The electronic version of this file/report should have the file name:

• • • • • •

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

report. <u>hw915143</u>. 1992 -07-28. SUPPLEMENTAL .pdf INVESTIGATION REPORT

Project Site numbers will be proceeded by the following:

Municip**a**l Brownfields - b Superfund - hw Spills - s**p** ERP - e VCP - v BCP - c

non-releasable - put .nf.pdf Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

Groundwater Technology. Inc.

12 Walker Way, Albany, NY 12205 Tel: (518) 456-2444

Zren/Dieose\7905supp.rpt

SUPPLEMENTAL INVESTIGATION REPORT

OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK NYS DEC SPILL #915143

July 28, 1992

Submitted to:

Mr. Michael E. Rider Osmose Wood Preserving, Inc. 980 Ellicott Street Buffalo, New York 14209

Submitted by:

Groundwater Technology, Inc. 12 Walker Way Albany, New York 12205

Offices throughout the U.S., Canada and Overseas

SIGNATURE PAGE

Prepared by:

J. Qlaf Gustanson

Site Manager Geologist

Bruce W. Ahrens Senior Project Manager Engineer

Reviewed by:

endy (Irono

Wendy C. Leonard District Hydrogeologist Remedial Specialist

TABLE OF CONTENTS

			Page
1.0	Int ro c	duction	1
	1.1 1.2	Background	1 1
2.0	Fie ld	Investigation Procedures	4
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Soil Boring/Monitoring Well Installation Subsurface Soil Sampling Surface Soil Sampling Monitoring Well Development Groundwater Sample Collection Groundwater Elevation Survey Decontamination Sample Management and Quality Control	4 7 8 10 10 11 11
3.0	Fie ld	Investigation Results	13
	3.1	Geologic Evaluation	13 13 13
	3.2	Subsurface Soil Sampling Results	15 15 17
	3. 3	Surface Soil Sampling Results	19
	3.4	Hydrog ^é ologic Evaluation	22 22 22
	3.5	Groundwater Sampling Results	24 24 28 32
4.0	Sumr	nary Discussion	33
	4.1 4.2 4.3 4.4 4.5	Upgradient Groundwater Quality Delineation of Impacted Soils Separate Phase Hydrocarbons Deep Groundwater Quality Surface Soils	33 33 35 37 38

.

5.1	Reme	diation Recommendations
	5 .1.1	On-Site Soils
	5.1.2	On- and Off-Site Groundwater
	5.1.3	Separate Phase Hydrocarbons

LIST OF TABLES

2-1	Monitoring Well Screened Intervals	6
2-2	Summary of Soil Sample Locations	8
2-3	QA/QC Samples	12
3-1	VOCs in Subsurface Soils	16
3-2	PAHs in Subsurface Soils	18
3-3	PAHs in Surface Soils	20
3-4	Distribution of PAHs in Surface Samples	22
3-5	VOCs in Groundwater	25
3-6	PAHs in Groundwater	29
3-7	Groundwater Field Measurements	32
4-1	Estimated Volume of Soil > 473 ppm	35
5-1	Remedial Alternative Screening	41

FIGURES

1	Site Location Map	2
2	Site Map	5
3	Soil Grab Sample Locations	ę
4	Geologic Cross Section	14
5	Groundwater Contour Map	23
6	Dissolved BTEX Distribution Map	27
7	Dissolved PAH Distribution Map	30
8	Areal Extent of Soils above 473 ppm	34
9	Cross-Section of Soil above 473 ppm	36

APPENDICES

A NYS DEC Co	rrespondence
--------------	--------------

В

5.0

- Well Logs Vapor Monitoring Logs С
- Data Validation Report D
- Laboratory Analytical Reports PAH Profile Graphs Е
- **F** .
- G NAPL Profile Graphs
- Brush Fire Locations н
- Risk Assessment Calculations 1

1.0 INTRODUCTION

1.1 Background

Osmose Wood Preserving, Inc. (Osmose) operates a facility which manufactures a variety of preservatives used in the treatment of wood and lumber products. The facility is located at 980 Ellicott Street, Buffalo, New York (Figure 1, Site Location Map). During removal of 3 underground storage tanks (USTs) in August, 1989, evidence of a release to the subsurface, believed to be #2 fuel oil and brushing grade creosote, was discovered.

In June, 1990, Osmose was notified by the NYS DEC of their inclusion in the New York State Registry of Inactive Hazardous Waste Disposal Sites, and assigned NYS DEC Site Number 915143. The site was classified as "2a". Osmose contracted Groundwater Technology, Inc. (Groundwater Technology) to prepare a work plan to investigate the extent of contamination at the Ellicott Street facility. The work plan, titled Subsurface Investigation Work Plan for Osmose Wood Preserving, Inc., Buffalo, New York, June, 1990 (Work Plan) was submitted to, reviewed and accepted by the NYS DEC.

The work tasks, as described in the Work Plan, were completed and a Subsurface Investigation Report (Report) dated June 28, 1991, was submitted to the NYS DEC for review. The Report included several recommendations for additional assessment work to fill data gaps which were identified during the initial (preliminary) assessment. Several additional areas of investigation, in addition to Groundwater Technology's recommendations, were identified during review of the Report by the NYS DEC. Correspondences between the NYS DEC and Groundwater Technology regarding these additional requirements are included in Appendix A. Based upon correspondence between Groundwater Technology, the NYS DEC, and Osmose, the requirements for additional assessment were defined. These requirements were presented in the Supplemental Investigation Work Plan dated March 9, 1992.

1.2 Objectives

The objective of this report is to present the findings of the Supplemental Investigation Work Plan. The objective of the supplemental investigation was to fill data gaps which previously prevented full characterization of the Osmose site. Procedures and results are presented for soil boring/monitoring well installation, well development, collection of soil and groundwater samples, decontamination procedures, sample analysis and data validation.

FIGURE 1 SITE LOCATION MAP OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK

SOURSE: NYS DOT 7.5 MIN. BUFFALO NE & NW QUADS SCALE: 1 IN. EQUALS 2,000 FT.

Specific objectives of the supplemental investigation were:

- Documentation of upgradient groundwater quality,
- Delineation of the extent of impacted soils in the MW-8 area,
- Delineation of the extent of separate phase (SP) product which exists downgradient of the former tank pit,
- Investigation of downgradient "deep" groundwater quality (groundwater just above bedrock), and
- Investigation of surface soils which are located proximate to the paved area which was temporarily used to stage impacted soils.

The report describes the field investigation procedures, investigation results and provides a summary discussion. Using this additional information, conceptual remediation alternatives were developed for the Osmose site and a remediation strategy selected.

The details of the procedures followed to accomplish the above objectives are presented in Section 2.0.

2.0 FIELD INVESTIGATION PROCEDURES

2.1 Soil Boring/Monitoring Well Installation

Earth Dimensions, Inc. was retained to perform the soil borings at the Osmose site, which occurred from March 17 to March 20, 1992. A hollow-stem auger drilling rig was used to complete four soil borings on site (Figure 2, Site Map). Previous soil boring data indicated that a clay and silt horizon (glacial lake deposits) was present at 3 to 8 feet below grade near the water/air interface, underlain with a layer of glacial outwash silts and sands (Subsurface Investigation Report: Figure 3, Geologic Cross Sections). Bedrock had previously been encountered at a depth of 63 feet.

Continuous split-spoon soil samples were collected at each boring location, and the lithologic descriptions were documented on soil logs by the field geologist. All soil samples were screened with a photoionization detector (PID). Three borings (MW-12, MW-13, and MW-14) were completed as two-lnch fiberglass-reinforced epoxy (FRP) monitoring wells. Monitoring well construction details are included on the well logs in Appendix B; the screened interval for each well is shown below in Table 2-1.

The location of SB-2 was selected to help delineate the extent of near-surface adsorbed-phase polynuclear aromatic hydrocarbons (PAHs) previously detected in the vicinity of MW-8. To prevent contaminated soils from being brought down through the borehole as the augers were advanced, telescoping of augers was utilized. The outer augers were set at the top of the clay contact approximately 5 feet below grade. The boring was then completed by using smaller diameter augers within the outer augers. The boring was installed to a depth of 14 feet below grade.

The location of MW-12 was chosen to delineate the upgradient extent of adsorbed PAHs in the vicinity of MW-8 and to document upgradient groundwater quality. The Niagara Frontier Transit Authority (NFTA) refused to allow placement of a well on their property adjoining Osmose to the west. As a result, the upgradient well was located as close as possible to the property line. MW-12 was installed to 20 feet below grade. To ensure the collection of consistent hydraulic data, the screened interval for monitoring well MW-12 (10 - 20 feet below grade) was chosen to penetrate the same geologic formations as adjacent monitoring well MW-8. The drilling techniques used were identical to those utilized at SB-2.

CROUNDWATER TECHNOLOGY

TABLE 2-1

WELL ID	SCREENED INTERVAL (feet below grade)
CW-1	57 - 62
CW-2	1.5 - 5.5
MW-8	16 - 21
MW-9	8 - 28
MW-10	11 - 25
MW-11	9 - 16
MW-12	10 - 20
	4 - 14
MW-14	57 - 62

MONITORING WELL SCREENED INTERVALS

NOTE: The shaded wells were installed during the supplemental investigation.

MW-13 was located in the sidewalk along the west side of Ellicott Street, in order to help delineate the downgradient extent of the separate-phase plume (Figure 2). The boring was advanced to a depth of approximately 14 feet below grade. Standard hollow stem auger drilling techniques were used at this location. The boring did not penetrate through the low permeability glacial lake deposits into the permeable underlying glacial outwash deposits.

The hydrogeologic evaluation of the site performed during the Subsurface Investigation Report indicated that the groundwater levels in the upper portion of the overburden aquifer ranged from 7 - 9 feet below grade during November, 1990 and January, 1991. Gaugings in MW-3 indicated that the seasonal high groundwater was 5 - 6 feet below grade in April and May. The screened interval in MW-13 was therefore extended from 4 to 14 feet below grade so that 1 to 4 feet of screen should always be above the water table.

In addition to the three shallow soil borings, a deep soil boring (MW-14) was installed in the right-of-way on the east side of Ellicott Street, approximately 80 feet north of MW-11. The deep boring penetrated the overburden to the top of bedrock at approximately 63 feet below grade. Standard hollow stem auger drilling techniques were used at this location. MW-14 was screened to sample groundwater just above the bedrock, with the screened interval extending from bedrock to 5 feet above bedrock (57 - 62 feet below grade).

All monitoring wells were constructed of threaded, flush-joint fiberglass-reinforced epoxy (FRP) well screen (0.020 inch) and casing. A clean, graded sand pack was placed in the annulus between the well and the borehole. The sand pack extended at least 2 inches beneath and 2 feet above the well screen (Appendix B, Well Logs). A two-foot bentonite seal was placed above the sand pack. A cement-bentonite grout was placed above the bentonite seal up to grade. All wells were completed with flush-mounted, traffic-approved road boxes and locking well caps.

Soils removed from the subsurface during drilling operations (cuttings/spoils) were stored on site in DOT-approved 55-gallon drums pending the completion of a waste characterization profile. The soils will be properly disposed of by Osmose.

During drilling operations vapor monitoring was performed as required by the site specific Health and Safety Plan (H&SP). Vapor monitoring logs are included in Appendix C.

2.2 Subsurface Soil Sampling

During soil boring installation, soil samples were continuously collected and monitored with a field PID. In addition, samples from each boring were sent for analysis at the contract laboratory (GTEL Environmental Laboratories, Milford, NH). From each boring, samples from above and below the water table that yielded the highest readings with the PID were chosen for laboratory analysis. Table 2-2 summarizes the soil samples which were selected for laboratory analysis.

TABLE 2-2SUMMARY OF SOIL SAMPLE LOCATIONSMarch 17 - 20, 1992

SAMPLE	SAMPLE LOCATION	
\$ B-2	2 - 4 f eet 8 - 10 feet	EPA 8310, EPA 8020 EPA 8310, EPA 8020
M W-12	6 - 8 feet 18 - 20 feet	EPA 8310, EPA 8020 EPA 8310, EPA 8020
MW-13	6 - 8 fee t 8 - 10 feet	EPA 8310, EPA 8020 EPA 8310, EPA 8020
MW-14	10 - 12 feet 61 - 63 feet	EPA 8310, EPA 8020 EPA 8310, EPA 8020
S S-1	0.25 - 0.5 feet	EPA 8310
<u>\$</u> \$-2	0.25 - 0.5 feet	EPA 8310
S S-3	0.25 - 0.5 feet	EPA 8310

Soil sampling equipment, procedures, preservation technique and decontamination procedures are specified in the Subsurface Investigation Work Plan, June 7, 1990: Appendix D, Project-Specific QA/QC Plan, Section 6.2.

2.3 Surface Soil Sampling

During closure of the three USTs in August, 1989, soils containing elevated levels of hydrocarbons were staged on polyethylene liners, awaiting NYS DEC approval of an Interim Remedial Measure (IRM). The soils were covered with polyethylene sheets to prevent erosion and transport of contaminants by wind or rain.

In order to verify/determine that off-site migration of hydrocarbons did not occur, three surface grab samples were collected from the adjoining properties to the south and west of the Osmose facility (Figure 3, Soil Grab Sample Locations). The samples were taken within the vacant lots, approximately eight feet beyond the fence marking the Osmose property line. The samples were sent to the contract laboratory for analysis for PAHs by EPA Method 8310.

The surface soil samples were collected by removing the sod and sampling the soil at a depth of approximately 3 to 6 inches below grade. The samples were collected with a stainless steel scoop which was decontaminated between locations.

2.4 Monitoring Well Development

Following installation, the monitoring wells were allowed to sit for approximately 24 hours to equilibrate before development. The monitoring wells were developed by repetitive surging and bailing until either:

- the turbidity level was less than 50 Nephelometric Turbidity Units (NTUs) as measured with a portable turbidity meter;
- 2) the well had been developed 3 5 well volumes; or
- 3) the well was bailed dry.

Approximately 18 gallons of development water was generated during well development. This development water was stored on site in a DOT-approved 55-gallon drum for proper disposal by Osmose.

2.5 Groundwater Sample Collection

Monitoring wells were left undisturbed for one week after development to allow time for the wells to equilibrate with the surrounding aquifer. Groundwater samples were collected from all FRP wells on site (MW-8, MW-9, MW-10, MW-11, CW-1, MW-12, MW-13 and MW-14) on April 2, 1992. Prior to sample collection, 3 to 5 well volumes of water were evacuated from each well. A bailer was used for the evacuation of the wells. The purged water was stored on site in DOT-approved 55-gallon drums for proper disposal by Osmose. Before sampling, the turbidity of each well was measured and recorded in the field notebook.

All FRP wells on site were sampled from lowest VOC concentration to highest, based upon historical results from previously sampled wells and soil screening levels observed during drilling. Samples were collected for field analysis of temperature, pH and conductivity.

Water samples were collected using properly decontaminated tefion bailers and rope. Following field analysis, water samples were collected for laboratory analysis by pouring water directly from the bailers into properly prepared laboratory jars, and placed on ice until delivery to the contract laboratory. Samples were analyzed at the contract laboratory for Aromatic Volatile Organics by EPA Method 8020 and PAHs by EPA Method 8310. Proper chain-of-custody procedures were employed throughout the sampling. Sampling procedures are specified in detail in the Subsurface Investigation Work Plan: Appendix D, Project-Specific QA/QC Plan.

2.6 Groundwater Elevation Survey

For all existing monitoring wells, top-of-casing elevations were surveyed to a common datum to allow comparison of groundwater elevations to data previously collected. The depth to groundwater at each monitoring well was measured to an accuracy of ± 1.001 feet with an electronic interface Probe.

2.7 Decontamination

Drilling equipment was decontaminated between boreholes. A steam cleaner was used to decontaminate augers, drill rods, spoon samplers, and other equipment that contacted contaminated soit or groundwater.

Bailers, interface probes, and other sampling equipment were decontaminated as specified in the Subsurface Investigation Work Plan, Appendix D: Project Specific QA/QC Plan.

2.8 Sample Management and Quality Control

The sample management and quality control procedures undertaken during sampling and analysis for this site are specified in Appendix D of the Subsurface Investigation Work Plan. Table 2-3, QA/QC Samples, summarizes the quality control samples which were analyzed during this investigation. The contract laboratory's data package deliverables conform to a "Project Specific Blue Level Package". The "Blue Level Package" reports the results of method blanks, surrogate recoveries, and matrix spike recoveries along with precision data and a QA non-conformance summary.

GROUNDWATER
TECHNOLOGY

TABLE 2-3 QA/QC SAMPLES

MATRIX	QA/QC SAMPLE	EPA 8020 (VOCs)	EPA 8310 (PAHs)
	Trip Blank	1	0
Soil	Fleid Blank Rinseate Blank	1	1
	Method Blank*	3	2
	Matrix Spike*	2	1
	Matrix Spike Duplicate*	2	1
	Trip Blank	1	0
	Field Blank	1	1
Water	Rinseate Blank	1	1
	Method Blank*	2	1
	Matrix Spike*	2	1
	Matrix Spike Duplicate*	2	1

* These samples were generated internally by the laboratory.

The data collected during the supplemental field investigation was submitted to Ms. Kimberly McGhee-Gould, Chemist, Groundwater Technology, for QA/QC review. Ms. McGhee-Gould has been approved by Ms. Maureen Sarafini of the NYS DEC to validate data in New York State. The data validation procedure included the review of all data for:

- completeness,
- correctness,
- accuracy,
- precision, and
- representativeness.

The Data Validation Reports are included in Appendix D.

3.0 FIELD INVESTIGATION RESULTS

3.1 Geologic Evaluation

3.1.1 Regional Geology

Unconsolidated deposits in the region consist of glacial till, glacial outwash, fine-grained glacial lake deposits, recent swamp deposits, and alluvium. The glacial lake deposits are composed of fine sand, silt and clay.

The bedrock in the area of investigation is the Onondaga Limestone. Structurally, the Onondaga Limestone dips gently to the south-southwest (Staubits and Miller, 1987) and has been encountered at depths ranging from above surface elevation (outcrops along Kensington Expressway) to 63 feet below grade (this investigation). The upper surface is typically irregular and contains deeply incised glacially carved channels, sink holes and solution features.

3.1.2 Site Geology

The subsurface geology encountered during this drilling event was consistent with that described in the initial Subsurface Investigation Report: Appendix B (Well Logs), Figure 3 (Geologic Cross Section). The site is undertain by approximately 63 feet of unconsolidated clay, silt, sand and gravel deposits which rest directly upon the bedrock. These deposits are fairly typical of glacial deposits of the area, and exhibit varied permeability. The area of highest relative permeability was the fill material (located in the upper few feet of section) and the native sand and gravel deposits.

A clay and silt horizon, with an upper boundary located approximately 5 feet below grade, presented the least permeable zone observed. This clay and silt unit, composed primarily of extremely low permeability glacial lake deposits, was encountered in all wells drilled and ranged in thickness from approximately 7 to 12 feet. The glacial lake deposits became coarser-grained glacial outwash deposits at approximately 10 to 18 feet below grade. Drill cuttings from MW-14 indicated that stratified glacial outwash deposits are present throughout the remainder of the overburden to the total depth of 63 feet. These deposits consist of interlayered silts, sands, and gravels of relatively high permeability. The contacts, based on the well logs, are marked with correlation lines in Figure 4, Geologic Cross-Section.

Bedrock was encountered at 63 feet below grade at both CW-1 and MW-14, indicating that the bedrock surface mirrors the land surface, dipping gently toward the east at approximately 0.7%. The top of bedrock in the vicinity of the Osmose site, therefore, appears to dip locally in the opposite direction from the regional bedrock surface (probably a slight undulation).

3.2 Subsurface Soil Sampling Results

As described in Section 2.2, soil samples were collected from each boring at two separate intervals. The samples were sent to the contract laboratory for analysis of Aromatic Volatile Organic Compounds (VOCs) by Modified EPA Method 8020, and for PAHs by EPA Method 8310. Samples were analyzed from intervals ranging from 2 to 63 feet below grade.

3.2.1 Volatile Organic Compounds (VOCs)

A summary of the results of the VOC analysis are presented in Table 3-1, VOCs in Subsurface Soils. As indicated in the table, no benzene or chlorinated compounds were detected in any of the subsurface soil samples.

Low concentrations of total VOCs (<25 μ g/kg) were present at three of the boring locations (SB-2, MW-12 and MW-14). Volatile compounds were not detected in the samples from SB-2 at 2 to 4 feet below grade or MW-14 at 10 to 12 feet below grade.

VOCs were detected in the highest concentrations at MW-13 (3,000 ppb and 7,200 ppb at 6-8 feet and 8-10 feet below grade, respectively). As shown in Table 3-1, at locations where VOCs were detected, xylenes were present at the highest concentrations. Complete laboratory analytical reports are included in Appendix E.

According to the "Petroleum Contaminated Soil Guidance" document (published by NYS DEC Bureau of Spill Prevention and Response: August 1, 1991), the only soil samples which would not be considered environmentally acceptable (based upon Water/Soil Partition Model) for groundwater quality protection were collected from MW-13.

TABLE 3-1

VOCs IN SUBSURFACE SOILS (ppb) EPA Method 8020 March 17 - 20, 1992

ANALYTE	SB-2 (@ 2'-4')	SB-2 (@ 8'-10 [`])	MW-12 (@ 6'-8')	MW-12 (@ 18'-20')	MW-13 (@ 6'-8')	MW-13 (@ 8'-10')	MW-14 (@ 10'-12')	MW-14 (@ 61'-63')	FIELD BLANK	EQUIP BLANK	TRIP BLANK
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ND	6.8	7.5	5.8*	ND	380	ND	4.1*	ND	0.6	ND
Ethyl benzene	ND	2.3	3.2	2.0	ND	520	ND	2.0	ND	ND	ND
Xylenes (total)	ND	11	14	9.3	3,0 00	6,300	ND	8.3	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Volatiles	ND	20	25	17.1	3,000	7,200	ND	14.4	ND	0.6	ND

KEY

ppb = parts per billion

ND = not detected

* The presence of toluene is uncertain in these samples because the concentration detected was less than ten times that found in the equipment blank.

Ø

GROUNDWATER TECHNOLOGY

+

3.2.2 Semi-volatile Compounds

Table 3-2, PAHs in Subsurface Soils, summarizes the results of the laboratory data for PAHs by EPA Method 8310. The highest levels of PAH compounds were encountered in the samples from MW-13 at 6 to 8 feet and 8 to 10 feet below grade (35,100 μ g/kg and 1,010,000 μ g/kg, respectively).

Adsorbed PAH concentrations were significantly lower at the other boring locations. The lowest levels of total PAHs (<86 μ g/kg) were present in MW-12 and MW-14. Samples from soil boring SB-2 contained 298 μ g/kg total PAHs at a depth of 2 to 4 feet below grade, and 480 μ g/kg at 8 to 10 feet below grade.

As shown in Table 3-2, 2-methylnaphthalene, phenanthrene, naphthalene and acenaphthene (all noncarcinogens) were the analytes present in the highest concentrations. Acenaphthylene and pyrene were not detected in any of the subsurface soils. The complete laboratory analytical reports are included in Appendix D.

At MW-13, the more complex PAHs (carbon # C18-C22) were present in lower relative concentrations (approximately 2%) than were the low complexity (C10-C13) and medium complexity (C14-C16) PAH compounds (approximately 76% and 22%, respectively). The opposite trend emerged at MW-12 (6 to 8 feet below grade), MW-14 (61 to 63 feet below grade) and at soil boring SB-2 (2 to 4 feet below grade). Graphs of PAH profiles were constructed by plotting each PAH analyte (in increasing complexity) against the reported concentrations for each analyte. These graphs were constructed for each soil boring location to illustrate the distribution and relative concentrations of PAHs. The graphs are presented in Appendix F.

To compare the distribution of PAHs found in the soil samples to the hydrocarbon products stored in the former USTs, virgin samples of brushing grade creosote and #2 fuel oil, and a sample of NAPL collected from MW-3 were sent to Worldwide Geoscience, Inc. in Houston, TX for GC/MS analysis. PAH profile graphs were constructed and are included in Appendix G.

When the profile graphs of the three NAPL samples are compared, the following key observations can be made:

- -
- Acenaphthene is the PAH analyte present in the highest percentage in brushing grade creosote; anthracene is present in a very low percentage.
- Anthracene is the PAH analyte present in the highest concentration in #2 fuel oil; acenaphthene is present in a relatively much lower concentration.

TABLE 3-2 PAHS IN SUBSURFACE SOILS (ug/kg) EPA Method 8310

March 17 - 20, 1992

ANALYTE	CN	MW-12	MW-12	MW-13	MW-13	MW-14	MW-14	SB-2	\$B-2	RINSEATE	FIELD
		6'-8'	18'–20'	6'-8'	8'~10'	10'-12'	61'-63'	2'-4'	8'-10'	BLANK	BLANK
Naphthalene	C10	ND	ND	7,000	230,000	ND	ND	ND	320	ND	ND
Acenaphthylene	C12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene	C11	ND	ND	2,000	57,000	ND	ND	ND	ND	ND	ND
2–Methylnaphthalene	C11	ND	ND	9,100	300,000	ND	ND	ND	150	ND	ND
Acenapthene	C12	ND	ND	3,000	120,000	ND	NÐ	ND	ND	ND	ND
Fluorene	C13	ND	ND	2,200	68,000	ND	ND	10	8.7	ND	ND
Phenanthrene	C14	ND	ND	9,000	150,000	ND	ND	ND	ND	ND	ND
Anthracene	C14	ND	ND	320	10,000	ND	ND .	92	ND	ND	ND
Fluoranthene	C16	18	ND	1,900	59,000	ND	32	74	ND	ND	NĎ
Pyrene	C16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo (a) anthracene	C18	4.1	ND	230	7,500	ND	11	26	0.90	ND	ND
Chrysene	C18	ND	ND	72	2,600	ND	ND	90	ND	ND	ND
Benzo {b} fluoranthene	C20	5.8	0.78	75	2,700	ND	9.5	21	ND	ND	ND
Benzo{k}fluoranthene	C20	3.4	ND	52	1,800	ND	6.3	14	ND	ND	ND
Benzo{a}pyrene	C20	6.0	ND	92	2,900	ND	12	26	ND	ND	ND
Dibenzo{a,h}anthracene	C22	ND	ND	ND	200	ND	1.2	2.2	ND	ND	ND
Benzo{g,h,i}perylene	C22	3.5	ND	43	1,100	ND	8.6	15	ND	ND	ND
Indeno{1,2,3-cd}pyrene	C22	2.4	ND	ND	450	ND	5.1	8.3	ND	ND	ND
TOTAL SEMIVOLATILES		43	0.78	35 100	1,010,000	ND	86	298	480	ND	ND

ND = not detected

CN ⊨ carbon number

- The well product NAPL sample contained high concentrations of anthracene and acen aphthene and appeared to be a combination of the brushing grade creosote and #2 fuel oil profiles.
- None of the profile graphs showed substantial quantities of complex (C18 C22) PAH analytes (< approximately 2%).

When the three NAPL profiles graphs are compared to the profile graphs constructed from the soil analyses, the following observations can be made:

- The PAH fingerprint graphs from MW-12 at 6 8 feet below grade and SB-2 at 2-4 feet below grade do not resemble the NAPL fingerprint graphs. Complex PAHs are present in much greater proportions than are the less complex PAHs.
- Anthracene and acenaphthene are not present in the MW-12 (6 8 feet) fingerprint graph; acenaphthene is not present at SB-2 (2 4 feet).

As part of the Subsurface Investigation Work Plan (June 7, 1990) prepared for the Osmose site, a baseline risk assessment was performed to determine which transport medias required remediation and to propose risk driven remediation goals for those media. As reported in the Subsurface Investigation Report (June 28, 1991), a very conservative approach was taken when developing acceptable soil concentrations (ASCs) by assuming <u>all</u> PAHs possess the carcinogenic characteristics of benzo(a)pyrene and the non-carcinogenic hazard index for naphthalene. These two PAHs have the most stringent available EPA health criteria (HEAST, 1991). Based upon this conservation approach, an ASC of 473 mg/kg total PAHs was developed for biocell, on-site (non-biocell) and off-site soils.

Of the soil samples analyzed during this supplemental investigation, only one sample, MW-13 at 8-10 feet below grade, exceed the ASC.

3.3 Surface Soil Sampling Results

Surface soil grab samples were collected on March 18, 1992 from three locations south and west of the Osmose parking lot (Figure 3, Soil Grab Sample Locations). The surface grab samples were sent to the contract laboratory for analysis by EPA Method 8310 (PAHs). The results are summarized in Table 3-3, PAHs in Surface Soils. The complete laboratory analytical reports are included in Appendix D.

Although elevated levels of PAH compounds were detected at all three locations, all levels were below the ASC of 473 mg/kg as developed for off-site soils in the health and environmental risk assessment.

Acenaphthylene, 1-methylnaphthalene, acenaphthene and pyrene were not detected in any of the surface samples.

TABLE 3-3 PAHS IN SURFACE SOILS (ug/kg) EPA Method 8310

Sampling Dates: March 17 – 20, 1992

ANALYTE	CN	SS-1	SS-2	SS-3
				en envirt
Naphthalene	C10	ND	5,700	10,000
Acenaphthylene	C12	ND	ND	ND
1-Methylnaphthalene	C11	ND	NÐ	ND
2-Methylnaphthalene	C11	ND	6,900	ND
Acenapthene	C12	ND	ND	ND
Fluorene	C13	120	4,300	8,000
Phenanthrene	C14	440	20,000	29,000
Anthracene	C14	940	ND	ND
Fluoranthene	C16	1,200	30,000	50,000
Pyrene	C16	ND	ND	ND
Benzo{a}anthracene	C18	430	11,000	17,000
Chrysene	C18	200	5,100	8,300
Benzo{b}fluoranthene	C20	520	9,700	14,000
Benzo{k}fluoranthene	C20	300	5,800	8,500
Benzo{a}pyrene	C20	670	12,000	17,000
Dibenzo{a,h}anthracene	C22	7 9	1,500	2,200
Benzo{g,h,i}perylene	C22	400	5,900	8,500
Indeno{1,2,3-cd}pyrene	C22	280	4,900	6,400
TOTAL SEMIVOLATILES		5,600	123,000	179,000

ND = not detected

ų

4

CN = carbon number

Fluoranthene (a non-carcinogenic) was present in the highest concentrations at all three surface sample locations. Fluoranthene comprised approximately 25% of the total PAHs detected at the three locations. Phenanthrene and benzo(a)pyrene comprised approximately 13.5% and 10.5%, respectively, of the total PAHs detected at each location.

Table 3-4, Distribution of PAHs in Surface Samples, shows the percentage of low-, medium-, and highcomplexity PAHs in the surface grab samples. The more complex PAHs (carbon #C18-C22) contributed approximately 47% of the total PAH loading at each location. The medium-complexity PAHs (carbon #C14-C16) comprised approximately 44% of the loading, and the low-complexity PAHs (carbon #C10-C13) comprised of approximately 9% of the total.

PAH profiles were constructed and are included in Appendix F. When compared to the NAPL fingerprint graphs, the dissimilarities are evident.

The PAHs found in the surface soil grab samples are believed to be the result of two brush fires which occurred in 1991 in the area where the surface soils were collected (Appendix H, Brush Fire Locations). Both fires were reported to the Buffalo Fire Department. "The primary source of many PAHs is the incomplete combustion of wood and fire.... as such, PAHs are ubiquitous products of combustion from common sources such as motor vehicles...., wood burning stoves...., natural sources include forest fires." (Toxicological Profile for Polycyclic Aromatic Hydrocarbons, US Public Health Services Agency for Toxic Substances and Disease Registry, October, 1989, pp. 125-127.) PAHs in the fields could have also been produced if a building off site had burned down and soot was carried onto the site.

There are several observations that can be made from the above data that indicate that the source of PAHs was a brush fire. First, there is a predominance of high-complexity (multi-ring) compounds. These highly condensed compounds are common soot constituents, resulting from a carbonization reaction. Second, these highly condensed compounds are not predominant in the soils which were staged as part of the IRM. Third, the NAPL indicator analytes (acenaphthene and anthracene) were not present in surface sample SS-2 and SS-3, and acenaphthene was not present in SS-1.

TABLE 3-4

CARBON #	SS-1	SS-2	SS-3	AVERAGE
C10 - C13	2%	14%	10%	8.7%
C14 - C16	46%	41%	44%	43.7%
C18 - C22	51%	45%	46%	47.3%

DISTRIBUTION OF PAHs IN SURFACE SAMPLES

3.4 Hydrogeologic Evaluation

3.4.1 Regional Hydrogeology

A review of hydrogeologic reports of the area determined that the groundwater circulates through a regional flow system in a north-northwest direction from the Appalachian Uplands to the Erie-Ontario Lowlands, where it discharges near Tonawanda Creek. The glacial deposits recharge the soluble limestone bedrock (ie., Onondaga Limestone) by percolation into joints, fractures and solution channels. The zone of fracturing and solution that follows the upper surface of the soluble limestone rocks has been observed to be in hydraulic continuity with the glacial deposits (LaSala, 1968). Local secondary flow systems exist which discharge to tributary streams.

The transmissivity of the glacial deposits ranges from very low for the lake bed sediments and glacial till to very high (600,000 gpd per foot) for the outwash sand and gravel deposits. The Onondaga Limestone transmissivity varies greatly depending upon the number of solution channels present. Reported values range from 300 to 25,000 gpd per foot.

3.4.2 Site Hydrogeology

Monitoring well top-of-casing elevations were surveyed relative to an arbitrary benchmark in order to construct a groundwater contour map of the unconsolidated glacial aquifer. A groundwater contour map is included as Figure 5. The groundwater gradient in the shallow overburden wells was towards the east-southeast at approximately 1.1 percent. The direction of groundwater flow may be influenced by the local effects of a small knoll to the west of the site. The monitoring well data suggest that the small knoll and associated glacial stratification in the subsurface are exerting hydraulic control over groundwater flow in the upper portion of the overburden aquifer on site. The groundwater gradient is consistent with the results of past gauging events, with the exception of a low point centered at MW-9. The water table in the vicinity of Ellicott Street is probably subject to local distortions resulting from the

storm sewer system and/or other subsurface artifacts.

The hydrogeologic evaluation of the site suggests that a complex aquifer system exists beneath the site. Groundwater levels in the upper portion of the overburden aquifer range from 5 to 10 feet below grade. Groundwater in the deep portion of the overburden aquifer was encountered at 20.50 feet below grade (MW-14) and 26.68 feet below grade (CW-1), indicating that a steep vertical gradient exists within this unit. The existence of a drop of over five feet in the groundwater elevation from MW-14 to CW-1 suggests that deep groundwater flow may differ significantly from shallow groundwater flow in both direction and gradient. Gauging data indicate that groundwater in the deep portion of the aquifer is flowing generally toward the west across the site. This would be consistent with regional groundwater, flow in the area. Bedrock, however, as described in Section 3.1.2, mirrors the land surface by dipping gently toward the east.

The downward vertical gradient observed on site indicates that groundwater from the upper portion of the overburden aquifer acts to recharge the lower portion of the overburden aquifer. This is consistent with regional groundwater flow patterns (Section 3.4.1).

3.5 Groundwater Sampling Results

Groundwater samples were collected from all eight FRP monitoring wells on site (MW-8 through MW-14, CW-1) and analyzed for Aromatic Volatile Organics by Modified EPA Method 8020, and for Polynuclear Aromatic Hydrocarbons by EPA Method 8310. Field measurements were made of the turbidity of the groundwater after each well was purged. During sampling, field measurements were made of the pH, temperature, and conductivity of the groundwater.

3.5.1 Volatile Compounds

As shown in Table 3-5, VOCs in Groundwater, no dissolved BTEX compounds were detected in groundwater samples taken from monitoring wells MW-8, MW-10, MW-11 or MW-12. Monitoring wells MW-8 and MW-12 are located upgradient of the presumed source area. Monitoring wells MW-10 and MW-11 are located downgradient and crossgradient of the presumed source area. BTEX compounds were detected at MW-9, MW-13, MW-14, and CW-1. Total dissolved BTEX levels were highest at MW-13 (1600 μ g/l) and MW-9 (530 μ g/l), and substantially lower at CW-1 (34 μ g/l) and MW-14 (2.5 μ g/l).

TABLE 3-5

VOCs IN GROUNDWATER (μg/l) EPA Method 8020 Sampling Date: April 2, 1992

ANALYTE	MW-8	MW-9	MW-10	MW-11	M W-12	MW-13	MW-14	CW-1	FIELD BLANK	EQUIP BLANK	TRIP BLANK	NYS Standard
Benzene	ND	<mark>170</mark>	ND	ND	ND	<mark>120</mark>	1.2B	<mark>21</mark>	ND	0.3	ND	0.7
Toluene	ND	<mark>150</mark>	ND	ND	ND	<mark>300</mark>	1.3	3.1	ND	ND	ND	5.0
Ethyl Benzene	ND	<mark>33</mark>	ND	ND	ND	<mark>90</mark>	ND	0.8	ND	ND	ND	5.0
Xylenes (total)	ND	<mark>180</mark>	ND	ND	ND	<mark>1100</mark>	ND	<mark>9.3</mark>	ND	ND	ND	15 total
Chlorobenzene	ND	ND	ND	ND	ND	<mark>790</mark>	ND	ND	ND	ND	ND	5.0
1,2-Dichlorobenzene	ND	<mark>22</mark>	ND	ND	ND	ND	ND	<mark>13</mark>	ND	ND	ND	4.7
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
1,4-dichlorobenzene	ND	ND	ND	ND	ND	<mark>36</mark>	ND	ND	ND	ND	ND	4.7
Total Volatiles	ND	560	ND	ND	ND	2,400	1.3	47	ND	0.3	ND	

KEY

 $\mu g/I = micrograms per liter$ ND = not detected

B = The presence of benzene is uncertain in this sample because the concentration detected was less than five times that found in the equipment blank.

X

The presence of benzene in the groundwater at MW-14 (deep well) is questionable because of the presence of benzene in the equipment blank. Toluene (at 1.3 ppb) was the only other volatile analyte present in MW-14. The level detected was below the NYS Standard of 5.0 ppb. At cluster well CW-1 (deep well), BTEX levels were all below NYS standards with the exception of benzene (present at 21 ppb). BTEX levels at MW-9 and MW-13 (shallow wells located downgradient of the presumed source area) were above groundwater standards. Figure 6, Dissolved BTEX Distribution Map, shows the areal extent of BTEX compounds in the groundwater on site.

Results of this sampling event were compared to the two previous sampling events performed in November, 1990 and January, 1991 for MW-8 through MW-11 and CW-1. The results correlated very well: Monitoring wells MW-8, MW-10 and MW-11 continued to show non-detectable levels of volatiles; CW-1 (deep well) decreased in dissolved BTEX concentrations; and dissolved levels in MW-9 increased. The reduction in dissolved BTEX concentrations in CW-1 (immediately downgradient of the former tank pit) may be attributed to the elimination of the presumed source area.

Chlorinated compounds were detected in the groundwater at three of the eight well locations. Chlorobenzene and 1,4-dichlorobenzene were detected at MW-13 at concentrations of 790 μ g/l and 36 μ g/l, respectively. 1,2-dichlorobenzene was detected at MW-9 (22 μ g/l) and CW-1 (13 μ g/l). All of the chlorinated compounds detected were present in concentrations that exceeded NYS DEC groundwater standards (Table 3-5).

The most recent chlorinated compounds sampling data were compared to the historical data available for MW-9 and CW-1. On two previous sampling events (November, 1990 and January, 1991) no chlorinated compounds were detected in either monitoring well. No historical data exists for MW-13; however, analysis of soils at MW-13 indicated that no chlorinated compounds were present. The organic carbon/water partition coefficient (K_{oc}) indicates the tendency of a compound to adsorb onto organic particles in the soil. Log K_{oc} values greater than zero indicate that a compound will reside in the soil at greater concentrations than in the groundwater. Chlorobenzene and dichlorobenzene have log K_{oc} values of 1.68 or greater. Therefore, one would expect these compounds to be present in the soil at concentrations at least fifty times greater than in the groundwater.

The groundwater sampling results are summarized in Table 3-5. The complete laboratory analytical reports are included in Appendix E.

3.5.2 Semi-volatile Compounds

In addition to volatile compounds, analysis was also performed to detect the presence of semi-volatile compounds by EPA Method 8310. The results of the semi-volatile (PAH) analyses are presented in Table 3-6, and in Figure 7, Dissolved PAH Distribution Map. Included in the table are the results of the previous sampling event (ASP, Category A reporting format) associated with the initial Subsurface Investigation (January, 1991). The data for November, 1990 are not included in the table because a different analytical procedure was used to measure dissolved PAHs (EPA Method 610).

Dissolved PAHs were detected in the groundwater during this sampling event at 7 of the 8 monitoring wells. Monitoring wells MW-10, MW-11, and MW-12 possessed total dissolved PAH levels below 1 ppb (ND, 0.11 ppb, and 0.055 ppb, respectively). Monitoring wells MW-8 and MW-14 (deep well) also possessed low levels to total dissolved PAHs (1.49 ppb and 0.76 ppb, respectively). The highest concentration of dissolved PAHs were present at MW-9 (70.1 ppb), CW-1 (284.1 ppb) and MW-13 (9,477.3 ppb).

Low levels of six dissolved PAHs compounds were detected in the equipment (rinseate) blank sample. It is conceivable, therefore, that the low levels of dissolved PAHs in MW-10, MW-11 and MW-12 may be related to equipment cross contamination. Three of the four PAH compounds detected at MW-10, however, were detected in similar concentrations during the January, 1991 sampling event. Based upon standard data validation protocol this potentially invalid data was not used.

Acenaphthylene, anthracene and pyrene were not detected in any of the groundwater samples during this sampling event.

Although the more complex PAHs (C18 - C22) were more pervasive in the groundwater, the lower complexity PAHs (C10-C16) were present in much higher concentrations. This is attributed to the lower complexity PAHs possessing higher solubility and lower K_{oc} values (refer to Subsurface Investigation Report, Section 4.7, Contaminant Characteristics). Naphthalene and methylnaphthalene accounted for approximately 77 percent of the total volume of dissolved PAHs detected on site.

Also presented in Table 3-6 are the Ambient Water Quality Standards and Guidance Values as published by NYS DEC, Division of Water in November, 1991 for toxic and non-conventional pollutants. A comparison of these standards or guidance values, where provided, with the results of the most recent sampling event (April, 1992) can be summarized as follows:

 Upgradient wells MW-8 and MW-12 exceeded groundwater guidance values for chrysene, and indeno(1,2,3-cd)pyrene. Indeno(1,2,3-cd)pyrene was also present at onsite and downgradient wells (MW-9, and MW-11) at similar levels.

TABLE 3-6 POLYNUCLEAR AROMATIC HYDROCARBONS IN GROUNDWATER (ug/l) EPA METHOD 8310

Sampling Date: April 2, 1992

				_						_			-		BLANKS					NYS DEC
ANALYTE	CARBON	MW	-8	MW	/9	MW-	10	MW	-11	CW-	ļ	MW-12	MW-13	MW-14	EQUIP	MENT	FIE	D	NYS DEC	GUIDANCE
	#	1/91	4/92	1/91	4/92	1/91	4/92	1/91	4/92	1/91	4/92	4/92	4/92	4/92	1/91	4/92	1/91	4/92	STANDARD	VALUE
Naphthalene	C10	ND	ND	7.8	<mark>70</mark>	ND	ND	ND	ND	<mark>160</mark>	<mark>170</mark>	ND (4,600	ND	ND	ND	ND	ND	NA	10
Acenaphthylene	C12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
1-Methylnaphthalene	C11	-	ND	-	ND	-	ND	-	ND	-	18	ND	540	ND	-	ND	-	ND	NA	NA
2-Methylnaphthalene	C11	-	ND	-	ND	-	ND	-	ND	-	49	ND	2.100	ND		ND	-	ND	NA	NA
Acenaphthene	C12	ND	ND	ND	ND	ND	ND	ND	ND	5.9	20	ND	740	ND	ND	ND	ND	ND	NA	20
Fluorene	C13	ND	ND	ND	ND	ND	ND	ND	ND	1.3	5.0	ND	360	ND	ND	ND	ND	ND	NA	50
Phenanthrene	C14	ND	0.84	ND	ND	ND	ND	ND	ND	1.3	7.0	ND	710	0.70	ND	ND	ND	ND	NA	50
Anthracene	C14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	50
Fluoranthene	C16	ND	1.1 B	ND	ND	ND	ND	ND	0.34 B	0.36	5.2	0.26 B	240	0.36 B	ND	0.44	ND	ND	NA	50
Pyrene	C16	ND	ND	ND	ND	ND	ND	ND	ND	0.54	ND	ND	ND	ND	ND	ND	ND	ND	NA	50
Benzo{a}anthracene	C18	ND	0.21 B	ND	0.043 B	<mark>0.026</mark>	0.020 B	ND	0.10 B	0.068	1.2	0.049 B	<mark>73</mark>	0.077 B	ND	0.095	ND	ND	NA	0.002
Chrysene	C18	ND	0.26	ND	ND	ND	ND	ND	ND	ND	1.3	ND	<mark>23</mark>	ND	ND	ND	ND	ND	NA	0.002
Benzo{b}fluoranthene	C20	ND	0.35 B	ND	0.054 B	<mark>0.030</mark>	0.033 B	ND	0.13 B	0.050	<mark>1.9</mark>	0.065 B	<mark>26</mark>	<mark>0.071 B</mark>	ND	0.14	ND	ND	NA	0.002
Benzo{k}fluoranthene	C20	ND	0.19 B	ND	0.030 B	ND	0.017 B	ND	0.072 B	0.028	<mark>0.98</mark>	0.034 B	<mark>15</mark>	0.042 B	ND	0.079	ND	ND	NA	0.002
Benzo{a}pyrene	C20	ND	0.44 B	ND	0.082 B	0.027	0.033 B	ND	0.18 B	0.047	2.2	0.087 B	<mark>35</mark>	0.10 B	ND	0.14	ND	ND	ND	NA
Dibenz {a,h}anthracene	C22	ND	0.064	ND	ND	ND	ND	ND	ND	ND	0.34	ND	1.9	ND	ND	ND	ND	ND	NA	NA
Benzo{g,h,i}perylene	C22	ND	0.20 B	ND	ND	ND	ND	ND	ND	ND	1.2	ND	10	ND	ND	0.085	ND	ND	NA	NA
Indeno{1,2,3-cd}pyrene	C22	ND	<mark>0.33</mark>	ND	0.055	ND	ND	ND	<mark>0.11</mark>	ND	0.82	0.055	3.4	0.057	ND	ND	ND	ND	NA	0.002
TOTAL PAHs		ND	1.5	7.8	70	0.083	ND	ND	0.11	170	280	0.055	9 500	0.76	ND	0.98	ND	ND	NA	NA

ug/l = micrograms per liter

ND = not detected

B = The presence of these analytes is uncertain in these samples because the concentration

detected was less than five times that found in the equipment blank.

