

Proactive by Design

2018 PERIODIC REVIEW REPORT BUFFALO LAKESIDE COMMERCE PARK (CertainTeed Site) BUFFALO, NEW YORK BROWNFIELD CLEANUP PROGRAM Site Number C915185

April 23, 2018 File No. 21.0056854.00

PREPARED FOR:

Ship Certain, L.L.C. 15260 Ventura Boulevard Suite 1120 Sherman Oaks, CA 91403

GZA GeoEnvironmental of New York

300 Pearl Street, Suite 700 | Buffalo, New York 14202 716-685-2300

32 Offices Nationwide www.gza.com

Copyright© 2018 GZA GeoEnvironmental of New York

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 300 Pearl Street Suite 700 Buffalo, NY 14202 T: 716-685-2300 F: 716-248-1472 www.gza.com

VIA EMAIL

April 23, 2018 File No. 21.0056854.00

Mr. David Szymanski New York State Department of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203 email: david.szymanski@dec.ny.gov

Re: 2018 Periodic Review Report
Buffalo Lakeside Commerce Park (CertainTeed Site)
231 Ship Canal Parkway, Buffalo, New York
Brownfield Cleanup Program Site (Number C915185)

Dear Mr. Szymanski:

GZA GeoEnvironmental of New York (GZA) is pleased to submit this Periodic Review Report (PRR) on behalf of Ship Certain, L.L.C. Ship Certain, L.L.C. is the owner and operator of the Buffalo Lakeside Commerce Park Brownfield Cleanup Program (BCP) Site (No. 915185). GZA prepared this PRR in general conformance with the guidelines provided to Ship Certain in the 45-day reminder notice letter dated February 14, 2018.

If you have any questions or need additional information, please call Jim Richert at (716) 844-7048.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

im Richert

James J. Richert, P.G. Senior Project Manager

a. Rout

Bart A. Klettke, P.E. Principal

Cc: John Marciniak (CertainTeed)

TABLE OF CONTENTS

<u>Page</u>

1.0	TIVE SUMMARY	1	
	1.1 1.2 1.3 1.4	BACKGROUND EFFECTIVENESS OF THE REMEDIAL PROGRAM COMPLIANCE RECOMMENDATIONS	1 1 2
2.0	SITE OV	/ERVIEW	2
	2.1 2.2	SITE LOCATION AND FEATURES INVESTIGATION AND REMEDIAL HISTORY	2 2
3.0	EVALUA	ATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS	2
4.0	INSTITU	JTIONAL CONTROL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT	3
	4.1 4.2	IC/EC REQUIREMENTS AND COMPLIANCE IC/EC CERTIFICATION	3 3
5.0	PRR CO	NCLUSIONS AND RECOMMENDATIONS	4
	5.1 5.2	PRR CONCLUSIONS PRR RECOMMENDATIONS	4

FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE PLAN WITH PHOTO LOCATIONS

APPENDICES

- APPENDIX A SITE INSPECTION FORM
- APPENDIX B PHOTOGRAPH LOG
- APPENDIX C 2016 PRE-PAVEMENT EXCAVATON MONITORING REPORT
- APPENDIX D IC/EC CERTIFICATION FORM

1.0 EXECUTIVE SUMMARY

1.1 BACKGROUND

The Buffalo Lakeside Commerce Park Site (CertainTeed Site or Site) is an active manufacturing facility located on a 25.1-acre parcel with an address of 231 Ship Canal Parkway. The Site is situated within the greater 113acre Buffalo Lakeside Commerce Park of Buffalo, New York. **(Figure 1).** The Site is located on what was a railroad yard of the former Hanna Furnace iron manufacturing facility. Environmental Site investigations confirmed the presence of semi-volatile organic compounds (SVOCs) and metals in the soil/fill at concentrations greater than NYSDEC Part 375 Technical and Administrative Guidance Memorandum (TAGM) 4046 soil cleanup objectives. Also, groundwater was determined to have elevated pH. Considering Site contaminants of concern are not volatile, the focus of the Site remedy was to minimize the exposure risks of direct contact and/or inhalation with site contaminants in the soil/fill and the high pH groundwater. The Remedial Action Objectives (RAOs) for the Site included:

- Addressing soils with contaminants above the NYSDEC guidance values in the upper 1-foot;
- Prevention of ingestion or direct contact with groundwater and with soil containing contaminants exceeding the guidance values;
- Implementation and maintenance of engineering and institutional controls.

Institutional Controls Include:

- Property use may include restricted industrial use only;
- Groundwater may not be used without prior treatment and approval of the regulator.

The Engineering Control is:

• Cover System: hardscape and/or imported clean soil (minimum of 12 inches) underlain by a demarcation grid of high visibility yellow ribbon.

The Environmental Easement (EE) which includes greater specificity of the above ICs and ECs was signed by NYSDEC on September 22, 2005.

1.2 EFFECTIVENESS OF THE REMEDIAL PROGRAM

Based upon our PRR inspection conducted on March 29, 2018 and the screening and air monitoring observations performed in November 2016 as part of an on-Site pavement expansion project, the site cover system was confirmed to be in place and appeared to be complete, in good condition, and functioning as intended. Therefore, the Site remedy continues to be effective at meeting Site RAOs. The need for minor repairs of ruts and re-seeding of grass cover at some locations was identified.

1.3 <u>COMPLIANCE</u>

GZA identified the Site to be in compliance with the SMP. The Institutional Controls and Engineering Controls (IC/ECs) remain in place and there are no active remedial systems requiring monitoring or operation and maintenance.

1.4 <u>RECOMMENDATIONS</u>

GZA and CertainTeed recommend no changes to the SMP nor to the frequency of Site inspections and PRR submittals. Implementation of the SMP, including the Excavation Work Plan and maintenance of the Site cover system will continue as the Site continues operations as a manufacturing facility.

2.0 SITE OVERVIEW

2.1 SITE LOCATION AND FEATURES

The Site is in the southeast corner of the Buffalo Lakeside Commerce Park which is bounded by the Hamburg Turnpike (RT 5) to the west, the boundary between the Cities of Buffalo and Lackawanna to the south, railroad tracks to the east, and wetlands and Tifft Street to the north. The Site is flat and in area of the City that was formerly used for heavy industry but is currently sparsely developed by manufacturing and rail uses. (Figure 1). In 2005 the Site (NYSDEC Site No. C915185) was remediated under the Brownfield Cleanup Program (BCP) for restricted industrial use.

2.2 INVESTIGATION AND REMEDIAL HISTORY

Based on information obtained from environmental Site investigations, SVOCs and metals were identified at concentrations above applicable regulatory guidance (TAGM-4046). Other than elevated pH, no contaminants of concern were identified in the on-Site groundwater.

The Remedial Action Objectives (RAOs) for the Site were:

- Address soils with contaminants above the TAGM-46 levels in the upper 1-foot;
- Prevent ingestion or direct contact with soil contaminants;
- Institute and maintain institutional and engineering controls to assure the Site is not used in a manner inconsistent with the future anticipated use (restricted industrial).

The selected site remedy included placement of a site cover system, made up of either clean soil at a minimum thickness of 1-foot or hardscapes including paved roads, parking lots, sidewalks, and/or building slab foundations.

The Site remedy was completed in 2005 and a Certificate of Completion (COC) was issued by NYSDEC.

3.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

GZA performed a Site Inspection during the reporting period (March 31, 2015 to March 31, 2018) on March 29, 2018. No record of inspections during 2016 or 2017 were provided. The completed Site Inspection Form is provided in **Appendix A**. A photo log is provided in **Appendix B** and a map showing the location and orientation of the Site photos is provided as **Figure 2**. Since the previous Site inspection and PRR in 2015, a pavement expansion project was completed by CertainTeed in November 2016. CertainTeed's pavement contractor hired

GZA to implement soil screening and air monitoring as required in the Site Management Plan. No evidence of significantly impacted soil/fill was encountered, and analytical samples collected confirmed that the disturbed soil/fill could remain on Site if covered appropriately. A copy of the soil/fill management report for the pavement expansion project is provided in **Appendix C**. The required cover system is being maintained per the SMP and was observed to be providing complete coverage of the Site. The Site remedy, therefore, continues to be effective at meeting the Site RAOs for protection of current and intended future site users.

4.0 INSTITUTIONAL CONTROL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT

4.1 IC/EC REQUIREMENTS AND COMPLIANCE

IC/ECs for the Site were determined by NYSDEC and specified in the EE issued by NYSDEC on September 22, 2005. Summary lists of the ICs and ECs are provided as follows:

Summary of Site Institutional Controls:

- Property use may include restricted industrial use only;
- Groundwater may not be used without prior treatment and approval of the regulator.

Summary of Site Engineering Control:

• Cover System: hardscape and imported clean soil (minimum of 12 inches) vegetated and underlain by a grid of high visibility yellow ribbon. Hardscapes may include paved roads, parking lots, sidewalks, and/or building slab foundations.

Besides the expansion of exterior paved surfaces, no significant changes to the Site cover system were reported or observed since submittal of the previous PRR on May 11, 2015. GZA provided on-Site Qualified Environmental Professional (QEP) services during the period of earth disturbance for pavement expansion and a report was prepared by GZA detailing the observation and monitoring conducted during that work period. The report **(Appendix C)** was provided to NYSDEC (David Szymanski) on December 2, 2016.

Based on observations made during GZA field observations and Site inspections Ship Certain is complying with provisions of the SMP relative to IC/ECs. Manufacturing activity continues at the Site and CertainTeed is aware that monitoring and observation by a QEP is required during earth moving activities. Although not a required EC, additional protection of the Site will be provided by a six-feet high PVC perimeter fence which is being installed this month and will restrict access to the Site.

4.2 IC/EC CERTIFICATION

The Site-specific IC/EC Certification Form, for reporting period of March 31, 2015 to March 31, 2018, was provided to Ship Certain as an attachment to the February 14, 2018 Reminder Notice letter sent by NYSDEC. This form has been completed by Ship Certain and Certified by GZA as QEP. The completed and certified IC/EC Certification Form for this reporting period is included in **Appendix D** of this PRR.

5.0 PRR CONCLUSIONS AND RECOMMENDATIONS

5.1 PRR CONCLUSIONS

The IC/ECs remain in place and are performing as intended. There are no active remedial systems requiring operation, monitoring, or maintenance. CertainTeed and their operations appear to be in general compliance with the SMP with a few relatively minor areas in need of improvement as follows:

- Due to an oversight, annual inspections of the Site cover system were not conducted during 2016 and 2017.
- The vegetative cover of the soil cover system is damaged (ruts and bare spots) at several locations due mostly to trucks cutting corners and snow plow blades scraping off the grass cover.

5.2 PRR RECOMMENDATIONS

GZA and CertainTeed recommend no changes to the SMP nor to the frequency of site inspections (annual) and PRR submittals (Triennial). Implementation of the SMP, including the Excavation Work Plan and maintenance of the Site cover system will continue as Site manufacturing operations continue.

To not miss future required site inspections, CertainTeed has contracted GZA to conduct annual inspections of the Site cover system for the next three years and to prepare the next PRR in 2021.

CertainTeed is in the process of having a six-feet high PVC fence installed around the entire site perimeter. The fence posts are being driven, not drilled. Once installed, this fence will help to reduce trespassing and damage to the vegetative grass cover.

During the spring and summer of 2018, CertainTeed will repair identified ruts and grass bare spots. The next site inspection is planned for early fall (September/October) of 2018 to demonstrate the above improvements.

FIGURES

NOTES:

- 1. BASE MAP FROM ALTA/ACSM LAND TITLE SURVEY URBAN CLASSIFICATION KROG USC ASSOCIATES-1, LLC. DRAWING NO. CPM-2, DATED FEB. 14, 2005. PREPARED BY PARSONS TRANSPORTATION GROUP, BUFFALO, NEW YORK.
- 2. LOCATION AND ORIENTATION OF PHOTOGRAPHS SHOULD BE CONSIDERED APPROXIMATE.

