REMEDIAL INVESTIGATION/ ALTERNATIVE ANALYSIS REPORT

160-164 EAST 4TH STREET DUNKIRK, CHAUTAUQUA COUNTY, NEW YORK NYSDEC SITE NO. C907051

Prepared For:

Regan Development Corporation 1055 Saw Mill River Road #204 Ardsley, NY 10502

Prepared By:

960 Busti Ave. Suite B-150 Buffalo, New York 14213

September 2025

TABLE OF CONTENTS

1.0 INTRODUCTION	2
1.1 Site Background	
1.2 Contemplated Use of the Site	2
1.3 IDENTIFICATION OF STANDARDS, CRITERIA, AND GUIDANCE	2
2.0 REMEDIAL INVESTIGATION APPROACH	3
2.1 RI DEVIATIONS	4
2.1.1 Groundwater Investigation Deviations	
2.2 SOIL INVESTIGATION	
2.3 Groundwater Investigation	6
2.3.1 Well Construction	
2.3.2 Well Development	6
2.3.3 Groundwater Sampling	6
2.4 VAPOR INVESTIGATION	7
2.4.1 Vapor Point Installation	7
2.4.2 Vapor point sampling	7
2.4.3 Quality assurance/ quality control sampling	7
3.0 PHYSICAL CHARACTERISICS OF THE AREA	8
3.1 SURFACE FEATURES	8
3.2 SUBSURFACE FEATURES	9
3.2.1 Site Geology	9
3.2.2 Site Hydrogeology	
3.2 Demography and Land Use	9
4.0 LABORATORY ANALYSIS	10
4.1 Soil	10
4.2 Groundwater	10
4.3 Soil Vapor	10
5.0 DISCUSSION OF RESULTS	
5.1 SOIL SAMPLING ANALYTICAL RESULTS	10
5.1.1 Metals	11
5.1.2 SVOC's	14
5.1.4 Organochlorine Pesticides	15
5.1.5 PCB's	15
5.1.6 PFAS	16
5.2 GROUNDWATER SAMPLE ANALYTICAL RESULTS	16
5.2.1 Metals	16
6.0 FATE AND TRANSPORT OF CONTAMINANTS OF CONCERN	17

6.1	Fugitive DUST	17
6.2	SURFACE WATER	17
6.3	VOLITILIZATION	17
6.4	LEACHING	17
6.5	GROUNDWATER TRANSPORT	18
6.6	EXPOSURE PATHWAY SUMMARY	18
7.0 G	QUALITATIVE EXPOSURE ASSESSMENT	18
7.1	I.1 Contaminant Sources	19
7.1	I.2 Contaminant Release and Transport Mechanisms	19
7.1	1.3 Potential Exposure Points	19
7.1	I.4 Routes of Exposure	20
7.1	I.5 On-Site Receptors	20
7.1	I.6 Off-Site Receptors	20
7.2	Ecological Exposure Risks	20
8.0 R	REMEDIAL ALTERNATIVES ANALYSIS	20
8.1	REMEDIAL ACTION OBJECTIVES	20
8.2	ALTERNATIVES SELECTION FACTORS	
8.3 L	AND USE EVALUATION	22
8.4 S	SELECTION OF ALTERNATIVES FOR EVALUATION	22
8.4.	1 ALTERNATIVE 1 : Track 4: restricted Residential Remediation	22
8.4.2	2 ALTERNATIVE 2: Track 1: Unrestricted Use Remediation	24
8.5	Recommended Remedial Alternative	26
9.0 C	CONCLUSIONS AND RECOMMENDATIONS	26

TABLES

- 1. Summary of Soil Analytical Results Remedial Investigation
- 2. Summary of Groundwater Analytical Results Remedial Investigation
- 3. Summary of Vapor Analytical Results Remedial Investigation
- 4. Phase II Sampling Results (August 2023)
- 5. Phase II Sampling Results (April 2024)
- 6. Boring, Monitoring Well and Test Trench GPS Coordinates Remedial Investigation
- 7. Groundwater Elevations

FIGURES

- 1. Site Location Map
- 2. Site Boundary Survey
- 3. Historical and RI Sampling Locations

- 4. RI Unrestricted Soil Exceedances May 2025
- 5. RI Unrestricted Soil Exceedances August 2025
- 6. RI Restricted Residential Soil Exceedances (May & August 2025)
- 7. RI Groundwater Exceedances
- 8. RI Vapor Results
- 9. Alternative 1 Track 4 Restricted Residential SCOs

APPENDICES

- A. Daily Field Reports
- B. Site Photographs
- C. Boring Logs
- D. Monitoring Well Construction Logs
- E. Well Development Logs
- F. Purge Logs
- G. Vapor Point Construction Logs
- H. DER-10 Appendix 3C Decision Key
- I. Alternative Cost Estimates
- J. Laboratory Analytical Data
- K. Data Usability Summary Reports

ACRONYMS

AAR Alternative Analysis Report
ACM Asbestos Containing Material

ASL Above Sea Level

ADA Americans with Disabilities Act
BCA Brownfield Cleanup Agreement
BCP Brownfield Cleanup Program

BE3 Brydges Engineering in Energy and Environment

bgs Below Ground Surface C&D Construction and Demolition

CAMP Community Air Monitoring Program

COC Contaminants of Concern CP Commissioner Policy

DER Division of Environmental Remediation
DNAPL Dense Nonaqueous Phase Liquid

DO Dissolved Oxygen

DUSR Data Usability Summary Report

EC Engineering Control
EE Environmental Easement

EIFS Exterior Insulation and Finish System

ELAP Environmental Laboratory Approval Program

EPA Environmental Protection Agency
ESA Environmental Site Assessment

EWP Excavation Work Plan

FEAF Full Environmental Assessment Form

GPR Ground Penetrating Radar
GPS Global Positioning System

GSF Gross Square Feet
HASP Health and Safety Plan
HSA Hollow Stem Auger
IC Institutional Control
ID Inside Diameter

μg/m³ Micrograms per Cubic Meter
LNAPL Light Nonaqueous Phase Liquid
NTU Nephelometric Turbidity Units

NYCRR New York Codes, Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

NYSDOT New York State Department of Transportation
NYSHCR New York State Homes and Community Renewal

ORP Oxidation-Reduction Potential PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl

PFAS Per- and Polyfluoroalkyl Substances

PID Photoionization Detector

ppm Parts Per Million PVC Polyvinyl Chloride

QA/QC Quality Assurance/Quality Control

QEP Qualified Environmental Professional

QHHEA Qualitative Human Health Exposure Assessment

RAO Remedial Action Objective Remedial Action Work Plan **RAWP**

RCRA Resource Conservation and Recovery Act

Remedial Investigation RI

Standards, Criteria, and Guidance SCG

SCO Soil Cleanup Objective **SMP** Site Management Plan

SVOC Semi-Volatile Organic Compound **SWPPP** Stormwater Pollution Prevention Plan

TAL Target Analyte List TCL **Target Compound List**

TENORM Technologically Enhanced Naturally Occurring Radioactive Material

TIC **Tentatively Identified Compound**

Technical and Operational Guidance Series TOGS

UST Underground Storage Tank VOC Volatile Organic Compound

CERTIFICATION

I, Jason Brydges, certify that I am currently a New York State registered professional engineer as defined in 6 New York Codes, Rules and Regulations (NYCRR) Part 375 and that this Remedial Investigation/Alternative Analysis Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Department of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

.

Jason M. Brydges, PE

1.0 INTRODUCTION

Regan Development Corporation has obtained an executed Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) as a Volunteer for the property located at 160-164 East 4th Street in the City of Dunkirk, Chautauqua County, New York (the "Site"). The Site is enrolled in the Brownfield Cleanup Program (BCP) under BCP Site No. C907055 and is approximately 2.15 acres in size. A Site Location Map is provided as **Figure 1**, and the Boundary Survey Map is included as **Figure 2**.

Regan Development Corporation has retained Brydges Engineering in Environment and Energy (BE3) to conduct a Remedial Investigation (RI) and prepare an Alternatives Analysis Report (AAR) for the Site, as required under the BCA. The goal of the project is to remediate the Site to support the redevelopment of multi-family residential units, associated parking areas, and recreational/greenspace amenities.

1.1 SITE BACKGROUND

The Site is 2.15-acres containing a structure that includes two storefronts in the eastern central portion of the Site connected to a larger commercial plaza. Surrounding the structure is an asphalt parking lot in the south and a section of greenspace to the north.

Environmental investigations conducted to date, including a BE3 Phase II Environmental Site Assessment (ESA), indicate the presence of impacted soil and groundwater due to historical site uses and the presence of urban fill. Constituents of concern identified in soil include semi-volatile organic compounds (SVOCs), specifically polycyclic aromatic hydrocarbons (PAHs), and various metals. Groundwater samples from temporary monitoring wells indicated impacts from volatile organic compounds (VOCs) and metals. Historical data also suggests the potential for petroleum, polychlorinated biphenyls (PCBs), and chlorinated solvents.

Historical records including street directories and Sanborn Maps indicate that the Site was mixed use residential/commercial. Sanborn maps indicate that from 1888 to 1964, the subject property contained several residences. The area was redeveloped into commercial buildings dating back to 1985. Historical street directories indicate the Site has been occupied by a Family Dollar store from 1985 to 2020 and a VA clinic from 2010 to 2020.

1.2 CONTEMPLATED USE OF THE SITE

The proposed use of the Site includes development of multi-family apartment units, an associated parking area and recreational/greenspace. It should be noted that the existing building on Site will be removed as part of the new development and the planned remedial track is Track 4 - Restricted Residential Use.

1.3 IDENTIFICATION OF STANDARDS, CRITERIA, AND GUIDANCE

Standards, criteria, and guidance (SCGs) are promulgated requirements ("standards" and "criteria") and non-promulgated guidance ("guidance") that govern activities that may affect the environment and are used by the NYSDEC at various stages in the investigation and remediation of a site. The following are the primary SCGs for this project:

- NYSDEC 6 NYCRR Part 375 Environmental Remediation Programs, December 2006.
- NYSDEC DER-10 Technical Guidance for Site Investigations and Remediation, May

Client: Regan Development | Project: 160-164 E 4th Street RI/AAR

Date: 09/2025 | Author: PS | Revision #: 0

2010.

- NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- NYSDEC Commissioner Policy (CP)-51 Soil Cleanup Guidance, October 2010.
- NYSDEC Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), April 2023.
- NYSDEC 6 NYCRR 360 Solid Waste Management Facilities General Requirements, August 2020.
- New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion, May 2017 updated February 2024.

2.0 REMEDIAL INVESTIGATION APPROACH

The Remedial Investigation (RI) was conducted in general accordance with the November 2024 Remedial Investigation Work Plan (RIWP (Revised July 2025), Regan Development Corporation, 166 East 4th Street, City of Dunkirk, Chautauqua County, New York, Site No. C907055. NYSDEC issued an approval letter for the RIWP on July 31st, 2025.

RI activities generally included the following:

- Subsurface soil borings to evaluate fill thickness and native material
- Installation of shallow and intermediate-depth groundwater monitoring wells
- Vapor point installation
- Soil, groundwater, and soil vapor sampling for chemical analysis

A Qualified Environmental Professional (QEP) from Brydges Engineering in Environment and Energy (BE3) was present on site during all intrusive field work. Prior to any subsurface activities, the underground utility locating service was contacted to mark known utilities. The approximate locations of historic Phase II and RI sampling points are presented on **Figure 3**. GPS coordinates for each sampling location are summarized in **Table 6**. Daily Field Reports (DFRs) documenting work performed, weather conditions, equipment used, and any deviations are provided in Appendix A, with a corresponding photolog and location sketches. Additional site photographs are included in Appendix B.

A Community Air Monitoring Program (CAMP) was implemented in accordance with NYSDOH DER-10 guidance throughout the duration of intrusive RI fieldwork. Real-time monitoring was conducted for particulate matter (dust) and total volatile organic compounds (VOCs). Particulate concentrations downwind of work areas did not exceed 100 micrograms per cubic meter ($\mu g/m^3$) above background levels for any 15-minute period. VOC concentrations remained below the action level of 5 parts per million (ppm) above background during all monitored periods. Air monitoring results are included in the DFRs in Appendix A.

2.1 RI DEVIATIONS

During the course of the Remedial Investigation, field conditions necessitated deviations from the originally approved July 2025 Remedial Investigation Work Plan (RIWP).

2.1.1 GROUNDWATER INVESTIGATION DEVIATIONS

The approved RIWP included the installation and sampling of 5 overburden monitoring wells across the Site to characterize the underlying hydrologic conditions and identify any deep contamination concerns. However, due to unanticipated subsurface conditions encountered during sampling, RI-MW-1 was dry and unable to be sampled. Since additional efforts did not produce groundwater and all other wells were clean/unimpacted, it is BE3's opinion that additional groundwater sampling in this location is unnecessary.

2.2 SOIL INVESTIGATION

On May 27-29th, August 7th, and 11th 2025, a total of 18 exterior and 2 interior soil borings, (RI-BH-1 through RI-BH-20), and 4 surface samples (SS-1 through SS-4), were completed across the Site to evaluate fill characteristics and identify contamination within shallow subsurface soils. A total of 5 soil samples were also taken from proposed screened intervals of planned RI monitoring wells. The majority of borings were advanced using a track-mounted Geoprobe® 7720DT direct-push drilling rig. Due to access constraints for the interior boring, RI-BH-10, a concrete core drill was used to breach the slab, followed by hand-augering to refusal. Surface samples were completed using a hand shovel. Locations were selected to provide representative site coverage, particularly in areas with a history of potential contaminant use or fill placement. Boring locations were finalized in the field based on site conditions and the presence of potential subsurface features.

Soil collected from Geoprobe® borings was continuously recovered using 5-foot acetate sleeves. Borings were terminated at refusal, with final depths ranging from approximately 10 to 16 feet below ground surface (bgs). Soil collected using the hand auger for RI-BH-10 was continuously recovered using 2-foot acetate sleeves and the boring was terminated at 6 feet bgs due to refusal.

A specific number of soil samples were collected from each boring to accurately characterize the sub surface across the site. A sample summary can be seen below:

Summary of Samples and Sample Rationale

Soil Boring	Number of Samples	Sampling Rationale
RI-BH-1	2	Nature and Extent of Fill Layer
and RI-BH-2	2	Characterize Native Soil

RI-BH-3 and RI-BH-4	1	Nature and Extent of Fill Layer
RI-BH-5 through RI-BH-	2	Nature and Extent of Fill Layer
11	2	Characterize Native Soil
RI-BH-12 through RI-BH- 14	1	Nature and Extent of Fill Layer
DI DI LAS	2	Nature and Extent of Fill Layer
RI-BH-15	2	Characterize Native Soil
RI-BH-16	1	Nature and Extent of Fill Layer
RI-BH-17 and	2	Nature and Extent of Fill Layer
RI-BH-18	2	Characterize Native Soil
RI-BH-19 and RI-BH-20	1	Nature and Extent of Fill Layer
RI-MW-1 through RI-MW-	1	Characterize Soil Surrounding Well Screens
SS-1 Through SS-4	1	Characterize Near Surface Soils for Potential Health Risks

All recovered soil was visually classified and field screened for volatile organic compounds (VOCs) using a photoionization detector (PID). Screening involved exposing the open core to ambient conditions and recording the maximum PID reading.

Soil samples were placed into laboratory-provided containers, packed in coolers with ice, and submitted under chain-of-custody to Eurofins Environment Testing – Buffalo, a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory.

2.3 GROUNDWATER INVESTIGATION

As part of the Remedial Investigation, 5 overburden monitoring wells were installed to assess groundwater across the site.

2.3.1 WELL CONSTRUCTION

Monitoring wells were constructed at 5 locations between May 28th and May 29th, 2025. Initial drilling was performed using a 4.25-inch diameter hollow stem auger (HSA) advanced to 1 to 2 feet above suspected bedrock. The completed wells (RI-MW-1 through RI-MW-5) were finished to depths of 13 ft, 8 ft, 15 feet, 15 ft and 14.5 feet bgs, respectively. Each well consists of a 2-inch inside diameter (ID), Schedule 40 polyvinyl chloride (PVC) casing with a 5-foot well screen with 0.010-inch slot size. The screened interval was surrounded with clean, porous sand to approximately 1 foot above, followed by a bentonite seal. All wells were completed at grade, fitted with a lockable J-plug, covered with a protective curb box, and labeled for permanent identification.

Drill cuttings and development spoils were containerized in New York State Department of Transportation (NYSDOT) approved drums and labeled for subsequent characterization and disposal in accordance with applicable Resource Conservation and Recovery Act (RCRA) regulations. Well construction logs are provided in Appendix D.

2.3.2 WELL DEVELOPMENT

Monitoring wells RI-MW-2 through RI-MW-5 were developed on May 30th, 2025. Development was conducted using a weighted bailer to remove suspended solids and improve hydraulic connectivity. As noted above, RI-MW-1 was found to be dry and could not be developed. All development water was containerized in NYSDOT-approved drums and labeled according to the well of origin.

No light non-aqueous phase liquid (LNAPL), dense non-aqueous phase liquid (DNAPL), sheen, or notable odors were observed during development. Field parameters—pH, temperature, turbidity, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductance, flow rate, and water level—were recorded periodically for stabilization and health and safety monitoring. Visual and olfactory screening and photoionization detector (PID) readings were also conducted.

Final determination regarding the proper disposition of development water (e.g., on-site treatment, off-site disposal, or surface discharge with NYSDEC approval) will be made based on laboratory analytical results. Well development logs are provided in Appendix E.

2.3.3 GROUNDWATER SAMPLING

Groundwater sampling was conducted on June 2^{nd} and 3^{rd} , 2025. Low-flow sampling techniques were employed using a peristaltic pump and dedicated tubing in accordance with NYSDEC-approved procedures.

Field parameters were continuously monitored throughout purging and sampling, consistent with the protocol described in Section 2.3.2. Sampling commenced once stabilization criteria were met and turbidity levels were confirmed to be below 50 Nephelometric Turbidity Units (NTU).

Samples were placed in laboratory-supplied containers, preserved as required, packed in iced coolers, and submitted under chain-of-custody to Eurofins Environment Testing – Buffalo, a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory. Groundwater analytical results are summarized in Table 2, and purge logs are included in Appendix F.

2.4 VAPOR INVESTIGATION

2.4.1 VAPOR POINT INSTALLATION

On May 29th, 2025, 6 vapor points were completed across the Site in unique boreholes to evaluate fill characteristics and identify contamination within shallow subsurface soils. Vapor points were advanced using a track-mounted Geoprobe® 7720DT direct-push drilling rig. Locations were selected to provide representative site coverage, particularly in areas with a history of potential contaminant use or fill placement. Vapor point locations were finalized in the field based on site conditions and the presence of potential subsurface features.

Each vapor point consisted of a ¼-inch outer diameter polyvinyl chloride (PVC) tubing fitted with a 3/8-inch stainless steel mesh screen at the base. The screened interval was surrounded with clean, porous sand to a depth of approximately 2 feet, followed by a bentonite seal to isolate the probe and prevent preferential pathways for vapor migration along the boring annulus. Vapor point construction details are documented in Appendix G.

2.4.2 VAPOR POINT SAMPLING

Soil vapor sampling was conducted after consultation and coordination with the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH). Sampling locations were selected to provide comprehensive spatial coverage across the Site and were biased toward the deeper boring locations to assess worst-case vapor intrusion potential.

Sampling was conducted over a 24-hour period beginning on May 29th, 2025, using 6-liter SUMMA® canisters equipped with calibrated 24-hour regulators. All sampling activities were performed in accordance with the latest NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006 and subsequent amendments).

Canisters were submitted to Eurofins Environment Testing – Burlington, a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory, under proper chain-of-custody protocols. Analytical results are summarized in Table 3.

2.4.3 QUALITY ASSURANCE/ QUALITY CONTROL SAMPLING

Quality assurance and quality control (QA/QC) sampling was performed in accordance with the approved Remedial Investigation Work Plan (RIWP) and the site-specific Quality Assurance Project Plan (QAPP). The QA/QC program was designed to ensure data quality objectives were met for precision, accuracy, representativeness, comparability, and completeness. These data are required to support third-party validation and development of a complete Data Usability Summary Report (DUSR).

The following QA/QC samples were collected:

- A matrix spike/matrix spike duplicate (MS/MSD) pair was collected from soil borings completed for monitoring well RI-MW-1 and RI-MW-5.
- A field duplicate sample was collected from the boring hole completed for RI-MW-3 and RI-MW-4 and labeled RI-MW-3-DUP and RI-MW-4-DUP. Results of these duplicate samples are presented in Table 1.
- During groundwater sampling, an MS/MSD pair and a trip blank were collected and submitted with the sample batch.

Laboratory analytical reports are included in Appendix J. The third-party validated Data Usability Summary Reports (DUSRs) are provided in Appendix K as separate attachments.

3.0 PHYSICAL CHARACTERISICS OF THE AREA

3.1 SURFACE FEATURES

The Site comprises approximately 2.15 acres and is located at 160-164 East 4th Street in the City of Dunkirk, Chautauqua County, New York. The property is identified as Section-Block-Lot (SBL) No. 79.57-2-15.1 and consists of a single commercial parcel.

A single-story commercial building occupies the eastern-central portion of the Site and includes two storefront units that are structurally connected to an adjacent commercial plaza (located off-site). Surrounding the structure is an asphalt-paved parking area to the south and an undeveloped greenspace to the north. The building is currently vacant and shows signs of deterioration. The parking lot exhibits surface cracking and signs of aging, particularly in the southern portion of the Site. Topographically, the Site exhibits moderate elevation change, sloping gradually downward from south to north.

The land use distribution on the Site is summarized in the table below:

Description	Location	Acreage	% of total Site area
Building	Central Eastern	0.28	13
Greenspace	North	0.43	20
Hardscape	Across Site	1.44	67

The Site is zoned for C-2 General Commercial (Community Business) and is located in a mixed-use urban corridor. Adjacent land uses include:

- North: Rail lines and residential housing
- South: Commercial and residential
- East: Adjacent commercial plaza
- West: Municipal buildings and light commercial uses

A Site Location Map and a detailed Site Plan are provided in **Figure 1** and **Figure 2**, respectively.

3.2 SUBSURFACE FEATURES

3.2.1 SITE GEOLOGY

Subsurface conditions at the Site were evaluated through two Phase II ESA investigations. In September 2023, a total of 15 soil borings were advanced across the property, with 2 borings converted to temporary groundwater monitoring wells. In April 2024, an additional 12 soil borings were completed, including 1 boring converted to temporary well.

In May and August 2025, during the RI an additional 20 soil borings and 5 monitoring wells were completed. In total, 41 soil samples and 6 groundwater samples were collected for analysis.

The soil borings indicate that the Site is generally underlain by urban fill, consisting of brown to black silty clayey sand containing construction-related debris such as brick fragments and concrete. The depth of the fill ranged from approximately 0 to 7 feet below ground surface (bgs). Beneath the fill, the native material typically consisted of stiff red-brown and gray silty clay or clayey silt.

During advancement of the borings, refusal was encountered at depths of approximately 8 feet to 16 feet bgs, which is interpreted to represent the top of bedrock.

3.2.2 SITE HYDROGEOLOGY

Based on the results of the Remedial Investigation, groundwater at the Site is present at 5.2 to 9.5 ft. Multiple rounds of topographic/elevation data indicates the following groundwater elevations in feet above sea level (ASL) for each well:

Well ID	Elevation (feet ASL)	
RI-MW-2	594.35	
RI-MW-3	589.3	
RI-MW-4	588.9	
RI-MW-5	586.75	

Groundwater was not encountered in RI-MW-1. Based on these observations, groundwater appears to flow northwest.

3.2 DEMOGRAPHY AND LAND USE

The Site is currently vacant and underutilized, with zoning and surrounding land uses consistent with a mixed-use commercial and residential corridor within the City of Dunkirk. The property is bordered by a combination of residential neighborhoods, commercial establishments, and municipal facilities, reflecting a diverse urban setting.

The proposed future use of the Site involves the redevelopment of the property into a multifamily residential apartment complex, supported through the New York State Brownfield Cleanup Program (BCP). The planned development will include:

- Multi-family apartment units
- An associated off-street parking area

Recreational and landscaped greenspace

As part of the proposed redevelopment, the existing commercial building on the Site will be demolished. The planned environmental remedy will proceed under Track 4 (Restricted Residential Use) of the BCP, which allows for redevelopment with the application of site cover systems and institutional/engineering controls as needed to manage residual contamination. This redevelopment will provide long-term community benefit by supporting housing development, eliminating a blighted structure, and promoting the productive reuse of historically impacted land.

4.0 LABORATORY ANALYSIS

4.1 SOIL

All soil samples were analyzed for the following:

- Target Compound List (TCL) VOCs + Tentatively Identified Compounds (TICs) Environmental Protection Agency (EPA) Method 8260
- TCL semi-volatile organic compounds (SVOCs) + TICs EPA Method 8270
- Target Analyte List (TAL) Metals (Including mercury and total cyanide) EPA Method 6010/7470/7471
- PCBs EPA Method 8280
- TCL Pesticides EPA Method 8081
- 1,4-dioxane EPA Method 8270SIM
- PFAS EPA Method 1633

4.2 GROUNDWATER

All groundwater samples were analyzed for the following:

- TCL VOCs and TICs-EPA Method 8260
- TCL SVOCs EPA Method 8270
- TAL Metals + cyanide-EPA Method 6010/7470/7471
- PCBs EPA Method 8280;
- Pesticides
 EPA Method 8081;
- 1,4-dioxane– EPA Method 8270SIM
- PFAS EPA Method 1633

4.3 SOIL VAPOR

Soil vapor samples were analyzed for TCL VOCs by EPA Method TO-15.

5.0 DISCUSSION OF RESULTS

5.1 SOIL SAMPLING ANALYTICAL RESULTS

All RI soil sampling results exceeding unrestricted SCOs are listed on **Figure 4** and **Figure 5**. All RI sampling results exceeding restricted residential SCOs are listed on **Figure 6**.

5.1.1 METALS

A multitude of soil samples exceeded various metal SCOs as specified in the tables below.