- Groundwater samples from MW-9 and MW-14 exceeded groundwater guidance values for Indeno(1,2,3-cd)pyrene. In addition MW-9 exceeded the guidance value for Naphthalene.
- Groundwater samples collected from cluster weil, CW-1, exceeded the groundwater guidance values for 6 PAH analytes.
- Groundwater samples collected from MW-13 exceeded guidance values for nine PAH analytes in addition to the groundwater standard for acenaphthene.
- Groundwater samples from MW-13 exceeded guidance values for 12 guidance values and one groundwater standard.

Inspection of the dissolved PAH data from the furthest upgradient monitoring well (MW-12) and the furthest downgradient well (MW-14) reveals that the same PAH analytes are present at each location and at similar concentrations. This would imply that these dissolved levels are indicative of regional groundwater quality.

A comparison between the historical groundwater quality data and most recent data reveals the following trends:

- An increase in the concentration of high complexity PAHs occurred in MW-8, MW-9, MW-11, and CW-1 (if potentially invalid data is considered).
- The dissolved level of PAHs increased in four of the five monitoring wells (MW-8, MW-9, MW-11, and CW-1).
- Monitoring well MW-10 showed no variation in PAH distribution or dissolved concentration.

The risk assessment performed as part of the initial subsurface investigation addressed potential risks associated with on- and off-site groundwater. The total carcinogenic risk estimate for groundwater was reported as approximately 1×10^{-8} , which is considerably less than the criterion for acceptable risk. Likewise the total hazard index for non-carcinogenic risks was approximately 6×10^{-2} (far below unity) which represents acceptable risks. Based upon the most recent groundwater sampling data, Groundwater Technology's Envirologic Data Division has recalculated the total carcinogenic risk estimate to be 2.37×10^{-6} and the total hazard index to be 4.05×10^{-1} . Both these index numbers show that the current groundwater quality represents an acceptable level of risk both on site and off site. Calculations, and summary tables, along with a brief narrative have been provided by Envirologic Data and are included in Appendix I.

3.5.3 Turbidity, Conductivity, Temperature, pH

Field measurements were made of each groundwater sample for turbidity, conductivity, temperature and pH during the sampling event (Table 3-7). As can be seen in the table, turbidity values were greater than 50 NTUs for several of the samples. The contract laboratory was consulted and verified that high turbidity would not interfere with the analyses to be performed. Conductivity, temperature, and pH were within normal parameters with the exception of the pH at MW-14 (11.85 pH units). This is most likely an anomalous measurement.

TABLE 3-7

Well ID	Turbldity (NTUs)	Conductivity (µS)	pH (pH units)	Temperature (degrees F)
CW-1	1 17.0	3160	8.45	39.8
MW-8	145.3	1783	7.85	44.1
MW-9	18.3	3073	7.63	39.4
MW-10	34.5	2020	7.64	42.2
MW -1 1	26.9	1510	8.15	40.6
MW-12	>200	1966	7.81	42.3
MW -1 3	1 51.1	4120	7.55	39.2
M W-1 4	/ >200	1578	11.85*	43.8

GROUNDWATER FIELD MEASUREMENTS April 2, 1992

* Anomalous reading

4.0 SUMMARY DISCUSSION

The purpose of the following sections are to present a brief summary discussion of the results of the Supplemental Investigation. Specific objectives of the Supplemental Investigation were:

- Documentation of upgradient groundwater quality,
- Delineation of the extent of impacted soils,
- Delineation of the extent of separate phase (SP) product which exists downgradient of the former tank pit,
- Investigation of deep groundwater quality, and
- Investigation of surface soils which are located proximate of the area used to temporarily stage impacted soils.

4.1 Upgradient Groundwater Quality

Laboratory data collected from MW-12, located at the upgradient property boundary, indicates the following:

- Low levels of six dissolved complex PAHs exist at the upgradient property boundary of the Osmose facility (including the potentially invalid data). This would imply that these dissolved levels are representative of regional groundwater quality in the upper portion of the unconfined aquifer. This is supported by the groundwater sampling results from the furthest downgradient (off-site) monitoring well, MW-14. Groundwater samples from MW-14 showed that the same six PAH analytes were present at similar concentrations.
- Groundwater samples from upgradient well MW-12 did not contain any BTEX analytes.
 Upgradient well MW-8, similarly, did not contain any BTEX analytes. These results are assumed to be indicative of upgradient groundwater quality.

4.2 Delineation of Impacted Soils

The initial subsurface investigation detected a concentration of 500 ppm total PAHs at MW-8 at 2 - 4 feet below grade. Monitoring well MW-12 and soil boring SB-2 were installed to define the extent of the shallow contamination in this area. Since much lower adsorbed PAH levels were detected at MW-12 and SB-2, it appears that the areal extent of this zone is limited (Figure 8). A coal bin was historically located in the vicinity of MW-8 and may have been the source of this near-surface impact.

During the Supplemental Investigation, total PAH levels above 473 mg/kg were detected at MW-13 at 8 - 10 feet below grade (1,010 mg/kg). Since MW-13 is downgradient from the presumed source area, it is likely to be part of a contiguous zone of soils above 473 mg/kg extending back to the former tank pit. An estimated areal extent of soils containing PAHs above 473 mg/kg, based upon available data, is also shown on Figure 8. Included also is Figure 9, Cross-Section of Soils above 473 mg/kg, which shows the vertical extent of soils above the proposed remedial goals.

Table 4-1 contains an estimate of the volume of soils in the MW-8 and MW-13 areas which contain concentrations of PAHs above the proposed 473 ppm remediation level. This rough estimate identifies approximately 85 yd³ in the MW-8 area and approximately 370 yd³ in the MW-13 area.

Based upon an average concentration of 500 mg/kg total PAHs in the impacted soits in the MW-8 vicinity (conservative estimate), approximately 130 pounds of PAHs are present. In the MW-13 area, assuming an average total PAH concentration of 1,000 mg/kg (again very conservative), approximately 1,100 pounds of adsorbed PAHs exist.

TABLE 4-1

ESTIMATED VOLUME OF SOIL > 473 ppm

	APPROXIMATE AREAL EXTENT OF SOILS > 473 ppm	ESTIMATED THICKNESS OF SOILS > 473 ppm	APPROXIMATE VOLUME
MW-8	38 ft. diameter circie (approx. 1150 sq.ft)	2 ft (2-4 feet below grade)	85 cu.yd
MW-13	Triangular area (appro x. 2475 sq.ft)	4 ft (near top of water table)	367 cu.yd
Total			452 cu.yd

4.3 Delineation of Separate Phase Hydrocarbons

Light nonaqueous phase liquids (LNAPL) and an intermittent dense nonaqueous phase liquid (DNAPL) have been historically detected on site in PVC monitoring wells MW-3, MW-5 and MW-7. On June 24, 1992 during a routine gauging event, LNAPL was discovered in MW-13 in addition of MW-3, MW-5, and MW-7. LNAPL had not previously been detected in MW-13.

LEGEND ACIAL WASH OSITS AND FILL COARSE SANDS WITH SILT/CLAY COARSE SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAYEY SANDS CLAY SOILS ABOVE 473 ppm	LEGEND ACIAL WASH OSITS AND FILL COARSE SANDS WITH SILTY CLAY COARSE SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAY SOILS ABOVE 473 ppm CLAY SOILS ABOVE 473 ppm CLAY COARSE SANDS CLAY		and a second statement of the second statement of the	
ACIAL WASHS AND FILL FILL ACIAL CARSE SILTY SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAYEY SANDS CLAY SOILS ABOVE 473 ppm	ACIAL WASH OSTIS AND FILL COARSE SANDS WITH SILT/CLAY FILL COARSE SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAY SOILS ABOVE 473 ppm CLAY SOILS ABOVE 473 ppm CLAY SOILS ABOVE 473 ppm		LEGEND	
ACIAL WASH OSITS AND FILL FILL ACIAL	ACIAL WASH OSITS AND FILL COARSE SANDS WITH SILT/CLAY FILL COARSE SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAYEN SOILS ABOVE 473 ppm CLAY SOILS ABOVE 473 ppm 12 WALKER WAY ALBANY, NEW YORK 12205 (518) CLAY SOILS ABOVE 473 ppm 12 WALKER WAY ALBANY, NEW YORK 12205 (518) CLAY SOILS ABOVE 473 ppm CROUNDWATER TECHNOLOGY CHAP COMPANIE CLAY SOILS ABOVE 473 ppm CROSS-SECTION OF SOILS ABOVE 473 ppm CROSS-SECTION OF SOILS ABOVE 473 ppm MC MC SMOSE WOOD PRESERVING INC. MC 980 ELLICOTT STREET BUFFALO, NEW YORK SNOSE WOOD PRESERVING INC. MC SNOSE WOOD PRESERVING INC. SNOSE WOOD			
TWASH Image: Superstand stands with stands with stands with gravel Fill Silty sands with gravel Image: Silty sands stands with gravel Silty sands, silts, clayey sands LACIAL Image: Solls above 473 ppm Image: Solls above 473 ppm Solls above 473 ppm	WASH OSITS FINE TO COARSE SANDS WITH SILT/CLAY FILL COARSE SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAYEY SANDS ACIAL LAKE SILTY SANDS, SILTS, CLAYEY SANDS COSITS CLAY SOILS ABOVE 473 ppm SOILS ABOVE 473 ppm Image: Comparison of the state of the stat		FINE SANDS	
AND FILL COARSE SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL LACIAL LAKE POSITS CLAY SOILS ABOVE 473 ppm SOILS ABOVE 473 ppm	AND FILL FILL COARSE SANDS WITH GRAVEL SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAYEY SANDS CLAY SOILS ABOVE 473 ppm CLAY SOILS ABOVE 473 ppm CROUNDWATER TECHNOLOGY 12 WALKER WAY ALBANY, NEW YORK 12205 (518) 458–2444 NO: DRAWING DATE: 6/29/92 ACAD FILE: 7905–3X CROSSS-SECTION OF SOILS ABOVE 473 ppm CROSS-SECTION OF SOILS ABOVE 473 ppm	TWASH POSITS	FINE TO COARSE SAN	IDS
LACIAL LAKE DOSITS IN SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAYEY SANDS CLAY SOILS ABOVE 473 ppm	SILTY SANDS WITH GRAVEL SILTY SANDS, SILTS, CLAYEY SANDS CLAY SOILS ABOVE 473 ppm SOILS ABOVE 473 ppm CROUNDWATER TECHNOLOGY NO: DRAWING DATE: 6/29/92 CAD FILE: 7905–3X CROSS-SECTION OF SOILS ABOVE 473 ppm ACAD FILE: 7905–3X CROSS-SECTION OF SOILS ABOVE 473 ppm PM: BWA NO: DRAWING DATE: 6/29/92 CROSS-SECTION OF SOILS ABOVE 473 ppm PM: BWA NO: 980 ELLICOTT STREET BUFFALO, NEW YORK JOG GNED: DETAILED: PROJECT NO: FIGURE:	FILL	COARSE SANDS WITH	GRAVEL
LACIAL LAKE DOSITS EILTY SANDS, SILTS, CLAYE SOILS ABOVE 473 ppm SOILS ABOVE 473 ppm	ACIAL LAKE POSITS CLAY SOILS ABOVE 473 ppm SOILS ABOVE 473 ppm SOILS ABOVE 473 ppm CLAY SOILS ABOVE 473 ppm		SILTY SANDS WITH GR	RAVEL
POSITS CLAY SOILS ABOVE 473 ppm	CLAY SOILS ABOVE 473 ppm SOILS ABOVE 473 ppm CLAY SOILS ABOVE 473 ppm CLAY SOILS ABOVE 473 ppm CONTRACTION STECHNOLOGY SOULS ABOVE 473 ppm 12 WALKER WAY ALBANY, NEW YORK 12205 (518) 458–2444 NO: DRAWING DATE: SOLS ABOVE 473 ppm CROSS-SECTION OF SOULS ABOVE 473 ppm CROSS-SECTION OF SOULS ABOVE 473 ppm M: BWA NO: DRAWING DATE: SOULS ABOVE 473 ppm PM: BWA NO: 980 ELLICOTT STREET BUFFALCO, NEW YORK JOG GNED: DETAILED: PROJECT NO: FIGURE:	LACIAL	SILTY SANDS, SILTS, CLAYEY SANDS	
SOILS ABOVE 473 ppm	SOILS ABOVE 473 ppm NO: DRAWING DATE: 6/29/92 ACAD FILE: 7905-3X SOILS ABOVE 473 ppm NT: OSMOSE WOOD PRESERVING INC. SMOSE WOOD PRESERVING INC. BWA NTION: 980 ELLICOTT STREET BUFFALO, NEW YORK JOG GNED: DETAILED: PROJECT NO.: FIGURE:	POSITS	CLAY	
	Image: Second system 12 WALKER WAY ALBANY, NEW YORK 12205 Image: Second system 12 WALKER WAY ALBANY, NEW YORK 12205 Image: Second system 12 WALKER WAY ALBANY, NEW YORK 12205 Image: Second system 12 WALKER WAY ALBANY, NEW YORK 12205 Image: Second system 12 WALKER WAY ALBANY, NEW YORK 12205 Image: Second system 12 WALKER WAY ALBANY, NEW YORK 12205 Image: Second system 12 WALKER WAY ALBANY, NEW YORK 12205 Image: Second system 12 WALKER WAY ALBANY, NEW YORK 12205 Image: Second system 12 WALKER WAY ALBANY, NEW YORK 1205 Image: Second system ACAD FILE: 7905-3X CROSSS-SECTION OF SOLD SECOND PRESERVING INC. BWA Image: Second system 980 ELLICOTT STREET JOG SIGE: DETAILED: PROJECT NO.: FIGURE:		SOILS ABOVE 473 pp	m
	Image: Construct of the state of the st			
	CROSS-SECTION OF SOILS ABOVE 473 ppmNT: OSMOSE WOOD PRESERVING INC.PM: BWAATION: 980 ELLICOTT STREET BUFFALO, NEW YORKPE/RG: JOGGNED:DETAILED:PROJECT NO.:FIGURE:	GROUN	DWATER ALBANY, NEW YI OLOGY (518) 456-244	, DRK 12205 4
NO.: DRAWING DATE: ACAD FILE: 6/29/92 7905-3X	NT: OSMOSE WOOD PRESERVING INC. ATION: 980 ELLICOTT STREET BUFFALO, NEW YORK GNED: DETAILED: PROJECT NO.: FIGURE:	GROUN TECHN	DWATER 12 WALKER WAY ALBANY, NEW YI OLOGY OLOGY (518) 456-244 DATE: /92 7905-3	, DRK 12205 4
NO.: DRAWING DATE: 6/29/92 ACAD FILE: 7905-3X CROSS-SECTION OF SOILS ABOVE 473 ppm	ATION: 980 ELLICOTT STREET BUFFALO, NEW YORK JOG GNED: DETAILED: PROJECT NO.: FIGURE:	GROUN TECHN NO.: DRAWING I 6/29 CROS SOILS	DWATER OLOGY ALBANY, NEW YI (518) 456-244 (518) 456-246-246-246-246-246-246-246-246-246-24	окк 12205 4 У Брт
NO.: DRAWING DATE: 6/29/92 ACAD FILE: 7905-3X CROSS-SECTION OF SOILS ABOVE 473 ppm	GNED: DETAILED: PROJECT NO.: FIGURE:	I GROUN TECHN NO.: DRAWING I 6/29 CROS SOILS	DWATER OLOGY ALBANY, NEW YI (518) 456-244 ACAD FILE: 7905-3 S-SECTION O ABOVE 473 P PRESERVING INC.	PM: BWA
Image: No.: DRAWING DATE: 6/29/92 ACAD FILE: 7905-3X CROSS-SECTION OF SOILS ABOVE 473 ppm INT: OSMOSE WOOD PRESERVING INC. PM: BWA ATION: 980 ELLICOTT STREET BUFFALO, NFW YORK PE/RG: JOG		INT: OSMOSE WOOL ATION: 980 ELL BUFFALC	DWATER OLOGY ALBANY, NEW YI (518) 456-244 (518) 456-244 ACAD FILE: 7905-3 S-SECTION C ABOVE 473 p PRESERVING INC.	PM: BWA PE/RG: JOG

Manual gauging and bailing twice per week from the PVC wells has occurred as recommended in the Subsurface Investigation Report, June 28, 1991. A total of approximately 120 gallons of LNAPL has been recovered and properly disposed of by Osmose. An estimated volume of 75 - 150 gallons of LNAPL was presented in the Subsurface Investigation Report based upon a true product thickness of 0.1 feet (determined from bail down/recharge tests conducted on MW-3) and a porosity value of 0.3 (clayey sand). Because clay rich soils typically adsorb greater than 60% of separate phase petroleum hydrocarbons, the estimates obtained in the separate phase product volume calculations were considered low.

Separate phase petroleum has not been detected in downgradient wells MW-9, MW-10, MW-11 or MW-14. The existence of separate phase in MW-13 and not in MW-9 may be attributed to the presence of preferential migration pathways from former building foundations and utility conduits.

4.4 Deep Groundwater Quality

Groundwater samples collected from off-site, downgradient deep well MW-14 indicated:

- MW-14 did not possess any confirmed BTEX analytes above groundwater standards;
- the only PAH analytes detected were the same analytes detected in upgradient well MW-12 and in similar concentrations. These levels are presumed to be indicative of regional groundwater quality.

Groundwater samples collected from cluster well CW-1 indicate:

- BTEX analytes are present; however, only benzene exceeds groundwater standards.
 BTEX levels have decreased since the last sampling event.
- Fifteen PAH analytes were detected at similar or increased concentrations as compared to the previous sampling events.

Based upon the most recent sampling data, Groundwater Technology's Envirologic Data Division has recalculated the total carcinogenic risk estimate and total hazard index for on- and off-site groundwater to be 2.37×10^{-6} and 4.05×10^{-1} , respectively. Both these index numbers still show that typically acceptable levels of risk exist both on- and off-site.

4.5 Surface Soils

Although elevated levels of PAHs were detected at all sampling locations, all levels were below the proposed ASC of 473 mg/kg.

As referenced in Section 3.3, the PAHs found in the surface soil grab samples are believed to be the result of two brush fires which occurred in 1991. Several observations support this:

- PAH profiles from the surface soil grab samples do not resemble the PAH profiles from the stockpiled soils (profiles included in Appendix F). Profiles of the biocell baseline soil sampling event are used as representative profiles of the stockpiled soils. The profiles from the surface soils show a predominance of complex PAHs - the stockpiled soils do not.
- The reported occurrence of brush fires which are known to produce complex PAHs.

In addition, historical use of adjoining properties for industrial purposes are likely to have produced PAH residuals in soil. These historical uses, obtained from historical maps and directories, included:

- carriage works (located southwest of the current property lines),
- automotive repair shops (located along Ellicott Street located from the Osmose property south to Best Street).
- sheet metal works (Circa 1930 1940), and
- plumbing supplier (Circa 1950).

A more detailed description of historical site ownership is presented in the Subsurface Investigation Work Plan, Section 3.1, June 7, 1990.

CROUNDWATER TECHNOLOGY

5.0 CONCLUSIONS

5.1 Remediation Recommendations

The objective of this section is to present remediation objectives for each specific media at the Osmose site. These objectives are believed to be protective of short and long term adverse health and environmental impacts.

5.1.1 On-Site Soils

Based upon available data approximately 500 yd³ of soils exist at the Osmose site which possess adsorbed levels of PAHs above the proposed ASC of 473 mg/kg. Remediation or removal of these soils is recommended.

5.1.2 On- and Off-Site Groundwater

Risk assessment calculations based upon the most recent groundwater quality data addressed potential risks associated with exposure to dissolved PAHs in on- and off-site groundwater. The total carcinogenic and non-carcinogenic risk estimates were below the proposed criterion for acceptable risk. No remedial action for on- and off-site groundwater to proposed.

5.1.3 Separate Phase Hydrocarbons

The continued presence of separate phase LNAPL in MW-3, MW-5, and MW-7, and the recent occurrence of LNAPL in MW-13 requires remediation. In addition, delineation of the extent of the separate phase plume is recommended.

5.2 Conceptual Remediation Screening

In order to determine the appropriate remedial action for the Osmose site, applicable technologies were screened for technical effectiveness, advantages, disadvantages and cost. The results are shown below in Table 5-1, Remedial Alternative Screening. The screening process assumed the proposed remediation goals, as developed in the risk assessment, and proposed in the Subsurface Investigation Report, June 28, 1991, are accepted in their entirety by the NYS DEC. The results of the preliminary screening process may need to be modified if remedial goals are modified.

The technologies selected for consideration during the screening process also comply with the EPA's and NYS DEC's requirements for:

- Overall Protection of Human Health and the Environment;
- Compliance to Applicable or Relevant and Appropriate Requirement (ARARs);
- Long Term Effectiveness;
- Reduction of Toxicity, Mobility, or Volume of Contaminants;
- Short Term Effectiveness;
- Implementability; and
- State Acceptance.

TABLE 5-1

FEASIBILITY/ POTENTIAL 200 DISADVANTAGES ESTIMATED MEDIA ADVANTAGES REMEDIAL Cost ADDRESSED **EFFECTIVENESS** ALTERNATIVE Soil Vapor Extraction Adsorbed-phase Low due to tight soils and Proven technology. Oxygen flow Not effective at addressing semi-(SVE) semi-volatile compounds would stimulate biodegradation volatile compounds Ozonation Adsorbed-phase Requires pilot test to Rapid destruction of adsorbed Unproven technology. May require \$200 - \$300K Separate-phase determine applicability contaminants soil fracturing, lower reaction rates on separate-phase In-Situ Bioremediation Adsorbed-phase Moderate Destructive technology. Degrades Low degradation rates of complex \$350K low-to-medium complexity PAHs. PAHs. May require soil fracturing Excavation/Incineration Adsorbed-phase Moderate Immediate removal of contaminated Soils below saturated zone. Very \$600 - \$900K soils. May facilitate de-listing of site expensive. Proximity of foundations and utilities. Separate-phase (SP) Separate-phase Influence of each RW limited. \$200 - \$225K* Good Cost. Low maintenance and only Pumping System recovery of SP Seasonal fluctuation of groundwater will affect recovery rates \$125 - \$175K* **Total Fluids Pumping** Separate-phase Very good Increased SP recovery rates through Requires groundwater treatment System hydraulic control system and discharge permit. Thermal Enhanced Separate-phase Requires pilot test to Increased SP recovery by lowering Un-proven technology. Proximity of \$150 - \$225K* underground utilities, conduits and Separate-Phase determine applicability viscosity of NAPL Recovery foundations.

N/A

REMEDIAL ALTERNATIVES SCREENING

* Installation plus 3 years monitoring and maintenance

5.3 Summary of Remedial Alternatives Screening

Based upon review of the remedial alternatives, ozonation was chosen as the technology which best addresses the project objectives. Ozone injection, although a promising technology, is an unproven technology. Ozonation works by oxidizing the single and double bonds in the PAHs. Available literature indicates a very rapid reaction rate can be achieved. Pilot testing is required prior to site wide remediation, to determine site specific reaction rates, design criteria and the effects of site specific geologic conditions. It is anticipated the pilot test will require approximately two months to complete.

It is anticipated that ozone injection will rapidly oxidize adsorbed PAHs in both the saturated and unsaturated zones. As part of the pilot test, an attempt will be made to determine the oxidation reaction rate of the separate phase LNAPL. The pilot test will determine, therefore, if additional technologies are required to recover the separate phase hydrocarbons which exist on site.

The conjunction with the proposed pilot test, two to three shallow soil borings, completed as monitoring wells, will be installed to better define the down and crossgradient extent of separate phase hydrocarbons existing at the site.

Upon completion of the pilot test, Groundwater Technology will provide the results and conclusions; including a scale-up design (if applicable) for site wide remediation.

GROUNDWATER TECHNOLOGY

APPENDIX A NYS DEC CORRESPONDENCE

New York State Department of Environmental Conservation 600 Delaware Ave., Buffalo, NY 14202-1073

Thomas C. Jorling Commissioner

September 11, 1991

Mr. B**ruce** Ahrens Groun**d** Water Technolo**gy, Inc.** 12 Wa**lker** Way Alban**y, N**Y 12205

Dear Mr. Ahrens:

Osmose Wood Preserving Co. Buffalo. NY - Site #915143

The Departments of Environmental Conservation (DEC) & Health (DOH) have reviewed the Subsurface Investigation Report by Groundwater Technology dated June, 1991.

The report has provided detailed information describing the hazardous waste problem at the site. In order to definitively determine the extent of contamination, and more accurately describe the potential health risks posed by this site, the following comments must be addressed:

Groundwater:

Groundwater tests data indicates that some wells are contaminated with PAHs and/or BTEX, which are above the New York State Groundwater Standards or Guidance Values. This investigation has not fully determined the extent of groundwater contamination. Installation of two shallow monitoring wells (one upgradient and one downgradient) to determine the extent of plume as recommended in the report, will not be adequate. The test results from CW-1 suggest that the contaminants have reached the bedrock. Therefore, it is recommended that in addition to the two shallow wells, at least one deep downgradient well should also be installed.

Health Risk Assessment:

a. Media- Specific Potential Exposure Pathways (6.5.3). In addition to exposure of workers at the site, identification of potential exposure pathways of the general public must be included as part of the Baseline Risk Assessment. The routes of exposure should include inhalation of vapors (basements) from contaminated off-site Mr. Bruce Ahrens September 11, 1991 Page 2

groundwater and exposure through dermal absorption and incidental ingestion of contaminated soil. Additional off-site surface soil and groundwater samples may have to be tested to evaluate these routes of exposure. The basis for eliminating potential residential exposure is inadequate and the Baseline Risk Assessment must include possible future residential use of the site.

b. Soil Exposure Point Concentrations (6.5.4.1.1). Reference is made to a personal communication with the New York State Department of Health on air particulate concentrations. A specific contact person must be identified in the references and a narrative provided describing how the 33 ug/m respirable particle concentration was developed:

c. Risk Characteristic (6.6). The Risk Characterization as outlined in USEPA Risk Assessment Guidance document (Risk Assessment Guidance for Superfund, Volume 1,) Human Health Evaluation Manual, Part A, Interim Final, December 1989). Section 8-6 Page 8-25 states that "The results of the baseline evaluation should not be taken as a characterization of absolute risk. It is not the responsibility of the risk assessment to evaluate the significance of the risk program or whether and how the risk should be addressed". The baseline risk assessment should present the risks associated with the no action alternative and should not make risk management decisions about the acceptability of such risks.

d. Calculations of Acceptable Soil Concentration (Table 6-26). It is inappropriate to label the concentrations as presented in Table 6-26 as "acceptable". It is more appropriate to provide soil concentrations at various risk levels - say 10 to 10 or 10⁻⁷. With respect to the calculations, it appears that the consultants use a toxicity value (administered dose) and an exposure value (absorbed dose). This is inappropriate. The administered dose must be compared to administered dose and not absorbed dose as outlined in Appendix A -Adjustments for Absorption Efficiency.

3. Remediation Objectives:

A review of the nature of contamination indicates the elevated concentrations in soil will continue to impact the groundwater resulting in contravention of standards. Therefore, a separate report which will develop an appropriate range of waste management options should be prepared. Appropriate waste management options that ensure the protection of human health and the environment may involve the complete elimination or destruction of hazardous substances at the site or the prevention of exposure to hazardous substances via Mr. Bruce Ahrens September 11, 1991 Page 3

engineering controls. It is suggested the report be fashioned similar to a Feasibility Study, however, the scope of the study can be narrowly focused to the soil/dissolved phase problems associated with this site.

I recommend that the comments contained in this letter and other issues pertaining to this site be discussed in a meeting. Please let me know when such a meeting can be held. In the meantime, if you have any questions, please call me at 716-847-4585.

Sincerely yours,

Josepal Silh Walia

Jaspal S/ Walia, P.E. Environmental Engineer II

JSW/a**d**

cc: Mr. Martin Doster

Mr. Walter Demick/Mr. William Welling Mr. Rick Tuers-NYSDOH

Mr. Michael Rider-Osmose

Groundwater Technology, Inc.

12 Walker Way, Albany, NY 12205 Tel: (518) 456-2444

November 8, 1991

Mr. Jaspal **S. Wa**lia, P.E. New York **Sta**te Department of Environmental Conservation 600 Delawa**re Av**e. Buffalo, New York 14202-1073

01110-5470

RE: Osmose Wood Preserving, Inc. Site # 915143 Responses to NYS DEC comments

Dear Mr. Walia;

Presented below are responses to the New York State Department of Environmental Conservation's (NYS DEC's) comments on the Subsurface Investigation Report for the above referenced facility. These responses have been **developed** with Osmose and are presented in the same order as the comments presented in the letter dated **Septemb**er 11, 1991 from the NYS DEC to my attention.

Groundwater:

In addition to the two proposed shallow monitoring wells (one upgradient and one downgradient of the presumed source area) one deep downgradient soil boring will also be installed. The deep downgradient boring will be installed in the right-of-way on the east side of Ellicott Street approximately 80 feet north of MW-11. Continuous soil samples will be collected at all boring locations and screened with a field PID. Based upon the PID results, the "hottest" soil sample from above and below the water table from each boring will be shipped by overnight courier to the contract laboratory for analysis of volatile and semi-volatile hydrocarbons. Standard laboratory reporting and QA/QC protocols will be followed.

The deep boring will extend to the top of bedrock and will be completed as a 2 inch monitoring well. The well will be **instal**led with a 5 foot screened interval just above the bedrock. All wells will consist of 2 inch diameter, threaded, flush-joint, FRP well screen and casing. A properly sized clean sand pack will be placed in the annular space between the well and the borehole. The pack will extend two feet above the screen. A bentonite seal of at least two feet will be placed above the screen. A cement-bentonite grout will be placed above the bentonite seal up to grade.

Mr. Walia, P.E. Page 2 December 3, 1991

Risk Assessment:

a. (Media-Specific Potential Exposure Pathways). RE: Inclusion of inhalation of vapors (basements) of the general public as part of the Risk Assessment. Inspection of the soil sampling results from soils collected during the installation of monitor well MW-11 (closest soil boring to residential properties) indicates no detectable levels of volatile or semi-volatile compounds in a sample taken from 10' - 12' below grade. A soil sample collected from the same location at 4' - 6' below grade exhibited non-detectable levels of volatile compounds and 0.072 mg/kg total semi-volatiles. The predominant semi-volatile species included pyrene (0.028 mg/kg) and fluoranthene (0.011 mg/kg) which have vapor pressures of 6.85 x 10-⁷ mm @ 25°C and 5.0 x 10-⁵ mm @ 25°C, respectively. The absence of volatile compounds, and this low level of semi-volatile compounds, with low vapor pressures, is sufficient data to preclude the inclusion of inhalation of vapors in residential basements as an exposure pathway. Also in support of this exclusion as a potential exposure pathway, the modified soil gas survey (SGS) data collected from VP-13 and VP-14 (the farthest downgradient vapor extraction points, i.e. closest to the residentially zoned property) indicated non-detectable levels of both volatile and semi-volatile compounds. This data also correlates well with the PID readings collected during the installation of MW-11 which indicated that no volatile organic compounds were detected during monitor well installation.

Similarly, non-detectable levels of dissolved volatile and semi-volatile compounds were detected in MW-11 during the second (ASP Category A) sampling round with the exception of benzene at 0.2 ug/l. These low levels of dissolved hydrocarbons would also preclude the inclusion of vapor inhalation (basements) from off-site ground water as an exposure pathway.

During disturbance activities associated with the work plan (drilling) a Community Air Monitoring Plan was enforced. This plan included continuous monitoring downwind of the work zone for particulates with a Mini-Ram. No work stoppages or fugitive losses were recorded. In addition, any soils containing elevated hydrocarbon levels were maintained under a polyethylene cover until loaded into the biocell or properly disposed. The potential for off-site aeolian transport of contaminated soil particles is considered minimal.

Ambient levels of PAHs exist in the environment. Diesel engines produce soots which contain PAH constituents, wood stoves produce similar soots, asphalt pavement contains PAH constituents, humic compounds and other naturally occurring sources can produce low level (ppb) laboratory results. The presence of low levels of PAHs, if present, would be inconclusive as to their origin.

(Basis for **eliminating** potential residential exposure is inadequate and the Baseline Risk Assessment must include possible future residential use of the site). The possibility of future residential use of the site is very small, therefore it is unrealistic to include this scenario in the Baseline Risk Assessment. Osmose has no plans to develop the site for other than its present industrial use, and does not plan to sell the site anytime in the near future. Osmose's long term development plans include buying property Mr. Walla, P.E. Page 3 December **3,** 1**9**91

adjacent to the site and continuing industrial activities. The assumption of continuing future industrial use is consistent with the statement in USEPA, 1989 that " an assumption of future residential land use may not be justifiable if the probability that the site will support residential use in the future is exceedingly small".

In addition, evaluating future residential development of the site would require adjusting contaminant concentrations to account for natural biodegradation. If the site were developed for residential purposes in the distant future, it is likely that contaminant concentrations would be greatly reduced by then due to natural degradation.

b. (Air Particulate Concentrations). The reference for the respirable particle concentration will be changed to: NYS DEC 1990. New York State Air Quality Report Ambient Air Monitoring System. DEC Publication, Division of Air. Annual 1990 DAR-91-1.

The following paragraph will be inserted at the end of section 6.5.4.1.1:

In this study, 24-hour respirable particle concentrations were measured at three locations in the Buffalo area, within the Niagara Frontier Air Quality Control Region. Annual arithmetic means of measured respirable particle concentrations were calculated for the years 1988 to 1990. The means ranged from 21 to 33 ug/m³. The highest value of 33 ug/m³ was used to calculate exposure in the risk assessment.

c. (Risk Characterization). The Risk Characterization (section 6.6) was not meant to be a characterization of absolute risk. This section will be revised so that there will be no mention of "acceptable" risks. The assumption of 1×10^{-5} as the criterion of acceptable total risk to a receptor (section 6.6, third paragraph) will be removed. The calculated cancer and noncancer risk levels will be compared to the Superfund site remediation goals in NCP, 1990, such as the cancer risk range of 10^{-4} to 10^{-5} and noncancer hazard index of 1.0.

d. (Calculation of Acceptable Soil Concentrations). The word "acceptable" will not be used to refer to cleanup concentrations. Instead, the soil concentrations estimated to correspond with risk levels will be called cleanup concentrations.

Mr. Walla, P.E. Page 4 December 3, 1991

In the risk assessment, Groundwater Technology, calculated soil concentrations corresponding to a cancer risk level of 10⁻⁵. The calculation based on the risk level of 10⁻⁵ was feit to be appropriate for occupational exposures. Adult workers generally do not include sensitive subpopulations, such as children or elderly people. As mentioned in the discussion in section 6.6.4 (Comparable and Acceptable Risk), federal agencies have accepted risks greater than 10⁻⁴ for occupational exposures. For example, the U.S. Supreme Court has suggested that a lifetime occupational cancer risk of 1 x 10⁻³ be considered the benchmark for significant risk (Rodricks et al., 1987). Therefore, cleanup concentrations corresponding to a cancer risk level of 10⁻⁵ for occupational exposures is a conservative choice. If NYSDEC feels it is more appropriate to also include the soil concentrations corresponding to cancer risk levels of 10⁻⁶ and 10⁻⁶ at the Osmose site, these concentrations can be easily computed by multiplying by 10 the soil concentration corresponding to 10⁻⁵ and dividing it by 10, respectively. These soil concentrations will also be included in the report.

The risk calculations for the dermal route follow the protocol outlined in Appendix A - Adjustments for Absorption Efficiency (USEPA, 1989). Both the exposure value and the toxicity value are expressed as absorbed doses. The derivation of the absorption factor for the exposure value is explained in section 6.5.5.2.2 (Dermal Contact). The absorption factors for the toxicity values are shown in Tables 6-16 to 6-19 for cancer risk estimates, and in Tables 6-21 to 6-24 for the Hazard Index estimates. These factors are called ADFs (Adjustment Factors). These absorption factors were estimated from the study on which the dose-response information is based. Groundwater Technology will include an explanation in section 6 on the derivation of these ADFs.

Remediation Objectives:

A separate, narrowly focused report will be presented which will evaluate appropriate remedial responses at the Osmose site. Preliminary remedial screening and selection will be presented to, and discussed with the NYS DEC in a scheduled meeting. Subsequent to the meeting, the focussed report will be published. Mr. Walia, P.E. Page 5 December 3, 1991

Please review these responses and contact me at 518-456-2444 with any questions you may have. I am looking forward to confirming a meeting date with you to discuss this project.

Sincerely,

GROUNDWATER TECHNOLOGY, INC.

Bruce W. Ahrens Project Ma**nager** Senior Eng**ineer**

cc:

M. Rider/Osmose I. Chaudhuri/ELD L. McGlynn/GTI

References

USEPA, 1989. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual. Office of Emergency and Remedial Response. EPA/540/1-89/002. December 1989.

Rodricks, J.V., S. Brett and G.C. Wrenn. 1987. Significant Risk Decisions in Federal Regulatory Agencies. Environ Corporation, Washington, DC.

Montgomery, J.H. and Welkom, L.M. 1990. Groundwater Chemicals Desk Reference. Lewis Publishers, Inc.

New York State Department of Environmental Conservation

Thomas C. Jorling Commissioner

Mr. Bruce Ahrens Ground Water Technology, Inc. 12 Walker Way Albany, NY 12205

Dear Mr. Ahrens:

Osmose Wood Preserving Company Buffalo, NY - Site #915143

This is in response to your letter of November 8, 1991 which we received on December 3, 1991. We have viewed your response and have the following comments:

Groundwater:

We find your proposal to install two shallow and one deep overburden monitoring wells acceptable.

However, if the water elevations of deep wells indicate that the groundwater flow on top of the bedrock is influenced by the nearby subway tunnel, additional deep wells on south and west of the site will be required.

Off Site Surface Soil :

When the leaking underground tanks were removed, the contaminated soil was stock piled in the southwest corner of the parking lat for several months. In order to determine whether or not any offsite surficial contamination has occurred due to the pile, it is recommended that 3-4 surface soil samples from the adjoining property be collected and analyzed for PAHs. The sampling locations shall be selected in concurrence with the State representative.

Risk Assessment:

We also find your responses to our Risk Assessment comments and concerns acceptable.

Cleanup Levels:

As agreed in the Consent Order, NYSDEC will provide the cleanup levels upon completion of the next phase of investigation. Please submit us a schedule for the next phase of investigation. In the mean time, if there are any questions, please feel free to call me at 716-851-7220.

Yours truly,

Jaspal Sigh Walia

Jaspal S. Walia, P.E. Environmental Engineer II

JSW/ad

cc: Mr. Michael Rider - Osmose

Groundwater Technology, Inc.

12 Walker Way, Albany, NY 12205 Tel: (518) 456-2444

January 23, 1992

REFER: 01110-5470

Mr. Jaspal Walia, P.E. New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203

SUBJECT: Osmose Wood Preserving, Inc. Site #915143 Responses to December 24, 1991 letter

Dear Mr. W**ali**a.

Presented below are responses to the New York State Department of Environmental Conservation's (NYS DEC's) comments on the Subsurface Investigation Report for the above referenced facility. These responses have been developed with Osmose and are presented in the same order as the comments presented in your letter dated December 24, 1991 to my attention (received on our office December 30, 1991).

Groundwater:

After completion of the deep well installation (which is to be located in the right-of-way on the east side of Ellicott Street), the top of casing will be surveyed to a reference datum. The depth to water will be determined and compared with depth to water in deep well CW-1. If it is determined that the groundwater flow on top of bedrock flows in a direction that differs from the shallow groundwater, an additional well(s) may be required.

Off Site Suriace Soil:

In order to determine if surficial contamination has occurred due to the stockpiling of soils at the Osmose facility, **3**-4 surface soils will be collected from the adjoining property to the south. Details of the location and analyses performed on these soils will be presented in the Amendments to Work Plan, presented under separate cover.

Mr. Jas**pa**l Walia, P.E. January **2**3, 1992 Page 2

Risk Assessment;

No comments.

Cleanup Levels;

As agreed upon in the Consent Order, the Respondent (Osmose) has submitted proposed cleanup levels for the IRM bioremediation project to the NYS DEC. These proposed cleanup levels were developed by performing a Baseline Risk Assessment conducted in conformance with EPA guidelines for risk assessment. This Baseline Risk Assessment was part of the Work Plan reviewed and approved by the Division of Hazardous Waste Remediation, NYS DEC. The Baseline Risk Assessment evaluated site specific conditions, performed a toxicity assessment (hazard identification and dose-response evaluation), evaluated potential exposure pathways, and performed a risk characterization. Based upon the review and acceptance of the Baseline Risk Assessment by the NYS DOH (as witnessed by the limited comments on the submitted assessment, and accepted responses to those comments), it is anticipated that the NYS DEC will accept the IRM (Biocell) cleanup levels provided in the Subsurface Investigation Report.

In addition to the IRM cleanup goals, it is also anticipated that the cleanup levels provided by the NYS DEC (upon completion of the next phase of investigation) for on-site, non-biocell soils, and on- and offsite ground water, be consistent with the results of the risk assessment.

On the basis of decision-making precedent by federal regulatory agencies, a risk level of one in one hundred thousand (1×10^{15}) was selected for this assessment. Based upon this risk, the following soil remediation goals have been proposed:

0	IRM (Biocell) Soils:	473 ppm total PAHs
0	On Site (Non-Biocell) Soils:	473 ppm total PAHs
0	Off Site Soils:	473 ppm total PAHs

The risk assessment addressed potential risks associated with exposure to PAHs in on- and off- site groundwater. The existing total carcinogenic risk estimate for groundwater is approximately 1×10^{-3} . Based upon a telephone conversation with Ms. Janine Dinan, Toxics Integration Branch, EPA, Washington, D.C., regarding acceptable risk levels to be used in determining cleanup goals for sites, the following information was collected:

if the total site risk (including all exposure pathways) is between the risk range of 10⁻⁴ to 10⁻⁶, then the EPA considers that further remediation at the site is not necessary. Essentially, this implies an acceptable risk level of 10⁻⁴ which may be used to estimate cleanup levels.

TECHNOLOGY

Mr. Jaspal Walla, P.E. January 23, 1992 Page 3

Ms. Dinan said that even though the ultimate decision of acceptable risk depends upon the reviewing agency, this is the policy that the EPA would follow.

Likewise, the total hazard index for noncarcinogenic risks in groundwater is approximately 6×10^{-2} (far below unity). Based on the Baseline Risk Assessment, the following groundwater remediation goals have been proposed:

0	On Site Groundwater:	No Action
0	Off Site Groundwater:	No Action

A separate document entitled Amendments to Work Plan is being prepared which will detail the next phase of the investigation. A copy of this document will be provided to the NYS DEC for review and comment by January 31, 1992. please feel free to contact me at 518-456-2444 with any comments or questions.

Sincerely, GROUNDWATER TECHNOLOGY, INC.

Dune W. ahrand

Bruce W. Ahrens Project Man**ager** Senior Engi**ne**er

Copy: M. Rider/Osmose W. Leonard/GTI I. Chaudhuri/ELD

F

Ļ

.

