part of the permanent documentation.

12.5 Chain-of-Custody Record

The chain-of-custody record must be fully completed in duplicate, using black carbon paper where possible, by the field technician who has been designated by the project manager as responsible for sample shipment to the appropriate laboratory for analysis. In addition, if samples are known to require rapid turnaround in the laboratory because of project time constraints or analytical concerns (e.g., extraction time or sample retention period limitations, etc.), the person completing the chain-of-custody record should note these constraints in the "Remarks" section of the record.

12.6 Laboratory Custody Procedures

A designated sample custodian accepts custody of the shipped samples and verifies that the sample identification number matches that on the chain-of-custody record and traffic reports, if required. Pertinent information as to shipment, pickup, and courier is entered in the "Remarks" section.

12.7 Custody Seals

Custody seals are preprinted adhesive-backed seals with security slots designed to break if the seals are disturbed. Sample shipping containers (coolers, cardboard boxes, etc., as appropriate) are sealed in as many places as necessary to ensure security. Seals must be signed and dated before use. On receipt at the laboratory, the custodian must check (and certify, by completing the package receipt log and LABMIS entries) that seals on boxes and bottles are intact. Strapping tape should be placed over the seals to ensure that seals are not accidentally broken during shipment.

13.0 LABORATORY REQUIREMENTS AND DELIVERABLES

This section will describe laboratory requirement and procedures to be followed for laboratory analysis. Samples collected in New York State will be analyzed by a New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP)-certified laboratory. When required, analyses will be conducted in accordance with the most current NYSDEC Analytical Services Protocol (ASP). For example, ASP Category B reports will be completed by the laboratory for samples representing the final delineation of the Remedial Investigation, confirmation samples, samples to determine closure of a system, and correlation samples taken using field testing technologies analyzed by an ELAP-certified laboratory to determine correlation to field results. Data Usability Summary Reports will be completed by a third party for samples requiring ASP Category B

format reports. Electronic data deliverables (EDDs) will also be generated by the laboratory in EQUIS format for samples requiring ASP Category B format reports.

14.0 DOCUMENTATION

14.1 Sample Identification

All containers of samples collected from the project will be identified using the following format on a label or tag fixed to the sample container:

XX-ZZ-O/D-DDMMYYYY

XX: This set of initials indicates the Site from which the sample was collected.

ZZ: These initials identify the sample location. Actual sample locations will be recorded in the task

log

O/D: An "O" designates an original sample; "D" identifies it as a duplicate.

DDMMYYYY: This set of initials indicates the date the sample was collected

Each sample will be labeled, chemically preserved (if required) and sealed immediately after collection. To minimize handling of sample containers, labels will be filled out prior to sample collection when possible. The sample label will be filled out using waterproof ink and will be firmly affixed to the sample containers. The sample label will give the following information:

- Date and time of collection
- Sample identification
- Analysis required
- Project name/number
- Preservation

14.2 Daily Logs

Daily logs and data forms are necessary to provide sufficient data and observations to enable participants to reconstruct events that occurred during the project and to refresh the memory of the field personnel if called upon to give testimony during legal proceedings.

The site log is the responsibility of the site manager and will include a complete summary of the day's activity at the site.

The **Task Log** will include:

- Name of person making entry (signature).
- Names of team members on-site.
- Levels of personnel protection:
 - Level of protection originally used;

- Changes in protection, if required; and
- Reasons for changes.
- Documentation on samples taken, including:
 - Sampling location and depth station numbers;
 - Sampling date and time, sampling personnel;
 - Type of sample (grab, composite, etc.); and
 - Sample matrix.
- On-site measurement data.
- Field observations and remarks.
- · Weather conditions, wind direction, etc.
- Unusual circumstances or difficulties.
- Initials of person recording the information.

15.0 CORRECTIONS TO DOCUMENTATION

15.1 Notebook

As with any data logbooks, no pages will be removed for any reason. If corrections are necessary, these must be made by drawing a single line through the original entry (so that the original entry can still be read) and writing the corrected entry alongside. The correction must be initialed and dated. Most corrected errors will require a footnote explaining the correction.

15.2 Sampling Forms

As previously stated, all sample identification tags, chain-of-custody records, and other forms must be written in waterproof ink. None of these documents are to be destroyed or thrown away, even if they are illegible or contain inaccuracies that require a replacement document.

If an error is made on a document assigned to one individual, that individual may make corrections simply by crossing a line through the error and entering the corrected information. The incorrect information should not be obliterated. Any subsequent error discovered on a document should be corrected by the person who made the entry. All corrections must be initialed and dated.

