

ENVIRONMENTAL INVESTIGATION WATERFRONT SCHOOL BUFFALO, NEW YORK

Prepared For:

City of Buffalo Board of Education 406 City Hall Buffalo, New York 14202

Attention: Mr. Robert Rua

BTA-90-149 August, 1990 (Ammended)

TABLE OF CONTENTS

I. INT	rrodi	UCTION1
	A. B.	General
II. st	JBSUI	RFACE EXPLORATION3
	A. B. C.	General
III.	LABO	DRATORY TEST RESULTS7
	A. B. C.	Procedures and Methods
IV. S	SUMM2	ARY AND CONCLUSIONS14
APPEND	DICES	<u>3</u>
APPEND APPEND	OIX E	A - Drawings 3 - Limitations C - Subsurface Logs D - Analytical Test Results E - Supporting Documentations

ENVIRONMENTAL INVESTIGATION WATERFRONT SCHOOL BUFFALO, NEW YORK

I. INTRODUCTION

A. General

Empire Soils Investigations, Inc. (ESI) was contracted by the City of Buffalo Board of Education to conduct a limited subsurface exploration and analytical testing program at the Waterfront School in Buffalo, New York. A site location plan is presented as Drawing No. 1 in Appendix A. The environmental investigation was conducted in accordance with ESI's proposal dated July 26, 1990.

B. Purpose and Scope

The purpose of the environmental investigation was to investigate the possible presence of ferric cyanide and USEPA target compound list parameters on the southern boundary of the Buffalo Waterfront School. Reportedly, ferric cyanide has been found and removed from the adjacent National Fuel Gas property relatively close to the southern boundary of the school.

In order to accomplish this purpose, ESI completed the following scope of services in agreement with the school board:

- o Made a site visit to layout boring locations and observe the location of the National Fuel Gas excavation;
- o Advanced six* (6) borings through the fill materials along the boundary between the Waterfront School and National Fuel Gas;
- o Prepared subsurface boring logs;
- o Measured organic vapor and hydrogen cyanide concentrations during the exploration phase of this project;
- o Obtained subsurface soil samples for analytical testing;
- o Engaged the services of a New York State Department of Health (NYSDOH) certified environmental laboratory, Huntingdon Analytical Services (HAS) to analyze the soil samples;
- o Evaluated the data collected, and;
- o Summarized the information in this report.

The opinions, conclusions and recommendations in this report are based solely on the above scope of services. Limitations to this environmental investigation are presented in Appendix B.

II. SUBSURFACE EXPLORATION

A. General

ESI advanced six (6) test borings (SB-1 through SB-6) along a portion of the southern border of the City of Buffalo Waterfront School on July 25, 1990. The boring locations are illustrated on Drawing No. 2 in Appendix A. The six (6) borings were spaced at generally equal distances along the southern border of the portion of the Waterfront School property adjacent to the National Fuel Gas excavation. The test borings were advanced to determine the subsurface conditions at the site and obtain soil samples for analytical testing.

B. Methods

ESI advanced the test borings using a truck mounted rotary drill rig, Model CME-45B. ESI used 2-1/4-inch hollow stem augers to advance the boreholes. Representative samples of the subsurface soils were obtained by driving a precleaned 2-inch diameter stainless steel split-spoon sampler into the undisturbed material below the auger casing, with a 140-pound hammer falling freely a distance of thirty (30)-inches (ASTM Method D-1586).

The recovered subsurface soil samples were visually classified in the field by an ESI environmental geologist using ASTM Method D-2488. Features such as relative density and consistency (obtained from the blow counts), color, grain size, moisture, etc. were recorded on the boring logs. Organic vapor measurements of

the headspace in the soil sample jars were made using a calibrated photoionization detector (PID). The PID used was a Hnu Model 101S equipped with an 11.7 eV ultraviolet light source.

C. Subsurface Conditions

ESI advanced each of the borings through the fill materials encountered into the apparent native clayey-silts or silty-clays beneath the site. Detailed descriptions of the soil conditions encountered in each borehole are presented on the subsurface logs in Appendix C. The fill thicknesses encountered at each borehole are summarized below:

Boring Number	Depth of Fill (Feet)
SB-1	8
SB-2	15
SB-3	15
SB-4	13
SB-5	14
SB-6	13.5

The fill materials consisted of a wide variety of natural and man-made materials. Silt, sand and gravel fill materials are mingled with varying amounts of bricks, cinders, slag, glass, concrete, lime-like materials, black-blue fine sand (possible ferric cyanide), and wood. Indicators of potential environmental concerns are summarized below:

Boring No.	Range of PID Measurements in Sample Jar Headspace (ppm)	Subsurface Log Notations
SB-1 SB-2	BG-11 8-80	Oil sheen on water. Blue-black
		fine to coarse sand (possible ferric cyanide).
SB-3	BG-180	Coke/Coal tar odor.
SB-4	BG-25	
SB-5	BG-110	Very strong pe- troleum or coke odor. Oil sheen on water.
SB-6	BG-130	Very strong pe- troleum odor. Minute oil pock- ets, very dis- tinct sheen.

Soil boring SB-2 had some blue-black material that could be ferric cyanide. Ferric cyanide is usually characterized by a distinct blue coloring.

The photoionization detector (organic vapor) measurements at various depths below grade are summarized on Table 1. Elevated photoionization measurements are an indication of potential environmental contamination. In general, measurements above 10 ppm (parts per million) merit additional investigation or chemical analysis.

TABLE 1

SUMMARY OF PID MEASUREMENTS IN SAMPLE JAR HEADSPACE AT VARIOUS DEPTHS BELOW GRADE

			D Concenti	acion	(ppm)	
Depth	SB-1	SB-2	<u>sb-3</u>	<u>SB-4</u>	SB-5	<u>SB-6</u>
0-2'	11	*	BG	NS	NS	NS
2-4'	BG	*	*	5-6	BG-4.8	*
4-6'	BG-8	*	5-6	20	8	BG
6 - 8'	7	*	BG-6	25	70-110	*
8-10'	9.5	8	BG	22	*	70-80
10-12'	NS	9	5-6	BG	*	120-130
12-14'	NS	7	150-180	*	15-17	50 - 56
14-16'	NS	50-80	70-80	NS	50	NS

Note:

^{* =}Insufficient sample available for measurement.

BG =Ambient Air Background Condition

ppm =parts per million

NS =No Sample

III. LABORATORY ANALYTICAL TESTING

A. Procedures and Methods

Huntingdon Analytical Services, a division of Empire Soils Investigation and a certified NYSDOH environmental laboratory (No. 10833) performed the analyses on the soil samples. The soil samples were cooled and transported to the laboratory using a chain-of-custody record. A copy the of the chain-of-custody is attached to the analytical results in Appendix D. This report presents the results of the analyses for ferric cyanide indicator parameters. A direct test for ferric cyanide with approved methods was not identified, however ESI tested the soil for total iron (ferric and ferrous materials), total cyanide, and releasable cyanide. The analytical test methods were as follows:

Parameter	EPA Method
Total Iron	SW846 - 6010
Total Cyanide	SW846 - 9010
Total Releasable	SW846 - 9010
Cyanide	and Reactivity Test
TCL Volatiles	8240
TCL Semi-Volatiles	8270
TCL Pesticide/PCB's	8080
TAL Metals	6010, 7060, 7421, 7471,
	7740, 7841,

A copy of the reactivity test (total releasable cyanide) is presented in Appendix E of this report for reference purposes.

The subsurface soil samples submitted for analyses were representative of the materials from the following depths below grade:

	Soil Sa	
Boring	Interval for	<u>Analysis</u>
SB-1	0 to	8 1
SB-2	0 to	8 1
SB-3	2 to	12'
SB-4	4 to	10'
SB-5	4 to	12'
SB-6	2 to	10'

These depths were determined by the on-site environmental geologist based on the presence of fill materials and classification of the materials.

B. Soil Test Results for Ferric Cyanide Indicator Parameters

The results of the analytical testing of the six (6) soil samples are summarized below:

	Conc	entration (mg/kg)	(ppm) *
Boring No.	Iron (Total)	Cyanide (Total)	Total <u>Releasable Cyanide</u>
SB-1	9,550	21	<50
SB-2	9,380	6.6	<50
SB-3	10,100	7.8	<50
SB-4	10,400	21	<50
SB-5	16,000	31	<50
SB-6	15,300	14	<50

^{* =} mg/kg (milligrams per kilogram on dry weight basis)
ppm = parts per million

The iron concentrations in the six (6) samples were all well below the average natural abundance of iron in soils and crystal rock.

Cyanide was detected in each of the soil samples ranging from 6.6 to 31 ppm. This indicates that ferric cyanide or other cyanide

containing compounds are present. The USEPA and NYSDEC characterize cyanide containing waste as hazardous if the material fails the reactivity test (total releasable cyanide). A copy of this test method is presented in Appendix E. Simply stated if the waste reacts with an acid solution to produce hydrogen cyanide gas, a measurement of the total releasable cyanide is made. The amount of total releasable cyanide is compared to the current EPA action level of 250 mg HCN/kg waste. No releaseable cyanide was detected in any of the soil samples tested from the six (6) borings. Therefore these soils would not be considered a hazardous waste based on reactivity (i.e. total releasable cyanide).

C. Target Compound List Analyses Results

The soil samples from each boring were analyzed for the USEPA Target Compound List (TCL) parameters in addition to the ferric cyanide indicators. This section of the report details the results of the TCL analysis. The Target Compound List is a list of pollutants identified by the USEPA. The compounds are divided into four fractions; these fractions are the volatiles, semi-volatiles, pesticide/PCB and metals. Cyanide is also on the USEPA target compound list but was discussed in a previous section.

There were no PCB or pesticide compounds present above the analytical detection levels in the six soil samples.

Two volatile compounds and 19 semi-volatile compounds were

detected in one or more of the soil samples. These detectable compounds are summarized on Table 2. The laboratory report for TCL Analysis are presented in Appendix D.

Volatile compounds were detected in borings SB-5 and SB-6 only. The compounds detected were ethyl benzene and xylenes.