APPENDIX A

SITE INPECTION FORM

ENVIRONMENTAL INSPECTION FORM Hanna Furnace - Former Railroad Yard Area (Subparcel 1) Buffalo Lakesile (C915185)	
Property Name: - <u>certainTeed site</u> Inspection Date: <u>March 29 281</u> Property Address: <u>231 ship cane(Parkway</u> City: <u>Buffalo</u> State: <u>NY</u> Zip Code: <u>14218</u>	8
Property ID: (Tax Assessment Map) Section: 132-20 Block: 1 Lot(s): 11	dife
Weather (during inspection): Temperature: 48 F Conditions: Overcast + Fog	

SIGNATURE:

đ

Î

1

The findings of this inspection were discussed with appropriate personnel, corrective actions were identified and implementation was mutually agreed upon:

Inspector: fers Recher	
Next Scheduled Inspection Date: Serl	001 2018

Date: 3-29-18

SECURITY AND ACCESS

	Yes	No
 Access controlled by perimeter fencing? Are there sections of the fence material damaged or missing? Are the fence or gate post foundations structurally sound? 		NIR
2. "No Trespass" signs posted in appropriate languages? Are the signs securely attached to the fencing or posts? Are there sufficient signs; are the signs adequately spaced around the perimeter of the property?		NIK
3. Is there evidence of trespassing? Is there evidence of illegal dumping?		X
COVER & VEGETATION		
 4. Final cover in acceptable condition? Is there evidence of sloughing, erosion, ponding or settlement? Is there evidence of unintended traffic; rutting? Is there evidence of distressed vegetation/turf? 	X	X

5. Final cover sufficiently covers soil/fill material?
Are there cracks visible in the soil or pavement?
Is there evidence of erosion in the stormwater channels or swales?
Is there damage to the synthetic erosion control fabric in the channels or swales?

ACTIVITY ON SITE

6. Any activity on site that mechanically disturbed soil cover?

X

Yes

No

minor

ADDITIONAL FACILITY INFORMATION

Development on or near the site? (Specify size and type: e.g., residential, 40 acres, well and septic)

NONE

COMMENTS

Item #

aⁿ

Seve	ral areas of minor ruts and).
dom	eved grass cover caused by	
True	KTTAFFIC and SNOW PLOWS.	
ى	ce inspection Photos	
		1.000
-		
	- 25	

ATTACHMENTS

See PRR

- 1. Site Sketch
- 2. Photographs
- 3. Laboratory Report (s)

APPENDIX B

PHOTO LOG

Client Name: CertainTeed Corporation			Site Location:	231 Ship Canal Parkway, Buffalo, NY	Project No. 21.0056854.00
Photo No.	Date:				
3	3-29-18	4			The V Part
Direction Pho	to Taken:	La			NY IN
Southwest					
Description:				The second second	and the second
Disturbed grass cover caused by contractor preparing to install site perimeter fence.					
			And A		

Photo No.	Date:	
4	3-29-18	
Direction Photo Taken:		
East/northeast		
Description:		
Paved rear storage area.		

Client Name: CertainTeed Corporation			Site Location:	231 Ship Canal Parkway, E	Buffalo, NY	Project No. 21.0056854.00
Photo No.	Date:					W
5	3-29-18					XY
Direction Pho	to Taken:					
East/Northeast				Aller		
Description:			H			- 5-500
Scarred grass	cover at			- ALL-F	ande alle alle alle alle alle alle alle al	
rear of storage	e area,					and the second sec
caused by snow plow.						

Photo No.	Date:	
6	3-29-18	
Direction Pho	to Taken:	
Southwest		
		R030.
Description:		Ē
Wooden palle	t debris	
stored on gras	s cover.	
		March 120

Photo No.	Date:	
8	3-29-18	SAINT CORAN
Direction Pho	to Taken:	CHINT-GODAIN
East		
Description:		
Tire ruts cause	ed by trucks	Contraction of the second s
cutting the co	rner.	
		and the second

Client Name: CertainTeed Corporation		Site Location:	231 Ship Canal Parkway, Buffalo, NY	Project No. 21.0056854.00	
Photo No.	Date:	- INA	En KANES	A AND AND A	1 Alto I and
11	3-29-18	AN AND AND		Alter and a state of the second state of the s	I a state of the second
Direction Pho	oto Taken:	T T T			Contraction Constant Reserves
North		APPEN			
Description:					Astrono as
Bolder used to	o prevent				
corner at mai	n entrance	and the second second			
to Site.			-		

Client Name: CertainTeed Corporation	Site Location:	231 Ship Canal Parkway, Buffalo, NY	Project No. 21.0056854.00
Photo No. Date: 13 3-29-18	W.L.		
Direction Photo Taken: East			
Description:			
Northeastern entrance to fenced area east of building. Note erosion of grass from tires.			

Photo No.	Date:	
14	3-29-18	
Direction Photo Taken:		
East		
Description:		
Desemption		
Damaged gra	iss cover	
caused by rail workers		
driving throu	gh Site to	
access rail lin	e.	

APPENDIX C

Pre-Pavement Excavation Monitoring Report (GZA: December 2, 2016)

VIA EMAIL

Proactive by Design

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203 T: 716.685.2300 F: 716.685.3629 www.gza.com December 2, 2016 File No. 21.0056806.00

Mr. Gary Hall Zoladz Construction Co., Inc. 13600 Railroad Street P.O. Box 157 Alden, New York 14004 Email: garyh@zoladz.com

Re: Soil/Fill Management during Pre-Pave Excavations
 CertainTeed Site
 231 Ship Canal Parkway, Buffalo, NY 14218 (Site)

Dear Mr. Hall:

In accordance with our proposal dated October 17, 2016, GZA GeoEnvironmental of New York (GZA) completed the soil screening and sampling at the above-referenced Site for Zoladz Construction Co. (Client). Field screening, air monitoring, and sampling activities were conducted by GZA at the Site from November 9 to November 11, 2016.

BACKGROUND

The CertainTeed Site is located on a former brownfield at which contaminants in the soil were removed and disposed of off Site. Some contaminants remain at the Site in subsurface soil beneath a site-wide cover system. The cover system includes the site building slab foundation, paved parking, driveway, and walking surfaces, and a 1-foot thick layer of clean soil. The Site is subject to an Environmental Easement which, among other things, requires the Site owner to follow the requirements of a Site-Specific Soil/Fill Management Plan (S/FMP) whenever excavation activities are performed on Site.

CertainTeed hired Zoladz to increase the area of exterior pavement used for product storage. Two areas on either side of the access road to the southern storage yard were paved. The total area of new pavement is approximately one acre, Figure 1. Zoladz hired GZA to implement the applicable provisions of the Soil/Fill Management Plan.

SCOPE OF WORK

In support of Zoladz' planned paving operations for CertainTeed, GZA provided the following scope of services as required by the S/FMP:

1. On-Site Soil Screening: GZA provided on-site observation, screening, and documentation of surface and subsurface soils that were excavated and exposed beneath the existing 1-foot clean soil cover. Soils were described in the field log book and daily field forms and screened for volatile organic compounds (VOCs) using an organic vapor monitor (OVM) with photoionization detector (PID) 10.6 ev probe. Appendix A provides a log of pertinent

photographs taken during the work activities. Appendix B provides copies of the daily field forms completed throughout the field work days.

- 2. On-Site Air Monitoring: GZA provided on-site air monitoring per GZAs Site-Specific Health and Safety Plan (HASP) as required by the S/FMP. GZA monitored the breathing zone for VOCs using the OVM and particulates in the air were measured at the work site as well as downwind of the work site using a TSI Model AM510 dust monitor. Particulate measurements were recorded in the field log book and daily field forms.
- **3.** Soil Sampling: As specified in the S/FMP, GZA collected one, 5-point, composite sample of the soil/fill that was excavated and relocated as part of the pre-pave activities.
- 4. **Report Preparation:** GZA then prepared this report, which summarizes the observations made and data collected during project. This report presents GZA's field observations, analytical results, and opinions and is subject to the limitations presented in Appendix C, and modification if subsequent information is developed by GZA or other party.

FIELD METHODS

Excavation Monitoring:

GZA observed Zoladz remove the 1-foot thick clean soil cover from the work site. The anticipated demarcation grid of yellow hazard tape was encountered at the interface between the clean cover soil and the underlying soil/fill material. The clean soil was stockpiled on site for later use as final cover. Once the clean cover soil was removed, a thin (<1 foot) of the underlying soil/fill was excavated to achieve the desired sub-grade elevations. GZA screened both the clean cover soil and the subsurface soil/fill during the excavation activities. Soil/fill was screened for VOCs by first placing the sample into a plastic Zip-Lock bag. A MiniRAE 3000 photoionization detector equipped with a 10.6 ev probe was used to measure the total VOCs in the screening sample. No elevated PID readings were detected in any of the excavated subsurface soil material.

Air Monitoring:

GZA monitored for total VOCs and dust particles during the excavation operations, as a requirement of the S/FMP. Dust measurements were monitored using a TSI Model AM510 dust monitor, no observable airborne dust was noted and no exceedances of the dust action level (150 ug/m3) were recorded by GZA. Dust mitigation was therefore not required during the excavation work.

Soil Sampling:

A total of 45 dump truck loads of subsurface soil/fill, 12 to 15 cubic yards (CY) each, were staged at a location adjacent to the work site. The total volume of this material was estimated to be 675 CY. GZA collected one composite soil sample from the subsurface material and one contingent duplicate sample. The samples were collected via methodologies identified in the S/FMP. The soil sample was composited from five locations from the stockpiled material. Each of the five composite aliquots was collected in a clean 8-oz glass jar and sealed with a screw top cap. The samples were slowly brought up to or near 70°F, then screened with the PID for total volatile

organic compounds. No elevated PID readings were detected in any of the aliquots. A discrete VOC sample was collected at location 1 of 5 before compositing into one.

The five samples were transferred in equal portions to a pre-cleaned stainless mixing bowl and thoroughly homogenized using a clean stainless steel spoon. The composite sample was then transferred to appropriate precleaned jars provided by Alpha Analytical Labs, labeled and submitted to Alpha Analytical Labs for analysis. As required in the S/FMP, the sample was analyzed for the following parameters:

- Volatile Organic Compounds (Method 8260)
- Semi-volatile Organic Compounds (Method 8270)
- Polychlorinated biphenols (Method 8082)
- o Pesticides (Method 8081)
- o Target Analyte List (TAL) Metals (methods 6010,7471,7470)
- o Cyanide (Method 9012)
- o pH

A contingent duplicate sample was taken and submitted to the laboratory for holding in case additional analyses were necessary based on the results of the initial sample.

Sample results were compared to the Site-Specific Action Levels (SSALs) as provided in the S/FMP, see Table 1. Appendix D contains the complete sample data report as provided by the laboratory.

RESULTS AND CONCLUSIONS

- Soil/fill management operations were performed in accordance with the NYSDEC-approved S/FMP;
- Grossly contaminated soil/fill was not observed;
- Sample results were all below the SSALs, thus the soil/fill could remain on site beneath a 1-foot clean soil cover;
- The required Site-wide cover system remains and in compliance with the S/FMP;
- Continued monitoring of the newly seeded soil cover is recommended to assure complete vegetative cover in 2017.
- A copy of this report should be submitted to the NYSDEC and included with the next Periodic Review Report submittal.

Thank you for the opportunity to provide environmental support services to Zoladz. If you have any questions about this report, please call Jim Richert at (716) 844-7048.