15.3 Photographs

Photographs will be taken as directed by the site manager. Documentation of a photograph is crucial to its validity as a representation of an existing situation. The following information will be noted in the task log concerning photographs:

- Date, time, location photograph was taken;
- Photographer
- Description of photograph taken;

16.0 SAMPLE HANDLING, PACKAGING, AND SHIPPING

The transportation and handling of samples must be accomplished in a manner that not only protects the integrity of the sample, but also prevents any detrimental effects due to the possible hazardous nature of samples. Regulations for packaging, marking, labeling, and shipping hazardous materials are promulgated by the United States Department of Transportation (DOT) in the Code of Federal Regulation, 49 CFR 171 through 177. All samples will be delivered to the laboratory and analyzed within the holding times specified by the analytical method for that particular analyte.

All chain-of-custody requirements must comply with standard operating procedures in the USEPA sample handling protocol.

16.1 Sample Packaging

Samples must be packaged carefully to avoid breakage or contamination and must be shipped to the laboratory at proper temperatures. The following sample packaging requirements will be followed:

- Sample bottle lids must never be mixed. All sample lids must stay with the original containers.
- The sample volume level can be marked by placing the top of the label at the appropriate sample height, or with a grease pencil. This procedure will help the laboratory to determine if any leakage occurred during shipment. The label should not cover any bottle preparation QC lot numbers.
- All sample bottles are placed in a plastic bag to minimize the potential for crosscontamination.
- Shipping coolers must be partially filled with packing materials and ice when required, to prevent the bottles from moving during shipment.
- The sample bottles must be placed in the cooler in such a way as to ensure that they do not touch one another. Ice will be added to the cooler to ensure that the samples reach the laboratory at temperatures no greater than 4°C.
- The environmental samples are to be placed in plastic bags. Ice is not to be used as a substitute for packing materials.
- Any remaining space in the cooler should be filled with inert packing material. Under no circumstances should material such as sawdust, sand, etc., be used.
- A duplicate custody record and traffic reports, if required must be placed in a plastic bag and taped to the bottom of the cooler lid. Custody seals are affixed to the sample cooler.

16.2 Shipping Containers

Shipping containers are to be custody-sealed for shipment as appropriate. The container custody seal will consist of filament tape wrapped around the package and custody seals affixed in such a way that access to the container can be gained only by cutting the filament tape and breaking a seal.

Field personnel will make arrangements for transportation of samples to the lab. The lab must be notified as early in the week as possible regarding samples intended for Saturday delivery.

16.3 Marking and Labeling

- Chain of custody seals shall be placed on the container, signed, and dated prior to taping the container to ensure the chain of custody seals will not be destroyed during shipment.
- If samples are designated as medium or high hazard, they must be sealed in metal paint cans, placed in the cooler with vermiculite and labeled and placarded in accordance with DOT regulations.
- In addition, the coolers must also be labeled and placarded in accordance with DOT regulations if shipping medium and high hazard samples.

17.0 CALIBRATION PROCEDURES AND FREQUENCY

All instruments and equipment used during sampling and analysis will be operated, calibrated, and maintained according to the manufacturer's guidelines and recommendations as well as criteria set forth in the applicable analytical methodology references. Operation, calibration, and maintenance will be performed by personnel properly trained in these procedures. Section 11 lists the major instruments to be used for sampling and analysis. In addition, brief descriptions of calibration procedures for major field and laboratory instruments follow.

18.0 FIELD INSTRUMENTATION

18.1 Photovac/MiniRae PID

Standard operating procedures for the PID require that routine maintenance and calibration be performed every six months. The packages used for calibration are non-toxic analyzed gas mixtures available in pressurized containers.

18.3 Conductance, Temperature, and pH Tester

Temperature and conductance instruments are factory calibrated. Temperature accuracy can be checked against an certified thermometer prior to field use if necessary. Conductance accuracy may be checked with a solution of known conductance and recalibration can be instituted, if necessary.

18.4 Turbidity Meter

LaMotte 2020WE Turbidity Meter is calibrated before each use. The default units are set to NTU and the default calibration curve is formazin. A 0 NTU Standard (Code 1480) is included with the meter. To calibrate, rinse a clean tube three times with the blank. Fill the tube to the fill line with the blank. Insert the tube into the chamber, close the lid, and select "scan blank".

19.0 INTERNAL QUALITY CONTROL CHECKS

QC data are necessary to determine precision and accuracy and to demonstrate the absence of interferences and/or contamination of field equipment. Field-based QC will comprise at least 10% of each data set generated and will consist of standards, replicates, spikes, and blanks. Field duplicates and field blanks will be analyzed by the laboratory as samples and will not necessarily be identified to the laboratory as duplicates or blanks. For each matrix, field duplicates will be provided at a rate of one per 10 samples collected or one per shipment, whichever is greater. Field blanks which consist of trip, routine field, and rinsate blanks will be provided at a rate of one per 20 samples collected for each parameter group, or one per shipment, whichever is greater.

Calculations will be performed for recoveries and standard deviations along with review of retention times, response factors, chromatograms, calibration, tuning, and all other QC information generated. All QC data, including split samples, will be documented in the site logbook. QC records will be retained and results reported with sample data.