The semi-volatile compounds detected generally fall into the category known as polynuclear aromatic hydrocarbons (PAH's) which are components of coal tars. There are no known New York State acceptable standards for the coal tars compounds in soil. The New Jersey cleanup standard for known coal tar contamination of soil is that the summation of all coal tar compounds be less than 10 ppm (ug/kg). The summation of the detectable coal tar compounds based on the analyses from each of the soil samples is summarized below:

Boring Number	Summation of Coal Tars (mg/kg)((mgg
SB-1	101.23	
SB-2	35.53	
SB-3	1.8	
SB-4	40.36	
SB-5	600.7	
SB-6	39.62	

If the New Jersey criteria is applied to this site, areas around SB-1, SB-2, SB-4, SB-5, and SB-6 would potentially require cleanup. Routes of potential exposure and environmental degradation should be factored into determining the clean up requirements.

BTA-90-149 - Page 10 - 8/90

TABLE 2

OR MORE OF THE SUBSURFACE SOIL SAMPLES PRESENT ABOVE DETECTION LEVELS IN ONE WATERFRONT SCHOOL, BUFFALO, NEW YORK SUMMARY OF TCL ORGANIC COMPOUNDS

3

Parameter	SB-1	SB-2	SB-3	SB-4	SB~5	SB-6	EPA Criteria
Volatíles:							
Ethyl benzene Xylene (total)	< 0.5 < 0.5	<0.5 <0.5	<pre></pre> <pre><</pre>	<0.5 <0.5	3.1 3.8	82.0 130.0	6.0 28.0
Semi-Volatiles:						ı	
Acenaphthene	1.9	2.8	<0.33	1.8	42.0	0.59	3.4
Acenaphtnylene Anthracene	< 0.33 3.7	< 0.33 2.0	\(\) \(\) \(\) \(\)	3.1	38.0	1.1	4,0
Benzo(a)anthracene	e	1.4	<0.33	2.4	38.0	3.8	8.2
Benzo(b)fluoranthene	6.7	0.98	<0.33	1.7	29	2.6	3.4
Benzo(k)fluoranthene	9.9	1.3	<0.33	1.7	25	2.7	3.4
Benzo(a)pyrene	7.7	1.5	<0.33	1.9	33	3.2	1.5
Benzo(g,h,1)perylene	5.6	1.3	<0.33	1.7	20	2.1	8.2
Dis(z=ethyinexyi) phthalate	0.43	<0.33	<0.33	<0.33	<1.65	<0.33	28
Chrysene	7.8	1.3	<0.33	2.2	32.0	3.4	8.2
Dibenz(a,h)anthracene	1.1	<0.33	<0.33	<0.33	4.7	0.52	8.2
Dibenzofuran	1.0	3.2	<0.33	1.7	31.0	0.42	Unknown
Fluoranthene	14.0	2.4	<0.33	5.6	0.89	6.4	8.2
Fluorene	1.7	3.9	< 0.33	2.6	33.0	0.59	₹0.1
Indeno(1,2,3-cd)pyrene	4.9	0.95	<0.33	1.7	21.0	2.0	8.2
2-Methyl Naphthalene	0.73	1.6	<0.33	<0.33	3.0	<0.33	Unknown
Naphthalene	1.5	3.8	1.8	1.9	23.0	1.7	3.1
Phenanthrene	12.0	5.1	<0.33	4.2	110.0	3.5	3.1
Pyrene	16.0	2.0	<0.33	5.8	50.0	5.0	8.2

The EPA issued regulations on June 1, 1990 (FR 22520-22720) that included treatment standards for multisource leachates (F039 wastes). While these regulations are not specifically directed at contaminated soils from unknown sources they do provide a basis for determining the significance of the contamination. The EPA criteria is presented on Table 2. One or more compounds are present in borings SB-1, SB-2, SB-4, SB-5 and SB-6 which exceed the EPA criteria. Therefore, it is possible that cleanup will be required by the NYSDEC.

The potential impact of dibenzofuran detected in the soil is unknown. Dibenzofuran have been associated with dioxin contamination on other site.

The target analyte metals results are summarized on Table 3. The concentrations of aluminum, calcium, copper, lead, magnesium, mercury nickel and zinc exceeded the typical background concentrations in soils in one or more samples. This is probably related to the presence of man-made fill materials in the subsurface. Determination of the environmental and health impact if any of these metals is beyond the requested scope of services.

TABLE 3

SUMMARY OF TAL* METALS

IN SUBSURFACE SOIL SAMPLES
WATERFRONT SCHOOL, BUFFALO, NEW YORK

Concentration (mg/kg)

Analyte	<u>SB-1</u>	<u>SB-2</u>	<u>SB-3</u>	<u>SB-4</u>	SB-5	SB-6	Range of Back- ground in New York State**
Aluminum	4,150	5,780	5,840	•	•	8,510	1,000-2,500
Antimony	<39.1	<4.27	<3.82	<35.0	<3.88	<4.81	Unknown
Arsenic	6.27	2.67	2.58	1.36	5.04	3.57	0.1-12
Barium	71.6	41.9	24.2	24.1	150	63.2	15-600
Beryllium	<7.81	<0.85	<0.76	<6.99		<0.96	0-1.75
Cadmium	<19.5	<2.14	<1.91	<17.5	<1.94	<2.40	0.01-2
Calcium	51,100	27,800	32,200	•	30,600		_
Chromium	<15.6	7.85	6.47	<14.0	8.69	11.8	1.5-25
Cobalt	<15.6	4.90	3.49	<14.0	2.91	7.34	2.5-60
Copper	39.4	14.1	14.0	148	61.5	33.7	<1-15
Iron	9,550	9,380	10,100	10,400	16,000	15,300	17,500-25,000
Lead	93.8	41.0	34.1	4,090	165	421	1-12.5
Magnesium	7,050	7,050	18,200	45,000	7,850	6,170	1,700-6,000
Manganese	244	153	266	281	166	283	50-5,000
Mercury	0.22	0.16	0.54	<0.13	<0.14	0.59	0.042-0.2
Nickel	31.4	20.5	21.8	41.2	19.0	29.1	0.5-25
Potassium	<2,340	390	623	<2,100	496	1,060	8,500-43,000
Selenium	<0.39	<0.43	<0.38	<0.35	<0.39	<0.48	<0.1-0.125
Silver	<7.81	<0.85	<0.76	<6.99	<0.78	<0.96	Unknown
Sodium	<39.1	163	131	<35.0	178	110	6000-8000
Thallium	<0.78	<0.85	<0.76	<0.70	<0.78	<0.96	Unknown
Vanadium	<15.6	12.2	10.7	<14.0	10.7	15.5	25-60
Zinc	133	58.5	59.2	108	180	607	37-60

^{*}TAL - Target Analyte List

^{**} Source - NYSDEC, "Background Concentrations of 20 Elements in Soils with Special Regard for New York State.

IV. SUMMARY AND CONCLUSIONS

The conclusions and opinions presented in this report are based on the information obtained during this environmental investigation and are subject to the limitations presented in Appendix

The relevant findings are summarized below:

- o Thickness of fill materials ranged from approximately 8 to 15 feet:
- The fill materials observed contain natural and manmade materials consisting of silt, sand and gravel commingled with bricks, cinders, slag, glass, concrete, lime-like materials, traces of blue-black material, and wood;
- o The traces of blue-black material may be possible ferric cyanide;
- o Relatively high organic vapor (PID) readings were noted from one or more of the soil samples from each borings;
- o Oily sheens were noted on water recovered in the split spoons from SB-3 and SB-5;
- o Coke/coal tar odor was note in boring SB-3;
- o A very strong petroleum or coke odor was noted in borings SB-5 and SB-6;
- o Cyanide was detected in the soil samples from each of the borings. The cyanide concentrations ranged from 6.6 to 31 ppm;
- o No releasable cyanide was detected and the soil would not be classified as a hazardous waste based on the amount of total releasable cyanide;
- o Iron concentrations were relatively low compared to typical background concentrations;
- o No pesticides or PCB's were detected in the soil samples;

- o Ethyl benzene and xylenes were detected in borings SB-5 and SB-6;
- o Coal tar related compounds were present in each of the borings. The summation of the coal tar compounds exceeded 10 ppm in borings SB-1, SB-2, SB-4, SB-5, and SB-6; and,
- o Concentrations of aluminum, calcium, copper lead, magnesium, mercury, nickel and zinc in one or more of the soil samples exceeded background concentrations.

In summary, there appears to be some cyanide contamination at relatively low levels such that the soil would not be considered a hazardous waste based on total releasable cyanide content. However, there are indicators of other types of environmental contamination based on the relatively high organic vapor readings, the presence of coke, coal tar and/or petroleum odors, the presence of significant quantities of fill (8 to 15 feet), the presence of elevated concentrations of volatile and semi-volatile compounds, and the presence of some metals above background levels. Volatile and/or semi-volatile compounds exceeded the EPA cleanup criteria in five of the six borings therefore it is possible the cleanup may be required by the NYSDEC.

The assessment of risk at this site would be based on potential routes of exposure and degradation of the environment. A detailed risk assessment is beyond the present scope of this investigation. The New York State Department of Environmental Conservation and New York State Department of Health should be contacted to determine the significance of the compounds detected.

Respectfully Submitted,

EMPIRE SOILS INVESTIGATIONS, INC.

Lori A. Zimmerman

Environmental Geologist

David M. Harty, P.E.