December 2, 2016 Soil/Fill Management Services CertainTeed Site, 231Ship Canal Parkway, Buffalo, New York Page | 4

Sincerely,

se

Peter J. Nyznyk

est a. Klent

Bart Klettke, P.E. Principal

Attachments:

Table 1	Analytical Results Summary
Figure 1	Location of Work Site
Appendix A:	Photo Log
Appendix B:	Daily Field Forms
Appendix C:	Limitations
Appendix D:	Analytical Laboratory Report

Richert

James J. Richert, P.G. Senior Project Manager

TABLE 1 Analytical Results Summary - Soil/Fill Sample CERTAINTEED SITE - 231 SHIP CANAL PARKWAY, BUFFALO, NY

Parameter	Site-Specific Action Level	SS-1		
Volatile Organic Compounds (ug	/kg)			
Total VOCs	10,000(1)	31.6		
Semivolatile Organic Compounds (ug/kg)				
Total SVOCs	500,000 ^(1/2)	2,294		
Pesticides/PCBs (ug/kg)	•			
Total Pesticides	10,000 ⁽²⁾	ND		
Total PCBs (surface-0-1')	1,000	127.6		
Metals (mg/kg)	•			
Aluminum	-	11,000		
Antimony	-	1.3 J		
Arsenic	50	8.9		
Barium	500	87		
Beryllium	-	1.3		
Cadmium	20	0.83		
Calcium	-	61000		
Chromium	200	30		
Cobalt	-	7.3		
Copper	-	35		
Iron	-	42,000		
Lead	1,000	65		
Magnesium	-	9,400		
Manganese	-	1,300		
Mercury	1.0	0.09		
Nickel	-	25		
Potassium	-	690		
Selenium	50	1.0 J		
Silver	-	0.15 J		
Sodium	-	280		
Thallium	-	0.29		
Vanadium	-	26		
Zinc	-	210		
Cyanide (mg/kg)	50	2.0		
рН	9.0	8.5		

Notes:

(1) Total concentration is the sum of concentrations of Target Compound List (TCL) compounds.

(2) In addition to the SSAL of 500,000 ug/kg for total concentrations of SVOCs, the SSAL for each individual SVOC is 50,000 ug/kg.

"-" = No Site Specific Action Level

ND = Non-detect

J = Analyte detected below quantitation limit

December 2, 2016 Soil/Fill Management Services CertainTeed Site, 231Ship Canal Parkway, Buffalo, New York Page | 5

APPENDIX B

DAILY FIELD FORMS

An Equal Opportunity Employer M/F/V/H

APPENDIX A

PHOTO LOG

File No. 21.0056806.00 Buffalo, New York

Exposed yellow demarcation tape.

CertainTeed Site 231 Ship Canal Parkway

File No. 21.0056806.00 Buffalo, New York

Removal of clean cover soil.

Segregation of Clean cover soil for reuse.

Rolling subsurface soil/fill and placement of pre-pave stone layer

CertainTeed Site 231 Ship Canal Parkway

File No. 21.0056806.00 Buffalo, New York

Placement of pre-pave stone layer.

File No. 21.0056806.00 Buffalo, New York

Placement of clean soil cover onto new demarcation mesh.
Pre-Pave Soil/Fill Management Report

Finished pavement, NE area.

Pre-Pave Soil/Fill Management Report

CertainTeed Site 231 Ship Canal Parkway

File No. 21.0056806.00 Buffalo, New York

Finished pavement, SW area.

Pre-Pave Soil/Fill Management Report

File No. 21.0056806.00 Buffalo, New York

Hydroseeded replaced clean soil cover.

December 2, 2016 Soil/Fill Management Services CertainTeed Site, 231Ship Canal Parkway, Buffalo, New York Page | 5

APPENDIX B

DAILY FIELD FORMS

An Equal Opportunity Employer M/F/V/H

DATE: ///9_2016

PROJECT: CertainTeed Site, Buffalo, New York Soil Screening during Paving Operations

GENERAL WEATHER CONDITIONS:	Cloudy		Temp
-----------------------------	--------	--	------

Temp Range: 45to4 C°F Wind Speed: 12 <u>mph</u> Wind Direction: <u>N</u>

Time GZA Arrived on Site: 0845

Site Conditions: ______

Contractors on Site: 2012

• GZA Personnel On-Site: Pete Nyzmyk

• GZA's Equipment On-Site: Mine RAE 3000 751 AM 510 Dust Montar

Name of NYSDEC Representative(s) on Site: Time of arrival: Time of departure: Issues Discussed with NYSDEC:

SUMMARY OF WORK OBSERVED: (See attached field sketch) & See Field note book

Zoladz begins removing sod jepson in proposed excavation areas, south of powed area.

Clean cap sports stagged in location South of excavation area

When exceeding into soil below rap (D. morner) spoils stagged sperate from evening

Zoladz begins to noll/stamp excavated onea when reached at proposed of put

No exceedences and dust monitoring - No elevated reading of soils w/ PiD.

Photos taken: Excavation -D-Marker - Grading - Slag + Soil Time GZA left Site: <u>1700</u> - Rolling/Stamping

Prepared by: Ree Myzvingh

Reviewed by:

GZA GeoEnvironmental of New York

DATE: ////0_2016

DAILY FIELD SUMMARY FORM FILE No. 21.0056806.00

REPORT No. 16-___

PROJECT: CertainTeed Site, Buffalo, New York Soil Screening during Paving Operations

GENERAL WEATHER CONDITIONS: Partly Cloudy

Temp Range:46 to 56°F Wind Speed: 0-10 <u>mph</u> Possible 9°5+5 UP Wind Direction: <u>W-ww</u> +• 40

Time GZA Arrived on Site: 0700

Site Conditions: ______

Contractors on Site: Zoladz

• GZA Personnel On-Site: Pete NyzwyK

• GZA's Equipment On-Site: Mini RAE3000, TST AM 510 - Dust monther

Name of NYSDEC Representative(s) on Site: Pauld Locey Time of arrival: 1000 Time of departure: /0 30 Issues Discussed with NYSDEC: General scope of work - Soil material "Dimaner tape distance between pack able · Soil stagna -boundries of excavation - thehress of cap **SUMMARY OF WORK OBSERVED:** (See attached field sketch) zoladz continued to lay stone in southern excavation area and follow with roller/stamper. continuation of excavation area adjact to building. Most soil removed and staged in area south west of execution, Excavation depen ~12". When 'D-Marker' is encountered soil excavated below is Stage separately from the cap material Screening of both top soll(cap) and sub-base michenal no elevated detections were observed. For all screening of soils proppin on PID

1315-1700 No exceedences on dust monitor, 0700-1315 meniter broken Eco-Rental delivered operable unit Photos taken:

Time GZA left Site: 1705

Prepared by: <u>Pete Nyzhyk</u>

Reviewed by:

GZA GeoEnvironmental of New York

DATE: <u>n|11|</u>2016

DAILY FIELD SUMMARY FORM FILE No. 21.0056806.00

REPORT No. 16-___

PROJECT: CertainTeed Site, Buffalo, New York Soil Screening during Paving Operations

GENERAL WEATHER CONDITIONS: <u>Party (100dy</u>	Temp Range: 42 to 48°F Wind Speed: 0-16 mph Wind Direction: 015-0164
Time GZA Arrived on Site: <u>0700</u>	
Site Conditions:	3
Contractors on Site: ZenadZ	
· GZA Personnel On-Site: Pete Nyznyh	N
• GZA's Equipment On-Site: MIN RAE3000, ISI AMS	10 DUST Moniter
Name of NYSDEC Representative(s) on Site: Time of arrival: Time of departure: Issues Discussed with NYSDEC:	

SUMMARY OF WORK OBSERVED: (See attached field sketch)

Zoladz completes excavation of southern over. Zoladz dumps/grades stone in both areas. Zoladz colls/stamp stone in excavation area adjacent to be building. GZA screens and collects soil samples From the stock pile of the sub-base material

Photos taken:

Time GZA left Site: 0945

Prepared by: Pete Nymuch

Reviewed by:

GZA GeoEnvironmental of New York

December 2, 2016 Soil/Fill Management Services CertainTeed Site, 231Ship Canal Parkway, Buffalo, New York Page | 6

APPENDIX C

LIMITATIONS

GEOHYDROLOGICAL LIMITATIONS

Use of Report

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs.

6. Water level readings have been made in test holes (as described in the Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

Compliance with Codes and Regulations

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

Screening and Analytical Testing

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

Interpretation of Data

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

Additional Information

12. In the event that the Client or others authorized to use this report obtain information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

Additional Services

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

December 2, 2016 Soil/Fill Management Services CertainTeed Site, 231Ship Canal Parkway, Buffalo, New York Page | 7

APPENDIX D

ANALYTICAL LABORATORY REPORT

ANALYTICAL REPORT

Lab Number:	L1636766
Client:	GZA GeoEnvironmental
	535 Washington Street
	11th Floor
	Buffalo, NY 14203
ATTN:	Peter Nyznyk
Phone:	(716) 844-7050
Project Name:	CERTAIN TEED
Project Number:	21.0056806
Report Date:	11/20/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11201618:55

Project Name:CERTAIN TEEDProject Number:21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1636766-01	SS-1-111116	SOIL	BUFFALO, NY	11/11/16 09:05	11/11/16
L1636766-02	C-DUP-111116	SOIL	BUFFALO, NY	11/11/16 00:00	11/11/16

Project Name: CERTAIN TEED Project Number: 21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:CERTAIN TEEDProject Number:21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Chimig Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 11/20/16

ORGANICS

VOLATILES

			Serial_N	o:11201618:55
Project Name:	CERTAIN TEED		Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16
		SAMPLE RESULTS		
Lab ID:	L1636766-01		Date Collected:	11/11/16 09:05
Client ID:	SS-1-111116		Date Received:	11/11/16
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Matrix:	Soil			-
Analytical Method:	1,8260C			
Analytical Date:	11/16/16 18:32			
Analyst:	MV			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	2.1	J	ug/kg	12	1.3	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.10	1
Chloroform	ND		ug/kg	1.7	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.0	0.26	1
Dibromochloromethane	ND		ug/kg	1.2	0.18	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.35	1
Tetrachloroethene	ND		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.40	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.45	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.13	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.20	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
Bromoform	ND		ug/kg	4.6	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.12	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.7	0.22	1
Ethylbenzene	ND		ug/kg	1.2	0.15	1
Chloromethane	ND		ug/kg	5.8	0.34	1
Bromomethane	ND		ug/kg	2.3	0.39	1
Vinyl chloride	ND		ug/kg	2.3	0.14	1
Chloroethane	ND		ug/kg	2.3	0.36	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.24	1
Trichloroethene	ND		ug/kg	1.2	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.18	1
1,3-Dichlorobenzene	ND		ug/kg	5.8	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	5.8	0.16	1