19.1 Blank Samples

Blank samples are analyzed in order to assess possible contamination from the field and/or laboratory so that corrective measures may be taken, if necessary. Field samples are discussed in the following subsection:

19.2 Field Blanks

Various types of blanks are used to check the cleanliness of field handling methods. The following types of blanks may be used: the trip blank, the routine field blank, and the field equipment blank. They are analyzed in the laboratory as samples, and their purpose is to assess the sampling and transport procedures as possible sources of sample contamination. Field staff may add blanks if field circumstances are such that they consider normal procedures are not sufficient to prevent or control sample contamination, or at the direction of the project manager. Rigorous documentation of all blanks in the site logbooks is mandatory.

- Routine Field Blanks or bottle blanks are blank samples prepared in the field to access ambient field conditions. They will be prepared by filling empty sample containers with deionized water and any necessary preservatives. They will be handled like a sample and shipped to the laboratory for analysis.
- **Trip Blanks** are similar to routine field blanks with the exception that they are <u>not</u> exposed to field conditions. Their analytical results give the overall level of contamination from everything except ambient field conditions. For the RI/FS, one trip blank will be collected with every batch of water samples for VOC analysis. Each trip blank will be prepared by filling a 40-ml vial with deionized water prior to the sampling trip, transported to the site, handled like a sample, and returned to the laboratory for analysis without being opened in the field.
- Field Equipment Blanks are blank samples (sometimes called transfer blanks or rinsate blanks) designed to demonstrate that sampling equipment has been properly prepared and cleaned before field use, and that cleaning procedures between samples are sufficient to minimize cross contamination. If a sampling team is familiar with a particular site, they may be able to predict which areas or samples are likely to have the highest concentration of contaminants. Unless other constraints apply, these samples should be taken last to avoid excessive contamination of sampling equipment.

19.3 Field Duplicates

Field duplicate samples consist of a set of two samples collected independently at a sampling location during a single sampling event. In some instances the field duplicate can be a blind duplicate, i.e., indistinguishable from other analytical samples so that personnel performing the analyses are not able to determine which samples are field duplicates. Field duplicates are designed to assess the consistency of the overall sampling and analytical system.

19.4 Quality Control Check Samples

Inorganic and organic control check samples are available from USEPA free of charge and are used as a means of evaluating analytical techniques of the analyst. Control check samples are subjected to the entire sample procedure, including extraction, digestion, etc., as appropriate for the analytical method utilized.

 $I:\GPATTI\ ENTERPRISES\ INC\2180345-115-121\ W\ 3RD\ 200-210\ WASHINGTON\REPORTS\RIWP\APPENDIX\ 5-QUALITY\ CONTROL\ PLAN\QCP_JAMESTOWNBREWERY.DOC$

Groundwater Sampling for Emerging Contaminants

February 2018

<u>Issue:</u> NYSDEC has committed to analyzing representative groundwater samples at remediation sites for emerging contaminants (1,4-dioxane and PFAS) as described in the below quidance.

Implementation

NYSDEC project managers will be contacting site owners to schedule sampling for these chemicals. Only groundwater sampling is required. The number of samples required will be similar to the number of samples where "full TAL/TCL sampling" would typically be required in a remedial investigation. If sampling is not feasible (e.g., the site no longer has any monitoring wells in place), sampling may be waived on a site-specific basis after first considering potential sources of these chemicals and whether there are water supplies nearby.

Upon a new site being brought into any program (i.e., SSF, BCP), PFAS and 1,4-dioxane will be incorporated into the investigation of groundwater as part of the standard "full TAL/TCL" sampling. Until an SCO is established for PFAS, soil samples do not need to be analyzed for PFAS unless groundwater contamination is detected. Separate guidance will be developed to address sites where emerging contaminants are found in the groundwater. The analysis currently performed for SVOCs in soil is adequate for evaluation of 1,4-dioxane, which already has an established SCO.

Analysis and Reporting

Labs should provide a full category B deliverable, and a DUSR should be prepared by a data validator.

The work plan should explicitly describe analysis and reporting requirements.

<u>PFAS sample analysis</u>: Samples should be analyzed by an environmental laboratory certified by ELAP to use EPA method 537 or ISO 25101. ELAP does not currently offer certification for PFAS analysis of non-drinking water samples (including groundwater, soil and sediment), so there is no requirement to use an ELAP certified method. The preferred method is the modified EPA Method 537. Labs have been able to achieve reporting limits for PFOA and PFOS of 2 ng/l (part per trillion). If labs are not able to achieve similar reporting limits, the NYSDEC project manager will make case-by-case decisions as to whether the analysis can meet the needs for the specific site.

<u>PFAS sample reporting:</u> DER has developed a PFAS target analyte list (below) with the intent of achieving reporting consistency between labs for commonly reportable analytes. It is expected that reported results for PFAS will include, at a minimum, all the compounds listed. This list may be updated in the future as new information is learned and as labs develop new capabilities. If lab and/or matrix specific issues are encountered for any particular compounds, the NYSDEC project manager will make case-by-case decisions as to whether particular analytes may be temporarily or permanently discontinued from analysis for each site. Any technical lab issues should be brought to the attention of a NYSDEC chemist.