	Unrestricted E	xceedances	
Analyte	Sample ID	Result	Standard
_	RI-BH-17 8-11'	15.2	
Arsenic	RI-BH-18 5-8'	13.9	13
	RI-BH-19 3-5'	14.2	
	RI-BH-1 2-5'	19.4	
	RI-BH-2 1-4'	17.9	
	RI-BH-3 2-5'	19.5	
	RI-BH-4 1-4'	13.7	-
	RI-BH-5 1-5'	14.0	-
	RI-BH-5 5-8'	16.1	-
	RI-BH-6 1-3'	19.1	-
	RI-BH-6 4-7'	20.3	-
	RI-BH-7 4-6'	15.4	-
	RI-BH-8 1-4'	10.7	
	RI-BH-9 6-9'	17.1	-
	RI-BH-11 1-4'	17.0	-
	RI-BH-12 1-3'	11.8	1
	RI-BH-14 0-3'	20.0	-
	RI-BH-15 0-3'	6.0	-
Chromium	RI-BH-15 7-10'	15.2	1
	RI-BH-16 0-3'	21.5	-
	RI-BH-17 0-3'	21.5	-
	RI-BH-17 0-3'	16.8	
	RI-BH-18 0-3'	21.5	
	RI-BH-18 5-8'	12.6	
	RI-BH-19 3-5'	18.5	
	RI-BH-20 2-4'	15.6	
	RI-MW-1 8-11'	17.7	
	RI-MW-2 4-7'	19.1	
	RI-MW-3 8-11'	17.1	
	RI-MW-3 DUP 8-11'	18.4	
	RI-MW-4 9-12'	15.1	
	RI-MW-4 DUP 9-12'	14.4	
	RI-MW-5 9-12'	14.1	
	SS-2 0.17-0.5'	15.5	
	RI-BH-1 2-5'	56.5	
	RI-BH-2 1-4'	76.3	1
	RI-BH-7 1-4'	62.8	1
	RI-BH-16 0-3'	53.7	1
Copper	RI-BH-17 0-3'	67.8	50
	RI-BH-18 5-8'	51.0	
	RI-BH-19 3-5'	57.3	1
	SS-3 0.17-0.5'	109	1

	RI-BH-1 2-5'	283	
	RI-BH-2 1-4'	284	
	RI-BH-6 1-3'	262	
	RI-BH-8 1-4'	96.6	ļ l
	RI-BH-10 1-4'	64.3	
Lead	RI-BH-11 1-4'	67.5	63
Leau	RI-BH-17 0-3'	293	03
	RI-BH-18 0-3'	64.3	
	SS-1 0.17-0.5'	168	
	SS-2 0.17-0.5'	72.4	
	SS-3 0.17-0.5'	101	
	SS-4 0.17-0.5'	157	
Manganese	RI-BH-1 2-5'	1880	1600
	RI-BH-2 1-4'	0.54	
	RI-BH-6 1-3'	0.42	
	RI-BH-7 1-4'	0.34	
	RI-BH-8 1-4'	0.24	
Mercury	RI-BH-9 1-3'	0.41	0.18
·	RI-BH-12 1-3'	0.62	
	RI-BH-19 3-5'	0.66	
	SS-1 0.17-0.5'	0.22	
	SS-4 0.17-0.5'	0.25	
	RI-BH-2 5-8'	35.6	
	RI-BH-6 4-7'	33.6	
	RI-BH-7 4-6'	40.6	
	RI-BH-8 6-9'	37.8	
	RI-BH-11 6-9'	35.5	
	RI-BH-14 0-3'	35.5	
	RI-BH-15 7-10'	33.6	
Niekol	RI-BH-17 8-11'	32.0	20
Nickel	RI-BH-19 3-5'	39.1	30
	RI-MW-1 8-11'	36.8	
	RI-MW-2 4-7'	46.4	
	RI-MW-3 8-11'	42.3	
	RI-MW-3 DUP 8-11'	43.8	
	RI-MW-4 9-12'	32.2	
	SS-1 0.17-0.5'	31.6	
	SS-4 0.17-0.5'	36.7	
	RI-BH-1 2-5'	149	
	RI-BH-1 6-9'	147	
	RI-BH-2 1-4'	167	
	RI-BH-3 2-5'	155	
Zinc	RI-BH-6 1-3'	127	109
ZIIIC	RI-BH-7 1-4'	638	108
	RI-BH-9 1-3'	370	
	RI-BH-14 0-3'	213	
	RI-BH-16 0-3'	122	l l
	RI-BH-17 0-3'	328	

RI-BH-17 8-11'	158	
RI-BH-18 0-3'	113	
RI-BH-19 3-5'	892	
RI-MW-5 9-12'	158	
SS-1 0.17-0.5'	156	
SS-2 0.17-0.5'	132	
SS-3 0.17-0.5'	155	
SS-4 0.17-0.5'	153	

Residential Exceedances			
Analyte	Sample ID	Result	Standard
	RI-BH-4 1-4'	368	
Barium	RI-BH-10 1-4'	354	350
	RI-BH-20 2-4'	364	
	RI-BH-1 6-9'	29.0	
	RI-BH-2 5-8'	28.2	
	RI-BH-7 4-6'	23.5	
	RI-BH-8 6-9'	26.4	
Chromium	RI-BH-10 1-4'	24.1	22
Cilionilani	RI-BH-11 6-9'	28.5	22
	RI-BH-13 1-4'	23.3	
	SS-1 0.17-0.5'	26.4	
	SS-3 0.17-0.5'	24.2	
	SS-4 0.17-0.5	28.2	

Restricted Residential Exceedances			
Analyte	Sample ID	Result	Standard
	RI-BH-9 1-3'	687	400
Lead	RI-BH-16 0-3'	409	
	RI-BH-19 3-5'	454	
Mercury	RI-BH-1 2-5'	1.2	0.01
	RI-BH-18 0-3'	1.0	0.81

Commercial Exceedances			
Analyte	Sample ID	Result	Standard
Danisses	RI-BH-2 5-8'	531	400
Barium	RI-BH-7 1-4'	865	400
Copper	RI-BH-9 1-3'	598	270

Industrial Exceedances			
Analyte	Sample ID	Result	Standard
	RI-BH-4 1-4'	41.5	16
	RI-BH-7 1-4'	33.4	
Arsenic	RI-BH-10 1-4'	19.8	
	RI-BH-20 2-4'	16.4	
	SS-2 0.17-0.5'	17.2	

Lead	RI-BH-7 1-4'	4950	3900

5.1.2 SVOC's

A multitude of soil samples exceeded various SVOC SCOs as specified in the tables below.

Unrestricted Exceedances			
Analyte	Sample ID	Result	Standard
	RI-MW-1 8-11'	1.8	
	RI-MW-2 4-7'	6.3	
	RI-MW-3 8-11'	1.8	
Phenol	RI-MW-3 DUP 8-11'	3.9	0.33
	RI-MW-4 9-12'	1.7	
	RI-MW-4 DUP 9-12'	0.76	
	RI-MW-5 9-12'	0.42	

Residential Exceedances			
Analyte	Sample ID	Result	Standard
	RI-BH-2 1-4'	1	
Benzo(k)fluoranthene	RI-BH-7 1-4'	2.6	1
	SS-1 0.17-0.5'	1.7	
	RI-BH-2 1-4'	1.5	
Chrysene	SS-1 0.17-0.5'	3.6	1
-	SS-4 0.17-0.5'	1.4	

Restricted Residential Exceedances			
Analyte	Sample ID	Result	Standard
	RI-BH-7 1-4'	4.3	
Benzo(a)anthracene	RI-BH-16 0-3'	409	400
	SS-1 0.17-0.5'	2.9	
	RI-BH-2 1-4'	2	
	RI-BH-7 1-4'	4.7	
Benzo(b)fluoranthene	SS-1 0.17-0.5'	4.9	1
	SS-2 0.17-0.5'	1.5	
	SS-4 0.17-0.5'	1.8	
Chrysene	RI-BH-7 1-4'	4.3	3.9
	RI-BH-2 1-4'	0.88	
Indeno(1,2,3-cd)pyrene	RI-BH-7 1-4'	2.3	0.5
	SS-1 0.17-0.5'	2.4	0.5
	SS-4 0.17-0.5'	0.87	

Commercial Exceedances				
Analyte Sample ID Result Standard				
Dibenz(a,h)anthracene	RI-BH-9 1-3'	598	270	

Industrial Exceedances			
Analyte	Sample ID	Result	Standard
Benzo(a)pyrene	RI-BH-2 1-4'	1.3	
	RI-BH-7 1-4'	4.1	1.1
	SS-4 0.17-0.5'	1.1	

5.1.3 VOC's

Unrestricted Exceedances			
Analyte	Sample ID	Result	Standard
	RI-BH-4 1-4'	0.2	
	RI-BH-5 5-8'	0.26	0.05
Acetone	RI-BH-10 1-4'	0.11	
	RI-BH-13 1-4'	0.16	
	RI-BH-17 8-11'	0.08	

5.1.4 ORGANOCHLORINE PESTICIDES

Unrestricted Exceedances			
Analyte	Sample ID	Result	Standard
	RI-BH-4 1-4'	0.0081	
4 4' DDD	RI-BH-7 1-4'	0.019	0.0033
4,4'-DDD	RI-BH-16 0-3'	0.0038	0.0033
	RI-BH-19 3-5'	0.0054	
4 4' DDE	RI-BH-16 0-3'	0.0066	0.0022
4,4'-DDE	RI-BH-19 3-5'	0.0043	0.0033
	RI-BH-1 2-5'	0.0037	
	RI-BH-1 6-9'	0.0036	
	RI-BH-2 1-4'	0.064	
	RI-BH-7 1-4'	0.025	
	RI-BH-10 1-4'	0.012	
4,4'-DDT	RI-BH-12 1-3'	0.0036	0.0033
4,4 -טטו	RI-BH-13 1-4'	0.069	0.0033
	RI-BH-16 0-3'	0.017	
	RI-BH-17 0-3'	0.0042	
	RI-BH-18 0-3'	0.0035	
	RI-BH-19 3-5'	0.0039	
	RI-MW-1 8-11'	0.057	

5.1.5 PCB's

There were no exceedances of PCB's found in any of the soils samples taken.

5.1.6 PFAS

Unrestricted Exceedances			
Analyte Sample ID Result Standard			
Perfluorooctanesulfonic acid (PFOS)	RI-BH-18 0-3'	1.6	0.88

5.2 GROUNDWATER SAMPLE ANALYTICAL RESULTS

All RI groundwater sampling results exceeding TOGS 1.1.1 guidelines are listed on Figure 7.

5.2.1 METALS

TOGS Exceedances			
Analyte	Sample ID	Result	Standard
	RI-MW-2	0.77	
Iron	RI-MW-3	1.3	0.3
	RI-MW-4	0.35	
	RI-MW-3	36.6	
Magnesium	RI-MW-4	47.8	35
-	RI-MW-5	43.8	
Manganese	RI-MW-3	0.34	
	RI-MW-4	0.47	0.3
	RI-MW-5	2.6	

5.2.2 SVOC's

There were no exceedances for SVOCs in any of the wells sampled.

5.2.3 VOC's

TOGS Exceedances				
Analyte Sample ID Result Standard				
Acetone RI-MW-5 51 50				

5.2.4 ORGANOCHLORINE PESTICIDES

There were no exceedances for organochlorine pesticides in any of the wells sampled.

5.2.5 PCB's

There were no exceedances for PCBs in any of the wells sampled.

5.2.6 PFAS

There were no exceedances for PFAS in any of the wells sampled.

6.0 FATE AND TRANSPORT OF CONTAMINANTS OF CONCERN

The soil, groundwater and soil vapor sample analytical results were incorporated with the physical Site conditions to evaluate the fate and transport of COC in Site media. The mechanisms through which the COC can migrate to other areas or media are briefly outlined below. The potential pathways are evaluated in the context of pre-remedial conditions.

6.1 FUGITIVE DUST

Contaminants present in soil can be released into ambient air due to fugitive dust generation from disturbance of dry friable soils. The Site currently contains one dilapidated building surrounded by asphalt parking and minimal greenspace which limits any fugitive dust generation.

During demolition, redevelopment construction and remedial work, fugitive dust may be generated. A Health and Safety Plan (HASP) along with a CAMP will be prepared, as required, by the RAWP, which will minimize fugitive dust concerns during this time. The fugitive dust migration pathway is not presently a relevant pathway, however, during remediation activities, fugitive dust migration will be more relevant and not be relevant thereafter due to the proposed soil cover system and new development. During construction activities, the contractor will institute dust control measures per the site specific January 2024 Stormwater Management Report (SWMR).

6.2 SURFACE WATER

The potential for impacted soil particle transport with surface water runoff is considered low due to the hardscape and existing vegetative cover over impacted soil across the Site. Although heavy rainfall can cause erosion in greenspace areas, no sensitive receptors are present within close proximity to the Site.

Redevelopment will include new structures, paved areas, and landscaping. The January 2024 SWMR will control storm water during construction and remediation activities. The redevelopment design includes substantial bioretention planters to handle surface water upon completion of redevelopment. Therefore, the movement of impacted soil by surface water runoff is not considered a relevant migration pathway.

6.3 VOLITILIZATION

No VOCs were detected above their SCOs in soil samples from the RI or previous investigations. Groundwater samples collected from on-site wells during the RI indicated that VOCs are not present in groundwater above TOGS 1.1.1 guidance values.

6.4 LEACHING

Leaching refers to contaminants in soil/fill migrating into groundwater due to infiltration of stormwater.

VOCs, SVOCs, PCBs, and pesticides were not detected above TOGS 1.1.1 guidance values in the groundwater samples collected from the 4 productive monitoring wells during the RI. Although the metals Iron, Magnesium, Manganese, and Sodium were detected above TOGS 1.1.1 guidance values, constituents are likely naturally occurring as a result of native minerals

in the subsurface.

VOCs were not detected in the soil samples above any SCOs, however, both SVOCs (primarily PAHs) and metals were detected in the site soils above restricted residential SCOs. PAHs and metals are not very mobile in soils in that they have low solubility with water and tend to adsorb to the soil grains.

6.5 GROUNDWATER TRANSPORT

Based on groundwater elevation data, groundwater on the Site appears to flow northwest. As previously noted in Section 5.4.2 (Contaminants of Concern – Groundwater), there are no contaminants of concern in groundwater. No exceedances of TOGS 1.1.1 guidance values were noted that could not be attributed to natural conditions.

Although sodium, iron, magnesium, and manganese were detected above guidance values, all constituents can be naturally occurring. Natural sources of these metals include weathered rocks and minerals. These conditions were consistently noted throughout the Site.

In addition, the Site and surrounding area are serviced by municipal water. The Site Management Plan (SMP) will also prohibit the use of groundwater for drinking or process use. Therefore, significant potential exposure of local receptors to contaminants in the groundwater is minimal.

6.6 EXPOSURE PATHWAY SUMMARY

Based on the above assessment, the pathways through which COC could reach receptors at significant exposure concentrations are minimal. The more probable pathways of stormwater and fugitive dust will be mitigated using pollution prevention and dust suppression control measures during remedial and construction activities.

7.0 QUALITATIVE EXPOSURE ASSESSMENT

A Qualitative Human Health Exposure Assessment (QHHEA) was completed in general accordance with Appendix 3B of DER-10 to identify potential exposure pathways associated with the COC at the Site. The exposure pathway elements are summarized as follows:

Qualitative Exposure	Assessment Summary								
Environmental Media & Exposure Route	Human Exposure Assessment								
Direct contact with surface soils (and incidental ingestion)	Current: People should not come into contact with contaminated surface soils as they are primarily covered by asphalt and vegetative cover.								
	Future: People may contact contaminated surface soils during ground-intrusive work.								
Direct contact with subsurface soils (and incidental ingestion)	Current: There is no current concern for contact with subsurface soils as there is no ground-intrusive work being performed at the Site.								
	Future: People may come into contact with subsurface soils during ground-intrusive work.								
Ingestion of groundwater	Current: Groundwater at the Site does not								

	appear impacted. Additionally, contaminated groundwater is not being used for drinking water in the surrounding area as the City of Dunkirk is served by a treated public water supply. There are no know private domestic water supply wells in the area of the Site.
	Future: The planned development will be served by treated municipal water (City of Dunkirk).
Direct contact with groundwater	Current: There is no current access to groundwater.
	Future: People may come into contact with groundwater during ground intrusive work. However, groundwater is not thought to be impacted.
Direct contact with surface water or sediment (and incidental ingestion)	Current: There are no water bodies on or within proximity of the Site, therefore direct contact with contaminated surface water or sediment is possible.
	Future: No water features capable of providing recreation use or supporting aquatic life are planned at the Site.
Inhalation of air (exposures related to SVI)	Current: SVI is not a current concern at the Site.
	Future: SVI concern is not foreseeable. Although not required as a component on the BCP, a subslab depressurization system (SSDS) is included in Site plans to mitigate radon.

7.1.1 Contaminant Sources

Metals and PAHs exceeding regulatory standards were consistently observed throughout Site soils. Based on previous investigations, the overburden is almost entirely composed of impacted fill, ranging in depth from 0 to 7 feet bgs.

An elevated concentration of Heptane was noted in one vapor point located within the existing building on Site. The vapor point is currently covered by existing hardscape (i.e. concrete slab). Based on the lack of VOC exceedances in soil and groundwater samples, no point contaminant sources have been identified.

7.1.2 Contaminant Release and Transport Mechanisms

The only release/transport of impacted soils to an exposed population would be through fugitive dust and rain that may result in soil erosion. However, as previously noted, the Site currently contains a large building surrounded by asphalt parking and minimal greenspace which limits any fugitive dust generation along with erodible soils.

7.1.3 Potential Exposure Points

Currently, direct contact exposure to impacted soil is low due to the predominant hardscape and low percentage of soil cover over the Site. Future contact may occur during soil excavation activities.

7.1.4 Routes of Exposure

The only viable current or future routes of exposure would be direct contact or inhalation/ingestion of impacted soils.

7.1.5 On-Site Receptors

The on-site receptor population would be customers and employees of the adjacent commercial plaza and surrounding businesses that may use the site for parking.

Future construction workers may encounter impacted soils during Site work. The entire boundary of the Site will be fenced off during construction and will not be accessible to outside personnel. Future residents should not encounter impacted soils as the entire Site will be covered by hardscape or two feet of clean fill in greenspace areas.

7.1.6 Off-Site Receptors

Although limited, off-site migration of contaminants could potentially impact off-site receptor populations. As noted above in Section 6.1: Fugitive Dust, the fugitive dust migration pathway is not presently a relevant pathway.

During future remedial activities, fugitive dust migration will be more relevant and not be relevant thereafter due to the proposed soil cover system and new development. Should contaminants in impacted surface soil become airborne, off-site receptors could be exposed to the inhalation of particulates. The off-site receptor population includes passersby's, and customers and employees of surrounding businesses.

7.2 ECOLOGICAL EXPOSURE RISKS

The Fish and Wildlife Resources Impact Analysis (FWRIA) Decision Key provided in Appendix 3C of DER-10 was completed during development of the RIWP and is included in **Appendix H**. No FWRIA is required based on the completed decision key process. This determination is based on the following:

- The Site is currently zoned C-2 General Commercial (Community Business) and is located in a mixed-use urban corridor
- The contamination at the Site has very low potential to migrate into or impact any offsite habitat of endangered, threatened, or special concern species or other fish and wildlife resources. There are no critical habitats onsite or nearby. The Full Environmental Assessment Form (FEAF) and Environmental Resource Mapper were consulted to make this determination.

8.0 REMEDIAL ALTERNATIVES ANALYSIS

8.1 REMEDIAL ACTION OBJECTIVES

The final remedial measures for the Site must satisfy Remedial Action Objectives (RAOs), which are site-specific statements that convey the goals for minimizing or eliminating substantial risks to human health and the environment. No RAOs were identified in relation to groundwater. The primary RAOs identified for the Site are the following:

Soil

Public Health Protection RAOs

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation exposure to contaminants volatilizing from soil.

Environmental Protection RAOs

 Prevent migration of contaminants in Site soil that would result in groundwater or surface water contamination.

Soil Vapor

Public Health Protection RAOs

 Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

8.2 ALTERNATIVES SELECTION FACTORS

In addition to achieving RAOs, NYSDEC's BCP requires an evaluation of remedial alternatives in accordance with 6 NYCRR Part 375-3 and DER-10. This alternative analysis evaluates the remedial options developed for the Site against the following selection factors:

- Overall Protection of Public Health and the Environment. This criterion evaluates a
 remedy's ability to achieve the public health and environmental RAOs through the
 assessment of existing and potential exposure pathways to be eliminated, reduced, or
 mitigated through removal, treatment, or ECs/ICs.
- Compliance with SCGs. This criterion addresses whether a remedy will meet applicable environmental regulations, standards, and guidance. The SCGs applicable to this site are listed in Section 1.2.
- Long-Term Effectiveness and Permanence. This criterion evaluates the long-term effectiveness and permanence of an alternative or remedy after implementation.
- Reduction of Toxicity, Mobility or Volume with Treatment. This criterion evaluates the remedy's ability to reduce the toxicity, mobility, or volume of Site contamination through treatment. Preference is given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the contamination at the Site.
- Short-Term Effectiveness. This criterion evaluates the potential short-term impacts to
 human health and the environment during remediation, including control measures of
 adverse conditions and their effectiveness (e.g., stormwater controls, dust controls,
 etc.). The length of time needed to achieve the RAOs and sustainability is also
 evaluated.
- Implementability. This criterion evaluates the technical and administrative feasibility
 of implementing the remedy including the difficulties associated with construction and
 monitoring the effectiveness of the remedy. The availability of labor, equipment, and
 material is evaluated in addition to operational approvals, logistics, permitting, etc.
- Cost. This criterion evaluates the overall cost of an alternative.
- **Community Acceptance**. This criterion evaluates the public's comments, concerns, and overall perception of the alternative.

8.3 LAND USE EVALUATION

The Site is located within an urbanized, mixed-use area of the City of Dunkirk, Chautauqua County, New York. Surrounding land uses include residential neighborhoods, public infrastructure, and light commercial operations. The proposed future use of the Site involves redevelopment into multi-family residential housing with associated parking areas and designated recreational or greenspace.

This land use category is appropriate considering the planned Site cover system, potential for on-site exposure, and compatibility with surrounding zoning and infrastructure. No ongoing industrial or agricultural activities are present, and no active groundwater use occurs on-site or nearby. The selected remedy must support this redevelopment scenario while addressing all SCGs related to soil, groundwater, and vapor intrusion.

8.4 SELECTION OF ALTERNATIVES FOR EVALUATION

In accordance with DER-10 and the applicable NYSDEC regulations under 6 NYCRR Part 375, remedial alternatives must be developed and evaluated based on the findings of the Remedial Investigation, intended site use, and the extent of contamination. The primary objective of this section is to identify reasonable and applicable cleanup options that align with the future use of the site and ensure the protection of public health and the environment. Two alternatives have been selected for detailed evaluation.

8.4.1 ALTERNATIVE 1: TRACK 4: RESTRICTED RESIDENTIAL REMEDIATION

A Track 4 cleanup generally involves removing all Site soils exceeding restricted residential criteria to specified depth and the creation of a cover system to meet Part 375 3.8 and 6.8(b) restricted residential use SCOs. Removal includes all soils above final grade requirements and an additional 2 feet of removal in non-hardscaped areas. The hardscaped areas (i.e., building footprint, parking lot and sidewalks) would be composed of approximately one foot of material which would function as a component of the cover system. All non-hardscaped/greenspace areas would be covered with 2 feet of clean imported fill meeting the provisions of NYSDEC DER-10 Subdivision 5.4(e) Appendix 5 (see **Figure 9**). Details of this alternative include the following:

- Concrete slabs and other hardscape are to be removed within the BCP boundary to accommodate new development. The top two feet of surface soils beneath the removed slabs/hardscape and in the remaining open areas that are not otherwise to be covered by components of the new development (e.g. buildings, pavement) shall not exceed Restricted Residential SCOs.
- All soils across the Site above final grade requirements and an additional 2 feet of
 material in future non-hardscape/greenspace areas will be removed and disposed of at
 an approved landfill. The estimated total volume of soil requiring removal is 6,300 tons.
- 3. Approximately 5,200 tons of clean fill will be imported to the Site to provide a 2-foot cover system in greenspace areas.
- 4. Confirmatory samples will be conducted after the excavation of on-site soils. A figure with proposed sampling locations will be included in the RAWP.
- 5. During RI sampling, specific borings were identified that did not appear to have Restricted Residential SCO exceedances. The general areas around these borings are delineated on Figure 9. Although unlikely due to the observed urban fill layer found across the site ranging from 0 to 7 feet bgs, soils excavated in this area may be suitable

- for reuse. Final determination will be made during excavation by the onsite QEP in accordance with 6 NYCRR Parts 360 and 375.
- An SVI investigation during the heating season will be completed after the proposed building is complete to assess potential soil vapor intrusion concerns Details of the SVI investigation will be provided in the RAWP.
- 7. Upon completion of remediation, provisions for managing the Site will be provided through an Environmental Easement (EE) which outlines Institutional Controls (ICs) and Engineering Controls (ECs).
- 8. Imposition of an IC in the form of an EE for the controlled party includes the following:
 - a. The remedial party or site owner must complete and submit a periodic certification of IC/EC in accordance with NYSDEC Part 375-1.8(h)(3).
 - b. Allows the use and development of the controlled property for restricted residential, commercial, and industrial uses as defined by Part 375-1.8(g)., although land use is subject to local zoning laws.
 - c. Restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH.
 - d. Requires compliance with the approved Site Management Plan.
- 9. An SMP is required that includes the following:
 - a. An IC/EC plan that identifies all use restrictions and ECs for the Site and details the steps and media specific requirements necessary to ensure the IC and/or ECs remain in place and effective. The ICs are as discussed above, and the only EC is a soil cover system.
 - b. An Excavation Plan which details provisions for management of future excavations in areas of remaining contamination.
 - c. Descriptions of the provisions of the EE including any land use or groundwater use restrictions.
 - d. Provisions for the management and inspection of the identified ECs.
 - e. Maintaining site access controls and NYSDEC notifications.
 - f. The steps necessary for the periodic reviews and certifications of the IC/ECs.

Overall Protection of Public Health and the Environment – Alternative 1 is protective of human health and the environment with the removal of two feet of impacted soil from open areas external to the building and backfilling with two feet of clean soil or hardscape. The clean soil and hardscape covered areas will be incorporated into the SMP as an EC for the Site and IC/ECs will be implemented to prevent more restrictive forms of future site use (e.g., unrestricted and residential) and restrict any use of the groundwater at the Site. Under ICs/ECs, the cover system will be inspected, monitored and maintained. The SMP Excavation Work Plan (EWP) will apply to any future disturbance of soils beneath the cover system. The SMP also requires the implementation of an approved HASP for all future work.

Compliance with SCGs – Alternative 1 is a Part 375 Track 4 remedy with some soils exceeding the restricted residential SCOs remaining below an approved cover system.

Long-Term Effectiveness and Permanence – The removal of the open area impacted fill soils to meet restricted residential SCOs and backfilling with clean fill and hardscape meets the RAOs for soil in this area. Although groundwater contamination is not a concern, there will be a restriction on the use of groundwater at the Site. The SMP requires periodic inspection and monitoring of the cover system for the Site to assure its integrity and the SMP EWP will apply to any future disturbance of the remaining impacted soils including the requirement to prepare an approved HASP for all work.

Reduction of Toxicity, Mobility, or Volume with Treatment – The remedial measure will either permanently or significantly reduce the mobility of contamination in the soils at the Site through the cover system. The volume of impacted soil will be reduced at the Site by excavation and offsite disposal of the top two feet of impacted soil across open areas and one foot in areas to be hardscaped.

The SMP will include an EWP to address any impacted soil/fill encountered during future development and/or maintenance activities and include a site-wide Inspection program to assure that the ICs/ECs placed on the Site have not been altered and remain effective. This alternative will not, however, reduce the toxicity of the soil contaminants left in place upon completion of the remedial measure. Therefore, this alternative partially satisfies this criterion.

Short-Term Effectiveness – Although minimal, potential short-term adverse impacts and human exposures may occur during construction (remediation and new development). A RAWP will be implemented prior to remediation which will require the contractor to prepare and implement a site-specific HASP to cover all workers. Periodic inspections of the cover system per the SMP requirements will prevent ingestion/direct contact with contaminated soil and prevent inhalation of contaminants in soil that may remain below the cover system. This alternative is sustainable through the EE and implementation of the SMP.

Implementability – There are no implementation issues related to the proposed remediation or related to the ICs/ECs placed on the Site under this alternative.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to fact sheets, public comment periods, and other planned citizen participation activities. Currently, no public comments have been received regarding the BCP activities at the Site.

Cost – The values used in estimating alternatives are order-of-magnitude estimates for comparing alternatives and are not meant to be a specific remedial criterion. The estimated cost for Alternative 1 – Track 4 Restricted Residential Use Alternative is approximately \$1.3 million. The associated cost summary is provided in **Appendix I**.

Green Remediation – This alternative will follow a shorter remedial timeline as there will be less excavation and disposal of impacted materials. A shorter remedial timeline implies less total energy use and less emissions. Less excavation and disposal implies reduced waste/landfilling, use of heavy equipment, truck travel, localized noise, vibration and wear and tear on roads. Some additional efforts will be required to import clean fill to compose the required cover system.

8.4.2 ALTERNATIVE 2: TRACK 1: UNRESTRICTED USE REMEDIATION

A Track 1 cleanup involves removal of all Site soils exceeding unrestricted criteria to meet Part 375 3.8 and 6.8(a) unrestricted use SCOs. Based on the RI, all Site soils exceed unrestricted criteria and therefore excavation to bedrock across the entire Site would be required. Details of this alternative include the following:

1. All soils across the entire Site will be removed to approximately 8 feet bgs. The removal of impacted soil will include the removal of all existing building slabs and hardscape areas and backfill all areas with clean soil to meet new development grades. The

- approximate volume of soil amounts to 17,000 tons.
- 2. Clean fill meeting the provisions of NYSDEC DER-10 Subdivision 5.4(e) Appendix 5 will be imported to the Site to meet final grade requirements. The approximate volume of soil/stone amounts to 15,500 tons.

Overall Protection of Public Health and the Environment – This alternative would achieve the corresponding Part 375 SCOs, which are designed to be protective of human health under any reuse scenario.

Compliance with SCGs – This alternative would comply with SCOs, as all non-compliant material would be removed from the Site.

Long-Term Effectiveness and Permanence – This alternative would achieve removal of all contaminant sources and residual impacted soil. No soil exceeding the unrestricted SCOs would remain on the Site. As such, this alternative would provide long-term effectiveness and permanence. Post-remedial monitoring and controls would not be required.

Reduction of Toxicity, Mobility, or Volume with Treatment – This alternative would permanently reduce the toxicity and mobility of Site contamination through the removal of impacted Site soils. Although this is not considered a treatment technology and the volume of contamination would remain the same, removal is very effective in eliminating toxicity and mobility.

Short-Term Effectiveness – The short-term effectiveness of this alternative to the community, workers, and environment during implementation of the unrestricted use alternative would be marginal. The exposure time to community, workers, and the environment from possible fugitive dust or other migration pathways would increase during the excavation, packaging, and offsite disposal of significant quantities of soil and debris. However, within approximately 6 months, the site would be remediated of all soil contamination.