						Serial_No	p:11201618:55	
Project Name:	CERTAIN TEED				Lab Nu	umber:	L1636766	
Project Number:	21.0056806				Report	Date:	11/20/16	
		SAMP		S				
Lab ID: Client ID: Sample Location:	L1636766-01 SS-1-111116 BUFFALO, NY				Date Co Date Re Field Pre	llected: ceived: əp:	11/11/16 09:05 11/11/16 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	by GC/MS - Westboroug	gh Lab						
Methyl tert butyl ether		ND		ug/kg	2.3	0.10	1	
p/m-Xylene		ND		ug/kg	2.3	0.41	1	
o-Xylene		ND		ug/kg	2.3	0.39	1	
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.16	1	
Styrene		ND		ug/kg	2.3	0.46	1	
Dichlorodifluoromethane		ND		ug/kg	12	0.22	1	
Acetone		20		ug/kg	12	1.2	1	
Carbon disulfide		ND		ug/kg	12	1.3	1	
2-Butanone		9.5	J	ug/kg	12	0.31	1	
4-Methyl-2-pentanone		ND		ug/kg	12	0.28	1	
2-Hexanone		ND		ug/kg	12	0.77	1	
Bromochloromethane		ND		ug/kg	5.8	0.32	1	
1,2-Dibromoethane		ND		ug/kg	4.6	0.20	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	5.8	0.46	1	
Isopropylbenzene		ND		ug/kg	1.2	0.12	1	
1,2,3-Trichlorobenzene		ND		ug/kg	5.8	0.17	1	
1,2,4-Trichlorobenzene		ND		ug/kg	5.8	0.21	1	
Methyl Acetate		ND		ug/kg	23	0.31	1	
Cyclohexane		ND		ug/kg	23	0.17	1	
1,4-Dioxane		ND		ug/kg	120	17.	1	
Freon-113		ND		ug/kg	23	0.32	1	
Methyl cyclohexane		ND		ug/kg	4.6	0.18	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	93		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	97		70-130	

L1636766

11/20/16

Project Name:CERTAIN TEEDLab Number:Project Number:21.0056806Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:11/16/16 10:37Analyst:MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS	- Westborough La	b for samp	le(s): 01	Batch:	WG953179-5
Methylene chloride	1.7	J	ug/kg	10	1.1
1,1-Dichloroethane	ND		ug/kg	1.5	0.09
Chloroform	ND		ug/kg	1.5	0.37
Carbon tetrachloride	ND		ug/kg	1.0	0.21
1,2-Dichloropropane	ND		ug/kg	3.5	0.23
Dibromochloromethane	ND		ug/kg	1.0	0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30
Tetrachloroethene	ND		ug/kg	1.0	0.14
Chlorobenzene	ND		ug/kg	1.0	0.35
Trichlorofluoromethane	ND		ug/kg	5.0	0.39
1,2-Dichloroethane	ND		ug/kg	1.0	0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11
Bromodichloromethane	ND		ug/kg	1.0	0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
Bromoform	ND		ug/kg	4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.10
Benzene	ND		ug/kg	1.0	0.12
Toluene	ND		ug/kg	1.5	0.19
Ethylbenzene	ND		ug/kg	1.0	0.13
Chloromethane	ND		ug/kg	5.0	0.29
Bromomethane	ND		ug/kg	2.0	0.34
Vinyl chloride	ND		ug/kg	2.0	0.12
Chloroethane	ND		ug/kg	2.0	0.32
1,1-Dichloroethene	ND		ug/kg	1.0	0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21
Trichloroethene	ND		ug/kg	1.0	0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.14

Project Name:CERTAIN TEEDLab Number:Project Number:21.0056806Report Date:

mber:L1636766Date:11/20/16

Method Blank Analysis Batch Quality Control

Analytical Method:1Analytical Date:1Analyst:M

1,8260C 11/16/16 10:37 MV

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - We	stborough Lab	o for sample(s): 01	Batch:	WG953179-5
1.4-Dichlorobenzene	ND	ua/ka	5.0	0.14
Methyl tert butyl ether	ND	ug/kg	2.0	0.08
p/m-Xylene	ND	ug/kg	2.0	0.35
o-Xylene	ND	ug/kg	2.0	0.34
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.14
Styrene	ND	ug/kg	2.0	0.40
Dichlorodifluoromethane	ND	ug/kg	10	0.19
Acetone	ND	ug/kg	10	1.0
Carbon disulfide	ND	ug/kg	10	1.1
2-Butanone	ND	ug/kg	10	0.27
4-Methyl-2-pentanone	ND	ug/kg	10	0.24
2-Hexanone	ND	ug/kg	10	0.67
Bromochloromethane	ND	ug/kg	5.0	0.28
1,2-Dibromoethane	ND	ug/kg	4.0	0.17
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.0	0.40
Isopropylbenzene	ND	ug/kg	1.0	0.10
1,2,3-Trichlorobenzene	ND	ug/kg	5.0	0.15
1,2,4-Trichlorobenzene	ND	ug/kg	5.0	0.18
Methyl Acetate	ND	ug/kg	20	0.27
Cyclohexane	ND	ug/kg	20	0.15
1,4-Dioxane	ND	ug/kg	100	14.
Freon-113	ND	ug/kg	20	0.27
Methyl cyclohexane	ND	ug/kg	4.0	0.15

Project Name:	CERTAIN TEED	Lab Number:	L1636766
Project Number:	21.0056806	Report Date:	11/20/16

Analytical Method:	1,8260C
Analytical Date:	11/16/16 10:37
Analyst:	MV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	b for sample	e(s): 01	Batch:	WG953179-5	

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	103		70-130
Toluene-d8	103		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	97		70-130

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborou	ugh Lab Associated sample(s):	01 Batch: WG9	53179-3 WG953179-4		
Methylene chloride	92	92	70-130	0	30
1,1-Dichloroethane	87	89	70-130	2	30
Chloroform	88	90	70-130	2	30
Carbon tetrachloride	81	83	70-130	2	30
1,2-Dichloropropane	87	89	70-130	2	30
Dibromochloromethane	92	93	70-130	1	30
2-Chloroethylvinyl ether	90	94	70-130	4	30
1,1,2-Trichloroethane	92	96	70-130	4	30
Tetrachloroethene	89	87	70-130	2	30
Chlorobenzene	93	91	70-130	2	30
Trichlorofluoromethane	76	77	70-139	1	30
1,2-Dichloroethane	89	91	70-130	2	30
1,1,1-Trichloroethane	82	84	70-130	2	30
Bromodichloromethane	87	89	70-130	2	30
trans-1,3-Dichloropropene	92	94	70-130	2	30
cis-1,3-Dichloropropene	87	90	70-130	3	30
1,1-Dichloropropene	82	84	70-130	2	30
Bromoform	96	99	70-130	3	30
1,1,2,2-Tetrachloroethane	93	99	70-130	6	30
Benzene	86	88	70-130	2	30
Toluene	91	90	70-130	1	30

Parameter	LCS %Recovery Q	LCSD wal %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated samp	ole(s): 01 Batch: WG	953179-3 WG953179-4		
Ethylbenzene	91	92	70-130	1	30
Chloromethane	90	89	52-130	1	30
Bromomethane	83	84	57-147	1	30
Vinyl chloride	79	80	67-130	1	30
Chloroethane	86	88	50-151	2	30
1,1-Dichloroethene	81	81	65-135	0	30
trans-1,2-Dichloroethene	85	87	70-130	2	30
Trichloroethene	86	87	70-130	1	30
1,2-Dichlorobenzene	94	94	70-130	0	30
1,3-Dichlorobenzene	96	96	70-130	0	30
1,4-Dichlorobenzene	95	94	70-130	1	30
Methyl tert butyl ether	86	91	66-130	6	30
p/m-Xylene	93	94	70-130	1	30
o-Xylene	95	94	70-130	1	30
cis-1,2-Dichloroethene	88	90	70-130	2	30
Dibromomethane	87	90	70-130	3	30
Styrene	96	96	70-130	0	30
Dichlorodifluoromethane	74	76	30-146	3	30
Acetone	101	102	54-140	1	30
Carbon disulfide	76	78	59-130	3	30
2-Butanone	90	94	70-130	4	30

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0'	Batch: WG9	953179-3	WG953179-4			
Vinyl acetate	88		93		70-130	6	30	
4-Methyl-2-pentanone	93		92		70-130	1	30	
1,2,3-Trichloropropane	94		99		68-130	5	30	
2-Hexanone	88		91		70-130	3	30	
Bromochloromethane	90		93		70-130	3	30	
2,2-Dichloropropane	84		87		70-130	4	30	
1,2-Dibromoethane	90		94		70-130	4	30	
1,3-Dichloropropane	92		92		69-130	0	30	
1,1,1,2-Tetrachloroethane	91		92		70-130	1	30	
Bromobenzene	94		94		70-130	0	30	
n-Butylbenzene	90		91		70-130	1	30	
sec-Butylbenzene	90		89		70-130	1	30	
tert-Butylbenzene	91		90		70-130	1	30	
o-Chlorotoluene	96		94		70-130	2	30	
p-Chlorotoluene	95		95		70-130	0	30	
1,2-Dibromo-3-chloropropane	98		100		68-130	2	30	
Hexachlorobutadiene	83		84		67-130	1	30	
Isopropylbenzene	92		93		70-130	1	30	
p-Isopropyltoluene	91		92		70-130	1	30	
Naphthalene	86		92		70-130	7	30	
Acrylonitrile	90		98		70-130	9	30	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated s	ample(s): 01	Batch: WG9	953179-3	WG953179-4			
Isopropyl Ether	88		90		66-130	2		30
tert-Butyl Alcohol	80		92		70-130	14		30
n-Propylbenzene	92		92		70-130	0		30
1,2,3-Trichlorobenzene	91		95		70-130	4		30
1,2,4-Trichlorobenzene	92		95		70-130	3		30
1,3,5-Trimethylbenzene	95		95		70-130	0		30
1,2,4-Trimethylbenzene	95		95		70-130	0		30
Methyl Acetate	87		93		51-146	7		30
Ethyl Acetate	86		96		70-130	11		30
Acrolein	87		95		70-130	9		30
Cyclohexane	72		75		59-142	4		30
1,4-Dioxane	75		85		65-136	13		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	74		74		50-139	0		30
p-Diethylbenzene	92		93		70-130	1		30
p-Ethyltoluene	95		95		70-130	0		30
1,2,4,5-Tetramethylbenzene	93		92		70-130	1		30
Tetrahydrofuran	80		91		66-130	13		30
Ethyl ether	87		90		67-130	3		30
trans-1,4-Dichloro-2-butene	92		100		70-130	8		30
Methyl cyclohexane	72		74		70-130	3		30
Ethyl-Tert-Butyl-Ether	88		92		70-130	4		30

Project Name:CERTAIN TEEDProject Number:21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0 ⁻	1 Batch: WG	953179-3	WG953179-4			
Tertiary-Amyl Methyl Ether	87		90		70-130	3		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		102		70-130	
Toluene-d8	104		104		70-130	
4-Bromofluorobenzene	102		103		70-130	
Dibromofluoromethane	98		100		70-130	

SEMIVOLATILES

			Serial_No	p:11201618:55
Project Name:	CERTAIN TEED		Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16
		SAMPLE RESULTS		
Lab ID:	L1636766-01		Date Collected:	11/11/16 09:05
Client ID:	SS-1-111116		Date Received:	11/11/16
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified
Matrix:	Soil		Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D		Extraction Date:	11/14/16 02:33
Analytical Date:	11/18/16 21:55			
Analyst:	ALS			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	26	J	ug/kg	150	20.	1		
Hexachlorobenzene	ND		ug/kg	110	21.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1		
2-Chloronaphthalene	ND		ug/kg	190	19.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1		
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1		
2,6-Dinitrotoluene	ND		ug/kg	190	32.	1		
Fluoranthene	270		ug/kg	110	22.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	32.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1		
Hexachlorobutadiene	ND		ug/kg	190	28.	1		
Hexachlorocyclopentadiene	ND		ug/kg	540	170	1		
Hexachloroethane	ND		ug/kg	150	31.	1		
Isophorone	ND		ug/kg	170	24.	1		
Naphthalene	28	J	ug/kg	190	23.	1		
Nitrobenzene	ND		ug/kg	170	28.	1		
NDPA/DPA	ND		ug/kg	150	22.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	65.	1		
Butyl benzyl phthalate	ND		ug/kg	190	48.	1		
Di-n-butylphthalate	ND		ug/kg	190	36.	1		
Di-n-octylphthalate	ND		ug/kg	190	64.	1		
Diethyl phthalate	ND		ug/kg	190	18.	1		
Dimethyl phthalate	ND		ug/kg	190	40.	1		
Benzo(a)anthracene	180		ug/kg	110	21.	1		
Benzo(a)pyrene	220		ug/kg	150	46.	1		
Benzo(b)fluoranthene	300		ug/kg	110	32.	1		
Benzo(k)fluoranthene	100	J	ug/kg	110	30.	1		