APPENDIX B

ſ

F

GROUNDWATER

9

Í

Drilling Log

Monitoring Well MW-12

3 3 3 3 3 3 1	Iling Company <u>Ea</u> Iler <u>Tom Wittmey</u> ecked By	Er <u>Graded</u> <u>erth Dimei</u> <u>e</u> r Ω	ngth <u>10 f</u> ngth <u>10 f</u> Sand nsians	_ Metho		ft. Static 10.75 ft.	hole diameter 0-5'=15.5"
2 3" asphalt 2 3" asphalt 2	Der (f	id) Id	Samp Samp Rec	Gra L	scs	(Color, Texture, Some) Trace < 10%, Little 10% to 20%, Some	Structure) 20% to 35%, And 35% to 50%
		 16.2 14.9 16.1 19.6 10.6 17.2 11.8 8.4 0.2 1.8 1.2 	 40% 60% 60% 60% 60% 60% 60% 60% 60% 60% 77 60% 880% 970% 106% 1180% 		SM . ML CL MH ML SM	3" asphalt dry, brown and gray, FINE SAND and and debris moist, brown, FINE SAND and SILT w little gravel moist, brown, SILT with little clay, tre moist, gray and brown, CLAY with som moist, gray and brown, CLAY with som moist, gray and brown, CLAY with litt moist, gray and brown, CLAY with som moist, brown, SILT and CLAY moist, brown, SILT and CLAY saturated, brown, SILT saturated, brown, SILT saturated, brown, SILT saturated, brown, SILT with little fine saturated, brown, FINE SAND and S	d SILT with some medium sand with some organic material, ace sand, fine gravel me silt le silt me silt e sand MLT with little gravel

04/28/1982 lithlog-mar92

	Drilling Log
GROUNDWATER	
Project Osmose Supplemental Assessment Own	er <u>Osmose</u>

F

I,

Designation ()	mas e St	n olem ent	al Assess	me n t	0	wher Osmose -	See Site Map
Project <u>os</u>	980 El licu	ott St. Bu	Iffalo, NY	Projec	0 1 No.	0///0-7905 Date drilled 3/19/92-	For Boring Location
Surface El	ev. 97.2	8 ft. T	otal Hole (Depth 2	16 <u>ft.</u>	Diameter <u>.708 ft.</u>	COMMENTS:
Top of Ca	sing <u>96.</u>	78 ft. W	ater Level	Initial	8.0	<u>ft.</u> Static <u>6.25 ft.</u>	
Screen: Di	a <u>2 in</u> .	Le	ength <u>10 1</u>	<u>'t.</u>		Type/Size .020 in.	
Casing: Dia	<u>2 in.</u>	Le	ength <u>4 fi</u>	t		Type <u>FRP</u>	1 1
Filter Pack	. Ma teria	<u>Gradeo</u>	Sand		Ri	ig/Core Type <u>Split Spoon</u>	
Drilling Com	ipany <u>E</u>	arth Dime	<u>15A</u> Permit #				
Driller <u>Ion</u>	n Wit tmey	ler					
Checked B	ју <u></u>	±					
5-	ton	-	1352 1352	Ŷ	ð\$\$	Descripti	on
E E	lell blet	01 md	So de So de	Чde	Ū		Structurel
De De	3 LL	49	Be Be	010	scs	Trace < 10% tittle 10% to 20%. Some	20% to 35%, And 35% to 50%
	Ŭ		א <u>ש</u> א	1	3		
2 -							
0						Concrete	
				∧	CON		
			1 0%	·····		Fill	
				[
- 2 -			·	TIT			
					C 14	maist brown FINE SAND and SILT wi	th some gravet
		8.5	12 10%		10		
						*	
	131					-	
- -	. ∃	8.9	3 100%			moist, brown a nd gray, CLAY with som	e silt, little organic debris
						1	
					UL I]	
		211	4 10 2			moist, brown, CLAY with little silt	
		211	4 100%			-	
- 8 -				F ff		¥	
						SILT with some clay	
]≣[304	5 100%			saturated, brown, SILT with some cia	4
					м		
	·]=						
┣	.]≣[:	125	6 70 %			saturated, brown, SILT with little clay	
	∃						
<u> </u> − 12 – <u> </u> :	· = .			┝╆╋╅╋			-
 .	. ≣ .					saturated brown SILT	
[]:		47.5	7 60%			Saturated, Stown, Ster	
	. I≡L				MH		
			1				
⊢ -{[.		43.9	8 70 %			same	
						End of Boring	
F 16 -			-				
∔ ++							

•

GROUNDWATER TECHNOLOGY
GROUNDWATER TECHNOLOGY

ſ

Monitoring Well MW-14

<u> </u>		INVE					
Decised OS	mos e Suc	o lem ent	al Assessi	ment	0	wner Osmose	See Site Map For Boring Location
Project <u>Us</u>	980 Fl lico	tt St. Bu	ffalo. NY	Project	t No.	011107905 Date drilled 3/17/92-	
	97.55	<u>і ft</u> . те	tal Hole (lenth 6	53 ft	Diameter .708 ft.	COMMENTS
	sing 970	15 ft. Wa	ater t evel	Initial	8.0	ft Static 15.0 ft.	
	5.119 <u></u> 2 in	te	noth 5 ft			Type/Size .020 in.	
Cosing: Dia	2 in.	LC	nath 57	ft.		Type FRP	
Casing: Dia		Graded	Sand		8	in/Core Type Split Spoon	-
Filter Pack	Materiai	orth Dime	nsions	Math	- ··	+SA Permit #	
	npan y <u>-</u>e Wittmaw	er		_ neus	- <i>D</i> U	ng By J. O. Gustafson	
Driller	<u>i nicuic j</u>			Licen			
Checked B	y						
_	<u></u>	~	日국장	<u>u</u>	858	Descript	ion
E	≣ e	01 m d	<u>e 0 0 0</u>	40	บี่		Structure
L C C	₹ Q	م م	E Se	l c –	CS S		= 20% to 35% And 35% to 50%
	ပိ		N B N		ns N		
	Ī						
2 -	ļ			1			
				l.			
				TTT	1		
		ND	1 60%			0'-2' moist, brown, SiLI with little sa	and, gravel, and organic
- 2 -						material	
	n V u		2 50%			2'-4' moist, brown, SILT with little fir	ne sand, trace organic
	<	NU	2 30%			material	• · ·
	< <					 4'-6' moist grav-brown, SILT with s	some clay
	H VH	ND	3 75%				
	<pre>< < </pre>		1			C' O' maint rod brown STIT and CI	Δ.Υ
	< <	ND	4 Ю0%		ML		
<u> </u> 8 −[1 1 2	
	n , n	ND	5 100%			8'-10' saturat ed , red-brown, SIL1 w	ath some clay
- 10 - h	<						
	< <		6 HO2			10'-12' same	
12 _	1 1 1				1		
	<hr/> <hr/> <hr/> <hr/> <hr/> <hr/> <hr/> <hr/>					12'-14' saturated red-brown, SILT (with trace medium sand
	< <	ND	7 100%				
- 14₩							
	, H E H	ND	8 юож		мн	4 14 - 16 saturated, brown, 51L1	
- 16 -	< <			┞╌╀╌╃╶╀		4	
			9 100%		SM	16'-18' saturated, brown, FINE SANE) and SILT
L 18 _	, h , h	NU		┝┾╊┿╄	╟	-	
						18'-20' saturated, brown, SILT with	some fine sand
	< <	ND	10 100%				
+20-	1 1					and an entropy SILT and F	TINE SAND
	< <	ND	11 100%				INE JARD
- 22 -	< <				ML		
			12 100%			22'-24' same	
-24-	n, h						
	< <		12 100			24'-26' saturated, gray, SILT with t	some fine sand, trace coarse sand
		UN I	13 1002				
- 20 -	74 74					DO' DO' ADDING OTON ETNE SANE	and SILT with trace gravel
	<	ND	14 HOOX		SM	20 - 20 Saturated, yrdy, Find SANE	
- 28 -					1		
	1	ND	15 ЮOX		SW	28'-30' saturated, gray, FINE SAN	J with little slit and trace gravel
- 30 -	< <u> </u>				╬		
	!						

Drilling Log

04/28/1992 lit**hio**g**-ma**r92

Drilling Log

Project . Location	Osmose Su 980 Ellica	op leme nta ott St. Bu	al Assessi ffalo, NY	<u>ment</u> Pro <u>ie</u> c	0 t No.	wner <u>Osmose</u> <u>011107905</u> Date drilled <u>3/17/92</u>
Depth (ft.)	Well Completion	(mqq)	Sample ID Blow Count/ X Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
-30 - 32 - 32 - 34 - 36 - 38 - 38 - 38 - 38 - 38 - 38 - 38		D	16 t 0 ° x		SW	30'-61' No sample, running sands 61'-63' saturated, gray, FINE SAND End of Boring

GROUNDWATER	Soil Boring SB-2
Project <u>Osmose Supplemental Assessment</u> Owner <u>Osmose</u> Location <u>980 Ellicott St. Buffalo, NY Project No. 01110-7905</u> Date drilled <u>3/20/92</u>	See Site Map For Boring Location
Surface Elev Total Hole Depth <u>16 ft.</u> Diameter <u>.708 ft.</u>	COMMENTS:
Screen: Dia <u>NA in.</u> Length <u>NA ft.</u> Type/Size <u>NA in.</u>	Hole diameter: 0'-5'= 15.5" 5'-14'= 8.5"

Casing: Dia <u>NA in.</u> Length <u>NA It.</u> Type <u>NA</u> Rig/Core Type Split Spoon Filter Pack Material _ Drilling Company <u>Earth Dimensions</u> Method <u>HSA</u> Log By J. O. Gustafson Driller Tom Wittmeyer

08/25/1992 lithlog-mar92

_ Permit # __

le

P

4

C

APPENDIX C VAPOR MONITORING LOGS
ESUL		ROUNDW ECHNOLC F VAPO	ater Ogy, Inc OR MON	NITOR	ING	PROJECT PROJECT DATE OF CONTAM	NAME <u>()51107</u> NUMBER <u>011107</u> SAMPLING <u>3/17/9</u> INANTS	Supplemental Assi 905 2	essment
ТИЕ	IONE	ZATION DETE READING	CTOR	EXPLOS REA	SIMETER DING	RADIATION MONITOR READING			
TIME.	FID	10.2eV PID M:croTip	11.7eV PID	% LEL	% O,	mR/hr	LOCATION	PUHPOSE	INITIALS
10:00		0.0		0.0	20.9	·	ponking lot	Lackground	JOG
1:00		0.0		0.0	20.9		NNW- 14	Monitor drilling	JOF
1:10		0.0		0.0	20,9				J06
1:25		0.0		0.0	20.1				J06
1:40		0.0		0.0	20.9				J06-
2:00		0.0		0.0	20.9				J06
3:00		0.0		0.0	20.9				506
4:00		0.0		0.0	.20.9				Jor
5:00		0.0		0.0	20.9		¥	V	J06
5:00		0.0		0.0	20.9		parking lot	background	
			11		1	- I	· · · · · · · · · · · · · · · · ·		····

a and a commension of the an a carta

interfaces interf The second second second second second second second second second second

PROJECT NAME	Demose	Supplemental	Assessment
PROJECT NUMBER	0111079	05	
SAMPLING DATE	3/17/92		•
Sampler - JOG			

MINI-RAM SAMPLING LOG

TIME	READING	SA	TWA T LV	SAMPLE LOCATION
10:00 Am	D.00	0.00	0.00	vonking lot - background
1:00 pm	0.00	0.00	0.00	mw-iy - drilling
1:10	0.00	0.00	0.00	
1:25	0.00	0. DO	0.00	
1:40	0.01	0.00	0.00	
2:00	: 0.02	0.00	0.01	
3:01	0.00	D.00	0.00	
4:00	0.00	0.00	0.00	
5:00	0.00	0.00	0.00	
5:00	0.00	0.00	0.00	parking lot - background
L	- 1	L		

GROUNDWATER TECHNOLOGY IN	PROJECT NAME <u>Demose Supplemental</u> PROJECT NUMBER <u>011/07905</u> DATE OF SAMPLING <u>3/18/92</u>
	CONTAMINANTS

RESULTS OF VAPOR MONITORING

TIME	IONIZ	ATION DETE READING	СТОЯ	EXPLOS REA	SIMETER DING	RADIATION MONITOR READING LOCATION PURPOSE		PURPOSE	INITIAL S
an far an	FID	10.20V PID MicroTip	11.70V PID	% LEL	% O,	mFVhr			INTIALS
8:00		0.0		0.0	20.9		Jarking lot	background	505
9:00		0.0		0.0	20.9		mw-14	monitor drilling	J06-
10:00		0.0		0.0	20.9				JOF
11:00		0. b		0.0	20.9			V	J06
12:00		0,0		0.0	20.9			monitor well installation	J06-
1:06		0.0		0.0	20.9				Job-
2:00		0.0		0.0	20.9		•		J06-
3:00		0.0		0.0	20.9	· ·			JOG-
4:00		0.0		0.0	20.3				506
5:00	 	0.0		0.0	20.9		V	¥	506-
5:00		0.0		0.0	20.9		parking lot	background	706
							· 0	0	
		· · · · · · · · · · · · · · · · · · ·		·			·····		
<u>.</u>		 		·				r	
in Same		<u> </u>							

Assessment

.

SUSA DIVISION

PROJECT NAME	Osmose	Supplemental	Assessment
PROJECT NUMBER	011107	905	
SAMPLING DATE	3 18 72		•

MINI-RAM SAMPLING LOG

TIME	READING	SA	TWA TL V	SAMPLE LOCATION
8:00	0.00	0.00	0.00	parking lot - background
9:00	0.00	0.00	0.00	Mw-14 - drilling
10:00	0.00	0.00	0.00	/
11:00	0.02	0.00	0.00	- J
/2:00	0.00	0.00	0.00	MW-14 - setting Well
1:00	: 0.00	0.00	0.00	
2:00	0.00	0.00	0.00	
3:00	0.00	0.00	0.00	
4:00	0.00	0.D0	0.00	
5:00	0.00	0.00	0.00	¥
5:00	0.00	0.00	0.00	parking lot - backgrownel
				/ /

GROUNDWATER TECHNOLOGY, INC.	PROJECT NAME PROJECT NUMBER DATE OF SAMPLING CONTAMINANTS	Dsmose 0111079 3/19/92	Supplemental 105 Page 1 of	Assessment 2
RESULTS OF VAPOR MONITORING		· · · · · · · · · · · · · · · · · · ·		,

*

	IONIZ	ATION DETER READING	CTOR	EXPLOS REAL	IMETER DING	RADIATION MONITOR READING		PLIBPOSE	
	FID	10.20V PID MicroTip	11.70V PID	% LEL	% O ₂	mFVhr			INTIALS
7:00		0,0		0.0	20.9		Parking let	backgroundig	204
9:00		0.0		0.0	20.9		$m\omega - 14$	monitor well installation	JD6-
9:00		0.0		0.0	20.9				J06-
. 10:00		0.0		0.0	20.9			V	Jaf
11:00		0.0		0.0	20.9			monitor site clean-up	506
12:00		0.0		0,0	20.9		Parking 1st	monitor steam cleaning	J06-
.1:00		0.0		0,0	20.9				506-
2:00		0.0		0.0	20.9		N4W-12	monitor drilling	J06-
2:10		0.0		0.0	20.9				J06
. 2:25		0.0		0.0	20,9				506
2:45		0.0		0,0	20.9	-			Job
3:05		0,0		0.0	20.9				506-
3:45		0.0		0.0	20.9			¥	John
4:30		0.0		0.0	20.9			monitor well installation	JO6-
5:30		0.0		0.0	20.5		↓	Monitor site clean - up	JD6-
5:45	 	0.0		0.0	20.9		MW-13	monitor drilling	J06-

• • •• PARAL LERCE BUILDEN BUILDEN BUILDEN BUILDEN BUILDEN

四個的 CONTAMINANTS	GROUNDWATER TECHNOLOGY, INC.	PROJECT NAME PROJECT NUMBER DATE OF SAMPLING CONTAMINANTS	3/15/52	Page 2 of 2	
------------------	---------------------------------	--	---------	-------------	--

.

۰

RESULTS OF VAPOR MONITORING

TIME -	IONIZ	ATION DETER READING	СТОН	EXPLOS REA	SIMÈTER DING	RADIATION MONITOR READING	LOCATION	PURPOSE	INITIALS
4	FID	10.20V PID MicroTip	11.7eV PID	% LEL	% O ₂	mFVhr			
6:00		8.2		0.0	20.9		Mw-13	monitor drilling	T06-
6:15		0.9		0.0	20.9				706
6:30		0.0		0.0	20.9			\downarrow	J06-
7:15		0.0		0.0	20.9		\bigvee	monitor well installator	506-
. ·							-		
				·			·		
4. S.									
								r	
i de la composition de la comp									
46 () 17 - 19 () 17 - 19 ()									
									•••••

a strategy of the second second

PROJECT NAME	Osmose	Supplemental	Assessment
PROJECT NUMBER	011107	305	
SAMPLING DATE	3/19/92	(Page 1 of	2).

MINI-RAM SAMPLING LOG

TIME	READING	SA	TWA TLV	SAMPLE LOCATION
7:00	0.00	0.00	0.00	parking lot - background
8:00	0,00	0.00	0.00	mw-14 - Well installation
9:00	0.00	0.00	0.00	
10:00	0.00	0.00	0.00	V
11:00	0.00	0.00	0,00	MW-14 - clean -up
12:00	: 0.00	0.00	0.00	parking lot - steam cleaning
1:00	0.00	0,00	0.00	
2:00	0.00	0.00	0.00	MW-12 - Monitor drilling
2:10	0.00	0.00	0.00	
2:25	0.00	0.00	0.00	
2:45	0.00	0.00	0.00	
3:05	0.00	0.00	0.00	
3:45	0.00	0.00	0.00	
4:30	0.00	0,00	0.00	MW-12 - Well installation.
5:30	0.00	0.00	0.00	MW-12 - clean - up
5:45	0:00	0.00	0.00	MW-13 - drilling

GROUNDWATER TECHNOLOGY, INC.

PROJECT NAME			<u></u>
PROJECT NUMBER			
SAMPLING DATE	3 19 92	(Page 2 of 2)	•

MINI-RAM SAMPLING LOG

TIME	READING	SA	TWA TEV	SAMPLE LOCATION
6:00	0.00	0,00	0.00	nw-13 - drilling
6:15	0.00	0.00	0.00	/
6:30	0.00	0.00	0.00	
7:15	0.00	0.00	0.00	111W-13 - Well installation
······				
	: :			
		•		
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
-				
,	••••••••••••••••••••••••••••••••••••••	•	4	

	GI TE	ROUNDW. ECHNOLC	ater ogy, Inc			PROJECT PROJECT DATE OF CONTAMI	NAME	Osmose 0111070 3/20/92	Supplemental Assessment 905	
RESUL	LTS OI	F VAPO	R MON	NIT OR	ING		•			•
TIME	IONI	ZATION DETE READING	CTOR	EXPLO RE#	SIMETER DING	RADIATION MONITOR READING			PLIEPOSE	
	FID	10.20V PID MicroTip	11.70V PID	% LEL	% O ₂	mB/hr				INTIALS
8:00		0.0		0.0	20.9		Darking	lot	background	506
9:00		0.0		0.0	20.9		r d	\checkmark	monitur steam cleaning	506-
10:00		0.0		0.0	20.9		SB		monitor drilling	206
10:10	. <u></u>	0.0		0.0	20,9					JQ-
10:25		0.0	·····	0.0	20.9					JOG-
10:40		0.0		0.0	20.9					Ja-
10:55		0.0		0.0	20.9					506-
12:00		0.0		0.0	20.9				¥	J06-
1:30		0.0	·	0.0	20.9	-	· · · · · · · · · · · · · · · · · · ·		monitor growting	506
:2:15	·	0.0		0.0	20.9			V	monitor Elean-up	506
<u></u>		-					·		· · · · · · · · · · · · · · · · · · ·	
<u>a. 566 a.c.</u> 1		-			-	_				·
							·		,	<u> </u>
	·	1					····	• • • • • • • • • • • • • • • • • • • •		1
••••••••••••••••••••••••••••••••••••••	·		·	·						
		····	·		.+	-1			· · · · · · · · · · · · · · · · · · ·	

ELECTROSS STUTTING STUTTING

GROUNDWATER TECHNOLOGY, INC.

PROJECT NAME	Osmose	Supplemental Assessment
PROJECT NUMBER	011107	9905
SAMPLING DATE	3/20/52	·

MINI-RAM SAMPLING LOG

TIME	READING	SA	TWA TLV	SAMPLE LOCATION	
8:00	0.00	0.00	0.00	parking lot - background	
9:00	0.00	0.00	0.00	parking lot - steam cleaning	
10:00	0.00	0.00	0.00	5B - drilling	
10:10	0.00	0.00	0.00	0	
10:25	0.00	0.00	0.00		
10:40	: 0.00	0.00	0.00		
10:55	0.00	Q.00	0.00		
12:00	0.00	0.00	0.07		
1:30	0.00	0.00	0.00	SB - growting	
2:15	0.00	0.00	0.00	SB - clean-up	
				,	
			·	· · · · · · · · · · · · · · · · · · ·	

4

1

I

I

I

10

I

APPENDIX D DATA VALIDATION REPORT

1

I

ļ

DATA VALIDATION REPORT OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK SITE

AROMATIC VOLATILE ORGANICS ANALYSIS

Samples Collected: March 17-20, 1992

Report Prepared: April 28, 1992

Prepared By: Groundwater Technology, Inc. 223 Wilmington-West Chester Pike Chadds Ford, Pennsylvania 19317

Preface to Data Validation

The concept of data validation has been developed over the past decade to assure that the quality of the data generated as a result of laboratory analysis by USEPA's Contract Laboratory Program protocols is acceptable. Guidelines for data validation have been established by the USEPA Data Review Work Groups, for the Hazardous Site Evaluation Division, and are published in documents entitled, <u>Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses</u>, and <u>Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses</u>.

These documents are available to the public and will be strictly adhered to during the data review of these packages analyzed by GTEL Environmental Laboratories, Milford, New Hampshire. Before reading the data validation reports prepared by Groundwater Technology, Inc., some insight and explanation is offered for the application of the data.

The purpose of the data validation report is to inform the data user of problems that were encountered during the analysis of the samples. The qualifiers section states the major points of concern and places restrictions on the usage of data with "qualifiers" such as B, J, or R. Qualification of data with respect to the amount of contamination in the blanks (method, field, rinsate or trip) associated with a set of samples is a dependable means of assessing procedures, container cleanliness and laboratory procedure. For example, if acetone, a common laboratory contaminant, was found at 50 μ g/l in a trip blank, 15 μ g/l in the laboratory's method blank and 20 μ g/l in the field blank, a qualifier would be written stating that, "all positive results in samples x,y,z, associated with the trip blank are questionable." This means that any positive results from a sample less than ten times the amount found in the blank having the highest contamination source (in this case the trip blank, at 50 μ g/l) is probably from the blank. Any samples related to this trip blank having results less than 500 μ g/l are questionable, attributable to the degree of container cleanliness. Other examples are attached.

Another area of concern is holding time and preservation of the samples. The chain-of-custody is examined for the date of sampling, date samples were relinquished to the courier, preservation methods, date received at the laboratory and any comments that were made by the laboratory's sample custodian. The date of sample collection is compared with the date of sample receipt, extraction and/or analysis; if the number of days between sample collection and sample extraction/analysis is outside of the acceptable range then these results must be considered

1

GROUNDWATER

estimated. The methods of sample preservation used can alter the acceptable holding time range. The effects of long-term storage even under refrigeration cannot be predicted due to variable matrices from site to site, or from sample to sample on site.

A qualifier may also be applied to the data if surrogate spike recoveries fall outside the quality control limits. Surrogate spike compounds are added to every sample and blank to monitor the laboratory's performance, however the sample matrix itself may contribute to the poor recovery of surrogate compounds. For example, samples with interferences or high analyte concentrations may cause unusual surrogate recoveries. Sometimes reanalysis (or re-extraction) is necessary to determine if the source of the problem is taboratory- or sample matrix-related.

Initial and continuing calibrations, along with GC/MS tuning are evaluated and sometimes qualified for individual compounds (such as 2-butanone) in the volatile organics fraction. It is a chronic problem for many laboratories to obtain steady response factors for 2-butanone (methyl ethyl ketone) that are stable enough to fail inside the specified criteria. False negatives and valid detection limits are also of concern when qualifying the initial and continuing calibrations, and the GC/MS tuning.

The evaluation of blind field duplicates, matrix spike (MS) and matrix spike duplicates (MSD), are of importance in assessing field sampling techniques, sample homogeneity, representativeness of sample points, and laboratory precision. A relative percent difference is calculated for three or more samples. Criteria are listed on the attached sheets for field duplicates and MS/MSDs. It should be noted that a data package cannot be qualified solely on MS/MSD data. The MS/MSD data merely confirm matrix interferences and can be used as support for other qualifiers such as surrogate spike recoveries.

Identification of positively identified compounds is checked with respect to the guidelines. Also the compound quantitation calculation and the feasibility of obtaining the specified detection limits are checked.

The tentatively identified compounds (TICs) found by the mass spectral library search are checked for goodness of "fit" against the reference spectrum. If there is a discrepancy between the laboratory analyst's interpretation of the spectrum and Groundwater Technology's interpretation, a qualifier is placed on the compound in question stating that it is to be considered an unknown or an isomer of that compound. Most often the laboratory will qualify the results as estimated, due to the

fact that standards for that TIC have not been run (nor are they required). Quantitation of TICs is based on the total quantitation method.

Data that may not meet certain criteria rarely cause an entire case to be qualified as unusable (R) because other parameters validated are acceptable. However, data for particular analytes may be discarded due to calibration response factors of questionable integrity.

The findings section gives standard as well as judgmental reasons as to why the data are qualified. The summary explains point by point each qualifier and places a general status (acceptable, provisional or acceptable) on the entire data package.

QUALIFIER DEFINITIONS

R	-	Unusable dat a .
U	-	Analyzed but undetected.
J	-	Estimated.
UJ	-	Undetected but the associated value is estimated and may inaccurate or imprecise.
В	-	Compound has been detected in a blank. Indicates that the compound's presence is qualitatively questioned, due to contamination in an associated blank.
DF	-	Dilution Factor.

Ĩ

The following are examples of application of the blank qualification guidelines. Certain circumstances may warrant deviations from these quidelines.

<u>Case 1:</u> Sample result is greater than the Contract Required Quantitation Limit (CRQL), but is less than the required amount (5x or 10x) when compared to the blank result.

	RULE		
	<u>10x</u>	<u>5x</u>	
Blank Result	7	7	
CRQL	5	5	
Sample Result	60	60	
Qualified Sample Result	60B	60B	

In the example for the 10x rule, a sample result less than 70 (10 x 7) would be qualified as questionable (B). In the case of the 5x rule, sample result less than 35 (5 x 7) would also be qualified as questionable (B).

Case 2:

Sample result is less than the CRQL, and is also less than the required amount (5x or 10x) when compared to the blank result.

	RULE	
	<u>10x</u>	<u>5x</u>
Blank Result	6	6
CRQL	5	5
Sample Result	4J	4J
Qualified Sample Result	4B	48

<u>Case 3:</u>

Sample result is greater than the CRQL and the required amount (5x or 10x) when compared to the blank result.

	RULE	
	<u>10x</u>	<u>5x</u>
Blank Result	10	10
CRQL	5	5
Sample Result	120	60
Qualified Sample Result	120	60

For both the 10x and 5x rules, sample results exceeded the adjusted blank results of 100 (10 x 10) and 50 (5 x10), respectively.

QUALITY ASSURANCE REVIEW

AROMATIC VOLATILE ORGANICS ANALYSIS OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK SITE

1.0 INTRODUCTION

This review addresses eight soil samples and three aqueous quality control samples collected March 17-20, 1992 by Groundwater Technology, Inc. Albany, New York, and submitted to GTEL Environmental laboratories, Inc., Milford, New Hampshire for the analysis of aromatic volatile organic compounds.

Items reviewed in this data package include:

- chain-of-custody records,
- analytical holding times,
- calibration verification,
- all applicable blank samples,
- matrix spike recoveries,
- duplicate spike recoveries,
- data completeness, and
- an overall assessment of the batch.

It should be noted that these samples were analyzed using EPA methodology, but only a "Blue Level" data package was compiled. Therefore, no raw data was available to the reviewer. Where applicable, the reviewer used the laboratory QA nonconformance summary to validate the associated client sample results. Also, the results for total xylenes were not included in the original laboratory data package. The laboratory reissued the report to include the total xylenes results.

TABLE 1.0 APPLICABLE SAMPLE NUMBERS					
GTI ID LAB ID					
MW-13 (6-8)	03652-05				
MW-13 (8-10)	03652-06				
SB-2 (2-4)	03652-1 3				
MW-14 (10-12)	03652-01				
MW-14 (61-63)	03652-0 2				
MW-12 (6-8)	03652-0 3				
MW-12 (18-20)	03652-04				
SB-2 (8-10)	03652-14				
RINSEATE BLANK	03652-10				
FIELD BLANK	03652-11				
TRIP BLANK	03652-12				

TABLE 2.0 DATA QUALIFIERS							
ANALYTE	SAMPLE ID(S)	ISSUE(S)	QUALIFIER(S)				
TOLUENE	MW-13 (61-63)	(1)	В				
TOLUENE /	MW-12 (18-20)	(1)	В				

(1) blank contaminant

2.0 FINDINGS AND DISCUSSION

• The results for toluene in samples MW-13 (61-63) and MW-12 (18-20) are questionable due to blank contamination. Specifically, toluene was detected in the associated rinseate blank at a concentration of 0.6 μ g/l. Using the blank contamination rule for common contaminants, any toluene detected in the client samples at a concentration less than 6.0 μ g/l (0.6 μ g/l x 10) is considered questionable. Rinseate blank contamination can be an indication of improper decontamination procedures in the field.

3.0 SUMMARY

After thoroughly reviewing all available data it was determined that the laboratory has adequately performed all analyses since:

- chain-of-custody records were complete,
- calibration verification results were acceptable,
- all applicable laboratory blank samples were contaminant-free,
- matrix spike recoveries were acceptable,
- duplicate sample results were acceptable,
- surrogate spike recoveries were acceptable, and
- data were complete.

Although no major problems were associated with this batch, two minor issues were addressed:

- The matrix spike recovery for toluene is incorrect as reported (102 %R). The actual recovery is 107 %R. These results are still within the acceptability limits, 40-160 %R.
- The trip blank sample associated with this batch was analyzed one day past the fourteen day holding time. Actual sample results may be slightly higher.

For specifics on this quality assurance review, refer to the attached support documents.

GROUNDWATER TECHNOLOGY, INC.

Kimberly Mc Shee - Gordel

Date: April 28, 1992

Kimberl**y Mc**Ghee-Gould QA/QC **S**upervisor

KMG/II:P:\p**roj**ects\osmose\voc.rpt

. . .

. .

AROMATIC VOLATILE ORGANIC SUPPORT DOCUMENTATION

. ,

.

GROUNDWATER

QA NONCONFORMANCE SUMMARY

1.0 Method Blank Analysis

1.1 Zero target compound(s) were found in the method blank.

2.0 Calibration Verification

2.1 The control limits were exceeded for zero calibration check compounds.

3.0 Surrogate Compound Recoveries

3.1 The recovery limits were exceeded for one surrogate compound for EPA Method 8310 in two samples due to interference from the presence of high concentrations of analytes in the samples. One surrogate out of control does not invalidate the reported results.

4.0 Matrix Spike (MS) Accuracy

4.1 The recovery limits were exceeded in the batch spike for zero compounds.

5.0 Sample Duplicate Precision

5.1 The maximum relative percent difference (RPD) was/were exceeded for zero compound(s) in the sample duplicate.

6.0 Sample Integrity

6.1 Sample handling and holding time criteria were met.

GTEL Milford, NH N203652A.DOC:10

DATA SUMMARY FORM: OR GANICS Avomatic Volatile Organics in Soil SOIL SAMPLES

.

(µg/Kg)

Case #: _____ Sampling Date(s): 3/17/92-3/20/92-

Site Name: OSMOSE

To calculate sample quantitation limit: (QL * Dilution Factor) / ((100 - % moisture)/100)

÷,

Sample No.	MW-13(6-8) MW-13 (8-10	SB-2(2-4))mw-14(10-6	mw-14[61-63	MW-12(6-8)	MW-12 (18-20	SB-2(8-10)	
Dilution Factor % Moisture Location	12,2	12,2 13.6		18.1	13.2	13.2 20.0		11. +	
Benzene					41 R	75	T.P B	18-1-1	
Ethyl Benzene	-#	.52			2,0	3,2	2.0	2.3	
Chiorobenzene									
1,2-Dichloopenzene						·	┟╴╴╴╴╴┝	<u>∦ ····</u> ∤ł	
1,3-Dichloobenzene	_₩		∦		∦	.	j -	∦∤∤	
Xulenes (total)	3.0	1.3	#	-∦	8.3	14-	9.3		<u> </u>
······			∦	-∦	∦		h	₿	<u> </u>
}			╂	-∦ ⊦	 		┟────┤───┘	╫	<u> </u>
}}	-#		∦	-#	∦ - <u>-</u>				<u> </u>
								┃	
l	-∦∤					H	l	∦}}	∦
					∦	∦		#	l
								1	
·							l	li i	kk
			H	∦	H		h	H	∦}

QL = Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

DATA SUMMARY FORM: ORGANICS

Aromatic Volatile Organics in Water WATER SAMPLES

site Name: OSmose

(µg/L)

Case #: _____ Sampling Date(s): <u>3/17/92 - 3/20/92</u>

To calculate sample quantitation limit: (QL * Dilution Factor)

	Rinseak 1	91K.	Field BI	K	Trip Bla	nK												
					[]												
													L					
					ł		1	1			1		1		1		ļ	
	1				ļ	ł					ļ		ļ	ļ	1		ł	
	ļ		1				1		•		1		1		ł		ł	
Į .	ŧ.		1				l I				l		Į		Į		ļ	_
	<u>ال</u>	ļ			r		l <u> </u>	1i	<u> </u>		L	{	<u> </u>		<u> </u>	,		Ē
Benzene	H				<u> </u> }		┞───┼		۱	h	├ 	t	<u>∤</u>		1	<u> </u>		1
Toluene	0.6	└───┤	·		<u> </u>		┞─────┤	—_₩	└────┤	└── 			<u>├</u> ────┤	<u>├──</u> ┤	<u> </u>	t – t		1
Ethyl Benzene	∦ ∮	└────-₩			 		╞────┤		┞┣	└ <u></u>	ţł	ا	₽					—
Chlorobenzene	∦Ì	└──╢			¥₽		┞───┤		└────	└ ───┤	├ -	اا	}					1
1,2-Dichloiddenzene	∦∳	└──-₩	ļ		¥₽		├ ────┤		↓↓	└ <u></u>	∤ ∮	ا	¥	├ 			<u> </u>	
1,3 - DICHIOODENZENE	┫	└ ── ┥	┞	4	¥₽		├ ────┦		↓↓	┞┫	<u>+</u>	┞	¥	├ ──┤	H	†1	1	1
1,4-Dichlordenzene	H	ļ	┞┟		╟────╂		├ ────┤		├	┞───┫		۱ ـــــا	H	├ ───┫	H	┼1		\top
Xylenes (total)	H	ļ	l		₩		├├			┞┈──┫		└	₩	<u>├</u>	₩	†•	∦	1
		ļļ	ļ		¥ł		¥		├		} ∕	└── -	₩	<u>├ </u>	₩	+	H	┢
	 	L	ļ		↓		\		}	 	<u> </u>	┞───┪	₩		₩	<u>†</u> •	╢	<u>†</u> -
	¥				¥¥		44		ļ	┞──┨	¥ •		H		₩	† •Ì	∦	+
	4	└──┤	ļ		∦∔		44		<u>ا</u>	├	∯•		∦•	ti	╢────	1	╢	╈
	4	┝──┥	ļ		∦ ∔		¥₽				₩	} i	₿	fi	₩	ti	∦	+
			 		∦	·	¥ł		\•		 	}i	₩•	fi	₩	†i	╢────	1-
			l		∦∔	l	¥∔				₩•	} ──•	╉────	†	╢`	f	┨────	1-
		 	\ 		∦↓	L	∦ ∔		¥i	–┪	H	 	∦ ii	+	╢	†	╣	+-
	#		·	ļ	¥4		₩		₩₩		₩	 	₩	{	╫	1	╢	+
		ļ	\ ↓		∦	ļi	∯•	└───┥	l <u> </u> i	} i	₩		₩	 -	₩	+	╢	+-
		 	l	 	 	 	∦i	↓	¥	łł	∦	 	╫─	╉•	#		╫	+-
			ļ	ļ	∦ ∳	 	 	└	₩	↓	 !	 	╫	+		┥──•	╢────	+
			ļ	 .	ļ		i	ļi	 	 i	∦	∮ •	∦	┫───	╫	∔ •	#	+-
		 	Į		∦↓	 	H+	┞	₩	 i	₩	 	₩	+	#	- 	#	+
			µ ,	ļ	H		₩		₩	 1	₿	╉───┥	╉─────	+	╉─────	†	#	+-
	1	1 1	1 I	1	li i	I .	11	()	11	1	H	I		1	JL	+	Jt	<u>+</u>

QL = Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

revised 07/90

Page / of /

GROUNDWATER TECHNOLOGY, INC. VOLATILE HOLDING TIMES

C. J	lient:_ ob)11	<u>0</u> smc -105-	se 470	Matri	.x: <u>sol/ac</u>	L Units:u	lg/kg/	Auć <u>1 Au</u> ć	lit Dat li ted E	e: <u>04/22</u> Sy: <u>K</u> M	2/92 IG
	Sample Number		Prese Yes	rve No	Sample Date	Date Rec'd	Analysis Date	Time	ECRA	Guidel 40CFR	ines SW-846 CLP	Out
	MW13 6-	-8	K		3/19/92	3/24/92	3/26/92	NTA			V	
	MW13 8-	-1			3/19/92		3/26/92				\checkmark	
	SB2 2-4	ł			3/20/92		3126192				/	
	MŴ14 10)-			3/17/92		3/30/92				V	
	MW1 4 61				3/18/92		3/31/92				\checkmark	
	MW12 6-	-8			3/19/92		3/31/92				V	
	MW1 2 18	3 —			3/19/92		3/31/92				\checkmark	
	SB2 8-1	10			3/20/92		3/31/92				~	
	RINSEAT	ΓE			3/20192		411192		L		V	
	FIELD E	3L			3/20/92		411192				V	ļ
	TRIP BI	ĽΚ			3/17/92		4/1/92					\checkmark
								·			<u></u>	ļ
								· ·				ļ
		_										
									ļ		 	
							<u> </u>					

Soil Samples preserved with ice to 4°C a queous Samples preserved with ice to 4°C Utrup wlank preserved W/HCL Rinseste and fued bears preserved W/HCL Guideline Holding Times: ECRA 40 CFR Part 136 Solid Liquid

SW-846 (CLP) 14 days 7 days (unpreserved) 14 days (preserved)

achilable to revenues

NIA-information not

ANALYTICAL RESULTS

Aromatic Volatile Organics in Soil Modified EPA Method 8020^a

GTEL S	Sample Number	036 52-05	03652-06	03652-13				
Clie	nt Identification	MW-13 (6-8)	MW-13 (8-10)	SB-2 (2-4)				
	Date Sampled	03/19/92	03/19/92	03/20/92	-			
	Date Analyzed	03/26/92	03/26/92	03/26/92	-			
Analyte	Detection Limit, mg/kg	C	Concentration, mg/kg (dry)					
Benzene	Đ.10	< 0.11	< 0.11	< 0.11				
Tolue ne	0.25	< 0.28	0.38	< 0.27				
Ethyl Benzene	0.40	< 0.44	0.52	< 0.44				
Xylen es (tot al)	0.85	3.0	6.3	< 0.93				
Chlorobenzene	0.20	< 0.22	< 0.23	< 0.22				
1,2-Di ch lorobenzene	0.26	< 0.29	< 0.29	< 0.29				
1,3-Di ch lorobenzene	0.26	< 0.29	< 0.29	< 0.29				
1,4-Di ch lor oben zene	0.20	< 0.22	< 0.23	< 0.22				
Detection Limit Multiplierb		1.10	1.13	1.10				
Perce nt Solids		87.8	86.4	83.4				

a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Methanolic extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.

b The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids.

GTEL Milford, NH N203652A.DOC:2

.

ANALYTICAL RESULTS

Aromatic Volatile Organics in Soil - Low Level Modified EPA Method 8020^a

GTEL	Sample Number	03652-01	03652-02	03652-03	03652-04			
Clie	ent Identification	MW-1 4 (10-12)	MW-14 (61-63)	MW-12 (6-8)	MW-12 (18-20)			
	Date Sampled	03/17/92	03/18/92	03/19/92	03/19/92			
	Date Analyzed	03/30/92 03/31/92 03/31/92 03/3						
Analyte	Detection Limit, ug/kg	Concentration, ug/kg (dry)						
Benze ne	1.0	< 0.9	< 1.0	< 1.0	< 0.9			
Toluene	Toluene 1.7		4.1	7.5	5.8			
Ethyl Be nzene	1.0	< 0.9	2.0	3.2	2.0			
Xylen es (t ot al)	2.0	< 1.9	8.3	14	9.3			
Chlor ob enzene	1.0	< 0.9	< 1.0	< 1.0	< 0.9			
1,2-Di ch lorobenzene	1.7	< 1.6	< 1.6	< 1.7	< 1.6			
1,3-Di ch lorobenzene	1.7	< 1.6	< 1.6	< 1.7	< 1.6			
1,4-Di ch lor oben zene	1.7	< 1.6	< 1.6	< 1.7	< 1.6			
Detect io n L imit Multiplier ^b		0.93	0.96	1.01	0.93			
Perce nt Solids		81.9	86.8	80.0	85.8			

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 2, US EPA November 1986; sample prepared by low level solvent extraction and purge and trap. Method modified to include additional compounds. Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result а

b of dilutions and percent solids.

GTEL Milford, NH N203652A.DOC:3

-

ANALYTICAL RESULTS

Aromatic Volatile Organics in Soil - Low Level Modified EPA Method 8020^a

GTEL S	ample Number	03652-14			-		
Clier	nt Identification	SB-2 (8-10)					
	Date Sampled	03/20/92					
	Date Analyzed	03/31/92					
Analyte	Detection Limit, ug/kg	Concentration, ug/kg (dry)					
Benzene	1.0	< 0.9		•-			
Toluene	1.7	6.8					
Ethyl Benzene	1.0	2.3		•-			
Xylene s (t ot al)	2.0	11					
Chlor ob enzene	1.0	< 0.9					
1,2-Di ch lo ro benzene	1.7	< 1.5					
1,3-Di ch lo ro benzene	1.7	< 1.5					
1,4-Di ch loro ben zene	1.7	< 1.5					
Detection Limit Multiplier ^b		0.91			-		
Perce nt Solids		88.6		•-			

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 2, US EPA November 1986; sample prepared by low level solvent extraction and purge and trap. Method modified to include additional compounds. Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids. а

b

GTEL Milford, NH N203652A.DOC:4

.

Client Number: 011105470 Project ID: Not Applicable Work Order Number: N2-03-652

_

ANALYTICAL RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

GTEL	Sample Number	03652-10	03652-11	03652-12	-
C	lient Identification	RINSEATE BLANK	FIELD BLANK	TRIP BLANK	
	Date Sampled	03/20/92	03/20/92	03/17/92	
	Date Analyzed	04/01/92	04/01/92	04/01/92	
Analyte	Detection Limit, ug/L		Concentratio	n, ug/L	
Benzen e	0.2	< 0.2	< 0.2	< 0.2	
Toluene	0.5	0.6	< 0.5	< 0. 5	
Ethyl Benzene	0.8	< 0.8	< 0.8	< 0.8	
Xylenes (total)	1.7	< 1.7	< 1.7	< 1.7	
Chlorobenzene	0.2	< 0.2	< 0.2	< 0.2	
1,2-Dic hl or o benzene	0.4	< 0.4	< 0.4	< 0.4	
1,3-Dic hl orobenzene	0.4	< 0.4	< 0.4	< 0.4	
1,4-Dic hi oro benz ene	0.3	< 0.3	< 0.3	< 0.3	
Detecti on Lim it Multiplier ^b		1	1	1	

 a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.
b The detection limit multiplier indicates the adjustments made to the data and detection limits for sample

dilu**tio**ns.