Senior Environmental Engineer

cab

ناني شيمين چين و انجامي او در مواه در در در در و مواهي و در در در و مواهي و در در در و مواهي و در در در در و م

EMPIRE SOILS INVESTIGATIONS, INC. S-5167 SOUTH PARK AVENUE HAMBURG, NEW YORK 14075

APPENDIX A

EMPIRE SOILS INVESTIGATIONS, INC. S-5167 SOUTH PARK AVENUE HAMBURG, NEW YORK 14075

APPENDIX B

APPENDIX B

LIMITATIONS

- Empire Soils Investigations, Inc. (ESI's), Environmental Investigation was completed in accordance with generally accepted current practices of other consultants undertaking similar studies. ESI observed that of care and skill generally exercised by other consultconditions. under similar circumstances and ESI's findings and conclusions must be considered not as scientific certainties but as probabilities based on professional judgement concerning the significance of the limited data gathered during the course of the investigation. Specifically, ESI does not and cannot represent that the site contains no hazardous material, petroleum products, or other latent conditions beyond that observed by ESI during this Environmental Investigation.
- ESI can assume no responsibility for the undetected presence of either identified potential conditions or other latent conditions.
- 3. The observations described in this report were made under conditions stated therein. The conclusions presented in the report were based solely upon the services described therein and not tasks and procedures beyond the scope of described services or the time and budgetary constraints imposed by the client.
- 4. Observations were made of the subject site and on adjacent sites as indicated within the report. Due to the presence of fill materials, ESI renders no opinion as to the presence of hazardous materials or to the presence of indirect evidence relating to hazardous material in that portion of the site where there was no subsurface investigation.
- 5. Unless otherwise specified in the report, ESI did not perform testing or analyses to determine the presence of concentrations asbestos, radon, or petroleum products.
- characteristics of the subject site with respect to the presence in the environment of ferric cyanide. No specific attempt was made to check on the compliance of present or past owners or operators of the site with Federal, State or Local laws and regulations, environmental or otherwise.

LIMITATIONS (Continued)

- 7. Where laboratory analysis have been conducted by an outside laboratory, ESI has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
- 8. This report has been prepared for the exclusive use of City of Buffalo Board of Education and its designated agents for the specific application to the subject properties in accordance with generally accepted engineering practice. No other warranty, expressed or implied, is made. The environmental concerns noted in this report (if any) are applicable to the current identified proposed usage of the property.

EMPIRE SOILS INVESTIGATIONS, INC. S-5167 SOUTH PARK AVENUE HAMBURG, NEW YORK 14075

APPENDIX C

Waterfront School	DATE STARTED 7/25/90 FINISHED 7/25/90 SHEET 1 0F 1	EMPTRE SUBSURFACE LOG	HOLE NOB-1 SURF. ELEV G. W. DEPTH See Note
SOIL OR ROCK SOME SOIL OR ROCK SOIL OR ROCK CLASSIFICATION		LOCATION	
SOIL OR WORK NOTES 1	(BTA-90-149)	Buffalo, N	New York
1 2 8 23	SAMPLER 0 6 12 18 N	SOIL OR ROCK CLASSIFICATION	NOTES
	1 2 8 23 15 20 2 17 15 26 11 12 3 22 17 27 10 6 4 6 6 16 10 4 5 1 WOH WOH 2 20	Brown-black Clayey SILT, some f-c Sand, tr. gravel, tr. brick, tr. cinders, tr. glass (moist, FILL) Contains tr. concrete/lime (wet) Contains "and" Brick Red-white BRICK, some f-c Sand, little Silt (wet, FILL) Brown f-c SAND, some Clayey Silt, trlittle f-gravel (GLACIAL TILL) (moist-wet, loose) Boring complete at 10.0' Composite samples for analytical testing taken from S-l to S-4 at 10:30 am.	PID=Organic vapor measurements taken with a Photoioniza- tion Detector (PID). Measurements record- ed in parts per million (ppm). BG=Background PID measurements = 0.0-
= No blows to drive 2 "spoon 12 "with 140 lb. pin wt. falling 30 "per blow. CLASSIFICATION Visual by = No blows to drive "casing "with lb. weight falling "per blow. Geologist			

DAT			_	•			TET	MPIRE	P 2	
1							SOUS	INVESTIGATIONS INC. SUBSURFACE LOG	HOLE NO. B-2	
FI	NIS	HEC		/25	/90	_		30B30KFACE LOG	1	
SHE	ΕT		1	OF.	_1_				G. W. DEPTH See Note	
PRC)JE(CT .	Wat	erfi	cont	Sc	noo1	LOCATION 4th Street		
			(BT	A-90) <u> – 14</u>	9)		Buffalo, Nev	v York	
-	ľ	Ş	T	BLOW	vs on		7,,			PI
DEPTH-FT	SAMPLES	1 2		5AM	PLER		BLOW ON CASING C	SOIL OR ROCK	NOTES	Ja
D OE	ž	SAMPLE	0/6	6/12	12/18	N	C.A.S	CLASSIFICATION		He
F "=	1	1	1	10	Ť	20		.5' TOPSOIL		Spa
-	1/	-	10	9	1		<u> </u>	Brown f-c GRAVEL (CRUSHED STONE), some f-c Sand, little Silt, tr.	H	*
-	17	2	5	11		33		brick, tr. concrete (moist, FILL)	H	
-	V		22	6				Contains tr. lime, tr. slag, tr.	Н	*
5 _	17	3	3	1		2		cinders (wet)	Н	
-	1/	Г	1	1				Black-blue f-c SAND, little Silt, tr. gravel (wet, FILL)	\exists	*
-	7	4	1	5		6		511 g11/51 (wot) 1122)	П	
	V		1	1					П	*
_	1/	5	3	3		6		Contains some Silt		8
10-	1		3	5						
-	1/	6	2	5	<u> </u>	8	<u> </u>		\sqcup	
1 -	K,	<u> </u>	<u>B</u>	2	 				Ц	9
-	1/	7	2	2	ļ	5	*		· H	7
-	γ,	_	3	3	-	16	<u> </u>		H	
15-	1/	8	10	10		16		01' 11 1 0'1' 0'1' 1' 1' 1' 1'	+	5t 8t
-	1	├-		15	<u> </u>		<u> </u>	Olive-black Silty CLAY, little- some f-c Sand, tr. gravel (wet,		100
-		 	 					stiff)	: H	
-	1	 	<u> </u>					Boring complete at 16.0'	H	
-	1		†						H	
_									*Note oily sheen	
-								"	on water in spoon	1
									П	
								Composite sample for analysis	DTD	
_								taken from S-2 to S-4 at 12:20 pm.	PID=Organic vapor measurements taken	
_								PID Reading=13.0-15.0 ppm in bore-	with a Photoioniza-	ļ
_								hole at completion.	tion Detector (PID).	
_			-						Measurements recorded	
_									in parts per million	
-								1	(ppm).	
-									, H	
-								,	BG=Background PID	
-									measurements 2.5-	
-									5.0 ppm	
=									#01 1 · · / · · · · · · · · · · · · · · · ·	
] 1									*Samples 1 to 4 have no material in the	
									jar due to analytical	
								· · · · · · · · · · · · · · · · · · ·	samples.	
Ll	\Box									
N = N	o i	olow	s to dr	IVP	2	" sno	on 12	" with 140 lb. pin wt. falling 30 "per blow. CLASSI	FICATION Visual by	
								" with!b. weight falling"per blow.	Geologist	
								-1586 USING 2-1/4" HOLLOW STEM AUGERS	-	
WE IH	JU	10	WAFP	HGA	HON.		TATE II.	TOO OUTHO T I'A MOUNDA OTHER WAREN		-

DAT		.TED		125/	90		EI	MPIRE	HOLE NOB-3				
1			7/				SOIL	INVESTIGATIONS INC. SUBSURFACE LO					
l			1			_			G. W. DEPTH See Note				
PRO	JE	CT .	Wat	erf	ront	: Sc	hoo1	LOCATION 4th Stre	et				
			(BT	`A-9	0-14	¥9)		Buffalo,	Buffalo, New York				
13:	153		P										
Э Ореетн-гі -	SAMPLES	SAMPLE	0/6	6	PLER 12 18-	N	BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES	He			
=V =		1	5	8		13		Brown f-c SAND, little f-m Gravel,		SD			
_	1		5	8				tr. silt, tr. brick, tr. stone (moist, FILL)	l I	B			
	1	2	5	2		4	*	(moise, ridd)]				
	/		2	1					+Baan C 3	-			
5	\square	3	2	1		_3		Becomes black	*Poor recovery on S-2				
	/		1	1				Contains tr. gravel (wet, FILL)		5.			
	/	4	2	2		4]	B			
	L	<u> </u>	2	2	26/		 			6			
		5_	1	4	26,5	REF			S1 h16 H	В			
-10-	3	 	0/1	<u> </u>	ļ —				Samples have odor of coke/coal tar coke	1			
_	Î	6	10,71		 	REF			H	5-			
-	4	17	-			0	<u> </u>	Company of a Company of the life	l	 			
	/	 	6	<u>5</u>		9	-	Contains some f-c Gravel, tr. lime, tr. wood (moist, FILL)	l H	13			
	7	8	15	23		44	ļ	Black Sandy SILT, tr. gravel (moist-	H H	-			
. 5—	/	۳	21	12		44		wet, FILL)	 	70			
	_	-	21	12				Brown Silty CLAY, little f-c Sand, [80			
		\vdash						tr. gravel (GLACIAL TILL) (moist,	l H				
		 						HARD) Boring complete at 16.0'	l H				
			 					Borring compress at 10.0	H				
								PID Reading 10.0-12.0 ppm at boring					
					completion in augers								
							Composite sample for analysis taken	П					
								from S-2 to S-6 at 1:30 pm.					
								Trom b a co b o de riso pm.	1				
_									REF=split-spoon refusal				
_									PID=Organic vapor				
_									measurements taken				
_									with a Photoionization				
. 4									Detector (PID).	1			
-									Measurements recorded				
4								1	in parts per million [ppm).				
4	-								\sum_\.				
-									BG=Background measure				
+	}								ments = 0.0-0.5 ppm				
\dashv	}					{			H				
\dashv	}								H				
4	1			-					H				
+									Н				
								1/0	ш.				
1 = N	o. I	blow	s to dr	ive		" spo	on12	" with 140 lb. pin wt. falling 30 "per blow. CLASS					
: = N	o ł	olow	to dr	ıve		" casi	ing	ib. weight fallingper blow	Geologist				
иЕТНО	סכ	OF	NVES	TIGAT	TION:	A	STM D	-1586 USING 2-1/4" HOLLOW STEM AUGERS		1			