Implementability – Technical implementability of the unrestricted use alternative is high. Demolition, remediation, excavation, and removal activities are associated with standard construction techniques, but impacted soil removal may require excavation below the groundwater table.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to fact sheets, public comment periods, and other planned citizen participation activities. Currently, no public comments have been received regarding the Site.

Cost – The cost of implementing a Track 1 Unrestricted Use alternative is estimated at approximately \$3.6 million. (Refer to **Appendix I**).

Green Remediation –This alternative will follow a longer remedial timeline as there will be more excavation and disposal of impacted materials. A longer remedial timeline implies more total energy use and more emissions. More excavation and disposal implies additional waste/landfilling, use of heavy equipment, truck travel, localized noise, vibration and wear and tear on roads. This alternative will address the source of contamination more aggressively (i.e., complete removal of impacted materials), which will reduce long-term operation and maintenance of treatment or containment systems (i.e., a cover system).

8.5 RECOMMENDED REMEDIAL ALTERNATIVE

The evaluation of remedial alternatives for the Site considered key selection factors outlined in DER-10, including protection of public health and the environment, compliance with Standards, Criteria, and Guidance (SCGs), long-term effectiveness, short-term impacts, implement ability. and cost. Both Track 1 (Unrestricted Use) and Track 4 (Restricted Residential Use) are protective of human health and the environment; however, Track 1 requires full attainment of the most stringent SCOs and complete contaminant removal, which is not feasible due to widespread exceedances of metals and SVOCs in subsurface soils and the substantial cost and disruption associated with deep excavation and disposal. While Track 1 would eliminate the need for long-term management, Track 4 remains fully protective by employing a compliant site cover system, institutional controls, and a Site Management Plan (SMP), thereby effectively isolating contaminants and mitigating exposure risks. Track 4 also aligns with the intended residential redevelopment and is more readily implementable, with lower short-term construction risks and fewer logistical challenges. Additionally, groundwater exceedances of naturally occurring elements such as sodium, iron, magnesium and manganese do not indicate off-site migration of contaminants of concern, further supporting a Track 4 approach. Therefore, while both alternatives satisfy regulatory requirements, Track 4 is the preferred remedy due to its balance of protectiveness, practicality, cost-effectiveness, and compatibility with proposed site use.

9.0 **CONCLUSIONS AND RECOMMENDATIONS**

The Remedial Investigation was completed in accordance with the July 2025 NYSDECapproved RI Work Plan, with minor deviations documented and communicated appropriately. Analytical data confirm the presence of contamination across the Site that exceeds applicable SCGs, including metals and PAHs. Groundwater monitoring identified elevated concentrations of naturally occurring constituents such as sodium, iron, magnesium and manganese. An elevated concentration of Heptane was noted in one vapor point located within the existing building on Site. The vapor point is currently covered by existing hardscape (i.e. concrete slab) and will continue to be covered by hardscape after redevelopment. Although not required as a component on the BCP, an SSDS is included in Site plans with the primary purpose of mitigating radon which will also mitigate potential soil vapor intrusion.

Given the proposed redevelopment of the Site for multi-family residential use with associated green space and parking, and considering the nature and extent of contamination, full unrestricted cleanup under Track 1 is not practical. Instead, Track 4 - Restricted Residential Use with a site cover system, institutional controls, and long-term management - is recommended. This remedial approach meets the objectives of protecting human health and the environment, complies with SCGs, and supports the future use of the property while minimizing unnecessary disturbance and cost.

Tables

TABLE 1 - SOIL SAMPLING RESULTS

	Sample Identification, Sample Depth and Sample Collection Date										NYSDEC Part 375 Soil Cleanup Objectives (SCOs)								
Analyte	RI-BH-1	RI-BH-1	RI-BH-2	RI-BH-2	RI-BH-3	RI-BH-4		RI-BH-5	RI-BH-6	RI-BH-6	RI-BH-7	RI-BH-7	RI-BH-8	RI-BH-8		ATSBECTURES?	J Jon Cicanap	objectives (Seo.	.,
Analyte	2-5'	6-9'	1-4'	5-8'	2-5'	1-4'	1-4'	5-8'	1-3'	4-7'	1-4'	4-6'	1-4'	6-9'	Unrestricted	Residential	Restricted Residential	Commercial	Industrial
								/2025											
Aluminum	16900	24600	12400	21800	13300	8490	METALS 14300	(ppm) 12000	18700	13900	11000	11200	6180	22600	NS	NS	NS	NS	NS
Antimony	16900 ND	24600 ND	0.99	21800 ND	0.74	8490	14300 ND	12000 ND	18/00 ND	1.5	53.8	0.96	618U ND	0.93	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic	7.6	8.6	9.1	6.6	9.7	41.5	11.9	9.3	11	10.7	33.4	11.7	7.9	9.1	13	16	16	16	16
Barium	235	224	134	531	61.2	368	115	76.6	177	117	865	56.1	124	132	350	350	400	400	10000
Beryllium	1.1	1	0.91	1.1	1.1	0.88	1.5	0.76	1.3	1	0.73	0.72	0.86	1.1	7.2	14	72	590	2700
Cadmium	0.32	0.56	0.19	0.25	0.33	0.15	0.24	0.36	0.55	0.17	1.3	0.2	ND	0.25	2.5	2.5	4.3	9.3	60
Calcium	2830	4080	4270	42200	23800	6720	26100	2270	22800	270	5460	1140	3370	3590	NS	NS	NS	NS	NS
Chromium	19.4 8.9	29	17.9 6.4	28.2	19.5	13.7	14	16.1	19.1	20.3	23.5 8.7	15.4	10.7	26.4	1	22	110	400	800
Cobalt Copper	8.9 56.5	16.5 29.7	76.3	11.5 24.4	6.4 48.6	4.2 19.2	9.4 42.8	10.1 21.6	9.5 31.2	12.9 42	62.8	21 41.3	30.6	29.3 28.4	NS 50	NS 270	NS 270	NS 270	NS 10000
Iron	23300	34300	23700	30900	31400	51800	25400	24900	35200	40300	33600	28800	22300	34200	NS NS	NS NS	NS NS	NS NS	NS
Lead	283	50.5	284	13.3	16.9	23.6	40.3	30.1	262	18.3	4950	37.6	96.6	18.3	63	400	400	1000	3900
Magnesium	2680	4200	2370	8480	6280	1740	9010	3150	7350	3750	2520	3380	937	6170	NS	NS	NS	NS	NS
Manganese	194	1880	760	299	285	66	405	463	485	125	301	324	80.1	366	1600	2000	2000	10000	10000
Nickel	25.6	26.2	24.7	35.6	15.7	12.1	20.8	28	20.4	33.6	25.3	40.6	19.3	37.8	30	140	310	310	10000
Potassium	2470	3880	1610	5060	2550	1100	2240	2300	2100	2910	1910	2440	1150	3390	NS	NS	NS	NS	NS
Selenium Sodium	ND 314	ND 262	ND 190	ND 231	1.2 170	1.9 349	1.2 259	ND 139	1.3 361	1.6 133	2.1	ND 162	ND ND	1.3 204	3.9 NS	36 NS	180 NS	1500 NS	6800 NS
Vanadium	27.1	43.1	27.5	38	21.1	21.8	17.9	24.8	30.4	27.2	2000	17.1	20	36	NS NS	NS NS	NS NS	NS NS	NS NS
Zinc Zinc	149	147	167	73.4	155	17	107	70.9	127	44.2	638	94.4	54.5	80.6	109	2200	10000	10000	10000
Cvanide, Total	ND	ND ND	ND	ND	ND ND	ND	1	ND	ND	ND	ND	ND	ND ND	ND	27	27	27	27	10000
Mercury	1.2	0.15	0.54	0.019	0.016	0.082	0.047	0.015	0.42	0.028	0.34	0.015	0.24	0.028	0.18	0.81	0.81	2.8	5.7
						ORGAN	OCHLORINE	PESTICIDES (ppm)										
4,4'-DDD	ND	ND	ND	ND	ND	0.0081	ND	ND	ND	ND	0.019	ND	0.0027	ND	0.0033	2.6	13	92	180
4,4'-DDE	ND	ND	ND	ND	ND	0.0032	ND	ND	ND	0.00078	ND	ND	0.0027	ND	0.0033	1.8	8.9	62	120
4,4'-DDT	0.0037	0.0036	0.064	ND	0.0028	0.0026	0.0018	ND	ND	ND	0.025	ND	0.0042	ND	0.0033	1.7	7.9	47	94
alpha-BHC	ND	ND	ND	ND	ND	ND	0.00075	ND	ND	ND	ND	ND	ND	ND	0.02	0.097	0.48	3.4	6.8
delta-BHC Endrin	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00077	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.04	100 2.2	100 11	500 89	1000 410
Endrin ketone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0011 ND	ND ND	ND ND	ND ND	ND ND	ND	0.0022	ND	0.014 NS	NS NS	NS NS	NS NS	NS NS
gamma-BHC (Lindane)	0.0013	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	0.0012	ND	0.1	0.28	1.3	9.2	23
Methoxychlor	0.0038	0.0048	0.067	0.0041	0.0041	ND	ND	ND	0.00098	0.0022	ND	ND	0.0036	ND	NS	NS	NS	NS	NS
trans-Chlordane	ND	ND	ND	ND	ND	0.0025	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
					PI	ER- & POLYFL	HOROALKYI	CHIDCTAMCE	(PFAS) (ppt)										
Perfluorooctanesulfonic acid (PFOS)	ND	ND	0.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.88	8.8	44	440	440
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA)	ND ND	ND ND	0.17 ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.88	8.8 6.6	44 33	440 500	440 600
Perfluorooctanoic acid (PFOA)	ND	ND	ND	ND	ND ND	ND ND POLYCHLO	ND ND RINATED BIP	ND ND HENYLS (PCE	ND ND SS) (ppm)	ND	ND	ND	ND	ND	0.66	6.6	33	500	600
					ND ND	ND ND	ND ND RINATED BIP	ND ND HENYLS (PCE ND	ND ND										
Perfluorocctanoic acid (PFOA) Total PCBs 2-Methylnaphthalene	ND ND 0.073	ND ND ND	ND	ND ND	ND ND ND SE	ND ND POLYCHLO ND MIVOLITALE 0.18	ND ND RINATED BIP	ND ND HENYLS (PCE ND	ND ND SS) (ppm) ND SVOCS) (ppm	ND ND ND	ND ND	ND	ND	ND ND	0.66 Various	6.6	33 Various NS	500 Various NS	Various NS
Perfluorooctanoic acid (PFCA) Total PCBs 2-Methylnaphthalene 4-Methylphenol	ND ND 0.073	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND SE ND	ND ND POLYCHLO ND MIVOLITALE 0.18 0.087	ND ND RINATED BIP ND ORGANIC CO ND ND	ND ND HENYLS (PCE ND MPOUNDS (ND	ND ND SS) (ppm) ND SVOCS) (ppm ND	ND ND ND ND	ND ND 0.14 0.071	ND ND ND	ND ND 0.38 0.076	ND ND ND	0.66 Various NS 0.33	6.6 Various NS 34	Various NS 100	Various NS 500	Various NS 1000
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methylnaphthalene 4-Methylpenoil Acenaphthene	ND ND 0.073 ND 0.049	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND SE ND ND ND	ND ND POLYCHLO ND MIVOLITALE 0.18 0.087 ND	ND ND RINATED BIP ND ORGANIC CO ND ND ND	ND ND HENYLS (PCE ND MPOUNDS (ND ND ND ND	ND ND SS) (ppm) ND SVOCS) (ppm ND ND	ND ND ND ND ND	ND ND 0.14 0.071 0.069	ND ND ND ND	ND ND 0.38 0.076 ND	ND ND ND ND	0.66 Various NS 0.33 20	0.6 Various NS 34 100	33 Various NS 100 100	500 Various NS 500 500	NS 1000 1000
Perfluoroctanoic acid (PFCA) Total PCBs 2-Meethy/inapithalene 4-Methy/iphenol Acenaphthene Acenaphthene	ND ND 0.073 ND 0.049 ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND SE ND ND ND ND ND ND ND	ND ND POLYCHLO ND MIVOLITALE 0.18 0.087 ND ND	ND ND RINATED BIP ND ORGANIC CO ND ND ND ND ND	ND ND HENYLS (PCE ND MPOUNDS (I ND ND ND ND ND ND	ND ND SS) (ppm) ND SVOCS) (ppm ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 0.14 0.071 0.069 0.59	ND ND ND ND ND ND ND ND	ND ND 0.38 0.076 ND 0.1	ND ND ND ND ND	0.66 Various NS 0.33 20 100	NS 34 100 100	NS 100 100 100	NS 500 500 500	NS 1000 1000 1000
Perfluoroctranic acid (PFOA) Total PCBs 2-Methylnaphthalene 4-Methylphenol Acenaphthene Acenaphthene Acenaphthene Acetophenone	ND ND 0.073 ND 0.049 ND ND ND	ND	ND	ND	ND ND SE ND ND ND ND ND ND ND ND	ND ND POLYCHLO ND ND MIVOLITALE 0.18 0.087 ND ND 0.061	ND ND RINATED BIP ND ORGANIC CO ND ND ND ND ND ND ND	ND ND HENYLS (PCE ND MPOUNDS (ND ND ND ND ND ND ND ND	ND ND SS) (ppm) ND SVOCS) (ppm ND ND ND ND ND ND ND ND ND	ND N	ND ND 0.14 0.071 0.069 0.59 ND	ND	ND ND 0.38 0.076 ND 0.1 ND	ND ND ND ND ND ND ND ND ND	0.66 Various NS 0.33 20 100 NS	NS 34 100 100 NS	33 Various NS 100 100 100 NS	NS 500 500 NS	NS 1000 1000 NS NS
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methylinghthalene 4-Methyliphenoi Acenaphthene Acenaphthylene Acetophenone Anthracene	ND ND 0.073 ND 0.049 ND ND ND 0.087	ND	ND ND ND ND ND ND ND	ND	ND ND SE ND	ND ND POLYCHLO ND ND MIVOLITALE 0.18 0.087 ND ND 0.061 ND	ND ND RINATED BIP ND ORGANIC CO ND ND ND ND ND ND ND ND ND	ND ND HENYLS (PCE ND MPOUNDS (I ND ND ND ND ND ND	ND ND ND SVOCS) (ppm) ND	ND N	ND ND 0.14 0.071 0.069 0.59	ND	ND 0.38 0.076 ND 0.1 ND 0.1	ND	0.66 Various NS 0.33 20 100	NS 34 100 100	NS 100 100 100	500 Various NS 500 500 500 NS 500	NS 1000 1000 NS 1000
Perfluoroctranic acid (PFOA) Total PCBs 2-Methylinaphthalene 4-Methylipenol Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acetophenone Anthracene Benzo[a]anthracene	ND ND 0.073 ND 0.049 ND ND ND 0.087 0.29	ND	ND	ND N	ND ND SE ND ND ND ND ND ND ND ND	ND ND POLYCHLO ND MIVOLITALE 0.18 0.087 ND	ND ND RINATED BIP ND ORGANIC CO ND ND ND ND ND ND ND	ND ND HENYLS (PCE ND MPOUNDS (ND	ND ND SS) (ppm) ND SVOCS) (ppm ND	ND N	ND 0.14 0.071 0.069 0.59 ND 1.2 4.3	ND	ND ND 0.38 0.076 ND 0.1 ND	ND N	0.66 Various NS 0.33 20 100 NS 100	6.6 Various NS 34 100 100 NS 100	33 Various NS 100 100 100 NS 100 NS	NS 500 500 NS	NS 1000 1000 1000 NS
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methylingalthalene 4-Methyliphenoi Acenaphthene Acenaphthylene Acetophenone Anthracene Benro(a) jamthracene Benro(a) jamthracene	ND ND 0.073 ND 0.049 ND ND ND 0.087 0.29 0.22	ND	ND N	ND N	ND ND SE ND	ND ND POLYCHLO ND MIVOLITALE 0.18 0.087 ND	ND ND RINATED BIP ND ORGANIC CO ND	ND ND HENYLS (PCE ND MPOUNDS (ND	ND ND ND SVOCS) (ppm) ND	ND N	ND 0.14 0.071 0.069 0.59 ND 1.2	ND N	ND 0.38 0.076 ND 0.1 ND 0.1 0.43 0.39	ND N	0.66 Various NS 0.33 20 100 NS 100 1	6.6 Various NS 34 100 NS 100 100	33 Various NS 100 100 NS 100 100 NS 100 1	NS 500 500 NS 500 5.6 1	NS 1000 1000 NS 1000 11 1.1
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methylinaphthalene 4-Methyliphene Acenaphthylene Acenaphthylene Acetochenone Anthracene Benzo(a) jamthracene Benzo(a) Benz	ND ND 0.073 ND 0.049 ND ND 0.087 0.22 0.39 0.15	ND	ND	ND N	ND ND SE ND	ND ND POLYCHLO ND	ND ND RINATED BIP ND ORGANIC CO ND 0.08 0.12 0.19	ND ND HENYLS (PCE MPOUNDS (ND	ND ND SS) (ppm) ND SVOCS) (ppm ND	ND N	ND 0.14 0.071 0.069 0.59 0.59 ND 1.2 4.3 4.1	ND N	ND 0.38 0.076 ND 0.1 ND 0.1 0.43 0.39 0.66 0.33	ND N	0.66 Various NS 0.33 20 100 NS 100 1 1 1 100	0.6 Various NS 34 100 100 NS 100 1 1 1 1 100	33 Various NS 100 100 100 100 110 11 1 11 100	NS 500 500 500 500 5.6 1 5.6 500 500	NS 1000 1000 1000 111 1.1 11 1000
Perfluoroctrancic acid (PFOA) Total PCBs 2-Methylinaphthalene 4-Methyliphenol Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Bentolalphrijkene Acetophenone Anthracene Bentolalphrijkene Bentolalphrijkene Bentolalphrijkene Bentolalphrijkene Bentolalphrijkene Bentolalphrijkene Bentolalphrijkene	ND ND 0.073 ND ND ND ND ND ND 0.087 0.29 0.22 0.39 0.15 0.21	ND	ND ND ND ND ND ND ND ND ND 2 1.1	ND	ND ND SE ND	ND ND POLYCHLO ND	ND N	ND ND ND MPOUNDS (ND	ND N	ND N	ND 0.14 0.071 0.069 0.59 1.2 4.3 4.1 4.7 2.5 2.6	ND N	ND 0.38 0.076 ND 0.1 0.43 0.39 0.66 0.33 0.23	ND N	0.66 Various NS 0.33 20 100 100 1 1 100 0.8	6.6 Various NS 34 100 100 100 11 1 1 100 100 11	33 Various NS 100 100 100 100 11 1 1 1 100 3.9	500 Various NS 500 500 500 NS 500 1 5.6 2.6 5.6 5.6 5.6 5.6 5.6	NS 1000 110 111 111 11000 110
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methylinaphthalene 4-Methyliphenoi Acenaphthylene Acetophinene Acetophenone Anthracene Benzo(a) jamthracene Benzo(a) Bignorene	ND N	ND	ND	ND N	ND ND SE ND	ND ND POLYCHIA (18	ND ND ND ND ORGANIC CO ND	ND N	ND ND SS) (ppm) ND SVOCS) (ppm ND	ND N	ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 ND	ND N	ND 0.38 0.076 ND 0.1 ND 0.1 0.0 0.1 0.43 0.39 0.66 0.33 0.23	ND N	0.66 Various NS 0.33 20 100 NS 100 1 1 1 0.8 NS	6.6 Various NS 34 100 100 NS 100 11 1 1 1 NS NS	33 Various NS 100 100 100 NS 100 11 1 1 10 100 NS	500 Various NS 500 500 NS 500 NS 500 1 5.6 5.6 500 NS	NS 1000 NS 1000 NS 1011 11 11 100 NS NS
Perfluorocctanoic acid (PFCA) Total PCBs 2-Meethy/inaphthalene 4-Methy/iphenoid Acenaphthee Acenaphthee Acetophenoie Acetophenoie Acetophenoie Acetophenoie Benzolog layerene	ND ND 0.073 ND 0.049 ND ND ND ND ND ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND	ND	ND	ND N	ND N	ND ND ND ND ND ND ND MIVOLITALE 0.18 0.087 ND	ND ND ND ND ND ND ND ND	ND N	ND ND ND SVOCS) (ppm ND	ND N	ND 0.14 0.071 0.069 0.59 1.2 4.3 4.1 4.7 2.5 2.6	ND N	ND 0.38 0.076 ND 0.1 ND 0.1 0.43 0.39 0.66 0.33 0.23 12 0.055	ND N	0.66 Various NS 0.33 20 100 NS 100 1 1 1 100 0.8 NS NS	6.6 Various NS 34 100 100 NS 100 1 1 1 1 1 NS NS NS	33 Various NS 100 100 100 100 1100 11 1 1 100 3.9 NS NS	500 Various NS 500 500 500 NS 500 5.6 1 5.6 500 56 NS NS NS	NS 1000 1000 1000 1000 111 1.1 1000 110 NS NS NS
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methyrinaphthalene 4-Methyriphenoi Acenaphthylene Acenaphthylene Acetophenone Anthracene Bento(a) jamthracene Ben	ND ND 0.073 ND 0.049 ND ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.047 0.41	ND	ND N	ND N	ND	ND ND POLYCHLO ND MIVOLITALE 0.18 0.087 ND	ND ND ND ND ORGANIC CO ND	ND N	ND N	ND N	ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 ND	ND N	ND ND 0.38 0.076 ND 0.1 ND 0.43 0.39 0.66 0.33 0.23 12 0.055 0.055	ND N	0.66 Various NS 0.33 20 100 NS 100 1 1 1 1 1 1 100 0.8 NS NS 11	6.6 Various NS 34 100 100 NS 100 1 1 1 1 100 1 NS NS NS NS	33 Various NS 100 100 100 100 110 11 1 100 3.9 NS NS NS 3.9	500 Various NS 500 500 500 NS 500 5.6 1 5.6 500 NS NS NS NS NS	NS 1000 1000 1000 111 11 11000 110 NS NS NS 1100
Perfluorocctanoic acid (PFOA) Total PCIB Total PCIB AMethyinghthalene 4-Methyiphenoil Acenaphthene Acetophenone Actiophenone Actiophenone Actiophenone Actiophenone Benoziojahnthacene Benoziojahnthacene Benoziojahnthacene Benoziojahnthacene Benoziojahnthacene Benoziojahnthacene Benoziojahnthacene Benoziojahnthacene Boliz Etylinevij phthalate Chrysne Dhysne Dhevia Ajahnthacene	ND ND 0.073 ND 0.087 ND ND ND ND ND 0.087 0.29 0.22 0.39 0.15 ND 0.047 ND 0.047 ND 0.047 ND 0.047 ND 0.052	ND	ND N	ND N	ND	ND N	ND ND ND ND ND ND ND ND	ND ND ND HENYLS (PCE ND	ND ND ND SS) (ppm) ND SS) (ppm) ND	ND N	ND ND 0.14 0.071 0.069 ND 1.2 4.3 4.1 4.7 2.5 ND 0.13 4.3 0.72	ND N	ND ND 0.38 0.076 ND 0.1 ND 0.1 0.39 0.66 0.33 0.23 12 0.055 0.055 0.09	ND N	0.66 Various NS 0.33 20 100 NS 100 1 1 1 1 100 0.8 NS NS NS 1 1 0.33	6.6 Various NS 34 100 100 100 1 1 1 1 1 1 1 1	33 Various NS 100 100 100 100 11 1 1 1 100 3.9 NS NS NS 3.9 0.33	\$00 Various NS \$00 \$00 \$00 \$00 \$500 \$5.6 \$5.6 \$5.6 \$5.6 \$5.7 \$5.6 \$5.7	NS 1000 110 NS 1000 111 11 11000 110 NS NS NS 110 NS 110 NS NS 1110 NS NS 1110 11.1
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methyrinaphthalene 4-Methyriphenoi Acenaphthylene Acenaphthylene Acetophenone Anthracene Bento(a) jamthracene Ben	ND ND 0.073 ND 0.049 ND ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.047 0.41	ND	ND N	ND N	ND	ND ND POLYCHLO ND MIVOLITALE 0.18 0.087 ND	ND ND ND ND ORGANIC CO ND	ND N	ND N	ND N	ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 ND	ND N	ND ND 0.38 0.076 ND 0.1 ND 0.43 0.39 0.66 0.33 0.23 12 0.055 0.055	ND N	0.66 Various NS 0.33 20 100 NS 100 1 1 1 1 1 1 100 0.8 NS NS 11	6.6 Various NS 34 100 100 NS 100 1 1 1 1 100 1 NS NS NS NS	33 Various NS 100 100 100 100 110 11 1 100 3.9 NS NS NS 3.9	500 Various NS 500 500 500 NS 500 5.6 1 5.6 500 NS NS NS NS NS	NS 1000 1000 1000 111 11 11000 110 NS NS NS 1100
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methyringshthalene 4-Methyriphenoi Acenaphthylene Acenaphthylene Acetophenone Anthracene Bento(a) jambracene Dibento(a) jambracene Dibento(a) jambracene Dibento(a) jambracene	ND ND 0.073 ND 0.049 ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.047 0.41 0.052 ND	ND	ND	ND N	ND	ND N	ND N	ND ND ND HENYLS (PCE ND MPOUNDS (ND	ND N	ND N	ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 2.6 ND 0.13 4.3 0.72 0.16	ND N	ND ND 0.38 0.076 ND 0.1 ND 0.1 0.1 0.43 0.39 0.66 0.33 0.23 12 0.055 0.48 0.48 0.086	ND	0.66 Various NS 0.33 20 100 NS 100 1 1 1 1 100 0.8 NS NS 10 0.33 7	6.6 Various NS 34 100 100 100 11 1 1 1 1 100 10 10 10 10	NS 100 100 100 100 100 100 100 100 100 10	NS 500 S00 S00 S00 S00 S00 S00 S00 S00 S0	NS 1000 1000 1100 110 NS 110 110 110 110 NS 110 110 110 110 110 110 NS 110 110 110 110 110 110 110 110 110 11
Perfluorocctanoic acid (PFOA) Total PCIB Total PCIB Adethyinghthalene 4-Methylphenol Acenaphthene Acenaphthene Acetophenone Actiophenone Actiophenone Actiophenone Actiophenone Benod(a)anthracene Benod(a)anthracene Benod(a)huthalene Debrod(a)huthalene Debrod(a)huthalene Debrod(anhalene)	ND ND 0.073 ND 0.049 ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.041 0.052 ND ND 0.052 ND 0.010 ND 0.047 0.047 0.047 0.040 ND 0.047 0.040 ND 0.040 ND 0.040 ND 0.040 ND 0.052 ND	ND	ND N	ND N	ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 ND 0.13 4.3 0.77 0.16	ND N	ND 0.38 0.076 ND 0.1 ND 0.1 0.43 0.39 0.66 0.33 12 0.023 12 0.005 0.48 0.09 0.086	ND N	0.66 Various NS 0.33 20 100 11 1 1 100 0.8 NS NS 100 0.33 7 100 100 11 100 100 11 100 100 100 100	6.6 Various NS 34 100 100 100 11 1 1 1 100 1 100 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 1 1 100 1 100 1 100 1 100 1 100 1 100 1 100	33 Various NS 100 100 100 100 NS 100 10 10 100 NS 100 3.9 NS NS NS 0.33 59 100 100 100 100 100 100 100 100 100 10	500 Various NS 500 500 500 NS 500 5.6 1 5.6 5.6 0.56 NS NS 500 5.6 0.56 0.56 500 500 500 500 500 500 500 500 500 5	Various Various NS 1000 1000 1000 NS 1000 11 1.1 1.1 1.1 1000 110 NS NS 1000 110 110 110 110 110 110 110 110 1
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methyrinaphthalene 4-Methyriphenoi Acenaphthyene Acetophenoe Acetophenoe Actobenone Anthracene Benzo(a) anthracene Benzo(a) Benzo(b) Buoranthene Benzo(a) Buoranthene Bloenzo(a) Buoranthene	ND ND 0.073 ND 0.049 ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.067 ND ND 0.071 ND 0.071 ND 0.072 ND 0.	ND	ND N	ND N	ND ND ND ND ND ND ND ND	ND	ND N	ND N	ND ND SIVE STATE S	ND N	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.1 2.5 2.6 ND 0.13 4.3 0.72 0.16 10 0.34 2.3	ND N	ND ND 0.38 0.076 ND 0.1 ND 0.1 0.43 0.39 0.66 0.33 0.23 12 0.055 0.48 0.09 0.086 1.3 0.069 0.27	ND N	0.66 Various NS 0.33 20 100 NS 100 11 1 1 100 0.8 NS 1 100 0.8 NS 1 1 100 0.8 NS 11 100 0.8 NS 11 100 100 100 100 100 100 100 100 100	6.6 Various NS 34 100 100 100 100 11 1 1 1 100 1 1 100 1 100 1 100 100 0.5 100 100 0.5	33 Various NS 100 100 100 NS 100 11 1 1 1 100 3.9 NS NS 3.9 100 100 100 100 100 100 100 100 100 10	500 Various NS 500 500 500 NS 500 500 1 5.6 1 5.6 NS 56 NS 56 0.56 350 500 500 500 500 500 500 5	000 Various NS 1000 1000 1000 NS 1000 111 11 11000 110 NS 110 110 110 110 110 110 110 110 110 11
Perfluorocctanoic acid (PFOA) Total PCBs 2-Methylinaphthalene 4-Methyliphenol Acenaphthiene Acetophenone Antinacene Benzol (a) antinacene Benzol (a) privene Benzol (b) privene Benzol	ND ND 0.073 ND 0.049 ND	ND	ND N	ND N	ND ND ND ND ND ND ND ND	ND ND POLYCHLO ND POLYCHLO ND	ND N	ND N	ND ND ND SSYOCS) (ppm) ND	ND N	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 ND 0.13 0.72 0.16 10 0.34 2.3 0.15	ND N	ND ND 0.38 0.076 ND 0.1 ND 0.1 ND 0.1 0.33 0.39 0.66 0.33 0.23 12 0.055 0.48 0.09 0.096 1.36 0.27 0.32	ND N	0.66 Various NS 0.33 20 100 100 11 1 1 100 0.8 NS NS 11 0.33 7 100 0.5 11 100 100 100 100 100 100 100 100 100	6.6 Various NS 34 100 100 100 110 110 110 110 110 110 11	33 Various NS 100 100 100 100 110 11 1 1 100 3.9 NS NS NS 0.33 59 100 100 100 100 100	\$00 Various NS \$00 \$00 \$00 \$00 \$00 \$00 \$00	NS 1000 1000 111 11 110 1000 1000 1000 1
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methyrinaphthalene 4-Methyriphenoi Acenaphthyene Acetophenoe Acetophenoe Actobenone Anthracene Benzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Pilocenet Indeno(a) planthracene Pilocenet Piloc	ND ND 0.073 ND 0.049 ND ND ND 0.087 ND 0.087 0.29 0.21 ND 0.047 0.041 0.052 ND 1.11 ND 0.052 ND 1.11 ND 0.051 ND 0.056 ND	ND	ND N	ND N	ND ND SEE ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND ND	ND ND ND HENYLS (PCE ND	ND ND ND SS) (ppm) ND SSO(CS) (ppm ND	ND N	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 2.6 ND 0.13 4.3 0.77 0.16 10 0.34 2.3 0.15 4.2 ND	ND N	ND ND 0.38 0.076 ND 0.1 ND 0.1 0.43 0.39 0.66 0.33 0.23 0.23 0.055 0.48 0.09 0.086 0.33 0.09 0.080 0.069	ND N	0.66 Various NS 0.33 20 100 100 11 1 1 1 100 0.8 NS 13 7 100 0.33 7 100 0.5 11 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.6 Various NS 34 100 100 100 100 110 11 1 1 1 1 1 1 1 1	33 Various NS 100 100 100 100 100 11 1 1 1 100 3.9 NS NS 0.33 59 100 100 100 100 100 100 100 100 100 10	\$00 Various NS \$00 \$00 \$00 \$00 \$00 \$50 \$50 \$5	NS 1000 1000 1000 1000 1000 1000 1000 10
Perfluorocctanoic acid (PFOA) Total PCBs 2-Methylinaphthalene 4-Methyliphene 4-Methyliphene 4-Methyliphene 4-Resophthene 6-Resophthene 6-Restophenene 6-Restophenenene 6-Restophenenenenenenenenenenenenenenenenenenen	ND ND 0.073 ND 0.049 ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.047 0.41 ND 1.1 1.1 ND 0.12 0.056 ND 0.72	ND	ND N	ND N	ND ND SE	ND ND POLYCHLO ND	ND N	ND ND HENYLS (PCE ND	ND N	ND ND ND ND ND ND ND ND	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 2.6 ND 0.13 4.3 0.72 0.16 10 0.34 2.3 0.15 4.2 ND	ND ND ND ND ND ND ND ND	ND 0.38 0.076 ND 0.1 ND 0.1 0.1 0.43 0.39 0.66 0.33 12 0.05 0.48 0.09 0.08 1.3 0.09 0.08 1.3 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.09	ND N	0.66 Various NS 0.33 20 100 NS 100 11 1 1 100 0.8 NS NS 1 100 0.5 11 0.33 7 100 0.5 11 100 0.5 11 100 0.5 11 100 0.6 11 100 0.8 100	6.6 Various NS 34 100 100 100 100 100 1 1 1 1 1 1 1 1 1	33 Various NS 100 100 100 100 100 11 1 1 1 100 3.9 NS NS NS 3.9 0.33 59 100 0.5 100 100 100 100	\$00 Various NS 500 \$00 \$00 \$00 \$00 \$00 \$50 \$5	NS 1000 1000 1000 1000 1000 1000 1000 10
Perfluoroctanoic acid (PFOA) Total PCBs 2-Methyrinaphthalene 4-Methyriphenoi Acenaphthyene Acetophenoe Acetophenoe Actobenone Anthracene Benzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Dibenzo(a) planthracene Pilocenet Indeno(a) planthracene Pilocenet Piloc	ND ND 0.073 ND 0.049 ND ND ND 0.087 ND 0.087 0.29 0.21 ND 0.047 0.041 0.052 ND 1.11 ND 0.052 ND 1.11 ND 0.051 ND 0.056 ND	ND	ND N	ND N	ND ND SEE ND ND ND ND ND ND ND	ND N	ND ND ND ND ND ND ND ND	ND ND ND MPOUNDS (ND	ND	ND N	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 2.6 ND 0.13 4.3 0.77 0.16 10 0.34 2.3 0.15 4.2 ND	ND N	ND ND 0.38 0.076 ND 0.1 ND 0.1 0.43 0.39 0.66 0.33 0.23 0.23 0.055 0.48 0.09 0.086 0.33 0.09 0.080 0.069	ND N	0.66 Various NS 0.33 20 100 100 11 1 1 1 100 0.8 NS 13 7 100 0.33 7 100 0.5 11 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.6 Various NS 34 100 100 100 100 110 11 1 1 1 1 1 1 1 1	33 Various NS 100 100 100 100 100 11 1 1 1 100 3.9 NS NS 0.33 59 100 100 100 100 100 100 100 100 100 10	\$00 Various NS \$00 \$00 \$00 \$00 \$00 \$50 \$50 \$5	000 Various NS 1000 1000 1000 1000 111 1.1 1.1 110 NS NS 110 110 110 110 110 110 110 110 110 11
Perfluorocctanoic acid (PFOA) Total PCBs 2-Methylinaphthalene 4-Methyliphenel Acenaphthiene Acenaphthiene Acetophenene Acetophenene Acetophenene Benroloj Janhtriacene Benroloj Bluoranthene Bluorene Fluorene Fluorene Indenoloj 2,3-cd/pyrene Naphthalene Phenol Pyrene Total TICs	ND ND 0.073 ND 0.049 ND ND ND ND ND 0.089 0.29 0.22 0.39 0.15 0.21 ND 0.05 ND 1.1 ND 0.05 ND 0.05 ND 1.1 ND 0.12 0.56 ND 0.72 6.49	ND	ND N	ND N	ND ND SE	ND ND POLYCHLO ND	ND ND ND ND ND ND ND ND	ND ND HENYLS (PCE ND	ND	ND ND ND ND ND ND ND ND	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 2.6 ND 0.13 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.	ND ND ND ND ND ND ND ND	ND 0.38 0.076 ND 0.1 ND 0.1 ND 0.1 0.43 0.39 0.66 0.33 12 0.05 0.48 0.09 0.09 0.086 1.3 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.	ND	0.66 Various NS 0.33 20 100 NS 100 11 1 1 100 0.8 NS 11 100 0.8 NS 11 100 0.8 NS 11 0.33 7 100 0.5 12 100 0.5 12 100 0.5 11 100 0.8	6.6 Various NS 34 100 1000 1000 1100 NS 1000 1100 1100 11	33 Various NS 100 100 100 100 NS 100 11 1 1 100 3.9 NS NS 3.9 100 100 100 100 100 100 100 100 100	Various NS 500 NS 500 500 NS 500 S00 S	600 Various NS 1000 1000 1000 NS 1000 111 111 11000 1100 NS 110 110 NS 110 110 NS 110 110 110 110 110 1000 100
Perfluorocctanoic acid (PFOA) Total PCBs 2-Methylinaphthalene 4-Methyliphene 4-Methyliphene 4-Methyliphene 4-Resophthene 6-Resophthene 6-Restophenene 6-Restophenenene 6-Restophenenenenenenenenenenenenenenenenenenen	ND ND 0.073 ND 0.049 ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.047 0.41 ND 1.1 1.1 ND 0.12 0.056 ND 0.72	ND	ND N	ND N	ND N	ND N	ND N	ND ND ND MENYLS (PCC ND	ND N	ND N	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 2.6 ND 0.13 4.3 0.72 0.16 10 0.34 2.3 0.15 4.2 ND	ND	ND 0.38 0.076 ND 0.1 ND 0.1 0.1 0.43 0.39 0.66 0.33 12 0.05 0.48 0.09 0.08 1.3 0.09 0.08 1.3 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.09	ND N	0.66 Various NS 0.33 20 100 NS 100 11 1 1 100 0.8 NS NS 1 100 0.5 11 0.33 7 100 0.5 11 100 0.5 11 100 0.5 11 100 0.6 11 100 0.8 100	6.6 Various NS 34 100 100 100 100 100 1 1 1 1 1 1 1 1 1	33 Various NS 100 100 100 100 100 11 1 1 1 100 3.9 NS NS NS 3.9 0.33 59 100 0.5 100 100 100 100	\$00 Various NS 500 \$00 \$00 \$00 \$00 \$00 \$50 \$5	000 Various NS 1000 1000 1000 1000 111 11 110 NS NS 1000 111 110 110 110 110 110 110 110 1
Perfluorocctanic acid (PFDA) Total PCBs 2-Meethylraphthalene 4-Methylphenol Acenaphthee Acenaphthee Acenaphthee Acetophenone Benzola (Particular acid acid acid acid acid acid acid acid	ND ND 0.073 ND 0.049 ND ND ND ND ND ND ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.047 0.41 ND 0.051 0.11 ND 0.12 0.051 0.72 0.89 ND ND ND ND ND ND ND ND ND N	ND	ND N	ND N	ND ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND N	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 2.6 ND 0.13 0.72 0.16 10 0.34 2.3 0.15 4.2 ND 0.35 0.15 0.37	ND	ND ND 0.38 0.076 ND 0.1 ND 0.1 0.43 0.39 0.66 0.33 0.23 12 0.055 0.09 0.086 1.3 0.09 0.069 0.09 0.086 91.97	ND N	0.66 Various NS 0.33 20 100 NS 100 11 1 1 1 00 0.8 NS NS 1 1 1 0.0 0.7 1 1 1 0.0 0.8 NS	6.6 Various NS 34 100 100 100 100 110 11 1 1 1 1 1 1 1 1	33 Various NS 100 100 100 100 100 11 1 1 1 1 100 3.9 NS 100 100 100 100 100 100 100 100 100 10	\$500 Various NS \$500	600 Various NS 1000 1000 1000 1000 111 11 11 11 110 1000 110 1000 110 1000 110 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Perfluoroccianoic acid (PFOA) Total PCBs 2-Methylrapithalene 4-Methylphenol 4-Kensphthylene 4-Kensphthylene Acetophenone Anthracene Benzolglanthracene Dibenzoltracene Benzolglanthracene Dibenzoltracene Benzolglanthracene Dibenzoltracene Benzolglanthracene Dibenzoltracene Fluorene Indenoigla_3-dilpyrene Naphthalene Phenanthrene	ND ND 0.073 ND 0.049 ND 0.087 0.29 0.22 0.39 0.15 0.21 ND 0.047 0.041 0.052 ND 0.052 ND 0.072 0.20 0.30 0.072 0.40 0.72 0.40 0.72 0.40 0.72 0.80 0.72 0.80 0.72	ND	ND N	ND N	NO NO NO NO NO NO NO NO	ND N	ND N	ND ND ND MENYLS (PCC ND	ND N	ND N	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.1 4.7 2.5 2.6 ND 0.13 4.3 0.72 0.16 10 0.34 2.3 0.72 0.16 4.2 0.17 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	ND	ND ND 0.38 0.076 ND 0.1 ND 0.1 ND 0.39 0.63 0.23 12 0.055 0.48 0.09 0.27 0.055 0.8 ND 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.	ND N	0.66 Various NS 0.33 20 100 NS 100 11 1 100 0.8 NS 13 100 100 100 100 100 100 100 100 100	6.6 Various NS 34 100 100 100 100 110 110 110 110 110 11	33 Various NS 100 100 100 100 11 11 11 100 100 100 100 100 100 NS 100 100	500 Various NS 500 500 500 NS 500 500 500	600 Various NS 1000 1000 1000 NS 1000 111 111 11000 1100 NS 110 110 NS 110 110 NS 110 110 NS 110 110 1000 100
Perfluorocctanoic acid (PFDA) Total PCBs 2-Methylraphthalene 4-Methylphenol Acenaphthylene Acenaphthylene Acetophanone Acetophanone Acetophanone Acetophanone Acetophanone Acetophanone Acetophanone Acetophanone Acetophanone Benzold jambracene Bisj2-ethylenyil phthalate Chrispene Bisj2-ethylenyil phthalate Bisj2-ethylenyil phthalate Chrispene Bisj2-ethylenyil phthalate Chrispene Bisj2-ethylenyil phthalate Chrispene Bisj2-ethylenyil phthalate Chrispene Bisj2-ethylenyil phthalate Bisj2-ethylenyil phthalate Chrispene Bisj2-ethylenyil phthalate Bisj2-ethylenyil phthalate Bisj2-ethylenyil phthalate Bisj2-ethylenyil phthalate Chrispene Bisj2-ethylenyil phthalate Bisj2-ethylenyil phthalate Bisj2-ethylenyil phthalate Chrispene Bisj2-ethylenyil phthalate Bisj2-ethylenyil phthalat	ND 0.073 ND 0.073 ND 0.087 ND 0.087 ND 0.087 ND 0.087 0.29 0.29 0.39 0.19 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41	ND N	ND N	ND N	NO NO NO NO NO NO NO NO	ND N	ND N	NO NO NO NO NO NO NO NO	ND N	ND N	ND ND 0.14 0.071 0.069 0.59 ND 1.2 4.3 4.1 4.7 2.5 ND 0.13 4.3 0.72 0.16 10 0.34 2.3 0.15 0.20 0.30 0.34 0.0006	NO N	ND 0.38 0.076 ND 0.1 ND 0.1 ND 0.1 ND 0.33 0.39 0.66 0.33 12 0.055 0.48 0.09 0.096 0.32 0.095	ND N	0.66 Various NS 0.33 20 100 100 100 100 0.8 NS 11 1 1 100 0.8 NS 12 100 0.33 7 100 0.5 12 100 0.5 12 100 0.5 12 100 0.8 NS 0.5 12 100 0.8 NS 0.5 12 100 0.8 NS 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	6.6 Various NS 34 100 100 100 11 1 1 100 100	33 Various NS NS 100 100 100 100 100 100	500 Various NS 500 500 500 500 500 500 500	NS 1000 1000 1000 1000 1000 1000 1000 10
Perfluorocatanoic acid (PFOA) Total PCBs 2-Methylinghthalene 4-Methyliphenol Acenaphthylene Acetophenoe Actophenone Antiracene Benzo(a) plantiracene Diocentiracene Diocentiracene Diocentiracene Diocentiracene Tuorene	ND 0.073 0.073 0.049 ND 0.087 0.087 0.029 0.329 0.31 0.041 0.047 0.041 0.011 ND 0.050 ND 0.087 0.041 0.041 0.041 0.041 0.050 ND	ND N	ND N	ND N	NO NO NO NO NO NO NO NO	NO	NO NO NO NO NO NO NO NO	NO N	NO N	ND N	ND 0.14 0.071	ND N	ND 0.38 0.076 ND 0.017 0.017 0.017 0.017 0.017 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0	ND N	0.66 Various NS 0.33 20 100 100 100 100 100 100 100 100 100	6.6 Various NS 34 100 100 100 11 1 1 1 100 100	33 Various NS NS 100 100 100 100 11 1 1 1 100 10	500 Various NS 500 500 500 500 500 500 500	600 Various NS 1000 1000 1000 1000 1000 111 111 111
Perfluorocctanoic acid (PFOA) Total PCIB 2-Methyinaphthalene 4-Methyiphenol Acenaphthene Acetophenoe Benzol(a)phrenee Dibenzol(a)phrenee Dibenzol(a)phrenee Dibenzol(a)phrenee Dibenzol(a)phrenee Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Benzol(a)phrenee Benzol(a)phre	ND 0.073 ND 0.073 ND 0.089 ND 0.089 ND 0.087 0.089 0.25 0.22 0.29 0.21 0.01 0.01 0.051 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.055 0.056 0.056 0.057 0.057 0.058 0.05	NO N	NO N	ND N	NO SEE SEE	NO NO NO NO NO NO NO NO	NO	NO N	NO N	ND N	ND 0.14 0.071 0.091 0.092 0.099 0.59 ND 1.2 4.3 4.1 4.7 2.5 2.6 ND 0.13 4.1 0.72 0.16 10 0.34 2.3 0.75 0.16 10 0.34 0.75 0.006 0.006 0.006 0.006 ND ND	ND N	NO N	ND N	0.66 Various NS 0.33 20 100 NS 11 1 1 100 0.8 NS NS 12 100 0.33 7 100 0.5 12 100 0.5 12 100 0.5 12 100 0.5 12 100 0.7 100 0.8 NS NS NS NS NS NS NS NS NS N	6.6 Various NS 34 100 100 100 100 110 11 1 1 1 1 1 1 1 1	33 NS NS 100 100 100 100 100 110 11 11 11 1100 159 NS 19 100 100 100 100 100 100 100 100 100	500 Various NS 500 500 500 500 NS 500 500	NS 1000 1000 1000 1000 1000 1000 1000 10
Perfluorocatanoic acid (PFOA) Total PCBs 2-Methylinghthalene 4-Methyliphenol Acenaphthylene Acetophenoe Actophenone Antiracene Benzo(a) plantiracene Diocentiracene Diocentiracene Diocentiracene Diocentiracene Tuorene	ND 0.073 0.073 0.049 ND 0.087 0.087 0.029 0.329 0.31 0.041 0.047 0.041 0.011 ND 0.050 ND 0.087 0.041 0.041 0.041 0.041 0.050 ND	ND N	ND N	ND N	NO NO NO NO NO NO NO NO	NO	NO NO NO NO NO NO NO NO	NO N	NO N	ND N	ND 0.14 0.071	ND N	ND 0.38 0.076 ND 0.017 0.017 0.017 0.017 0.017 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0	ND N	0.66 Various NS 0.33 20 100 100 100 100 100 100 100 100 100	6.6 Various NS 34 100 100 100 11 1 1 1 100 100	33 Various NS NS 100 100 100 100 11 1 1 1 100 10	500 Various NS 500 500 500 500 500 500 500	600 Various NS 1000 1000 1000 1000 1000 111 111 111