1

GTEL Milford, NH N203652A.DOC:5

Page / of /

GROUNDWATER TECHNOLOGY, INC. VOLATILE BLANK ANALYSIS

Client: Osmose Job # :011-105-470

Audit Date:04/22/92 Matrix:sol/aq Units:ug/kg/l Audited By: KMG

Sample Number	Anal	ysis	Con of	rec Bla	t# inks	<5X C Tolue	RDL A	cetone eCl?	<crdl other 7</crdl 	for a CL Vo	11 latile:
	Date	Time	Yes	NO	Note	Yes	NO	Note	Yes	NO	NOTE
MW13 6-8	3/26/92	NIA	V			\checkmark					
MW13 8-1											<u></u>
SB2 2-4	L										· · · · · · · · · · · · · · · · · · ·
MW14 10-	3 13 0/92										
MW1 4 61-	3/31A2										
MW1 2 6-8	31 31/42										
MW12 18-	3131 92									 	
SB2 8-10	3/31/72										
RINSEATE	411/92									<i>U)</i>	
FIELD BL	41/92								V	ļ	
TRIP BLK	41,192								~		
**		1									
										<u> </u>	
				ļ							
					T						

Ë Comments: (1) finseate blank - toluene 0.6 ug/l

all associated laboratory method belants were contaminant-free

- method Blank 3/20192

- Method Blank 3/30/92 - Method Blank 4/1/92 CRDL = Contract Required Detection Limit, See Attached Detection Limits n/a - information not available to revenuer

-

METHOD BLANK RESULTS

Aromatic Volatile Organics in Soil Modified EPA Method 8020^a

GTEL S	ample Number	METHOD BLANK					
	GTEL File ID	20MBL0326A		+-			
	Date Analyzed	03/26/92					
Analyte	Detection Limit, mg/kg	Concentration, mg/kg (dry)					
Benze ne	0 .10	< 0.10					
Toluene	0.25	< 0.25					
Ethyl Be nzene	0.40	< 0.40	***				
Xylen es (total)	0.85	< 0.85	••				
Chlor ob e nz ene	0.20	< 0.20					
1,2-Di ch lorobenzene	0.26	< 0.26					
1,3-Di chloro benzene	0.26	< 0.26					
1,4-Di ch lo ro benzene	0.20	< 0.20					
Detec tio n Li mit Multiplier ^b		1.00					

a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986, Methanolic extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.

compounds.
b The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids.

GTEL Milford, NH N203652A.DOC:11 1

Client Number: 011105470 Project ID: Not Applicable Work Order Number: N2-03-652

-

METHOD BLANK RESULTS

Aromatic Volatile Organics in Soil - Low Level Modified EPA Method 8020^a

GTEL S	ample Number	METHOD BLANK			-			
	GTEL File ID	14SBL0330A		•-				
	Date Analyzed	03/30/92						
A na lyte	Detection Limit, ug/kg	Concentration, ug/kg (dry)						
Benzene	1.0	< 1.0						
Toluen e	1.7							
Ethyl Benzene	1.0	< 1.0						
Xylene s (total)	2.0	< 2.0	••					
Chloro be n ze ne	1.0	< 1.0	••					
1,2-Dic hi orobenzene	1.7	< 1.7						
1,3-Dic hi orobenzene	1.7	< 1.7						
1,4-Dic hl orobenzene	1.7	< 1.7						
Detection Limit Multiplierb		1.00	<u> </u>					

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 2, US EPA November 1986; sample prepared by low level solvent extraction and purge and trap. Method modified to include additional compounds. Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of detection limit control additional compounds. а

b of dilutions and percent solids.

GTEL Milford, NH N203652A.DOC:12

7

-

METHOD BLANK RESULTS

Purgeable Aromatics in Water Modified EPA Method 8020^a

GTEL S	Sample Number	METHOD BLANK	-					
	GTEL File ID	20WBL0401A						
	Date Analyzed	04/01/92	-					
Analyte	Detection Limit, ug/L	Concentration, ug/L						
Benzene	0.2	< 0.2						
Toluen e	0.5	< 0.5						
Ethyl Benzene	0.8	< 0.8						
Xylenes (total)	1.7	< 1.7						
Chlorobenzene	0.2	< 0.2						
1,2-Dic hi orobenzene	0.4	< 0.4						
1,3-Dic hl or o benzene	0.4	< 0.4						
1,4-Dic hi or o benzene	0.3	< 0.3						
Detecti on Li mit M ultiplier		1		<u> </u>				

a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Methanolic extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.

GTEL Milford, NH N203652A.DOC:13 1

Page / Of /

GROUNDWATER TECHNOLOGY, INC. VOLATILE SURROGATE SPIKES

Client: Osmose

Audit Date:04/22/92 Job # :011-105-470 Matrix:sol/aq Units:ug/kg/l Audited By: KMG

Sample Number	No. Yes	Spike No	es OK? Note	%Rec Yes	overy No	OK? Note	Surrogates Outside Criteria
MW13 6-8	V			V			none
MW13 8-1							
SB2 2-4							
MW14 10-							
MW14 61-							
MW12 6-8							
MW12 18-							
SB2 8-10							
RINSEATE							
FIELD BL							
TRIP BLK							
					[
		,					·

Client Number: 011105470 Project ID: Not Applicable Work Order Number: N2-03-652

SURROGATE RECOVERY RESULTS

Volatile Organics in Soil (Trifluorotoluene) EPA Method 8020

Sample	Amount Added, ug/L	Surrogate Recovery, %
METHOD BLANK (03/26/92)	47.6	75.2
0365 2-0 5	47.6	72.2
0365 2-0 6	47.6	72.4
03652-13	47.6	70.4
03652-01 MS	47.6	70.5
0365 2-0 1 DUP	47.6	69.4

Acceptability Limits^a 45-125%

Laboratory generated acceptability limits updated 07/11/91. Matrix Spike. Sample Duplicate. а

MS

DUP

GTEL Milford, NH N203652A.DOC:16

٠
.

SURROGATE RECOVERY RESULTS

Volatile Organics in Soil - Low Level (Trifluorotoluene) EPA Method 8020

Sample	Amount Added, ug/L	Surrogate Recovery, %
METHOD BLANK (03/30/92)	47.6	90.3
03652 -0 1	47.6	77.5
03652 -0 2	47.6	81.2
03652 -0 3	47.6	52.0
03652 -0 4	47.6	66.2
03652-14	47.6	60.7
03652 -0 1 MS	47.6	84.0
03652 -0 1 DUP	47.6	86.3

Acceptability Limits^a 45-125%

Laboratory generated acceptability limits updated 07/11/91. Matrix Spike. Sample Duplicate. а

MS DUP

GTEL Milford, NH N203652A.DOC:17

•

Client Number: 011105470 Project ID: Not Applicable Work Order Number: N2-03-652

--

SURROGATE RECOVERY RESULTS

Purgeable Aromatics (Trifluorotoluene) Modified EPA Method 8020

Sample	Amount Added, ug/L	Surrogate Recovery, %
METH OD BLANK (04/01/92)	47.6	67.2
03652-10	47.6	84.8
03652-11	47.6	83.4
03652- 12	47.6	86.3

Acceptability Limits^a 45-125%

а MS DUP

.

Laboratory generated acceptability limits updated 07/11/91. Matrix Spike. Sample Duplicate.

Page / Of /

GROUNDWATER TECHNOLOGY, INC. VOLATILE MATRIX SPIKES

Client: Osmose

Audit Date: 04/22/92 Job # :011-105-470 Matrix:sol/aq Units:ug/kg/l Audited By: KMG

Sample Number	Analysis Date	Time	No. Yes	Spike No	s OK? Note	%Reco Yes	very No	OK? Note	Compounds out of spec
MW13 6-8	3/26/92	NIA	V	· ·		V			none
MW13 8-1									
SB2 2-4						·			
MW14 10-	3 /30/92								
MW14 61-	3/31/92								
MW12 6-8									
MW12 18-									
SB2 8-10									
RINSEATE	4/1/92								
FIELD BL	4/1/92								
TRIP BLK	4/1/92-								
	1			[

comments: n/a- not available to the reviewer

Client Number: 011105470 Project ID: Not Applicable Work Order Number: N2-03-652

MATRIX SPIKE RECOVERY

Purgeable Aromatics Modified EPA Method 8020

Sample S**piked**: Date of A**na**ly**si**s: Standard ID:

03652-01 03/26/92 B91SM1002

MW-14 (10-12) Client ID: Matrix: Soil

Compound	Sample Results, mg/kg	Spike Amount, mg/kg	MS Results, mg/kg	MS % Percent Recovery	Acceptability Limits, % ^a
Benzen e	< 0.12	10.1	10.3	102	40-160
Toluene	< 0.29	9.63	10.3	102	40-160
Ethyl Benzene	< 0.47	10.0	11.5	1 1 5	40-160
Xylene s (t ota l)	< 1.90	30.5	34.5	113	40-160

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % Recovery is not calculated when original sample amount exceeds five times the NA spi**ke am**ount.

DUPLICATE SAMPLE RECOVERY

Purgeable Aromatics Modified EPA Method 8020

Sample N umbe r: Date of A na lysis:	036 52-01 03/ 26/9 2	Client ID: Matrix:	MW-14 (10-12) Soil	
Compound	Sample Results	s, Duplicate Results , mg/kg	RPD, %	Acceptability Limits, %a
Benzene	< 0.12	< 0.11	NA	40
Toluene	< 0.29	< 0.28	NA	40
Ethyl Benzene	< 0.47	< 0.45	NA	40
Xylene s (tota l)	< 1.90	< 0.96	NA	40

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % RPD is not calculated when sample values are less than 10 times the detection NA lim**it.**

GTEL Milford, NH N203652A.DOC:21

ł

Client Number: 011105470 Project ID: Not Applicable Work Order Number: N2-03-652

MATRIX SPIKE RECOVERY

Purgeable Aromatics - Low Level Modified EPA Method 8020

Sample Sp ik e d:	
Date of An al ysis:	
Standard ID:	

03652-01 03/31/92 B92AC086

MW-14 (10-12) Client ID: Matrix: Soil

Compound	Sample Results, ug/kg	Spike Amount, ug/kg	MS Results, ug/kg	MS % Percent Recovery	Acceptability Limits, %a
Benzene	< 0.93	20.0	22.2	111	40-160
Toluene	< 1.57	20.0	19.4	97.0	40-160
Ethyl Benzene	< 0.93	20.0	18.0	90.0	40-160
Xylenes (total)	< 1.85	60.0	55.8	93.0	40-160

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % Recovery is not calculated when original sample amount exceeds five times the NA spike amount.

DUPLICATE SAMPLE RECOVERY

Purgeable Aromatics - Low Level Modified EPA Method 8020

Sampie N umbe r: Date of An al ysis:	03652-01 03/31/92	Client ID: Matrix:	MW-14 (10-12) Soil	
Compound	Sample Results ug/kg	s, Duplicate Results, ug/kg	RPD, %	Acceptability Limits, %a
Benzen e	< 0.93	< 0.93	NA	40
Toluene	< 1.57	< 1.58	NA	40
Ethyl Benzene	< 0.93	< 0.93	NA	40
Xvlenes (total)	< 1.85	< 1.86	NA	40

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % RPD is not calculated when sample values are less than 10 times the detection ŇΑ limi**t.**

GTEL Milford, NH N203652A.DOC:22

.

CHAIN-OF-CUSTODY RECORDS

.

•

				W	2-0	3	-(6	5,	2		•										
GTE		MEADOWBROOK I MILFORD, NH 0308	NDUSTRIAL	PARK		CH/ ANI	VN+I D AN	OF-(VAL`	CUS YSIS	TOD S RE	Y R QUE	ECO ST	RD		4	28	328	3	•			<u> </u>
INVIRONNENT LABORATORIES, I	A L 10.	(603) 672-4835 (800) 441-4835		•	100	\$34			ß	1	1. 							2.7			· · · ·	
Com					ť						Ì				1				1 1		1	- (
Com Post-it" bran	fax transmittal n	nemo 7671 # of pages	·Z												1		С С	_				
Kim	Fould	From V. Donne	eling or			I	Š									Ö	ΗD	2			1	
Proje G	11	CO. GTEL	/	70		미불	Sel 🛛		8					+ 15)	3	theide	Sed C		8	254		
Latte	<u> </u>	Phone #			:		ä							NBS (鲁	VOAL	<u>ן</u> בן ב	7421	Rear		
proci	·· .	Fux #						SIGN	1413	1 25	20		B only			cides (Semi-	10 D	1420	5		
t ^e tald		g Matrix	Metho	d Sam	pling			ISI BUID	413.1C	08CP 5	PA 502	1 8010		18240T	8	L Pess	No A			ach Po		
Sample	Lab #						ports	50	18.1	5		ង់ដែ						E				
I ID	(Lab use on	ily) S 표 300			ш 2		drocar	drocar	and G Hura	B by 5	8	8	803	10201	010	TOX I	P Met	I Reta	82	al Viteo		
M4-14 (10-12)		2 2	D ¥ Z Y V	3 58 3		n ho	£	<u>}</u>	3 8	ß	6	66	ß	£ 6	i B	B	ខ្នាត់	3	t ear	8 3		
mw-14 (61-63)	02	2 7		· 3/1	11:30		┝─┝			+			┝─┤		X	┝╼┝		-			-	
AW-12 (6-8)	03	2 X	x	3/19	2:30							x	┝╌┤		X	╞╼┾					•	•
$m_{W} - 13 = (18 - 20)$ $m_{W} - 13 = (1-8)$	- 04	2 X	X	3/6	4100	-		-			-	X			X							
MW-13 (8-10)	CX e	4 X		319	6:15					·		- 	┢╼┝		X	┝┝						
55-1	07:	1. X	X	319	2:30	-				┟╍┟			┝╼┝		X	┝╼┾						
55-2	<u> </u>	2 X	K K		2:45	_		_							X							
			+		3100	•	╌╼┝			┝╼┝			┝╺┥		X							
TAT	Spec	lal Handling	SPECIAL DE	TECTION LIM	ITS		• •		_ -	REM	ARK	<u></u>	II.		[]	 l.		11				
Priority (24 hr)	GTEL Contect Lik	rce Donnelelinger	Ĭ						ļ		A	ttn :	۱	Sihi	2	D	on n	del	ing	ir		•
7 Business Days	Confirmation #		SPECIAL RE	PORTINIO DE	-	LITO	·			·····						**-						
Business Days						2141.9				Ladi	J38 (July F	ot #				St	orage	Loc	ation:	184	-
BLUE DIP			_																			-
	Relinquished by Sa	impler!	FAX		Date		;-	Ime		Work	Orde	ar #	• •									
		Pal Gistets			3/21	521	5:0	50		1008		uy:										
CUSTODY	Relinquisted by:	0			Date		T	lmə		Rece	ved	by:		· · ·	••	,		••	•		••	
RECORD	Relinguished by:		•		Data					D .				••••	J		Q					
					ahul	0.4	1	ime	_	Hecel	vedil	by Lat	orate	iry: い	1.10	ai	ĴĊ	V				
Rov. 7/91			· · · · · · · · · · · · · · · · · · ·		5/241	42	<i></i>	.25		Wayb	UL #	4-JC	8	72	7:	२	013	२ /	4)	k.f. i	781c	10.21

1

GTEL	M		BRO	OK	INDU	ST	RIAL	PA	RK		•	C	HAI ND	IN-C ⊿N) 57-(CUS		Y F	IEC	OR.	D		Δ	2	82	<u>, ר</u>				
ENVIRONMENTAL	(6	03) 672-	4835	030	55								AL)	-546			1.16	er?	<u>.</u>			<u></u>	्याः ह	<u>ک</u> و جرین	ा द्व जिल्ला	. ৩ চাংগ্রন্থ	न्तरः	2.36(3	<u> </u>	
Company Name:		00) 441- Phone	<u>4835</u>									3	皴	<u> </u>	ŝ£4	44 1		بېلې. ا	الأشيرة	š 1	<u>.</u> 1	È		1.72			1. A. T	1	≫1.; ;	•
GTI.		P A 14 H													1	1	1													
Company Address:	••••••••••••••••••••••••••••••••••••••	Site loc	ation:	• • • • • •										699			ŀ	!						1	Ę					
Albann				Bu	ffil	ο,	Ν	1						8			·							Ö	Ē	B S		밀		
Project Manager:		Cllent I	roject	ID: ((#)	<u></u>	100	<u>r</u>					夏			ន្ល	ļ		· [1	3	50	Per				À.	
Bruce Ahr	ens	INAME			L	וו	102	47	O			BE	9	88 10 10 10 10		З,					_			Let H	N N	M		5	12	
I attest that the proper field s	ampling	Sample	r Nam	e (Pr	Int):					··	<u> </u>	五	퉑		ц Ц Ц				1		<u> </u>				1 V	불				
of these samples.	the collection		0	Naf	- Gi	157	hafs.	h				× n	and and	3	ONS		20	220	p	Ħ.	80			2 2 2 2	l Sel	틜	2	2	oluti	1
		p	Mat	 rlx		M	ethod	1	- Se	mol	Ing	8	- See	Ë	- end	SU 5	BCP	58 ¥°	8010	222			1 19	AL D	Įğ	E	g	2	ach F	
Field	GTEL	- isi -			·	Pre	801VE	ad T		~~ ~~		n	휡	8	E	8 -	Ö	ы С	£	€	8 I	<u></u>]			E	Ē		ן <u>ה</u>	
Sample ID	Lab use only)	l a fi		١ <u>۲</u>	Æ				F			g	3	R R	R S	1 Gre	13	E R						1×	Tel ester	7	etal:	82		l
		U LEVM	SH S		Ĕ₽	s Z	2 8	間度		ME		Â	<u>B</u>	ě.	ğ,		A B B	PA 5	PA 8	₽¥₿	2 X	8 8 5 8	PA 61	12	3	XX	3			[
Rinseate: Blank	10	- 7 x			X	-	- V		171	<u> </u>		<u> </u>	-		<u>-</u>		1	ω							F		<u>a</u>].	취감	<u>; 8</u>	
Rinscate Blank	ID	2 X					Y	-	212		100		+	-+	-+				-+	4			+-			┝╼╋		÷-	╶╄╼╸┦	
Field Blank	11	3 4		$\uparrow \uparrow$	x	-+-	x		17/2	, 2	:00	·			-+-	-				r	+		+7		┝╼┥	┍╼┾	-+-			-
Field Blank.		2. X				1	X	1	3/2		100	+	-	-		-	-		-+	-					┝╼┤	┍╼╍┝	-+-		+	<u> </u>
Trip Blank	ia	3 x			X		X		3/17	3	145		-	-	-			+	-+	x			+2	<u> </u>	++			~+-		
\$8-2 (2-4)	3	2	x I				X		3/2	010	0100			-		-			-+	x		-	x		 			~- †	+	<u> </u>
5B-2(8-10)		2	×		-		x		3/2	0 10	1:30									x			X	†		-+		-	+-+	
		┝╼┝┥		┽╌┼							_			_	_													-	+-+	•
	·····			┿╍┾	╺┼╼┼		╺┠┊┥┝			- -				_	_	-			_											,
TAT	Special H	andiing								IMIT						1,							Ĺ						\Box	
		'n.	01			-017				- 11411 1				•			HEN	IAH		34,		1			Ð.		An	<i>ls.</i>		
Prioriny (24 hr)	GTEL Contact	lubh	<u>at in</u>	ges-	1		·												1	11 *	•	V	in C	L	00	ուղ	are	1	100	
7 Business Days	Confirmation #		l	L.,												ł											'	-		
Olher	PO #				SPE	CIA	L REI	OR	TING F	REQU	UIRE	MEN	TS		• •		Lab	Use	Only	/ Lot	#	· • · ·			<u> </u>	Stor	agel	Loca	tion:	<u></u>
Business Days	DA/QC LEVEL		•••	- i - •	-																								¢	24
	OTHER					. rta	,																	-						18
	Relinquished by Sampl			~ * * -	<u> </u>				+		De	10			Imo		Wor		ler #											
	O. M.L.	at.	L								1.	10-	I	-	******		11866	v8(by:											
CUSTODY	Relinquished by:	Jun W/	¥					•	*	-13		1712 te	<u> </u>	<u>5</u> T	100	<u>'</u>	Bent	lund	her	 +_				·	+				- +	
													1				. 1906	1700	uy.											
RECORD [Relinquished by:				•			-			Da	te		Т	me		Rece	lvad	hy I	abo	alar		•	-	<u></u>	/)	-			

वि 002

→→→ GROUNDWATER TECH

CLEL

U4/24/92 U9:26

.

Image: Provide and the construction in the construction of the constr			EAD LFOF 03) 67	7248	100 H 0: 35	K 11 305:		STR	IA_	PA	HK			d ANC) Al	OF	YS	ST IS I	OLT REQU	JES	ट े र र			2 2	9	66	51							
Biternik User intervente User intervente User intervente User intervente Marken Back Tod, Park Sin location Figs Marken Back Sin location Figs Sin location Marken Back Sin location Figs Sin location Marken Back Sin location Figs Sin location Marken Back Sin location Sin location Sin location Marken Back Sin location Sin location Sin location Marken Back Sin location Sin location Sin location Sin location Sin location Sin location Sin loca	ary Nana:	(80	<u>)0) 44</u>	1148	35	,			<u>.</u>				-				, · ,	,,		4		4	ا م ا م مالاتكما 1	4	1		· ·						FIE	R
my Actives Sine position: Field Strange Use only	TEL Forcia	1/11	という た	10 !. /		20	1 1 - T		C	~ .										ì	}			ł		1.	Ļ	}						
Walk Work Total Park Walk Work Total Park Walk Work Total Park Market Wark Find Park Market Wark Market Wark	CL-TIVIII	Vimented M	PAX	#: 4	<u>ao -</u>	5-4	24	5	- 2	10	5		_													- E								
Deleter data in the second and in the second and intervent intervent in the second and intervent interv	leale theal		216	IORIIC	n: 7 ~	th	2-							186	Bare									_		<u>הן ר</u>	l₹						Ì	
Amount Domodeling Charles for the second second That the proof the second se	LILLOW HOUR	-Ind, for		(\sum	W	iaj	2_	W	212	spre	Ser	<u>A</u> n	J.S.			2031						ية ا		- i				8		ŧ			
All Control Controls Con	hear + D.	. 1 /.	Clief	n rroje		: (#)	-М >	R		,]				ies.		NS						÷]		14		l₹		12		8			
Inter service dark of the clock of the	that the proper field a	malinger	INAN			<u></u>	Ale.	٢ć		A	hre	ne					2		C		}	2		R			물				а П		ł	
Description. Cycle. Vlacution L Organization	Tries were used during	the callection	San	pier m) 90199 	ariet	ប្ដុះ រ			~	1		¥.	2 Pic	50	NDIS	413	1 2 1	E C			Ī	L F	L F	1		불	22	84		夏			
Field GTEL Lab # Matrix	te samples.	T	÷Ϊ	DIE	~	a	44	101	Łχ	\leq	<u></u>				lē	(ISI)		2 2 2 2 3	4 9	98		<u></u>	5	ē.	Dec		A Po	18	0		5			
Sample Citet Citet <t< td=""><td></td><td></td><td>S.H</td><td>I M</td><td>atrix</td><td>5</td><td>2</td><td>Met resi</td><td>hơi arve</td><td>d</td><td>San</td><td>pling</td><td>803</td><td></td><td>150</td><td>rolik</td><td>6 412</td><td>is r</td><td></td><td>A 80</td><td>AB</td><td>3</td><td><u>ଥ</u>ା : ପା</td><td></td><td></td><td></td><td>je</td><td>12</td><td>R</td><td></td><td>Ř</td><td></td><td></td><td></td></t<>			S.H	I M	atrix	5	2	Met resi	hơi arve	d	San	pling	803		150	rolik	6 412	is r		A 80	AB	3	<u>ଥ</u> ା : ପା				je	12	R		Ř			
Charleston Charleston <td>Field Sample</td> <td>GIEL</td> <td>taine</td> <td></td> <td></td> <td>t-</td> <td>\square</td> <td>T</td> <td></td> <td><u>a</u></td> <td></td> <td>r</td> <td></td> <td>ΙΫ́Η</td> <td>ŝ</td> <td>No. F</td> <td>reas(</td> <td>18.1 </td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td>1 - 1</td> <td>1</td> <td>2</td> <td>580</td> <td>U</td> <td></td> <td></td> <td></td>	Field Sample	GIEL	taine			t-	\square	T		<u>a</u>		r		ΙΫ́Η	ŝ	No. F	reas(1 8 .1				8					1 - 1	1	2	580	U			
¹ / ₂	ID ID	(Lab use only)	Con	E L	N N N N	2 S G G					с Тш	ł	895	g	2 2 2 2 2 2	ocart	90	ά	Z S	158	8	8	824				X	₩	R	1 2	1. E		1	
D Stands 3 M			-	SOL WI	E S S S	or of of of the second	S	ι Γ	벌		DAT	IN	BTE)		, yan	Hydn	a Zi	TPH	ACT ACT	₹ a	M	S	≾ ;	A G	< F 1, G	; <u>ð</u>	۲.	₹	Ř		Ę			
Id. ISLand VA 4/X	o Bank	φ ^{*****} *** • • • • • • • • • • • • • • • • • •	3	X	++		1x1	-	┟╼┟╴	+	3/1	2:4	<1−	+-	+					+-	+-	╞═┼	-+-				+=	1-	=		Ť			
Idia Idia Statu Idia Statu Idia Statu Idia Statu Idia Idia Special Handling Stecial Detection Limits Renarks Idia Stecial Handling Stecial Detection Limits Renarks Intervention # Constraint Stecial Detection Limits Renarks Intervention # Stecial Reporting Recoursements Labore Conc Intervention # Stecial Reporting Recoursements Labore Conduct Intervention # Free Whe Order # Intervention # Free Whe Order # Intervention # Free Whe Order # Intervention # Free Storage Location: Intervention # Free Storage Location: Intervention # Free Storage Location: Intervention # Storage Location:	12 Blank VO	4	4	x		-		1	1		3	2.4	<u> </u>		†					+				-			┼╼╴		+					
IAT Special Mandling SPECIAL DETECTION LIMITS REMARKS IAT Special Mandling SPECIAL DETECTION LIMITS REMARKS Y & Mil Bite Contact Docket Contact Docket Contact Invision 0 Docket Contact Docket Contact Docket Contact Invision 0 Po SPECIAL REPORTING RECUIREMENTS Labuse Only Lo # Storage Location: Storage Location: N/A Order # Invision 0 FAC Wak Order # Invision 0 FAC N/A Order # INFORMENTED 0 FAC N/A Order # INFORMENTED 0 FAC N/A Order # Invision 0 FAC N/A Order # INFORMENTED 0 FAC Size order # INFORMENTED 0 FAC Size order # INFORMENTED 0 FAC Size order # I	id Etank Raf		3	K		1		1-			31,1	1 2 4 2	×		1				╼┼╴		<u>†</u>		-+-	-+	1-	+-	+	\mathbf{t}				·		
TAT Special Hundling SPECIAL DETECTION LIMITS Y24 Mi BEL Contact Bild (#8n) BEL Contact Davie/Contract # Continuation # P0 # SECIAL DETECTION LIMITS REMARKS Davie/Contract # Continuation # P0 # SECIAL REPORTING REQUIREMENTS Labuse Only Lo # Storage Location: QA / QC LEVEL On NER FM PAT PAT PAT Date Time Date Date Time Date Time Date Time Date Time Date Time Date						+		1	<u>†</u> −†-	1	+-71 43		*		+				╺╼╴┦╍	+	†	╏╼╂				+	+							
TAT Special Mandling SRECIAL DETECTION LIMITS REMARKS Y 24 Mil GTEL Contact Garder Server TB and FB back to LAD Wind (48 n) Garder Server TB and FB back to LAD Unsa Drys Continuator # Continuator # GoverContract # Continuator # SRECIAL DETECTION LIMITS Ballow Security SRECIAL DETECTION LIMITS Data Prever SErver TB and FB back to LAD Continuator # GoverContract # Continuator # SRECIAL REPORTING RECUREMENTS Continuator # SRECIAL REPORTING RECUREMENTS Continuator # FA Control FA Contended by: FA Mainquished by: Storage Location: Mainquished by: Storage Location: Mainquished by: Storage Contended by: Mainquished by: Storage Location: Mainquished by: Storage Location: Mainquished by: Storage Location: Mainquished by: Storage Location: Date Time Relinquished by: Storage Location: Mainquished by: Storage Location: Date Time Relinquished by: Storage Location: Date Time Relinquis						-			† - †	-	1		- • •		1							╏╼╴╏					+		++			-+	-+-	
IAT Special Hundling SPECIAL DETECTION LIMITS REMARKS Y 24 hij GTEL Contact								-	<u>† †</u>						1					+	1-	╏╴┨		•	-+-		-							
IAT Special Hundling SRECIAL DETECTION LIMITS REMARKS Y 24 Mi Date Did Contract Did Contract Bid (48 n) Did Contract Did Contract Did Contract Dive Contract Did Contract Did Contract Did Contract Contract # Did Contract Did Contract Did Contract						1			<u></u>		1			-	-						1		-+-	-+-	•	•	1	<u> </u>		┼╼╸╽			-	
IAT Special Handling SECIAL DETECTION LIMITS REMARKS y 24 hi BTEL Contact Date Detection LIMITS REMARKS y 24 hi BTEL Contact Date Detection LIMITS REMARKS BTEL Contract # Date Detection LIMITS Detection LIMITS Detection LIMITS BTEL Contract # Date Detection LIMITS Detection LIMITS Detection LIMITS BTEL Contract # Detection LIMITS Detection LIMITS Labuse Only Lo # Storage Location: ex Day: DATO CLEVEL SECIAL REPORTING REQUIREMENTS Labuse Only Lo # Storage Location: ex Day: ON VICE EVEL FAX Main Quark Storage Location: Main Quark Storage Location: USTODY OTHER FAX Main Quark Storage Location: Main Quark Storage Location: USTODY Formulated by: Main Quark Storage Location: Main Quark Storage Location: USTODY Formulated by: Storage Location: Main Quark Storage Location: USTODY Formulated by: Storage Location: Main Quark Storage Location: USTODY Formulated by: Storage Location: Storage Location: USTODY Formulated by: Date Time Received by: Date Time <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>1-</td> <td></td> <td>1-</td> <td></td> <td></td> <td></td> <td></td> <td>+-</td> <td></td> <td>╏╼╏</td> <td>-</td> <td></td> <td>╺╌┼╌╴</td> <td>- </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-	-		1			1		1-		1-					+-		╏╼╏	-		╺╌┼╌╴	-								
IAT Special Handling SPECIAL DETECTION LIMITS REMARKS y 24 hul Instant GTEL Contact Instant blid (48 hr) Instant Dude/Contract # Instant Conflicmation # PO # SPECIAL REPORTING REQUIREMENTS Labuse Only Lo # Storage Location: ear Day: QA / QC LEVEL Storage Location: Instant Cup II OTHER FAK PALE VISTODY Fightmediahed by: Jate Time Fightmediahed by: J/18/21 3:55 Storage Joant 3/18/91 ICORD Relinguished by: J/18/21 3:55 Date Time Bellinguished by: J/18/21 3:55 Date Time Received by:	_						1-1-	-	<u></u>	-				1	-	-					-	 -	-+-		• † •		┤╼╴	┼╼					-+	
IAT Special Handling SRECIAL DETECTION LIMITS REMARKS y 24 hil GTEL Contact GTEL Contact Press SEN TB and FB back to LAE itind (48 nn) Guter/Contract # Gont(mation # Press SEN TB and FB back to LAE Insa Drys Continuation # PO # SRECIAL REPORTING REQUIREMENTS Labuse Only Lo # Storage Location: GA / QC LEVEL SRECIAL REPORTING REQUIREMENTS Labuse Only Lo # Storage Location: GA / QC LEVEL GA / QC LEVEL FAX Pate Work Order # Relinquished by: FAX Jate Time VSTODY Fightmy lahod by: Jate Time ISCORD Relinquished by: Jate Time Date Time Received by: Jate			1			╈		1		1	1		-		1					+-	-	i	-	+	+		+	1					-+	
y 24 hr/l GTEL Contact	IAT	Special H	andilog	3	<u> </u>	T	SFE		, DE	TEC	TION L	MITS							REMA	AKS	•	4I.			I	-+			.			L		
ind (48 hr) Divide/Continent # Continuation # Storage Location: est Day: Date Cup I OTHER FAX Value Vision Provide Science Continuation: Storage Location: Image: Cup I OTHER FAX FAX Value Vision Provide Science Continuation: Storage Location: Image: Cup I OTHER FAX FAX Value Vision Provide Continuation: Storage Location: Image: Cup I OTHER FAX FAX Value Vision Provide Continuation: Storage Location: Image: Cup I OTHER FAX FAX Value Vision Provide Continuation: Storage Location: Image: Cup I OTHER FAX FAX Value Vision Provide Continuation: Storage Location: Image: Cup I OTHER FAX FAX Storage Location: Storage Location: Image: Cup I OTHER FAX	v 24 hri	GTEL Contact																1	PEZ	X	SE	22	· ~ ·	ГB	a	ma	t P	78	Ł	ac	K	to 1	A	P
Inest Days Confirmation #	hitid (4B hr)					_													Ch	S¥	2.00	na	6	5	aeu.	n/) (e	6	20	Ċ			1-	
PO # PO # Stecial Reporting Recoursements Labuse Only Lo # Storage Location: OA/OC LEVEL OTHER FAX FAX Work Order # Storage Location: Relinguished by: FAX FAX Work Order # Norder # USTODY Fratmoushed by: FAX Jate Time Received by: USTODY Fratmoushed by: JA192 3.55 Mathematical by: J11992 USTODY Fratmoushed by: JA192 3.55 Mathematical by: J11992 USTODY Fratmoushed by: JA192 3.55 Mathematical by: J11992 USTODY Fratmoushed by: Jate Time Received by: J11992	insas Drys	Confirmation #		••		_	•					•			•						/					/	-							
at / QC LEVEL A / QC LEVEL clp OTHER Relinquished by Sampler: Joate M Multiple Multiple <td></td> <td>PO /</td> <td></td> <td>••-</td> <td></td> <td>- </td> <td>SHE</td> <td>GIA</td> <td>. H≞l</td> <td>РФН</td> <td>TING F</td> <td>EQUI</td> <td>REMI</td> <td>ENT:</td> <td>5</td> <td></td> <td></td> <td>I</td> <td>LabU</td> <td>se O</td> <td>niy L</td> <td>:0 #</td> <td></td> <td></td> <td></td> <td></td> <td>St</td> <td>orag</td> <td>ja Lo</td> <td>is a li</td> <td>oŋ:</td> <td></td> <td></td> <td></td>		PO /		••-		-	SHE	GIA	. H≞l	РФН	TING F	EQUI	REMI	ENT:	5			I	LabU	se O	niy L	:0 #					St	orag	ja Lo	is a li	o ŋ :			
CLP OTHER FAXE Work Order I Relinguished by Sampler: Jate Time Received by: JA JA JA JA USTODY Frainguished by: JA JA HECORD Relinguished by: JA JA Bate Time Time Received by: JSTODY Frainguished by: JA JA Date Time Time Received by: JSTODY Relinguished by: JA JA Date Time Time Received by: Jate Time Received by Labratory:		QA/QC LEVEL 1	-•	••		{																												
USTODY Relinquished by: Helinquished by: Helin		OTHER						r										1		_														
USTODY Holmowshed by: IECORD Retrogueshed by: Retrogueshed by: Balle Time Received by Latratory: Date Time Received by Latratory:		Relinguished by Samp	er:	*			FAX	-			+	•- <u>-</u>	Dati	 8	· • - · · -	Tim	18		Wolk Recai	Orde ad h	r# v:						·	+	••••••					
USTODY Hermine Allenge States	(millit	ALA				-					3/1	2	12	1 :	2 C	<	-		_	-/	Fr.	nD		1	\triangleleft	+			.1		, 		
IECORD Retriguested by: Date Time Received by Lataratory:		Helmoushed by:	M		\leq					·····		$-\underline{\Pi}$	1	<u>7</u>	1-	<u>ر بر</u> Tim				ad h	<u>.</u>	24	Ľ	4-	(34	r-Q	19-			٤Д	4	24		
ECORD Retriguesher by:	USTODY	O Mall 170,	TI	11)								3	[n]	142	13	S.<	$\tilde{<}$		******	i u u	1		l	/		ما	r				•			
	ECORD	Relinguishop by:		WU.								/	Date	lle. 8		Lin Tin	<u>ノ</u> 10		Reah	ed h	V L.R	Drat					· · · · · ·	·		.			······	
	-	00													,		-				,	,	. .											
												İ			1																			ĺ

) . . .

DATA VALIDATION REPORT OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK SITE

POLYNUCLEAR AROMATIC HYDROCARBONS ANALYSIS

Samples Collected: March 17-20, 1992

Report Prepared: April 28, 1992

Prepared By: Groundwater Technology, Inc. 223 Wilmington-West Chester Pike Chadds Ford, Pennsylvania 19317

Preface to Data Validation

The concept of data validation has been developed over the past decade to assure that the quality of the data generated as a result of laboratory analysis by USEPA's Contract Laboratory Program protocols is acceptable. Guidelines for data validation have been established by the USEPA Data Review Work Groups, for the Hazardous Site Evaluation Division, and are published in documents entitled, <u>Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses</u>, and Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses.

These documents are available to the public and will be strictly adhered to during the data review of these packages analyzed by GTEL Environmental Laboratories, Milford, New Hampshire. Before reading the data validation reports prepared by Groundwater Technology, Inc., some insight and explanation is offered for the application of the data.

The purpose of the data validation report is to inform the data user of problems that were encountered during the analysis of the samples. The qualifiers section states the major points of concern and places restrictions on the usage of data with "qualifiers" such as B, J, or R. Qualification of data with respect to the amount of contamination in the blanks (method, field, rinsate or trip) associated with a set of samples is a dependable means of assessing procedures, container cleanliness and laboratory procedure. For example, if acetone, a common laboratory contaminant, was found at 50 μ g/l in a trip blank, 15 μ g/l in the laboratory's method blank and 20 μ g/l in the field blank, a qualifier would be written stating that, "all positive results in samples x,y,z, associated with the trip blank are questionable." This means that any positive results from a sample less than ten times the amount found in the blank having the highest contamination source (in this case the trip blank, at 50 μ g/l) is probably from the blank. Any samples related to this trip blank having results less than 500 μ g/l are questionable, attributable to the degree of container cleanliness. Other examples are attached.

Another area of concern is holding time and preservation of the samples. The chain-of-custody is examined for the date of sampling, date samples were relinquished to the courier, preservation methods, date received at the laboratory and any comments that were made by the laboratory's sample custodian. The date of sample collection is compared with the date of sample receipt, extraction and/or analysis; if the number of days between sample collection and sample extraction/analysis is outside of the acceptable range then these results must be considered

1

GROUNDWATER

estimated. The methods of sample preservation used can alter the acceptable holding time range. The effects of long-term storage even under refrigeration cannot be predicted due to variable matrices from site to site, or from sample to sample on site.

A qualifier may also be applied to the data if surrogate spike recoveries fall outside the quality control limits. Surrogate spike compounds are added to every sample and blank to monitor the laboratory's performance, however the sample matrix itself may contribute to the poor recovery of surrogate compounds. For example, samples with interferences or high analyte concentrations may cause unusual surrogate recoveries. Sometimes reanalysis (or re-extraction) is necessary to determine if the source of the problem is laboratory- or sample matrix-related.

Initial and continuing calibrations, along with GC/MS tuning are evaluated and sometimes qualified for individual compounds (such as 2-butanone) in the volatile organics fraction. It is a chronic problem for many laboratories to obtain steady response factors for 2-butanone (methyl ethyl ketone) that are stable enough to fail inside the specified criteria. False negatives and valid detection limits are also of concern when qualifying the initial and continuing calibrations, and the GC/MS tuning.

The evaluation of blind field duplicates, matrix spike (MS) and matrix spike duplicates (MSD), are of importance in assessing field sampling techniques, sample homogeneity, representativeness of sample points, and laboratory precision. A relative percent difference is calculated for three or more samples. Criteria are listed on the attached sheets for field duplicates and MS/MSDs. It should be noted that a data package cannot be qualified solely on MS/MSD data. The MS/MSD data merely confirm matrix interferences and can be used as support for other qualifiers such as surrogate spike recoveries.

Identification of positively identified compounds is checked with respect to the guidelines. Also the compound quantitation calculation and the feasibility of obtaining the specified detection limits are checked.

The tentatively identified compounds (TICs) found by the mass spectral library search are checked for goodness of "fit" against the reference spectrum. If there is a discrepancy between the laboratory analyst's interpretation of the spectrum and Groundwater Technology's interpretation, a qualifier is placed on the compound in question stating that it is to be considered an unknown or an isomer of that compound. Most often the laboratory will qualify the results as estimated, due to the

fact that standards for that TIC have not been run (nor are they required). Quantitation of TICs is based on the total quantitation method.

Data that may not meet certain criteria rarely cause an entire case to be qualified as unusable (R) because other parameters validated are acceptable. However, data for particular analytes may be discarded due to calibration response factors of questionable integrity.

The findings section gives standard as well as judgmental reasons as to why the data are qualified. The summary explains point by point each qualifier and places a general status (acceptable, provisional or acceptable) on the entire data package.

QUALIFIER DEFINITIONS

- R Unusable data.
- U Analyzed but undetected.
- J Estimated.
- UJ Undetected but the associated value is estimated and may inaccurate or imprecise.
- B Compound has been detected in a blank. Indicates that the compound's presence is qualitatively questioned, due to contamination in an associated blank.

DF - Dilution Factor.

The following are examples of application of the blank qualification guidelines. Certain circumstances may warrant deviations from these quidelines.

<u>Case 1:</u> Sample result is greater than the Contract Required Quantitation Limit (CRQL), but is less than the required amount (5x or 10x) when compared to the blank result.

`	<u>RUI</u>	E
	<u>10x</u>	<u>5x</u>
Blank Result	7	7
CRQL	5	5
Sample Result	60	60
Qualified Sample Result	60B	60B

In the example for the 10x rule, a sample result less than 70 (10 \times 7) would be qualified as questionable (B). In the case of the 5x rule, sample result less than 35 (5 \times 7) would also be qualified as questionable (B).

<u>Case 2:</u> Sample result is less than the CRQL, and is also less than the required amount (5x or 10x) when compared to the blank result.

	RU	LE
	<u>10x</u>	<u>5x</u>
Blank Result	6	6
CRQL	5	5
Sample Result	4J	4J
Qualified Sample Result	4B	48

<u>Case 3:</u>

Sample result is greater than the CRQL and the required amount (5x or 10x) when compared to the blank result.

RULE

	<u>10x</u>	<u>5x</u>
Blank Result	10	10
CRQL	5	5
Sample Result	120	60
Qualified Sample Result	120	60

For both the 10x and 5x rules, sample results exceeded the adjusted blank results of 100 (10 x 10) and 50 (5 x10), respectively.

QUALITY ASSURANCE REVIEW

POLYNUCLEAR AROMATIC HYDROCARBONS ANALYSIS OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK SITE

1.0 INTRODUCTION

This review addresses eleven soil samples and two aqueous quality control samples collected March 17-20, 1992 by Groundwater Technology, Inc. Albany, New York, and submitted to GTEL Environmental Laboratories, Inc., Milford, New Hampshire for the analysis of polynuclear aromatic hydrocarbons.

Items reviewed in this data package include:

- chain-of-custody records,
- analytical holding times,
- calibration verification,
- ail applicable blank samples,
- matrix spike/matrix spike duplicate recoveries,
- surrogate spike recoveries,
- data completeness, and
- an overall assessment of the batch.

It should be noted that these samples were analyzed using EPA methodology, but only a "Blue Level" data package was compiled. Therefore, no raw data was available to the reviewer. Where applicable, the reviewer used the laboratory QA nonconformance summary to validate the associated client sample results.

TABL APPLICABLE SA	E 1.0 - MPLE NUMBER
GTI ID	LAB ID
MW-14 (10-12)	03652-01
MW-14 (61-63)	03652-02
MW-12 (6-8)	03652-03
MW-12 (18-20)	03652-04
MW-13 (6-8	03652-05
MW-13 (8-10)	03652-06
SS-1	03652-07
SS-2	03652-08
SS-3	03652-09
SS-2 (2-4)	03652-13
SB-2 (8-10)	03652-14
RINSEATE BLANK	03652-10
FIELD BLANK	03652-11

2.0 FINDINGS AND DISCUSSION

After a thorough review of all available data it was determined that the use of data qualifiers is not necessary.

3.0 SUMMARY

After thoroughly reviewing all available data it was determined that the laboratory has adequately performed all analyses since:

- chain-of-custody records were complete,
- analytical holding times were met,
- all applicable blank samples were contaminant-free,
- matrix spike/matrix spike duplicate recoveries were acceptable, and
- **d**ata were complete.

Although no major problems were associated with this data package, one minor issue was addressed:

Poor terphenyl d-14 surrogate recoveries (%R) were associated with two samples:

- MW-13 (8-10) 358%R, and
- SS-3 255 %R

These results were outside of the quality control limits, 33-141 %R. High dilution factors were associated with these samples and it is possible that this occurrence affected the surrogate recoveries.