					:	Serial_N	o:11201618:55	
Project Name:	CERTAIN TEED				Lab Nu	mber:	L1636766	
Project Number:	21.0056806				Report	Date:	11/20/16	
-		SAMP	LE RESULT	S				
Lab ID:	L1636766-01				Date Co	lected:	11/11/16 09:05	
Client ID:	SS-1-111116				Date Re	ceived:	11/11/16	
Sample Location:	BUFFALO, NY				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	nics by GC/MS - Westbo	orough Lab						
Chrysens		200			110	20	1	
		57	1	ug/kg	150	20.	1	
Acenaphinylene		50	J	ug/kg	110	29.	1	
Anthracene Bonzo (shi)pon dono		28	J	ug/kg	110	37.	1	
Elucrono		100		ug/kg	100	10	1	
Phononthrono		10	J	ug/kg	110	10.	1	
		150		ug/kg	110	23.	1	
Indepo(1.2.3-cd)pyropo		42	J	ug/kg	150	22.	1	
Bureno		260		ug/kg	110	10	1	
Riphonyl		200		ug/kg	430	19.	1	
				ug/kg	100		1	
2-Nitroaniline		ND		ug/kg	190	36	1	
3-Nitroaniline		ND		ug/kg	190	36	1	
4-Nitroaniline		ND		ug/kg	190	78	1	
Dibenzofuran		ND		ug/kg	190	18.	1	
2-Methylnaphthalene		ND		ua/ka	230	23.	1	
1,2,4,5-Tetrachlorobenze	ene	ND		ua/ka	190	20.	1	
Acetophenone		ND		ua/ka	190	23.	1	
2,4,6-Trichlorophenol		ND		ug/kg	110	36.	1	
p-Chloro-m-cresol		ND		ug/kg	190	28.	1	
2-Chlorophenol		ND		ug/kg	190	22.	1	
2,4-Dichlorophenol		ND		ug/kg	170	30.	1	
2,4-Dimethylphenol		ND		ug/kg	190	62.	1	
2-Nitrophenol		ND		ug/kg	410	71.	1	
4-Nitrophenol		ND		ug/kg	260	77.	1	
2,4-Dinitrophenol		ND		ug/kg	910	88.	1	
4,6-Dinitro-o-cresol		ND		ug/kg	490	91.	1	
Pentachlorophenol		ND		ug/kg	150	42.	1	
Phenol		ND		ug/kg	190	28.	1	
2-Methylphenol		ND		ug/kg	190	29.	1	
3-Methylphenol/4-Methyl	Iphenol	ND		ug/kg	270	30.	1	
2,4,5-Trichlorophenol		ND		ug/kg	190	36.	1	
Carbazole		25	J	ug/kg	190	18.	1	
Atrazine		ND		ug/kg	150	66.	1	
Benzaldehyde		ND		ug/kg	250	51.	1	
Caprolactam		ND		ug/kg	190	58.	1	
2,3,4,6-Tetrachlorophene	ol	ND		ug/kg	190	38.	1	

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Devenueten		Beault	Qualifiar	Unito	ы	MDI	Dilution Footor
Sample Location:	BUFFALO, NY				Field Prep:	:	Not Specified
Client ID:	SS-1-111116				Date Rece	ived:	11/11/16
Lab ID:	L1636766-01				Date Colle	cted:	11/11/16 09:05
		SAMP	LE RESULTS	5			
Project Number:	21.0056806			_	Report D	ate:	11/20/16
Project Name:	CERTAIN TEED				Lab Num	ber:	L1636766
					Se	erial_No	0:11201618:55

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	73		25-120	
Phenol-d6	87		10-120	
Nitrobenzene-d5	95		23-120	
2-Fluorobiphenyl	73		30-120	
2,4,6-Tribromophenol	76		10-136	
4-Terphenyl-d14	53		18-120	

Project Name:	CERTAIN TEED		Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16

Analytical Method:	1,8270D
Analytical Date:	11/18/16 13:06
Analyst:	ALS

Extraction Method: EPA 3546 Extraction Date: 11/14/16 02:33

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/I	NS - Westborough	h Lab for s	ample(s):	01	Batch:	WG951920-1	
Acenaphthene	ND		ug/kg		130	17.	
Hexachlorobenzene	ND		ug/kg		97	18.	
Bis(2-chloroethyl)ether	ND		ug/kg		150	22.	
2-Chloronaphthalene	ND		ug/kg		160	16.	
3,3'-Dichlorobenzidine	ND		ug/kg		160	43.	
2,4-Dinitrotoluene	ND		ug/kg		160	32.	
2,6-Dinitrotoluene	ND		ug/kg		160	28.	
Fluoranthene	ND		ug/kg		97	19.	
4-Chlorophenyl phenyl ether	ND		ug/kg		160	17.	
4-Bromophenyl phenyl ether	ND		ug/kg		160	25.	
Bis(2-chloroisopropyl)ether	ND		ug/kg		190	28.	
Bis(2-chloroethoxy)methane	ND		ug/kg		180	16.	
Hexachlorobutadiene	ND		ug/kg		160	24.	
Hexachlorocyclopentadiene	ND		ug/kg		460	150	
Hexachloroethane	ND		ug/kg		130	26.	
Isophorone	ND		ug/kg		150	21.	
Naphthalene	ND		ug/kg		160	20.	
Nitrobenzene	ND		ug/kg		150	24.	
NDPA/DPA	ND		ug/kg		130	18.	
n-Nitrosodi-n-propylamine	ND		ug/kg		160	25.	
Bis(2-ethylhexyl)phthalate	ND		ug/kg		160	56.	
Butyl benzyl phthalate	ND		ug/kg		160	41.	
Di-n-butylphthalate	ND		ug/kg		160	31.	
Di-n-octylphthalate	ND		ug/kg		160	55.	
Diethyl phthalate	ND		ug/kg		160	15.	
Dimethyl phthalate	ND		ug/kg		160	34.	
Benzo(a)anthracene	ND		ug/kg		97	18.	
Benzo(a)pyrene	ND		ug/kg		130	40.	
Benzo(b)fluoranthene	ND		ug/kg		97	27.	

Project Name:	CERTAIN TEED		Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16

Analytical Method:	1,8270D	E
Analytical Date:	11/18/16 13:06	E
Analyst:	ALS	

Extraction Method: EPA 3546 Extraction Date: 11/14/16 02:33

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG951920-1
Benzo(k)fluoranthene	ND		ug/kg		97	26.
Chrysene	ND		ug/kg		97	17.
Acenaphthylene	ND		ug/kg		130	25.
Anthracene	ND		ug/kg		97	32.
Benzo(ghi)perylene	ND		ug/kg		130	19.
Fluorene	ND		ug/kg		160	16.
Phenanthrene	ND		ug/kg		97	20.
Dibenzo(a,h)anthracene	ND		ug/kg		97	19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	23.
Pyrene	ND		ug/kg		97	16.
Biphenyl	ND		ug/kg		370	38.
4-Chloroaniline	ND		ug/kg		160	30.
2-Nitroaniline	ND		ug/kg		160	31.
3-Nitroaniline	ND		ug/kg		160	31.
4-Nitroaniline	ND		ug/kg		160	67.
Dibenzofuran	ND		ug/kg		160	15.
2-Methylnaphthalene	ND		ug/kg		190	20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg		160	17.
Acetophenone	ND		ug/kg		160	20.
2,4,6-Trichlorophenol	ND		ug/kg		97	31.
p-Chloro-m-cresol	ND		ug/kg		160	24.
2-Chlorophenol	ND		ug/kg		160	19.
2,4-Dichlorophenol	ND		ug/kg		150	26.
2,4-Dimethylphenol	ND		ug/kg		160	54.
2-Nitrophenol	ND		ug/kg		350	61.
4-Nitrophenol	ND		ug/kg		230	66.
2,4-Dinitrophenol	ND		ug/kg		780	76.
4,6-Dinitro-o-cresol	ND		ug/kg		420	78.
Pentachlorophenol	ND		ug/kg		130	36.

Project Name:	CERTAIN TEED		Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16
Method Diank Analysia				

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	11/18/16 13:06	Extraction Date:	11/14/16 02:33
Analyst:	ALS		

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	01	Batch:	WG951920-1	
Phenol	ND		ug/kg	1	160	24.	
2-Methylphenol	ND		ug/kg	1	60	25.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	2	230	25.	
2,4,5-Trichlorophenol	ND		ug/kg	1	60	31.	
Carbazole	ND		ug/kg	1	60	16.	
Atrazine	ND		ug/kg	1	130	57.	
Benzaldehyde	ND		ug/kg	2	210	44.	
Caprolactam	ND		ug/kg	1	60	49.	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	1	60	33.	

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/kg

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	72	25-120
Phenol-d6	77	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	73	30-120
2,4,6-Tribromophenol	60	10-136
4-Terphenyl-d14	71	18-120

Project Name: CERTAIN TEED Project Number: 21.0056806

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	F Qual L	RPD imits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01 Batch:	WG951920-2	WG951920-3			
Acenaphthene	70		69		31-137	1		50
Benzidine	16		14		10-66	13		50
1,2,4-Trichlorobenzene	77		74		38-107	4		50
Hexachlorobenzene	72		71		40-140	1		50
Bis(2-chloroethyl)ether	76		75		40-140	1		50
2-Chloronaphthalene	74		73		40-140	1		50
1,2-Dichlorobenzene	73		72		40-140	1		50
1,3-Dichlorobenzene	73		72		40-140	1		50
1,4-Dichlorobenzene	71		70		28-104	1		50
3,3'-Dichlorobenzidine	48		41		40-140	16		50
2,4-Dinitrotoluene	76		79		40-132	4		50
2,6-Dinitrotoluene	77		78		40-140	1		50
Azobenzene	74		75		40-140	1		50
Fluoranthene	76		74		40-140	3		50
4-Chlorophenyl phenyl ether	75		73		40-140	3		50
4-Bromophenyl phenyl ether	74		73		40-140	1		50
Bis(2-chloroisopropyl)ether	79		77		40-140	3		50
Bis(2-chloroethoxy)methane	81		80		40-117	1		50
Hexachlorobutadiene	72		70		40-140	3		50
Hexachlorocyclopentadiene	81		86		40-140	6		50
Hexachloroethane	72		71		40-140	1		50

Project Name: CERTAIN TEED Project Number: 21.0056806

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associated sample(s)	: 01 Batch:	WG951920-2 WG951920-3		
Isophorone	76	76	40-140	0	50
Naphthalene	74	72	40-140	3	50
Nitrobenzene	80	82	40-140	2	50
NitrosoDiPhenylAmine(NDPA)/DPA	73	73	36-157	0	50
n-Nitrosodi-n-propylamine	79	78	32-121	1	50
Bis(2-Ethylhexyl)phthalate	80	78	40-140	3	50
Butyl benzyl phthalate	76	76	40-140	0	50
Di-n-butylphthalate	78	76	40-140	3	50
Di-n-octylphthalate	80	79	40-140	1	50
Diethyl phthalate	74	73	40-140	1	50
Dimethyl phthalate	76	75	40-140	1	50
Benzo(a)anthracene	75	74	40-140	1	50
Benzo(a)pyrene	77	74	40-140	4	50
Benzo(b)fluoranthene	80	70	40-140	13	50
Benzo(k)fluoranthene	75	80	40-140	6	50
Chrysene	77	72	40-140	7	50
Acenaphthylene	76	76	40-140	0	50
Anthracene	74	74	40-140	0	50
Benzo(ghi)perylene	80	77	40-140	4	50
Fluorene	72	72	40-140	0	50
Phenanthrene	75	72	40-140	4	50