Some sampling using this full PFAS target analyte list is needed to understand the nature of contamination. It may also be critical to differentiate PFAS compounds associated with a site from other sources of these chemicals. Like routine refinements to parameter lists based on investigative findings, the full PFAS target analyte list may not be needed for all sampling intended to define the extent of

contamination. Project managers may approve a shorter analyte list (e.g., just the UCMR3 list) for some reporting on a case by case basis.

<u>1,4-Dioxane Analysis and Reporting:</u> The method detection limit (MDL) for 1,4-dioxane should be no higher than 0.28 μ g/l (ppb). ELAP offers certification for both EPA Methods 8260 and 8270. In order to get the appropriate detection limits, the lab would need to run either of these methods in "selective ion monitoring" (SIM) mode. DER is advising PMS to use 8270, since this method provides a more robust extraction procedure, uses a larger sample volume, and is less vulnerable to interference from chlorinated solvents (we acknowledge that 8260 has been shown to have a higher recovery in some studies).

Full PFAS Target Analyte List

Group	Chemical Name	Abbreviation	CAS Number
	Perfluorobutanesulfonic acid	PFBS	375-73-5
	Perfluorohexanesulfonic acid	PFHxS	355-46-4
	Perfluoroheptanesulfonic acid	PFHpS	375-92-8
Sunoniaco	Perfluorobutanesulfonic acid Perfluorohexanesulfonic acid Perfluorohexanesulfonic acid Perfluoroctanessulfonic acid Perfluoroctanessulfonic acid Perfluorobutanoic acid Perfluoropentanoic acid Perfluoropentanoic acid Perfluorohexanoic acid Perfluorohexanoic acid Perfluorohexanoic acid Perfluoroctanoic acid Perfluoroctanoic acid Perfluoroctanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorotridecanoic acid Perfluorotetradecanoic acid	PFOS	1763-23-1
Perfluorobutanesulfonic acid Perfluoroheptanesulfonic acid Perfluoroctanessulfonic acid Perfluorodecanesulfonic acid Perfluorodecanesulfonic acid Perfluorobutanoic acid Perfluorobutanoic acid Perfluoropentanoic acid Perfluoropentanoic acid Perfluoroheptanoic acid Perfluoroheptanoic acid Perfluoroneptanoic acid Perfluoroctanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid Perfluorotridecanoic acid Perfluorotridecanoic acid Perfluorotetradecanoic acid	Perfluorodecanesulfonic acid	PFDS	335-77-3
	Perfluorobutanoic acid	PFBA	375-22-4
	Perfluoropentanoic acid	PFPeA	2706-90-3
	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluoroheptanoic acid	PFHpA	375-85-9
Dorfluoroollad	Perfluorooctanoic acid	PFOA	335-67-1
	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUA/PFUdA	2058-94-8
	Perfluorohexanesulfonic acid Perfluoroheptanesulfonic acid Perfluorooctanessulfonic acid Perfluorooctanessulfonic acid Perfluorodecanesulfonic acid Perfluorobutanoic acid Perfluoropentanoic acid Perfluorohexanoic acid Perfluorohexanoic acid Perfluoroheptanoic acid Perfluoroheptanoic acid Perfluorooctanoic acid Perfluorooctanoic acid Perfluorooctanoic acid Perfluorodecanoic acid Perfluoroundecanoic acid Perfluorotridecanoic acid Perfluorotetradecanoic acid	PFDoA	307-55-1
		PFTriA/PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	ctanessulfonic acid PFOS 176 ccanesulfonic acid PFDS 338 tanoic acid PFBA 378 intanoic acid PFPeA 270 exanoic acid PFHxA 307 eptanoic acid PFHpA 378 ctanoic acid PFNA 378 canoic acid PFNA 378 canoic acid PFUA/PFUdA 205 decanoic acid PFUA/PFUdA 205 decanoic acid PFTriA/PFTrDA 7262 elomer sulfonate 6:2 FTS 276 elomer sulfonate 8:2 FTS 3910 ranesulfonamide FOSA 754 erfluorooctanesulfonamidoacetic acid N-MeFOSAA 235	376-06-7
Fluorinated Telomer	6:2 Fluorotelomer sulfonate	6:2 FTS	27619-97-2
Sulfonates	8:2 Fluorotelomer sulfonate	8:2 FTS	39108-34-4
	Perfluroroctanesulfonamide	FOSA	754-91-6
Perfluorooctane-	N-methyl perfluorooctanesulfonamidoacetic acid	N-MeFOSAA	2355-31-9
sulfonamidoacetic acids	N-ethyl perfluorooctanesulfonamidoacetic acid	N-EtFOSAA	2991-50-6

Bold entries depict the 6 original UCMR3 chemicals

APPENDIX 6

Health and Safety Plan

Site Health and Safety Plan

Location:

Jamestown Brewery 115-121 West Third Street

Jamestown, New York

Prepared For:

Mr. Gregory Lunquist GPatti Enterprises, LLC 115 Livingston Street Jamestown, New York 14701

LaBella Project No. 2180345 July 2018

Table of Contents

		Page
1.0	Introduction	1
2.0	Responsibilities	1
3.0	Activities Covered	1
4.0	Work Area Access and Site Control	1
5.0	Potential Health and Safety Hazards	1
6.0	Work Zones	4
7.0	Decontamination Procedures	4
8.0	Personal Protective Equipment	4
9.0	Air Monitoring	5
10.0	Emergency Action Plan	5
11.0	Medical Surveillance	5
12.0	Employee Training	6

<u>Tables</u>

Table 1 Exposure Limits and Recognition Qualities

SITE HEALTH AND SAFETY PLAN

Project Title: Jamestown Brewery - Brownfield Cleanup Program

Project Number: 2180345

Project Location (Site): 115-121 West Third Street Jamestown, New York

Environmental Director: Rob Napieralski

Project Manager: Adam Zebrowski

Plan Review Date:

Plan Approval Date:

Plan Approved By:

Mr. Richard Rote, CIH

Site Safety Supervisor: Chris Kibler

Site Contact: Gregory Lunquist, GPatti Enterprises, LLC

Safety Director: Rick Rote, CIH

Proposed Date(s) of Field

Activities:

To Be Determined

Site Conditions: 0.59± acres; Current Site features include landscaping and

impervious surfaces including an asphalt parking lot and a concrete

pedestrian ramp.

Site Environmental Information

Provided By:

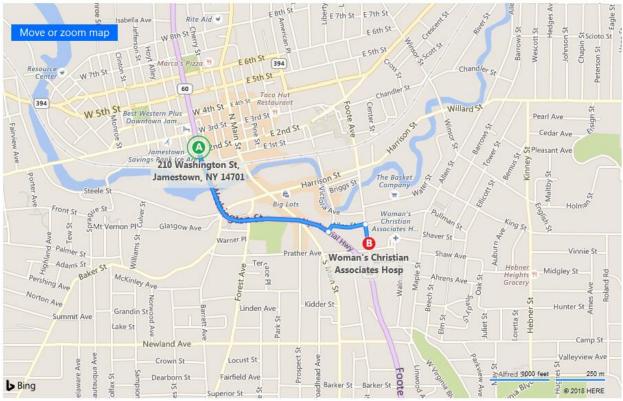
- Phase I Environmental Site Assessment report, 115-121 West Third Street and 200-210 Washington Street, Jamestown, New York, prepared by LaBella Associates, D.P.C. dated August 4, 2017
- Draft Supplemental Phase II Environmental Site Assessment report, 115-121 West Third Street and 200-210 Washington Street, Jamestown, New York, prepared by LaBella Associates, D.P.C. dated November 10, 2017

□ Supplemental Soil Investigation report, 115-121 West Third Street and 200-210 Washington Street, Jamestown, New York, prepared by LaBella Associates, D.P.C. dated February 9, 2018

Air Monitoring Provided By: LaBella Associates, D.P.C.

Site Control Provided By: LaBella Environmental, LLC

EMERGENCY CONTACTS


	Name	Phone Number
Ambulance:	As Per Emergency Service	911
Hospital Emergency:	Woman's Christian Associates Hospital	716-487-0141
Poison Control Center:	National Poison Control Center (serving Buffalo Area)	800-222-1222
Police (local, state):	Jamestown City Police Department	911
Fire Department:	Jamestown Fire Department	911
Site Contact:	Gregory Lunquist, GPatti Enterprises, LLC	716-665-7031
Agency Contact:	NYSDEC - Damianos Skaros NYSDOH - To Be Determined	716-851-7220 To Be Determined
Environmental Director:	Rob Napieralski	Direct: 716-551-6283
Project Manager:	Adam Zebrowski	Direct: 716-840- 2548
Site Safety Supervisor:	Shannon Dalton	Direct: 716-698- 4463
Safety Director	Rick Rote, CIH (LaBella)	Direct: 704-941- 2123

MAP AND DIRECTIONS TO THE MEDICAL FACILITY - WOMAN'S CHRISTIAN ASSOCIATES HOSPITAL

A 210 Washington St, Jamestown, NY 14701

1	1.	Depart RT-60 / Washington St toward W 2nd St ▲ Minor Congestion	0.6 mi
4	2.	Turn left onto Institute St , and then immediately bear right onto Allen St	0.1 mi
Þ	3.	Turn right onto Foote Ave	325 ft
	4.	Arrive at Foote Ave If you reach Prather Ave, you've gone too far	

B Woman's Christian Associates Hosp

Source: Google Maps 2015

1.0 INTRODUCTION

The purpose of this Health and Safety Plan (HASP) is to provide guidelines for responding to potential health and safety issues that may be encountered during the Remedial Investigation (RI) at 115-121 West Third Street in the City of Jamestown, Chautauqua County, New York (Site). This HASP only reflects the policies of LaBella Associates, D.P.C. The requirements of this HASP are applicable to all approved LaBella personnel at the work Site. This document's project specifications, and the Community Air Monitoring Plan (CAMP), are to be consulted for guidance in preventing and quickly abating any threat to human safety or the environment. The provisions of the HASP do not replace or supersede any regulatory requirements of the USEPA, NYSDEC, OSHA or other regulatory bodies.