1	AR	TED		7/25 7/25			SOILS	MPIRE SINVESTIGATIONS INC. SUBSURFACE LOG	HOLE NO. B-4 SURF. ELEV.
SHEE				OF.		_			G. W. DEPTH See Note
PRO	JEC	CT .	Wat	erf	ront	Sc	hool	LOCATION 4th Stree	t
			(BT	'A-9	0-14	9)		Buffalo,	New York
Орергия	SAMPLES	0 BLOWS ON SAMPLER NO U U U U U U U U U U U U U U U U U U						SOIL OR ROCK CLASSIFICATION	NOTES
= =	*			Ĭ				SLAG FILL SUBGRADE	
5—	1	2	2 4 1 3	3 2 3 9		7		Black f-c GRAVEL, some f-c Sand, tr. silt, tr. wood, tr. slag (moist, FILL) Contains little Brick, occasional	
	7	3	8 6	8 10 8 11		18		brown silty clay layer Black f-c SAND, some f. Gravel, little Silt (wet, FILL) Contains tr. wood, tr brick	
-10-	/	5 _6	4	5 3 4 2		9		Brown Silty CLAY, little f-m Sand,	
15 - - -								tr. gravel (moist, medium) Boring complete at 14.0	
-20- - - - -								Composite sample for analysis taken from S-2 - S-4 at 2:30 pm.	PID=Organic vapor measurements taken with a Photoioniza- tion Detector (PID). Measurements recorded in parts per million— (ppm).
-									BG=Background PID measurements = 0.0-5.0 ppm.
									* No jar PID reading becuase of analytical sample.
								" with 140 lb. pin wt. falling 30 "per blow. CLAS	,
								"withlb. weight falling"per blow.	Geologist
METHO	OC	OF I	NVES	TIGA	TION		HOLM	D-1586 USING 2-1/4" HOLLOW STEM AUGERS	<u> </u>

DATE STARTED 7/25/90 FINISHED 7/25/90 SHEET 1 0F 1	EMPIRE SOILS INVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. B-5 SURF. ELEV G. W. DEPTH See Note
PROJECT Waterfront Sc	hool LOCATION 4th Stree	et
(BTA-90-149)	Buffalo,	New York
11	SOIL OR ROCK CLASSIFICATION	NOTES
	SLAG SUBBASE FILL	
1 9 3 5 2 2 2 1 1 1 2 1 6 3 2 3 11 8 8 8	Black-gray f-c SAND, little f-m Gravel, little Silt, tr. lime, tr. slag (moist, FILL) Contains occasional olive-green- brown Silty CLAY lenses	Very strong petrol- eum or coke odor. Oil sheen on water in spoon.
4 2 2 4 2 2 2 5 WOH WOE	Becomes black Contains tr. gravel	
15 / 7 6 7 23 16 16 16	gravel, occasional black silt part- lings (moist, firm) Boring complete at 16.0'	
-20-	Composite sample for analysis taken from S-2 to S-5 at 3:30 pm.	WOH=Weight of hammer PID=Organic vapor measurements taken with a Photoioniza- tion Detector (PID). Measurements record- ed in parts per million (ppm). BG=Background PID measurements=0.0- 5.0 ppm. *No jar PID readings due to analytical samples.

DATE) TED	7/	25/9	90		EI	VIPIRE INVESTIGATIONS INC. SUBSURFACE LOG	HOLE NO. B-6
			25/9		_	SOILS	INVESTIGATIONS INC. SUBSURFACE LO	G SURF. ELEV.
								G. W. DEPTH See Note
SHEET			OF_	<u></u>				G. W. DEPTH
PROJEC	ст і	Wate	rfro	ont	Sch	001	LOCATION4th Stre	et
			-90-					New York
		\						
E 3	皇	1	BLOW	-		SOIL OR ROCK		
DEPTH-FT	SAMPLE		SAME		1	BLOW ON CASING C	CLASSIFICATION	NOTES
300	3	6	6/12	12/18.	7	ត់បំ	CEASSITICATION	
1	1						TOPSOIL & SLAG SUBBASE FILL	
71		1						l H
	7,	2	1		2		Brown f-c SAND and f-c Gravel,	H
/	/ - -	1	2		-		little Silt, tr. slag (wet, FILL)	H
-	/-	1			-		11010 5111, 510 5108 (1101, 1111)	· H
; ⊢/	4	1	1		2			
+	+-	C	1		 -		Contains tr. brick, some-little f-c	H
4/	13	2	3		5		Gravel) H
4	 	2	2		<u> </u>		Contains tr. wood, occasional gray	l H
4/	4	2	2		4		silty clay layer	
10/	<u> </u>	2	2					Very strong petrol-
4/	15_	2	2		3			eum odor, minute
1	<u> </u>	1	1					oil pockets, very
4/	16	2	3		7			distinct sheen
V	1	4	3				Brown-gray f. SAND and Silt, tr.	
.5_							gravel (wet) Boring complete at 14.0	<u>.</u>
,	'						politing complete at 14.0	÷
								П
7								PID Reading=15.0-17.0
7								ppm with augers set
1							Composite sample for analysis	at 12.0'
7							taken from S-1 to S-4 at 4:30 pm	. 🕂
1								H
								l H
-				-				l H
-								PID=Organic vapor
\exists	 							measurements taken
\dashv	-						•	with a Photoioniza-
+	-	\vdash						tion Detector (PID).
-	-							Measurements recorded
								in parts per million
4		\vdash						(ppm).
4		\vdash						BG=Background PID
4	<u> </u>	<u> </u>						measurements= 0.0-
4	<u> </u>						•	4.0 ppm
4								
								*No iar PTD roading
								*No jar PID readings due to analytical
					[samples.
				T	T			ocmpres.
-								ı H
-						1	•	11
-								H
_								
= No.	blow	to dr	Ive	2	spo	on_12	" with 140 lb. pin wt. falling 30 "per blow. CLASS	SIFICATION Visual by

EMPIRE SOILS INVESTIGATIONS, INC. S-5167 SOUTH PARK AVENUE HAMBURG, NEW YORK 14075

APPENDIX D

HUNTINGDON ANALYTICAL SERVICES Division of EMPIRE SOILS INVESTIGATIONS INC. PO Box 250 Middleport New York 14105 Tel: (716) 735-3400 FAX (716) 735-3653

Environmental Analytical Report For:

EMPIRE SOILS INVESTIGATIONS, INC. - HAMBURG

WATERFRONT SCHOOL

HAS Ref. #90-995

August 1, 1990

HUNTINGDON ANALYTICAL SERVICES ELAP #10833 ENVIRONMENTAL REPORT

HAS Reference Numbers: #90-995

August 1, 1990

Statement of Work Performed

I hereby declare that the work was performed under my supervision according to the procedures outlined by the following references and that this report provides a correct and faithful record of the results obtained.

- 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act," October 26, 1984 (Federal Register) U.S. Environmental Protection Agency.
- U.S. Environmental Protection Agency, "Test Methods of Evaluating Solid Waste Physical/Chemical Methods," Office of Solid Waste and Emergency Response, SW-846, 2nd Edition and 3rd Edition.
- New York State Department of Health, Analytical Toxicology Laboratory Handbook, August 1982.

Katherine A. Syracuse
Lab Director, Environmental

REPORT CODE LEGEND:

<DL = Less than detection limit</pre>

ND - Not detected

Karteure Co

NA = Not applicable

INP = Information not provided

MB = Method Blank

HUNTINGDON ANALYTICAL SERVICES

Analyte: TOTAL IRON

pate Sampled: 7/25/90

SAMPLE ID:									
HAS #				ANALYZED	LIMIT	mg/kg	QC		
995-001	SB-1	6010	7/30/90	8/01/90	15.6	9550	*95		
995-002	SB-2	6010	7/30/90	8/01/90	1.71	9380	*95		
1995-003	SB-3	6010	7/30/90	8/01/90	1.53	10100	*95		
995-004	SB-4	6010	7/30/90	8/01/90	14	10400	*95		
1995-005	SB-5	6010	7/30/90	8/01/90	1.55	16000	*95		
995-006	SB-6	6010	7/30/90	8/01/90	1.92	15300	*95		
995-MB	 METHOD BLANK	6010	7/30/90	8/01/90	0.02	 <dl** </dl** 	 *95		
1				' . 					
1.		 	 	 	- 	 			
1	; 	 	 	, 	[
1 .	 	 	 	 	 	 			
	' 	 	 	, 	 	 			
1	! 	1		· ·	1 	' 			

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

ALL SOIL/SLUDGE SAMPLE RESULTS ARE BASED UPON DRY WEIGHT

**mg/l

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

Inorganic Wet Chemical Analyses

Analyte: Total Releasable Cyanide

EPA Method No.: SW-846 Reactivity Section 7.3 9010

Sample	HAS		Date	 Date	Method Detection	 		
Date	Sample #90-	Client I.D.	Prepared	Analyzed	Limit	Result	Units	QC in %
								!! [
 7/25/90	995-001	SB-1	 7/30/90	 7/30/90] 50	 <50	mg/kg as HCN] 99*
 	995-002	SB-2	 7/30/90	7/30/90	 50	 <50	mg/kg as HCN	 99*
 7/25/90	995-003	SB-3	 7/30/90	7/30/90	! 50	 <50	mg/kg as HCN	
 7/25/90	995-004	SB-4	 7/30/90	 7/30/90	50	 <50	mg/kg as HCN	
7/25/90	995-005	SB-5	 7/30/90	 7/30/90	 50	 <50	mg/kg as HCN	 99*
 7/25/90 	995-006	SB-6	 7/30/90 	 7/30/90 	l 50 	 	mg/kg as HCN	 99*
i			i		i !			i

^{*} A known standard of the analyte of interest was analyzed along with this sample with the percent recovery indicated above.