It should be noted that poor terphenyl d-14 results can be an indication of acid fraction interferences and might indicate the need to qualify the associated acid fraction results. In this particular case, only base-neutral fraction compound results were reported. Therefore, it was not necessary to qualify client sample results in this batch due to poor acid fraction surrogate results.

For specifics on this quality assurance review, refer to the attached support documents.

GROUNDWATER TECHNOLOGY, INC.

timberly Mc. thee- Goued

Kimberly McGhee-Gould QA/QC Supervisor Date: April 28, 1992

P:\PROJECTS\OSMOSE\PAH.RPT

POLYNUCLEAR AROMATIC HYDROCARBON SUPPORT DOCUMENTATION

GROUNDWATER

Page / of /

DATA SUMMARY FORM: O R G A N I C S

Polynuclear Avomatic Hydrocarbons m Soil SOIL SAMPLES

site Name: OSmose

(µg/Kg)

Case #: _____ Sampling Date(s): 3/17/92-3/20/92

To calculate sample quantitation limit: (QL * Dilution Factor) / ((100 - % moisture)/100)

Sample No.	MW-14(10-	12 MW-14 (61-6	53/ MW-12 (6-	8) MW-12(18-	20 MW-13/6	-8) mw-13(8-11	1-22 (53-2	55-3
Dilution Factor X Moisture	18.1	13.2	20.0	14,2	12,2	/3.6	21.6	26.5	28,1
Location									
									<u></u>
Napthalene					1000	2.30000		5700	10000
Acenaphthylene									
1-MethyInapthalene					2000	570000			
2-methyinapthalene	1 1				9100	300000		6900	
Acenaphthene					3000	120000			
Fluorene					2200	68000	120	4300	8000
Phenanthrene					9000	150000	440	20000	29000
Anthracene					320	10000	940		
Fluoranthene		32	18		1900	59000	1200	30000	50000
Rrene									_
Prinzo(a) anthracene		11	4.1		230	7500	430	11000	17000
Chrisene					72	2600	200	5100	8300
Benzo(b) Fluoroan there	·	9.5	5.8	0.18	75	2700	5.20	9700	14000
Benzo(K) Elupieranthene		6.3	3.4		52	1800	300	5800	8500
Benzola) avene,		12,0	6.0		42	2900	670	1,2000	17000
Dipenz Jan Tanthracene	2	1.2				200	74	1500	2200
Benzora, h. iTrensiene		8.6	3.5		43	1100	400	5900	\$500
Indenot 1, 2, 3-off purche	2	5.1	2.4			450	280	4900	6400
- par per per per per per per per per per pe			•						
	1								
	1								
	- H						_		
	1								
	•								1 vent

QL = Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITION

revised 07/9

Page / of /

DATA SUMMARY FORM: O R G A N I C S

Polynuclear Aromatic Hydrocarbons in Soil

SOIL SAMPLES

site Name: OSmose

(µg/Kg)

Sampling Date(s): 3/17/92 - 3/20/92 Case #:

To calculate sample quantitation limit: (QL * Dilution Factor) / ((100 - % moisture)/100)

Sample No.	58-3	59-2 (2-4)	SB-2 (8-10)											
Dilution Factor										∦	. <u></u>	<u> </u>		
% Moisture	28,1	16,6	11,4	l			······ •····							
Location				·	 					{				
				,F								1		
	9											ļ		
COMPOUND						lL l		══╬	<u></u>	┉┲╼╢		l e eres		M
Agenaltic	10000		320	∦		┥╴╴╂		#		╾╾╼╢				
Acenapthylene			∦	₩		+ -								
1-Methyl hapthalene	 	-#	160	 		┼──╫		#		#		#		\vdash
2-Methy naprhalene	∦		100-	<u> </u>		┨───╫								m
Acenapriene	2000		87	<u> </u>		┼╌╌╫				#				
Dhenghillione	2000		0.1	∦·										\square
Pricriariffictic	29cu	92		∦	<u> </u>	+ #		#						
Armnracene	5000	M4	╅	<u> </u>		H		#						
Flupranthene	Suur		+ +	╉───┼─		┼───╫		#		#				
FUIENC		26		╣╴┈─┼╴										
benzola) antinacerie	17000		0.90	∦		╡╶╢	†	#		#				
Chrysene		9.0		╉		╉╌╌╫		 		İİ		f		\vdash
BenzoloItIuoranthene	17000			╫		┨₩		#		#		1		
Benzolktruorantnene	8300		╫	╫╂				#		#	1			
Benzolas pyrene	11000	46	∦	∦}		+		#		#				\vdash
Dibenzianganthracene	2200	did IE	╢┈╍┈╼┈┨───	₩		╉╌╴╫		#						
Benzolgih, i Jperylene	8300		┨	∦		┨		#						
Indenol 1, 2, 3-cd y pyrane	6400	8.5		∦		-		#						
	# +			₩		╉╌╌╫		∦		#				-
	∦		-∦	∦		╉		#		#				
	∦ ↓		-# ~ ~ ~ [∦		-╂₿		#						
<i>a</i>	<u></u>		-₩	∦		-{₩				#				\mathbf{t}
	∦		∦	∦		╂╌╌╫		—∦						<u>+</u> ·
		n i	H I		И	I K		l					t	<u> </u>

QL = Quantitation Limit

Page / of /

DATA SUMMARY FORM: ORGANICS

Polynuclear Aromatic Hydrocarbons in Water

Site Name:

asmase

WATER SAMPLES

Case #: Sampling Date(s): 3/17/92-3/20/92

To calculate sample quantitation limit: (QL * Dilution Factor)

	Rinseate Bil	Field Blank]				∦		
	1.0	1.0	_			 			<u> </u>					
-			-						. <u>.</u>					
		1												
	1	ţţ.			- 11	l l	1							
			ii											
		jt][<u> </u>	<u> </u>			
Napthalene					 	 					┝━───┦			
Acenapthulene			┃		 ∦	 						<u> </u>		-
1-methylnapthalene			▋		 	 <u> </u>								-
2-methylnaphalen					 	 								<u>├</u> ──
Acenaphthene		_			 	 								<u> </u>
Fluorene					 	 								
Phenanthrene		_	 		 	 		•						<u> </u>
Anthracene			.		 	 								<u>}</u>
Fluoranthene					 	 				<u> </u>				<u> </u>
Pyrene					 ł	 				<u>}</u> ∙	 			-
Benzo Ca Tanthracene					 	 	ļ			├				┢─
Chrysene			.		 	 			<u> </u>		∦•			<u>†</u> -
Penzo LOJ Fluoranthen	e				 	 		+		+•	∦→			1-
Benzork I fluoranther	e				 	 					╫────		<u> </u>	+
Benzola J pirene					 	 				•	₩			·
Dibenz Lain Janthrake	in				 	 			·		╢	<u>├</u> •	<u> </u>	+
Penzola, h. i.] penylene	2		<u></u>	#	 	 					₩			+-
Indenol 1,2,3-carpurer	ne				 	 		} —-•	l	┫•	┨──────	<u></u> •	<u> </u>	+
78					 	 		ļ		╉───┥	╢	•	∦	+
			-		 	 	 	┨•		┫───		·	╢	+
					 	 	∦	 		╉────	┨─────		╫───-	+
					 	 	 	·		┨───		+	╫	╋
				┝──╢	 	 	∦	↓ •	 			 	╢	+
			<u></u> _		 	۱	<u> </u>		lt	ļ	<u>ll</u>	<u> </u>	<u></u>	+

QL = Quantitation Limit

Client Number: 011105470 Project ID: Not Applicable Work Order Number: N2-03-652

QA NONCONFORMANCE SUMMARY

1.0 Method Blank Analysis

1.1 Zero target compound(s) were found in the method blank.

2.0 Calibration Verification

2.1 The control limits were exceeded for zero calibration check compounds.

3.0 Surrogate Compound Recoveries

3.1 The recovery limits were exceeded for one surrogate compound for EPA Method 8310 in two samples due to interference from the presence of high concentrations of analytes in the samples. One surrogate out of control does not invalidate the reported results.

4.0 Matrix Spike (MS) Accuracy

4.1 The recovery limits were exceeded in the batch spike for zero compounds.

5.0 <u>Sample Duplicate Precision</u>

5.1 The maximum relative percent difference (RPD) was/were exceeded for zero compound(s) in the sample duplicate.

6.0 Sample Integrity

6.1 Sample handling and holding time criteria were met.

GTEL Milford, NH N203652A.DOC:10

Page / Of /

GROUNDWATER TECHNOLOGY, INC. SEMI-VOLATILE HOLDING TIMES

lient: ob	Os mose - 105- 470	Matr	ix: <u>sol/ac</u>	L Units:u	1q/kg/l	Auc Auc	lit Dat lited H	e: <u>04/2</u> By: <u>K</u>	2/92 MG
Sample Number	Sample Date	Date Rec'd	Xtract Date	Analysis Date	Time		Guide] 40CFR	lines SW-846 CLP	Out
MW14 10-	3/17/92	3/24/92	3126192	41319.2	n A				
MW14 61-	3/18/92		3/26/92	4/3/92					
MW1 2 6-8	3119192		3/26/92	4/3/92					
MW1 2 18-	3/19/92		3/26/92	41:3/92					
MW-13 6-	3/19/92		3/26/92	4/3/92					(1)
MW13 8-1	3119/92		3/26/92	4/4/92					(2)
S S- 1	3118192		3/26/92	4/4/92					ļ
SS-2	3118192		3/26/92	4/4/92					(3)
SS-3 .	31892		3/26/92	4/4/92					(4)
SS-2 2-4	3120/92		3/26/92	4/4/92					
SB-2 8-1	3120/92		3/26/92	4/4/92					
RINSEATE	3126/92	3/24/92	3/27/92	412192					
FIELD BL	3120 92	3124192	3/27/92	412192					
				ļ		·	ļ		
				L					

Comments: n/A - information not available to review

Guideline Holding Times: ECRA Solid 14 days Liquid 7 days

 40 CFR Part 136
 SW-846
 CLP

 ---- 14 days
 10 days

 7 days
 14 days
 5 days

 (1) also analyzed 4/14/92
 (2) also analyzed 4/10/92
 (3) also analyzed 4/11/92
 (4) also analyzed 4/11/92 (4)

all still within holding times

GROUNDWATER

-

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310^a

GTEL Sa	mple Number	03652-01	03652-02	03652-03	03652-04
Client	dentification	MW-14 (10-12)	MW-14 (61-63)	MW-12 (6-8)	MW-12 (18-20)
	Date Sampled	03/17/92	03/18/92	03/19/92	03/19/92
	ate Extracted	03/26/92	03/26/92	03/26/92	03/26/92
[Date Analyzed	04/03/92	04/03/92	04/03/92	04/03/92
Analyte	Detection Limit, ug/kg		Concentrat	ion, ug/kg	
Naphthalene	60	< 73	< 70	< 76	< 69
Acenaphthylene	77	< 93	< 89	< 98	< 89
1-Methylnaphthalene	60	< 73	< 70	< 76	< 69
2-Methylnaphthalene	60	< 73	< 70	< 76	< 69
Acenaphthene	60	< 73	< 70	< 76	< 69
Fluorene	7.0	< 8.5	< 8.1	< 8.9	< 8.1
Phenant hr ene	21	< 25	< 24	< 27	< 24
Anthrac en e	22	< 27	< 26	< 28	< 25
Fluoran th e ne	7.0	< 8.5	32	18	< 8.1
Pyrene	9.0	< 11	< 10	< 11	< 10
Benzo[a]anthracene	0.43	< 0.52	11	4.1	< 0.49
Chrysene	5.0	< 6.1	< 5.8	< 6.4	< 5.8
Benzo[b]fluoranthene	0.60	< 0.73	9.5	5.8	0.78
Benzo/k]fluoranthene	0.57	< 0.69	6.3	3.4	< 0.66
Benzo(a)pyrene	0.77	< 0.93	12	6.0	< 0.89
Dibenzo[a,h]anthracene	1.0	< 1.2	1.2	< 1.3	< 1.2
Benzo[g,h,i]perviene	2.5	< 3.0	8.6	3.5	< 2.9
Indeno[1,2,3-cd]pyrene	1.4	< 1.7	5.1	2.4	< 1.6
Detection Limit Multiplierb		1.21	1.16	1.27	1.15
Percent Solids, %		81.9	86.8	80.0	85.8

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0. US EPA November 1986; Extraction by EPA Method 3550 (low level sonication). Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids. а b

GTEL Milford, NH N203652A.DOC:6

.

-

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310a

GTEL Sa	mple Number	03652-05	03652-06	03652-07	03652-08
Clien	Identification	MW-13 (6-8)	MW-13 (8-10)	SS-1	SS-2
	Date Sampled	03/19/92	03/19/92	03/18/92	03/18/92
[ate Extracted	03/26/92	03/26/92	03/26/92	03/26/92
	Date Analyzed	04/03/92 ^C	04/04/92 ^d	04/04/92	04/04/928
A nalyte	Detection Limit, ug/kg		Concentra	tion, ug/kg	
Naphthalene	60	7000	2300 00 d	< 770	5700
Acenaphthylene	77	< 880	< 3500	< 990	< 2100
1-Methvinaphthalene	60	2000	57000	< 770	< 1600
2-Methynaphthalene	60	9100	300000d	< 770	6900
Acenaphthene	60	3000	120000	< 770	< 1600
Fluorene	7.0	2200	68000d	120	4300
Phenanthrene	21	9000°	150000 ^d	440	20000 ^e
Anthracene	22	320	10000	940	< 12000 ^e
Fluoranthene	7.0	1900	59000d	1200	30000e
Pyrene	9.0	< 100	< 410	< 120	< 250
Benzo fa]anthracene	0.43	230	7500	430	11000 ^e
Chrysene	5.0	72	2600	200	5100
Benzo lb lfluoranthene	0.60	75	2700	520	9700 ^e
Benzo /k]fluoranthene	0.57	52	1800	300	5800 ^e
Benzo la]pyrene	0.77	92	2900	67 0	12000 ^e
Dibenzo[a,h]anthracene	1.0	< 11	200	79	1500
Benzo [g,h,i] perviene	2.5	43	1100	400	5900
Indeno[1,2,3-cd]pyrene	1.4	< 16	450	280	4900
Detection Limit Multiplier ^b		11.4°	45.6	12.8	27.4 ^e
Percent Solids, %		87.8	86.4	78.4	73.5

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3550 (low level sonication). Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result а

b

of dilutions and percent solids. Detection Limit Multiplier for analyte noted = 114; Date Analyzed = 04/14/92. Detection Limit Multiplier for analyte noted = 912; Date Analyzed = 04/10/92. Detection Limit Multiplier for analytes noted = 548; Date Analyzed = 04/11/92.

c d

е

GTEL Milford, NH N203652A.DOC:7

_

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310^a

GTEL Sa	mple Number	03652-09	03652-13	03652-14	
Client	Identification	SS-3	SS-2 (2-4)	SB-2 (8-10)	
	Date Sampled	03/18/92	03/20/92	03/20/92	
	ate Extracted	03/26/92	03/26/92	03/26/92	
[Date Analyzed	04/04/92 ^f	04/04/92	04/04/92	
Analyte	Detection Limit, ug/kg		Concentra	tion, ug/kg	
Naphthalene	60	10000	< 73	320	
Acenap h thylene	77	< 2000	< 93	< 85	
1-Methyinaphthalene	60	< 1600	< 73	< 66	-
2-Meth yi naphthalene	60	< 1600	< 73	150	
Acenaphthene	60	< 1600	< 7 3	< 66	-
Fluorene	7.0	8000	10	8.7	-
Phena nth r en e	21	29000 ^f	< 25	< 23	
Anthracene	22	< 12000 ^f	92	< 24	
Fluoranthene	7.0	50000 ^f	74	< 7.7	-
Pyrene	9.0	< 240	< 11	< 9.9	-
Benzo[a]anthracene	0.43	17000 ^f	26	0.90	
Chrysene	5.0	8300 ^f	9.0	< 5.5	
Benzo[b]fluoranthene	0.60	14000 ^f	21	< 0.66	
Benzo(k]fluoranthene	0.57	8500 ^f	14	< 0.63	
Benzo[a]pyrene	0.77	17000 ^f	26	< 0.85	
Dibenz o[a,h]anthracene	1.0	2200	2.2	< 1.1	-
Benzo[g , h, i] perylene	2.5	8500	15	< 2.8	
Indeno[1,2,3-co]pyrene	1.4	6400	8.3	< 1.5	
Detection Limit Multiplierb		2 6 .6 ^f	1.21	1.10	
Percent Solids, %		71.9	83.4	88.6	

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3550 (low level sonication). Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids. Detection Limit Multiplier for analyte noted = 532; Date Analyzed = 04/11/92. а

Ь

f

GTEL Milford, NH N203652A.DOC:8

-

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

GTEL Sa	mple Number	03652-10	03652-11	**	
Client	Identification	RINSEATE BLANK	FIELD BLANK		
	Date Sampled	03/20/92	03/20/92		
D	ate Extracted	03/27/92	03/27/92		-
C	Date Analyzed	04/02/92	04/02/92	-	
An alyte	Detection Limit, ug/L		Concentra	ition, ug/L	
Naphthalene	1.8	< 1.8	< 1.8		
Acenaphthylene	2.3	< 2.3	< 2.3		
1-Methylnaphthalene	1.8	< 1.8	< 1.8		
2-Methylnaphthalene	1.8	< 1.8	< 1.8		
Acenap h th en e	1.8	< 1.8	< 1.8		
Fluorene	0.21	< 0.21	< 0.21		
Phenan th ren e	0.64	< 0.64	< 0.64	-	
Anthracene	0.66	< 0.66	< 0.66		
Fluoranthene	0.21	< 0.21	< 0.21		
Pyrene	0.27	< 0.27	< 0.27		
Benzo[a] a nth racene	0.013	< 0.013	< 0.013	-	+
Chryse ne	0.15	< 0.15	< 0.15	-	
Benzo[b] fluorantherre	0.018	< 0.018	< 0.018		-*
Benzo(k]fluoranthene	0.017	< 0.017	< 0.017		
Benzo[a]pyrene	0.023	< 0.023	< 0.023		
Dibenzo[a,h]anthracene	0.030	< 0.030	< 0.030		
Benzo[g, h,i]perylene	0.076	< 0.076	< 0.076		
Indeno[1,2,3-cd]pyrene	0.043	< 0.043	< 0.043		
Detection Limit Multiplierb		1.00	1.00		

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b dilutions.

GTEL Milford, NH N203652A.DOC:9

.

Page | of |

Sample Number	Anal	ysis	Corr of B	ect # lanks	<5X Pht	CRDL :halat	for ces?	<crdl fo<br="">BNA in Bl</crdl>	r all TCL anks?
	D ate	Time	Yes N	o Note	Yes	NO	Note	Yes	No Note
MW14 10-	4 13 92	NIA						<u> </u>	
MW14 61-									
MW12 6-8									
MW12 18-									
MW-13 6-									
MW13 8-1	4 14 /92								
SS-1									
S\$-2									
S S -3					-				
SS-2 2-4									
SB-2 8-1									
RINSEATE	412192	-							
FIELD BL	412/92	,							
			++-			-			
				_					
			$\left \right $						
Comments:	Mc+h	ud Bl	ank	BS 03	26-1	<u>ا</u>	Fracted	3/26/92	NO for

N/A- information not available to revenuer CRDL = Contract Required Detection Limit

-

. METHOD BLANK RESULTS

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310^a

	GTEL Blank ID	BS0326-1
	GTEL File ID	BS2 0326 1
	Date Extracted	03/26/92
	Date Analyzed	04/03/92
Analyte	Detection Lim it, ug/kg	Concentration, ug/kg
Naphthalene	60	< 59
Acenap ht h yle ne	77	< 76
1-Methylnaphthalene	60	< 59
2-Methylnaphthalene	60	< 59
Acenap h th en e	60	< 59
Fluoren e	7.0	< 6.9
Phenan th rene	21	< 21
Anthracene	22	< 22
Fluoran th ene	7.0	< 6.9
Pyrene	9.0	< 8. 9
Benzo[a] anthracene	0.43	< 0.42
Chryse ne	5.0	< 4.9
Benzo[b] fluoranthene	0.60	< 0.59
Benzo[k]fluoranthene	0.57	< 0.56
Benzo[a] pyrene	0.77	< 0.76
Dibenz o[a, h]anthracene	1.0	< 0.99
Benzo[g, h,i]perylene	2.5	< 2.5
Indeno[1,2,3-cd]pyrene	1.4	< 1.4
Detection Limit Multiplier		0.987

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3550 (low level sonication). Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids. а

b

GTEL Milford, NH N203652A.DOC:14

-

METHOD BLANK RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

	GTEL Blank ID	BW0327-1					
	GTEL File ID	BW20321					
	Date Extracted						
	Date Analyzed	04/02/92					
Analyte	Detection Lim it, ug/L	Concentration, ug/L					
Naphthalene	1.8	< 1.8					
Acenaphthylene	2.3	< 2.3					
1-Meth yi naphthalene	1.8	< 1.8					
2-Methyinaphthalene	1.8	< 1.8					
Acena ph th en e	1.8	< 1.8					
Fluore ne	0.21	< 0.21					
Phena nth r en e	0.64	< 0.64					
Anthracene	0.66	< 0.66					
Fluoran th en e	0.21	< 0.21					
Pyrene	0.27	< 0.27					
Benzo (a]anthracene	0.013	< 0.01 3					
Chrysene	0.15	< 0.15					
Benzo [b]fl uo ranthene	0.018	< 0.01 8					
Benzo [k]fluoranthene	0.017	< 0.017					
Benzo [a]p yr ene	0.023	< 0.02 3					
Dibenz o[<i>a</i> , <i>h</i>]anthracene	0.030	< 0.03 0					
Benzo [g, h,i]perylene	0.076	< 0.07 6					
Indeno[1,2,3-cd]pyrene	0.043	< 0.04 3					
Detection Limit Multiplier		1.00					

а

Federal Register, Vol. 49, October 26, 1984. Sample preparation by liquid/liquid extraction. The detection limit multiplier indicates the adjustments made to the data and detection limits for sample. b dilut**io**ns.

GTEL Milford, NH N203652A.DOC:15

.

Page / Of /

GROUNDWATER TECHNOLOGY, INC. SEMI-VOLATILE SURROGATE SPIKES

Client: Job # : <u>01</u>	0smc 105-	se 470	Matı	ix: <u>sol</u>	/aq_	Units:	Audit Date: <u>04/22/92</u> ug/kg/l Audited By: KMG
Sample Number	No. Yes	Spike No	s OK? Note	%Rec Yes	overy No	OK? Note	Surrogates Ou ts ide Criteria
MW14 10-	V			V			
MW14 61-				\checkmark			
MW12 6-8				V			
MW12 18-				\checkmark			
MW-13 6-							
MW13 8-1					V		Terphenyl-d14 358%.R Oclimit 33-141%.R
SS-1				V			
SS-2				\checkmark			
S S -3					V		Jerphenyl-d14 255%. R QC limit 33-141. R
SS-2 2-4				V			
SB-2 8-1				V			
RINSEATE				V			
FIELD BL		,		V			
	1						

Comments:

%Recovery Range: %Recovery Range: Liquid

Solid

-

SURROGATE RECOVERY SUMMARY

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310

	Percent Recovery, %				
GTEL Sample ID	S1 (NBZ)	S2 (TPH)			
BS0326-1	81.6	118			
03652-01	99.7	112			
03652-02	94.2	117			
03652-03	94.1	107			
03652-04	93.9	109			
03652-05 (04/03/92)	101	97.0			
03652-05 (04/14/92)	108	103			
03652-06 (04/04/92)	61.1	358*			
03652-06 (04/10/92)	D	D			
03652-07	60.0	56.3			
03652-08 (04/04/92)	81.7	133			
03652-08 (04/11/92)	D	D			
03652-09 (04/04/92)	80.9	255*			
03652-09 (04/11/92)	D	D			
03652-13	86.3	113			
03652-14	81.8	96.9			
03652-02 MS	92.0	109			
03652-02 MSD	96.2	111			

Surrogates NBZ Nitrobenzene-d5 TPH Terphenyl-d14 S1

S2

D *

TPH Terphenyl-d14 33-1419 Surrogate diluted out. % Recovery not calculated when surrogate diluted out. Indicates values outside of acceptability limits. See Nonconformance Summary Section 3.0.

a Recovery limits as per laboratory practice. MS Matrix Spike. MSD Matrix Spike Duplicate.

GTEL Milford, NH N203652A.DOC:19

Recovery Limits^a 33-141% 33-141%

_

SURROGATE RECOVERY SUMMARY

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310

	Percent Recovery, %			
GTEL Sample ID	S1 (NBZ)	S2 (TPH)		
BW0327-1	115	125		
03652-10	122	131		
03652-11	119	121		

Surrogates NBZ Ni

Recovery Limits^a 33-141% 33-141%

 Surrogates

 S1
 NBZ
 Nitrobenzene-d5

 S2
 TPH
 Terphenyl-d14

 D
 Surrogate diluted out. % Recovery not calculated when surrogate diluted out.

 *
 Indicates values outside of acceptability limits.

 a
 Recovery limits as per laboratory practice.

 MSD
 Matrix Spike Duplicate.

GTEL Milford, NH N203652A.DOC:20

Page / Of /

GROUNDWATER TECHNOLOGY, INC. SEMI-VOLATILE MATRIX SPIKES

Sample Number	Analysis		No. Spikes OK? Yes No Note		%Recovery OK? Yes No Note			Compounds out of spec		
MW14 10-	Date								Jun 1	
MW14 61-	4/3/92	<u>n;4</u>							<i>rwr</i>	$\frac{u}{1}$
						<u> </u>				
MMT5 2-8			 							
MW12 18-								 		
MW-13 6-										
MW13 8-1	414192									
S S- 1										
S S -2			ŕ							-
S S- 3										
SS-2 2-4									• · · · · · · · · · · · · · · · · · · ·	
SB- 2 8-1		,								
RIN S EATE	412/42									
FIELD BL	412192	,								
										<u></u>
						-				
						1				
			<u>† </u>		↓ - 					<u></u>

Comments: n/A- information not available to reviewer
-

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310

Sample S pi ked:	036 52- (02	Cile	nt ID:	MW-14	(61- 63)
Date Anal yz e d:	04/03/	92	Solu	rtion ID:	H91MS0	043A
Compound	d .	Spike Added,	Sample Concentration,	MS Concentration,	MS Percent Becovery	Acceptability

	5,	57	-3/ -	%	
Naphth al en e	378	38.3	417	100	D-122
Acenap ht h yl ene	378	< 89.3	365	96.5	D-139
Acenap ht hene	378	< 89.3	427	113	D-139
Fluoren e	75 .6	< 8.12	77.8	103	D-142
Phenan th rene	37.8	10.5	42.1	83.6	D-155
Anthrac ene	37.8	< 25.5	47.4	125	D-126
Benzo[k] fluoranthene	37.8	6 .26	40.9	91.6	D-159
Indeno[1,2,3-cd]pyrene	37.8	< 1.62	42.1	111	D-116

Compound	Spike Added, ug/ L	MSD Concentration, ug/L	MSD Percent Recovery, %	RPD, %	Acceptability Limits: RPD, %
Naphth alene	387	383	89.2	11.6	60
Acenap ht hylene	387	379	98.0	1.55	60
Acenap ht h en e	387	433	112	0.822	60
Fluoren e	77.3	76.6	9 9.1	3.77	60
Phenan th re ne	38.7	34.9	63.1	27.9	60
Anthrac en e	38.7	48.1	124	0.7 51	60
Benzo[k]fluoranthene	38.7	41.4	90.9	0.784	60
Indeno[1,2,3-cd]pyrene	38.7	44.3	115	2.8 8	60

Column to be used to flag recovery and RPD values with an asterisk.
 * Values outside of QC limits.

GTEL Milford, NH N203652A.DOC:23

CHAIN-OF-CUSTODY RECORDS

..

Com			MEADOWBROOK I MILFORD, NH 0308 (603) 672-4835 (800) 441-4835	NDUSTRIA 55	AL PARK		CHA ANI	AIN- AI	OF-0 VAL	CUS YSIS	TOD REC	Y R 2UE	ECO ST	AD		 [12	82	6				
Proje I atte proc of the	Post-It [™] brand To KiM (Co. G ⁻¹ Dept. Fax # Field Sample ID	GTEL Lab # (Lab use on	From V, Donne Co. <u>GTEL</u> Phone # Fax #	Noth Prese	70 70 ved Sam	pling	Cose Hydrocarbons PIC/FID D with MTBE D	ccarborrs GC/FTD Gas 🗆 Diesel 🔲 Screen 🛛	carbon Profile (SIMDIS)	6 Grease 413.1 CJ 413.2 CJ SN 503 CJ R 418.1 CJ SN 503 CJ	y 504 D DBCP by 504 D	XX111EPA 52221	201 CI EPA 8010 CI 22 CI EPA 802038	08 - 8080 - PCB only -	24PPL ED 8240TAL O NBS (+15) O	25/PPL EI 2270/TAL EI NBS (+ 25) EI 10 E 83/0 EI	X Metats C Pessicides C Herbicides C	Metals [] VOA [] Semi-VOA [] Pest [] Herb []	etaus - Prooffy Podutant O TAL O RCPA O Letals TTLC O STLC O	39.2 D 200.7 D 7421 D 6010 D	c Lead D	wiy 🗆 Flash Point 🗆 Reactivity 🗆	
MU- MU- MW- MW- MW- SS-1 SS-2 SS-3	$ \frac{14}{16} (10 - 12) \\ \frac{14}{16} (41 - 63) \\ \frac{12}{12} (6 - 8) \\ \frac{13}{16} (6 - 8) \\ \frac{13}{13} (8 - 10) \\ \frac{13}{13} (8 - 10) \\ $ TAT	01 02 03 04 05 04 05 07 07 08 09			1 1 1 1	2:00 11130 2:30 4:00 6:15 6:15 6:15 2:30 2:30 2:45 3:100 AITS		Hydr	Hydro					EPA 6	EPAG		EP 10			thed 2	Organi		
Priority (2 Expedited 7 Businer Other Business Project BLUE	14 hr) 1 1 (48 hr) 1 10 Days 1 Days 1 Days 1 CLP 1	GTEL Contect <u>Uik</u> Quote/Contract # Confirmation # PO # QA / QC LEVEL OTHER	<u>ce Donnelelinger</u>	SPECIAL F	EPONTING AL	QUIREM	NTS		8		Lab U	A :	Hh :	 ot #	<i>V i h</i>		<i>U</i>	оп ч з	de	ling • Loc	ation	182	Ē
CU RE	STODY CORD	Relinquished by: Relinquished by: Relinquished by:	mplar: M. Genterta			Date 323 Date Date 324	52 92	т 5: т т	Ime Ime		Work Receiv Receiv Receiv	Orde ved t	or # by: by: by Lab	orato	pry: -	1.10		 م	æ	 /			P

UNDIAN NALEK LEUD

	MEADOWBROOK MILFORD, NH 030 (603) 672 4835	INDUSTRIAL PARK		CHA AND	IN-OI ANA	-CU LY\$	STO IS RI	DY F EQUI	TECC EST	ORD		4	28	325	 >			
LABORATORIES, INC.	(800) 441-4835						1.10		(* 		(755) 15(5)	,	122.0			2.2012		
	Phone #:				(*************************************		1341.22 X 	ĺ	i i	11	E		ìÌ	234 () 			1 1 1	
<u> </u>	FAX #:																	
Company Address:	Site location:	PO a			æ		ľ			11	Í			\$ C				
. Albany	Bu	ttalo, NY		Ę	8					11		-1						
roject Manager:	Client Project ID:	(#) 0111. 012	{	秉		3			· [12	ธิ	2	a C		8	Ĩ€	
Bruce Abrens	(NAL 45)	011105470	BEI		, included in the second	3	1				<u>;</u>];		iğ l				L:	
attest that the proper field sampling	Sampler Name (P	rint):		Ë						Ū.		<u> </u>	비	Š C		2	8	
rocedures were used during the collection		11.72	Ŧ	1 K		12	미중			हि]	8			8		
i inese samples.	Ulai	bustation		- E	0 30	밀	8 8	8		1 Å	₹ §		8	ő	 ਛ	× I	- B -	
Floid	e Matrix	Method Sam	iplina 🖁	8	5 8		<u>9</u>	XS	<u>8</u>			0		ð i é		L.	5	ļ
Semple Lab		Preserved			8 2	8	믜占		ã E	18	515		-2	ΞĔ	Ĕ	X D	n a	
ID (Labus	e only) E E B	# B E	l i	1		8	₩ 8	5			88		1 1 1 1 1		물			
(200 00		Ĕ ʊ Ś Ś " 惺 堅Ľ	ŭ 🖁	Image: Second se	e e	3	E B	8	8 8	8	8 8	1 610	ğ		3	X Z	1 E	
Pincont Black 10			F 55	6	<u> </u>	8		<u>ا</u>	6 6	£	8 6	i 🖻	B	g a	3	å B	18	
Dincente Olarla ID		X X 3120	11:00		_	I		Ŀ	_X						1.		1	-t-
Grand Dionk 10		X 3/20	11:00				ſ			1		X			 -		┼╼┼	
Fille Mosk		X X 320	2:00						X				• • • •		┢╌╊		┼╍╼┟╸	
Fills Mank II	2 1	X 320	2:00						_	+		1v			╞╼┼╸		<u> </u>	
Irip Blank 12	3 x	X X 3/17	3145					-	1r	<u>† -</u> †-	-+	12		÷	┝╼┥		┼╍┥╸	
<u>1 58-2 (1-4)</u>	2 7	X 3/20	1010						-12	<u>├~</u> ├		151			╞╍┥╸		┟╍┟╸	-+-
<u>SB-2 (8-10)</u>	2 X	X 320	10:30	·				-		┼╼┼╴	┉┤╌╼	쉱					┝╌╍┝╍	
						• = -	╾┼╾╼	•					·		• • • • •		┝╼┟╴	_ <u>-</u>
						•				<u> </u> -		•┨• →=┃•			•			
				• • • • •		• •		╍╼┝╸		┝╼┝	╼┼╍╼	╟╍╼┼			•		┝╌╾┝╴	
	Special Handling	SPECIAL DETECTION LIN	AITS	da				IARK	<u>.</u>	I		L	<u> </u>	لسلم			I	
dority (24 hr)	Vince Pourlaly an									4.	11		J	0	10	15. /		
xpedited (48 hr) Quote/Contrac									111	~ `	v	-nu	- (2 0111	100	ing	CV ·	
Business Days 🔲 Confirmation #															ſ	, i		
PO#		SPECIAL REPORTING RE	QUIREMEN	TS		••-	Lab	Use (Driv L	ot #							<u>. </u>	
ALL ORIGINAL ORIGINAL	·	ł						-						010	ayı ı	-0680	°‴.⇒⊁	42
	-	1															i	ØF
		FAX					Worl		ər#									
		· · · · · · · · · · · · · · · · · · ·	Date		TIm		Rece	lved	by:	++-		•+					r	
1. (1	Kal (surlator		2/22/9	21	51m	π												
	by: V		Date		Time	<u> </u>	Rege	lved	by:	•	• • •	•						
RECORD				1														
I LOVID Relinquished t	р у :	-	Date		Tlme		Rece	lved ?	av I nh	prator		}	·		·			
•																		

U4/24/92 U9:26

ব্রি 002

→→→ GROUNDWATER TECH

CLEL

.

GTH			NBR C, N	100r H 03	(TN 2055	DLS	TRI	4_ F	'AH	ĸ		A	ND	H-C AN	4L 1) (SIS	TO S RI	EaU	EC ES1	Ċ.			4	9	66	51					5		
LA IORATORIES, INC.		3) 677 0) 44	2483 1483	35,/								1						(TY)	14	III	归	ন্ন	ſſ:{	17							OT	HE	
ry Nane:	A	Phone	91:	Ab	n	/						1.		i	1		· · · •••	ندينہ		لسه ک	<u>دهند</u> ا		نگريك آ										
'EL-Envinn	mented LAK	> FEAX #	: 4	a) z	2-1	oF.	3-	81	De	~				α		ľ			ŧ						12	İ	1	1				1	
iry Adilless:		Site Ic	oatio	n: F	22			$\overline{\Omega}$	<u> </u>	<u>.</u>		-	ШШ	LCCU											¥								
ladow brock	Ind Park	,	(\sim	in	180	> 1	Na		lood	ROAL	l'a	MT	ក							1	<u>]</u>				\ <u>ह</u>		010		Ū			
Wanager:	- tisc for the	Client	: Proje	CI ID:	(#)	FO	Ri	<u>~</u>	\mathcal{M}	- July	xry	A	i.s.	П ў		ŝ							3	- Rest				ã		<u>F</u>			
incent Do,	melinen	INAM	- E		\mathcal{R}	Ne.	2	~	46	1 re	w.	1 E		<u>ö</u>		5	_					2 3	5	Ter	18	1×		7421		۲. ۲			
that the proper field ee	mpling	Samp	la Ne	ima (f	rint)	:	. 🥲			1	~	는 A 문	Å.	D						ļ					Į		a	D			ł		
ures were used during. Esamples.	the collection	\cdot	NP		a		~ 1		/				ns f	S		5 S	: 값 3 같							- For	8	통	2 LO	2		Ē			
		7-4	1.	لىكىيە مىلمە م	Ĩ	ړ. ۱	deth	=¥ cd					carb	92	2	13.1		¥ 20	8010	Se	5				ð	Ĩ₹	Ö	22		5			
Field	GTEL	3J0U	, (N)	airix		٦r	eser	ved		San	pling	R R	ydro	S S		56 4		1 EP	ΡA	A	<u>ğ</u> i	5 0				E	Ē	ଷ୍		τ,			
Sample	Lab #	Tem c	~	u t				STED.				8	H se	τό μ	δġ ,	418	2	11			<u></u>			Web	1	ELS.	भग	220	Lear				
μ.	(Lab use only)	N N				r b	Ś	THE SET	ι Έζ	ц ц	ų	SX.	No.	1005	5 20 10		Ě	A 50	8	8	ð s		A 610	ě	¥ 5	1 A	1	N.	ŝ	No.			
21 10			ર ઝ -	2 20 2	t lõ	ŤĚ	ΞĒ	3 5	6.	5 5	F	m	8	×	Ξi	5 Ē	- G	ц Ш	e Li	<u>6</u>				հ	12	E	3	3	g	3			
Dank		13	X		$\downarrow \downarrow$	X	 			314	3:45						_																
a trank up	· · · · · · · · · · · · · · · · · · ·	4	X	+	+					34 X	3:45					_	╡.														[
d Eporthe Fifth	· · · · · · · · · · · · · · · · · · · ·	3	X							3/11/4	13:45																				•	Ŧ	
			~	┥┥																ĺ													
			-+-	++		_																											
		┥╼┟		\downarrow		_									_	_				1													_
					\downarrow																											Ī	
		┟╼┟		┥┥	┥┥																												
		┨╼╌┠		++	++			\downarrow																									
PAT	Special Ha				╷	000													ŀ														
	opocial Ha	inditin d			ł	SIEL	INF 1		C11		MILS						RE ୩୦	MAR	KS	$\sim \sim$	~ ł		-17		,	_	•0	,					_
24 hrj 🔲	GTEL Contact	* - ···															P		e :	24	B	, I	B	a	rd	P	5	్ర	ach	K	12	A	ŗ
id (48 hr)	Quote/Contract #	••		•••••													Ć	n	S,	ţsa	a	e	50	es	P	æ	2	100	\sim				
		·•····	+		-	SÆC	IAL F	REPC	ATI	NG R	EQUIR	EME	NTS				i.a	blise		vin			•		•	Sto			<u>,</u>		· · ·		
S Day i		•																		,						514	riagt	- LU	Janu	···.			
				_																													
		+				FAX [-	_									W	nk Or	rd er -	H													
- F	Relinquished by Sample	ť.					***				516	Date	•	T	ime		Re	celve	d by					-	• · · ·	·			······				
ŀ	M VILLA	M									1/1-	1/9	21	3,	53	\sum		_		1	1	D.	1	0	Z	1		•	» [.	01/			
	Hatting Ushed by:	T.	~								121	Date	<u>~</u> _	T	ime		fle	Caive	d by:		<u> </u>	Ľ (ş_(JLC	-47	·/			44	ef 7	Le_		
	K Uppl //en	AM	UV								12/1	7/9	21	3:	5'	5				r					-								
	Relinguished by:		-									Date		I	ime		Re	sive	d by	Lab	rato	ry:			**-*	<u> </u>							
											ł		1							•													
																		. 6. 11															

ſ

DATA VALIDATION REPORT OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK SITE

AROMATIC VOLATILE ORGANICS ANALYSIS

Samples Collected: April 2, 1992

Report Prepared: June 10, 1992

Prepared By: Groundwater Technology, Inc. 223 Wilmington-West Chester Pike Chadds Ford, Pennsylvania 19317

Preface to Data Validation

The concept of data validation has been developed over the past decade to assure that the quality of the data generated as a result of laboratory analysis by USEPA's Contract Laboratory Program protocols is acceptable. Guidelines for data validation have been established by the USEPA Data Review Work Groups, for the Hazardous Site Evaluation Division, and are published in documents entitled, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, and Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses.

These documents are available to the public and will be strictly adhered to during the data review of these packages analyzed by GTEL Environmental Laboratories, Milford, New Hampshire. Before reading the data validation reports prepared by Groundwater Technology, Inc., some insight and explanation is offered for the application of the data.

The purpose of the data validation report is to inform the data user of problems that were encountered during the analysis of the samples. The qualifiers section states the major points of concern and places restrictions on the usage of data with "qualifiers" such as B, J, or R. Qualification of data with respect to the amount of contamination in the blanks (method, field, rinsate or trip) associated with a set of samples is a dependable means of assessing procedures, container cleanliness and laboratory procedure. For example, if acetone, a common laboratory contaminant, was found at 50 μ g/l in a trip blank, 15 μ g/l in the laboratory's method blank and 20 μ g/l in the field blank, a qualifier would be written stating that, "all positive results in samples x,y,z, associated with the trip blank are questionable." This means that any positive results from a sample less than ten times the amount found in the blank. Any samples related to this trip blank having results less than 500 μ g/l are questionable, attributable to the degree of container cleanliness. Other examples are attached.

Another area of concern is holding time and preservation of the samples. The chain-of-custody is examined for the date of sampling, date samples were relinquished to the courier, preservation methods, date received at the laboratory and any comments that were made by the laboratory's sample custodian. The date of sample collection is compared with the date of sample receipt, extraction and/or analysis; if the number of days between sample collection and sample extraction/analysis is outside of the acceptable range then these results must be considered

GROUNDWATER

1

estimated. The methods of sample preservation used can alter the acceptable holding time range. The effects of long-term storage even under refrigeration cannot be predicted due to variable matrices from site to site, or from sample to sample on site.

A qualifier may also be applied to the data if surrogate spike recoveries fall outside the quality control limits. Surrogate spike compounds are added to every sample and blank to monitor the laboratory's performance, however the sample matrix itself may contribute to the poor recovery of surrogate compounds. For example, samples with interferences or high analyte concentrations may cause unusual surrogate recoveries. Sometimes reanalysis (or re-extraction) is necessary to determine if the source of the problem is laboratory- or sample matrix-related.

Initial and continuing calibrations, along with GC/MS tuning are evaluated and sometimes qualified for individual compounds (such as 2-butanone) in the volatile organics fraction. It is a chronic problem for many laboratories to obtain steady response factors for 2-butanone (methyl ethyl ketone) that are stable enough to fall inside the specified criteria. False negatives and valid detection limits are also of concern when qualifying the initial and continuing calibrations, and the GC/MS tuning.

The evaluation of blind field duplicates, matrix spike (MS) and matrix spike duplicates (MSD), are of importance in assessing field sampling techniques, sample homogeneity, representativeness of sample points, and laboratory precision. A relative percent difference is calculated for three or more samples. Criteria are listed on the attached sheets for field duplicates and MS/MSDs. It should be noted that a data package cannot be qualified solely on MS/MSD data. The MS/MSD data merely confirm matrix interferences and can be used as support for other qualifiers such as surrogate spike recoveries.

Identification of positively identified compounds is checked with respect to the guidelines. Also the compound quantitation calculation and the feasibility of obtaining the specified detection limits are checked.

The tentatively identified compounds (TICs) found by the mass spectral library search are checked for goodness of "fit" against the reference spectrum. If there is a discrepancy between the laboratory analyst's interpretation of the spectrum and Groundwater Technology's interpretation, a qualifier is placed on the compound in question stating that it is to be considered an unknown or an isomer of that compound. Most often the laboratory will qualify the results as estimated, due to the

fact that standards for that TIC have not been run (nor are they required). Quantitation of TICs is based on the total quantitation method.

Data that may not meet certain criteria rarely cause an entire case to be qualified as unusable (R) because other parameters validated are acceptable. However, data for particular analytes may be discarded due to calibration response factors of questionable integrity.

The findings section gives standard as well as judgmental reasons as to why the data are qualified. The summary explains point by point each qualifier and places a general status (acceptable, provisional or acceptable) on the entire data package.