2.0 RESPONSIBILITIES

This HASP presents guidelines to minimize the risk of injury to project personnel, and to provide rapid response in the event of injury. The HASP is applicable only to activities of approved LaBella personnel and their authorized visitors. The Project Manager shall implement the provisions of this HASP for the duration of the project. It is the responsibility of LaBella employees to follow the requirements of this HASP, and all applicable company safety procedures.

3.0 ACTIVITIES COVERED

The activities covered under this HASP are limited to the following:

- Management of environmental investigation and remediation activities
- Environmental Monitoring
- Collection of samples
- ☐ Management of excavated soil and liquid waste (groundwater)

4.0 WORK AREA ACCESS AND SITE CONTROL

The contractor(s) will have primary responsibility for work area access and Site control.

5.0 POTENTIAL HEALTH AND SAFETY HAZARDS

This section lists some potential health and safety hazards that project personnel may encounter at the project Site and some actions to be implemented by approved personnel to control and reduce the associated risk to health and safety. This is not intended to be a complete listing of any and all potential health and safety hazards. New or different hazards may be encountered as Site environmental and Site work conditions change. The suggested actions to be taken under this plan are not to be substituted for good judgment on the part of project personnel. At all times, the Site Safety Officer has responsibility for Site safety and his instructions must be followed.

5.1 Hazards Due to Heavy Machinery

Potential Hazard:

Heavy machinery including drilling rigs, excavators, trailers, etc. will be in operation at the Site. The presence of such equipment presents the danger of being struck or crushed and can also create noise pollution. Use caution when working near heavy machinery.

Protective Action:

Make sure that operators are aware of your activities, and heed operator's instructions and warnings. Wear bright colored clothing and walk safe distances from heavy equipment. A hard hat, safety glasses, steel toe shoes and ear protection are required.

5.2 Excavation Hazards

Potential Hazard:

Excavations and trenches can collapse, causing injury or death. Edges of excavations can be unstable and collapse. Toxic and asphyxiant gases can accumulate in confined spaces and trenches. Excavations that require working within the excavation will require air monitoring in the breathing zone (refer to Section 9.0).

Excavations left open create a fall hazard which can cause injury or death.

Protective Action:

Personnel must receive approval from the Project Manager to enter an excavation for any reason. Subsequently, approved personnel are to receive authorization for entry from the Site Safety Officer. Approved personnel are not to enter excavations over 4 feet in depth unless excavations are adequately sloped. Additional personal protective equipment may be required based on the air monitoring.

While shoring is planned for the proposed excavation, personnel should exercise caution near all excavations at the Site as excavation sidewalls may become unstable. Do not proceed closer than 3 feet to an unsupported or non-sloped excavation side wall. The contractor will be responsible to ensure that all excavations are left in a safe condition.

Excavations shall be backfilled immediately following completion. If this is not possible, fencing and/or barriers accompanied by "no trespassing" signs should be placed around all excavations when left open for any period of time when work is not being conducted.

5.3 Cuts, Punctures and Other Injuries

Potential Hazard:

In any excavation and construction work Site there is the potential for the presence of sharp or jagged edges on rock, metal materials, and other sharp objects. Serious cuts and punctures can result in loss of blood and infection.

Protective Action:

The Project Manager is responsible for making First Aid supplies available at the work Site to treat minor injuries. The Site Safety Officer is responsible for arranging the transportation of authorized on-site personnel to medical facilities when First Aid treatment in not sufficient. Do not move seriously injured workers. All injuries requiring treatment are to be reported to

the Project Manager. Serious injuries are to be reported immediately to the Site Safety Officer.

5.4 Injury Due to Exposure of Chemical Hazards

Potential Hazards:

Contaminants identified in testing locations at the Site include various petroleum-related and chlorinated solvent volatile organic compounds (VOCs). Volatile organic vapors, chlorinated solvents or other chemicals may be encountered during subsurface activities at the project work Site. Inhalation of high concentrations of volatile organic vapors can cause headache, stupor, drowsiness, confusion and other health effects. Skin contact can cause irritation, chemical burn, or dermatitis.

Protective Action:

The use of properly selected Personal Protective Equipment (PPE), adherence to standard health and safety pre-cautions (e.g., no smoking or eating within work area or prior to personal decontamination), and implementation of routine dust suppression methods will effectively minimize exposure to the known contaminants on-site. It should also be noted that Biosolve®Activator™, a high-performance emulsification surfactant, will continuously be applied to the soil within the area of excavation during removal activities in an effort to minimize and/or eliminate the emanation of chlorinated VOCs to the surrounding air.