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

Inorganic Wet Chemical Analyses

Analyte: Total Cyanide

EPA Method No.: SW-846 9010

	HAS		 Date	 Date	Method Detection]		
Date	Sample #90-	Client I.D.	•	Analyzed	Limit	Result	Units	QC in %
7/25/90	995-001	SB-1	7/27/90	7/31/90	1.0	21	mg/kg	99*
7/25/90	995-002	SB-2	 7/27/90	 7/31/90	1.0	 6.6	mg/kg	 99*
 7/25/90	995-003	SB-3	! 7/27/90	 7/31/90	1.0	7.8	mg/kg	 99*
17/25/90	995-004	SB-4	 7/27/90	 7/31/90	1.0	21	mg/kg	 99*
 7/25/90	995-005	SB-5	l 7/27/90	 7/31/90	1.0	31	mg/kg	99*
 7/25/90	995-006	SB-6	 7/27/90	 7/31/90	1.0	14	mg/kg	99*
	·		l 			 		 <u></u>

^{*} A known standard of the analyte of interest was analyzed along with this sample with the percent recovery indicated above.

	HUNTINGDON ANALYTICAL	SERVICES . CHAIN OF CUSTOOT RECORD	AND AUALYTICAL REQUEST FOR	10 9006
-	Cilone Nome INSTRUCT	100113 232121	CONTROL TO BUTCH STANKED	3 3 0 0 0 0 5 K X
		P3000	(716). 649-3110.	
	,	Project/Sire xame: Colored Ren Colored	Container size & Type	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Samplory (Slugoturo):	1415 80	Service Servic	Analysis Requested/
	1100	Comp. Grab Location Seq. #		
	10201 10:524 1	X Terst		CN For Releasands ON TE
~~ _	58.2 1.259 (2.20)			<u> </u>
		X T.B. 2 CC3 1		
	56.4 1.23 2.30	X T. B. 44 CO4 1		
	68.5 hrody 3:30	1 1 500 ST X		<u>~</u>
-	58.6 1.2591 4:30	{ -		<u>\</u>
	1	47314		,
-				
·				
:				-
		*		
	Keilngulihed by:	7.26.90 B:00 X 37 10	A TINGUISHED BY	Wash 12 34 Merel Received Ly Cour Cherry
	Relinquithed by:	1 Secret time: less lived top telebring	1-3	The standard of the standard o
		7	त्रे	1

HUNTINGDON ANALYTICAL SERVICES Division of EMPIRE SOILS INVESTIGATIONS INC. PO Box 250 Middleport New York 14105 Tel: (716) 735-3400 FAX (716) 735-3653

Environmental Analytical Report For:

EMPIRE SOILS INVESTIGATIONS, INC. - HAMBURG

Waterfront School Project

HAS Ref. #90-995 and #90-995B

August 16, 1990

HUNTINGDON ANALYTICAL SERVICES ELAP #10833 ENVIRONMENTAL REPORT

HAS Reference Numbers: #90-995 and #90-995B

August 16, 1990

Statement of Work Performed

I hereby declare that the work was performed under my supervision according to the procedures outlined by the following references and that this report provides a correct and faithful record of the results obtained.

- 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act," October 26, 1984 (Federal Register) U.S. Environmental Protection Agency.
- U.S. Environmental Protection Agency, "Test Methods of Evaluating Solid Waste Physical/Chemical Methods," Office of Solid Waste and Emergency Response, SW-846, 2nd Edition and 3rd Edition.
- New York State Department of Health, Analytical Toxicology Laboratory Handbook, August 1982.

Katherine A. Syracuse

Lab Director, Environmental

REPORT CODE LEGEND:

<DL = Less than detection limit</pre>

ND = Not detected

NA = Not applicable

INP = Information not provided

MB - Method Blank

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

HETHOD 8240 VOLATILE ORGANICS

			-						
							METHOD	HETHOD	
SAMPLE IDENTIFICATION:	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	BLANK	BLANK	
							8-8-90	8-9-99	
HAS SAMPLE 199-995	901	962	993	904	965	986			
				-					
COMPOUND	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	MDL
	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	-						-		
CHLORONETHANE	<1000	<1000	<1000	<1 <i>900</i>	<1999	<10000	<1999	<1999	<1000
BRONOMETHANE	<1000	<1900	<1000	<1988	<1000	(19999	<1900	<1000	<1900
VINYL CHLORIDE	(1999	<1000	<1999	<1900	<1996	<19900	<1000	<1000	<1000
CHLOROETHANE	<1999	<1999	<1999	<1998	<1999	<19000	<1999	<1000	<1999
METHYLENE CHLORIDE	<599€	<5 99	(596	<5 90	<500	<5000	<5 00	<500	<500
ACETONE	<1000	<1000	<1000	<1999	(1999	(19000	(1900	<1999	<1999
TRICHLOROFLUORONETHANE	<1999	<1999	<1000	<1999	<1999	<19888	<1000	<1999	<1900
CARBON DISULFIDE	<500	<500	(500	(598	<500	<5000	<5000	<500	<5 <i>00</i>
1,1-DICHLORORTHENE	(500	<5 99	<500	<500	<500	<5000	<500	<500	<500
1.1-DICHLORORTHAND	<500€	<5 98	(599	<500	(500	<5000	<500	<599	<500
1,2-DICHLORORTHUNE (TOTAL) -	<500	(590	<500	<500	<500	<5000	(500	<500	<590
CHLOROFORM	(500	<590	(500	<500	(599	<5000	<598	<500	<500
1,2-DICHLOROETHANE	<590	<500	(598)	<500	(599	<5000	<500€	<500	<59€
2-BUTANONE	(1000	(1999	<1 999	<1 909	<1999	<19999	(1999	<1999	(1999
1,1,1-TRICHLORORTHANE	(598	<500	<500	<500	<590	<5000	<500	<500	₹586
CARBON TETRACHLORIDE	<500	<5 <i>9</i> 0	<500€	<500	(588	<5000	<599	<500	<5 99
VINIL ACRIATE	<1000	<1000	<1999	<1000	<1999	<10000	(1999	<1000	<1900
BROMODICHLOROUGTHANK	(500	<500	<500	<599	<5 20	<5000	<5 99	<500	<500
1,2-DICHLOROPROPANE	<500	₹5 9 10	<5 00	<500	<5 <i>00</i>	<5000	<5 <u>99</u>	(500	<500
cis-1,3-DICHLOROPROPENE	(500	<500	<500	<590	<5 <u>00</u>	<5000	<500	<500	<500
TRICHLORORTHENE	<500	<500	<5 00	<500	<500	<5000	<5 <i>80</i>	<5 200	<5 <i>00</i>
DIERONOCHLOROMETHANE	<500	<5 88	(5 00	<500	<500	<5000	(599	<520	<500
1.1.2-TRICHLOROSTHANS	(500)	<500	<590	<500 √500	<500	<5000	(500	<i>₹598</i>	<500
	<5 00	< <i>500</i>	<500	<500	<5 99	<5 999	<5 99	<5ØØ	(500
BANZANI				<500	(5 00	<5 900	<i>₹500</i>	<500	<500
trans-1,3-DICHLOROPROPENE	<500	<5 99	<500			<2 20000	<2000	<2000	<2 300
2-CHLORORTHYLVINYL ETHER	<2000	<2000	<2900	<2 999	<2 399				<5000
BEOMOVORM	(500	<598	<5ØØ ∗1000	<599	<599 1999	<5999 +10000	₹5 99	₹599 11993	
4-HETHYL-2-PENTANONE	<1900	(1999	<1999	<1900	(1999	<1 9999	(1999	<1999	<1999 (1999
2-HEXANOHR	<1000	<1000	<1999	<1000	<1999	<19000	(1999	(1999	<1900
TETRACHLOROFTHENE	₹5 98	<500	<599	<590	<500	<5000	<599	<599 ∗500	<500
1,1,2,2-TETRACHLOROETHANE	<500	<5 99	<598	<590	<500	<5990	<500	<500	<566
TOLURAS	<5 00	<500	(599)	<5 99	<500	<5 999	<59€	<500	<500
CHLOROBENZENE	<500	<5 99	<500	<5 90	<500	<5900	<520€	<5 99	<5 99
ETHYL BENZENE	<5 99	<598	<5000	<5 90	3100	82 999	<5₽₽	<59€	(599
STYRENE	<500	<5 999	<5 90	<5ØØ	<500	<5 988	<500	<599	<5 20
XYLENE (TOTAL)	. <500	<5 99	<598	<5 99	3899	139999	<5 99	<5 99	<500
1,3-DICHLOROBENZENE	<1000	<1999	<1000	<1 <i>000</i>	<1000	(19888	<1900	<1999	<1999
1,2-DICHLOROBENZENE		<1900	<1900	<1.900	<1000	<1 <i>9000</i>	<1999	<1900	<1000
1,4-DICHLOROBENZENE	<1999	<1 900	<1999	<1000	<1999	(19888	(1000	(1909	<1000
		_							
DATE RECEIVED:	7-26-99	7-26-9 9	7-26-98	7-26-99	7-26-99	7-26-99			
DATE SAMPLED:	7-25-98	7-25-98	7-25-90	7-25-99	7-25-99	7-25-99			
DATE ANALYZED:	8-8-99	8-8-99	8-8-99	8-8-99	8-8-99	8-8,9-99	8-8-99	8-9-99	****