The following are examples of application of the blank qualification guidelines. Certain circumstances may warrant deviations from these quidelines.

<u>Case 1:</u> Sample result is greater than the Contract Required Quantitation Limit (CRQL), but is less than the required amount (5x or 10x) when compared to the blank result.

	RULE				
	<u>10x</u>	<u>5x</u>			
Blank Result	7	7			
CRQL	5	5			
Sample Result	60	60			
Qualified Sample Result	60B	60B			

In the example for the 10x rule, a sample result less than 70 (10 \times 7) would be qualified as questionable (B). In the case of the 5x rule, sample result less than 35 (5 \times 7) would also be qualified as questionable (B).

<u>Case 2:</u> Sample result is less than the CRQL, and is also less than the required amount (5x or 10x) when compared to the blank result.

	<u>RU</u>	LE
	<u>10x</u>	<u>5x</u>
Plank Paguit	e	e
	-	0
CRQL	5	5
Sample Result	4J	4J
Qualified Sample Result	48	48

C**a**se 3:

Sample result is greater than the CRQL and the required amount (5x or 10x) when compared to the blank result.

RULE

	<u>10</u>	<u>x 5x</u>
Blank Result	10	10
CRQL	5	5
Sample Result	12	0 60
Qualified Sample Result	12	0 60

For both the 10x and 5x rules, sample results exceeded the adjusted blank results of 100 (10 x 10) and 50 (5 x10), respectively.

QUALITY ASSURANCE REVIEW

AROMATIC VOLATILE ORGANICS ANALYSIS OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK SITE

1.0 INTRODUCTION

This review addresses eight groundwater samples and three aqueous quality control samples collected April 2, 1992 by Groundwater Technology, Inc, Albany, New York, and submitted to GTEL Environmental laboratories, Inc., Milford, New Hampshire for the analysis of aromatic volatile organic compounds.

Items reviewed in this data package include:

- chain-of-custody records,
- analytical holding times,
- calibration verification,
- all applicable blank samples,
- matrix spike recoveries,
- duplicate spike recoveries,
- data completeness, and
- an overall assessment of the batch.

It should be noted that these samples were analyzed using EPA methodology, but only a "Blue Level" data package was compiled. Therefore, no raw data was available to the reviewer. Where applicable, the reviewer used the laboratory QA nonconformance summary to validate the associated client sample results.

GROUNDWATER
TECHNOLOGY

TABLE 1.0 APPLICABLE SAMPLE NUMBERS									
. GTI ID	LAB ID								
MW-8	04128-04								
MW-9	04128-06								
MW-10	04128-05								
MW-11	04128-02								
MW-12	04128-03								
MW-13	04128-07								
MW-14	04128-01								
CW-1	04128-08								
RINSEATE BLANK	04130-01								
FIELD BLANK	04128-09								
TRIP BLANK	04130-02								

	TABLE 2.0 DATA QUALIFIERS											
ANALYTE	ANALYTE SAMPLE ID ISSUE QUALIFIER											
BENZENE	MW-14	(1)	В									

(1) **blank** contaminant

2.0 FINDINGS AND DISCUSSION

The result for benzene in sample MW-14 is questionable due to blank contamination. Specifically, benzene was detected in the associated rinseate blank at a concentration of 0.3 μ g/l. Using the blank contamination rule, any benzene detected in the client samples at a concentration less than 1.5 μ g/l (0.3 μ g/l x 5) is considered questionable. Rinseate blank contamination can be an indication of improper decontamination procedures in the field.

0

3.0 SUMMARY

After thoroughly reviewing all available data it was determined that the laboratory has adequately performed all analyses since:

- chain-of-custody records were complete,
- calibration verification results were acceptable,
- all applicable laboratory blank samples were contaminant-free,
- matrix spike recoveries were acceptable,
- duplicate sample results were acceptable,
- surrogate spike recoveries were acceptable, and
- data were complete.

For specifics on this quality assurance review, refer to the attached support documents.

GROUNDWATER TECHNOLOGY, INC.

Kimberly McGhee-Gould QA/QC Supervisor

Date: June 10, 1992

KMG/II:P:\projects\osmose\voc.rpt

AROMATIC VOLATILE ORGANIC SUPPORT DOCUMENTATION

· · ·

. i

GROUNDWATER

Aromatic Volatile Organics in H20 DATA SUMMARY FORMI OR GANICS

site Name: Demose

WATER SAMPLES (µg/L)

Case #: _____ Sampling Date(s): 4/2/92

To calculate sample quantitation limit:

(QL * Dilution Factor)

	MW-8	MW-9	MW-10	MW-11	MW-15	MW-L	3 Min)-14	CW-1	RB
		1	1							
		ł.								
	a 	1							<u> </u>	
Benzene.		170				120		20	21	0.3
Taluene.		150					<u>/ ·</u> ·	2	0.8	
Ethyl Benzene	╫	33				- 40			9.3	
Xylenes (total)	╉────┼──			-#		790				
CHTODENZENE	<u>+</u>	20							13	
1 2- dich lovo benieur	<u> </u>									·····
1.4-dichlombenzene	1					36			∦	
									╉	
									╉━━━-	
	.								╉─╍───┼	<u> </u>
l									┨	
									•	
<u>}</u>	#								┨	
									┨	<u></u>
									╉	
	-∦								╣───┼	
	-∦								╢╌╌╌╴┼	
l	-#								 	
l										
 		-#			1					

QL = Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITION: revised 07/90

Page 7 of 1

Aromatic Volatile Organics in H20 DATA SUMMARY FORMI ORGANICS

Site Name:

Osmore

WATER SAMPLES (µg/L)

Case #: _____ Sampling Date(s): $\frac{4}{2}/\frac{9}{2}$

To calculate sample quantitation limit:

(QL * Dilution Factor)

										<u> </u>		[1				
	FB		TB_					<u></u>	•	∦								
								#	_,,			#						
·						#		∦										
				11		1		1										
		Į.																
		Ħ		- 11				· 1								ļ		
		ł								- 1								
		H																
	<u>][</u>]			L			
Benzene	∦																	
Toluene	║																	
Ethyl Benzene	 _	#_				<u> </u>				∦								
Xutener (total)							+											
Chippphenzene						 		₩										
12-dichlow hearing														 				Γ
13- dich Diphenzene														╎──┦	<u> </u>			Γ
I HALLON HELIZONE	1											┝──┥		├	<u> </u>			1
- 64-archun opheric	╢																	ł
	-∦													 				┢
																	↓	₽
	.∦∳	₩				<u>├</u>	<u> </u> †	!							L			╞
	-#+	 -					+								ll			+-
		₩				├	<u>∤</u> • ∤						· · · · · · · · · · · · · · · · · · ·	1				L
						∤					•	11	······································	1	ļ			
					·	ļ					•		<u> </u>	1	1			
						 					↓ •			+	<u> </u> +	1		T
	1								ļ	ļ	∦ →	1	╂	+		<u> </u>	H	T
┠- 	•[[*]	1								ļ	·				╫•	┨────	H	+
<u> </u>	┉╢─╌───┥	! [II				ll	ļ	l	ļ	l	· •	₩•	┨•	 	+
 	·{ •{				ll					<u> </u> .	II	<u> </u>	 		.∦	↓ →	∦	+-
	-#+	∦			<u> </u>	1				$1^{}$			I			_→	 	╋
	-#	<u></u> ₩		┨───•	₩	+		<u>†</u>	1	Ţ		1		<u> </u>	. <u> </u>	ļ	∦	+-
		→#			 	·	₩	<u> </u>	<u>∦</u> •	· <u> </u> •	<u> </u>	' '				<u> </u>	l	+
				↓ →	₿	·•	∦+	 	₩	· •	<u> </u>	1	‼ <u> </u>	1]		JL	1
	JI				JL	<u>. </u>	<u> </u>	<u>L</u>	<u> </u>	<u></u>	[L	1 <u> </u>	1	*=	u			

SEE NARRATIVE FOR CODE DEFINITION: revised 07/90

Page / of /

GROUNDWATER TECHNOLOGY, INC. VOLATILE HOLDING TIMES

							T			
Sample Number	P r ese Yes	erve No	Sample Date	D ate Rec'd	Analysis Date	Time	ECRA	Guide 40CFR	lines SW-846 <i>ASPCLA</i>) D
MW-8	V		412192	4/4/92	4110/92	NIA				
MM-9					4110192					
MW-10					4110192					
MW-11					419/92		ļ			
MW-12					4/9/92					
MW-13					4/10/92					
MW-14					4/9/92					
CW-1					4/10/92					
FB					4/10/92					
RB					4/9/92					
ТВ	.eL				4/9/92					
48										
						_				
		+	<u>}</u>	1	+	-				

Samples preserved W/HCL to pH < 2.0 N/A - information not available to reviewer

Guideline Holding Times: ECRA Solid Liquid

40 CFR Part 136

SW-846

ANALYTICAL RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

GTEL	Sample Number	04128-01	04128-02	04128-03	04128-04
Cli	ent Identification	MW14	MW11	MW12	MW8
	Date Sampled	04/02/92	04/02/92	04/02/92	04/02/92
<u> </u>	Date Analyzed				04/10/92
Analyte	Concentration, ug/L				
Benzene	1.2	< 0.2	< 0.2	< 0.2	
Toluene	Toluene 0.5			< 0.5	< 0.5
Ethyl Benzene	0.8	< 0.8	< 0.8	< 0.8	< 0.8
Xylenes (total)	1.7	< 1.7	< 1.7	< 1.7	< 1.7
Chlorobenzene	0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichlorobenzene	0.4	< 0.4	< 0.4	< 0.4	< 0.4
1,3-Dic hi orob en zene	0.4	< 0.4	< 0.4	< 0.4	< 0.4
1,4-Dic hi or obenz ene	< 0.3	< 0.3	< 0.3	< 0.3	
Detecti on Limit Multiplier ^b		1	1	1	1

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds. The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

р dilutions.

-

ENVIRONMENTAL LABORATORIES INC

GTEL Milford, NH N204128A.DOC:2

. ·

ANALYTICAL RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

GTEL	Sample Number	04128-05	04128-06	04128-07	04128-08
Cli	ent Identification	MW10	MW9	MW13	CW1
	Date Sampled	04/02/92	04/02/92	04/02/92	04/02/92
	Date Analyzed				04/10/92
Analyte	Detection Limit, ug/L		Concentratio	n, ug/L	
Benzene	< 0.2	170	120	21	
Toluene	0.5	< 0.5	150	300	3.1
Ethyl Ben zene	0.8	< 0.8	33	90	0.8
Xylenes (t o tal)	1.7	< 1.7	180	1100	9.3
Chlorobe nz e ne	0.2	< 0.2	< 0.4	790	< 0.2
1,2-Dichlorobenzene	< 0.4	22	< 2.0	13	
1,3-Dichlorobenzene	0.4	< 0.4	< 0.8	< 2.0	< 0.4
1,4-Dichlorobenzene	< 0.3	< 0.6	36	< 0.3	
Detection Limit Multiplier ^b		1	2	5	1

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds. The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b dilutions.

GTEL Milford, NH N204128A.DOC:3

Page / of/

GROUNDWATER TECHNOLOGY, INC. VOLATILE BLANK ANALYSIS

Client: Job # :01	0 smo 1- 1 0 5 -	se 470	Ма	tri	x:aq	ieous	Units	: ug/l	Audit Da Audited	ate:06 By:	/08/92 KMG
Sample Number	Anal Date	ysis Time	Cor of Yes	rec Bla No	t# nks Note	<5X C Tolue Yes	RDL A ene, M No	cetone eCl? Note	<crdl other 7 Yes</crdl 	for a TCL Vo No	ll latile Note
MW-8	4110/93	NIA	1			Y					<u>()</u>
MW-9				Ì							
MW-10											
MW-11	419/42										
MW-12											
MW-13	41042										
MW-14	419/92										
CW-1	4/10/42										
FB	1										
RB	419192										
ТВ	L										
							l				
		I									
								· · ·			
									5 m	- 	
											ļ
											L

comments: N/A-information not available to reverences

Rinseate blank - bengene 0.3 ug/l

-

ANALYTICAL RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

GTE	L Sample Number	04128-09	04130-01	04130-02	6-4
C	lient Identification	FIELD BLANK	RINSEATE	TRIP BLANK	
	Date Sampled	04/02/92	04/03/92	04/03/92	-
	04/10/92	04/09/92	04/09/92		
A na lyte	Detection Limit, ug/L		Concentratio	on, ug/L	
Benzene	Benzene 0.2			< 0.2	-
Toluene	0.5	< 0.5	< 0.5	< 0.5	
Ethyl Be nz e ne	0.8	< 0.8	< 0.8	< 0.8	
Xylenes (to tal)	1.7	< 1.7	< 1.7	< 1.7	
Chlorob en z en e	0.2	< 0.2	< 0.2	< 0.2	-
1,2-Dich lo robenzene	0.4	< 0.4	< 0.4	< 0.4	
1,3-Dichlorobenzene	0.4	< 0.4	< 0.4	< 0.4	
1,4-Dich lo ro b enzene	0.3	< 0.3	< 0.3	< 0.3	
Detection Limit Multiplierb		1	1	1	<u> </u>

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.
 The detection limit multiplier indicates the adjustments made to the data and detection limits for sample dilutions.

.

GTEL Milford, NH N204128A.DOC:4

.

METHOD BLANK RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

	GTEL File ID	08WBL0408C	19WBL0409A	**	-
(Client Identification	METHOD BLANK	METHOD BLANK	**	-
	Date Analyzed	04/08/92	04/09/92	**	
Analyte	Detection Limit, ug/L		Concentration,	ug/L	
Benzene	0.2	< 0.2	< 0.2		-
Toluene	0.5	< 0.5	< 0.5		
Ethyl Benzene	0.8	< 0.8	< 0.8		-
Xylenes (total)	1.7	< 1.7	< 1.7		-
Chlorobenzene	0.2	< 0.2	< 0.2		
1,2-Dichl o ro be nzene	0.4	< 0.4	< 0.4		
1,3-Dichl or obenzene	0.4	< 0.4	< 0.4	-	-
1,4-Dichlorobenzene	0.3	< 0.3	< 0.3		
Detection Limit Multiplierb		1	1	-	

 a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.
 b The detection limit multiplier indicates the adjustments made to the data and detection limits for sample dilutions.

GTEL Milford, NH N204128A.DOC:9 7

Page / Of

GROUNDWATER TECHNOLOGY, INC. VOLATILE MATRIX SPIKES

Client: Osmose Job # :011-105-470

Matrix:aqueous Units: ug/l

Audit Date:06/08/92 Audited By: KMG

Sample Number	Analysis Date	Time	No. Yes	Spike No	s OK? Note	%Recc Yes	No	OK? No te	Compounds out of spec
MW-8	4/10/92	NIA	\checkmark			Y			none
MW-9	1								
MW-10	1								
MW-11	419192								
MW-12	1								
MW-13	4/10/92								
MW-14	4/9/92								
CW-1	4/10/92								
FB	1								
RB	4/9/92	1							
TB	1								
				ļ					
	, ,						L	ļ	
		ļ		-					
			ļ						· · · · · · · · · · · · · · · · · · ·
		 				<u> </u>			
ļ					ļ				
					ļ		ļ		
ll		 		ļ					
									1

Comments:

I

n/A-information hat available to reviewer

MATRIX SPIKE RECOVERY

Aromatic Volatile Organics in Water Modified EPA Method 8020

Sample Spike d :	04175-01
Date of Analysis:	04/10/92
Standard ID:	BX92QC000

)3C

BATCH QC Client ID: Matrix: Water

Compound	Sample Results, ug/L	Spike Amount, ug/L	MS Results, ug/L	MS % Percent Recovery	Acceptability Limits, % ^a
Benzene	< 0.2	20.0	18.8	94.0	39-150
Toluene	< 0.5	20.0	19.0	95.0	46-148
Ethyl Benzene	< 0.8	20.0	19.3	96.5	32-160
Total Xylenes	< 1.7	60.0	58.5	97.5	36-163

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % Recovery is not calculated when original sample amount exceeds five times the ÑΑ spike amount.

DUPLICATE SAMPLE RECOVERY

Aromatic Volatile Organics in Water Modified EPA Method 8020

Sample Num b er: Date of Anal ys is:	04170-01 04/10/92	Client ID: Matrix:	Client ID: BATCH QC Matrix: Water				
Compound	/ Sample Result / ug/L	s, Duplicate Results, ug/L	RPD, %	Acceptability Limits, % ^a			
Benzene	14000	15000	6.90	34			
Toluene	33000	35000	5.88	31			
Ethyl Benzene	2500	2800	11.3	38			
Total Xvlenes	16000	17000	6.06	38			

Laboratory generated acceptability limits updated 4/88. Not Applicable; % RPD is not calculated when sample values are less than 10 times the detection a NA limit.

GTEL Milford, NH N204128A.DOC:14

MATRIX SPIKE RECOVERY

Aromatic Volatile Organics in Water Modified EPA Method 8020

Sample Spike d: Date of Analy si s: Standard ID:	04128-05 04/10/92 8X92QC003	Client ID: Matrix:	BATCH QC Water

Compound	Sample Results, ug/L	Spike Amount, ug/L	MS Results, ug/L	MS % Percent Recovery	Acceptability Limits, % ^a
Benzene	< 0.2	20.0	20.0	1 0 0	39-150
Toluene	< 0.5	20.0	19.8	99.0	46-14 8
Ethyl Benz en e	< 0.8	20.0	20.8	104	32-160
Total Xylen e s	< 1.7	60.0	57.9	96.5	36-1 63

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % Recovery is not calculated when original sample amount exceeds five times the NA spike amount.

DUPLICATE SAMPLE RECOVERY

Aromatic Volatile Organics in Water Modified EPA Method 8020

Sample Num b er: Date of Analy si s:	041 28-04 04/1 0/9 2		Client ID: Matrix:	BATCH QC Water	
Compound	1	Sample Results, ug/L	Duplicate Results , ug/L	RPD, %	Acceptability Limits, % ^a
Benzene		< 0.2	< 0.2	NA	34
Toluene		< 0.5	< 0.5	NA	31
Ethyl Benzene		< 0.8	< 0.8	NA	38
Total Xylenes		< 1.7	< 1.7	NA	38

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % RPD is not calculated when sample values are less than 10 times the detection ŇΑ limit.

GTEL Milford, NH N204128A.DOC:13

Page / Of /

GROUNDWATER TECHNOLOGY, INC. VOLATILE SURROGATE SPIKES

Client: Osmose Job # :011-105-470

Matrix:aqueous Units: ug/l

Audit Date:06/08/92 Audited By: KMG

Sample Number	No. Yes	Spike No	es OK? Note	%Rec Yes	overy No	OK? Note	Surrogates Outside Criteria
MW-8	V						NONE
MW-9							
MW-10			•				
MW-11		 					
MW-12							
MW-13							
MW-14							
CW-1							
FB							
RB							
ТВ							
		,					
							···.

Solid

-

SURROGATE RECOVERY RESULTS

Aromatic Volatile Organics in Water (Trifluorotoluene) Modified EPA Method 8020

Sample	Amount Added, ug/L	Surrogate Recovery, %
METHOD BLANK (04/08/92)	47.6	105
METHOD BLANK (04/09/92)	47.6	61.3
04128-01	47.6	65.1
04128-0 2	47.6	61.4
04128-0 3	47.6	59.7
04128-04	47.6	63.4
04128-0 5	47.6	63.5
04128-0 6	47.6	64.2
04128-07	47.6	94.5
04128-0 8	47.6	64.1
04128-0 9	47.6	65.9
04130-01	47.6	91.7
04130-0 2	47.6	94.2
04128-0 5 MS	47.6	62.1
04128-0 4 D U P	47.6	67.1
04175-0 1 MS	47.6	92.5
04170-01 DUP	47.6	96.4

Acceptability Limits^a 45-125%

Laboratory generated acceptability limits updated 07/11/91. Matrix Spike. Sample Duplicate.

а мs DŨP

GTEL Milford, NH N204128A.DOC:11

QA NONCONFORMANCE SUMMARY

1.0 Method Blank Analysis

1.1 Zero target compound(s) were found in the method blank.

2.0 Calibration Verification

2.1 The control limits were exceeded for zero calibration check compounds.

3.0 Surrogate Compound Recoveries

3.1 The recovery limits were exceeded for zero surrogate compounds.

4.0 Matrix Spike (MS) Accuracy

4.1 The recovery limits were exceeded in the matrix spike for zero compounds.

5.0 Sample Duplicate Precision

5.1 The maximum relative percent difference (RPD) was exceeded for zero compound(s) in the duplicate samples.

6.0 <u>Sample Integrity</u>

6.1 Sample handling and holding time criteria were met.

GTEL Milford, NH N204128A.DOC:8

CHAIN-OF-CUSTODY RECORDS

GROUNDWATER

	Meadowbrook Millord, New F (603) 672-4835	Industriat Parl ampshire 030 7 FAX: (603)	c 55 673-81	05		C A	CHA ND	IN-C AN	DF-(CUS ISIS	STC S RE	DY	RE JES	CO T	RD		. <u>. </u>				No.	362	41	 	CL RI	ISTC ECO	D) RC
BLACE ALLER'S	Phor	ie #: 575-	454	· 2444	<i>i</i>	BE [(1 		T I		NAL	YSIS	S RE	CUI CUI	EST	i:			u]		0	THE	R 			
Address (Office)	Site	ocation:				P M 1	ATB:	ġ	, Solution					0	BSC	ż	, Die F	0	S.	8	A .				Ì		
2 winner way ALISANY	NY	ilfaco	NY			Ī	Ę				D			(-25)	Z	z	Ĭ	Ş	9	ыİ					ĺ		
Proposi Nomber	/Proje	ct Name:	~			180		2	L L L		aniy		-15) _	NBS		[] 같	u u	Ē	SH N	8	1						
01110-5470		OSMUSO				8		113	0		C A	i i			LO N	ں ا	cides	S	<u> </u>	<u>ר</u> ור	2 0				(
Fattest that the proper field sampling - procedures were used during the	Samj	oler Name (Prin	4):	~		1 2 2 2	80	n	503			ľ		0	210 8	5107	estic		utan I		Dis lo						
collection of these samples.		ANIEL	KE.	ENE		20	0	10	n	22.2	u 9		a 1 1	8	N0	د ا د	۲ ^۳	\$	Y PO	8			ł				
s α	Matrix	Meth	od	Sar	nolino	loog	602		18.1	3	801	802	858	0	11		3 L 2			n ľ	- US						19
Field Source GTEL		Prese	ved			1003	λαλ		-	ļ u	ω	u l	1 a	625	28		Xel 1	stet	4-51	C E	3 6 순 0				ž	λ	à
Sample of Lab # 12	E D G		ιų	α Ψiž ω		HYO	Lo X	S A S		503.	Ś	203	205	ВN	625	625	ŏ	14	Meia		051V				Ned	Dave	D a A
ID Sample (Lab use) o	VVAT SOIL SLU OTH	UN UN	vo C	HIG IT	TIME	C.AS	BTE:	0.0 B	HdT	EPA	EPA	¥du u	E F A	БРА	E P A	EPA For	E DI	ក្ត	EPA	A E					Rece	Hece	100
	x		Y									3		+		- 17					-	- -	- -			1	1-
			Ŷ	$ - \frac{n}{2}$	1:15				+						-+	Ť,			-			1-1			0	e E	e e
(1) (1) (2) (3) (1)	<u> </u>		<u>^</u>	4/1.	1:49							3	•				-	-ii 			-†-				1	¦=	7
	x		x	4/2	7:00				+			3		1		 13	· † •		•		- j	+	- <u>†</u>		$-$	1 —	-{
051	X	X	x	41.	11:00	-						·a	1			3		1-1	1			1-1-		-j!	- 2		
	x		x		4120		• •					31	-	1	4 1	∷.∔ €ا	- 	4 	····	• • • • :	يەر ئۇمەر 1	i - I-	····i-··· i	···•	0	ā	ő
	x		;;; y	111.	11:40							<u>-</u>			-	<u></u> ۲۰		<u></u> −-				<u>+-</u> +-		+	X		!
w/1 655 6	×		<u>x</u>	41.	5:1					† i		3		+	i	<u>.</u>						-			¦ '		i
(110) $(110$				<u> </u>	1212							3		†		 ب	-+	• •		·••••••		y	•••••	•••	'		ł
CINERIE IC.	X		×		12.22		+		- 	ii		.∽		····•	 i	. 3	 i	• •	• •	·	٠	• •	••	•	l		
TR: F DADWE II		┼╍┼─┼─┼	x						1	† †		4				-j=	1	†-†		- i -		i-i-			l '		ļ
SDECIAL HANDEIN		SPECIAL DETE	CTION	LIMITS (Specily)	I	 				KS:	-						••			- .	• • •			3	l	:
	u																							1	12 3		
SEVEN HUSINESS DAVE D PERSON									ŀ															'	1		
		COECIAL DEOR		0501000		10																			6.3	d by	

.

DATA VALIDATION REPORT OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK SITE

POLYNUCLEAR AROMATIC HYDROCARBONS ANALYSIS

Samples Collected: April 2, 1992

Report Prepared: June 10, 1992

Prepared By: Groundwater Technology, Inc. 223 Wilmington-West Chester Pike Chadds Ford, Pennsylvania 19317

Preface to Data Validation

The concept of data validation has been developed over the past decade to assure that the quality of the data generated as a result of laboratory analysis by USEPA's Contract Laboratory Program protocols is acceptable. Guidelines for data validation have been established by the USEPA Data Review Work Groups, for the Hazardous Site Evaluation Division, and are published in documents entitled, <u>Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses</u>, and Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses.

ŧ,

These documents are available to the public and will be strictly adhered to during the data review of these packages analyzed by GTEL Environmental Laboratories, Milford, New Hampshire. Before reading the data validation reports prepared by Groundwater Technology, Inc., some insight and explanation is offered for the application of the data.

The purpose of the data validation report is to inform the data user of problems that were encountered during the analysis of the samples. The qualifiers section states the major points of concern and places restrictions on the usage of data with "qualifiers" such as B, J, or R. Qualification of data with respect to the amount of contamination in the blanks (method, field, rinsate or trip) associated with a set of samples is a dependable means of assessing procedures, container cleanliness and laboratory procedure. For example, if acetone, a common laboratory contaminant, was found at 50 μ g/l in a trip blank, 15 μ g/l in the laboratory's method blank and 20 μ g/l in the field blank, a qualifier would be written stating that, "all positive results in samples x,y,z, associated with the trip blank are questionable." This means that any positive results from a sample less than ten times the amount found in the blank having the highest contamination source (in this case the trip blank, at 50 μ g/l) is probably from the blank. Any samples related to this trip blank having results less than 500 μ g/l are questionable, attributable to the degree of container cleanliness. Other examples are attached.

Another area of concern is holding time and preservation of the samples. The chain-of-custody is examined for the date of sampling, date samples were relinquished to the courier, preservation methods, date received at the laboratory and any comments that were made by the laboratory's sample custodian. The date of sample collection is compared with the date of sample receipt, extraction and/or analysis; if the number of days between sample collection and sample extraction/analysis is outside of the acceptable range then these results must be considered

1

estimated. The methods of sample preservation used can alter the acceptable holding time range. The effects of long-term storage even under refrigeration cannot be predicted due to variable matrices from site to site, or from sample to sample on site.

A qualifier may also be applied to the data if surrogate spike recoveries fall outside the quality control limits. Surrogate spike compounds are added to every sample and blank to monitor the laboratory's performance, however the sample matrix itself may contribute to the poor recovery of surrogate compounds. For example, samples with interferences or high analyte concentrations may cause unusual surrogate recoveries. Sometimes reanalysis (or re-extraction) is necessary to determine if the source of the problem is laboratory- or sample matrix-related.

Initial and continuing calibrations, along with GC/MS tuning are evaluated and sometimes qualified for individual compounds (such as 2-butanone) in the volatile organics fraction. It is a chronic problem for many laboratories to obtain steady response factors for 2-butanone (methyl ethyl ketone) that are stable enough to fall inside the specified criteria. False negatives and valid detection limits are also of concern when qualifying the initial and continuing calibrations, and the GC/MS tuning.

The evaluation of blind field duplicates, matrix spike (MS) and matrix spike duplicates (MSD), are of importance in assessing field sampling techniques, sample homogeneity, representativeness of sample points, and laboratory precision. A relative percent difference is calculated for three or more samples. Criteria are listed on the attached sheets for field duplicates and MS/MSDs. It should be noted that a data package cannot be qualified solely on MS/MSD data. The MS/MSD data merely confirm matrix interferences and can be used as support for other qualifiers such as surrogate spike recoveries.

Identification of positively identified compounds is checked with respect to the guidelines. Also the compound quantitation calculation and the feasibility of obtaining the specified detection limits are checked.

The tentatively identified compounds (TICs) found by the mass spectral library search are checked for goodness of "fit" against the reference spectrum. If there is a discrepancy between the laboratory analyst's interpretation of the spectrum and Groundwater Technology's interpretation, a qualifier is placed on the compound in question stating that it is to be considered an unknown or an isomer of that compound. Most often the laboratory will qualify the results as estimated, due to the

fact that standards for that TIC have not been run (nor are they required). Quantitation of TICs is based on the total quantitation method.

Data that may not meet certain criteria rarely cause an entire case to be qualified as unusable (R) because other parameters validated are acceptable. However, data for particular analytes may be discarded due to calibration response factors of questionable integrity.

The findings section gives standard as well as judgmental reasons as to why the data are qualified. The summary explains point by point each qualifier and places a general status (acceptable, provisional or acceptable) on the entire data package.

The following are examples of application of the blank qualification guidelines. Certain circumstances may warrant deviations from these quidelines.

<u>Case 1:</u> Sample result is greater than the Contract Required Quantitation Limit (CRQL), but is less than the required amount (5x or 10x) when compared to the blank result.

	RULE	Ē
	<u>10x</u>	<u>5x</u>
Blank Result	7	7
CRQL	5	5
Sample Result	60	60
Qualified Sample Result	60B	60B

In the example for the 10x rule, a sample result less than 70 (10 x 7) would be qualified as questionable (B). In the case of the 5x rule, sample result less than 35 (5 x 7) would also be qualified as questionable (B).

<u>Case 2:</u> Sample result is less than the CRQL, and is also less than the required amount (5x or 10x) when compared to the blank result.

	RU	<u> </u>
	<u>10x</u>	<u>5x</u>
Blank Result	6	6
CRQL	5	5
Sample Result	4J	4J
Qualified Sample Result	4B	48

Case 3:

Sample result is greater than the CRQL and the required amount (5x or 10x) when compared to the blank result.

	<u>n01</u>	
	<u>10x</u>	<u>5x</u>
Blank Result	10	10
CRQL	5	5
Sample Result	120	60
Qualified Sample Result	120	60

For both the 10x and 5x rules, sample results exceeded the adjusted blank results of 100 (10 x 10) and 50 (5 x10), respectively.

QUALIFIER DEFINITIONS

R - Unusable data.

Analyzed but undetected. U -J Estimated. _ UJ Undetected but the associated value is estimated and may inaccurate or imprecise. -Compound has been detected in a blank. Indicates that the compound's presence is в _ qualitatively questioned, due to contamination in an associated blank. DF Dilution Factor. _

GROUNDWATER
QUALITY ASSURANCE REVIEW

POLYNUCLEAR AROMATIC HYDROCARBONS ANALYSIS OSMOSE WOOD PRESERVING, INC. BUFFALO, NEW YORK SITE

GROUNDWATER TECHNOLOGY

1.0 INTRODUCTION

This review addresses eight groundwater samples and two aqueous quality control samples collected April 2, 1992 by Groundwater Technology, Inc, Albany, New York, and submitted to GTEL Environmental Laboratories, Inc., Milford, New Hampshire for the analysis of polynuclear aromatic hydrocarbons.

Items reviewed in this data package include:

- chain-of-custody records,
- analytical holding times,
- calibration verification,
- all applicable blank samples,
- matrix spike/matrix spike duplicate recoveries,
- surrogate spike recoveries,
- data completeness, and
- an overall assessment of the batch.

It should be noted that these samples were analyzed using EPA methodology, but only a "Blue Level" data package was compiled. Therefore, no raw data was available to the reviewer. Where applicable, the reviewer used the laboratory QA nonconformance summary to validate the associated client sample results.

TA APPLICABLE	ABLE 1.0 SAMPLE NUMBERS
GTI ID	LAB ID
MW-8	04128-04
MW-9	04128-06
MW-10	04128-05
MW-11	04128-02
MW-12	04128-03
MW-13	04128-07
MW-14	04128-01
CW-1	04128-08
FIELD BLANK	04128-09
RINSEATE BLANK	04130-01

•	TABLE 2.0 DATA QUALIFIERS		
ANALYTE	SAMPLE ID(S)	ISSUE(S)	QUALIFIER(S)
F lu oranthene	MW-8, MW-11, MW-12, MW -14	(1)	В
Ben zo(a)A nthracene	M W-8, MW-9, MW-10, M W-11, MW-12, MW-14	(1)	В
Benz o(b)Fluoranthene	M W-8, MW-9, MW-10, M W-11, MW-12, MW-14	(1)	В
Benz o(k)Fluoranthene	M W-8, MW-9, MW-10, M W-11, MW-12, MW-14	(1)	В
Be n zo (a)Pyrene	MW-8, MW-9, MW-10, MW-11, MW-12, MW-14	(1)	В
Benz o (g ,h ,i)Perylene	MW-8	(1)	В

(1) Blank Contaminant

ł

Γ

2.0 FINDINGS AND DISCUSSION

- The results for fluoranthene in samples MW-8, MW-11, MW-12, and MW-14 are questionable due to blank contamination. Specifically, fluoranthene was detected in the associated rinseate blank, .44 μ g/l. Using the blank contamination rule, any fluoranthene detected in the associated client samples at a concentration less than 2.2 μ g/l (.44 μ g/l x 5) is considered questionable.
- The results for benzo(a) anthracene in samples MW-8, MW-9, MW-10, MW-11, MW-12, and MW-14 are questionable due to blank contamination. Specifically, benzo(a) anthracene was detected in the associated rinseate blank, .095 μ g/i. Using the blank contamination rule, any benzo(a) anthracene detected in the associated client samples at a concentration less than 0.475 μ g/i (.095 μ g/i x 5) is considered questionable.
- The results for benzo(b)fluoranthene in samples MW-8, MW-9, MW-10, MW-11, MW-12, and MW-14 are questionable due to blank contamination. Specifically, benzo(b)fluoranthene was detected in the associated rinseate blank, 0.14 μ g/l. Using the blank contamination rule, any benzo(b)fluoranthene detected in the associated client samples at a concentration less than 0.70 μ g/l (0.14 μ g/l x 5) is considered questionable.
- The results for benzo(k)fluoranthene in samples MW-8, MW-9, MW-10, MW-11, MW-12, and MW-14 are questionable due to blank contamination. Specifically, benzo(k)fluoranthene was detected in the associated rinseate blank, 0.079 μ g/l. Using the blank contamination rule, any benzo(k)fluoranthene detected in the associated client samples at a concentration less than 0.395 μ g/l (0.079 x 5) is considered questionable.
 - The results for benzo(a)pyrene is samples MW-8, MW-9, MW-10, MW-11, MW-12, and MW-14 are questionable due to blank contamination. Specifically, benzo(a)pyrene was detected in the associated rinseate blank, 0.14 μ g/l. Using the blank contamination rule, any benzo(a)pyrene detected in the associated client samples at a concentration less than 0.70 μ g/l (0.14 μ g/l x 5) is considered questionable.
 - The result for benzo(g,h,i)perylene in sample MW-8 is questionable due to blank contamination. Specifically, benzo(g,h,i)perylene was detected in the associated rinseate blank, 0.085 μ g/l. Using the blank contamination rule, any benzo(g,h,i)perylene detected in the associated client samples at a concentration less than 0.425 μ g/l (0.085 μ g/l × 5) is considered questionable.

It should be noted that rinseate blank contamination is a common problem and can be an indication of improper decontamination procedures in the field.

GROUNDWATER

SUMMARY 3.0

After thoroughly reviewing all available data it was determined that the laboratory has adequately performed all analyses since:

- chain-of-custody records were complete,
- analytical holding times were met,
- all applicable laboratory blank samples were contaminant-free,
- matrix spike/matrix spike duplicate recoveries were acceptable, and
- data were complete.

Although no major problems were associated with this data package, one minor issue was addressed:

Poor nitrobenzene-d5 and terphenyl-d14 surrogate recoveries (%R) were associated with one sample:

MW-13 0 %R, and 0 %R respectively.

These results were outside of the quality control limits, 33-141 %R. A high dilution factor was associated with this sample which caused the surrogate solution to be diluted out. Acceptable surrogate recoveries were associated with the fraction of this sample that had a lower dilution factor, therefore the reviewer did not qualify the associated results.

For specifics on this quality assurance review, refer to the attached support documents.

GROUNDWATER TECHNOLOGY, INC.

<u>Kimberly</u> <u>Mc Shee - hould</u> Date: June 10, 1992

QA/QC Supervisor

P:\PROJECTS\OSMOSE\PAH.2RP

GROUNDWAT	ER · Y
TECHNOLOG	Y

DATA SUMMARY FORM: ORGANICS

site Name: OSMOSE

المقدور ب

WATER SAMPLES (µg/L)

Case #: _____ Sampling Date(s): 4/2/93

To calculate sample quantitation limit: (QL * Dilution Factor)

Page / of /

	MW-8		mw-q		<u>т</u> ш-11	2	mw-	U	mw-1	2	MW-13	mw-14	ŧ	CW-L		FB	
															#		
· · ·									1	1			İ				1
															· ·		
			4														
]]							
Naphthalene											4600			1.10			
Acchaphthulene											510			19			\vdash
1-Methylmaphthalene											240			49			
2-Methyl raph thalene	4										ALLO			20			
Acenaphthalene	.			•							360			5.0			
Fluorene		 								•	710	.70		7.0			
Phenan threne	,84	∤- •	[]														
Anthracene	+	A					0.34	B	.26	3	240	,36	B	5.2			\perp
Fluoranthene	1, '						12.9										+
Reported	0.21	172	,043	ß	,020	B	.10	B	.049	ß	73	.077	ß	1.2	·		
hunsen	0.26										23			1.3			
Rent of Dilurmenthene	0.35	B	,054	ß	,033	ß	.13	B	.065	B.	26	.071	B	1.9	 		+
Benzo (K) fluoranthene	0.19	B	. 0.30	B	.017	B	.072	B.	- 634	B.	15	.042	12.	0.98			+
RIM201a) DUIRING	0.44	B	.082	B	. 033	B	.18	B	.087	В.	35	0.10	+12	2.2			+
Dibenz(a, h) anthracen	0.064			 	<u> </u>		 	 			1.9	i	┫───	0.3T		 	+
Berro (g, h, i) penylene	0:20	B			 	 		 			10-1-	057	<u> </u>	1.222			1
Indeno [1,2,3-ed] pyrene	0.33	.	.055		¦. 	 	• / 1		· 122	 	3.4		+	U.ox			1
	-#	+			₩			 	╢		╢╼╍╼─┤─		+	∦			+
						<u> </u>		┨──	 		╢───┤─		╡───	 	11		T
	-# <i>-</i>	· ··							╢		╢╼╍╼╴╴┼╴		† ··	∦- <i>-</i>	11		
l			-₩		╢					<u> </u>	╢		1				
		+						+ •		 							
	JI	1	JL	L		r	1-0-0	<u></u>			in the second second second second second second second second second second second second second second second				-		

QL = Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS revised 07/90

DATA SUMMARY FORM: ORGANICS

site Name: OSMOSE

WATER SAMPLES $(\mu g/L)$

Case 👫:

Sampling Date(s): $\frac{4/2}{92}$

To calculate sample quantitation limit: (QL * Dilution Factor)

			······	r	l	ر ا	[]		
	RB	······································							
	ļ	_ 							
	l								
	1	1							
	!!						t		
			JL	L	ll	I			
Naphthalene	 		∦		∦	<u> </u>			
Acenaphthalene	· · · · · · · · · · · · · · · · · · ·		∦		╫				
1- Methylnaphthalene				▋		∦			
2-MetolyInaphthalene	·I		·#	∦		₩	 		
Acenaphthalene				∦	.∦		 		1
Fluorene				∦		╢	╫────	i	
Phenanthrene			┫	∦	₩	╫	╫────		
Anthracene			·	 		∦	╫	∦}	
Fludranthene	0.44			╫		╉	╫	∦	<u> </u>
Airene					╉		╫───┼───	╢	<u> </u>
Renza a) anthracene	.095			·	-∦	╉╼───┤╌╌─	╉────┥───	╢	
r'hnsene			·	┦	╣───┤───	╉╼━──┥───	╢────	╢───┤───	<u> </u>
Bentor b) Augranthene	0,14		┨	·	-∦	╉───╌─┤╌──		╢────┤───	<u> </u>
BENZO(K) fluoranthene	0.079			∦	-╢		╢────┤───	<u> </u>	<u> </u> 1
Benzola) pyrene	0.14			·		╢───┤───	•	<u> </u>	<u> </u>
Debenz (a. K. anthiacen			.╢────┤───	·	-╢	╉ŧ		╢	<u> </u>
Benza a.h. Uservene	0.085		-∦	·	-∦			╫	╫─.──-┦─
Indeno(1,2,3-07 1/1/19	4		-#	·	-╢			╢────┤────	
			-#		.╣┥		╢───┤──	╢───┤───	╢
					-#	·	╫───┤───	╢────┤──	╢────┤─
			_ _		-╬∦		╢	┫	-∦
				.∦	_ _	┫			
						╉┈───┥───	╣	╣────┤───	
			<u></u>	JI	<u></u>	<u> </u>	<u>∦</u> !	<u> </u>	<u></u>

QL = Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITION: revised 07/90

POLYNUCLEAR AROMATIC HYDROCARBON SUPPORT DOCUMENTATION

.

.

.

.

Page / Of /

GROUNDWATER TECHNOLOGY, INC. SEMI-VOLATILE HOLDING TIMES

Sample Number	Sample Date	Date Rec'd	Xtract Date	Analysis Date	Time	CLP SOW	Guide 40CFR	SW-84 NYS D ASP	46 0' 50
MW-8	4/2/92	4/4/92	4/7/92	4114192	NIA				
MW-9				4/15/92					
MW-10				4115/92					
MW-11				4/14/92					
MW-12				411492					
MW-13		-		411519:2					
MW-14				4/14192					
CW-1				4/15/92					
FB				4115192					
RB				414/92					-
								İ	
<u> </u>						1			

comments: N/A - information not available to reviewers

Guideline SW-846 CLPECRA **40** CFR **Part** 136 Holding Times: 10 days 14 days ____ 14 days Solid 5 days 14 days 7 days 7 days Liquid

.

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

GTEL Sa	mple Number	04128-01	04128-02	04128-03	04128-04				
Client	Identification	MW14	MW11	MW12	MW8				
	Date Sampled	04/02/92	04/02/92	04/02/92	04/02/92				
	ate Extracted	04/07/92	04/07/92	04/07/92	04/07/92				
	Date Analyzed	04/14/92	04/14/92	04/14/92	04/14/92				
Analyte	Detection Limit, ug/L		Concentration, ug/L						
Naphthalene	1.8	< 1.8	< 1.8	< 1.8	< 1.8				
Acenap ht h yle ne	2.3	< 2.3	< 2.3	< 2.3	< 2.3				
1-Methylnaphthalene	1.8	< 1.8	< 1.8	< 1.8	< 1.8				
2-Methylnaphthalene	1.8	. < 1.8	< 1.8	< 1.8	< 1.8				
Acenaphthene	1.8	< 1.8	< 1.8	< 1.8	< 1.8				
Fluorene	0.21	< 0.21	< 0.21	< 0.21	< 0.21				
Phenan th rene	0.64	0.70	< 0.64	< 0.64	0.84				
Anthracene	0.66	< 0.66	< 0.66	< 0.66	< 0.66				
Fluoran th ene	0.21	0.36	0.34	0.26	1.1				
Pyrene	0.27	< 0.27	< 0.27	< 0.27	< 0.27				
Benzo[a] anthracene	0.013	0.077	0.10	0.049	0.21				
Chryse ne	0.15	< 0.15	< 0.15	< 0.15	0.26				
Benzo(b) fluorantherie	0.018	0.071	0.13	0.065	0.35				
Benzo/klfluoranthene	0.017	0.042	0.072	0.034	0.19				
Benzolalovrene	0.023	0.10	0.18	0.087	0.44				
Dibenz o [a, h]anthracene	0.030	< 0.030	< 0.030	< 0.030	0.064				
Benzo(<i>a</i> , <i>h</i> , <i>i</i>) perviene	0.076	< 0.076	< 0.076	< 0.076	0.20				
Indeno[12.3-cd]pyrene	0.043	0.057	0.11	0.055	0.33				
Detection Limit Multiplier ^b		1.00	1.00	1.00	1.00				

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

ъ dilu**tio**ns.