Notes:

1 PFAS limits are guidance values only; theree is still no official SCOs in New York State.
ND Not Detected
NS No Standard
NSTOEC New York State Department of Environmental Conservation
ppm parts per million
ppt parts per ritilion
feet below grounds face
r result is rejected/unusable

TABLE 1 - SOIL SAMPLING RESULTS

						Sample Ident	fication, Sample D	enth and Sample	Collection Da	te						NYSDEC Part 3	375 Soil Cleanup (Objectives (SCOs)	
	RI-BH-9	RI-BH-10	RI-BH-11	RI-BH-11	RI-BH-12	RI-BH-13	RI-BH-14	RI-BH-15	RI-BH-15	RI-BH-16	RI-BH-17	RI-BH-17	RI-BH-18	RI-BH-18		MISSECTURES		objectives (SCOS)	
Analyte	1-3'	1-4'	14'	6-9'	1-3'	1.4	0-3'	0-3"	7-10'	0-3'	0-31	8-11'	0.31	5-8'	Unrestricted	Residential	Restricted Residential	Commercial	Industrial
	5/28	8/2025						5/27/202	15										
Aluminum	12200	11000	11600	23100	16800	9850	16600	LS (ppm) 4490	11000	13000	14400	12000	17500	9160	NS	NS	NS	NS	NS
Antimony	1.5	0.79	0.8	ND ND	ND	ND	0.98	ND ND	0.79	1.2	1.5	0.95	1.4	0.66	NS	NS	NS	NS	NS
Arsenic	7.4	19.8	11.5	8.7	3.4	5.5	9.9	5.4	8.9	12.2	12.3	15.2	13.9	13	13	16	16	16	16
Barium	216	354	95.7	162	181	58.4	250	34.3	85.3	205	245	200	92.6	164	350	350	400	400	10000
Beryllium	0.53	1.5	0.8	0.97	3.6 0.12	0.42	0.83	0.23 ND	0.55	1.4	0.82	0.58	0.65	0.59	7.2 2.5	14 2.5	72 4.3	590 9.3	2700 60
Calcium Calcium	5670	0.25 5600	0.26 37400	0.16 3020	72300	81300	2330	36100	0.22 4730	0.33 26000	0.68 8300	1.1 38400	0.24 2210	16400	NS NS	NS NS	4.3 NS	9.3 NS	NS NS
Chromium	17.1	24.1	17	28.5	11.8	23.3	20	6	15.2	21.5	21.5	16.8	21.5	12.6	1	22	110	400	800
Cobalt	6	8.8	8.5	10.7	3.6	5.8	12.6	2.6	14.2	8.3	11.8	11.2	8.5	10.9	NS	NS	NS	NS	NS
Copper	598	27.5	29.3	24.3	14.9	43.1	34	6.8	42.4	53.7	67.8	35.6	25.8	51	50	270	270	270	10000
Iron Lead	18600	30500 64.3	28100 67.5	33400 12.9	11900 30.3	14700 11.9	27600 25.3	7200 5.2	24700 19.5	23500	29200 293	25700 25.1	33700 64.3	24900 23.5	NS 63	NS 400	NS 400	NS 1000	NS 3900
Magnesium	2720	1800	5190	5860	22500	7530	3710	8400	4420	5880	4290	7670	2990	5030	NS NS	NS NS	NS NS	NS NS	NS NS
Manganese	278	219	615	309	987	330	136	95.1	247	778	485	397	378	261	1600	2000	2000	10000	10000
Nickel	14.3	22.5	19.8	35.3	7	20.9	35.5	7.6	33.6	22.1	28.8	32	20.5	29.7	30	140	310	310	10000
Potassium Selenium	2160	1570	1900 ND	4090	1450	1660 ND	3150	812 ND	2210 ND	1990	2460	2990	2690	2120 ND	NS	NS 36	NS 180	NS	NS
Selenium Silver	ND ND	3.2 ND	ND ND	ND ND	0.22	ND ND	ND ND	ND ND	ND ND	2.1 ND	1.2 ND	1.1 ND	1.2 ND	ND ND	3.9	36 36	180	1500 1500	6800 6800
Sodium	280	417	281	416	645	215	83	98.7	88.9	248	153	160	93.1	105	NS NS	NS.	NS.	NS.	NS
Thallium	ND	ND	1	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS						
Vanadium	26.7	29.2	19.6	39	11.1	19.8	27.4	8.9	17.4	21	25.7	22.1	34.7	16.7	NS	NS	NS	NS	NS
Zinc	370	70.1	73.8	79.2	39.3	40.5	213	23.5	97	122	328	158	113	80.8	109	2200	10000	10000	10000
Cyanide, Total Mercury	ND 0.41	ND 0.12	ND 0.043	ND 0.02	0.69	ND 0.017	ND 0.035	ND 0.0065	ND 0.018	ND 0.088	ND 0.099	ND 0.021	ND 1	ND 0.018	27 0.18	27 0.81	27 0.81	27 2.8	10000 5.7
marcay.	0.42	0.11	0.043	0.02	0.02	0.017	ORGANOCHLORIN	NE PESTICIDES (ppr	n)	0.000	0.033	0.02.1	_	0.010	0.10	0.01	0.01	1.0	3.7
4,4'-DDD	ND	ND	ND	ND	0.00077	ND	ND	ND	ND	0.0038	ND	ND	ND	ND	0.0033	2.6	13	92	180
4,4'-DDE	ND	ND	0.00074	ND	ND	ND	ND	ND	ND	0.0066	0.0013	ND	ND	ND	0.0033	1.8	8.9	62	120
4,4'-DDT	ND	0.012	0.0028	ND	0.0036	0.069	0.003	0.003	ND	0.017	0.0042	ND	0.0035	ND	0.0033	1.7	7.9	47	94
alpha-BHC beta-BHC	0.0059	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.02	0.097	0.48	3.4	6.8 14
Endosulfan II	ND	ND ND	ND ND	ND ND	0.0012	ND ND	ND ND	ND ND	ND ND	0.0011	ND ND	ND ND	ND ND	ND ND	2.4	4.8	24	200	920
Endrin aldehyde	ND	ND	ND	ND	0.0014	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Endrin ketone	0.011	ND	0.0015	ND	ND	ND	0.0017	ND	ND	0.0038	ND	ND	ND	0.0016	NS	NS	NS	NS	NS
gamma-BHC (Lindane)	0.014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	0.28	1.3	9.2	23
Methoxychlor trans-Chlordane	0.022 ND	0.012 ND	ND ND	ND ND	0.0042 ND	0.1 ND	0.0044 ND	0.0034 ND	0.0035 ND	0.0042	0.0057 ND	ND ND	0.0036 ND	0.0038 ND	NS NS	NS NS	NS NS	NS NS	NS NS
that o chordane	NO	ND.	110	142	1,40	PER-	R POLYFLUOROALKY	L SUBSTANCES (P	FAS) (ppt)	0.0014	NU	ND	NO	ND	.,,			N.J	, ay
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	0.14	ND	ND	ND	ND	ND	0.11	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Perfluorobutanoic acid (PFBA)	ND	ND	ND	0.15	ND	ND	ND	ND	NS	NS	NS	NS	NS						
Perfluorodecanoic acid (PFDA)	ND	ND	ND	ND	ND	ND	0.073	ND	NS	NS	NS	NS	NS NS						
Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS)	ND ND	ND 0.070	ND ND	ND ND	ND ND	ND ND	0.093 ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS						
Perfluorohexanoic acid (PFHxA)	ND ND	ND	ND ND	0.071	ND ND	ND ND	0.11	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS						
Perfluorooctanesulfonic acid (PFOS)	ND	0.17	ND	ND	ND	ND	ND	0.77	ND	0.34	ND	ND	1.6	ND	0.88	8.8	44	440	440
Perfluorooctanoic acid (PFOA)	ND	0.073	ND	ND	ND	ND	ND	0.088	ND	0.18	ND	ND	0.51	ND	0.66	6.6	33	500	600
Perfluoropentanoic acid (PFPeA)	ND	ND	ND	0.071	ND	ND	0.11	ND	NS	NS	NS	NS	NS						
Total PCBs	ND	ND	ND	ND	ND	ND ND	ND	SIPHENYLS (PCBS) (ppm) ND	ND	ND	ND	ND	ND	Various	Various	Various	Various	Various
TOTAL I COS	110	NO.	110	IND	ND.		OLITALE ORGANIC		CS) (ppm)	ND	ND	ND	ND	ND	Various	Various	Various	Various	Various
2-Methylnaphthalene	0.039	ND	0.11	ND	0.039	ND	0.064	0.051	ND	0.13	0.033	ND	0.13	ND	NS	NS	NS	NS	NS
4-Methylphenol	ND	ND	ND	0.037	ND	ND	ND	ND	0.33	34	100	500	1000						
Acenaphthene	ND	ND	ND	ND	ND	ND	0.085	ND	ND	ND	ND	ND	ND	ND	20	100	100	500	1000
Acenaphthylene Anthracene	ND ND	ND ND	0.044	ND ND	ND 0.046	ND 0.055	ND 0.22	ND ND	ND ND	0.055	ND 0.062	ND 0.08	0.042	ND ND	100 100	100 100	100 100	500 500	1000 1000
Benzolalanthracene	0.11	ND ND	0.009	ND ND	0.15	0.14	0.32	ND ND	ND ND	0.003	0.15	0.08	0.063	ND ND	1	100	1	5.6	11
Benzo[a]pyrene	0.092	ND	0.28	ND	0.12	0.13	0.35	ND	ND	0.29	0.15	0.16	0.31	ND	1	1	1	1	1.1
Benzo[b]fluoranthene	0.14	0.096	0.37	ND	0.18	0.15	0.41	ND	ND	0.49	0.2	0.21	0.46	ND	1	1	1	5.6	11
Benzo[g,h,i]perylene	0.069	ND	0.21	ND	0.12	0.12	0.25	ND	ND	0.26	0.12	0.069	0.22	ND	100	100	100	500	1000
Benzo[k]fluoranthene Bis(2-ethylhexyl) phthalate	0.068 ND	ND ND	0.22 ND	ND ND	0.089 ND	0.088 ND	0.24 ND	ND ND	ND ND	0.15 0.11	0.098 ND	0.058 ND	0.22 ND	ND ND	0.8 NS	NS NS	3.9 NS	56 NS	110 NS
Caprolactam	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS
Carbazole	ND	ND	ND	ND	ND	ND	0.083	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS.	NS	NS
Chrysene	0.16	ND	0.41	ND	0.17	0.14	0.38	ND	ND	0.53	0.16	0.21	0.41	ND	1	1	3.9	56	110
Dibenz(a,h)anthracene Dibenzofuran	ND ND	ND ND	0.061 ND	ND ND	0.046 ND	ND ND	0.08	ND ND	ND ND	0.098 ND	ND ND	ND ND	0.091	ND ND	0.33	0.33	0.33 59	0.56 350	1.1
Dibenzofuran Fluoranthene	ND 0.24	ND ND	ND 0.76	ND ND	ND 0.29	ND 0.34	0.067	ND ND	ND ND	ND 0.59	ND 0.37	ND 0.36	0.047	ND ND	7	100	59 100	350 500	1000 1000
Fluorene	ND	ND ND	ND	ND ND	ND	ND	0.068	ND	ND ND	ND	ND	ND	ND	ND ND	30	100	100	500	1000
Indeno[1,2,3-cd]pyrene	0.058	ND	0.18	ND	0.1	0.089	0.2	ND	ND	0.2	0.087	0.083	0.22	ND	0.5	0.5	0.5	5.6	11
Naphthalene	0.035	ND	ND	ND	ND	ND	ND	ND	ND	0.078	0.14	ND	0.081	ND	12	100	100	500	1000
Phenanthrene	0.19	ND	0.38	ND	0.24	0.24	0.99	0.044	ND	0.43	0.26	0.1	0.43	ND	100	100	100	500	1000
Pyrene Total TICs	0.19	ND 43.8	0.57 62.13	ND 57.54	0.23	0.28	0.75	ND 42.71	ND 49.4	0.43 26.9	0.27 14.33	0.29 26.51	0.52 9.24	ND 18.85	100 NS	100 NS	100 NS	500 NS	1000 NS
	20.73	45.0	02.13	37.34	20.00	227.02		COMPOUNDS (VC		20.5	17.33	40.34	3.47	40.00				- 13	- 113
1,1,1-Trichloroethane	ND	ND	0.00049	ND	ND	ND	ND	ND	0.68	100	100	500	1000						
2-Butanone (MEK)	ND	0.0072	0.004	ND	ND	0.025	ND	ND	ND	ND	ND	0.015	ND	ND	0.12	100	100	500	1000
Acetone	ND	0.11	0.036	0.0091	ND	0.16	ND	0.0057	ND	ND	0.013	0.08	ND	ND	0.05	100	100	500	1000
Chloroform	0.00053 ND	ND 0.0012	0.0005 ND	0.00055 ND	0.0004 ND	0.00058 ND	0.00044 ND	0.00052 ND	0.00047 ND	0.0006 ND	0.00054 ND	0.00055 ND	0.00048 ND	0.00059 ND	0.37	10	49	350 NC	700
	ND ND	0.0012 ND	0.0044	0.0087	ND 0.0053	ND 0.0074	0.0062	0.0066	0.006	0.0058	0.0068	0.0051	0.0032	0.0047	NS 0.05	NS 51	NS	NS 500	NS 1000
Methylene Chloride Methylenecyclohexane				ND ND	ND ND	ND	ND	ND			ND ND	0.0051 ND		ND	NS	NS	100 NS	NS	
Methylene Chloride Methylenecyclohexane Total TICs	ND ND	0.0049	ND ND						ND ND	ND ND			ND ND					NS NS	NS NS