NETHOD 8270 SEMI-VOLATILE ORGANICS

BASS_VENUTIAL	SAMPLE IDENTIFICATION:	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	HETHOD BLANK	
COMPONENS	HAS SAMPLE #98-995	901	982	903	984 ,	905	996	*****	
CREAPYTHENE	BASE/NEUTRAL	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	ADL
ACTIVATIVE 3.19	COMPOUNDS	ug/kg	ug/Kg	ug/Kg	ug/Kg	ug/Ig	ug/Kg	ug/kg	ug/Kg
ACTIVATIVE 3.19	ACENAPHTHENE	1,900	2,888	⟨33₽	1,800	42,900	598	<339	⟨33₽
RESTIDURE	ACENAPHTHYLENE	(339	<33₽	<33₿	369	<1,650	<339	<33₽	<33Ø
DERIFOLO INTERPRETENT 1,988 1,488 338 2,480 38,808 3,808 338	ANTHRACENE	3,700	2 ,268	<33₽	3,100	38, <i>000</i>	1,199	<33₽	<33₽
ERRIO(b)FLOGRAFTERE	BENZIDINE	<1,699	<1,696	<1,690	<1,696	(8,000	<1,690	<1,699	<1,600
ERRIOIC ACID	BENZO(a)ANTHRACENE	8,326	1,490	<33∅	2,400	38,200	3,820	<33₽	(338)
ERBIO(I) FLOGRAFTIERE	BENZO(b)FLUORANTHENE	6,799	98Ø	⟨33₽	1,700	29,888	2,686	<33₽	⟨33₽
REMINO FIRENCE	BENZOIC ACID	<1600	<1698	<1,899	<1,600	<8, <i>996</i>	<1,699	<1,600	(1,699
ERRIO(a) PTECE	BEHZO(k)FLUORANTHENE	6,699	1,390			•			
BENION	BESIZO(a)PYRENE	7,798		<33₽		33,999		<33₽	<339
PRINT_ALCOGOL	BENZO(g,h,i)PERYLENE		•						
BIS(2-CHLOROTHOTY)NETHER	107 7 7								
BIS C_CELLOBORTHYL) FTERE									
BIS(2-CHLORDISOPROPTL) FTHEE									
BISIZ-ETHYLERITL PHTHALATE						•			
BOTTLEBENZIL PITHALATE	•					-			
A-BRONOPHERIL_PHENTL ETHER	•					-			
CELLOROMANALINE									
C-CHLOROMENTIL-PHENTL FTHER C339 C339									
CHERTSERE									
CHRYSENE									
DIENZ(a,b)Anthracene									
DIEBEZOFURAB									
DI-N-BUTYLPHTHALATE									
1,2-DICHLOROBERIENE		-							
1,3-DICHLOROBENIENE						•			
1,4-DICHLOROBERIZERE	•					•			
3,3-DICHLOROBENZIDINE									
DIETHYL PHTHALATE									
DIMETHYL PHTHALATE						•			
2,4-DINITROTOLUENE 338 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>						•			
2,6-DINITROTOLURNE <338									
DI-N-OCTYL PHTHALATE C336 C337 C337<									
FLUORANTHERE 14,000 2,400 <330 5,600 68,000 6,400 <330 <330 FLUORENE 1,700 3,900 <330 2,600 33,000 590 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <	•								
FLNORENE 1,700 3,900 <330 2,600 33,900 590 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330 <330									
HEXACHLOROBERZERE		•							
HEXACHLOROBUTADIENE		•							
HEXACHLOROCTCLOPENTADIENE									
HRIACHLOROETHANE						-			
INDENO(1,2,3-cd)PTRENE 4,900 950 <330 1,700 21,000 2,000 <330 <330						•			
· · · · · · · · · · · · · · · · · · ·						<1,650	<33₽		<33Ø
ISOPHORONE (339 (339 (339 (339 (339 (339		•	950		1,799	21,000	2,99 0	<330	<33Ø
	ISOPHOROUR	<339	<33₽	<33₩	⟨33₿	<1,650	<338	<339	⟨33₽

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

METHOD 8270 SEMI-VOLATILE ORGANICS

					•			
SAMPLE IDENTIFICATION:	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	HETHOD BLANK	
HAS SAMPLE #96-995	961	982	903	2024	925	906	****	
BASE/NEUTRAL	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	ADL
COMPOUNDS	ug/kg	ug/kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/Kg	ug/kg
2-HETHYL NAPHTHALENE	730	1,899	<33₽	⟨33₽	3,000	<33₽	<339	<33Ø
NAPHTHALENE	1,500	3,800	1,800	1,926	23,986	1,796	<33₽	<33Ø
2-HITROANALINE	<1,620	(1,699	<1,698	(1,600	<8,000	(1,699	<1,6 26	<1,690
3-HITROANALINE	<1,600	<1,800	(1,500	(1,599	(8,999	(1,699	<1,600	(1,620
4-HITROANALINE	<1,600	(1,699	<1,600	<1,699	<8, 200	<1,600	<1,620	(1,599
NITROBENZENE	(338	(339	⟨33₽	<330	<1,650	<33€	(339	⟨33€
N-HITROSODINETHYLAMINE	⟨33₿	⟨33₽	⟨33₽	<339	<1,650	⟨339	⟨33₽	⟨33∯
N-NITROSODIPHENTLAMINE	⟨33₽	⟨33₽	<339	(339	<1,650	<33₽	(338	⟨339
H-HITROS-DI-H-PROPYLANINE	⟨33Ø	<339	⟨33∯	<339	<1,650	(338	<332	⟨33₽
PHENANTHRENE	12,000	5,100	⟨33Ø	4,200	110,000	3,500	⟨33₽	⟨33₽
PYRENE	15,900	2,998	⟨33₽	5,800	50,000	5,000	⟨33₽	⟨33₽
1,2,4-TRICHLOROBENZENE	<330	<33 9	<33Ø ⇒	<33 9	<1,650	<339	(339	⟨33Ø
1,0,1 1011200000000000000000000000000000					-,			
ACID COMPOUNDS	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	MDL.
	ug/Kg	ug/Kg	ug/kg	ug/Kg	ug/Kg	ug/kg	ug/kg	ug/kg
4-CHLORO-3-METHYLPHENOL	<338	<339	⟨33₽	⟨33₽	<1,650	<338	<33€	(339
2-CHLOROPHENOL	<33₽	<339	<33Ø	<33₽	<1,650	<339	<33₽	⟨33Ø
2,4-DICHLOROPHENOL	(339	<33∅	<33Ø	<33₽	<1,650	<33Ø	₹33Ø	⟨33₽
2,4-DIMETHYL PHENOL	<339	<33€	₹33Ø	⟨33₽	<1,650	<330	<33₽	<33₽
2,4-DINITROPHENOL	<1,600	<1,600	<1,600	<1,520	<8,200	<1,600	<1,600	(1,600
4,6-DINITRO-2-METHYLPHENOL	<1,699	<1,600	<1,600	<1,600	<8, <i>000</i>	<1,699	<1,800	<1,600
2-METHYL PHENOL	(339	⟨33₽	₹33Ø =	<339	(1,659	<339	<33₽	⟨33₽
4-METHYL PHENOL	<338	<33₽	<33∅	<33₽	<1,659	<33₿	<33₿	⟨33₽
2-HITROPHENOL	<339	<339	₹339	<33₽	<1,650	<339	<339	<33€
4-HITROPHENOL	<1,600	(1,500	<1,800	(1,590	<8, <i>999</i>	<1,500	<1,696	(1,620
PENTACHLOROPHENOL	(1,600	<1,600	<1,690	<1,690	<8,996	(1,699	(1,699	<1,600
PHENOL	<338	⟨33Ø	<330	<339	<1,650	₹33₽	<339	⟨33₽
2,4,5-TRICHLOROPHENOL	(1,699	<1,600	<1,600	(1,690	(8,200	(1,599	<1,690	<1,620
2,4,6-TRICHLOROPHEROL	<330	⟨33₽	<330	<339	<1,650	<338	(339	(339)
of 110 Informant monan	1000	· www		1000	1 405	.000	.445	.004
DATE SAMPLED:	7-25-99	7-25-99	7-25-99	7-25-99	7-25-90	7-25-99		
DATE RECEIVED:	7-26-99	7-26-99	7-26-9 0	7-26-99	7-26-99	7-26-99		
DATE EXTRACTED:	7-27-99	7-27-99	7-27-90	7-27-99	7-27-99	7-27-99	7-27-98	
DATE ANALYZED:	7-27-99	7-2 7-99	7-27-99	7-27-99	7-27-99	7-27-99	7-27-99	

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

METHOD 8080 ORGANOCHLORINE PESTICIDES POLYCHLORINATED BIPHENYLS

SAMPLE IDENTIFICATION :	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	METHOD BLANK
HAS SAMPLE #90-995	<i>9</i> Ø1	<i>Ø</i> Ø2	ØØ3	ØØ4	<i>Ø</i> Ø5	<i>Ø</i> Ø6	
DATE ANALYZED :	8/9/9Ø	8/9/9Ø	8/9/9Ø	8/9/9Ø	8/9/9Ø	8/9/ 9 Ø	8/9/9Ø
COMPOUND	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT
0012 0012	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g
ALDRIN		<0.010	<0.010	<0.010	<Ø.Ø1Ø	<0.010	<0.010
A-BHC	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
B-BHC	<0.010	<0.010	<Ø.Ø1Ø	<Ø.Ø1Ø	<0.010	<0.010	<Ø.Ø1Ø
D-BHC	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<Ø.Ø1Ø
G-BHC	<0.010	<Ø.Ø1Ø	<Ø.Ø1Ø	<Ø.Ø1Ø	<Ø.Ø1Ø	<Ø.Ø1Ø	<Ø.Ø1Ø
CHLORDANE		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
4,4-DDD		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
4,4-DDE		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
4,4-DDT		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
DIELDRIN		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
ENDOSULFAN I		<0.010	<0.010	<Ø.Ø1Ø	<0.010	<Ø.Ø2Ø	<0.010
ENDOSULFAN II		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
ENDOSULFAN SULFATE		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
ENDRIN		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
ENDRIN ALDEHYDE		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
HEPTACHLOR	<0.010	<Ø.Ø1Ø	<0.010	<0.010	<Ø.Ø1Ø	<Ø.Ø1Ø	<0.010
HEPTACHLOR EPOXIDE	<Ø.Ø1Ø	<0.010	<0.010	<Ø.Ø1Ø	<0.010	<Ø.Ø1Ø	<0.010
ENDRIN KETONE		<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø	<Ø.Ø2Ø
METHOXYCHLOR		<0.10	<0.10	<Ø.1Ø	<Ø.1Ø	<0.10	<0.10
TOXAPHENE		<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<0.20
PCB-1Ø16		<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø
PCB-1221		<Ø.2Ø	<Ø.2Ø	<0.20	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø
PCB-1232		<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<0.20
PCB-1242		<Ø.2Ø	<0.20	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø
PCB-1248		<Ø.2Ø	<Ø.2Ø	<0.20	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø
PCB-1254		<Ø.2Ø	<Ø.2Ø	<0.20	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø
PCB-126Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<Ø.2Ø	<0.20	<Ø.2Ø	<0.20