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

GTEL Sa	mple Number	04128-05	04128-06	04128-07	04128-08
Client	Identification	MW10	MW9	MW13	CW1
[Date Sampled	04/02/92	04/02/92	04/02/92	04/02/92
	ate Extracted	04/07/92	04/07/92	04/07/92	04/07/92
	Date Analyzed	04/15/92	04/15/92	04/15/92 ^C	04/15/92 ^d
A na lyte	Detection Limit, ug/L		Concentra	ition, ug/L	
Naphthalene	1.8	< 1.8	70	4600 ^C	170 ^d
Acenaphthylene	2.3	< 2.3	< 2.3	< 23	< 2.3
1-Methyl na p h thalene	1.8	< 1.8	< 1.8	540 ^C	18
2-Methylnaphthalene	. 1.8	< 1.8	< 1.8	2100 ^C	49
Acenaphthene	1.8	< 1.8	< 1.8	740 ^C	20
Fluorene	0.21	< 0.21	< 0.21	360 ^C	5.0
Phenant hr en e	0.64	< 0.64	< 0.64	710 ^C	7.0
Anthrac en e	0.66	< 0.66	< 0.66	< 6.6	< 0.66
Fluorant he ne	0.21	< 0.21	< 0.21	240 ^C	5.2
Pyrene	0.27	< 0.27	< 0.27	< 2.7	< 0.27
Benzo[a]anthracene	0.013	0.020	0.043	73	1.2
Chrysen e	0.15	< 0.15	< 0.15	23	1.3
Benzo[b]flu or anthene	0.018	0.033	0.054	26	1.9
Benzo/k]fluoranthene	0.017	0.017	0.030	15	0.98
Benzo[a]pyrene	0.023	0.033	0.082	35	2.2
Dibenzo[a,h]anthracene	0.030	< 0.030	< 0.030	1.9	0.34
Benzo[q,h ,/]perylene	0.076	< 0.076	< 0.076	10	1.2
Indeno[1,2,3-cd]pyrene	0.043	< 0.043	0.055	3.4	0.82
Detection Limit Multiplierb		1.00	1.00	10.0°	1.00d

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b diluti**on**s.

Detection Limit Multiplier for analytes noted = 100; Date Analyzed = 04/15/92. Detection Limit Multiplier for analyte noted = 4.00; Date Analyzed = 04/15/92. С

d

Page / of /

GROUNDWATER TECHNOLOGY, INC. SEMI-VOLATILE BLANK ANALYSIS

Sample Number	Anal Date	ysis Time	Con of Yes	rec Bla	t # inks Note	<5X Pht Yes	CRDL halat	for tes? Note	<crdl BNA in Yes</crdl 	for all Blanks? No	TCL Note
MW-8	4//4/192	· 7/4	V	<u> </u>		$\overline{\mathbf{A}}$					(1)
MW-9	4115/92										
MW-10	4115192										
MW-11	41442										
MW-12	4/1+443										
MW-13	411542										
MW-14	++14492										
CW-1	4115192										
FB	415/92										
RB	4114 19 2						 				
		,									
								-			
			-								
			_								

 $\begin{array}{r} Flutranthene & 0.77\\ Benzo(a) anthracence .095 [.475]\\ Benzo(B) flutranthene 0.14 (0.70]\\ Benzo(C) ** 0.079 (.345)\\ Benzo(a) pyrene 0.14 (0.70)\\ Benzo(a) pyrene 0.14 (0.70)\\ Benzo(a) pyrene 0.085 (.425)\\ CRDL = Contract Required Detection Limit\\ \end{array}$

1

4

Y

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

GTEL Sa	mple Number	04128-09	04130-01		+-
Clien	t Identification	FIELD BLANK	RINSEATE		
	Date Sampled	04/02/92	04/02/92		**
[Date Extracted	04/07/92	04/07/92		
	Date Analyzed	04/15/92	04/14/92		
Analyte	Detection Limit, ug/L		Concentra	ition, ug/L	
Naphtha le ne	1.8	< 1.8	< 1.8		•-
Acenaphthylene	2.3	< 2.3	< 2.3	·	
1-Methyl n aphthalene	1.8	< 1.8	< 1.8		
2-Methyl n aphthalene	1.8	< 1.8	< 1.8		
Acenaphthene	1.8	< 1.8	< 1.8		
Fluorene	0.21	< 0.21	< 0.21		
Phenant hr e ne	0.64	< 0.64	< 0.64		
Anthrac en e	0.66	< 0.66	< 0.65		
Fluoranthene	0.21	< 0.21	0.44		
Pyrene	0.27	< 0.27	< 0.27		
Benzo(a]a nthracene	0.013	< 0.013	0.095		••
Chrysene	0.15	< 0.15	< 0.15		
Benzo[b]fluoranthene	0.018	< 0.018	0.14		
Benzo/k]fluoranthene	0.017	< 0.017	0.079		
Benzo(a)pyrene	0.023	< 0.023	0.14		
Dibenzo (a , h]anthracene	0.030	< 0.030	< 0.030		
Benzo(g,h ,i]perylene	0.076	< 0.076	0.085		
Indeno[1.2.3-cd]pyrene	0.043	< 0.043	< 0.043		
Detection Limit Multiplier ^b		1.00	1.00	<u> </u>	

Test Methods for Evaluating Solid Waste, SW-846. Third Edition. Revision 0. US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b dilutions.

GTEL Milford, NH N204128A.DOC:7

.

_

METHOD BLANK RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

	GTEL Blank ID	BW0407-1
	GTEL File ID	BW204071
	Date Extracted	04/07/92
	Date Analyzed	04/09/92
Analyte	Detection Limit, ug/L	Concentration, ug/L
Naphthal en e	1.8	< 1.8
Acenaph th ylene	2.3	< 2.3
1-Methyl na p ht halene	1.8	< 1.8
2-Methyl na p ht halene	1.8	< 1.8
Acenaph th ene	1.8	< 1.8
Fluorene	0.21	< 0.21
Phenanthrene	0.64	< 0.64
Anthracene	0.66	< 0.66
Fluorant hene	0.21	< 0.21
Pyrene	0.27	< 0.27
Benzoja]anthr acene	0.013	< 0.013
Chrysen e	0.15	< 0.15
Benzo[b]fluoranthene	0.018	< 0.018
Benzo(k)fluoranthene	0.017	< 0.017
Benzola pyrene	0.023	< 0.023
Dibenzo (a ,h]anthracene	0.030	< 0.030
Benzo(g,h,/]perylene	0.076	< 0.076
Indeno[1,2,3-cd]pyrene	0.043	< 0.043
Detection Limit Multiplier		1.00

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

Ь diluti**on**s.

-

Page / Of /

GROUNDWATER TECHNOLOGY, INC. SEMI-VOLATILE MATRIX SPIKES

Sample Number	Analy	rsis	No. Yes	Spike No	es OK?	%Rec Yes	overy	OK?	Compout	ounds of spec
	Date	Time								
MW-8	4114192	n/A	4			Y			NO.	NE
MW-9	4115/92									ļ
MW-10	4115192									
MW-11	414/92									
MW-12	4114192			1				 		
MW-13	4115/92						_			
MW-14	4114192									
CW-1	4/15/92								<u></u>	
FB	415/92								<u> </u>	
RB	41/4/92									
										<u></u>
		1				<u> </u>				
							_	1	-	
					<u>_</u>		· · .			
										· · · · · · · · · · · · · · · · · · ·
								ļ. <u>.</u>	<u> </u>	

Comments:

Ĩ

Ļ

Ī

Ì.

_

MATRIX SPIKE RECOVERY

Polynuclear Aromatic Hydrocarbons EPA Method 610

Sample Spik ed :	04128-04	Client ID:	MW8
Date Analyz ed :	04/14/92	Solution ID:	H91MS043A

Compound	Spike Added, ug/L	Sample Concentration, ug/L	MS Concentration, ug/L	MS Percent Recovery, %	Acceptability Limits, %
Naphthalene	20.0	< 1.80	19.3	96.5	D-122
Acenapht hy lene	20.0	< 2.30	20.4	102	D-139
Acenapht he n e	20.0	< 1.80	22.6	113	D-124
Fluorene	4.00	< 0.210	3.98	100	D-142
Phenanth re ne	2.00	0.843	2.22	68 .9	D-155
Anthracene	2.00	< 0.660	1.78	89.0	D-126
Benzo[k]fluoranthene	2.00	0.190	2.09	95 .0	D-159
Indeno[1.2.3-cd]pyrene	2.00	0.330	2.00	83.5	D-116

Compound	Spike Added, ug/L	MSD Concentration, ug/L	MSD Percent Recovery, %	RPD. %	Acceptability Limits: RPD, %
Naphthal en e	20.0	18.4	92.0	4.77	60
Acenapht hylen e	20.0	19.5	97.5	4.51	60
Acenapht he ne	20.0	22.5	113	0.443	60
Fluorene	4.00	3.98	100	0	60
Phenanth re ne	2.00	2.20	67.9	1.46	60
Anthracene	2.00	1.31	65 .5	30.4	60
Benzo[k] flu o ra nthene	2.00	1.96	88.5	7.08	60
Indeno[1, 2 ,3-cd]pyrene	2.00	1.88	77.5	7.45	60

.

Column to be used to flag recovery and RPD values with an asterisk. Values outside of QC limits. # ★

D Dete**cti**on

Page / Of /

GROUNDWATER TECHNOLOGY, INC. SEMI-VOLATILE SURROGATE SPIKES

Sample Number	No. Yes	Spike No	es OK?	%Rec Yes	overy No	OK? Note	Surrogates Outside Criteria
MW-8				V			
MW-9				V			
W-10				V			
MW-11				~			
MW-12				~			
MW-13				~			DF of 10 acceptade recovery DF of 100 - Surrogate Solution deluted
MW-14				~			
CW-1			<u> </u>	~			
FB				~			
RB		1	1	~~~			
	-	,					
		-		1			
				1			
<u></u>	-				1		
··							
		-					

Comments:

ł

I

I

I

I

%Recovery Range: %Recovery Range: Liquid

Solid

SURROGATE RECOVERY SUMMARY

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310

	Percent Re	covery, %
GTEL Sample ID	S1 (NBZ)	S2 (TPH)
BW0407-1	103	106
04128-01	92.5	85.3
04128-02	90.0	110
04128-03	94.4	81.9
04128-04	105	79.8
04128-05	94.6	100
04128-06	119	102
04128-07 (DLM=10)	90.8	132
04128-07 (DLM=100)	D	D
04128-08	113	99.5
04128-09	104	95.2
04130-01	95.4	78.5
04128-04 MS	107	111
04128-04 MSD	101	103
04128-08 (DLM=4)	103	89.3

Surrogates NBZ Ni

 Surrogates

 S1
 NBZ
 Nitrobenzene-d5

 S2
 TPH
 Terphenyl-d14

 D
 Surrogate diluted out. % Recovery not calculated when surrogate diluted out.

 *
 Indicates values outside of acceptability limits.

 a
 Recovery limits as per laboratory practice.

 MS
 Matrix Spike.

 MSD
 Matrix Spike Duplicate.

GTEL Milford, NH N204128A.DOC:12 Recovery Limits^a 33-141% 33-141%

QA NONCONFORMANCE SUMMARY

1.0 Method Blank Analysis

1.1 Zero target compound(s) were found in the method blank.

2.0 Calibration Verification

2.1 The control limits were exceeded for zero calibration check compounds.

3.0 Surrogate Compound Recoveries

3.1 The recovery limits were exceeded for zero surrogate compounds.

4.0 Matrix Spike (MS) Accuracy

4.1 The recovery limits were exceeded in the matrix spike for zero compounds.

5.0 Sample Duplicate Precision

5.1 The maximum relative percent difference (RPD) was exceeded for zero compound(s) in the duplicate samples.

6.0 Sample Integrity

6.1 Sample handling and holding time criteria were met.

CHAIN-OF-CUSTODY RECORDS

/

.

.

GROUNDWATER

GTEL	Meadowbrool Millord, New	< Industrial Park Hampshire 03055	CHAIN-0 AND ANA	F-CUSTODY RECORD LYSIS REQUEST	No. 36141 RECORD	N YC
CLARENT CLARENT REPORT OF CLARENT CLARENT	(603) 672-483	5 / FAX: (603) 673-8105		ANALYSIS REQUEST	OTHER	M
4 - geet Managar	Pho	one #: 518-456 2444				글
BLUCE ANEENS						90
Address (Office)	Site	Location:	M TI M			2:
2 whence Will ALISANY	NY	Buffalo NY				N.
Propert Number	Ϋ́Ριο	ject Name:	2020 3.2 C			reg .
G1110 - 5470		OSMOSE.				3
procedures were used during the	San	nplør Name (Print):	8 6	S 2200 5 2200 5 2200 5 2 2200 5 2 2200 5 2 2 2 2		
Collection of these samples.		DANIEL REENE				S S
່	Matrix	Method Preservent Sam	npling אין אין אין אין אין אין אין אין אין אין	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Field Source GTEL			Gree 1 0 0		Atta Di Atta Atta Atta Atta Atta Atta Atta Att	
Sample of Lab # 2			B DY S HY	A 50 A 50 A 50 A 50 A 50 A 50 A 50 A 50		-ن يْ ا
(only) -	WA SLU					a
1.11-14 [1] (×	X X 4/2	12:45	3 3		V.
MIS 11 (12 6	×	X X 4/1	1:15	3 3		
MW12- CB 4	x	X X 4/2	1:45	3		
MUS CH 6	×	x x 1/2	2:00	3 13		2
MINIO 056	X	X X 4/2	4:00	3 3 1		No.
MIN 2 Cle 4	<u>x</u>	x X 1/2	4:30	3		Ŧ
1:4 12	<u>x</u>	<u> </u>	4:45			
cm/1 656	×	X X 4/:-	5:15	3		
1.410 DUNNA CAL	× .	× × ×	3:30			
RINGERIE IC.	X	X X M/L	5:45			l
TRIP MANUE 11	1				v	1
SPECIAL HANDLIN	G	SPECIAL DETECTION LIMITS (S	Specity)	REMARKS:	ā A	ĺ
EXPEDITED (48 hrs) CI CONTAC	т			1		
SEVEN BUSINESS DAYS					Aq.	20
OTHER (#) BUSINESS DAYS O QL	JOTE #	SPECIAL REPORTING REQUIRE	MENTS (Specily)		in the	Shet
OA/QC Level CLP D Blue D CONTE	RACT #			LAB USE ONLY Storage Loca	tion4:3 2243, 4:3	ngri
FAX D				Lol # . Work Order #		a d

•

4

ſ

Ε

APPENDIX E LABORATORY ANALYTICAL REPORTS

1

Northeast Region Meadowbrook Industrial Park Milford, NH 03055 (603) 672-4835 (603) 673-8105 (FAX) Client Number: 011105470 Project ID: Osmose Work Order Number: N2-04-128 N2-04-130

April 28, 1992

Bruce Ahrens Groundwater Technology, Inc. 12 Walker Way Albany, NY 12205

Dear Mr. Ahrens:

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 04/04/92 under chain-of-custody record 36141.

A formal Quality Assurance / Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified (approved) by the State of New York under certificate number 10599.

If you have any questions regarding this analysis, or if we can be of further assistance, a please call our Customer Service Representative.

Sincerely, GTEL Environmental Laboratories, Inc.

Susan C. Uhler Laboratory Director

Wach muchacan Pa

Řoseanna Dube Quality Assurance Office**r**

-

ANALYTICAL RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

GTEL Sample Number		04128-01	04128-02	04128-03	04128-04	
(lient Identification	MW14	MW11	MW12	MW8	
	Date Sampled	04/02/92	04/02/92	04/02/92	04/02/92	
W	Date Analyzed	04/09/92	04/09/92	04/09/92	04/10/92	
Analyte	Analyte Limit. ug/L Concentration, ug/L					
Benzene	0.2	1.2	< 0.2	< 0.2	< 0.2	
Toluene	0.5	1.3	< 0.5	< 0.5	< 0.5	
Ethyl Benzene	0.8	< 0.8	< 0.8	< 0.8	< 0.8	
Xylene s (to ta l)	1.7	< 1.7	< 1.7	< 1.7	< 1.7	
Chlorobenzene	0.2	< 0.2	< 0.2	< 0.2	< 0.2	
1,2-Dic hl or o benzene	0.4	< 0.4	< 0.4	< 0.4	< 0.4	
1,3-Dic hl orobenzene	0.4	< 0.4	< 0.4	< 0.4	< 0.4	
1,4-Dic hl or obenz ene	0.3	< 0.3	< 0.3	< 0.3	< 0.3	
Detection Limit Multiplierb		1	1	1	1	

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.
 The detection limit multiplier indicates the adjustments made to the data and detection limits for sample dilutions.

GTEL Milford, NH N204128A.DOC:2 7

.

. :

ANALYTICAL RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

GTEL	04128-05	04128-06	04128-07	04128-08	
CI	Client Identification			MW13	CW1
	Date Sampled	04/02/92	04/02/92	04/02/92	04/02/92
	Date Analyzed	04/10/92	04/10/92	04/10/92	04/10/92
Analyte	Detection Limit, ug/L		Concentratio	n, ug/L	
Benz en e	0.2	< 0.2	170	120	21
Tolue n e	0.5	< 0.5	150	300	3.1
Ethyl Benzene	0.8	< 0.8	33	90	0.8
Xvlen es (to tal)	1.7	< 1.7	180	1100	9.3
Chiorobenzene	0.2	< 0.2	< 0.4	790	< 0.2
1.2-Dichlorobenzene	0.4	< 0.4	22	< 2.0	13
1,3-D ic hlorobenzene	0.4	< 0.4	< 0.8	< 2.0	< 0.4
1.4-Dichlorobenzene 0.3		< 0.3	< 0.6	36	< 0.3
Detection Limit Multiplierb		1	2	55	1

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.
 The detection limit multiplier indicates the adjustments made to the data and detection limits for sample dilutions.

GTEL Milford, NH N204128A.DOC:3

÷.

and the second

1

. .

ANALYTICAL RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

GTEL	Sample Number	04128-09	04130-01	04130-02	
Cli	Client Identification		RINSEATE	TRIP BLANK	
	Date Sampled	04/02/92	04/03/92	04/03/92	
	Date Analyzed	04/10/92	04/09/92	04/09/92	
A nalyte	Detection Limit, ug/L		Concentratio	n, ug/L	
Benze ne	0.2	< 0.2	0.3	< 0.2	
Tolue ne	0.5	< 0.5	< 0.5	< 0.5	
Ethyl Benzene	0.8	< 0.8	< 0.8	< 0.8	
Xylenes (total)	1.7	< 1.7	< 1.7	< 1.7	
Chlorobenzene	0.2	< 0.2	< 0.2	< 0.2	
1,2-Di ch lo ro benzene	0.4	< 0.4	< 0.4	< 0.4	
1,3-Di ch lorob e nzene	0.4	< 0.4	< 0.4	< 0.4	
1,4-Dichlorobenzene	< 0.3	< 0.3	< 0.3		
Detect io n Limit Multiplier ^b		1	1	1	

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds. The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b dilutions.

_

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

GTEL Sample Number		04128-01	04128-02	04128-03	04128-04
Client	Client Identification		MW11	MW12	MW8
[Date Sampled		04/02/92	04/02/92	04/02/92
	ate Extracted	04/07/92	04/07/92	04/07/92	04/07/92
	Date Analyzed	04/14/92	04/14/92	04/14/92	04/14/92
Analyte	Detection Limit, ug/L		Concentra	tion, ug/L	
Naphthalene	1.8	< 1.8	< 1.8	< 1.8	< 1.8
Acena ph thylene	2.3	< 2.3	< 2.3	< 2.3	< 2.3
1-Methyinaphthalene	1.8	< 1.8	< 1.8	< 1.8	< 1.8
2-Methylnaphthalene	1.8	< 1.8	< 1.8	< 1.8	< 1.8
Acena p hth e ne	1.8	< 1.8	< 1.8	< 1.8	< 1.8
Fluorene	0.21	< 0.21	< 0.21	< 0.21	< 0.21
Phena nt hrene	0.64	0.70	< 0.64	< 0.64	0.84
Anthracene	0.66	< 0.66	< 0.66	< 0.66	< 0.66
Fluoranthene	0.21	0.36	0.34	0.26	1.1
Pyrene	0.27	< 0.27	< 0.27	< 0.27	< 0.27
Benzo [a]anthracene	0.013	0.077	0.10	0.049	0.21
Chrys en e	0.15	< 0.15	< 0.15	< 0.15	0.26
Benzo [b] fluoranthene	0.018	0.071	0.13	0.065	0.35
Benzo (k)f luo ranthene	0.017	0.042	0.072	0.034	0.19
Benzo [a]pyrene	0.023	0.10	0.18	0.087	0.44
Diben zo [a , h]anthracene	0.030	< 0 .030	< 0.030	< 0.030	0.064
Benzo [g ,h,i]perylene	0.076	< 0.076	< 0.076	< 0.076	0.20
Indeno[1,2,3-cd]pyrene	0.043	0 .057	0.11	0.055	0.33
Detection Limit Multiplierb		1.00	1.00	1.00	1.00

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b dilutions.

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

GTEL Sample Number		04128-05	04128-06	04128-07	04128-08
Client	MW10	MW9	MW13	CW1	
	Date Sampled	04/02/92	04/02/92	04/02/92	04/02/92
	ate Extracted	04/07/92	04/07/92	04/07/92	04/07/92
	Date Analyzed	04/15/92	04/15/92	04/15/92 ^C	04/15/92 ^d
Analyte	Detection Limit, ug/L		Concentra	ation, ug/L	
Naphthalene	1.8	< 1.8	70	4600 ^C	170 ^d
Acenaphthylene	2.3	< 2.3	< 2.3	< 23	< 2.3
1-Methylnaphthalene	1.8	< 1.8	< 1.8	540 ^C	18
2-Met hy Inaphthalene	1.8	< 1.8	< 1.8	2100 ^C	49
Acenaphthene	1.8	< 1.8	< 1.8	740 ^C	20
Fluor en e	0.21	< 0.21	< 0.21	360 ^C	5.0
Phenanthrene	0.64	< 0.64	< 0.64	710 ^C	7.0
Anthr ac e ne	0.66	< 0.66	< 0.66	< 6.6	< 0.66
Fluoranthene	0.21	< 0.21	< 0.21	240 ^C	5.2
Pyren e	0.27	< 0.27	< 0.27	< 2.7	< 0.27
Benz o[a] an thracene	0.013	0.020	0.043	73	1.2
Chrysene	0.15	< 0.15	< 0.15	23	1.3
Benzo[b]fluoranthene	0.018	0.033	0.054	26	1.9
Benzo[k]fluoranthene	0.017	0.017	0.030	15	0.98
Benzo[a]pyrene	0.023	0.033	0.082	35	2.2
Dibenzo[a,h]anthracene	0.030	< 0.030	< 0.030	1.9	0.34
Benz o[<i>g</i> , <i>ħ</i> , <i>i</i>]perylene	0.076	< 0.076	< 0.076	10	1.2
Indeno[1,2,3-cd]pyrene	0.043	< 0.043	0.055	3.4	0.82
Detection Limit Multiplierb		1.00	1.00	10.00	1.00 ^d

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b dilutions.

Detection Limit Multiplier for analytes noted = 100; Date Analyzed = 04/15/92. Detection Limit Multiplier for analyte noted = 4.00; Date Analyzed = 04/15/92. С

d

.

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

CTEL Somple Number		04128.00	04120.01		
GIELSa	04128-09	04130-01			
Client	Client Identification				~
[Date Sampled	04/02/92	04/02/92		
D	ate Extracted	04/07/92	04/07/92		
· · · · · · · · · · · · · · · · · · ·	ate Analyzed	04/15/92	04/14/92		
A nalyte	Detection Limit, ug/L		Concentra	tion, ug/L	
Naphth al ene	1.8	< 1.8	< 1.8		
Acena ph th yl ene	2.3	< 2.3	< 2.3		
1-Methylnaphthalene	1.8	< 1.8	< 1.8		
2-Methylnaphthalene	1.8	< 1.8	< 1.8		
Acenaphth en e	1.8	< 1.8	< 1.8		
Fluorene	0.21	< 0.21	< 0.21		
Phena nthrene	0.64	< 0.64	< 0.64		
Anthra ce n e	0.66	< 0.66	< 0.66		
Fluoranthene	0.21	< 0.21	0.44		
Pyrene	0.27	< 0.27	< 0.27		
Benzo[a]a nt hracene	0.013	< 0.013	0.095		
Chryse ne	0.15	< 0.15	< 0.15		
Benzo[b]fl uo ranthene	0.018	< 0.018	0,14		
Benzo (k) fluoranthene	0.017	< 0.017	0.079		
Benzo[a]p yr ene	0.023	< 0.023	0.14		
Dibenz o[a, h]anthracene	0.030	< 0.030	< 0.030		
Benzo[g ,h,i]perylene	0.076	< 0.076	0.085		
Indeno[1,2,3-cd]pyrene 0.043		< 0.043	< 0.043		
Detecti on Li mit Multiplier ^b		1.00	1.00		

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

р dilutions.

QA NONCONFORMANCE SUMMARY

1.0 Method Blank Analysis

- 1.1 Zero target compound(s) were found in the method blank.
- 2.0 <u>Calibration Verification</u>
 - 2.1 The control limits were exceeded for zero calibration check compounds.

3.0 Surrogate Compound Recoveries

3.1 The recovery limits were exceeded for zero surrogate compounds.

4.0 Matrix Spike (MS) Accuracy

4.1 The recovery limits were exceeded in the matrix spike for zero compounds.

5.0 Sample Duplicate Precision

5.1 The maximum relative percent difference (RPD) was exceeded for zero compound(s) in the duplicate samples.

6.0 <u>Sample Integrity</u>

6.1 Sample handling and holding time criteria were met.

_

METHOD BLANK RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

	08WBL0408C	19WBL0409A			
(Client Identification	METHOD BLANK	METHOD BLANK	-	+
	Date Analyzed	04/08/92	04/09/92		
Detection Analyte Limit, ug/L		Concentration, ug/L			
Benze ne	0.2	< 0.2	< 0.2		
Toluene	0.5	< 0.5	< 0.5		
Ethyl Benzene	0.8	< 0.8	< 0.8		
Xylen es (t ot al)	1.7	< 1.7	< 1.7		
Chloro b enzene	0.2	< 0.2	< 0.2		
1,2-Di ch lo ro benzene	0.4	< 0.4	< 0.4		
1,3-Di ch lo ro benzene	0.4	< 0.4	< 0.4	-+	
1,4-Di ch loro ben zene	0.3	< 0.3	< 0.3		
Detection Limit Multiplierb	1	1			

 Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.
 The detection limit multiplier indicates the adjustments made to the data and detection limits for sample

dilu**ti**ons.

1

-

METHOD BLANK RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

	GTEL Blank ID	BW0407-1
	GTEL File ID	BW204071
	Date Extracted	04/07/92
	Date Analyzed	04/09/92
Analyte	Detection Limit, ug/L	Concentration, ug/L
Naphthalene	1.8	< 1.8
Acena phthyl ene	2.3	< 2.3
1-Meth yl naphthalene	1.8	< 1.8
2-Meth yl naphthalene	1.8	< 1.8
Acena ph thene	1.8	< 1.8
Fluorene	0.21	< 0.21
Phena nth r en e	0.64	< 0.64
Anthra ce ne	0.66	< 0.66
Fluoranthene	0.21	< 0.21
Pyrene	0.27	< 0.27
Benzo(a)anthracene	0.013	< 0.013
Chryse n e	0.15	< 0.15
Benzo[b]fluoranthene	0.018	< 0.018
Benzo (k) fl uo ranthene	0.017	< 0.017
Benzo(a)pyrene	0.023	< 0.023
Dibenz o [a,h]anthracene	0.030	< 0.030
Benzo (g , h, i) perylene	0.076	< 0.076
Indeno[1,2,3-cd]pyrene	0.043	< 0.043
Detection Limit Multiplier		1.00

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b dilutions.

.

SURROGATE RECOVERY RESULTS

Aromatic Volatile Organics in Water (Trifluorotoluene) Modified EPA Method 8020

Sample	Amount Added, ug/L	Surrogate Recovery, %
METHOD BLANK (04/08/92)	47.6	105
METHOD BLANK (04/09/92)	47.6	61.3
04128-01	47.6	65.1
04128-02	47.6	61.4
04128-03	47.6	59.7
04128-04	47.6	63.4
04128-05	47.6	63.5
04128-06	47.6	64.2
04128-07	47.6	94.5
04128-08	47.6	64.1
04128-09	47.6	65.9
04130-01	47.6	91.7
04130-02	47.6	94.2
0412 8-0 5 MS	47.6	62.1
04128-04 DUP	47.6	67.1
04175-01 MS	47.6	92.5
04170-01 DUP	47.6	96.4

Acceptability Limits^a 45-125%

Laboratory generated acceptability limits updated 07/11/91. а

MS

Matrix Spike. Sample Duplicate. DUP

-

SURROGATE RECOVERY SUMMARY

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310

	Percent Recovery, %		
GTEL Sample ID	S1 (NBZ)	\$2 (TPH)	
BW0407-1	103	106	
04128-01	92.5	85.3	
04128-02	90.0	110	
04128-03	94.4	81.9	
04128-04	105	79.8	
04128-05	94.6	100	
04128-06	119	102	
04128-07 (DLM = 10)	90.8	132	
04128-07 (DLM = 100)	D	D	
04128-08	113	99.5	
04128-09	104	95.2	
04130-01	95.4	78.5	
04128-04 MS	107	111	
04128-04 MSD	101	103	
04128-08 (DLM=4)	103	89.3	

Surrogates NBZ Nitrobenzene-d5 TPH Terphenyl-d14

S1 S2

TPH Terphenyl-d14 Surrogate diluted out. % Recovery not calculated when surrogate diluted out. Indicates values outside of acceptability limits. D

*

Recovery limits as per laboratory practice. а

MS Matrix Spike. MSD Matrix Spike Duplicate.

GTEL Milford, NH N204128A.DOC:12

Recovery Limits^a 33-141% 33-141%

_

MATRIX SPIKE RECOVERY

Aromatic Volatile Organics in Water Modified EPA Method 8020

Sample Sp iked: Date of An aly sis: Standard I D:	04128-05 04/10/92 BX92QC003	Client ID: Matrix:	BATCH QC Water	
--	-----------------------------------	-----------------------	-------------------	--

Compound	Sample Results, ug/L	Spike Amount, ug/L	MS Results, ug/L	MS % Percent Recovery	Acceptability Limits, %a
Benzene	< 0.2	20.0	20.0	100	39-150
Toluene	< 0.5	20.0	19.8	99.0	46-148
Ethvi Benzene	< 0.8	20.0	20.8	104	32-160
Total Xyl e nes	< 1.7	60.0	57.9	96.5	36-163

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % Recovery is not calculated when original sample amount exceeds five times the NA spike amount.

DUPLICATE SAMPLE RECOVERY

Aromatic Volatile Organics in Water Modified EPA Method 8020

Sample Number: 04128-04 Date of Analysis: 04/10/92		Client ID: E Matrix: V		
Compound /	Sample Results, ug/L	Duplicate Results, ug/L	RPD, %	Acceptability Limits, %a
Benzene	< 0.2	< 0.2	NA	34
Toluene	< 0.5	< 0.5	NA	31
Ethyl Benzene	< 0.8	< 0.8	NA	38
Total Xvlenes	< 1.7	< 1.7	NA	38

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % RPD is not calculated when sample values are less than 10 times the detection ÑΑ limit.

.

_

MATRIX SPIKE RECOVERY

Aromatic Volatile Organics in Water Modified EPA Method 8020

Sample Sp iked: Date of An aly sis: Standard I D:	041 75-01 04/10/92 BX92QC0003C	Client ID: Matrix:	BATCH QC Water
--	---	-----------------------	-------------------

Compound	Sample Results, ug/L	Spike Amount, ug/L	MS Results, ug/L	MS % Percent Recovery	Acceptability Limits, % ^a
Benzene	< 0.2	20.0	18.8	94.0	39-150
Toluene	< 0.5	20.0	19.0	95.0	46-148
Ethyl Benzene	< 0.8	20.0	19.3	96.5	32-160
Total Xyl en es	< 1.7	60.0	58.5	97.5	36-163

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % Recovery is not calculated when original sample amount exceeds five times the ŇA spike amount.

DUPLICATE SAMPLE RECOVERY

Aromatic Volatile Organics in Water Modified EPA Method 8020

	modiliod El ;			
ample Nu m ber: C ate of An aly sis: C	04170-01 04/10/92	Client ID: E Matrix: V	BATCH QC Water	
Comp ound ,	Sample Results, ug/L	Duplicate Results, ug/L	RPD, %	Acceptability Limits, %a
Benzene	14000	15000	6.90	34
Toluene	. 33000	35000	5.88	31
Ethyl Benzene	2500	2800	11.3	38
Total Xvl en es	16000	17000	6.06	38

Laboratory generated acceptability limits updated 4/88. Not Applicable; % RPD is not calculated when sample values are less than 10 times the detection a NA limit.

Client Number: 011105470 Project ID: Osmose Work Order Number: N2-04-128 N2-04-130

MATRIX SPIKE RECOVERY

Polynuclear Aromatic Hydrocarbons EPA Method 610

Sample S pi k ed :	04128-04	Client ID:	MW8
Date Anal y zed:	04/14/92	Solution ID:	H91 MS043A

Compound	Spike Added, ug/L	Sample Concentration, ug/L	MS Concentration, ug/L	MS Percent Recovery, %	Acceptability Limits, %
Naphthalene	20.0	< 1.80	19.3	96 .5	D-122
Acena ph thylene	20.0	< 2.30	20.4	102	D-139
Acenaphthene	20.0	< 1.80	22.6	113	D-124
Fluorene	4.00	< 0.210	3.98	100	D-142
Phenanthrene	2.00	0.843	2.22	68.9	D-155
Anthra cene	2.00	< 0.660	1.78	89.0	D-126
Benzo[k]fluoranthene	2.00	0.190	2.09	95.0	D-159
Indeno[1.2.3-cd]pyrene	2.00	0.330	2.00	83.5	D-116

Compound	Spike Added, ug/L	MSD Concentration, ug/L	MSD Percent Recovery, %	RPD, %	Acceptability Limits: RPD, %
Naphthalene	20.0	18.4	92.0	4.77	60
Acenaphthylene	20.0	19.5	97.5	4.5†	60
Acena ph thene	20.0	22.5	113	0.443	60
Fluore ne	4.00	3.98	100	0	60
Phena nt hr en e	2.00	2.20	67.9	1.46	60
Anthra ce ne	2.00	1.31	65.5	30.4	60
Benzo [k]fl uo ranthene	2.00	1.96	8 8.5	7.08	60
Indeno[1,2,3-cd]pyrene	2.00	1.88	77.5	7.45	60

Column to be used to flag recovery and RPD values with an asterisk. Values outside of QC limits. # *

D Detection

31321

ą.

GTEL Milford, NH N204128A.DOC:15

G				 ۱	Mead Milfo	dow ord,	broo New	ok Ir ZHa	ndus mps	striat hire	Par 030	k)55			· -		Ţ	CF AN	₩ ₩D	IN- Al	-01 NA	F-C LY:	:US SIS	STO SR	DD EQ	Y F UE	RE EST	CO r	RD							N	10.	<u> </u>	<u> </u>	41		C F	UST EC(13339
Project M	aniiger:	N C		() 67	2-48 		, FA 	x ()	503) 	4.5	3-810	05 	رعتي تي	,		1	·· .		1			A		LY	SIS	RE	QU	ES	T		, ,			·			ΟΤ	HEF	1				1 A
BEU	CE A	ITRENS								-, ,		1.		-	/				u I		ļi Ģ	ņ					1		בופו	2101	,	les .		U N	u	6	ļ								5
Address (Ollice):						Si	le Le	ocali	on;								ž L	MTE		5039	ο C						Ð	es(+	-)Sa		rbicio	u	PC.	0109	vity	1				·			0	₹ ,"0
12 WALK	ER WAY	ALISA	NY	_^	17			Ŀ	ufi	Enl	ð	N	Ľ				-	3	5	1				L)		n	Ú	(-25)	Z	z		۵ ۲	707	ŋ	ω	React									جھ
	umber: ~ ごはつ	/)					٩r	ojec	1 Na	me:		ĩ						2020			0.0	н ш -		ALCO.	! 	ń co	(5:-)	NBS	L Y L	L Y L	!	L)	Semi	S I	7420	L L					'			.	Che a
Lanest the	it the propa	r lield samp	ling				Sa	<u> </u>	er N	$\frac{2}{2}$	/ > /Pii	L - nt):			·		-[;	ן בן ב	020		7	38.C		40 G		D C G	00 2		EN 0	AEO		ici de		C) 2		10					1				ta
procedure collection	is were used of thuse sa	t during the mples.						7	A 1	LIÉ	ر. ر.		ΰ£	F.	1.7=			× 205	Ω.		0	22	12	. 1	br	10		10128	22 70	E270		Fest		olluta	12.0	Po C	nDis)		ł	-	ļ	1		3	<u>`</u> }
			(V)					<u>[]</u>		- / L R	101	^	1	<u> </u>				a :	0 8		513	ЦÌ П	502.	3010	320 5	080	240 2	Ű	11	()	1010	-	22	ray Po	8	Flas	C (Sir							orator	9
Field	Source	GTEL	2 2 2		M.	atri	X			Pr	ese	rve	d		Sar	npling		carb.	9 2 2		÷529	315	11	i.v	ന	no l		325	toniv	vino.	i B	e als	€1 ≌	- Prio	5	u	oy G			ł				Lab	:4
Sample ID	of	Lab #	CONTA	тея	_	~	1DGE	Ц Ц Ц Ц Ц Ц Ц Ц	-	ő	0		ш z	HER 1915	ш	1.1		Hyord	X only	8 oy \$0	and Gr	~	503.	50° T	6C2 I	508 1	277 I	BNF	. 625 Bh	E25 AE	610 I	N - XC	D lyels	Metais	D 235	viiviso.	Suct ID		İ			ived by	ived by	ived by	T
		{ only }	u	X	So	Ā	S.	0ã ⊢ 8	Ŷ	Z I	Î	ğ	2 Z	(Spe	DY'	≧		593 1		<u>6</u>	ō	d m	E P 4	а Ш	4 a a	ч ц ш	и ш	4 4 5	E t-	44	- 7 d 3	цъ	TC:	EFL	LEA	U S S	Pro					Rece	Rece	Rece	9
61-17		<u></u>	. 6	X					X			X			1/-	12:7	5								3						3								1		1		-		\overline{V}
hus II_		(\mathcal{A})	6	*					X			<u> </u>			4/-	111	<u> </u>								5						3											ŝ	ן פֿונ	a the	<u>v</u>
MW12-		$-\underline{03}$	4	X		. <u> </u>			X			Ľ			<u>4/2</u>	1:4	5								ذ	; ; 					. . .														- C
MUS		$\frac{31}{5}$	4	×					X			X			4/2	2:0	0								3 	 	 i	 			i 5 1					! 				-	l			-	$\overline{\mathbf{c}}$
ALDIE		$\frac{0}{2}$	4	X				• - -'	X	-		<u>×</u> .			4/2	4:0	o a					·•			З						3											ate 2	ale	ale	ġ.
<u>4119 2</u>		1	<u> </u>	х v			•		. X			<u>×</u>			:1L±	. 4:3	<u> </u>								3		 				ر .				 						i		30	μ μ μ	1
C.W I	····· / •····	055	6	<u>^</u>		•						_ <u>X</u>			<u>' -</u>	$\gamma \gamma$	<u>-</u>	•	• • •				•				!	1			3					• • •	• • • •	•••••	-	1]		¥.
(ELD)	- note	CA	6	X			••••		× x	•					<u>4</u> 	514			~				-		2		i •									• • •	1	· i · · · ·		•					
RINGEN	īέ	10		X					x			X			11. °	12.3			:		i		•		, 7 , 1 7 ,	1	:	•			3					•	•	•	·	• •			1		
TR: F	BLANK	11	-	X				· • ·				x			÷		<u>-</u>								4			·			1			1	· · ·	1	1	i	-						
,	SPEC	IAL HAND		G			- i		PEC	CIAL	DET	EÇI	FION	LIM	ITS (Specify)	•					RE	MAI	(KS		·	•									•	-+	-+	·			0	}		
EXPEDITEC) (48 hrs) 🗋	CO	NTAC	T				Ì														ł																				a de	il		
SEVEN BU	SINESS DAYS		HOUN		•		• • • • • •	•	<u> </u>																																	eg jo		, in the second se	
OTHER	(#) BUSINES	S DAYS 🛛	Q	101	⊨#		•	•	PEC	IAL	REP	ORI	FING	RE	DUIRE	MENTS	5 (S	peci	ly)	•		1																				ped I	hed	hed	
UA/QC Lev	el CLP []	Blue D C	CONT	RACI	Ϊ₿			·														LAI	s us	SE O	NLY	;	•	•				St	orag	e Lo	catio		•	2.2	iB	-4	3	S S	sinbl	Jquis	
L		f	AX 🗋																			1 01	#									w	ork (Jude	e ti					•		lein 🖌	Selir	Selir	-

June 17, 1992

Bruce Ahrens Groundwater Technology, Inc. 12 Walker Way Albany, NY 12205

Dear Mr. Ahrens:

This report, previously dated 04/15/92, is a reissue.

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 03/24/92 under chain-of-custody records 42825 and 42826.

A formal Quality Assurance / Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified (approved) by the State of New York under certificate number 10599.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely, GTEL Environmental Laboratories, inc.

Jurant. Me

Susan C. Uhler Laboratory Director

Albanda Miluclacente Pa Roseanna Dube

Quality Assurance Officer

-

ANALYTICAL RESULTS

Aromatic Volatile Organics in Soil Modified EPA Method 8020^a

GTEL S	ample Number	036 52-05	03652-06	03652-13	•-			
Clier	nt Identification	MW-13 (6-8)	MW-13 (8-10)	SB-2 (2-4)				
	Date Sampled	03/19/92	03/19/92	03/20/92				
	Date Analyzed	03/26/92	03/26/92	03/26/92	-			
Analyte	Detection Limit, mg/kg	Concentration, mg/kg (dry)						
Benze ne	0 .10	< 0.11	< 0.11	< 0.11	÷-			
Toluene	0.25	< 0.28	0.38	< 0.27				
Ethyl Benzene	0.40	< 0.44	0.52	< 0.44				
Xylene s (t ot al)	0.85	3.0	6.3	< 0.93				
Chloro b enzene	0.20	< 0.22	< 0.23	< 0.22				
1,2-Di ch lo ro benzene	0.26	< 0.29	< 0.29	< 0.29				
1,3-Di ch lorobenzene	0.26	< 0.29	< 0.29	< 0.29				
1,4-Dichlorobenzene	0.20	< 0.22	< 0.23	< 0.22				
Detect io n Li mit Multiplier ^b		1.10	1.13	1.10				
Percent Solids		87.8	86.4	83.4				

a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Methanolic extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.

b The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids.

GTEL Milford, NH N203652A.DOC:2

. .

ANALYTICAL RESULTS

Aromatic Volatile Organics in Soil - Low Level Modified EPA Method 8020^a

GTEL S	ample Number	036 52-0 1	03652-02	03652-03	03652-04			
Clier	nt Identification	MW-1 4 (10-12)	MW-14 (61 <i>-</i> 63)	MW-12 (6-8)	MW-12 (18-20)			
	Date Sampled	03/17/92	03/18/92	03/19/92	03/19/92			
	Date Analyzed	03/30/92	03/31/92	03/31/92	03/31/92			
Analyte	Detection Limit, ug/kg	Concentration, ug/kg (dry)						
Benzene	1.0	< 0.9	< 1.0	< 1.0	< 0.9			
Toluene	1.7	< 1.6	4.1	7.5	5.8			
Ethyl Benzene	1.0	< 0.9	2.0	3.2	2.0			
Xylen es (tot al)	2.0	< 1.9	8.3	14	9.3			
Chlorobenzene	1.0	< 0.9	< 1.0	< 1.0	< 0.9			
1,2-Di chloro benzene	1.7	< 1.6	< 1.6	< 1.7	< 1.6			
1,3-Di ch lorobenzene	1.7	< 1.6	< 1.6	< 1.7	< 1.6			
1,4-Di ch lorobenzene	1.7	< 1.6	< 1.6	< 1.7	< 1.6			
Detec tion L imit Multiplier ^b		0.93	0.96	1.01	0.93			
Perce nt Solids		81.9	86.8	0.08	85.8			

Test Methods for Evaluating Solid Waste, SW-846. Third Edition, Revision 0, Table 2, US EPA November 1986; sample prepared by low level solvent extraction and purge and trap. Method modified to include additional compounds. Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids. а

b

-- .