Note:

1 PFAS limits are guidance values only, theree is still no official \$COs in New York State.

NO Not Detected
NS No Standard
NS No Standard
STANDEC New York State Department of Environmental Conservation
poin parts per million
poin parts per million
poin parts per fillion
feet below apout of unface
Research of the New York State Department of Environmental Conservation
feet below apout of unface
Research of the New York State Office New York State Office New York State
Research Office

TABLE 1 - SOIL SAMPLING RESULTS

		Sample	Identification,		NYSDEC Part 375 Soil Cleanup Objectives (SCOs)							
	RI-MW-1	RI-MW-2	RI-MW-3	RI-MW-3-DUP	RI-MW-4	RI-MW-4-DUP	RI-MW-5					
Analyte								Unrestricted	Residential		Commercial	Industrial
	8-11'	4-7'	8-11'	8-11'	9-12'	9-12'	9-12'					
<u> </u>				5/28/2025 METALS (ppm)								
Aluminum	13400	19100	12000	13400	10800	10500	9890	NS	NS	NS	NS	NS
Antimony	1.1	ND ND	0.85	1.1	ND	ND	ND	NS	NS	NS	NS	NS
Arsenic	12.2	5.9	12.2	12.6	9.6	7	8.6	13	16	16	16	16
Barium	134	105	56.4	66.6	48.6	130	249	350	350	400	400	10000
Beryllium	1	0.82	0.74	0.82	0.57	0.57	0.5	7.2	14	72	590	2700
Cadmium	0.16	0.25	0.35	0.33	0.31	0.2	0.36	2.5	2.5	4.3	9.3	60
Calcium	10800	1830	3880	3240	31800	43200	26400	NS	NS	NS	NS	NS
Chromium	17.7	19.1	17.1	18.4	15.1	14.4	14.1	1	22	110	400	800
Cobalt	16.4 40.9	11.2 34.7	16.2 46.9	17.4 44.8	11.9 39.2	9.5 29.7	10.7 33.4	NS 50	NS 270	NS 270	NS 270	NS 10000
Copper Iron	29800	21400	31600	31600	25000	21700	23300	NS NS	NS NS	NS NS	NS	NS
Lead	20.6	12.1	23.1	22.2	18	14	16.9	63	400	400	1000	3900
Magnesium	6750	3940	5430	5630	7980	8560	7270	NS NS	NS	NS	NS	NS
Manganese	308	164	247	255	356	406	333	1600	2000	2000	10000	10000
Nickel	38.8	46.4	42.3	43.8	32.2	25.1	28.4	30	140	310	310	10000
Potassium	2970	2620	2650	3120	2520	2550	2120	NS	NS	NS	NS	NS
Selenium	1.2	1	1.2	1.1	ND	ND	ND	3.9	36	180	1500	6800
Silver	ND	ND	ND	ND	ND	ND	ND	2	36	180	1500	6800
Sodium	176	120	118 0.86	128	168	162	121	NS	NS	NS	NS NS	NS
Thallium	ND 19.7	ND 24.2	19.7	1 22.8	ND 19.3	ND 19	ND 15.9	NS NS	NS NS	NS NS	NS NS	NS NS
Vanadium Zinc	42.3	77.4	69.3	67.7	74.6	48.5	15.9	109	2200	10000	10000	10000
Mercury	0.023	0.031	0.016	0.014	0.02	0.02	0.015	0.18	0.81	0.81	2.8	5.7
increally	0.023	0.031		CHLORINE PESTICI		0.02	0.015	0.10	0.01	0.01	2.0	5.7
4,4'-DDD	ND	0.0017	ND	ND	ND	ND	ND	0.0033	2.6	13	92	180
4,4'-DDE	ND	ND	ND	ND	ND	ND	ND	0.0033	1.8	8.9	62	120
4,4'-DDT	0.057	0.0032	ND	ND	0.0028	ND	ND	0.0033	1.7	7.9	47	94
Aldrin	ND	ND	ND	ND	ND	ND	ND	0.005	0.019	0.097	0.68	1.4
alpha-BHC	ND	0.0012	0.00081	0.00081	ND	ND	ND	0.02	0.097	0.48	3.4	6.8
beta-BHC	ND	ND	0.00097	ND	ND	ND	ND	0.036	0.072	0.36	3	14
Endrin ketone	0.035	0.0021	0.0011 ND	0.0013 ND	ND ND	0.012 ND	ND	NS 0.4	NS 0.28	NS 1.3	NS 9.2	NS 23
gamma-BHC (Lindane) Methoxychlor	ND ND	0.001 ND	ND ND	0.0037	0.0031	ND ND	ND 0.0034	0.1 NS	0.28 NS	NS NS	NS NS	NS NS
Wethoxychiol	ND	ND		OROALKYL SUBSTA			0.0034	NS	143	N3	IV3	143
Perfluorooctanesulfonic acid (PFOS)	ND	ND	ND	0.13	ND	ND	ND	0.88	8.8	44	440	440
Perfluorooctanoic acid (PFOA)	ND	ND	ND	0.083	ND	ND	ND	0.66	6.6	33	500	600
			POLYCHLOR	INATED BIPHENYLS	(PCBS) (ppm)							
Total PCBs	ND	ND	ND	ND	ND	ND	ND	Various	Various	Various	Various	Various
				RGANIC COMPOUN								
1,4-Dioxane	ND	0.035	ND	ND	ND	ND	ND	0.1	9.8	13	130	250
Benzaldehyde	0.036	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Dibenzofuran	0.045 0.086	ND 0.064	ND 0.036	ND 0.035	ND	ND 0.1	ND ND	7 12	14 100	59 100	350 500	1000 1000
Naphthalene Pentachlorophenol	0.042	0.064 ND	0.036 ND	0.035 ND	0.067 ND	ND	ND ND	0.8	2.4	6.7	6.7	55
Phenanthrene	5.3	3.5	4.4	6.2	6.3	7.3	1.5	100	100	100	500	1000
Phenol	1.8	6.3	1.8	3.9	1.7	0.76	0.42	0.33	100	100	500	1000
							0.4	100	100	100	500	1000
			1.2	0.8	0.6	1.1						
Pyrene Total TICs	1.9 37.1	0.81 19.8	1.2 31.7	0.8 23.95	0.6 16.68	1.1 36.67	13.91	NS NS	NS	NS NS	NS NS	NS
Pyrene	1.9	0.81	31.7		16.68							NS
Pyrene Total TICs Acetone	1.9 37.1	0.81 19.8 0.015	31.7 VOLITALE 0.006	23.95 ORGANIC COMPOU 0.01	16.68 INDS (VOCS) 0.018	36.67 0.007	13.91 0.011	NS 0.05	NS 100	NS 100	NS 500	1000
Pyrene Total TICS Acetone Carbon disuffide	1.9 37.1 0.008 0.0035	0.81 19.8 0.015 ND	31.7 VOLITALE 0.006 ND	23.95 ORGANIC COMPOU 0.01 ND	16.68 INDS (VOCS) 0.018 ND	36.67 0.007 ND	0.011 ND	0.05 NS	NS 100 NS	NS 100 NS	NS 500 NS	1000 NS
Pyrene Total TICs Acetone Carbon disulfide Chloroform	1.9 37.1 0.008 0.0035 ND	0.81 19.8 0.015 ND 0.00052	31.7 VOLITALE 0.006 ND 0.00051	23.95 DRGANIC COMPOU 0.01 ND 0.00049	16.68 INDS (VOCS) 0.018 ND 0.0005	36.67 0.007 ND 0.00053	0.011 ND 0.00047	0.05 NS 0.37	100 NS 10	NS 100 NS 49	NS 500 NS 350	1000 NS 700
Pyrene Total TICS Acetone Carbon disulfide Chloroform Chloroform Cs-1,2-Dichloroethene	1.9 37.1 0.008 0.0035 ND 0.0012	0.81 19.8 0.015 ND 0.00052 ND	31.7 VOLITALE 0.006 ND 0.00051 ND	23.95 ORGANIC COMPOU 0.01 ND 0.00049 ND	16.68 INDS (VOCS) 0.018 ND 0.0005 ND	36.67 0.007 ND 0.00053 ND	0.011 ND 0.00047 ND	0.05 NS 0.37 0.25	100 NS 10 59	100 NS 49 100	NS 500 NS 350 500	1000 NS 700 1000
Pyrene Total TICs Acetone Carbon disulfide Chloroform cis-1,2-bichloroethene Cyclobkane	1.9 37.1 0.008 0.0035 ND 0.0012	0.81 19.8 0.015 ND 0.00052 ND	31.7 VOLITALE 0.006 ND 0.00051 ND ND	23.95 DRGANIC COMPOU 0.01 ND 0.00049 ND 0.00075	16.68 INDS (VOCS) 0.018 ND 0.0005 ND ND	36.67 0.007 ND 0.00053 ND ND	0.011 ND 0.00047 ND 0.00079	0.05 NS 0.37 0.25	100 NS 10 59 NS	100 NS 49 100 NS	500 NS 350 500 NS	1000 NS 700 1000 NS
Pyrene Total TICs Acetone Carbon disulfide Chioroform dis-1,2-Dichloroethene Cyclohexane Methylicyclohexane Methylicyclohexane	1.9 37.1 0.008 0.0035 ND 0.0012 ND	0.81 19.8 0.015 ND 0.00052 ND ND	31.7 VOLITALE 0.006 ND 0.00051 ND ND ND	23.95 DRGANIC COMPOU 0.01 ND 0.00049 ND 0.00075 0.0025	16.68 NDS (VOCS) 0.018 ND 0.0005 ND ND ND ND	36.67 0.007 ND 0.00053 ND ND ND 0.0014	0.011 ND 0.00047 ND 0.00079 0.0013	0.05 NS 0.37 0.25 NS	100 NS 10 59 NS NS	100 NS 49 100 NS NS	NS 500 NS 350 500 NS NS NS NS	1000 NS 700 1000 NS NS
Pyrene Total TICs Acetone Carbon disulfide Chloroform cis-1,2-Oichioreethene Cyclohexane Methylcyclohexane Methylcyclohexane Methylene Chloride	1.9 37.1 0.008 0.0035 ND 0.0012 ND 0.012	0.81 19.8 0.015 ND 0.00052 ND ND ND	31.7 VOLITALE (0.006 ND 0.00051 ND ND ND ND ND	23.95 ORGANIC COMPOL 0.01 ND 0.00049 ND 0.00075 0.0025 ND	16.68 INDS (VOCS) 0.018 IND 0.0005 IND	36.67 0.007 ND 0.00053 ND ND 0.0014 ND	13.91 0.011 ND 0.00047 ND 0.00079 0.0013 0.0034	NS 0.05 NS 0.37 0.25 NS NS 0.05	100 NS 10 59 NS NS NS	100 NS 49 100 NS NS 100	NS 500 NS 350 S00 NS NS NS 500	1000 NS 700 1000 NS NS
Pyrene Total TICs Acetone Carbon disulfide Chioroform dis-1,2-Dichloroethene Cyclohexane Methylicyclohexane Methylicyclohexane	1.9 37.1 0.008 0.0035 ND 0.0012 ND	0.81 19.8 0.015 ND 0.00052 ND ND	31.7 VOLITALE 0.006 ND 0.00051 ND ND ND	23.95 DRGANIC COMPOU 0.01 ND 0.00049 ND 0.00075 0.0025	16.68 NDS (VOCS) 0.018 ND 0.0005 ND ND ND ND	36.67 0.007 ND 0.00053 ND ND ND 0.0014	0.011 ND 0.00047 ND 0.00079 0.0013	0.05 NS 0.37 0.25 NS	100 NS 10 59 NS NS	100 NS 49 100 NS NS	NS 500 NS 350 500 NS NS NS NS	1000 NS 700 1000 NS NS

Notes:

1 FFAS limits are guidance values only; theree is still no official SCOs in New York State.
ND Not Detected
NS No Standard
NYSDEC New York State Department of Environmental Conservation
ppm parts per million
ppt parts per trillion
fet below ground surface
R result is rejected/unusable

TABLE 1 - SOIL SAMPLING RESULTS

		Sampl	e Identification, Sample I	Depth and Sample Collecti	on Date			NYSDEC Part	375 Soil Cleanup O	ojectives (SCOs)	
Analyte	RI-BH-19	RI-BH-20	SS-1	SS-2	SS-3	SS-4					
	3-5'	2-4'	0.17-0.5	0.17-0.5	0.17-0.5	0.17-0.5	Unrestricted	Residential	Restricted Residential	Commercial	Industrial
			8/1:	I/2025 METALS (ppm)							
Aluminum	15900	7200	13600	METALS (ppm)	9130	14200	NS	NS	NS	NS	NS
Antimony	15900 ND	7200 ND	13000 ND	11300 ND	9130 ND	14200 ND	NS NS	NS NS	NS NS	NS NS	NS NS
Arsenic	14.2	16.4	12	17.2	8.3	10.8	13	16	16	16	16
Barium	200	364	141	98.8	106	156	350	350	400	400	10000
Beryllium	1.5	1	0.83	0.7	0.69	0.81	7.2	14	72	590	2700
Cadmium	0.85	0.083	0.42	0.34	0.6	0.43	2.5	2.5	4.3	9.3	60
Calcium Chromium	7280 18.5	3270 15.6	9340 26.4	8170 15.5	108000 24.2	6660 28.2	NS 1	NS 22	NS 110	NS 400	NS 800
Cobalt	12.4	4.7	10.4	9.2	6.5	12.4	NS NS	NS NS	NS NS	NS NS	NS NS
Copper	57.3	17	44.3	39.5	109	39.2	50	270	270	270	10000
Cyanide, Total	ND	0.7	0.5	4.6	2.2	3.8	27	27	27	27	10000
Iron	19700	25300	26200	22600	20100	25400	NS	NS	NS	NS	NS
Lead	454	6	168	72.4	101	157	63	400	400	1000	3900
Magnesium	1400 83.7	657 60.3	4770 490	4190 448	23800 641	3800 345	NS 1600	NS 2000	NS 2000	NS 10000	NS 10000
Manganese Mercury	0.66	0.17	0.22	0.16	0.12	0.25	0.18	0.81	0.81	2.8	5.7
Nickel	39.1	13.1	31.6	28.7	21.3	36.7	30	140	310	310	10000
Potassium	1580	874	2600	1810	1720	2740	NS	NS NS	NS NS	NS NS	NS
Selenium	1.4	2.2	1.1	0.94	1.1	1.1	3.9	36	180	1500	6800
Silver	ND	ND	ND	ND	ND	ND	2	36	180	1500	6800
Sodium	149	357	104	83.6	163	118	NS	NS	NS	NS NS	NS NS
Thallium Vanadium	ND 23.2	ND 18.6	ND 25.5	ND 17.8	ND 19.9	ND 26.2	NS NS	NS NS	NS NS	NS NS	NS NS
Zinc	892	13.1	25.5 156	17.8	19.9	153	109	2200	10000	10000	10000
				HLORINE PESTICIDES (ppm)						33333	
4,4'-DDD	0.0054	ND	ND	ND	ND	ND	0.0033	2.6	13	92	180
4,4'-DDE	0.0043	ND	ND	ND	ND	ND	0.0033	1.8	8.9	62	120
4,4'-DDT	0.0039	ND	ND	ND	0.0028	ND	0.0033	1.7	7.9	47	94
Aldrin	ND	ND	ND 0.00081	ND 0.00081	ND	ND	0.005	0.019	0.097	0.68	1.4 6.8
alpha-BHC beta-BHC	ND ND	ND ND	0.00081	0.00081 ND	ND ND	ND ND	0.02	0.097	0.48	3.4	14
cis-Chlordane	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.094	0.91	4.2	24	47
delta-BHC	0.00082	ND	ND	ND	ND	ND	0.04	100	100	500	1000
Dieldrin	ND	ND	ND	ND	ND	ND	0.005	0.039	0.2	1.4	2.8
Endosulfan I	ND	ND	ND	ND	ND	ND	2.4	4.8	24	200	920
Endosulfan II	ND	ND	ND	ND	ND	ND	2.4	4.8	24	200	920
Endosulfan sulfate Endrin	ND 0.0012	ND 0.00081	ND ND	ND ND	ND ND	ND ND	2.4 0.014	4.8 2.2	24 11	200 89	920 410
Endrin Endrin aldehyde	0.0012 ND	0.00081 ND	ND ND	ND ND	ND ND	ND ND	0.014 NS	NS NS	NS NS	NS	NS NS
Endrin ketone	ND ND	ND ND	0.0011	0.0013	ND ND	0.012	NS NS	NS	NS	NS NS	NS NS
gamma-BHC (Lindane)	ND	ND	ND	ND	ND	ND	0.1	0.28	1.3	9.2	23
Heptachlor	ND	ND	ND	ND	ND	ND	0.042	0.42	2.1	15	29
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS
Methoxychlor	0.00094 ND	ND ND	ND ND	0.0037 ND	0.0031 ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS
Toxaphene trans-Chlordane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS
tions chioraune	NO	ND		ROALKYL SUBSTANCES (PFA		NO	NS	165	NS	163	113
Total PFAS	ND	ND	-		-	-	Various	Various	Various	Various	Various
			POLYCHLORIN	NATED BIPHENYLS (PCBS) (pp	ım)						
Total PCBs	ND	ND	-	-	-	-	Various	Various	Various	Various	Various
				GANIC COMPOUNDS (SVOC		,	_				1
2-Methylnaphthalene	ND ND	0.056	ND ND	ND ND	0.055	ND ND	NS 100	NS 100	NS 100	NS EDD	NS 1000
Acenaphthylene Anthracene	ND ND	ND ND	ND 0.46	ND ND	0.037 0.039	ND ND	100	100 100	100 100	500 500	1000 1000
Benzo[a]anthracene	0.45	0.034	2.9	ND ND	0.28	0.97	100	100	100	5.6	11
Benzo[a]pyrene	0.49	0.039	3.3	0.84	0.34	1.1	1	1	1	1	1.1
Benzo[b]fluoranthene	0.61	0.06	4.9	1.5	0.41	1.8	1	1	1	5.6	11
Benzo[g,h,i]perylene	0.37	0.033	3.1	0.74	0.33	0.92	100	100	100	500	1000
Benzo[k]fluoranthene	0.26	ND ND	1.7	ND ND	0.33	0.59	0.8	1	3.9	56	110
Carbazole Chrysene	ND 0.53	ND 0.051	0.42 3.6	ND ND	ND 0.39	ND 1.4	NS 1	NS 1	NS 3.9	NS 56	NS 110
Chrysene Fluoranthene	0.53	0.051	7.5	ND 1.7	0.39	2.5	100	100	100	500	1000
A THE SECRET CONTRACTOR	0.25	ND ND	2.4	0.63	0.05	0.87	0.5	0.5	0.5	5.6	11
Indeno[1.2.3-cd]pyrene		0.057	2.7	0.58	0.19	0.91	100	100	100	500	1000
Indeno[1,2,3-cd]pyrene Phenanthrene	0.66				0.51	2.1	100	100	100	500	1000
	0.66	0.079	5.7	1.3							
Phenanthrene			17.1	17.9	38.12	9.9	NS	NS	NS	NS NS	NS
Phenanthrene Pyrene Total TICs	0.9 0	0.079 0	17.1 VOLITALE O	17.9 RGANIC COMPOUNDS (VOC	38.12	9.9	NS	NS	NS	NS	
Phenanthrene Pyrrene Total TICs Acetone	0.9 0	0.079 0 0.014	17.1 VOLITALE O 0.006	17.9 RGANIC COMPOUNDS (VOCS 0.01	38.12 5) 0.018	9.9	NS 0.05	NS 100	NS 100	NS 500	1000
Phenanthrene Pyrene Total TiCs Acetone Chloroform	0.9 0 0.0099 ND	0.079 0 0.014 ND	17.1 VOLITALE O 0.006 0.00051	17.9 RGANIC COMPOUNDS (VOCS 0.01 0.00049	38.12 5) 0.018 0.0005	9.9 0.007 0.00053	0.05 0.37	NS 100 10	NS 100 49	NS 500 350	1000 700
Phenanthrene Pyrene Total TICs Acetone	0.9 0	0.079 0 0.014	17.1 VOLITALE O 0.006	17.9 RGANIC COMPOUNDS (VOCS 0.01	38.12 5) 0.018	9.9	NS 0.05	NS 100	NS 100	NS 500	1000

Notes:

1 PFAS limits are guidance values only; theree is still no official SCOs in New York State.

NO Not Detected
NS No Standard
NYSDEC New York State Department of Environmental Conservation
pen parts per rillilon
pot parts per trillion
feet plants per trillion
feet parts per suit is rejected/unusable
R result is rejected/unusable

TABLE 2 - GROUNDWATER SAMPLING RESULTS

	Sample Identification and Sample Date					
Parameter Tested	MW-2	MW-3	MW-4	MW-5	Trip Blank	Technical and Operational Guidance Series (1.1.1)
	4/21/2025			4/23/2025		
		М	ETALS (mg/L)			
Aluminum	0.17	0.55	0.16	0.068	-	NS
Antimony	ND	ND	ND	ND	-	0.003
Arsenic	0.0019	0.0015	0.00076	0.0011	-	0.025
Barium	0.079	0.062	0.095	0.15	-	1
Beryllium	ND	ND	ND	ND	-	0.003
Cadmium	ND	ND	ND	ND	-	0.005
Calcium	140	181	218	178	-	NS
Chromium	ND	0.001	ND	ND	-	0.05
Cobalt	0.00063	0.00073	ND	0.0033	-	NS
Copper	ND	ND	ND	0.0017	-	0.2
Cyanide, Total	0.0096	0.0082	0.0083	0.0095	-	0.2
Iron	0.77	1.3	0.35	0.19	-	0.3
Lead	ND	ND 26.6	ND	ND	-	0.025
Magnesium	16.3	36.6	47.8	43.8	-	35
Manganese	0.23	0.34	0.47	2.6	-	0.3
Mercury	ND 0.0019	ND 0.0028	ND 0.0010	ND 0.0057	-	0.0007
Nickel	0.0018	0.0028 10.6	0.0019 6.9	0.0057 18	-	0.1 NS
Potassium Selenium	0.00068	0.0032	ND	0.00056	-	
Silver	0.00068 ND	0.0032 ND	ND ND	0.00036 ND		0.01 0.05
Sodium	59.8	66.2	180	14.5	-	20
Thallium	ND	ND	ND	14.5 ND	-	0.0005
Vanadium	ND ND	ND ND	ND ND	ND ND	-	0.0005 NS
Zinc	ND	ND ND	ND	0.0033	-	2
Zilic	ND		VOCS (ug/L)	0.0033		2
1,4-Dioxane	ND	ND	ND	0.15	_	NS
4-Methylphenol	ND	ND	ND	0.55	_	NS
Acetophenone	0.78	ND	ND	1.6	-	NS
Di-n-butyl phthalate	0.36	ND	0.39	0.65	-	50
Diethyl phthalate	ND	ND	ND	0.41	-	50
Total TICs	60.7	44.3	43.4	110.2	-	NS
			/OCS (ug/L)			
Acetone	9.7	ND	32	51	ND	50
Benzene	ND	ND	ND	0.58	ND	1
Carbon disulfide	ND	ND	ND	0.45	ND	NS
Chloroform	ND	ND	ND	2	ND	7
Cyclohexane	ND	ND	ND	1.7	ND	NS
Methylcyclohexane	1.6	0.32	0.56	1.7	ND	NS
Toluene	ND	ND	ND	0.92	ND	5
			PFAS (ng/L)			
Perfluorobutanesulfonic acid (PFBS)	1.1	4.4	0.44	0.46	-	NS
Perfluorobutanoic acid (PFBA)	2.9	4.7	3	1.4	-	NS
Perfluorodecanoic acid (PFDA)	ND	ND	ND	ND	-	NS
Perfluoroheptanoic acid (PFHpA)	0.96	0.83	ND	ND	-	NS
Perfluorohexanesulfonic acid (PFHxS)	ND	ND	ND	ND	-	NS
Perfluorohexanoic acid (PFHxA)	1.1	3.9	1.1	3.3	-	NS
Perfluorononanoic acid (PFNA)	ND	ND	ND	ND	-	NS
Perfluorooctanoic acid (PFOA)	1.8	1.4	ND	1.3	-	6.7
Perfluorooctanesulfonic acid (PFOS)	ND	ND	0.48	ND	-	2.7
Perfluoropentanoic acid (PFPeA)	0.86	4.8	1.3	0.55	-	NS
			PCBS (ug/L)			
Total PCBs	ND	ND	ND	ND	-	0.09
		ı	ORINE PESTICID			
alpha-BHC	ND	ND	ND	0.0087	-	NS
Methoxychlor	ND	ND	ND	0.016	I	35