The presence of organic vapors may be detected by their odor and by monitoring instrumentation. Approved employees will not work in environments where hazardous concentrations of organic vapors are present. Air monitoring (refer to Section 9.0) of the work area will be performed at least every 60 minutes or more often using a Photoionization Detector (PID). Personnel are to leave the work area whenever PID measurements of ambient air exceed 25 parts per million (ppm) consistently for a 5 minute period. In the event that sustained total volatile organic compound (VOC) readings of 25 ppm are encountered personnel should upgrade personal protective equipment to Level C (refer to Section 8.0) and an Exclusion Zone should be established around the work area to limit and monitor access to this area (refer to Section 6.0).

5.5 Injuries due to extreme hot or cold weather conditions

Potential Hazards:

Extreme hot weather conditions can cause heat exhaustion, heat stress and heat stroke or extreme cold weather conditions can cause hypothermia.

Protective Action:

Precaution measures should be taken such as dress appropriately for the weather conditions and drink plenty of fluid. If personnel should suffer from any of the above conditions, proper techniques should be taken to cool down or heat up the body and taken to the nearest hospital if needed.

6.0 WORK ZONES

In the event that conditions warrant establishing various work zones (i.e., based on hazards - Section 5.0), the following work zones should be established:

Exclusion Zone (EZ):

The EZ will be established in the immediate vicinity and adjacent downwind direction of Site activities that elevate breathing zone VOC concentrations to unacceptable levels based on field screening. These Site activities include contaminated soil excavation and soil sampling activities. If access to the Site is required to accommodate non-project related personnel then an EZ will be established by constructing a barrier around the work area (yellow caution tape and/or construction fencing). The EZ barrier shall encompass the work area and any equipment staging/soil staging areas necessary to perform the associated work. The contractor(s) will be responsible for establishing the EZ and limiting access to approved personnel. Depending on the condition for establishing the EZ, access to the EZ may require adequate PPE (e.g., Level C).

Contaminant Reduction Zone (CRZ):

The CRZ will be the area where personnel entering the EZ will don proper PPE prior to entering the EZ and the area where PPE may be removed. The CRZ will also be the area where decontamination of equipment and personnel will be conducted as necessary.

7.0 DECONTAMINATION PROCEDURES

Upon leaving the work area, approved personnel shall decontaminate footwear as needed. Under normal work conditions, detailed personal decontamination procedures will not be necessary. Work clothing may become contaminated in the event of an unexpected splash or spill or contact with a contaminated substance. Minor splashes on clothing and footwear can be rinsed with clean water. Heavily contaminated clothing should be removed if it cannot be rinsed with water. Personnel assigned to this project should be prepared with a change of clothing whenever on Site.

Personnel will use the contractor's disposal container for disposal of PPE.

8.0 PERSONAL PROTECTIVE EQUIPMENT

Generally, Site conditions at this work Site require level of protection of Level D or modified Level D; however, air monitoring will be conducted to determine if up-grading to Level C PPE is required (refer to Section 9.0). Descriptions of the typical safety equipment associated with Level D and Level C are provided below:

Level D:

Hard hat, safety glasses, rubber nitrile sampling gloves, steel toe construction grade boots, etc.

Level C:

Level D PPE and full or ½-face respirator and tyvek suit (if necessary). [Note: Organic vapor cartridges are to be changed after each 8-hours of use or more frequently.]

9.0 AIR MONITORING

According to 29 CFR 1910.120(h), air monitoring shall be used to identify and quantify airborne levels of hazardous substances and health hazards in order to determine the appropriate level of employee protection required for personnel working onsite. Air monitoring will consist at a minimum of the procedure listed below. Air monitoring instruments will be calibrated and maintained in accordance with the manufacturer's specifications.

The Air Monitor will utilize a photo ionization detector (PID) to screen the ambient air in the work areas (drilling, excavation, soil staging, and soil grading areas) for total volatile organic compounds (VOCs) and DustTrak tm Model 8520 aerosol monitors or equivalent for measuring particulates. Work area ambient air will generally be monitored in the work area and downwind of the work area. Air monitoring of the work areas and downwind of the work areas will be performed at least every 60 minutes using a PID and the DustTrak meter.

If sustained PID readings of greater than 25 ppm are recorded in the breathing zone, either personnel are to leave the work area until satisfactory readings are obtained or approved personnel may re-enter the work areas wearing at a minimum a ½ face respirator with organic vapor cartridges for an 8-hour duration (i.e., upgrade to Level C PPE). Organic vapor cartridges are to be changed after each 8-hour use or more frequently, if necessary. If PID readings are sustained, in the work area, at levels above 50 ppm for a 5 minute average, work will be stopped immediately until safe levels of VOCs are encountered or additional PPE will be required (i.e., Level B).