ANALYTICAL RESULTS

Aromatic Volatile Organics in Soil - Low Level Modified EPA Method 8020^a

GTEL S	Sample Number	03652-14	-					
Clie	int Identification	SB-2 (8-10)						
	Date Sampled	03/20/92						
	Date Analyzed	03/31/92						
Analyte	Detection Limit, ug/kg	Concentration, ug/kg (dry)						
Benze ne	1.0	< 0.9						
Toluene	1.7	6.8	•-					
Ethyl Benzene	1.0	2.3	•-					
Xylen es (t ot al)	2.0	11						
Chlorobenzene	1.0	< 0.9						
1,2-Di ch lo ro benzene	1.7	< 1.5						
1,3-Di ch lorobenzene	1.7	< 1.5						
1,4-Di ch lo roben zene	1.7	< 1.5						
Detec tio n Li mit Multiplier ^b		0.91		•-				
Perce nt Solids		88.6			<u> </u>			

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 2, US EPA November 1986; sample prepared by low level solvent extraction and purge and trap. Method modified to include additional compounds. Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids. а

b

--

ANALYTICAL RESULTS

Aromatic Volatile Organics in Water Modified EPA Method 8020^a

GTEL	Sample Number	03652-10	03652-11	03652-12	-
Clie	ent Identification	RINSEATE BLANK	FIELD BLANK	TRIP BLANK	
	Date Sampled	03/20/92	03/20/92	03/17/92	
	04/01/92	04/01/92	04/01/92	_	
Analyte	Detection Limit, ug/L		Concentratio	n, ug/L	
Benzene	0.2	< 0.2	< 0.2	< 0.2	
Toluen e	0.5	0.6	< 0.5	< 0.5	
Ethyl Benzene	0.8	< 0.8	< 0.8	< 0.8	
Xylene s (tot ai)	1.7	< 1.7	< 1.7	< 1.7	
Chlorobenzene	0.2	< 0.2	< 0.2	< 0.2	
1,2-Dic hi o ro benzene	0.4	< 0.4	< 0.4	< 0.4	
1,3-Dic hl orobenzene	0.4	< 0.4	< 0.4	< 0.4	
1,4-Dic hlorobenz ene	0.3	< 0.3	< 0.3	< 0.3	
Detecti on Lim it Multiplier ^b		1	1	1	

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds. The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а b

dilutions.

1

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310^a

GTEL Sa	mple Number	03652-01	03652-02	03652-03	03652-04			
Client	ldentification	MW-14 (10-12)	MW-14 (61-63)	MW-12 (6-8)	MW-12 (18-20)			
	Date Sampled	03/17/92	03/18/92	03/19/92	03/19/92			
	ate Extracted	03/26/92	03/26/92	03/26/92	03/26/92			
	Date Analyzed	04/03/92	04/03/92	04/03/92	04/03/92			
Analyte	Detection Limit, ug/kg	Concentration, ug/kg						
Naph th alene	60	< 73	< 70	< 76	< 69			
Acenaphthylene	77	< 93	< 89	< 98	< 89			
1-Methylnaphthalene	60	< 73	< 70	< 76	< 69			
2-Methylnaphthalene	60	< 73	< 70	< 76	< 69			
Acenaphthene	60	< 73	< 70	< 76	< 69			
Fluor en e	7.0	< 8.5	< 8.1	< 8.9	< 8.1			
Phen an threne	21	< 25	< 24	< 27	< 24			
Anthracene	22	< 27	< 26	< 28	< 25			
Fluoranthene	7.0	< 8.5	32	18	< 8.1			
Pyrene	9.0	< 11	< 10	< 11	< 10			
Benzojajanthracene	0.43	< 0.52	11	4.1	< 0.49			
Chrysene	5.0	< 6.1	< 5.8	< 6.4	< 5.8			
Benzo[b]fluoranthene	0.60	< 0.73	9.5	5.8	0.78			
Benz o/ k]fluoranthene	0.57	< 0.69	6.3	3.4	< 0.66			
Benz oí a]pyrene	0.77	< 0.93	12	6.0	< 0.89			
Dibenzo[a,h]anthracene	1.0	< 1.2	1.2	< 1.3	< 1.2			
Benz o[<i>q</i> , <i>h</i>,<i>i</i>]perylene	2.5	< 3.0	8.6	3.5	< 2.9			
Indeno[1,2,3-cd]pyrene	1.4	< 1.7	5.1	2.4	< 1.6			
Detection Limit Multiplierb	1.21	1.16	1.27	1.15				
Perc ent S olids, %		81.9	86.8	80.0	85.8			

a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3550 (low level sonication). Results are reported on a dry weight basis.
 b The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids.

GTEL Milford, NH N203652A.DOC:6

.

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310^a

GTEL Sa	mple Number	03652-05	03652-06	03652-07	03652-08			
Client	dentification	MW-13 (6-8)	MW-13 (8-10)	SS-1	SS-2			
	Date Sampled	03/19/92	03/19/92	03/18/92	03/18/92			
	ate Extracted	03/26/92	03/26/92	03/26/92	03/26/92			
	Date Analyzed	04/03/92 ^C	04/04/92 ^d	04/04/92	04/04/92 ^e			
A nalyte	Detection Limit, ug/kg	Concentration, ug/kg						
Naphth al ene	60	7000	230000 ^d	< 770	5700			
Acenap h thylene	77	< 880	< 3500	< 990	< 2100			
1-Methylnaphthalene	60	2000	57000	< 770	< 1600			
2-Methylnaphthalene	60	9100	3000 00 d	< 770	6900			
Acenap h th en e	60	3000	120000	< 770	< 1600			
Fluoren e	7.0	2200	68000 ^d	120	4300			
Phenan th rene	21	9000 ^C	150000 ^d	440	20000 ^e			
Anthracene	22	320	10000	940	< 12000 ^e			
Fluoranthene	7.0	1900	59000 ^d	1200	30000 ^e			
Pyrene	9.0	< 100	< 410	< 120	< 250			
Benzo[a] a nt hracene	0.43	230	7500	430	11000 ^e			
Chryse ne	5.0	72	2600	200	5100			
Benzo[b] fluoranthene	0.60	75	2700	520	9700 ^e			
Benzo(k) fluoranthene	0.57	52	1800	300	5800 ^e			
Benzo[a] pyrene	0.77	92	2900	67 0	12000 ^e			
Dibenz o[a, h]anthracene	1.0	< 11	200	79	1500			
Benzo[g, h, i] perylene	2.5	43	1100	400	5900			
Indeno[1,2,3-cd]pyrene	1.4	< 16	450	280	4900			
Detection Limit Multiplierb	11.4 ^C	45.6	12.8	27.4 ^e				
Percent Solids, %		87.8	86.4	78.4	73.5			

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3550 (low level sonication). Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids. Detection Limit Multiplier for analyte noted = 114; Date Analyzed = 04/14/92. Detection Limit Multiplier for analyte noted = 912; Date Analyzed = 04/10/92. Detection Limit Multiplier for analytes noted = 548; Date Analyzed = 04/11/92. а

b

c d

e

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310^a

GTEL Sa	mple Number	03652-09	03652-13	03652-14				
Client	Identification	SS-3	SS-2 (2-4)	SB-2 (8-10)	-			
	Date Sampled	03/18/92	03/20/92	03/20/92				
	ate Extracted	03/26/92	03/26/92	03/26/92				
[Date Analyzed	04/04/92 ^f	04/04/92	04/04/92	-			
Analyte	Detection Limit, ug/kg	Concentration, ug/kg						
Naphthalene	60	10000	< 73	320				
Acena ph thylene	77	< 2000	< 93	< 85				
1-Meth ylnaph thalene	60	< 1600	< 73	< 66				
2-Methylnaphthalene	60	< 1600	< 73	150				
Acena ph thene	60	< 1600	< 73	< 66				
Fluore ne	7.0	8000	10	8.7				
Phena nth rene	21	29000 ^f	< 25	< 23				
Anthracene	22	< 12000 ^f	92	< 24	**			
Fluoranthene	7.0	50000 ^f	74	< 7.7				
Pyrene	9.0	< 240	< 11	< 9.9				
Benzo[a]a nt hracene	0.43	17000 ^f	26	0.90				
Chrysene	5.0	8300 ^f	9.0	< 5.5				
Benzo[b]fluoranthene	0.60	14000 ^f	21	< 0.66				
Benzo/k]fluoranthene	0.57	8500 ^f	14	< 0.63				
Benzo[a]pyrene	0.77	17000 ^f	26	< 0.85				
Dibenz o[<i>a</i> , <i>h</i>]anthracene	1.0	2200	2.2	< 1.1				
Benzo[g ,h, i] perylene	2.5	8500	15	< 2.8				
Indeno[1,2,3-cd]pyrene	1.4	6400	8.3	< 1.5				
Detection Limit Multiplierb		2 6 .6 ^f	1.21	1.10				
Percent Solids, %		71.9	83.4	88.6				

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3550 (low level sonication). Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids. Detection Limit Multiplier for analyte noted = 532; Date Analyzed = 04/11/92. а

b

f

-.

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

GTEL Sa	mple Number	03652-10	03652-11						
Client	Identification	RINSEATE BLANK	FIELD BLANK						
	Date Sampled	03/20/92	03/20/92	••					
	ate Extracted	03/27/92	03/27/92						
	Date Analyzed	04/02/92	04/02/92	•-					
Analyte	Detection Limit, ug/L	Concentration, ug/L							
Naphthalene	1.8	< 1.8	< 1.8						
Acenaphthylene	2.3	< 2.3	< 2.3						
1-Meth ylnap hthalene	1.8	< 1.8	< 1.8						
2-Methylnaphthalene	1.8	< 1.8	< 1.8						
Acena ph th e ne	1.8	< 1.8	< 1.8						
Fluore ne	0.21	< 0.21	< 0.21						
Phena nt hren e	0.64	< 0.64	< 0.64						
Anthracene	0.66	< 0.66	< 0.66						
Fluora nt hene	0.21	< 0.21	< 0.21						
Pyrene	0.27	< 0.27	< 0.27						
Benzo [a]anthracene	0.013	< 0.013	< 0.013						
Chrysene	0.15	< 0.15	< 0.15						
Benzo [b] fluoranthene	0.018	< 0.018	< 0.018		-				
Benzo (k)fl uo ranthene	0.017	< 0.017	< 0.017						
Benzo [a]pyrene	0.023	< 0.023	< 0.023						
Díbenz o [<i>a,h</i>]anthracene	0.030	< 0.030	< 0.030						
Benzo [g , h, i] perylene	0.076	< 0.076	< 0.076						
Indeno[1,2,3-cd]pyrene	< 0.043	< 0.043							
Detection Limit Multiplierb		1.00	1.00						

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3510 (liquid-liquid). The detection limit multiplier indicates the adjustments made to the data and detection limits for sample а

b dilutions.

GTEL Milford, NH N203652A.DOC:9

.

QA NONCONFORMANCE SUMMARY

1.0 Method Blank Analysis

- 1.1 Zero target compound(s) were found in the method blank.
- 2.0 Calibration Verification
 - 2.1 The control limits were exceeded for zero calibration check compounds.

3.0 Surroqate Compound Recoveries

3.1 The recovery limits were exceeded for one surrogate compound for EPA Method 8310 in two samples due to interference from the presence of high concentrations of analytes in the samples. One surrogate out of control does not invalidate the reported results.

4.0 Matrix Spike (MS) Accuracy

4.1 The recovery limits were exceeded in the batch spike for zero compounds.

5.0 Sample Duplicate Precision

5.1 The maximum relative percent difference (RPD) was/were exceeded for zero compound(s) in the sample duplicate.

6.0 Sample Integrity

6.1 Sample handling and holding time criteria were met.

-

METHOD BLANK RESULTS

Aromatic Volatile Organics in Soil Modified EPA Method 8020^a

GTEL Sample Number		METHOD BLANK	-		
	GTEL File ID	20MBL0326A			
	Date Analyzed	03/26/92			
An alyte	Analyte Detection Limit, mg/kg		Concentration, mg/kg (dry)		
Benzene	Ð.10	< 0.10		•-	
Toluene	0.25	< 0.25			
Ethyl Benzene	0.40	< 0.40	~.	•-	
Xylene s (t ot al)	0.85	< 0.85			
Chlorobenzene	0.20	< 0.20			
1,2-Di ch lorobenzene	0.26	< 0.26			
1,3-Dichlorobenzene	0.26	< 0.26			
1,4-Dic h lorobenzene	0.20	< 0.20		+-	
Detect io n Limit Multiplier ^b		1.00			

a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Methanolic extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.

b The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids.

٠.

GTEL Milford, NH N203652A.DOC:11 $^{\prime}$

,

METHOD BLANK RESULTS

Aromatic Volatile Organics in Soil - Low Level Modified EPA Method 8020^a

GTEL Sample Number		METHOD BLANK			
	GTEL File ID	14SBL0330A			_
	Date Analyzed	03/30/92			
Analyte	Analyte Detection		Concentration, ug/kg (dry)		
Benzene	1.0	< 1.0			
Toluene	1.7	< 1.7			
Ethyl Be nzene	1.0	< 1.0	••		
Xylen es (t ot al)	2.0	< 2.0			
Chlor ob en z ene	1.0	< 1.0			
1,2-Di ch lorobenzene	1.7	< 1.7			
1,3-Di ch lorobenzene	1.7	< 1.7			
1,4-Di ch lorobenzene	1.7	< 1.7			
Detec tio n Limit Multiplier ^b		1.00			

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 2, US EPA November 1986; sample prepared by low level solvent extraction and purge and trap. Method modified to include additional compounds. Results are reported on a dry weight basis. The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of division and percent collide. а

b of dilutions and percent solids.

GTEL Milford, NH N203652A.DOC:12

-

METHOD BLANK RESULTS

Purgeable Aromatics in Water Modified EPA Method 8020^a

GTEL Sample Number		METHOD BLANK			
	GTEL File ID	20WBL0401A		-	
	Date Analyzed	04/01/92			
Analyte	Analyte Detection		Concentration, ug/L		
Benzen e	0.2	< 0.2			
Toluene	0.5	< 0.5			
Ethyl B e nzene	0.8	< 0.8		•-	
Xylene s (t ota l)	1.7	< 1.7			
Chlorobenzene	0.2	< 0.2			
1,2-Dic hl orobenzene	0.4	< 0.4			
1,3-Dic hi o ro benzene	0.4	< 0.4			
1,4-Dic hl orobenzene	0.3	< 0.3			
Detection Limit Multiplier		1			

a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Methanolic extraction by EPA Method 5030 (purge and trap). Method modified to include additional compounds.

GTEL Milford, NH N203652A.DOC:13

-_

SURROGATE RECOVERY RESULTS

Volatile Organics in Soil (Trifluorotoluene) EPA Method 8020

Sample	Amount Added, ug/L	Surrogate Recovery, %
METHOD BLANK (03/26/92)	47.6	75.2
03652 -0 5	47.6	72.2
03652 -0 6	47.6	72.4
03652-13	47.6	70.4
03652 -0 1 M S	47.6	70.5
03652 -0 1 DUP	47.6	69.4

Acceptability Limits^a 45-125%

а MS DUP Laboratory generated acceptability limits updated 07/11/91. Matrix Spike. Sample Duplicate.

ENVIRONMENTAL LABORATORIES, INC.

SURROGATE RECOVERY RESULTS

Volatile Organics in Soil - Low Level (Trifluorotoluene) EPA Method 8020

Sample	Amount Added, ug/L	Surrogate Recovery, %
METHOD BLANK (03/30/92)	47.6	90.3
03652-01	47.6	77.5
0365 2-0 2	47.6	81.2
03652-03	47.6	52.0
03652-04	47.6	66.2
03652-14	47.6	60.7
0365 2-01 M S	47.6	84.0
03652-01 DUP	47.6	86.3

Acceptability Limits^a 45-125%

Laboratory generated acceptability limits updated 07/11/91. Matrix Spike. Sample Duplicate. а

MS DUP

1

GTEL Milford, NH N203652A.DOC:17

.

SURROGATE RECOVERY RESULTS

.

Purgeable Aromatics (Trifluorotoluene) Modified EPA Method 8020

Sample	Amount Added, ug/L	Surrogate Recovery, %
METHOD BLANK (04/01/92)	47.6	67.2
03652-10	47.6	84.8
03652-11	47.6	83.4
03652- 12	47.6	86.3

Acceptability Limits^a 45-125%

Laboratory generated acceptability limits updated 07/11/91. Matrix Spike. Sample Duplicate. а

MS

.

DUP

MATRIX SPIKE RECOVERY

Purgeable Aromatics Modified EPA Method 8020

Sample S**piked:** Date of An**a**lysis: Standard I**D**:

03652-01 03/26/92 B91SM1002 Client ID: MW-14 (10-12) Matrix: Soil

Compound	Sample Results, mg/kg	Spike Amount, mg/kg	MS Results, mg/kg	MS % Percent Recovery	Acceptability Limits, % ^a
Benzen e	< 0.12	10.1	10.3	102	40-160
Toluene	< 0.29	9.63	10.3	102	40-160
Ethyl Benzene	< 0.47	10.0	11.5	115	40-160
Xylenes (to tal)	< 1.90	30.5	34.5	113	40-160

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % Recovery is not calculated when original sample amount exceeds five times the NA spike amount.

DUPLICATE SAMPLE RECOVERY

Purgeable Aromatics Modified EPA Method 8020

Sample N umber : Date of A na lysis:	03652-01 03/26/92	Client ID: Matrix:	MW-14 (10-12) Soil	
Compound	Sample Resul mg/kg	ts, Duplicate Results mg/kg		Acceptability Limits, % ^a
Benzen e	< 0.12	< 0.11	NA	40
Toluene	< 0.29	< 0.28	NA	40
Ethyl Benzene	< 0.47	< 0.45	NA	40
Xvlenes (total)	< 1.90	< 0.96	NA	40

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % RPD is not calculated when sample values are less than 10 times the detection NA lim**it.**

MATRIX SPIKE RECOVERY

Purgeable Aromatics - Low Level Modified EPA Method 8020

Sample S piked:	
Date of Analysis:	
Standard ID:	

03652-01 03/31/92 B92AC086

MW-14 (10-12) Client ID: Soil Matrix:

Compound	Sample Results, ug/kg	Spike Amount, ug/kg	MS Results, ug/kg	MS % Percent Recovery	Acceptability Limits, % ^a
Benzen e	< 0.93	20.0	22.2	111	40-160
Toluene	< 1.57	20.0	19.4	97.0	40-160
Ethyl Benzene	< 0.93	20.0	18.0	90.0	40-160
Xylenes (total)	< 1.85	60.0	55.8	93.0	40-160

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % Recovery is not calculated when original sample amount exceeds five times the ŇA spike amount.

DUPLICATE SAMPLE RECOVERY

Purgeable Aromatics - Low Level Modified EPA Method 8020

Sample N umbe r: Date of A na lysis:	03652-01 03/31/92	Client ID: Matrix:	MW-14 (10-12) Soil	
Compound	Sample Results ug/kg	s, Duplicate Results, ug/kg	RPD, %	Acceptability Limits, %ª
Benzene	< 0.93	< 0.93	NA	40
Toluene	< 1.57	< 1.58	NA	40
Ethyl Benzene	< 0.93	< 0.93	NA	40
Xylene s (to ta l)	< 1.85	< 1.86	NA	40

а

Laboratory generated acceptability limits updated 4/88. Not Applicable; % RPD is not calculated when sample values are less than 10 times the detection NA lim**it.**

GTEL Milford, NH N203652A.DOC:22

Al Gambuck

METHOD BLANK RESULTS

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310^a

	GTEL Blank ID	BS0326-1		
	GTEL File ID BS203261			
	Date Extracted 03/26/92			
	Date Analyzed	04/03/92		
Analyte	Detection Limit, ug/kg	Concentration, ug/kg		
Napht ha lene	60	< 59		
Acena phthyl ene	77	< 76		
1-Methylnaphthalene	60	< 59		
2-Methyinaphthalene	60	< 59		
Acena phthe ne	60	< 59		
Fluorene	7.0	< 6.9		
Phena nthren e	21	< 21		
Anthra cene	22	< 22		
Fluora nt hene	7.0	< 6.9		
Pyren e	9.0	< 8.9		
Benzo [a]anthracene	0.43	< 0.42		
Chrys en e	5.0	< 4.9		
Benzo [b]flu oranthene	0.60	< 0.59		
Benzo /k]fluoranthene	0.57	< 0.56		
Benzo ja]py rene	0.77	< 0.76		
Diben zo [a , h]anthracene	1.0	< 0.99		
Benzo [g ,h,i]perylene	2.5	< 2.5		
Indeno[1,2,3-cd]pyrene	1.4	< 1.4		
Detection Limit Multiplier		0.987		

 a Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986; Extraction by EPA Method 3550 (low level sonication). Results are reported on a dry weight basis.
 b The detection limit multiplier indicates the adjustments made to the data and detection limits as a result of dilutions and percent solids.

> GTEL EN VIRONMENTAL LABORATORIES. INC.

METHOD BLANK RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310^a

	GTEL Blank ID	BW0327-1	
GTEL File ID BW2032			
	03/27/92		
	Date Analyzed	04/02/92	
Analyte	Detection Limit, ug/L	Concentration, ug/L	
Naphthalene	1.8	< 1.8	
Acen ap ht hy lene	2.3	< 2.3	
1-Met hy Inaphthalene	1.8	< 1.8	
2-Methylnaphthalene	1.8	< 1.8	
Acen ap ht he ne	1.8	< 1.8	
Fluor en e	0.21	< 0.21	
Phenanthrene	0.64	< 0.64	
Anthr ac ene	0.66	< 0.66	
Fluoranthene	0.21	< 0.21	
Pyren e	0.27	< 0.27	
Benz o[a]anthracene	0.013	< 0.013	
Chrysene	0.15	< 0.15	
Benzo[b]fluoranthene	0.018	< 0.018	
Benz o [k]fluoranthene	0.017	< 0.017	
Benz o[a] p yrene	0.023	< 0.023	
Dibenzo[a,h]anthracene	0.030	< 0.030	
Benz o[g, h, /]perylene	0.076	< 0.07 6	
Indeno[1,2,3-cd]pyrene	Indeno[1,2,3-cd]pyrene 0.043 < 0.043		
Detection Limit Multiplier 1.00			

Federal Register, Vol. 49, October 26, 1984. Sample preparation by liquid/liquid extraction.
 The detection limit multiplier indicates the adjustments made to the data and detection limits for sample

dil**ut**ions.

GTEL Milford, NH N203652A.DOC:15

SURROGATE RECOVERY SUMMARY

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310

	Percent Recovery, %		
GTEL Sample ID	\$1 (NBZ)	S2 (TPH)	
BS0326-1	81.6	118	
03652-01	99.7	112	
03652-02	94.2	117	
03652-03	94.1	107	
03652-04	93.9	109	
03652-05 (04/03/92)	101	97.0	
03652-05 (04/14/92)	108	103	
03652-06 (04/04/92)	61.1	358*	
03652-06 (04/10/92)	D	D	
03652-07	60.0	56.3	
03652-08 (04/04/92)	81.7	133	
03652-08 (04/11/92)	D	D	
03652-09 (04/04/92)	80.9	255*	
03652-09 (04/11/92)	D	D	
03652-13	86.3	113	
03652-14	81.8	96.9	
03652-02 MS	92.0	109	
03652-02 MSD	96.2	111	

Surrogates

S1 S2

D

NBZ Nitrobenzene-d5 33-1419 TPH Terphenyl-d14 33-1419 Surrogate diluted out. % Recovery not calculated when surrogate diluted out. Indicates values outside of acceptability limits. See Nonconformance Summary Section 3.0. Recovery limits as per laboratory practice.

а

7

*

MS Matrix Spike. MSD Matrix Spike Duplicate.

GTEL Milford, NH N203652A.DOC:19

Recovery Limits^a 33-141% 33-141%

SURROGATE RECOVERY SUMMARY

Polynuclear Aromatic Hydrocarbons in Water EPA Method 8310

	Percent Recovery, %		
GTEL Sample ID	S1 (NBZ)	S2 (TPH)	
BW0327-1	115	125	
03652-10	122	131	
03652-11	119	121	

<u>Surrogates</u> NB**Z**N Nitrobenzene-d5 S1

 S1
 INDZ
 INITODERIZERE-05

 S2
 TPH
 Terphenyl-d14

 D
 Surrogate diluted out. % Recovery not calculated when surrogate diluted out.

 *
 Indicates values outside of acceptability limits.

 a
 Recovery limits as per laboratory practice.

 MS
 Matrix Spike

 MSD
 Matrix Spike Duplicate.

Recovery Limits^a 33-141% 33-141%

GTEL Milford, NH N203652A.DOC:20

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Polynuclear Aromatic Hydrocarbons in Soil EPA Method 8310

Sample Sp iked:	03652-02	Clie	nt ID:	MW-14 ((61-63)
Date Analyzed:	04/03/92	Solution ID:		H91MS043A	
Compound	Spike Added, ug/L	Sample Concentration, ug/L	MS Concentration, ug/L	MS Percent Recovery, %	Acceptability Limits, %
Naphthalene	378	38.3	417	100	D-122
Acenap ht hylene	378	< 89.3	365	96.5	D-139
Acenap ht h en e	378	< 89.3	427	113	D-139
Fluoren e	75.6	< 8.12	77.8	103	D-142
Phenan th rene	37.8	10.5	42.1	83.6	D-155

< 25.5

6.26

< 1.62

Compound	Spike Added, ug/L	MSD Concentration, ug/L	MSD Percent Recovery, %	RPD, %	Acceptability Limits: RPD, %
Naphthalene	387	383	89.2	11.6	60
Acenaphthylene	387	379	98.0	1.55	60
Acenaphthene	387	433	112	0.822	60
Fluorene	77.3	76.6	99.1	3.77	60
Phenanthrene	38.7	34.9	63.1	27.9	60
Anthracene	38.7	48.1	124	0.751	60
Benzo[k]fluoranthene	38.7	41.4	90.9	0.784	60
Indeno[1 2 3-cd]ovrene	38.7	44.3	115	2.88	60

Column to be used to flag recovery and RPD values with an asterisk. Values outside of QC limits. # ★

37.8

37.8

37.8

D-126

D-159

D-116

125

91.6

111

47.4

40.9

42.1

GTEL Milford, NH N203652A.DOC:23

Anthrac**en**e

Benzo[k]fluoranthene

Indeno[1,2,3-cd]pyrene

.

APPENDIX F PAH PROFILE GRAPHS

OSMOSE WOOD PRESERVING, INC. PAHs IN BIOCELL SOILS

Analyte Number	PAH Analyte
1	Napthalene
2	2-Methylnapthalene
3	Acenapthylen e
4	Acenaphthene
5	1-Methylnaphthalene
6	Fluorene
7	Phenanthrene
8	Anthracene
9	Fluoranthene
10	Pyrene
11	Benz[a]anthracene
12	Chrysene
13	Benzo[b]fluoranthene
14	Benzo[k]fluoranthene
15	Benzo[a]pyrene
16	Dibenz[a,h]anthracene
17	Benzo[g,h,i]perylene
18	Indeno[1,2,3-cd]pyrene

PAH Profile SS-1

PAH Profile SS-2

PAH Profile SS-3

PAH Profile SB-2 (2-4)

PAH Profile SB-2 (8-10)

PAH Profile MW-8 (2-4)

PAH Profile MW-12 (6-8)

PAH Profile MW-13 (8-10)

PAH Profile MW-14 (61-63)

PAH Profile Biocell Soil (NE)

NE

PAH Profile Biocell Soil (NW)

NW

PAH Profile Biocell Soil (SE)

PAH Profile Biocell Soil (EC)

EC

4

P

APPENDIX G NAPL PROFILE GRAPHS

1

OSMOSE WOOD PRESERVING, INC. PAHs IN BIOCELL SOILS

Analyte Number PAH Analyte Napthalene 1 2 2-Methylnapthalene 3 Acenapthylene 4 Acenaphthene 5 1-Methylnaphthalene Fluorene 6 7 Phenanthrene 8 Anthracene 9 Fluoranthene Pyrene 10 Benz[a]anthracene 11 12 Chrysene Benzo[b]fluoranthene 13 14 Benzo[k]fluoranthene 15 Benzo[a]pyrene Dibenz[a,h]anthracene 16 Benzo[g,h,i]perylene 17 18 Indeno[1,2,3-cd]pyrene

PAH Profile #2 Fuel Oil

PAH Profile Creosote

PAH Profile Well Product

World Wide Geoscience 6100 Corporate Drive Suite 320 Houston, TX 77036

Attn: Neil Peterson

Certificate #: 20526031 Sample ID: Cressore Date Received: June 26, 1992

GC/HS ANALYSIS OF PAH'S

Compound

area à

-

. .

· ...

Naphthalene	93
Acenapht hyle ne	2.5
Acenaphthono	14.3
Fluorene	6.0
Phonanthrene	11.5
Anthracene	. 6
Fluoranthene	5.3
Fyrene	3.7
Chrysene	5 1 7
Benzo(a)anthracone	. 4
Banzo(b)fluoranthena	. 1
Benzo(k)fluoranthene	< 1
Benzo(a)pyrene	
Indeno(1,2,3,-c,d) pyrme	
Dibenzo (a, h) antibracene	
Benzo(a,h,j)perviene	
and a subscription of a dout	ו7

Daniel Kowalski

World Wide Geoscience 6100 Corporate Drive Suite 320 Houston, TX 77036

Attn: Neil Peterson

Certificate #: 20626033 Sample ID: Well Product My From mw Jymw 7 Date Received: June 26, 1992

GC/MS ANALYSIS OF PAB'S

P.02

Naphthalene	789	mg/L
Acenaphthylens	18.6	mg/L
Acenaphthene	873	mg/L
Rivorane	477	mg/L
Dhananthrene	177	mg/L
Anthragene	1203	mg/L
Fluoranthene	279	nig/L
Burene	166	mg/L
ry rene	32.4	mg/L
Garysene Romao (alanthracéné	40.4	mg/L
Benzo (a) fluoranthana	10.3	mg/I.
Benzo(h)fluoranthana	10.3	mg/L
Benzo(K)riuoranchene	10.8	ma/1
Benzo(a)pyrene	1 4 5	ma/L
Indeno(1,2,3,-c,d)pyrene	⊥4:•J 7 E	ng/1
Dibenzo(a,h)anthracene	7.3	mg/L
Banzo(g,h,i)perylene	5.0	urd / 17

Daniel Kowalski

..... .7UL —

> World Wide Geoscience 6100 Corporate Drive Suite 320 Houston, TX 77036

3-92 FRI 13:16

Sample ID: #2 FX 01 Date Received: June 26, 1992

OC/MS_ANALYSIS OF PAH'S

÷

•

Naphthalene	007	
Acenaphthviene	902	mg/L
Acenaphthene	51.4	mg/L
Fluorene	53.8	mg/L
Phenanthrene	91.3	mg/L
Anthragana.	446	mg/L
Fluoranthe	1342	mg/L
	77.3	mg/L
Pyrene	51.6	mg/L
Chrysene	86.3	ma/L
Benzo(a)anthraceno	5.4	ma/T.
Denzo(b)fluoranthene	4.7	malt
Benzo(k)fluoranthene	4.7	ma/1
Benzo(a)p yren g	<u>4</u> 0	mg/L
Indeno(1,2,3,-a,d)pyrene	1 1 1 1 1 1 1 1	
Dibonzo(a,h)anthracene	13.3	mg/1/
Benzo(a, h. i) nerviene	0,9	mg/L
	5.2	mg/L

Daniel Kowalski

| |•

APPENDIX H BRUSH FIRE LOCATIONS

le

ŀ

4

ſ

APPENDIX I RISK ASSESSMENT CALCULATIONS

CALCULATION OF DERMAL EXPOSURE TO UTILITY REPAIR WORKERS USING RECENT GROUNDWATER DATA

The estimated non-carcinogenic and carcinogenic risks from dermal exposure to groundwater to utility repair workers were updated from the original risk assessment report to reflect the installation of new monitoring wells. Groundwater data were collected from eight monitoring wells (MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, and CW-1) in April of 1992.

Using these data the 95th upper confidence limit (UCL) of the arithmetic mean also known as the reasonable maximum exposure (RME) was calculated. With the exception of CW-1 all monitoring wells were included in the calculation. As in the original risk assessment CW-1 is considered a deep well. Exposure to this deep well is unlikely to occur. The attached table calculates the 95th UCL which was used as the exposure point concentration for the compounds selected as chemicals of concern.

The new exposure point concentrations were put into Table 6-15 from the original report to estimate intake to a utility repair worker from dermal contact with groundwater. To estimate intake for both carcinogenic and non-carcinogenic effects from dermal exposure the equation recommended in the <u>Risk Assessment Guidance for Superfund</u> (US EPA, 1989¹) was used. It should be noted that the calculation of intake from the original report was updated based on information in RAGS, however, all exposure assumptions which were used in the original report remain the same. The equation for calculation of intake by dermal exposure to groundwater is as follows:

INTAKE (mg/kg-day) = CW x SA x PC x ET x EF x ED x CF x 1/BW x 1/AT

where:

CW	=	concentration in water (mg/l)
SA	=	skin area available for contact (2300 cm²)
PC	=	permeability constant (cm/hr)
EŤ	=	exposure time (8 hours/day)
E۴	=	exposure frequency (5 days/year)
ED	=	exposure duration (1 year)
CF	=	conversion factor (liter/1000 cm ³)

¹ US Environmental Protection Agency (EPA). 1989. <u>Risk Assessment Guidance for Superfund</u>. (RAGS). Volume I: Human Health Evaluation Manual. Office of Emergency and Remedial Response: Washington, DC.

- BW = body weight (70 kg)
- AT
- averaging time (75 years x 365 days/year for carcinogenic; ED x 365 days/year for non-carcinogenic)

The resulting maximum daily doses (MDD) for non-carcinogenic effects and lifetime average daily dose (LADD) for carcinogenic effects were used to estimate potential risk. Cancer risk estimates were updated in Table 6-19 of the original report by taking the LADD and multiplying it by the cancer potency and an adjustment factor. The adjustment factor is used to modify the calculated intake (MDD or LADD) into an absorbed dose. Total estimated cancer risk from dermal exposure to groundwater by a utility repair worker is 2.37×10^{-6} . Table 6-20 of the original report summarizes this cancer risk. This value is within EPA's acceptable cancer risk range of 1×10^{-4} and 1×10^{-6} .

Table 6-24 of the original report takes the MDD and divides it by the average daily intake (ADI) and the adjustment factor. The result is a chemical hazard quotient which estimates the potential risk for non-carcinogenic effects. The total hazard quotient is 4.05×10^{-1} (0.4) which is presented in Table 6-24. This value is below EPA's defined acceptable hazard quotient of 1.0.

The results of this reanalysis show that even though the concentrations have increased in groundwater both cancer and non-cancer risks are within EPA-defined acceptable risks levels from dermal exposure to ground water by a utility repair worker.

OSMOSE 95TH UCL BASED ON 4/92 GROUNDWATER DATA

COMPOUND	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MINIMUM	MAXIMUM	MEAN	SD	95TH UCL
VOC#				(ug/l)								
Benzene	0.1	170	0.1	0.1	0.1	120	1.2	0.1	170	41.66	66.71	90.65
Toluene	0.25	150	0.25	0.2 5	0.25	300	1.3	0 .25	3 00	64. 61	109, 07	144.72
Et hyl Benzene	0.4	33	0.4	0.4	0.4	90	0.4	0.4	90	17.86	31.53	41.01
Xylenes (total)	0.85	180	0.85	0.85	0.85	11 00	0.85	0.85	1100	183.46	379.25	461.98
PAHs				~								
Acenaphthene	0.9	0.9	0.9	0.9	0.9	740	0.9	0.9	740	106.49	258.63	296.42
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	1.1	0.105	0.105	0.34	0.26	240	0.36	0.105	240	34.61	83.85	96.19
Fluorene	0.105	0,105	0.105	0.105	0.105	360	0.105	0.105	360	51,52	125.94	144.00
1-Methylnaphthalene	0.9	0.9	0.9	0.9	0.9	540	0.9	0.9	540	77,91	188.65	216.45
2-Methylnaphthalene	0.9	0.9	0.9	0.9	0.9	2100	9.9	0 .9	2100	300.77	734 .53	840.20
Naphthalene	0.9	70	0.9	0.9	0.9	4800	0.9	0.9	4800	696,36	1675.47	1926.80
Phenathrene	0.84	0.32	0.32	0.32	0.32	710	0.7	0.32	710	101.83	248.28	284.17
Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.21	0.043	0.02	0.1	0.049	73	0.077	0.02	73	10.50	25.52	29.24
Benzo(a)pyrene	0.44	0.082	0.033	0.18	0.087	35	0.1	0.033	35	5.13	12.19	14.09
Benzo(b)fluoranthene	0.35	0.054	0.033	0.13	0.065	26	0.071	0.033	26	3.81	9.06	10.47
Benzo(k)fluoranthene	0.19	0.03	0.017	0.072	0.034	15	0.042	0.017	15	2.20	5.23	6.04
Benzo(g.h.i)perylene	0.2	0.038	0.038	0.038	0. 038	10	0.038	0.038	10	1.48	3.48	4.04
Dibenzo(a,h)anthracene	0.064	0.015	0.015	0.015	0.015	1.9	0.015	0.015	1.9	0.29	0.66	0.77
Indeno(1.2.3-cd)pyrene	0,33	0.055	0.0215	9.11	0.055	3,4	0.057	0,0215	3.4	0,58	1.16	1.43

ND - Not Detected

t value = 1.943 (Gilbert, 1987)

UTILITY REPAIR WORKER DERMAL CONTACT WITH GROUNDWATER

EQUATION [1] MDD = CW * SA * PC * ET * EF * ED * CF * 1/BW * 1/AT [2] LADD = CW * SA * PC * ET * EF * ED * CF * 1/BW * 1/AT

UNITS	VALUES
mg/l	See Below
cm2	2300
cm/hr	See Below
1L/1000cm3	0.001
days/year	5
years	1
hrs/day	8
kg	70
days (noncarcinogenic)	365
days (carcinogenic)	27 375
mg/kg-day	EQ[1]
mg/kg-day	EQ[2]
	UNITS mg/l cm2 cm/hr 1L/1000cm3 days/year years hrs/day kg days (noncarcinogenic) days (carcinogenic) days (carcinogenic) mg/kg-day mg/kg-day

RESULTS			· · · · ·
Chemical	Exposure Point Concentration		
	(mg/l)	PC	INTAKE
NONCARCINOGENIC			MDD
Benzene	0.091	0.02	6.35E-06
Toluene	0.145	0.05	2.42E-05
Ethylbenzene	0.041	0.07	9.71E-06
Xvlene	0.462	0.07	1.13E-04
Acenaphthene	0.296	0.09	9.98E-05
Anthracene	0.000	0.09	0.00E+00
Fluoranthene	0.096	0.10	3.42E-05
Fluorene	0.144	0.09	4.77E-05
1-methvinaphthalene	0.216	0.07	5.75E-05
2-methylnaphthalene	0.840	0.07	2.23E-04
Naphthalene	1.927	0.07	5.12E-04
Phenanthrene	0.284	0.09	9.71E-05
Pyrene	0.000	0.10	0.00E+00
		,	LADD
Benzena	0.091	0.02	8.51E-08
Benzo/a\anthracene	0.029	0.10	1.39E-07
Benzo(a)ovrana	0.014	0.10	6.74E-08
Benzo(b)fluoranthene	0.010	0.10	5.02E-08
Benzo(k)fluoranthene	0.006	0.10	2.90E-08
Benzo(a h i) pe rviene	0.004	0.10	1.92E-08
Dibenzo(a h)anthracene	0.001	0.10	3.68E-09
Indeno(1,2,3-cd)pyrene	0.001	0.10	6.86E-09

Table 6-19. UTILITY WORKER: CANCER RISK ESTIMATES, FOR INDIVIDUAL CHEMICALS, BY RECEPTOR AND EXPOSURE PATHWAY

Receptor / Pathway	Chemical	LADD	Cancer Potency		_ Chemical	Total Exposure
		(mg/kg-day)	(mg/kg-day)-1	AF	Risk	Pathway Risk
	ER					
DERMAL CONTACT WIT	TH GROUNDWATER					
	Benzene	8.51E-08	0.029	1.0	2.47E-09	
	Benzo(a)anthracene	1.39E-07	1.7	0.5	4.73E-07	
	Benzo(a)pyrene	6.74E-08	11.5	0.5	1.55E-06	
	Benzo(b)fluoranthene	5.02E-08	1.6	0.5	1.61E-0 7	
	Benzo(k)fluoranthene	2.90E-08	0.76	0.5	4.41E-08	
·	Benzo(g,h,i)perylene	1.92E-08	0.253	0.5	9.72E-09	
	Dibenzo(a,h)anthracene	3.68E-09	12,77	0.5	9.40E-08	
	Indeno(1,2,3-cd)pyrene	6.86E-09	2.67	0.5	3.66E-08	
						2.37E-06

RISK = LADD * CPF

LADD = Lifetime Average Daily Dose (mg/kg-day) CPF = Cancer Potency Factor (mg/kg-day)-1 AF = Adjustment factor (to correspond to absorbed dose)

Table 6-20: CUMULATIVE CANCER RISK ESTIMATES FOR INDIVIDUAL AND COMBINED RECEPTORS

Receptor	Exposure Pathway	Pathway Risk	Contribution to Total Risk	Cumulative Risk
.	X			
Construction Worker, Biocel	3			9.07E-08
	Incidental Ingestion of Soil	1.508-08	16.54%	
	Dermal Contact with Soil	7.55E-08	83.24%	
	Inhalation of Fugitive Dust	2.05E-10	0.23%	
				
Construction Worker, On-Sit	te (Non-Bioceli)			1.01E-06
	Incidental Ingestion of Soil	1.67E-07	16.48%	
	Dermal Contact with Soil	8.44E-07	83.29%	
	Inhalation of Fugitive Dust	2.30E-09	0.23%	
Construction Worker, Off-sit	Ð			2.87E-10
, · · ·	Incidental Ingestion of Soil	4.75E-11	16.54%	
	Dermal Contact with Soil	2.39E-10	83.23%	
	Inhalation of Fugitive Dust	6.51E-13	0.23%	
Uti lity Repa ir Worker				2.37E-06
- •	Dermal Contact With Groundwater	2.37 E-0 6	100.00%	
		here hysenses that the Historian	naad 2 million in die meeste klaad f	en en sen de la constante de la constante de la constante de la constante de la constante de la constante de la

Table 6-24. UTILITY WORKER: HAZARD INDEX ESTIMATES, FOR INDIVIDUAL CHEMICALS, BY RECEPTOR AND EXPOSURE PATHWAY

Receptor / Pathway	Chemical	MDD (mg/kg-day)	ADI	AF	Chemical Hazard Quotient	Exposure Pa thway Hazard Index
UTILITY REPAIR WO	BKEB					
DERMAL CONTACT	WITH GROUNDWATER					
	Benzene	6.35E-06	0.047	1	1.35E-04	
	Toluene	2.42E-05	0.2	1	1.21E-04	
	Ethvibenzene	9.71E-06	0.1	1	9.71E-05	
	Xviene	1.13E-04	2	1	5 .65E-05	
	Acenaphthene	9.88E-05	0.06	0.5	3.29E-03	•
	Anthracene	0.00E+00	0.3	0.5	0.00E+00	
	Fluoranthene	3.42E-05	0.04	0.5	1.71E-03	
	Fluorene	4,77E-05	0.04	0.5	2.39E-03	
	1-methylnaphthalene	5.75E-05	0.004	0.5	2 .88E-02	
	2-methylnaphthalene	2.23E-04	0.004	0.5	1.12E-01	
	Naphthalene	5.12E-04	0.004	0.5	2.56E-01	
	Phenanthrene	9.71E-05	0.3	0.5	6.47E-04	
	Pvrene	0.00E+00	0.03	0.5	0.00E+00	
	• • • •					4.05E-0

Hazard Quotient = MDD / ADI MDD = Maximum Daily Dose (mg/kg-day) ADI = Acceptable Daily Intake (Reference Dose) (mg/kg-day) AF = Adjustment factor (to correspond to absorbed dose)

Table 6-25: TOTAL HAZARD INDEX ESTIMATES BY RECEPTOR

1

.

Receptor	Exposure Pathway	Hazard Index	Contribution to Total Hazard Index	Totel Hezard Index
Construction Wo	rker, Bio cell Incidental Ingestion of Soil De rm al Contact with Soil	3.22E-02 8.11E-02	28.25% 71.14%	1.14E-01
	Inhalation of Fugitive Dust	4./9E-04	0.42%	
Construction Wo	rker, On -Site (Non-Bloceli) Incidental Ingestion of Soil De rm al Contact with Soil Inh al ation of Fugitive Dust	1.31E-02 3.2 9E- 02 1.95E-04	28.35% 71.21% 0.42%	4.62E-02
Construction Wo	rker, Off-site Incidental Ingestion of Soil Dermal Contact with Soil Inh al ation of Fugitive Dust	5.03E-07 1.27E-06 7.49E-09	28.26% 71.35% 0.42%	1.78E-06
Utifity Repair Wo	rker De rm al Contact With Groundwater	4.05E-01	100.00%	4.05E-01