Project Name: CERTAIN TEED Project Number: 21.0056806

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbore	ough Lab Associ	ated sample(s):	01 Batch:	WG951920-2	2 WG951920-3				
Dibenzo(a,h)anthracene	79		75		40-140	5		50	
Indeno(1,2,3-cd)Pyrene	80		74		40-140	8		50	
Pyrene	76		73		35-142	4		50	
Biphenyl	83		84		54-104	1		50	
Aniline	44		36	Q	40-140	20		50	
4-Chloroaniline	49		42		40-140	15		50	
1-Methylnaphthalene	78		74		26-130	5		50	
2-Nitroaniline	80		82		47-134	2		50	
3-Nitroaniline	56		50		26-129	11		50	
4-Nitroaniline	79		80		41-125	1		50	
Dibenzofuran	74		72		40-140	3		50	
2-Methylnaphthalene	76		74		40-140	3		50	
1,2,4,5-Tetrachlorobenzene	81		79		40-117	3		50	
Pentachloronitrobenzene	93		96		42-153	3		50	
Acetophenone	87		85		14-144	2		50	
n-Nitrosodimethylamine	71		69		22-100	3		50	
2,4,6-Trichlorophenol	75		77		30-130	3		50	
P-Chloro-M-Cresol	79		78		26-103	1		50	
2-Chlorophenol	79		79		25-102	0		50	
2,4-Dichlorophenol	82		82		30-130	0		50	
2,4-Dimethylphenol	79		77		30-130	3		50	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbor	ough Lab Assoc	iated sample(s):	01 Batch:	WG951920-2	WG951920-3			
2-Nitrophenol	70		74		30-130	6	50	
4-Nitrophenol	81		84		11-114	4	50	
2,4-Dinitrophenol	41		42		4-130	2	50	
4,6-Dinitro-o-cresol	66		67		10-130	2	50	
Pentachlorophenol	62		67		17-109	8	50	
Phenol	78		74		26-90	5	50	
2-Methylphenol	82		80		30-130.	2	50	
3-Methylphenol/4-Methylphenol	81		81		30-130	0	50	
2,4,5-Trichlorophenol	80		82		30-130	2	50	
Benzoic Acid	5	Q	6	Q	10-110	13	50	
Benzyl Alcohol	79		80		40-140	1	50	
Carbazole	76		74		54-128	3	50	
Pyridine	59		60		10-93	2	50	
Parathion, ethyl	94		92		40-140	2	50	
Atrazine	98		100		40-140	2	50	
Benzaldehyde	65		66		40-140	2	50	
Caprolactam	87		90		15-130	3	50	
2,3,4,6-Tetrachlorophenol	76		75		40-140	1	50	

Lab Control Sample Analysis

Batch Quality Control

Project Name:CERTAIN TEEDProject Number:21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Value
 Limits
 RPD

 Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s):
 01
 Batch:
 WG951920-2
 WG951920-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2-Fluorophenol	81		77		25-120	
Phenol-d6	84		83		10-120	
Nitrobenzene-d5	84		85		23-120	
2-Fluorobiphenyl	78		76		30-120	
2,4,6-Tribromophenol	76		78		10-136	
4-Terphenyl-d14	75		72		18-120	

PCBS

			Serial_No:11201618:55		
Project Name:	CERTAIN TEED		Lab Number:	L1636766	
Project Number:	21.0056806		Report Date:	11/20/16	
		SAMPLE RESULTS			
Lab ID:	L1636766-01		Date Collected:	11/11/16 09:05	
Client ID:	SS-1-111116		Date Received:	11/11/16	
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified	
Matrix:	Soil		Extraction Method	d:EPA 3546	
Analytical Method:	1,8082A		Extraction Date:	11/17/16 16:30	
Analytical Date:	11/18/16 08:44		Cleanup Method:	EPA 3665A	
Analyst:	JA		Cleanup Date:	11/17/16	
Percent Solids:	86%		Cleanup Method:	EPA 3660B	
			Cleanup Date:	11/18/16	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug/kg	37.7	2.98	1	A
Aroclor 1221	ND		ug/kg	37.7	3.48	1	А
Aroclor 1232	ND		ug/kg	37.7	4.42	1	А
Aroclor 1242	ND		ug/kg	37.7	4.62	1	А
Aroclor 1248	ND		ug/kg	37.7	3.18	1	А
Aroclor 1254	31.3	J	ug/kg	37.7	3.10	1	В
Aroclor 1260	32.5	J	ug/kg	37.7	2.87	1	В
Aroclor 1262	ND		ug/kg	37.7	1.87	1	А
Aroclor 1268	ND		ug/kg	37.7	5.47	1	А
PCBs, Total	63.8	J	ug/kg	37.7	1.87	1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	A
Decachlorobiphenyl	61		30-150	А
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	72		30-150	В

 Project Name:
 CERTAIN TEED
 Lab Number:
 L1636766

 Project Number:
 21.0056806
 Report Date:
 11/20/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8082A 11/18/16 08:35 HT Extraction Method:EPA 3546Extraction Date:11/17/16 16:30Cleanup Method:EPA 3665ACleanup Date:11/17/16Cleanup Method:EPA 3660BCleanup Date:11/18/16

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG953433-1	
Aroclor 1016	ND		ug/kg	3	32.7	2.58	А
Aroclor 1221	ND		ug/kg	3	32.7	3.02	А
Aroclor 1232	ND		ug/kg	3	32.7	3.84	А
Aroclor 1242	ND		ug/kg	3	32.7	4.00	А
Aroclor 1248	ND		ug/kg	3	32.7	2.76	А
Aroclor 1254	ND		ug/kg	3	32.7	2.69	А
Aroclor 1260	ND		ug/kg	3	32.7	2.49	А
Aroclor 1262	ND		ug/kg	3	32.7	1.62	А
Aroclor 1268	ND		ug/kg	3	32.7	4.74	А
PCBs, Total	ND		ug/kg	3	32.7	1.62	А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	111		30-150	А
Decachlorobiphenyl	67		30-150	А
2,4,5,6-Tetrachloro-m-xylene	90		30-150	В
Decachlorobiphenyl	59		30-150	В

Project Name:CERTAIN TEEDProject Number:21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

	LCS		LC	CSD		%Recovery			RPD		
Parameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	Column	
Polychlorinated Biphenyls by GC - Westbore	ough Lab Associ	ated sample(s)	: 01	Batch:	WG953433-2	WG953433-3					
Aroclor 1016	91			59		40-140	43		50	А	
Aroclor 1260	84			53		40-140	45		50	А	

	LCS	LCS			Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	111		74		30-150	A
Decachlorobiphenyl	63		43		30-150	A
2,4,5,6-Tetrachloro-m-xylene	92		60		30-150	В
Decachlorobiphenyl	54		34		30-150	В

PESTICIDES

			Serial_No:11201618:55			
Project Name:	CERTAIN TEED		Lab Number:	L1636766		
Project Number:	21.0056806		Report Date:	11/20/16		
		SAMPLE RESULTS				
Lab ID:	L1636766-01		Date Collected:	11/11/16 09:05		
Client ID:	SS-1-111116		Date Received:	11/11/16		
Sample Location:	BUFFALO, NY		Field Prep:	Not Specified		
Matrix:	Soil		Extraction Method	I:EPA 3546		
Analytical Method:	1,8081B		Extraction Date:	11/14/16 16:00		
Analytical Date:	11/17/16 15:30		Cleanup Method:	EPA 3620B		
Analyst:	DM		Cleanup Date:	11/15/16		
Percent Solids:	86%					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC -	Westborough Lab						
Delta-BHC	ND		ug/kg	1.80	0.352	1	А
Lindane	ND		ug/kg	0.749	0.335	1	А
Alpha-BHC	ND		ug/kg	0.749	0.213	1	А
Beta-BHC	ND		ug/kg	1.80	0.681	1	А
Heptachlor	ND		ug/kg	0.898	0.403	1	А
Aldrin	ND		ug/kg	1.80	0.633	1	А
Heptachlor epoxide	ND		ug/kg	3.37	1.01	1	А
Endrin	ND		ug/kg	0.749	0.307	1	А
Endrin aldehyde	ND		ug/kg	2.24	0.786	1	А
Endrin ketone	ND		ug/kg	1.80	0.463	1	А
Dieldrin	ND		ug/kg	1.12	0.561	1	А
4,4'-DDE	ND		ug/kg	1.80	0.415	1	А
4,4'-DDD	ND		ug/kg	1.80	0.641	1	А
4,4'-DDT	ND		ug/kg	3.37	1.44	1	А
Endosulfan I	ND		ug/kg	1.80	0.424	1	А
Endosulfan II	ND		ug/kg	1.80	0.600	1	А
Endosulfan sulfate	ND		ug/kg	0.749	0.356	1	А
Methoxychlor	ND		ug/kg	3.37	1.05	1	А
Toxaphene	ND		ug/kg	33.7	9.43	1	А
cis-Chlordane	ND		ug/kg	2.24	0.626	1	А
trans-Chlordane	ND		ug/kg	2.24	0.593	1	А
Chlordane	ND		ug/kg	14.6	5.95	1	А

	Acceptance								
Surrogate	% Recovery	Qualifier	Criteria	Column					
2,4,5,6-Tetrachloro-m-xylene	96		30-150	В					
Decachlorobiphenyl	69		30-150	В					
2,4,5,6-Tetrachloro-m-xylene	113		30-150	А					
Decachlorobiphenyl	85		30-150	А					

 Project Name:
 CERTAIN TEED
 Lab Number:
 L1636766

 Project Number:
 21.0056806
 Report Date:
 11/20/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8081B 11/14/16 16:46 AM Extraction Method:EPA 3546Extraction Date:11/13/16 21:03Cleanup Method:EPA 3620BCleanup Date:11/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Column
Organochlorine Pesticides by G	C - Westborou	gh Lab for s	sample(s):	01 Batch	n: WG951909-	1
Delta-BHC	ND		ug/kg	1.56	0.306	А
Lindane	ND		ug/kg	0.651	0.291	А
Alpha-BHC	ND		ug/kg	0.651	0.185	А
Beta-BHC	ND		ug/kg	1.56	0.593	А
Heptachlor	ND		ug/kg	0.782	0.350	А
Aldrin	ND		ug/kg	1.56	0.550	А
Heptachlor epoxide	ND		ug/kg	2.93	0.879	А
Endrin	ND		ug/kg	0.651	0.267	А
Endrin aldehyde	ND		ug/kg	1.95	0.684	А
Endrin ketone	ND		ug/kg	1.56	0.403	А
Dieldrin	ND		ug/kg	0.977	0.488	А
4,4'-DDE	ND		ug/kg	1.56	0.362	А
4,4'-DDD	ND		ug/kg	1.56	0.558	А
4,4'-DDT	ND		ug/kg	2.93	1.26	А
Endosulfan I	ND		ug/kg	1.56	0.369	А
Endosulfan II	ND		ug/kg	1.56	0.522	А
Endosulfan sulfate	ND		ug/kg	0.651	0.310	А
Methoxychlor	ND		ug/kg	2.93	0.912	А
Toxaphene	ND		ug/kg	29.3	8.21	А
cis-Chlordane	ND		ug/kg	1.95	0.545	А
trans-Chlordane	ND		ug/kg	1.95	0.516	А
Chlordane	ND		ug/kg	12.7	5.18	А