ND Not Detected NS No Standard

TICs Tentatively Identified Compounds

TABLE 3 - VAPOR SAMPLING RESULTS

		Sample	Identification, Type	of Sample, and Date	Analyzed	
	RI-VP-1	RI-VP-2	RI-VP-3	RI-VP-4	RI-VP-5	RI-VP-6
			5/30	0/2025		
Contaminants			Volatile Organic	Compounds (TO-15)		
1,1,2-Trichlorotrifluoroethane	ND	0.53	ND	0.54	ND	ND
1,2,4-Trimethylbenzene	ND	6.6	ND	8.1	55	19
1,3,5-Trimethylbenzene	ND	0.80	ND	2.1	22	5.3
1,4-Dichlorobenzene	ND	8.5	ND	ND	ND	ND
2,2,4-Trimethylpentane	ND	ND	8.4	1.8	ND	10
4-Ethyltoluene	ND	0.75	ND	2.6	28	6.7
4-Isopropyltoluene	ND	26	ND	0.54	8.1	ND
4-Methyl-2-pentanone (Methyl isobutyl ketone)	ND	3.5	ND	ND	ND	ND
Acetone	16000	180	1700	730	3200	1700
Benzene	ND	0.28	ND	0.47	6.6	ND
Carbon disulfide	24	0.81	12	4.2	170	7.4
Carbon tetrachloride	ND	0.47	ND	0.46	ND	ND
Chlorodifluoromethane	ND	1.7	ND	ND	ND	ND
Chloromethane	ND	1.7	ND	1.7	ND	ND
Cumene	ND	ND	ND	0.88	13	ND
Cyclohexane	ND	0.28	4.3	1.3	530	21
Dichlorodifluoromethane	ND	2.8	ND	2.6	19	ND
Ethylbenzene	ND	0.57	ND	3.2	47	8.5
Isopropyl alcohol	ND	31	ND	10	ND	83
m,p-Xylene	3.0	2.6	ND	8.3	110	22
Methyl Butyl Ketone (2-Hexanone)	ND	6.7	ND	4.3	11	14
Methyl Ethyl Ketone (2-Butanone)	190	37	16	45	61	150
Methyl methacrylate	ND	2.3	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND
n-Butane	59	3.0	13	9.6	250	200
n-Butylbenzene	ND	ND	ND	1.2	5.9	ND
n-Heptane	48	8.4	ND	2.0	12000	37
n-Hexane	44	ND	ND	0.89	250	44
n-Propylbenzene	ND	0.45	ND	2.0	23	5.1
Naphthalene	ND	2.8	ND	ND	ND	ND
o-Xylene	ND	0.89	ND	3.8	49	10
sec-Butylbenzene	ND	ND	ND	0.69	8.0	ND
Tetrachloroethene	ND	ND	ND	0.93	40	3.1
Toluene	ND	2.1	4.6	5.6	78	17
Trichloroethene	ND	ND	2.9	2.7	5.4	ND
Trichlorofluoromethane	ND	1.5	ND	1.4	ND	ND

- (1) All values are in micrograms per cubic meter (ug/m³) ND Not detected
- Not applicable/no guidance value

		BE3 166 E 4th St	reet Phase II - Sample I	dentification and	Sample Date		NYSDEC	Soil Cleanup Objectiv	es (SCOs)
Parameter Tested	BH-1	BH-2	BH-3	BH-5	BH-10	BH-12			
r drameter rested	1-2'	1-2'	1-2.5'	1-2'	1-2'	1-2'	Restricted		
			8/31/202				Residential	Commerical	Industrial
	•			/IETALS/INORGA					
Arsenic	13.3	12.2	11.5	11.5	16.7	17.2	16	16	16
Barium	137.0	112.0	195.0	264.0	299.0	372.0	400	400	10,000
Beryllium	1.4	0.69	0.70	0.77	0.83	1.60	72	590	2,700
Cadmium	0.4100	0.34	0.94	0.98	0.37	0.18 J	4.3	9.3	60
Chromium	23.6	14.6	21.1	27.3	30.2	21.1	180	1,500	6,800
Copper	33.6	45.6	53.8	54.0	84.8	23.5	270	270	10,000
Lead	115	37	429.0	243.0	240	11.7	400	1,000	3,900
Manganese	916 B	403 B	338 B	546 B	148 B	112 B	2,000	10,000	10,000
Mercury	0.38 F1	0.03	0.75	0.85	0.24	0.025	0.81	2.8	5.7
Nickel	32.8	41.8	21.1	23.7	26.0	21.6	310	310	10,000
Selenium	ND	ND	ND	2.2 J	1.5 J	9.00	180	1,500	6,800
Silver	ND	ND	ND	ND	ND	ND	180	1,500	6,800
Zinc	149	90.9	361.0	806.0 E ORGANIC CON	138.0	20.6	10,000	10,000	10,000
Acenaphthylene	1.2 J F1	0.26 J	ND	ND	ND	ND ND	100	500	1,000
Anthracene	1.2 J F1	ND	ND	ND ND	ND	ND	100	500	1,000
Benzo(a)anthracene	4.3 F1	0.7 J	0.6 J	0.890 J	0.094 J	0.380 J	1	5.6	11
Benzo(a)pyrene	4.8 F1	0.7 J 0.85 J	0.6 J	1 J	0.094 J 0.110 J	0.380 J ND	1	5.b 1	1.1
Benzo(b)fluoranthene	5.4 F2 F1	0.85 J	0.670 J	1.3 J	0.110 J 0.130 J	ND ND	1	5.6	1.1
Benzo(g,h,i)perylene	3.4 F1	0.680 J	0.490 J	0.780 J	0.130 J	ND ND	100	500	1,000
Benzo(k)fluoranthene	2.7 F1	0.520 J	0.490 J	0.660 J	0.064 J	ND	3.9	56	110
Chrysene	4.2 F1	0.860 J	0.560 J	1.1 J	0.130 J	ND	3.9	56	110
Fluoranthene	110	1.6 J	1.1 J	1.7 J	0.190 J	0.580 J	100	500	1,000
Indeno(1,2,3-cd)pyrene	2.9	0.570 J	0.350 J	0.610 J	0.070 J	ND	0.5	5.6	11
Phenanthrene	5.7 F1	0.600 J	0.540 J	0.680 J	0.110 J	ND	100	500	1,000
Pyrene	8	1.3 J	0.940 J	1.4 J	0.160 J	ND	100	500	1,000
Tyrene		1.5 3		IDENTIFIED CO			100	300	1,000
TICS	ND	ND	ND	ND ND	ND	ND I	Various	Various	Various
1163		IND		NOCHLORINE P		IVE	Various	Various	Various
4.4-DDD	ND	ND	ND	ND	0.0035 J	0.0085 J	13	92	180
4.4-DDE	ND	ND	0.016 J	ND	0.0021 J	ND	8.9	62	120
4.4-DDT	0.012 J	ND	0.011 J	0.0047 J	ND	ND	7.9	47	94
Endosulfan sulfate	ND	0.011 J F1	ND	ND	ND	ND	24	200	920
Cis-Chlordane	ND	ND	ND	0.013 J	ND	ND	4.2	24	47
Endosulfan II	ND	ND	ND	ND	ND	ND	24	200	920
	-		VOLATILE (DRGANIC COMP					
2-Butanone (MEK)	ND	ND	ND	0.014 J	0.0053 J	0.0042 J	100	500	1,000
Acetone	ND	ND	ND	0.095	0.041	0.038	100	500	1,000
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	100	500	1,000
Trichloroethene	ND	ND	ND	ND	ND	ND	21	200	400
ND	Analyte not deter		16 11: 1.		Analyte detecte	ed			

- Not Applicable or sample not tested for this analyte

J Estimated Concentration

B Anaalyte detected in method blank

K Result is reported as Benzo(b)fluoranthene

E Results exceeded calibration range

F1/F2 MS or MSD recovery exceeds control limits

T Result is Tentatively Identifies Compound and an estimated value

TABLE 4 **SUMMARY OF SOIL ANLAYTICAL RESULTS** 2023

Reported concentration greater than or equal to the NYSDEC Industrial SCO
Reported concentration greater than or equal to the NYSDEC Commercial SCO
Reported concentration greater than or equal to the NYSDEC Restricted Residential SCO

TABLE 4 CONT. SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 2023

Parameter Tested	Sample Identification and Sample Date Parameter Tested				
	MW-1	MW-2	GA		
	8/31	/2023			
	METALS				
Arsenic	35	31	25		
Barium	1000	810	1000		
Beryllium	7.6	1.7 J	3		
Cadmium	ND	ND	5		
Chromium, Total	95	43	50		
Copper	100	96	200		
Lead	78	150	25		
Manganese	220	3000	300		
Mercury	ND	ND	0.7		
Nickel	140	76	100		
Zinc	160	170	2000		
	TENTATIVELY IDENTIFIED COMPOUNDS (TICS)				
Methylcylohexane	ND ND	5.5 T J N			
2-methylbutane	ND ND	6.7 T J N	_		
Pentane	ND ND	9.9 T J N	-		
1		9.9 T J N 6.8 T J N	-		
2-methylpentane	ND		-		
Methylcylopentane	ND	17 T J N	-		
Cylohexane	ND	21 T J N	-		
Ispropylcylobutane	ND	8.3 T J N	-		
methylcylohexane	ND	37 T J N	-		
1,4-dimethylcylohexane	ND	6.8 T J N	-		
m&p-xylene	ND	5.4	-		
	ILE ORGANIC CON	/IPOUNDS (SVOCs)			
SVOCs	ND	ND	Various		
VOLATILI	ORGANIC COMP				
Acetone	10	14	50		
1,3,5-Trimethylbenzene	ND	1.9	5		
1,2,4-Trimethylbenzene	ND	8.4	5		
Toluene	ND	1.4	5		
Xylenes,Total	ND	8.7	5		
2-Butanone (MEK)	2.1	3 J	50		
Ethylbenzene	ND	1.4	5		
N-propylbenzene	ND	0.7 J	5		
С	HLORINATED PES	TISIDES			
Pesticides	ND	ND	Various		

Notes: All units in microgams per liter ($\mu g/L$)

NYSDEC New York State Department of Environmental Conservation

TOGS Technical and Operational Guidance Series

 $_{\mbox{\scriptsize T}}$ Result is a Tentatively Identified Compound (TIC) and is an estimated concentration

N Indicates the presumptive evidence of a compound

ND Analyte not detected

9.58 Analyte detected

128 Analyte exceeds NYSDEC TOGS guidance value

J Estimated concentration

- Not applicable or sample not tested for this analyte

	BE3 Phase II Report	April 2024 - Sam	ple Identification	, Sample Depth in	feet below groun	nd surface (bgs), a	nd Sample Date	NYSDEC So	oil Cleanup Objecti	ves (SCOs)
Parameter Tested	BH-1	BH-2	BH-3	BH-4	BH-5	BH-6	BH-7			
	1-2	1-2	1-2	1-2	2-3	1-2	1-2	Restricted	Commerical	Industrial
				4/1/2024				Residential		
METALS/INORGANICS										
Arsenic	11.4	11.2	14.7	16.5	9.7	13.8	10.8	16	16	16
Barium	203	175	197	188	190	395	239	400	400	10,000
Beryllium	0.78	0.74	0.96	0.86	1.1	0.84	1	72	590	2,700
Cadmium	0.37	0.6	0.35	0.29	0.6	1.2	0.66	4.3	9.3	60
Chromium	20.1	22.9	20.5	18	17.4	30.2	24.6	180	1500	6800
Copper	47.6	63.7	45.5	119	62	104	66.8	270	270	10000
Lead	123	394	298	400	330	726	513	400	1000	3,900
Manganese	404	354	278.00	407	166	284	377	2000	10000	10000
Mercury	0.083	0.29	0.330	0.56	1.4	0.63	0.58	0.81	2.8	5.7
Nickel	36.1	24.1	23.8	26	29.5	31.4	32.5	310	310	10000
Selenium	0.98	1.5	1.0	1.5	1.3	0.95	0.62	180	1500	6,800
Silver	ND	ND	ND	ND	0.51	ND	ND	180	1500	6,800
Zinc	150	236	130.0	146	228	525	238	10000	10000	10,000
			SEMI-VO	LATILE ORGANI	C COMPOUNDS	(SVOCs)				
Acenaphthene	0.16	ND	ND	ND	ND	ND	ND	100	500	1,000
Acenaphthylene	0.44	ND	ND	ND	ND	ND	ND	100	500	1,000
Anthracene	1.9	ND	ND	ND	ND	ND	ND	100	500	1,000
Benzo(a)anthracene	3.6	0.72	0.024	0.11	0.3	0.54	0.079	1	5.6	11
Benzo(a)pyrene	3.6	0.83	ND	0.15	0.36	1.2	0.1	1	1	1.1
Benzo(b)fluoranthene	4.3	0.99	0.037	0.17	0.38	0.48	0.14	1	5.6	11
Benzo(g,h,i)perylene	2	0.54	0.024	0.12	0.26	0.68	0.058	100	500	1,000
Benzo(k)fluoranthene	1.7	0.37	ND	0.08	0.21	ND	0.043	3.9	56	110
Chrysene	3.8	0.87	ND	0.17	0.33	0.88	0.15	3.9	56	110
Dibenz(a,h)anthracene	0.54	ND	ND	0.039	ND	ND	ND	0.33	0.56	1.1
Dibenzofuran	0.98	ND	ND	ND	ND	ND	ND	18	180	290
Fluoranthene	12	1.7	0.048	0.19	0.56	0.39	0.15	100	500	1,000
Fluorene	1.8	ND	ND	ND	ND	ND	ND	100	500	1,000
Indeno(1,2,3-cd)pyrene	2.1	0.51	ND	0.098	0.22	0.27	0.043	0.5	5.6	11
Naphthalene	1.3	ND	ND	ND	ND	ND	ND	100	500	1,000
Phenanthrene	11	0.62	ND	0.13	0.29	ND	0.11	100	500	1,000
Pyrene	8.2	1.3	0.039	0.16	0.42	0.54	0.12	100	500	1,000
				TILE ORGANIC	COMPOUNDS (V					
Acetone	ND	0.18	0.073	0.084	0.066	0.12	0.01	100	500	1,000
2- Butanone (MEK)	ND	0.028	0.0083	0.012	0.0098	0.022	ND	100	500	1,000
Tetrachloroethene	ND	ND	ND	ND	ND	ND	0.0047	19	150	300

ND Analyte not detected

Not Applicable or sample not tested for this analyte
 J Estimated Concentration

B Anaalyte detected in method blank

K Result is reported as Benzo(b)fluoranthene

E Results exceeded calibration range

T Result is Tentatively Identifies Compound and an estimated value

Reported concentration greater than or equal to the NYSDEC Industrial SCO
Reported concentration greater than or equal to the NYSDEC Commercial SCO
Reported concentration greater than or equal to the NYSDEC Restricted Residential SCO

SUMMARY OF SOIL ANALYTICAL RESULTS

II Papart April 2024 Co							
		on, Sample Depth ople Date	in feet below	NYSDEC Soi	l Cleanup Objec	tives (SCOs)	
BH-9	BH-10	BH-11	BH-12	Restricted			
1-2		1-2	1-2		Commerical	Industrial	
				Residential			
	METALS/INOF	RGANICS					
6	20.6	13.6	12.2	16	16	16	
			154			10,000	
		•	1.7			2,700	
0.058					9.3	60	
10		-	-	180	1500	6800	
17				270	270	10000	
38.2	743	1180	224	400	1000	3,900	
317	366			2000	10000	10000	
0.13	0.450	0.82	0.3	0.81	2.8	5.7	
14.4	24.4	27	27.5	310	310	10000	
1.2	1.1	1.9	2.1	180	1500	6,800	
47.8	378	672	138	10000	10000	10,000	
SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs)							
ND	ND	ND	0.18	1	5.6	11	
ND	ND	ND	0.25	1	1	1.1	
ND	ND	ND	0.37	1	5.6	11	
ND	ND	ND	0.11	100	500	1,000	
ND	ND	ND	0.13	3.9	56	110	
ND	ND	ND	0.23	3.9	56	110	
ND	0.54	ND	0.45	100	500	1,000	
ND	ND	ND	0.14	100	500	1,000	
ND	ND	ND	0.26	100	500	1,000	
VOLATII	LE ORGANIC CO	MPOUNDS (VO	Cs)				
0.039	ND	ND	ND	52	190	380	
0.017	ND	ND	ND	-	-	380	
0.052	0.16	0.1	0.091	100	500	1,000	
0.00046	ND	ND	ND	4.8	44	89	
0.00039	ND	ND	ND	41	390	780	
0.0037	0.0057	ND	ND	100	500	1,000	
0.0054	0.027	0.018	0.014	100	500	1000	
						1000	
	ND		ND			1000	
0.46						1000	
						1000	
	Ground surfa BH-9 1-2 6 76.9 0.7 0.058 10 17 38.2 317 0.13 14.4 1.2 47.8 SEMI-VOLA ND ND ND ND ND ND ND ND	BH-9	BH-9 BH-10 BH-11 1-2 1-2 1-2 2 1-2 1-2 34/1/2024 METALS/INORGANICS 6 20.6 13.6 76.9 397 380 0.7 0.81 0.74 0.058 0.75 1.3 10 17.9 28.2 17 51.7 82.5 38.2 743 1180 317 366 278 0.13 0.450 0.82 14.4 24.4 27 1.2 1.1 1.9 47.8 378 672 SEMI-VOLATILE ORGANIC COMPOUNDS (SOLUTION NO N	BH-9	BH-9	BH-9	

ND Analyte not detected
- Not Applicable or sample not tested for this analyte

J Estimated Concentration

B Anaalyte detected in method blank

K Result is reported as Benzo(b)fluoranthene E Results exceeded calibration range

T Result is Tentatively Identifies Compound and an estimated value

Reported concentration greater than or equal to the NYSDEC Industrial SCO Reported concentration greater than or equal to the NYSDEC Commercial SCO Reported concentration greater than or equal to the NYSDEC Restricted Residential SCO

TABLE 5 CONT. SUMMARY OF GROUNDWATER RESULTS 2024

Parameter Tested	Sample Identification, Approximate Groundwater Depth Below Top of Casing, and Sample Date MW-2 12' 4/1/2024	NYSDEC TOGS 1.1.1 GA
Parameter resteu	METALS	
Arsenic	870	25
Barium	1,700	1,000
Beryllium	77	3
Cadmium	9.9	5 5
	0.10	-
Chromium	1700	50
Copper	3,600	200
Manganese	22,700	300
Mercury	5.6	0.7
Nickel	4,400	100
Lead	9,200	25
Selenium	99	10
Silver	ND	50
Zinc	5200	2000
V	olatile Organic Compounds (VOC	Cs)
Acetone	6.5 J	50

Notes: All units in microgams per liter (μg/L)

NYSDEC New York State Department of Environmental Conservation

TOGS Technical and Operational Guidance Series

500 Analyte exceeds NYSDEC TOGS guidance value

TABLE 5 CONT. **Summary of Vapor/Indoor Air Analytical Results** 2024

	Type of Sample,	Sample Identification Analysis Metho	n, Date Analyzed and d				
	Sub-slab	Soil Vapor	Outdoor Air	NYSDOH Sub-Slab	NYSDOH Indoor Air	Table C2. EPA 2001	Decision Matrix
	SS-1	SG-1	AMB-1	Vapor Guideline	Guideline Values	Indoor Air Mean Value	Guidance Values (Soil Vapor) (µg/m3)
		4/1/2024		Values (µg/m³)		value	(Soil Vapor) (µg/ms)
Contaminants	Volatile	Organic Compou	nds (TO-15)	†			
1,1-Dichloroethylene	0.4	ND	ND	-	-	0.5	
1.2.4-Trichlorobenzene	ND	ND	ND	-	-	-	
1.2.4-Trimethylbenzene	2.2	150	0.65	-	-	4.8	60
1,2-Dichloroethane	ND	ND	0.15	-	-	-	
1,2-Dichloropropane	ND	ND	ND	-	-	-	
1,3,5-Trimethylbenzene	0.71	ND	ND	-	-	1.6	60
Acetone	ND	ND	64	-	-	54	
Benzene	11	ND	3	-	-	4.5	60
Carbon Disulfide	6.5	ND	ND	-	-	1.9	
Carbon Tetrachloride	ND	ND	0.49	-	-	0.5	6
Chloromethane	ND	ND	1.1	-	-	2.9	
Cyclohexane	9.9	1900	1.5	-	-	-	60
Dichlorodifluoromethane (Freon 12)	2.4	74	2.3	-	-	-	
Ethanol	290	ND	360	-	-	89.3	
Ethyl Acetate	7.8	ND	45	-	-	-	
Ethylbenzene	2.3	ND	0.85	-	-	2.8	60
Heptane	21	3300	2.2	-	-	1.7	200
Hexachlorobutadiene	ND	ND	ND	-	-	-	
Hexane	39	3100	ND	-	-	6.3	200
Isopropanol	ND	ND	17	-	-	-	
m&p-Xylene	7.7	140	2.2	-	-	10.8	200
Methylene Chloride	ND	ND	14	100	60	21.2	100
o-Xylene	2.9	ND	1.1	-	-	3.8	60
Styrene	0.55	ND	16	-	-	1.5	
Tetrachloroethylene	ND	ND	0.66	100	30	6	100
Toluene	20	ND	8.7	-	-	25.1	300
trans-1,2-Dichloroethylene	ND	ND	0.19	-	-	-	
Trichloroethylene	ND	ND	ND	6	2	2.6	6
Trichlorofluoromethane (Freon 11)	ND	ND	1.2	-	-	19.4	
Vinyl Acetate	41	3900	5.1	-	-	-	
Vinyl Chloride	ND	ND	ND	60	0.2	0.5	6

Notes: All units in micrograms per liter (µg/m3)

NO FURTHER ACTION: No additional actions are recommended to address human exposures.

IDENTIFY SOURCE(S) AND RESAMPLE OR It is recommended that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality MITIGATE: and that actions be implemented to reduce indoor air concentrations to within background ranges. It is recommended that monitoring, including but not necessarily limited to sub-slab vapor, basement air and outdoor air MONITOR: sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. MITIGATE: Mitigation is recommended to minimize current or potential exposures associated with soil vapor intrusion. Elevated concentrations detected in the subsurface above above indoor air guidance values (NYSDOH Table C2.)

- ND Not detected
- 0.69 Analyte detected
- Not applicable
- J Estimated concentration

Table 6
Boring, Monitoring Well, and Surface Sample GPS Coordinates

Hole ID	Latitude	Longitude
RI-BH-1	42.484256	-79.33045
RI-BH-2	42.484294	-79.33088
RI-BH-3	42.484397	-79.33013
RI-BH-4	42.484467	-79.33088
RI-BH-5	42.484519	-79.33073
RI-BH-6	42.484581	-79.33017
RI-BH-7	42.484633	-79.33042
RI-BH-8	42.484617	-79.33087
RI-BH-9	42.484692	-79.33023
RI-BH-10	42.484919	-79.33044
RI-BH-11	42.484775	-79.33089
RI-BH-12	42.484883	-79.3308
RI-BH-13	42.484808	-79.33064
RI-BH-14	42.484986	-79.33059
RI-BH-15	42.485025	-79.33032
RI-BH-16	42.485158	-79.33034
RI-BH-17	42.485044	-79.33063
RI-BH-18	42.485306	-79.33071
RI-BH-19	42.484378	-79.33058
RI-BH-20	42.484453	-79.33035
SS-1	42.485258	-79.33063
SS-2	42.485306	-79.3304
SS-3	42.485014	-79.33058
SS-4	42.485083	-79.33036
RI-MW-1	42.484197	-79.33079
RI-MW-2	42.484317	-79.33022
RI-MW-3	42.484671	-79.33066
RI-MW-4	42.484981	-79.33081
RI-MW-5	42.485336	-79.33056
RI-VP-1	42.484214	79.330739
RI-VP-2	42.484292	79.330194
RI-VP-3	42.484531	79.330861
RI-VP-4	42.484797	79.330786
RI-VP-5	42.484811	79.330414
RI-VP-6	42.485253	79.330572

Figures

Previous Phase II ESA Temporary Well Locations (9/21/2023)

O Previous Phase II ESA Boring Locations (9/21/2023)

RI Monitoring Well \triangle RI Vapor Point

♣ Previous Phase II ESA Temporary Well/Boring Locations (4/1/2024)

1. Basemap adopted from Google Maps

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

CLIENT: REGAN DEVELOPMENT FIGURE 3

Previous Sampling & RI Sampling Locations

DATE ISSUED: August 28, 2025

----Property Boundary

RI Boring Locations

RI Monitoring Well

All Vapor Point

■ RI Surface Sample Location

- 1. Basemap adopted from Google Maps
- 2. All units are in ppm

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

CLIENT: REGAN DEVELOPMENT
FIGURE 5
RI Unrestricted Soil Exceedances
August 2025

W E S

166 East 4th Street Dunkirk, NY 14048

DATE ISSUED: September 2, 2025

Δ Δ Δ

RI Monitoring Well

■ RI Surface Sample Location

1. Basemap adopted from Google Maps

2. All units are in ppm

BRYDGES ENGINEERING

960 Busti Avenue Buffalo, NY 14213 716.249.6880

jbrydges@be3corp.com

FIGURE 6
RI Restricted Residential
Soil Exceedances
(May & August 2025)
166 East 4th Street
Dunkirk, NY 14048

DATE ISSUED: September 2, 2025

LEGEND

——Property Boundary

RI Monitoring Well

NOTES

- 1. Basemap adopted from Google Maps
- 2. All units are in ug/L

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

CLIENT: REGAN DEVELOPMENT

FIGURE 7 RI Groundwater Exceedances

166 East 4th Street Dunkirk, NY 14048

DATE ISSUED: September 2, 2025

Δ Δ Δ

----Property Boundary

AI-VP-1 RI Vapor Point

NOTES

1. Basemap adopted from Google Maps

2. All results are in ug/m3

FIGURE 8 RI Vapor Results

166 East 4th Street Dunkirk, NY 14048

BRYDGES
ENGINEERING
IN ENVIRONMENT
AND ENERGY, DPC

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

DATE ISSUED: September 2, 2025

LEGEND

Property Boundary

Recreational Space (Greenspace)

Greenspace

Potential Areas for Reuse

Asphalt (Hardscape)

Building Footprint (Hardscape)

- Greenspace Remedial Approach
 Remove approximately 2 feet of hardscape and/or underlying soils.
 Replace with 2 +/- feet of clean soils.

2.) Hardscape Remedial Approach
-Soils beneath the areas of proposed new development buildings and hardscape shall be cut/filled to the depth of new building foundations/slabs or hardscape to meet new development grades. Approximate average cuts and fills are as follows: Asphalt= -1.0 ft, Slabs= +1.75 ft, Foundations= -5 ft.
-Replace with building foundations or hardscape.

- 3.) Soil cover must meet a minimum of 2 feet of clean soil or hardscape meeting NYSDEC restricted residential criteria.