Sample ID: SB-1

HAS Sample #90-995-001 Date Sampled: 07/25/90

1 1	EPA	DATE	DATE	DETECTION	RESULT	l MS	MSD	
ANALYTE	METHOD	PREPARED	ANALYZED	LIMIT	mg/kg	%REC	%REC	RPD
ALUMINUM	6010	107/30/90	108/01/90	35.2	4150	1*95		
ANTIMONY	6010	107/30/90	108/01/90	39.1	<dl< td=""><td> *95</td><td></td><td></td></dl<>	 *95		
ARSENIC	7060	107/30/90	108/14/90	1.56	6.27	111	102	7.8
BARIUM	6010	107/30/90	108/01/90	15.6	71.6	96.7	92.2	3.2
BERYLLIUM	6010	107/30/90	108/01/90	7.81	₫Ď L `	 *95		
CADMIUM	6010	107/30/90	108/01/90	19.5	∣≪ĎL	1*95		
CALCIUM	6010	107/30/90	108/01/90	19.5	51100	1*95		
CHROMIUM	6010	107/30/90	108/01/90	15.6	<dl< td=""><td>1*95</td><td></td><td></td></dl<>	1*95		
COBALT	6010	107/30/90	108/01/90	15.6	<dl< td=""><td>1 122</td><td>125</td><td>2.8</td></dl<>	1 122	125	2.8
I COPPER	6010	107/30/90	108/01/90	15.6	39.4	1 136	118	4.6
I IRON	6010	107/30/90	108/01/90	15.6	9550	1*95		
LEAD	7421	107/30/90	108/06/90	15.6	93.8	1 114	114	<1.0
MAGNESIUM	6010	107/30/90	108/01/90	35.2	7050	1*95		
MANGANESE	6010	107/30/90	108/01/90	11.7	244	 *95		
MERCURY	7471	108/10/90	108/10/90	0.12	0.22	 *95	•	
INICKEL.	6010	10.7/30/90	108/01/90	31.2	31.4	1 101	87.4	7.7
POTASSIUM	6010	107/30/90	108/01/90	2340	<dl< td=""><td>*95</td><td></td><td></td></dl<>	* 95		
SELENIUM	7740	107/30/90	108/06/90	0.39	<dl< td=""><td>1 127</td><td>122</td><td>4.4</td></dl<>	1 127	122	4.4
SILVER	6010	107/30/90	108/01/90	7.81	<dl< td=""><td>1*95</td><td></td><td></td></dl<>	1*95		
I SODIUM I	6010	107/30/90	108/01/90	39.1	<dl< td=""><td>1*95</td><td></td><td></td></dl<>	1*95		
THALLIUM	7841	107/30/90	108/02/90	0.78	<dl< td=""><td>109</td><td>109</td><td><1.0</td></dl<>	109	109	<1.0
VANADIUM	6010	107/30/90	108/01/90	15.6	<dl< td=""><td>1 127</td><td>130</td><td>2.0</td></dl<>	1 127	130	2.0
ZINC	6010	107/30/90	108/01/90	15.6	133	 *95		
		1	1 .	1	·	1		
1 1		1	1	\]	1		

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: SB-2
HAS Sample #90-995-002 Date Sampled: 07/25/90

1	EPA	DATE	DATE	IDETECTION	-		I
ANALYTE	METHOD	PREPARED	ANALYZED	LIMIT	mg/kg	i QC	1
	1						1
ALUMINUM	6010	107/30/90	108/01/90	3.85	5780	1*95	1
ANTIMONY	6010	107/30/90	108/01/90	4.27	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
ARSENIC	7060	107/30/90	108/14/90	1.71	2.67	1*95	ı
BARIUM	6010	107/30/90	08/01/90	1.71	1 41.9	1*95	1
BERYLLIUM	6010	107/30/90	108/01/90	0.85	<dl< td=""><td>1*95</td><td>ļ</td></dl<>	1*95	ļ
CADMIUM	6010	107/30/90	108/01/90	1 2.14	<dl< td=""><td>1*95</td><td>ļ</td></dl<>	1*95	ļ
CALCIUM	6010	107/30/90	108/01/90	1 2.14	27800	1*95	İ
CHROMIUM	6010	107/30/90	108/01/90	1 1.71	7.85	1*95	1
COBALT	6010	107/30/90	108/01/90	1 1.71	1 4.90	1*95	į
COPPER	6010	107/30/90	108/01/90	1 1.71	1 14.1	1*95	
IRON	6010	107/30/90	108/01/90	1.71	9380	1*95	1
LEAD	7421	107/30/90	108/06/90	1 4.27	41.0	1*95	
MAGNESIUM	6010	107/30/90	108/01/90	1 3.85	7050	1*95	1
MANGANESE	6010	107/30/90	108/01/90	1.28	153	1*95	1
MERCURY	7471	108/10/90	108/10/90	0.13	0.16	1*95	
NICKEL	6010	107/30/90	108/01/90	3.42	20.5	1*95	1
POTASSIUM	6010	107/30/90	108/01/90	1 256	l 390	1*95	1
SELENIUM	7740	107/30/90	108/06/90	0.43	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
SILVER	6010	107/30/90	108/01/90	1 0.85	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
SODIUM	6010	107/30/90	108/01/90	1 4.27	163	1*95	1
THALLIUM	7841	107/30/90	108/02/90	0.85	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
VANADIUM	6010	107/30/90	108/01/90	1.71	12.2	1*95	1
ZINC	6010	107/30/90	108/01/90	1.71	58.5	1*95	١
1	1	1	1	1]	1	l
Ì	l	J	1	1	Į.	1	
· ·	•						

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: SB-3

HAS Sample #90-995-003 Date Sampled: 07/25/90

							_
i	EPA	DATE	DATE	IDETECTION	RESULT	1	l
ANALYTE	METHOD	IPREPARED	IANALYZED	LIMIT	mg/kg	I QC	i
							i
ALUMINUM	6010	107/30/90	108/01/90	3.44	5840	1*95	i
ANTIMONY	6010	107/30/90	108/01/90	3.82	<dl< td=""><td>1*95</td><td>١</td></dl<>	1*95	١
ARSENIC	7060	107/30/90	108/14/90	1.53	2.58	1*95	1
BARIUM	6010	107/30/90	108/01/90	1.53	24.2	 *95	I
BERYLLIUM	6010	107/30/90	108/01/90	0.76	i <dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
CADMIUM	6010	107/30/90	108/01/90	1.91	<dl< td=""><td>1*95</td><td>١</td></dl<>	1*95	١
CALCIUM	6010	107/30/90	108/01/90	1.91	32200	1*95	1
CHROMIUM	6010	107/30/90	108/01/90	1 1.53	6.47	1*95	l
COBALT	6010	107/30/90	108/01/90	1 . 1.53	3.49	1*95	1
COPPER	6010	107/30/90	108/01/90	1.53	14.0	1*95	١
IRON	6010	107/30/90	108/01/90	1.53	10100	1*95	I
LEAD	7421	107/30/90	108/06/90	3.82	34.1	1*95	
MAGNESIUM	6010	107/30/90	108/01/90	3.44	18200	1*95	I
MANGANESE	6010	107/30/90	108/01/90	1 1.15	266	1*95	١
MERCURY	7471	108/10/90	108/10/90	0.12	0.54	1*95	1
NICKEL	6010	107/30/90	108/01/90	1 3.05	21.8	1*95	I
POTASSIUM	6010	107/30/90	108/01/90	1 229	623	1*95	1
SELENIUM	1 7740	107/30/90	108/06/90	0.38	<dl< td=""><td>1*95</td><td>١</td></dl<>	1*95	١
SILVER	6010	107/30/90	108/01/90	0.76	<dl< td=""><td>l*95</td><td>1</td></dl<>	l*95	1
SODIUM	6010	107/30/90	108/01/90	3.82	131	1*95	ļ
THALLIUM	7841	107/30/90	108/02/90	0.76	<dl< td=""><td>1*95</td><td>l</td></dl<>	1*95	l
VANADIUM	6010	107/30/90	108/01/90	1.53	10.7	1*95)
ZINC	6010	107/30/90	108/01/90	1.53	59.2	1*95	1
1	1	1	1	1	1		J
1	ļ	1	1	1	1	1	1

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: SB-4

HAS Sample #90-995-004 Date Sampled: 07/25/90

							_
1	I EPA	DATE	DATE	DETECTION	RESULT	1	1
ANALYTE	METHOD	PREPARED	ANALYZED	LIMIT	l mg/kg	I QC	ļ
			-				1
ALUMINUM	6010	107/30/90	108/01/90	31.5	3700	1*95	1
ANTIMONY	6010	107/30/90	108/01/90	35.0	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
ARSENIC	7060	107/30/90	108/13/90	0.70	1.36	 * 95	
BARIUM	6010	107/30/90	108/01/90	14.0	24.1	1*95	I
BERYLLIUM	6010	107/30/90	108/01/90	6.99	CDL	1*95	1
CADMIUM	6010	107/30/90	108/01/90	17.5	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
CALCIUM	6010	107/30/90	108/01/90	17.5	89000	 *9 5	
CHROMIUM	1 6010	107/30/90	08/01/90	14.0	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
COBALT	6010	107/30/90	108/01/90	14.0	<dl< td=""><td>1*95</td><td></td></dl<>	1*95	
COPPER	6010	107/30/90	108/01/90	14.0	148	1*95	1
IRON	6010	107/30/90	108/01/90	14.0	10400	1*95	1
LEAD	6010	107/30/90	108/01/90	3.50	4090	1*95	1
MAGNESIUM	6010	107/30/90	108/01/90	31.5	45000	1*95	1
MANGANESE	6010	107/30/90	108/01/90	10.5	281	1*95	1
MERCURY	7471	108/10/90	108/10/90	0.13	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
NICKEL	6010	107/30/90	108/01/90	28.0	41.2	1*95	1
POTASSIUM	6010	107/30/90	108/01/90	2100	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
SELENIUM	1 7740	107/30/90	108/06/90	0.35		1*95	1
SILVER	6010	107/30/90	108/01/90	6.99	<dl< td=""><td>1*95</td><td>-</td></dl<>	1*95	-
SODIUM	6010	107/30/90	08/01/90	35.0	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
THALLIUM	7841	107/30/90	108/02/90	0.70	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
VANADIUM	6010	107/30/90	108/01/90	14.0	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
ZINC	6010	107/30/90	108/01/90	14.0	108	1*95	1
1	1	1		1	1		1
1	1	1	,	1	1	}	1
•							