Project Name:	CERTAIN TEED		Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16
		Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8081B
Analytical Date:	11/14/16 16:46
Analyst:	AM

Extraction Method:EPA 3546Extraction Date:11/13/16 21:03Cleanup Method:EPA 3620BCleanup Date:11/14/16

Parameter	Result	Qualifier	Units	F	RL	MDL	
Organochlorine Pesticides by GC -	Westborough	n Lab for s	ample(s):	01	Batch:	WG951909-1	

	Acceptance							
Surrogate	%Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	84		30-150	В				
Decachlorobiphenyl	96		30-150	В				
2,4,5,6-Tetrachloro-m-xylene	94		30-150	А				
Decachlorobiphenyl	90		30-150	А				

Parameter	LCS %Recovery	LCSD Qual %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC -	Westborough Lab Associate	ed sample(s): 01 Bat	ch: WG951909-2	2 WG951909-3				
Delta-BHC	96	92		30-150	4		30	A
Lindane	100	97		30-150	3		30	А
Alpha-BHC	100	98		30-150	2		30	А
Beta-BHC	96	95		30-150	1		30	А
Heptachlor	95	95		30-150	0		30	А
Aldrin	105	100		30-150	5		30	А
Heptachlor epoxide	111	105		30-150	6		30	А
Endrin	116	110		30-150	5		30	А
Endrin aldehyde	89	87		30-150	2		30	А
Endrin ketone	106	99		30-150	7		30	А
Dieldrin	114	109		30-150	4		30	А
4,4'-DDE	116	110		30-150	5		30	А
4,4'-DDD	115	116		30-150	1		30	А
4,4'-DDT	115	109		30-150	5		30	А
Endosulfan I	113	109		30-150	4		30	А
Endosulfan II	123	117		30-150	5		30	А
Endosulfan sulfate	93	95		30-150	2		30	А
Methoxychlor	99	96		30-150	3		30	А
cis-Chlordane	102	99		30-150	3		30	А
trans-Chlordane	112	108		30-150	4		30	А

Lab Control Sample Analysis

Batch Quality Control

Project Name:CERTAIN TEEDProject Number:21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 %Recovery
 Qual
 Limits
 RPD
 Qual
 Limits

 Organochlorine Pesticides by GC - Westborough Lab
 Associated sample(s):
 01
 Batch:
 WG951909-2
 WG951909-3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	91		85		30-150	В
Decachlorobiphenyl	105		100		30-150	В
2,4,5,6-Tetrachloro-m-xylene	99		97		30-150	А
Decachlorobiphenyl	99		106		30-150	А

METALS

Project Name:	CERT	AIN TEED					Lab Nu	nber:	L163676	66	
Project Number:	21.00	56806					Report	Date:	11/20/16	6	
				SAMPL	E RES	ULTS					
Lab ID:	L1636	766-01					Date Co	llected:	11/11/16	6 09:05	
Client ID:	SS-1-	111116					Date Re	ceived:	11/11/16	6	
Sample Location:	BUFF	ALO, NY					Field Pre	ep:	Not Spe	cified	
Matrix:	Soil										
Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	11000		mg/kg	110	17.	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Antimony, Total	1.3	J	mg/kg	1.8	0.15	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Arsenic, Total	8.9		mg/kg	0.57	0.08	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Barium, Total	87		mg/kg	3.4	0.24	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Beryllium, Total	1.3		mg/kg	0.34	0.10	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Cadmium, Total	0.83		mg/kg	0.23	0.03	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Calcium, Total	61000		mg/kg	570	69.	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Chromium, Total	30		mg/kg	2.3	0.53	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Cobalt, Total	7.3		mg/kg	0.57	0.06	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Copper, Total	35		mg/kg	2.3	0.22	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Iron, Total	42000		mg/kg	230	23.	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Lead, Total	65		mg/kg	0.68	0.17	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Magnesium, Total	9400		mg/kg	110	14.	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Manganese, Total	1300		mg/kg	2.3	0.50	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Mercury, Total	0.09		mg/kg	0.08	0.02	1	11/15/16 09:30	11/17/16 16:10	EPA 7471B	1,7471B	BV
Nickel, Total	25		mg/kg	1.1	0.30	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Potassium, Total	690		mg/kg	110	18.	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Selenium, Total	1.0	J	mg/kg	2.3	0.86	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Silver, Total	0.15	J	mg/kg	0.57	0.06	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Sodium, Total	280		mg/kg	170	13.	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Thallium, Total	0.29		mg/kg	0.23	0.06	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Vanadium, Total	26		mg/kg	1.1	0.43	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV
Zinc, Total	210		mg/kg	11	3.0	10	11/14/16 21:44	11/15/16 12:32	EPA 3050B	1,6020A	BV

 Lab Number:
 L1636766

 Report Date:
 11/20/16

Project Name: CERTAIN TEED Project Number: 21.0056806

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield I	_ab for	sample(s):	01 Batch:	WG9	52185-1					
Aluminum, Total	ND		mg/kg	100	15.	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Antimony, Total	0.20	J	mg/kg	1.6	0.14	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Arsenic, Total	ND		mg/kg	0.50	0.07	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Barium, Total	ND		mg/kg	3.0	0.21	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Beryllium, Total	ND		mg/kg	0.30	0.09	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Cadmium, Total	ND		mg/kg	0.20	0.03	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Calcium, Total	ND		mg/kg	500	61.	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Chromium, Total	ND		mg/kg	2.0	0.47	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Cobalt, Total	ND		mg/kg	0.50	0.05	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Copper, Total	ND		mg/kg	2.0	0.19	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Iron, Total	ND		mg/kg	200	21.	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Lead, Total	ND		mg/kg	0.60	0.15	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Magnesium, Total	ND		mg/kg	100	12.	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Manganese, Total	ND		mg/kg	2.0	0.44	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Nickel, Total	ND		mg/kg	1.0	0.27	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Potassium, Total	ND		mg/kg	100	16.	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Selenium, Total	ND		mg/kg	2.0	0.76	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Silver, Total	ND		mg/kg	0.50	0.05	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Sodium, Total	ND		mg/kg	150	12.	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Thallium, Total	ND		mg/kg	0.20	0.05	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Vanadium, Total	ND		mg/kg	1.0	0.38	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV
Zinc, Total	ND		mg/kg	10	2.6	10	11/14/16 21:44	11/15/16 11:56	1,6020A	BV

Prep Information

Digestion Method: EPA 3050B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for	sample(s):	01 Batch:	WG95	52288-1					
Mercury, Total	ND		mg/kg	0.08	0.02	1	11/15/16 09:30	11/16/16 11:14	1,7471B	BV

Project Name: CERTAIN TEED

Project Number: 21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Project Name: CERTAIN TEED Project Number: 21.0056806

arameter	LCS %Recovery Q	LCSD ual %Recovery Q	%Recovery ual Limits	RPD	Qual RPD Limits
otal Metals - Mansfield Lab Associat	ed sample(s): 01 Batch: WG	952185-2 SRM Lot Numbe	r: D091-540		
Aluminum, Total	70	-	52-148	-	20
Antimony, Total	146	-	1-200	-	20
Arsenic, Total	110	-	80-121	-	20
Barium, Total	100	-	84-117	-	20
Beryllium, Total	100	-	83-117	-	20
Cadmium, Total	103	-	83-117	-	20
Calcium, Total	104	-	81-118	-	20
Chromium, Total	98	-	80-119	-	20
Cobalt, Total	104	-	84-115	-	20
Copper, Total	104	-	82-118	-	20
Iron, Total	100	-	47-154	-	20
Lead, Total	110	-	82-118	-	20
Magnesium, Total	91	-	77-123	-	20
Manganese, Total	104	-	82-118	-	20
Nickel, Total	108	-	83-117	-	20
Potassium, Total	88	-	72-128	-	20
Selenium, Total	101	-	79-121	-	20
Silver, Total	112	-	76-124	-	20
Sodium, Total	97	-	73-126	-	20
Thallium, Total	99	-	80-121	-	20
Vanadium, Total	96	-	78-122	-	20

Project Name: CERTAIN TEED Project Number: 21.0056806

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated samp	ble(s): 01 Batch: WG952185	5-2 SRM Lot Number: D0	091-540		
Zinc, Total	103	-	82-118	-	20
Total Metals - Mansfield Lab Associated samp	ble(s): 01 Batch: WG952288	3-2 SRM Lot Number: D(091-540		
Mercury, Total	98	-	72-128	-	

Matrix Spike Analysis Batch Quality Control

Project Name: CERTAIN TEED **Project Number:** 21.0056806

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Reco Qual Lim	very nits RPD	Qual	RPD Limits
Total Metals - Mansfield L	ab Associated sar	nple(s): 01	QC Batch	ID: WG952188	5-3 Q	C Sample:	L1634710-01	Client ID: N	IS Sample		
Aluminum, Total	10000	3430	11000	29	Q	-	-	75-1	- 25		20
Antimony, Total	0.65J	85.7	80	93		-	-	75-1	- 25		20
Arsenic, Total	7.8	20.6	28	98		-	-	75-1	- 25		20
Barium, Total	78.	343	400	94		-	-	75-1	- 25		20
Beryllium, Total	0.59J	8.57	8.5	99		-	-	75-1	- 25		20
Cadmium, Total	0.37J	8.74	8.8	101		-	-	75-1	- 25		20
Calcium, Total	48000	1710	29000	0	Q	-	-	75-1	- 25		20
Chromium, Total	19.	34.3	51	93		-	-	75-1	- 25		20
Cobalt, Total	10.	85.7	90	93		-	-	75-1	- 25		20
Copper, Total	29.	42.8	70	96		-	-	75-1	- 25		20
Iron, Total	26000	1710	27000	58	Q	-	-	75-1	- 25		20
Lead, Total	28.	87.4	110	94		-	-	75-1	- 25		20
Magnesium, Total	8600	1710	10000	82		-	-	75-1	- 25		20
Manganese, Total	750	85.7	860	128	Q	-	-	75-1	- 25		20
Nickel, Total	26.	85.7	110	98		-	-	75-1	- 25		20
Potassium, Total	950	1710	2600	96		-	-	75-1	- 25		20
Selenium, Total	ND	20.6	20	97		-	-	75-1	- 25		20
Silver, Total	0.33J	51.4	50	97		-	-	75-1	- 25		20
Sodium, Total	380	1710	2000	94		-	-	75-1	- 25		20
Thallium, Total	0.50	20.6	19	90		-	-	75-1	- 25		20
Vanadium, Total	18.	85.7	99	94		-	-	75-1	- 125		20

Matrix Spike Analysis Batch Quality Control

Project Name:	CERTAIN TEED	Batch Quality Control	Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated samp	ple(s): 01	QC Batch	ID: WG952185-3	QC Sample:	L1634710-01	Client ID: MS Sar	nple	
Zinc, Total	140	85.7	220	93	-	-	75-125	-	20
Total Metals - Mansfield La	ab Associated samp	ple(s): 01	QC Batch	ID: WG952288-3	QC Sample:	L1636699-01	Client ID: MS Sar	nple	
Mercury, Total	0.02J	0.141	0.17	120	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:CERTAIN TEEDProject Number:21.0056806