BRYDGES ENGINEERING IN ENVIRONMENT AND ENERGY, DPC

960 Busti Avenue Buffalo, NY 14213 716.249.6880 jbrydges@be3corp.com

FIGURE 9
Alternative 1
Restricted Residential SCOs

166 East 4th Street Dunkirk, NY 14048

CLIENT: REGAN DEVELOPMENT

DATE ISSUED: September 17, 2025

Appendices

Appendix A Daily Field Reports

D	DAILY FIELD REPORT
Date:	Tuesday, May 27, 2025
Site Name:	4th Street, Dunkirk
Location:	166 E 4th St Dunkirk NY 14080
Contractor/Sub-Contractor:	Sessler Environmental
Weather Conditions:	Mostly Cloudy 57 °F ESE 6 MPH
Description of Work Performed:	•
8:00 Arrived on site and met with Chris (Se	essler Environmental).
8:10 Set up upwind downwind air monitors.	•
8:40 Began completing vapor points at VP	P-1 location and traversed in clockwise direction.
10:00 Started borings at BH-3 and continued	d in clockwise direction.
12:30 Started lunch	
13:00 Resume at BH-12	
17:30 Finished bore holes for day at BH-6	
Samples delivered to laboratory.	
End of Day Completed VP-1 through 4 and VP-6 a	and BH-1 through Bh-8 and BH-11 through BH-18
Problems/Observations:	
Health and Safety Concerns:	None.
Contractor Work Force:	1 driller, 1 helper
Contractor Equipment	Geoprobe (Model 7720DT)
Attachments:Photolog, Air Quality Data, Work	k Location Map
Inspectors Name	Travis Numan

PHOTO LOG

Date:	Tuesday, May 27, 2025
Site Name:	4th Street, Dunkirk

1. RI-VP-1 location, facing E.

2. RI-VP-2 location, facing SE.

3. RI-BH- location, facing S.

4. RI-BH- location, facing W.

PHOTO LOG

Date:	Tuesday, May 27, 2025
Site Name:	4th Street, Dunkirk

5. RI-BH-7 location, facing SSE.

6. RI-BH-5 location, facing NE.

COMMUNITY AIR MONITORING PROGRAM DATA

Date:		Tuesday, May 27, 202	25		
Site Name:		4th Street, Dunkirk			
Upwind Da	ata		Downwind Data		Delta
Time	PM 10 - 15 min AVG (μg/m³)	Time	PM 10 - 15 min AVG (μg/m³)	VOC	PM 10 - 15m AVG (μg/m³)
5/27/2025 8:30	5.1	5/27/2025 8:30	4.5	0	-0.6
5/27/2025 8:45	4.4	5/27/2025 8:45	3.3	0	-1.1
5/27/2025 9:00	3.6	5/27/2025 9:00	4.7	0	1.1
5/27/2025 9:15	4.3	5/27/2025 9:15	5.8	0	1.5
5/27/2025 9:30	2.5	5/27/2025 9:30	5.3	0	2.8
5/27/2025 9:45	19.3	5/27/2025 9:45	6.3	0	-13
5/27/2025 10:00	3.3	5/27/2025 10:00	3.6	0	0.3
5/27/2025 10:15	4.8	5/27/2025 10:15	6.1	0	1.3
5/27/2025 10:30	3.8	5/27/2025 10:30	5.2	0	1.4
5/27/2025 10:45	2.9	5/27/2025 10:45	6.1	0	3.2
5/27/2025 11:00	3	5/27/2025 11:00	5	0	2
5/27/2025 11:15	5.8	5/27/2025 11:15	3.8	0	-2
5/27/2025 11:30	2.8	5/27/2025 11:30	2.5	0	-0.3
5/27/2025 11:45	2.4	5/27/2025 11:45	2.2	0	-0.2
5/27/2025 12:00	3.2	5/27/2025 12:00	2.6	0	-0.6
5/27/2025 12:15	6.2	5/27/2025 12:15	3.3	0	-2.9
5/27/2025 12:30	2.5	5/27/2025 12:30	3.5	0	1
5/27/2025 12:45	3.7	5/27/2025 12:45	3.5	0	-0.2
5/27/2025 13:00	1.9	5/27/2025 13:00	3	0	1.1
5/27/2025 13:15	1.5	5/27/2025 13:15	2.6	0	1.1
5/27/2025 13:30	1.3	5/27/2025 13:30	2.7	0	1.4
5/27/2025 13:45	2.3	5/27/2025 13:45	4	0	1.7
5/27/2025 14:00	5	5/27/2025 14:00	3.2	0	-1.8
5/27/2025 14:15	4.2	5/27/2025 14:15	3.8	0	-0.4
5/27/2025 14:30	2.8	5/27/2025 14:30	3.1	0	0.3
5/27/2025 14:45		5/27/2025 14:45	3.3	0	-2.6
5/27/2025 15:00	4.6	5/27/2025 15:00	5.9	0	1.3
5/27/2025 15:15	4	5/27/2025 15:15	4.3	0	
5/27/2025 15:30	3.6	5/27/2025 15:30	4.2	0	0.6
5/27/2025 15:45	3.5	5/27/2025 15:45	4.7	0	1.2
5/27/2025 16:00	9.4	5/27/2025 16:00	3.2	0	-6.2
5/27/2025 16:15	3.3	5/27/2025 16:15	3.3	0	0

Date: Tuesday, May 27, 2025 Site Name: 4th Street, Dunkirk

	Legend
UW	Upwind Air Monitor Location
DW	Downtown Air Monitor Location
	BCP Site Boundary

DAILY FIELD REPORT			
Date:	Wednesday, May 28, 2025		
Site Name:	4th Street, Dunkirk		
Location:	166 E 4th St Dunkirk NY 14080		
Contractor/Sub-Contractor:	Sessler Environmental		
Weather Conditions:	Heavy Rain 57 °F SE 11 MPH		
Description of Work Performed:			
8:00 Arrived on site and met with Chris (Sess	sler Environmental).		
9:00 Start indoor VP-5			
9:20 BH7, BH-9, and BH-10			
11:30 Start drilling wells			
17:00 Clean up			
Samples delivered to laboratory.			
No air monitors deployed due to precipita	tation		
Problems/Observations:	RI DEVIATION:		
Health and Safety Concerns:	None.		
Contractor Work Force:	1 driller, 1 helper		
	,		
Contractor Equipment	Geoprobe (Model 7720DT)		
Attachments: Photolog, Work Location Map			
	T		
Inspectors Name	Travis Numan		

PHOTO LOG

Date:	Wednesday, May 28, 2025
Site Name:	4th Street, Dunkirk

1. RI-MW-3 location, facing north.

2. RI-MW-4 location, facing east.

3. RI-MW-5 location, facing north.

4. RI-MW-1 location, facing east.

WORK LOCATION MAP

Date:	Wednesday, May 28, 2025
Site Name:	4th Street, Dunkirk

Legend
BCP Site Boundary

DAILY FIELD REPORT				
Date:	Thursday, May 29	, 2025		
Site Name:	4th Street, Dunkir	4th Street, Dunkirk		
Location:	166 E 4th St Dunk	kirk NY 14080		
Contractor/Sub-Contractor:	Sessler Environm	Sessler Environmental		
Weather Conditions:	Mostly Cloudy	60 °F	ESE 9 MPH	
Description of Work Performed:				
Arrived on site and met with Chris (Sessler Enviro	onmental)			
Set upwind and downwind air monitors				
Set all 6 vapor canisters for pickup 24 hours late	r on 5/30.			
Installed all overburden GW monitoring wells.				
2x2 ft concrete curboxes poured for each well.				
All wells flush mounted.				
Open boreholes from investigation were backfille	d with clean sand ar	nd patched with	asphalt	
Equipment was packed up and prepared for mob	ilization to 2nd and	Washington.		
Problems/Observations:	RI DEVIATION:			
Haalibaand Cafaba Canaanna	Nama			
Health and Safety Concerns:	None.			
Contractor Work Force:	1 driller, 1 helper		_	
Contractor Equipment	Geoprobe (Model	7720DT)		
Attachments : Photolog, Work Location Map				
Inspectors Name	Travis Numan			

COMMUNITY AIR MONITORING PROGRAM DATA

Date:		Thursday, May 29, 2025			
Site Name:		4th Street, Dunkirk			
Upwind Da	ata		Downwind Data		Delta
Time	PM 10 - 15 min AVG (μg/m³)	Time	PM 10 - 15 min AVG (μg/m³)	VOC	PM 10 - 15m AVG (μg/m³)
5/29/2025 8:30	1.8	5/29/2025 8:30	7.8	0	6
5/29/2025 8:45	2.1	5/29/2025 8:45	8.6	0	6.5
5/29/2025 9:00	1.9	5/29/2025 9:00	6.8	0	4.9
5/29/2025 9:15	1.5	5/29/2025 9:15	6.4	0	4.9
5/29/2025 9:30	1.7	5/29/2025 9:30	5.6	0	3.9
5/29/2025 9:45	2.1	5/29/2025 9:45	4.5	0	2.4
5/29/2025 10:00	1.7	5/29/2025 10:00	4.3	0	2.6
5/29/2025 10:15	1.9	5/29/2025 10:15	5.2	0	3.3
5/29/2025 10:30	2.3	5/29/2025 10:30	4.5	0	2.2
5/29/2025 10:45	2.2	5/29/2025 10:45	5.4	0	3.2
5/29/2025 11:00	3	5/29/2025 11:00	4.7	0	1.7
5/29/2025 11:15	2.4	5/29/2025 11:15	4.4	0	2
5/29/2025 11:30	1.9	5/29/2025 11:30	3.8	0	1.9
5/29/2025 11:45	1.4	5/29/2025 11:45	3.7	0	2.3
5/29/2025 12:00	1.7	5/29/2025 12:00	4.2	0	2.5
5/29/2025 12:15	2.1	5/29/2025 12:15	4.1	0	2
5/29/2025 12:30	2.1	5/29/2025 12:30	4.8	0	2.7
5/29/2025 12:45	2.8	5/29/2025 12:45	5.4	0	2.6
5/29/2025 13:00	2.8	5/29/2025 13:00	6.3	0	3.5
5/29/2025 13:15	3.2	5/29/2025 13:15	6.3	0	3.1
5/29/2025 13:30	2.6	5/29/2025 13:30	5.9	0	3.3
5/29/2025 13:45	2	5/29/2025 13:45	8.7	0	6.7
5/29/2025 14:00	2	5/29/2025 14:00	3.8	0	1.8
5/29/2025 14:15	2	5/29/2025 14:15	3.3	0	1.3
5/29/2025 14:30	2.1	5/29/2025 14:30	4.8	0	2.7
5/29/2025 14:45	1.7	5/29/2025 14:45	11.3	0	9.6
5/29/2025 15:00	1	5/29/2025 15:00	2.5	0	1.5
5/29/2025 15:15	1.5	5/29/2025 15:15	3	0	1.5
5/29/2025 15:30	2.6	5/29/2025 15:30	3.5	0	0.9
5/29/2025 15:45	2.4	5/29/2025 15:45	5	0	2.6
5/29/2025 16:00	4.6	5/29/2025 16:00	8	0	3.4
5/29/2025 16:15		5/29/2025 16:15		0	5.5
5/29/2025 16:30		5/29/2025 16:30		0	4.3
**Part	iculate Thresho	old PM 10 15minute a	verage = 100μg/	m³ above backgrou	ınd

WORK LOCATION MAP Date: Thursday, May 29, 2025 Site Name: 4th Street, Dunkirk

	Legend
UW	Upwind Air Monitor Location
DW	Downtown Air Monitor Location
	BCP Site Boundary

DAILY FIELD REPORT			
Date:	Friday, May 30	0, 2025	
Site Name:	4th Street, Du	nkirk	
Location:	166 E 4th St [Ounkirk NY 14080	
Contractor/Sub-Contractor:	BE3		
Weather Conditions:	Sunny	65 °F	WSW 4 MPH
Description of Work Performed:	•		
Arrived on site at 8am. Sessler began to mob	ilize to 2nd and Wa	shington.	
Collected and logged all vapor canisters after	checking final PSI.	Canisters will be ship	oped to lab at end of day.
Bailed and developed all wells. All developme	ent water stored in 5	5-gallon drums.	
Corresponding development logs with water of End of day spent packing up equipment.	quality readings were	e filled out for each w	rell.
No air monitors deployed due to lack of grour	nd disturbing activitie	es.	
Problems/Observations:	RI DEVIATIO	N:	
Health and Safety Concerns:	None.		
0 / / W 5	4 1 9 4 1 1		
Contractor Work Force:	1 driller, 1 help	per	
Contractor Equipment	N/a		
Attachments : Work Location Map	I		
Inspectors Name	Travis Numan		

WORK LOCATION MAP

Date:	Thursday, May 29, 2025
Site Name:	4th Street, Dunkirk

Legend				
	BCP Site Boundary			

DAILY FIELD REPORT					
Date:	Thursday, Auç	Thursday, August 7, 2025			
Site Name:	4th Street, Du	4th Street, Dunkirk			
Location:	166 E 4th St [166 E 4th St Dunkirk NY 14048			
Contractor/Sub-Contractor:	BE3				
Weather Conditions:	Hazy	80 °F	N 8 MPH		
Description of Work Performed:					
Arrived on site at 1:00 pm.					
Began collecting surface samples starting	յ with SS-4 and continui	ng in a counter clockwi	se direction.		
Samples stored in coolers on ice immedia	itely after collection.				
Problems/Observations:	RI DEVIATIOI	RI DEVIATION:			
Health and Safety Concerns:	None.	None.			
Contractor Work Force:	N/a	N/a			
Contractor Equipment	Shovel	Shovel			
Attachments : Work Location Map					
Inspectors Name	Paul Staub				

Date: Thursday, August 7, 2025 Site Name: 4th Street, Dunkirk

Legend					
	Surface Sample Location				
	BCP Site Boundary				

	DAILY FIELD REP	ORT					
Date:	Monday, Augu	ıst 11, 2025					
Site Name:	4th Street, Du	4th Street, Dunkirk					
Location:	166 E 4th St D	166 E 4th St Dunkirk NY 14048					
Contractor/Sub-Contractor:	Empire Explor	ation and Geology					
Weather Conditions:	Sunny	80 °F	N 10 MPH				
Description of Work Performed:	•						
Arrived on site at 8:00 am.							
Began completing two geoprobe borings	in the southern parking l	ot.					
Started with RI-BH-20 and ended with R	I-BH-19.						
Samples were labeled and stored in coo Began mobilization to 2nd and Washing							
Samples brought to lab at the end of the	e day.						
Problems/Observations:	RI DEVIATION	N:					
Health and Safety Concerns:	None.						
Contractor Work Force:	2 drillers.						
Contractor Equipment							
Attachments : Work Location Map	1						
Inspectors Name	Paul Staub						

WORK LOCATION MAP Date: Monday, August 11, 2025 Site Name: 4th Street, Dunkirk

Legend					
	Approximate Boring Location				
	BCP Site Boundary				

Appendix B Site Photographs

2. RI-VP-2

1. RI-VP-1 2. RI-VI

3. RI-VP-3 4. RI-VP-4

Page 1 of 7

5. RI-VP-6

6. RI-BH-3 Cores

7. RI-BH-1 Cores

8. RI-BH-2 Cores

Page 2 of 7

9. RI-BH-4 Cores

10. RI-BH-5 Cores

11. RI-BH-8 Cores

12. RI-BH-13

Page 3 of 7

13. RI-BH-12 Cores

14. RI-BH-14 Cores

15. RI-BH-15 Cores

16. RI-BH-16 Cores

Page 4 of 7

17. RI-BH-18 Cores

18. RI-BH-17 Cores

19. RI-BH-7 Cores

20. RI-BH-10 Cores

Page 5 of 7

21. RI-BH-9 Cores

22. RI-MW-3

23. RI-MW-3 Cores

24. RI-MW-4

Page 6 of 7

25. RI-MW-4 Cores

26. RI-MW-5

27. RI-MW-5 Cores 28. RI-MW-1

Page 7 of 7

Appendix C
Boring Logs

PROJE					BOBING LOC	
			th Street Reme		BORING LOG	
	G LOCATION: F					
	NG CONTRACTO			nmental Services		
	NG METHOD: D					
		IENT: (Geoprobe Model	7720DT		BRYDGES
	ED BY: PS	7/20	OF.			ENGINEERING IN ENVIRONMENT
	STARTED: 5/2					AND ENERGY, DPC
DEPTH (feet)	Sample	PID Reading		DESCRIPTION		REMARKS
0_				Asphalt		
1-			0.0000000000000000000000000000000000000			
-			0.0000			
2-			0.0.0			
3-	Ē	0	0.00000	FILL; black clayey silt with trace o	dobrio	
-	RI-BH-1 Fill	ľ	0. 0. 0. 0	FILE, black clayey slit with trace of	debils	
4-	奁		00			
5-		-	0.00000			
-						
6-		1				native @ 6'
7-	ative					
-	RI-BH-1 Native	0	// <i>}}}}!}</i>	NATIVE; grey brown clay, mediu	m soft	
8—	육		<i>\$\$\$</i> {}}}}}\$}			
9-						
-						refusal @ 9'
10-						
11-						
12-						
13-						
-						
14—						
Bryd	L ges Engineeri	l ng in	Environment and Er	nergy, DPC	Projec	t No. C907051 Page 1 of 1
						,

	166 Ea	ast 4	th Street Reme	BORING LOG	
BORING	G LOCATION:	RI-BI			
	IG CONTRACT				
	IG METHOD: [
		MENT: (Geoprobe Model	7720DT	BRYDGES
	D BY: PS	7/20	2 F		ENGINEERING IN ENVIRONMENT
	STARTED: 5/2				AND ENERGY, DPC
DEPTH (feet)	Sample	PID Reading		DESCRIPTION	REMARKS
0			0 -	Asphalt	
1— 2— 3— 4—	RI-BH-2 Fill	0		FILL; black loose silty sand, trace woo	od chips native @ 4'
5	RI-BH-2 Native	0		NATIVE; grey brown clay, stiff	
10— - 11— - 12—					
13-		0		NATIVE; grey brown clay, wet	refusal @ 14'
	uos Enginoor	ina in	Environment and Er	nergy DPC	Project No. C907051 Page 1 of 1

PROJECT: 166	East 4th	Street Reme	BORING LOG	
BORING LOCATIO	N: RI-BH-	3		
ORILLING CONTRA	ACTOR:	Sessler Enviro		
DRILLING METHOI	D: Direct F	Push		
EXCAVATION EQL	JIPMENT: G	eoprobe Model	7720DT	BRYDGES
OGGED BY: PS				ENGINEERING IN ENVIRONMENT
DATE STARTED:		5		AND ENERGY, DPC
(feet) Sample	PID		DESCRIPTION	REMARKS
0	0	1.1 - 1 - 1	Asphalt	
1— 2— 3— Ⅲ3 EH8-12 4— 25	0		FILL; brown loose clayey silt, sor	
6- 7- 8-	0		NATIVE; grey brown clay, trace r	native @ 5' native rocks refusal @ 8'
-				Total and C
9—				
10-				
11-				
12-				
13-				
14—				
Durder a Francis	eering in Fi	nvironment and Er	nergy, DPC	Project No. C907051 Page 1 of 1

PROJE		-1.4	the Charlet Dane		BORING L	ng		
			th Street Reme		BOKING L	<u> </u>		
BORING LOCATION: RI-BH-4								
	NG CONTRACT			nmental Services				
	NG METHOD: D						_	
		IENT:	Geoprobe Model	7720DT		BRYDGES		
	ED BY: PS					ENGINEERII IN ENVIRONMEN	NG IT	
	STARTED: 5/2	_	T			AND ENERGY, DI	PC .	
DEPTH (feet)	Sample	PID Reading		DESCRIPTION		REMAR	RKS	
0				Asphalt				
1-								
-	_							
2-	-4 Fill	0		FILL; black sandy silt, trace gray	rocks			
3-	RI-BH-4 Fill							
-	_							
4-						native @ 4'		
5-								
6-								
7-		0		NATIVE; grey reddish brown clay	r, very stiff			
8-								
-								
9-								
10-						_		
						refusal @ 10'		
11-								
12-								
13-								
14-								
Bryd	ges Engineeri	l ng in	Environment and Er	nergy, DPC	Projec	t No. C907051	Page 1 of 1	
							-	

PROJEC		st 4	th Street Reme		BORING LO	OG	
BORING	LOCATION:	RI-BH	1 -5				
DRILLING CONTRACTOR: Sessler Environmental Services							5
DRILLIN	G METHOD: Di	irect	Push				
EXCAV	ATION EQUIPM	ENT: (Geoprobe Model	7720DT		BRYDGES	
LOGGEI	DBY: PS					ENGINEERIN IN ENVIRONMEN	
DATE S	TARTED: 5/2		25			AND ENERGY, DP	
DEPTH (feet)	Sample	PID Reading		DESCRIPTION		REMAR	KS
0 -				Asphalt			
1—	RI-BH-5 Fill	0		FILL; grey black loose clayey silt			
5— 6— 7— 8— 9—	RI-BH-5 Native	0		NATIVE; grey reddish brown clay	native @ 4'		
10- 11- 12-						refusal @ 10'	
13-							
 Brydg	es Engineerir	ng in	Environment and En	ergy, DPC	Projec	t No. C907051	Page 1 of 1
Di yug	es Engineeni	19 111	LIMIOIIIIEIR and LI	lergy, DFC	Projec	CUNO. C907031	rage 1 01 1

PROJE		ast 4	th Street Remo	BORING LOG	
BORING	G LOCATION:	RI-BI	H-6		
DRILLIN	NG CONTRACT	OR:	Sessler Enviro	B2.3	
DRILLIN	NG METHOD: [Direct	Push		
EXCAV	ATION EQUIP	MENT: (Geoprobe Model	7720DT	BRYDGES
LOGGE	DBY: PS				ENGINEERING IN ENVIRONMENT
	STARTED: 5/2				AND ENERGY, DPC
DEPTH (feet)	Sample	PID Reading		DESCRIPTION	REMARKS
0				Asphalt	
2-	RI-BH-6 Fill	0		FILL; brown silty clay, stiff, trace	
4-		0		NATIVE; grey reddish brown cla	native @ 3' y, stiff
6-				NATIVE; shale	
7-					refusal @ 7'
8-					
9-					
10-					
11-					
12-					
13-					
14-					
Brydg	jes Engineer	ing in	Environment and Er	nergy, DPC	Project No. C907051 Page 1 of 1

PROJE		st 4	th Street Reme	BORING LOG	
BORIN	G LOCATION:	RI-BI	H-7		
DRILLING CONTRACTOR: Sessler Environmental Services					
DRILLI	NG METHOD: [irect	Push		
EXCA	VATION EQUIPM	ЛENT: (Geoprobe Model	7720DT	BRYDGES
	ED BY: PS				ENGINEERING IN ENVIRONMENT
	STARTED: 5/2				AND ENERGY, DPC
DEPTH (feet)	Sample	PID Reading		DESCRIPTION	REMARKS
0			0	Asphalt	
1— 2— 3— 4—	RI-BH-7 Fill	0		FILL; grey black loose clayey silt	
5— 6—	RI-BH-7 Native	0		NATIVE; grey reddish brown clay,	native @ 4'
7- 8- 9-		0		NATIVE; grey brown clay, wet	
-					refusal @ 10'
11-					
12-					
13-					
14-					
 Bryd∈	ges Engineer	ing in	Environment and Er	nergy, DPC	Project No. C907051 Page 1 of 1

PROJECT:	Coot 4	th Ctraat Dame	BORING LOG	
			edial Investigation	
BORING LOCAT				
DRILLING CONT		Sessler Enviro		
DRILLING METH			770007	
		Geoprobe Model	7/20DT	BRYDGES
LOGGED BY: F				ENGINEERING IN ENVIRONMENT
DATE STARTED		T		AND ENERGY, DPC
(feet) Samp	PID Blo		DESCRIPTION	REMARKS
0			Asphalt	
1—————————————————————————————————————	0		FILL; light brown to black sandy o	
6	0		NATIVE; grey brown clay, stiff	native @ 5'
11- 12- 13- 14-	0		NATIVE; grey brown clay, wet	refusal @ 13'
_				
Brydges Eng	ineering in	Environment and Er	nergy, DPC	Project No. C907051 Page 1 of 1

PROJE		st 4t	h Street Reme	edial Investigation	BORING LOG
BORIN	G LOCATION:	RI-BH	1-9		
DRILLI	NG CONTRACT	OR:	Sessler Enviro	nmental Services	
DRILLI	ng method: D	irect	Push		
EXCA	VATION EQUIPM	IENT:	Hand Aug	er	BRYDGES
LOGG	ED BY: PS				ENGINEERING
DATE	STARTED: 5/2	8/202	25		IN ENVIRONMENT AND ENERGY, DPC
DEPTH (feet)	Sample	PID Reading		DESCRIPTION	REMARKS
0 - 1-				Concrete	
2— 3—	RI-BH-9 Fill	0		FILL; black loose sand	
5— 5— 6— 7—		0		NATIVE; grey brown clay	native @ 3'
8— 9— 10—				NATIVE; shale	refusal @ 10'
11-					
12-					
13- - 14-					
_	ges Engineeri	ng in I	Environment and Er	nergy, DPC	Project No. C907051 Page 1 of 1
	<u> </u>				,

PROJE		st 4	th Street Reme	edial Investigation	BORING LOG
BORING	LOCATION: R	I-BH	-10		
DRILLIN	G CONTRACT	OR:	B2. 3		
DRILLIN	G МЕТНОD: D	irect			
EXCAV	ATION EQUIPM	IENT: (BRYDGES		
LOGGE	DBY: PS		ENGINEERING IN ENVIRONMENT		
DATE S	TARTED: 5/2	_			AND ENERGY, DPC
DEPTH (feet)	Sample	PID Reading		DESCRIPTION	REMARKS
0				Concrete	
1+		$\mid \cdot \mid$			
2-	10 Fill				
3_	RI-BH-10 Fill	1		FILL; black loose sand	
-	Œ			,	
4		1			
5-					
-		0		NATIVE; grey brown clay, stiff	native @ 5'
6-					refusal @ 6'
7_					
-					
8-					
9_					
-					
10-					
11					
-					
12-					
13-					
-					
14-					
Brydg	es Engineeri	ng in	Environment and Er	nergy, DPC	Project No. C907051 Page 1 of 1

PROJECT: 166	East 4	th Street Reme	edial Investigation	BORING LOG
BORING LOCATI	ON: RI-BH	l-11		
DRILLING CONT	RACTOR:	Sessler Enviro		
DRILLING METH	od: Direct	Push		
EXCAVATION E	QUIPMENT:	Geoprobe Model	BRYDGES	
LOGGED BY: P	S			ENGINEERING
DATE STARTED	5/27/20	25		IN ENVIRONMENT AND ENERGY, DPC
(feet) Samb	PID Reading		DESCRIPTION	REMARKS
0			Asphalt	
1—————————————————————————————————————				
2- = = = = = = = = = = = = = = = = = = =	0		FILL; light brown to black sandy cl	ay
5-6-				native @ 5'
8- 8H-11 Native	0		NATIVE; grey brown clay, stiff	
10-				refusal @ 10'
11-				
13-				
14-				
H Brydges Ena	ineerina in	Environment and En	ergy, DPC	Project No. C907051 Page 1 of 1

ркојест: 166 Еа	st 4th	n Street Remed		BORING LOG	
BORING LOCATION: R	I-BH-	12			
DRILLING CONTRACTO	DR:	Sessler Environ		B23	
DRILLING METHOD: D	irect F	Push			
EXCAVATION EQUIPM	IENT: G	eoprobe Model 7		BRYDGES	
LOGGED BY: PS				ENGINEERING IN ENVIRONMENT	
DATE STARTED: 5/2		5		AND ENERGY, DPC	
(feed) Sample	PID Reading		DESCRIPTION		REMARKS
0			Asphalt		
1—————————————————————————————————————	0		FILL; brown silty clay, trace grave	el	
9 - 6 - 7 - 4 - 7 - 8H-12 Native					native @ 3'
7 - 8- 9-	0		NATIVE; grey brown clay, stiff		
10-					refusal @ 10
11-					
12-					
13-					
14-					
Brydges Engineeri	ng in Eı	nvironment and Ene	rgy, DPC	Projec	t No. C907051 Page 1 of 1

PROJECT: 166 E	ast 4th s	Street Reme	edial Investigation	i	BORING LOG
BORING LOCATION:	RI-BH-13	i			
DRILLING CONTRAC	tor: S	essler Enviror			
DRILLING METHOD:	Direct Pu				
EXCAVATION EQUIP	MENT: Geo	probe Model		BRYDGES	
LOGGED BY: PS				ENGINEERING	
DATE STARTED: 5/2	27/2025				IN ENVIRONMENT AND ENERGY, DPC
(feet) Sample	PID Reading		DESCRIPTION		REMARKS
0			Asphalt		
1—2— IIII 81 HB-IZ 3— 4— 5— 6—			FILL; black sandy silt, trace gray ı	rocks	native @ 6'
7- 8- 9- 10- 11- 12- 13-	0		NATIVE; grey brown clay, very sti	ff	refusal @ 13'
14-					
Brydges Enginee	ring in Env	ironment and En	ergy, DPC	Project	t No. C907051 Page 1 of 1