10.0 EMERGENCY ACTION PLAN

In the event of an emergency, employees are to turn off and shut down all powered equipment and leave the work areas immediately. Employees are to walk or drive out of the Site as quickly as possible, wait at the assigned "safe area" and follow the instructions of the Site Safety Officer.

Employees are not authorized or trained to provide rescue and medical efforts. Rescue and medical efforts will be provided by local authorities.

11.0 MEDICAL SURVEILLANCE

Medical surveillance will be provided to all employees who are injured due to overexposure from an emergency incident involving hazardous substances at this Site.

12.0 EMPLOYEE TRAINING

Personnel who are not familiar with this Site plan will receive training on its entire content and organization before working at the Site.

Individuals involved with the remedial investigation must be 40-hour OSHA HAZWOPER trained with current 8-hour refresher certification.

I:\GPATTI ENTERPRISES INC\2180345 - 115-121 W 3RD 200-210 WASHINGTON\REPORTS\RIWP\APPENDIX 6 - HASP\HASP-IRMWP_JAMESTOWN BREWERY-RIWP.DOC

Table 1 **Exposure Limits and Recognition Qualities**

Compound	PEL-TWA (ppm)(b)(d)	TLV-TWA (ppm)(c)(d)	STEL (ppm)(b)	LEL (%)(e)	UEL (%)(f)	IDLH (ppm)(g)(d)	Odor	Odor Threshold (ppm)	Ionization Potential
Acetone	750	500	NA	2.15	13.2	20,000	Sweet	4.58	9.69
Anthracene	.2	.2	NA	NA	NA	NA	Faint aromatic	NA	NA
Benzene	1	0.5	5	1.3	7.9	3000	Pleasant	8.65	9.24
Benzo (a) pyrene (coal tar pitch volatiles)	0.2	0.1	NA	NA	NA	700	NA	NA	NA
Benzo (a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (b) Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (g,h,i)perylene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (k) Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromodichloromethane	NA	NA	NA	NA	NA	NA	NA	NA	10.88
Carbon Disulfide	20	1	NA	1.3	50	500	Odorless or strong garlic type	.096	10.07
Chlorobenzene	75	10	NA	1.3	9.6	2,400	Faint almond	0.741	9.07
Chloroform	50	2	NA	NA	NA	1,000	ethereal odor	11.7	11.42
Chrysene	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethylene	200	200	NA	9.7	12.8	400	Acrid	NA	9.65
1,2-Dichlorobenzene	50	25	NA	2.2	9.2		Pleasant		9.07
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	100	100	NA	1.0	6.7	2,000	Ether	2.3	8.76
Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropyl Alcohol	400	200	500	2.0	12.7	2,000	Rubbing alcohol	3	10.10
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Methylene Chloride	500	50	NA	12	23	5,000	Chloroform-like	10.2	11.35
Naphthalene	10, Skin	10	NA	0.9	5.9	250	Moth Balls	0.3	8.12
n-propylbenzene	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Phenanthrene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phosphoric Acid	1	1	3	NA	NA	10,000	NA NA	NA	NA
Polychlorinated Biphenyl	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Potassium Hydroxide	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
p-lsopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethane	NA	NA	NA	NA	NA	NA	Sweet	NA	NA
Toluene	100	100	NA	0.9	9.5	2,000	Sweet	2.1	8.82
Trichloroethylene	100	50	NA	8	12.5	1,000	Chloroform	1.36	9.45
1,2,4-Trimethylbenzene	NA	25	NA	0.9	6.4	NA	Distinct	2.4	NA
1,3,5-Trimethylbenzene	NA	25	NA	NA	NA	NA	Distinct	2.4	NA
Vinyl Chloride	1	1	NA	NA	NA	NA	NA	NA	NA
Xylenes (o,m,p)	100	100	NA	1	7	1,000	Sweet	1.1	8.56
Metals									
Arsenic	0.01	0.2	NA	NA	NA	100, Ca	NA	NA	NA
Cadmium	0.2	0.5	NA	NA	NA	NA NA	NA NA	NA	NA
Calcium	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Chromium	1	0.5	NA	NA	NA	NA	NA NA	NA	NA
Iron	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Lead	0.05	0.15	NA	NA	NA	700	NA NA	NA	NA
Mercury	0.05	0.05	NA	NA	NA	28	NA NA	NA	NA
Selenium	0.2	0.02	NA	NA	NA	Unknown	NA NA	NA	NA

- All values are given in parts per million (PPM) unless otherwise indicated.
 Ca = Possible Human Carcinogen, no IDLH information.

Skin = Skin Absorption
OSHA-PEL Permissible Exposure Limit (flame weighted average, 8-hour): NIOSH Guide, June 1990
ACGIH - 8 hour time weighted average from Threshold Limit Values and Biological Exposure Indices for 2003.
Metal compounds in mg/m3
Lower Exposure Limit (%)
Upper Exposure Limit (%)

Immediately Dangerous to Life or Health Level: NIOSH Guide, June 1990.