Lab Number: Report Date:

r: L1636766 e: 11/20/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG952185	-4 QC Sample: L	_1634710-01	Client ID: DU	P Sample	
Aluminum, Total	10000	11000	mg/kg	10		20
Antimony, Total	0.65J	0.56J	mg/kg	NC		20
Arsenic, Total	7.8	7.1	mg/kg	9		20
Barium, Total	78.	79	mg/kg	1		20
Beryllium, Total	0.59J	0.59J	mg/kg	NC		20
Cadmium, Total	0.37J	0.38J	mg/kg	NC		20
Calcium, Total	48000	46000	mg/kg	4		20
Chromium, Total	19.	21	mg/kg	10		20
Cobalt, Total	10.	11	mg/kg	10		20
Copper, Total	29.	30	mg/kg	3		20
Iron, Total	26000	27000	mg/kg	4		20
Lead, Total	28.	28	mg/kg	0		20
Magnesium, Total	8600	12000	mg/kg	33	Q	20
Manganese, Total	750	720	mg/kg	4		20
Nickel, Total	26.	27	mg/kg	4		20
Potassium, Total	950	1000	mg/kg	5		20
Selenium, Total	ND	ND	mg/kg	NC		20
Silver, Total	0.33J	0.26J	mg/kg	NC		20
Sodium, Total	380	340	mg/kg	11		20

Lab Duplicate Analysis Batch Quality Control

Project Name:CERTAIN TEEDProject Number:21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

Parameter	Native Sample D	uplicate Sample U	nits RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG952185-4	QC Sample: L163471	0-01 Client ID: DUP Sampl	le
Thallium, Total	0.50	0.24J m	g/kg NC	20
Vanadium, Total	18.	19 m	g/kg 5	20
Zinc, Total	140	150 m	g/kg 7	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG952288-4	QC Sample: L163669	9-01 Client ID: DUP Sampl	le
Mercury, Total	0.02J	0.02J m	g/kg NC	20

INORGANICS & MISCELLANEOUS

Lab Number: L1636766 Report Date: 11/20/16

Project Name: CERTAIN TEED

Project Number: 21.0056806

SAMPLE RESULTS

Lab ID:	L1636766-01	Date Collected:	11/11/16 09:05
Client ID:	SS-1-111116	Date Received:	11/11/16
Sample Location:	BUFFALO, NY	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	86.4		%	0.100	NA	1	-	11/17/16 09:55	121,2540G	RI
Cyanide, Total	2.0		mg/kg	1.1	0.19	1	11/14/16 16:20	11/15/16 14:16	1,9010C/9012B	JO
рН (Н)	8.5		SU	-	NA	1	-	11/12/16 06:30	1,9045D	MC

Project Name:CERTAIN TEEDProject Number:21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

Method Blank Analysis Batch Quality Control

Parameter	Result G	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lat	o for sam	ple(s): 01	Batch:	WG95	2109-1				
Cyanide, Total	0.16	J	mg/kg	0.91	0.15	1	11/14/16 16:20	11/15/16 13:53	1,9010C/9012	B JO

Project Name: CERTAIN TEED Project Number: 21.0056806

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab Asso	ociated sample(s): 07	1 Batch: WG951699-1				
рН	100	-	99-101	-		
General Chemistry - Westborough Lab Asso	ociated sample(s): 01	1 Batch: WG952109-2	WG952109-3			
Cyanide, Total	120	120	80-120	1	35	

		Matrix Spike Analysis		
Project Name:	CERTAIN TEED	Batch Quality Control	Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westboroug Sample	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG9521	09-4 WG9	52109-5 QC	Sample: L1636680	-03 (Client ID	: MS
Cyanide, Total	ND	11	10	92		10	92	65-135	0		35

		l ab Dunlicate Analysis		
Project Name:	CERTAIN TEED	Batch Quality Control	Lab Number:	L1636766
Project Number:	21.0056806		Report Date:	11/20/16

arameter		Native	Sample	Duplicate Sa	mple Units	RPD	Qual RPD Limits	-
General Chemistry -	- Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG951699-2	QC Sample: L163	86795-05 Client	t ID: DUP Sample	
рН				6.6	SU	2	5	
General Chemistry -	- Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG953210-1	QC Sample: L163	37280-06 Client	t ID: DUP Sample	
Solids, Total		9	3.8	93.7	%	0	20	

Lab Number: L1636766 Report Date: 11/20/16

Project Name: CERTAIN TEED Project Number: 21.0056806

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1636766-01A	Vial Large Septa unpreserved (4o	А	N/A	3.5	Y	Absent	NYTCL-8260(14)
L1636766-01B	Glass 250ml/8oz unpreserved	A	N/A	3.5	Y	Absent	NYTCL-8270(14),TCN- 9010(14),TS(7),PH- 9045(1),NYTCL- 8081(14),NYTCL-8082(14)
L1636766-01C	Metals Only - Glass 60mL/2oz unp	A	N/A	3.5	Y	Absent	BA-6020T(180),FE- 6020T(180),SE-6020T(180),TL- 6020T(180),CA-6020T(180),CR- 6020T(180),K-6020T(180),NI- 6020T(180),ZN-6020T(180),NA- 6020T(180),BE-6020T(180),PB- 6020T(180),BE-6020T(180),MN- 6020T(180),AS-6020T(180),AG- 6020T(180),AL-6020T(180),AG- 6020T(180),AL-6020T(180),CD- 6020T(180),HG-T(28),MG- 6020T(180),CO-6020T(180)
L1636766-02A	Vial Large Septa unpreserved (4o	А	N/A	3.5	Y	Absent	HOLD-8260(14)
L1636766-02B	Glass 250ml/8oz unpreserved	A	N/A	3.5	Y	Absent	HOLD-WETCHEM(),HOLD- 8081(14),HOLD- 8270(14),HOLD-8082()
L1636766-02C	Glass 60mL/2oz unpreserved	А	N/A	3.5	Y	Absent	HOLD-METAL(180)

Project Name: CERTAIN TEED

Project Number: 21.0056806

Lab Number: L1636766

Report Date: 11/20/16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name: CERTAIN TEED

Project Number: 21.0056806

Lab Number: L1636766

Report Date: 11/20/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: CERTAIN TEED Project Number: 21.0056806

 Lab Number:
 L1636766

 Report Date:
 11/20/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Агрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	y Rd, Suite 5 Vay oper Ave, Suite 1	05	Page 1 o	e f 1		Date in	Rec'a Lab	н 	1/12	211	6		ALPHA JOB# 1636766
8 Walkup Dr.	320 Forbes Blvd	Project Information					Deliv	verabl	es		F				Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: Cert	toun Tree	2				ASP	-A		A	ASP-	В		Same as Client Info
		Project Location: Buf	Sale N'	1				EQu	IS (1 F	ile)		EQul	S (4 File	e)	PO #
Client Information		Project # 21:005	6806] Othe	er						
Client: (-ZA		(Use Project name as Pr	roject #)				Regu	ulatory	Requi	remen	t				Disposal Site Information
Address: 535 With	shington St	Project Manager:	Project Manager:					NY TOGS NY Part 375							Please identify below location of
Buffale, N.	1 14203	ALPHAQuote #:					AWQ Standards NY CP-51								applicable disposal facilities.
Phone:		Turn-Around Time					NY Restricted Use Other							ľ	Disposal Facility:
Fax:		Standarc		Due Date:	11-19-1	6		NY U	nrestrict	ed Use					
Email:		Rush (only if pre approved	NO NO	# of Days:	10 g	R		NYC	Sewer D	Discharg	e				Other:
These samples have b	peen previously analyze	ed by Alpha					ANALYSIS					-	Sample Filtration		
Other project specifi	c requirements/comm	ients:					N							-+	0
Please specify Metals	s or TAL.						PH, 509190	Metals	5 8260						Lab to do A Preservation Lab to do Preservation Lab to do B (Please Specify below) t
ALPHA Lab ID Sample ID			Colle	Collection Sample Sampler's			2 3	AL S	20						t
(Lab Use Only)			Date	Date Time		Initials	1- 33	F	2	2				{	Sample Specific Comments
BG 166-01	55-1-111	16	11/11/16	0905	Soil	PN	X	X	X						3
60	6-DUP-11	שווו	11/11/16		Ser 1	PN	X	X	×						X Hold analysis 3
															pending field
														1	sampling results
	-													-+	
											-			-+	
Preservative Code: A = None B = HCl C = HNO ₃ D = H SO	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No Mansfield: Certification No	o: MA935 o: MA015		Cont	tainer Type	A	A	A						Please print clearly, legibly and completely. Samples can not be logged in and
E = NaOH	B = Bacteria Cup	Piesalvalive					14	AAA							start until any ambiguities are
$F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $K/E = Zn Ac/NaOH$ $O = Other$	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished By: Date/Time 11-11-16/1215 1 1 1			R	Received By: AAL				Date/Time			2	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	
Form No: 01-25 HC (rev. 3	0-Sept-2013)								0						

APPENDIX D

IC/EC CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No. C919169 Site Name Buffalo Lakeside Commerce Park Site Address: 231 Ship Canal Parkway Zip Code: 14218 City/Town: Buffalo County: Erie Site Acreage: 25.0 Reporting Period: March 31, 2015 to March 31, 2018 YES							
Site Name Buffalo Lakeside Commerce Park Site Address: 231 Ship Canal Parkway Zip Code: 14218 City/Town: Buffalo County: Erie Site Acreage: 25.0 Reporting Period: March 31, 2015 to March 31, 2018 YES NO							
Site Address: 231 Ship Canal Parkway Zip Code: 14218 City/Town: Buffalo County: Erie Site Acreage: 25.0 Reporting Period: March 31, 2015 to March 31, 2018 YES NO							
Reporting Period: March 31, 2015 to March 31, 2018 YES NO							
YES NO							
1. Is the information above correct?							
If NO, include handwritten above or on a separate sheet.							
 Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 							
3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?							
 Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? 							
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.							
5. Is the site currently undergoing development?							
Box 2							
YES NO							
6. Is the current site use consistent with the use(s) listed below?							
7. Are all ICs/ECs in place and functioning as designed?							
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A Corrective Measures Work Plan must be submitted along with this form to address these issues.							

SITE NO. C915185		Box 3						
Description of Institutional Controls								
Parcel	Owner	Institutional Control						
132.20-1-11	Ship Certain LLC							
		Soil Management Plan						
		Landuse Restriction						
		Building Use Restriction						
		Ground Water Use Restriction						
		O&M Plan						
 Commercial/industrial site use only, commercial day care, child care or medical care prohibited. Site cover to include pavement, structures, or minimum of 12 inches of clean soil with vegetative growth. Existing soil excavated from beneath cover is to be managed, characterized and disposed in accordance with the soil management plan. 								
		Box 4						
Description of Engineering Controls								
Parcel	Engineering Control							
132.20-1-11								
	Cover System							
 Commercial/industrial site use only, commercial day care, child care or medical care prohibited. Site cover to include pavement, structures, or minimum of 12 inches of clean soil with vegetative growth. Existing soil excavated from beneath cover is to be managed, characterized and disposed in accordance with the soil management plan. 								

	Box 5
	Periodic Review Report (PRR) Certification Statements
	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certificatio are in accordance with the requirements of the site remedial program, and generally accepted and program practices; and the information procented is accurate and compare.
	engineering practices, and the mormation presented is accurate and compete. YES NO
	X
•2	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutions or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health an the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

Г

IC CERTIFICATIONS SITE NO. C915185

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>MIKE J</u>	<u>ASKOLKA</u> ame	_at_ <u>231</u> p	SHIP CA	WAL PARKWAY				
am certifying as	REMED	IAL PA	IRTY	(Owner or Remedial Party)				
for the Site named in the Site Details Section of this form.								
Signature of Owner Rendering Certifica	∽, Remedial Party, or tion	r Designated Ro	epresentative	3/29/18 Date				

IC/EC CERTIFICATIONS	
	Box 7
Professional Engineer Signature	
I certify that all information in Boxes 4 and 5 are true. I understand that a false statement punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	made herein is
J. BART A. KLETTKE at 300 PEARL STREET, STE. 700, E print name print business address	SJFFALD NY MZOZ
am certifying as a Professional Engineer for the <u>Remedial Party</u>	(
Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification	<u>7-18</u>

GZA GeoEnvironmental, Inc.