BORNIG LOCATION RI-BH-14 DORILLING CONTRACTOR: Sessier Environmental Services DORILLING METHOD Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 BENGINEERING LOGGED BY: PS DESCRIPTION REMARKS DESCRIPTION REMARKS FILL; brown silty clay, trace wood, coal A	PROJE		ot 1	th Ctract Dame		BORING LOG	
DRILLING CONTRACTOR: Sessler Environmental Services DRILLING METHOD Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 Sample						DOMINO LOC	
DRILLING METHOD: Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT DOGGED BY: PS DATE STARTED: 5/27/2025 Sample						B=3	
EXCAVATION EQUIPMENT Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 Sample							
DOGED BY: PS DATE STARTED: 5/27/2025 NEWYRONMENT					7720DT		
DESCRIPTION REMARKS							
Sample			7/20	 25			IN ENVIRONMENT
11—	DEPTH (feet)						
FILL; brown sity clay, trace wood, coal native @ 4' NATIVE; dark brown clay, stiff NATIVE: dark brown clay, stiff refusal @ 12'			<u> </u>				
FILL; brown sity clay, trace wood, coal native @ 4' NATIVE; dark brown clay, stiff NATIVE: dark brown clay, stiff refusal @ 12'	1_	i <u>.</u>					
FILL; brown sity clay, trace wood, coal native @ 4' NATIVE; dark brown clay, stiff NATIVE: dark brown clay, stiff refusal @ 12'	· -	H-14					
3	2-	<u>s</u>					
10- 11- 12- 13- 14-	-		0		FILL; brown silty clay, trace wood	d, coal	
5- 6- 7- 8- 0 NATIVE; dark brown clay, stiff 9- 10- 11- 12- 13- 14-	3-		1				
6- 7- 8- 0 NATIVE; dark brown clay, stiff 9- 11- 12- 13- 14-	4-						native @ 4'
7- 8- 0 NATIVE; dark brown clay, stiff 9- 11- 12- 13- 14-	5-						
7- 8- 0 NATIVE; dark brown clay, stiff 9- 11- 12- 13- 14-	-						
8- 0 NATIVE; dark brown clay, stiff 9- 10- 11- 12- 13- 14- 14- 14- 14- 14- 14- 14- 14- 14- 14	6-						
8- 0 NATIVE; dark brown clay, stiff 9- 10- 11- 12- 13- 14- 14- 14- 14- 14- 14- 14- 14- 14- 14	7-						
9- 10- 11- 12- 13- 14-							
10— 11— 12— 13— 14—	8-		0		NATIVE; dark brown clay, stiff		
10— 11— 12— 13— 14—	-						
11— 12— 13— 14—	9-						
12- 13- 14-	10-						
12- 13- 14-	-						
13- 14-	11-						
13- 14-	12-						
14-	-						refusal @ 12'
	13-						
	-						
Brydges Engineering in Environment and Energy, DPC Project No. C907051 Page 1 of 1	14-						
, 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bryd	ges Engineeri	ng in	Environment and Er	nergy, DPC	Projec	t No. C907051 Page 1 of 1

BORING LOG BORING LOG BORING LOG BORING LOG BORING LOG BORING CONTRACTOR Sessier Environmental Services BRILLING METHOD Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT LOGGED BY PS DESCRIPTION REMARKS DESCRIPTION REMARKS DESCRIPTION REMARKS NATIVE: grey brown clay, stiff Total Total	PROJE						PODING L	20
DRILLING CONTRACTOR: Sessler Environmental Services ORILLING METHOD: Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 Sample 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							JG	
DRILLING METHOD: Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT BRYDGES ENGINEERING IN EVERNATION FROM IN EXCAVATION EQUIPMENT: 5/27/2025 BATE STARTED: 5/27/2025 Sample								
EXCAVATION EQUIPMENT Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 BRYDGES ENGINEERING IN ENVIRONMENT AND EMERCY, ppc AND EMERCY, ppc REMARKS O 1								
COGGED BY: PS							_	
DATE STARTED: 5/27/2025 Sample			ENT: (Geoprobe Model		BRYDGES		
Sample								
1-		STARTED: 5/2		25 		AND ENERGY, DE	PC .	
1		Sample	PID Reading		DESCRIPTION		REMAR	RKS
8- 9- 10- 10- 11- 12- 13- 14- 14- 14- 14- 14- 15- 15- 15- 15- 15- 15- 15- 15- 15- 15	1- 2- 3- 4- 5- 6-	RI-BH-15 Fill	0		FILL; black sandy silt, trace rocks	s, organics	notice @ 7	
11- 12- 13- 14-	8- 9-	RI-BH-15 Native	0		NATIVE; grey brown clay, stiff			
12- 13- 14-							refusal @ 10'	
13-	11-							
	12-							
	13-							
Brydges Engineering in Environment and Energy, DPC Project No. C907051 Page 1 of 1	14-							
	Bryd	ges Engineeri	ng in	Environment and Er	nergy, DPC	Projec	t No. C907051	Page 1 of 1

	166 Ea	st 4	th Street Reme	BORING LOG	
BORING	LOCATION: F	RI-BH			
	IG CONTRACT		Sessler Environ		
	IG METHOD: D				
	D BY: PS	IENI: (Geoprobe Model	BRYDGES ENGINEERING	
	TARTED: 5/2	7/20	 25	IN ENVIRONMENT AND ENERGY, DPC	
DEPTH (feet)	Sample	PID Reading		DESCRIPTION	REMARKS
0 1- 2- 3- 4-	RI-BH-16 Fill	0		FILL; grey black loose clayey silt	
5— 6— 7— 8—		0		NATIVE; dark brown clay, stiff	native @ 4'
9-					
11-					
12-		0		NATIVE; grey brown clay, wet	
13-					
Dr. ida	es Engineer	na in	Environment and Er	neray DPC	Project No. C907051 Page 1 of 2

DRILLING METHOD: Direct Pu	sh		
EXCAVATION EQUIPMENT: Geor	orobe Model 7720DT	BRYDGES ENGINEE IN ENVIRONMENT AND ENER	
LOGGED BY: PS		IN ENVIRONMENT AND ENER	GY, DPC
DATE STARTED: 5/27/2025			
(fe et) Samble PID Reading	DESCRIPTION	REMARKS	
15- 16- 17-		refusal @ 16'	
Brydges Engineering in Enviro	nment and Energy, DPC	Project No. C907051 Page 2	of 2

PROJECT: 166 East 4th St	BORING LOG	
BORING LOCATION: RI-BH-17		
DRILLING CONTRACTOR: Ses		
DRILLING METHOD: Direct Push		
EXCAVATION EQUIPMENT: Geop	BRYDGES	
LOGGED BY: PS	ENGINEERING	
DATE STARTED: 5/27/2025	IN ENVIRONMENT AND ENERGY, DPC	
(feet) Samble PID Reading	DESCRIPTION	REMARKS
0 1 1 2 1 3 1 4 1 5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	FILL; grey black loose clayey s	ilt
7- - 8- 9- 10- - 11- - 12- - 13- - 14-	NATIVE; grey brown clay, wet	refusal @ 14'
Brudges Engineering in Equity	enment and Energy DDC	
Brydges Engineering in Enviro	onment and Energy, DPC	Project No. C907051 Page 1 of 1

BORING LOCATION: RI-BH-18 DRILLING CONTRACTOR: Sessler Environmental Services DRILLING METHOD: Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 DESCRIPTION REMARI O 1 1 1 1 1 1 1 1 1 1 1 1	B IG							
DRILLING CONTRACTOR: Sessler Environmental Services DRILLING METHOD: Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 THE CONTRACTOR: Sessler Environmental Services BRYDGES ENGINEERIN IN ENVIRONMENT AND ENERGY, DRIVER O DESCRIPTION REMARI	T C							
DRILLING METHOD: Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 THE COMPAND ENERGY, DRIVER AND	T C							
EXCAVATION EQUIPMENT: Geoprobe Model 7720DT LOGGED BY: PS DATE STARTED: 5/27/2025 The started of the started	T C							
LOGGED BY: PS DATE STARTED: 5/27/2025 THE STARTED: 5/27/2025 DESCRIPTION REMARI	T C							
DATE STARTED: 5/27/2025 THE STARTED: 5/27/2025 DESCRIPTION REMARK O O O O O O O O O O O O O	T C							
DATE STARTED: 5/27/2025 AND ENERGY, DPO Sample Graph Brown	PC .							
	:KS							
3—————————————————————————————————————								
NATIVE; grey brown clay, stiff								
10— refusal @ 10'								
12-								
13-								
Brydges Engineering in Environment and Energy, DPC Project No. C907051								

PROJECT: 166 I	East 4	th Street Reme	edial Investigation	BORING LOG
BORING LOCATION	√: RI-B⊦	I-19		
DRILLING CONTRA	CTOR:	Empire Explora		
DRILLING METHOD	: Direct	Push		
EXCAVATION EQU	JIPMENT:	Geoprobe Model	BRYDGES	
LOGGED BY: PS			ENGINEERING	
DATE STARTED: {	3/11/20	25	IN ENVIRONMENT AND ENERGY, DPC	
(feet) Sample	PID		DESCRIPTION	REMARKS
0			Asphalt	
1- 2- 3- 4- 4- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	0		FILL; black sandy silt, some ash	
5—————————————————————————————————————	0		NATIVE; grey brown clay, stiff	native @ 6'
_				
11-				
12-				
13—				
14—				
15—				
16—				
17				
Brydges Engine	eering in	Environment and Er	nergy, DPC	Project No. C907051 Page 1 of 1

PROJECT: **BORING LOG** 166 East 4th Street Remedial Investigation BORING LOCATION: RI-BH-20 **Empire Exploration and Geology** DRILLING CONTRACTOR: DRILLING METHOD: Direct Push EXCAVATION EQUIPMENT: Geoprobe Model 7220DT LOGGED BY: PS DATE STARTED: 8/11/2025 **AND ENERGY, DPC** PID Reading DEPTH (feet) **REMARKS** Sample **DESCRIPTION** Asphalt 1 2 RI-BH-20 FILL; black loose sand, some ash 3 4 5native @ 5' 6-7-NATIVE; grey brown clay, trace rocks, stiff 8 9 10 11 12-13-14 15 16 17 Brydges Engineering in Environment and Energy, DPC Project No. C907051 Page 1 of 1

PROJECT:	1// 5				D.	ORING LOG
	166 Ea		D'			
BORING LO				BE3		
DRILLING C						
DRILLING M			_			
EXCAVATION		ENT: (_	BRYDGES		
LOGGED BY					E	INGINEERING IN ENVIRONMENT
DATE STAR	TED: 5/28					AND ENERGY, DPC
DEPTH (feet)	ample	PID Reading		DESCRIPTION		REMARKS
0				Asphalt		
1-						
2-		0		FILL; light brown to black sandy o	slay	
3—					n	ative @ 3'
4-		0		NATIVE; grey brown clay, stiff		
5—						
6-						
7-						
8-		1				
-	1SD					
9—	MS/W	0		NATIVE; grey brown clay, wet		
10-	RI-MW-1 + MS/MSD				C	ollected MS/MSD
11	<u>~</u>					
12-						
13-					re	efusal @ 13'
14-						
Brydges I	Engineerii	l ng in	Environment and Er	nergy, DPC	Project N	o. C907051 Page 1 of 1

PROJE		ast 4	th Street Reme	BORING LOG	
BORING	G LOCATION: F	RI-MV	N-2		
DRILLIN	IG CONTRACT	OR:	Sessler Enviro		
DRILLI	IG METHOD: [Direct	Push		
		MENT: (Geoprobe Model	BRYDGES	
	DBY: PS			ENGINEERING IN ENVIRONMENT	
	STARTED: 5/2				AND ENERGY, DPC
DEPTH (feet)	Sample	PID Reading		DESCRIPTION	REMARKS
0 _				Asphalt	
1-					
2-		0		FILL; black loose sand	
_					
3-					native @ 3'
4—					
-					
5—	W-2	0		NATIVE; grey brown clay, stiff	
6-	RI-MW-2				
-					
7				NATIVE; shale	
8-					refusal @ 8'
9-					
10-					
11-					
-					
12-					
13-					
-					
14-					
Brydg	jes Engineer	ing in	Environment and Er	Project No. C907051 Page 1 of 1	

	166 Ea		BORING LOG		
	G LOCATION: F				
	IG CONTRACT				
	NG METHOD: [7720DT	
	D BY: PS	/ILIVIT. C	Seoprobe Model	BRYDGES ENGINEERING	
	STARTED: 5/2	8/202			IN ENVIRONMENT AND ENERGY, DPC
DEPTH (feet)	Sample	PID Reading	DESCRIPTION		REMARKS
0				Asphalt	
1-					
3-	0			FILL; light brown to black sandy c	clay
4-		7			
5— 6— 7—					native @ 5', collected dup
9-	RI-MW-3 + DUP	0		NATIVE; grey brown clay, wet	
- 11—	<u></u>				
`` \					
12-					
13-		2		NATIVE; shale	
14-				IVATIVE, SHARE	refusal @ 14'
Brydges Engineering in Environment and Energy, DPC					Project No. C907051 Page 1 of 1

PROJE							20
	166 Ea	ıst 4	th Street Reme	edial Investigation		BORING LO	JG
BORIN	G LOCATION: F	RI-M\					
	NG CONTRACT		Sessler Enviro				
	NG METHOD: [
EXCA	VATION EQUIPN	ИENT: (Geoprobe Model	7720DT		BRYDGES	
	ED BY: PS					ENGINEERIN IN ENVIRONMEN	IG T
DATE	STARTED: 5/2	1		T	AND ENERGY, DP		
DEPTH (feet)	Sample	PID Reading		DESCRIPTION		REMAR	KS
0				Asphalt			
1-							
-		0		FILL; brown silty clay			
2-				TILE, DIOWIT SIRY Clay			
_							
3-						native @ 3'	
4-							
5-							
_							
6-							
7-							
-							
8-							
-		0		NATIVE; grey reddish brown clay,	stiff		
9-							
10-	RI-MW-4 + DUP						
11-	WW-4						
	고						
12-							
-							
13-						collected dup	
14-							
Bryd	ges Engineer	ing in	Environment and Er	nergy, DPC	Project	No. C907051	Page 1 of 2

DRILLII	NG METHOD: D	irect	Push		
EXCA	ATION EQUIPM	ENT: (Geoprobe Model 7720DT		BRYDGES ENGINEERING IN ENVIRONMENT AND ENERGY, DPC
LOGGE	D BY: PS				
DATE S	STARTED: 5/28	3/202	25		
DEPTH (feet)	Sample	PID Reading	DESCRIPTION		REMARKS
15-			NATIVE; shale	rei	fusal @ 15'
16-					
17—					
Brydg	ges Engineerir	ng in	Environment and Energy, DPC	Project No	. C907051 Page 2 of 2
	-	-			ļ

PROJECT:	, , E	. 41				BORING LO)G		
			th Street Reme	-		J G			
BORING LOC	ation: RI-	MV							
DRILLING CO	NTRACTOR	:	Sessler Environ						
DRILLING ME	тнор: Dire	ect	Push						
EXCAVATION	I EQUIPMEN	NT: (Geoprobe Model	BRYDGES					
LOGGED BY:	PS					lG T			
DATE START	ED: 5/28/	202	25		IN ENVIRONMEN AND ENERGY, DE				
DEPTH (feet)	mple 🔓	Reading		DESCRIPTION		REMAR	RKS		
0 1- 2- 3- 4- 5- 6- 7-		0		FILL; grey black loose clayey silt NATIVE; grey brown clay, stiff		native @ 5'			
8- 9- 10- 11- 12- 13- 14-	RI-MW-5 + MS/MSD	0			collected MS/MSD				
Brydges E	ngingering	ı in I	Environment and Er	nergy DPC	Droice	No. C007051	Dago 1 of 1		
bryages E	igineering	ן ווון	Environment and Er	iergy, DPC	Projec	t No. C907051	Page 1 of 1		

Appendix D Monitoring Well Construction Logs

Appendix E Well Development Logs

PROJECT TITLE: 4th Street Dunkirk		WELL NO.:	RI-MW-2	_
PROJECT NO.: 8237				
STAFF: Travis Numan				
DATE(S): <u>5/30/2025</u>				
DEVELOPMENT METHOD: Weighted bailers				
1. DEPTH TO WELL BOTTOM (FT. BTOR)	=	7.0	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TOP OF RISER (FT. BTOR)	=	4.9	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	=	2.1	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GALLONS)	=	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	=	0.36	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 3	=	1.07	6"	1.50
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)	=	3.00	8"	2.60
		V=	0.0408 x (CASII	OR NG DIAMETER)²

			ACCU	MULA	TED VO	LUME	PURGE	D (GAL	LONS)		
PARAMETERS	1	2	3	_							
рН	7.06	6.92	6.90			1					
TEMPERATURE (°C)	18.1	17.5	17.3								
SPEC. COND. (mS/cm)	1260	1177	1159								
ORP (mV)	245	244.2	239								
DISSOLVED OXYGEN (mg/l)	3.91	4.1	4.26								
TURBIDITY (NTU)	890	142	157								
DEPTH TO WATER (btor)	4.7	5.1	5.1								
TIME	10:30a	10:45a	11:00a								
COMMENTS:					•	•	•		•	•	

PROJECT TITLE: 4th Street Dunkirk		WELL NO.:	RI-MW-3	_
PROJECT NO.: 8237				
STAFF: Travis Numan				
DATE(S): <u>5/30/2025</u>				
DEVELOPMENT METHOD: Weighted bailers				
1. DEPTH TO WELL BOTTOM (FT. BTOR)	=	12.0	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TOP OF RISER (FT. BTOR)	=	7.7	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	=	4.3	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GALLONS)	=	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	=	0.73	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 3	=	2.19	6"	1.50
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)	=	3.50	8"	2.60
		V=	0.0408 x (CASII	OR NG DIAMETER)²

			ACCI.	IMIII A	TED VC	IIIME	DIIRGE	D (GAI	LONS)	
PARAMETERS	1	2.5	3.5	MOLA		LOWIE		OAL		
рН	7.09	7.19	7.09							
TEMPERATURE (°C)	16	15.3	15.5							
SPEC. COND. (mS/cm)	1542	1573	1598							
ORP (mV)	222	204.3	146.9							
DISSOLVED OXYGEN (mg/l)	8.31	8.24	6.97							
TURBIDITY (NTU)	266	232	236							
DEPTH TO WATER (btor)	7.8	7.85	7.88							
TIME	11:15a	11:30a	11:45a							
COMMENTS:										

PROJECT TITLE: 4th Street Dunkirk		WELL NO.:	RI-MW-4	
PROJECT NO.: 8237				
STAFF: Travis Numan				
DATE(S): <u>5/30/2025</u>				
DEVELOPMENT METHOD: Weighted bailers				
1. DEPTH TO WELL BOTTOM (FT. BTOR)	=	10.0	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TOP OF RISER (FT. BTOR)	=	6.4	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	=	3.6	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GALLONS)	=	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	=	0.61	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5	3 =	1.84	6"	1.50
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)	=	2.50	8"	2.60
		V=0	0.0408 x (CASIN	OR IG DIAMETER) ²

		ACCUMULATED VOLUME PURGED (GALLONS)									
PARAMETERS	0.5	1.5	2.5								
pH	7.16	7.1	7.11								
TEMPERATURE (°C)	17.2	14.8	14.5								
SPEC. COND. (mS/cm)	1648	1884	1930								
ORP (mV)	240.3	235.4	231								
DISSOLVED OXYGEN (mg/l)	5.73	6.44	5.49								
TURBIDITY (NTU)	137	84	70								
DEPTH TO WATER (btor)	6.48	6.53	6.5								
TIME	12:00p	12:35p	12:55p								

COMMENTS:

PROJECT TITLE: 4th Street Dunkirk		WELL NO.:	RI-MW-5	
PROJECT NO.: 8237				
STAFF: Travis Numan				
DATE(S): <u>5/30/2025</u>				
DEVELOPMENT METHOD: Weighted bailers				_
1. DEPTH TO WELL BOTTOM (FT. BTOR)	=	11.0	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TOP OF RISER (FT. BTOR)	=	9.3	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	=	1.7	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GALLONS)	=	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	=	0.29	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5	3 =	0.87	6"	1.50
7. VOLUME OF WATER ACTUALLY REMOVED (GAL.)	=	2.50	8"	2.60
		V=(0.0408 x (CASIN	OR G DIAMETER) ²

		ACCUMULATED VOLUME PURGED (GALLONS)									
PARAMETERS	0.5	1.5	2.5								
pH	7.06	7.01	6.99								
TEMPERATURE (°C)	14.6	13.5	13.3								
SPEC. COND. (mS/cm)	1348	1340	1342								
ORP (mV)	254.2	242	230								
DISSOLVED OXYGEN (mg/l)	9.14	9.53	9.68								
TURBIDITY (NTU)	275	98.9	87.5								
DEPTH TO WATER (btor)	9.41	9.53	9.6								
TIME	1:00p	1:25p	1:45p								

COMMENTS:

Appendix F
Purge Logs

Project:	160	-164 E 4th Street	RI	Site:	160-164 E 4th S	Street, Dunkirk NY	Well I.D.:	RI-MV	V-2
Date:	6/2/2025	Sampling	Personnel:		Jim Hull		Company: _	BE3 Co	orp
Purging/ Sampling Device:		Peristaltic Pump		Tubing Type:	HDPE +	- Silicone	Pump/Tubing Inlet Location:	Middle of	Screen
Measuring Point:	TOR Marking	Initial Depth to Water:	5.00	Depth to Well Bottom:	7.00	Well Diameter:	2 in	Screen Length:	5'
Casing Type:	PV	rc		Volume in 1 Well Casing (gallons):	0.3	-	Estimated Purge Volume (gallons):	2.0	
Sample ID:		RI-MW-2		Sample Time:	1:0	0pm	QA/QC:		
Sampl	e Parameters: ₋	Part 375 \	/OCs & TICs,	SVOC & TICs	, Metals, Pest	icides, PCBs ,I	PFA's, 1-4 Dioxa	ne, Total Cya	nide
	-								

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
12:20pm	7.48	15.9	1126	10.46	19.69	211		5.00
12:30pm	8.01	16.0	813	10.02	20.01	171		
12:40pm	7.86	16.0	937	10.16	19.87	209		
12:50pm	7.2	15.8	907	9.95	23.41	197		
1:00pm	7.33	15.9	928	10.01	22.30	206		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{cyl} = \pi r^2 h$)

Project:	160	-164 E 4th Stree	et RI	Site:	160-164 E 4th S	treet, Dunkirk NY	Well I.D.:	RI-MV	N-3	
Date:	6/3/2025	Sampling	g Personnel:		Jim Hull		Company:	BE3 C	Corp	
Purging/ Sampling Device:		Peristaltic Pump	0	Tubing Type:	HDPE +	- Silicone	Pump/Tubing Inlet Location:	Middle of	Screen	
Measuring Point:	TOR Marking	Initial Depth to Water:	7.60	Depth to Well Bottom:	12.00	Well Diameter:	2 in	Screen Length:	5'	
Casing Type:	PV	c		Volume in 1 Well Casing (gallons):	0.7	-	Estimated Purge Volume (gallons):	2.5	-	
Sample ID:		RI-MW-3		Sample Time:	10:0	00am	QA/QC:			
Sampl	le Parameters:	Part 375	VOCs & TICs,	SVOC & TICs	, Metals, Pesti	icides, PCBs ,I	PFA's, 1-4 Dioxa	ne, Total Cya	anide	
	- -									_

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
9:15am	7.34	16.0	1360	10.09	14.99	141.1		7.60
9:30am	7.56	15.8	1107	10.16	15.73	149.3		
9:40am	7.22	15.9	1180	10.65	14.68	129.7		
9:55am	7.91	15.9	1201	10.01	14.27	137.7		
10:00am	8.03	16.1	1163	10.15	15.02	142.9		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{cyl} = \pi r^2 h$)

Project:	160	-164 E 4th Street	: RI	Site:	160-164 E 4th S	Street, Dunkirk NY	Well I.D.:	RI-MV	V-4	
Date:	6/3/2025	Sampling	Personnel:		Jim Hull		Company: _	BE3 Co	orp	
Purging/ Sampling Device:		Peristaltic Pump		Tubing Type:	HDPE +	- Silicone	Pump/Tubing Inlet Location:	Middle of	Screen	
Measuring Point:	TOR Marking	Initial Depth to Water:	6.40	Depth to Well Bottom:	10.00	Well Diameter:	2 in	Screen Length:	5'	
Casing Type:	PV	/C		Volume in 1 Well Casing (gallons):	0.6	-	Estimated Purge Volume (gallons):	3.2		
Sample ID:		RI-MW-4		Sample Time:	8:3	0am	QA/QC:			
Sample	e Parameters: _.	Part 375 \	/OCs & TICs,	, SVOC & TICs	, Metals, Pest	icides, PCBs ,I	PFA's, 1-4 Dioxa	ne, Total Cya	nide	
	-									_

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
7:45am	9.04	15.4	3132	10.72	26.07	46.4		6.40
8:00am	7.92	17.1	1661	10.40	15.19	25.1		
8:10am	8.34	16.5	1571	10.44	19.87	38.7		
8:20am	9.12	16.4	1280	10.81	27.31	29.3		
8:30am	9.03	16.2	1304	10.36	22.89	22.0		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{cyl} = \pi r^2 h$)

Project:	160	-164 E 4th Street	: RI	Site:	160-164 E 4th S	Street, Dunkirk NY	Well I.D.:	RI-MV	V-5
Date:	6/2/2025	Sampling	Personnel:		Jim Hull		Company:	BE3 Co	orp
Purging/ Sampling Device:		Peristaltic Pump		Tubing Type:	HDPE +	- Silicone	Pump/Tubing Inlet Location:	Middle of S	Screen
Measuring Point:	TOR Marking	Initial Depth to Water:	9.25	Depth to Well Bottom:	11.00	Well Diameter:	2 in	Screen Length:	5'
Casing Type:	PV	/C		Volume in 1 Well Casing (gallons):	0.3	-	Estimated Purge Volume (gallons):	1.5	
Sample ID:		RI-MW-5		Sample Time:	1:30-	1:50pm	QA/QC:	MS/M	SD
Sample	e Parameters:	Part 375 \	/OCs & TICs	, SVOC & TICs	, Metals, Pest	icides, PCBs ,I	PFA's, 1-4 Dioxa	ne, Total Cya	nide
	- -								

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	Eh (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1:10pm	8.08	14.9	2916	10.34	21.43	78.8		9.25
1:15pm	9.36	15.2	3142	10.72	26.64	10.2		
1:20pm	9.12	15.4	2631	10.01	29.31	132.2		
1:25pm	9.73	15.3	2294	10.73	19.04	1260.0		
1:30pm	9.67	15.2	2283	9.89	23.20	1253.0		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ($vol_{cyl} = \pi r^2 h$)

Appendix G Vapor Point Construction Logs

Appendix H DER-10 – Appendix 3C Decision Key

	Appendix 3C Fish and Wildlife Resources Impact Analysis Decision Key	If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	13	2
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4	9
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	(5)
5.	Has the contamination gone off-site?	6	14
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7	14
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8
8.	Does contamination exist at concentrations that could exceed ecological impact SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14
9.	Does the site or any adjacent or downgradient property contain any of the following resources? i. Any endangered, threatened or special concern species or rare plants or their habitat ii. Any DEC designated significant habitats or rare NYS Ecological Communities iii. Tidal or freshwater wetlands iv. Stream, creek or river v. Pond, lake, lagoon vi. Drainage ditch or channel vii. Other surface water feature viii. Other marine or freshwater habitat ix. Forest x. Grassland or grassy field xi. Parkland or woodland xii. Shrubby area xiii. Urban wildlife habitat xiv. Other terrestrial habitat	11	10
10.	Is the lack of resources due to the contamination?	3.10.1	14
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14	12
12.	Does the site have widespread surface soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	12
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact DEC for information regarding endangered species.)	Section 3.10.1	14
14.	No Fish and Wildlife Resources Impact Analysis needed.		

Appendix I Alternative Cost Estimates

160-164 E 4th STREET REMEDIAL ALTERNATIVE COST ESTIMATES

- Assumptions:
 1) Conversion factor of cubic yards of soil/stone to tons is 1.5.
 2) Quantity of 1 implies the cost is a lump sum.

ALTERNATIVE 1 - REMEDIATE TO TRACK 4 - RESTRICTED RESIDENTIAL							
Item	Unit Cost	Quantity	Total				
Mobilization/Demobilization	\$10,000.00	1	\$10,000.00				
Building Demolition and Abatement	\$110,000.00	1	\$110,000.00				
Waste Transport	\$27.00	6300	\$170,100.00				
Clean Backfill	\$11.00	5200	\$57,200.00				
Disposal	\$210,000.00	1	\$210,000.00				
Excavation Crew	\$150,000.00	1	\$150,000.00				
Engineering Oversight	\$100,000.00	1	\$100,000.00				
Total			\$807,300.00				
Contingency (10%)			\$80,730.00				
Estimated Capital Total Cost	\$888,030.00						

ALTERNATIVE 2 - REMEDIATE TO TRACK 1 - UNRESTRICTED							
Item	Unit Cost	Quantity	Total				
Mobilization/Demobilization	\$10,000.00	1	\$10,000.00				
Building Demolition and Abatement	\$100,000.00	1	\$100,000.00				
Waste Transport	\$27.00	17000	\$459,000.00				
Clean Backfill	\$11.00	15500	\$170,500.00				
Disposal	\$425,000.00	1	\$425,000.00				
Excavation Crew	\$200,000.00	1	\$200,000.00				
Engineering Oversight	\$100,000.00	1	\$100,000.00				
Total			\$1,464,500.00				
Contingency (10%)			\$146,450.00				
Estimated Capital Total Cost			\$1,610,950.00				