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: SB-5 HAS Sample #90-995-005 Date Sampled: 07/25/90

1	EPA	DATE	DATE	IDETECTION	RESULT		١
ANALYTE	METHOD	PREPARED	ANALYZED	LIMIT	l mg/kg	I QC	1
1			-		J		1
ALUMINUM	6010	107/30/90	108/01/90	1 3.49	1 2980	 * 9 5	ļ
ANTIMONY	6010	107/30/90	108/01/90	3.88	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
ARSENIC	1 7060	107/30/90	108/14/90	1.55	5.04	1*95	1
BARIUM	6010	107/30/90	108/01/90	1.55	1 150	* 95	1
BERYLLIUM	6010	107/30/90	108/01/90	0.78	<dl< td=""><td> *95</td><td>1</td></dl<>	 *95	1
CADMIUM	6010	107/30/90	108/01/90	1.94	<dl< td=""><td>1*95</td><td>1</td></dl<>	1*95	1
CALCIUM	1 6010	107/30/90	108/01/90	1.94	30600	1*95	l
CHROMIUM	l 6010	107/30/90	108/01/90	1.55	1 8.69	 * 9 5	
COBALT	l 6010	107/30/90	108/01/90	1.55	1 2.91	 *95	ŀ
COPPER	6010	107/30/90	108/01/90	1.55	61.5	1*95	1
IRON	6010	107/30/90	108/01/90	1.55	16000	* 95	1
LEAD	7421	107/30/90	108/06/90	38.8	165	1*95	1
MAGNESIUM	1 6010	107/30/90	108/01/90	1 3.49	7850	1*95	1
MANGANESE	6010	107/30/90	108/01/90	1.16	166	1*95	
MERCURY	1 7471	108/10/90	108/10/90	0.14	<dl< td=""><td>1*95</td><td>ł</td></dl<>	1 *95	ł
INICKEL	6010	107/30/90	108/01/90	3.10	19.0	1*95	1
POTASSIUM	6010	107/30/90	108/01/90	233	496	 * 9 5	
SELENIUM	1 7740	107/30/90	108/06/90	0.39	<dl< td=""><td> * 9 5</td><td>1</td></dl<>	 * 9 5	1
SILVER	6010	107/30/90	108/01/90	0.78	CDL .	1*95	1
SODIUM	6010	107/30/90	108/01/90	3.88	178	1*95	1
THALLIUM	7841	107/30/90	108/02/90	0.78	<dl< td=""><td> *95</td><td>1</td></dl<>	 *95	1
VANADIUM	6010	107/30/90	108/01/90	1.55	10.7	 * 95	1
ZINC	6010	107/30/90	108/01/90	1.55	180	1*95	1
	1	1	1	1	l		1
1		1	1	1	i		ł

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: SB-6 HAS Sample #90-995-006 Date Sampled: 07/25/90

1	EPA	DATE	DATE	DETECTION	RESULT	l i
ANALYTE	METHOD	PREPARED	ANALYZED	LIMIT	mg/kg	QC I
ALUMINUM	6010	107/30/90	108/01/90	4.33	8510	*95
ANTIMONY	6010	107/30/90	108/01/90	4.81	<dl< td=""><td>*95 </td></dl<>	* 95
ARSENIC	7060	107/30/90	108/13/90	0.96	3.57	* 95
BARIUM	6010	107/30/90	108/01/90	1.92	63.2	* 95
BERYLLIUM	6010	107/30/90	108/01/90	0.96	<dl< td=""><td> *95 </td></dl<>	*95
CADMIUM	6010	107/30/90	108/01/90	2.40	<dl< td=""><td>l*95</td></dl<>	l*95
CALCIUM	6010	107/30/90	108/01/90	2.40	20300	 *95
CHROMIUM	6010	107/30/90	108/01/90	1.92	11.8	 *95
COBALT	6010	107/30/90	108/01/90	1.92	7.34	* 95
COPPER	6010	107/30/90	108/01/90	1.92	33.7	 *95
IRON	6010	107/30/90	108/01/90	1.92	15300	 *95
LEAD	7421	107/30/90	108/06/90	48.1	421	*95
MAGNESIUM	6010	107/30/90	108/01/90	4.33	6170	 *95
MANGANESE	6010	107/30/90	108/01/90	1.44	283	1*95
MERCURY	7471	108/10/90	108/10/90	0.13	0.59	1*95
NICKEL	6010	107/30/90	108/01/90	3.85	29.1	* 95
POTASSIUM	6010	107/30/90	108/01/90	288	1060	 *95
SELENIUM	7740	107/30/90	108/06/90	0.48	<dl< td=""><td> *95 </td></dl<>	*95
ISILVER	6010	107/30/90	108/01/90	0.96	<dl< td=""><td> *95 </td></dl<>	*95
SODIUM	6010	107/30/90	108/01/90	4.81	110	* 95
THALLIUM	7841	107/30/90	108/02/90	0.96	<dl< td=""><td>1*95</td></dl<>	1*95
VANADIUM	6010	107/30/90	108/01/90	1.92	15.5	1*95
ZINC	6010	107/30/90	108/01/90	1.92	607	*95
	[i	1	1]	
	Ì	1	1	1		
•						

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: METHOD BLANK HAS Sample #90-995-MB Date Sampled: N/A

1	EPA	DATE	DATE	DETECTION	ייי זווסקפוון יי	1 1
ANALYTE	METHOD	IPREPARED	IANALYZED	LIMIT	mg/l	i QC
IMMULIE	MEINOD	FREFARED	ANALIZED	1 11111	mg/1	1
ALUMINUM	6010	107/30/90	08/01/90	0.045	<dl< td=""><td>*95</td></dl<>	* 95
ANTIMONY	6010	107/30/90	108/01/90	0.05	/ <dl< td=""><td>1*95</td></dl<>	1*95
ARSENIC	7060	107/30/90	108/13/90	0.01	<dl< td=""><td>1*95</td></dl<>	1*95
BARIUM	6010	107/30/90	108/01/90	0.02	<dl< td=""><td>1*95</td></dl<>	1*95
BERYLLIUM	6010	107/30/90	108/01/90	0.01	(DL	1*95
CADMIUM	6010	107/30/90	108/01/90	1 0.025	<dl< td=""><td>1*95</td></dl<>	1*95
CALCIUM	6010	107/30/90	108/01/90	1 0.025	<dl< td=""><td>1*95</td></dl<>	1*95
CHROMIUM	6010	107/30/90	108/01/90	0.02	<dl< td=""><td>1*95</td></dl<>	1*95
COBALT	6010	107/30/90	108/01/90	1 0.02	<dl< td=""><td>1*95</td></dl<>	1*95
COPPER	6010	107/30/90	108/01/90	1 0.02	<dl< td=""><td>1*95</td></dl<>	1*95
IRON	6010	107/30/90	108/01/90	1 0.02	<dl< td=""><td>1*95</td></dl<>	1*95
LEAD	6010	107/30/90	108/01/90	0.05	<dl< td=""><td>1*95</td></dl<>	1*95
LEAD	7421	107/30/90	108/06/90	0.005	<dl< td=""><td>1*95</td></dl<>	1*95
MAGNESIUM	6010	107/30/90	108/01/90	1 0.045	<dl< td=""><td>1*95</td></dl<>	1*95
MANGANESE	6010	107/30/90	108/01/90	1 0.015	<dl< td=""><td>1*95</td></dl<>	1*95
MERCURY	7471	108/10/90	108/10/90	1 0.0002	<dl< td=""><td> *95 </td></dl<>	*95
NICKEL	6010	107/30/90	108/01/90	0.04	<dl< td=""><td>l*95 </td></dl<>	l * 95
POTASSIUM	6010	107/30/90	108/01/90	1 3.0	/ <dl< td=""><td>1*95</td></dl<>	1*95
SELENIUM	7740	107/30/90	108/06/90	1 0.005	<dl< td=""><td>1*95</td></dl<>	1*95
SILVER	6010	107/30/90	108/01/90	0.01	<dl< td=""><td> *95 </td></dl<>	 *95
SODIUM	6010	107/30/90	108/01/90	1 0.05	<dl< td=""><td>1*95 </td></dl<>	1*95
THALLIUM	7841	107/30/90	108/02/90	0.01	<dl< td=""><td>1*95</td></dl<>	1*95
VANADIUM	6010	107/30/90	108/01/90	1 0.02	<dl< td=""><td>l*95 </td></dl<>	l * 95
ZINC	6010	107/30/90	108/01/90	1 0.02	<dl< td=""><td>1*95</td></dl<>	1*95
		1	1	1	1	1
1		1	1	}	1	1

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

1 1 1 1 1 1 1 1 1 1	- 1		M. M.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
HUNTINGBOOW ANA	AWALYTICAL	SERVICES . CHAIN-OF-CUST	OOY RECORD A	AND ANALYTICAL REQUEST F	7 0 8 X	10 9 9 0 0 0
Cilont Home _ J	gond - o	Band of Education	5 100115	Control - Dans Harty.))))	3 0 0 0 0 S Y X
	Car Singer	Bulgara John John John	0 C 0 C	19-3110	3 3 3 3 2	
Project No. 1	: : : : :	Project/Site Rimes	; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X b c	6 3 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
150	Slynsture) !	HAS R	· · · · · · · · · · · · · · · · · · ·	1000 000 000 000 000 000 000 000 000 00		Analysis Reguested/ Remarks
)	1 1 ms Cs	Comp. Greb Semple HAS		1 / 100 / 100 /		
عر		×		1 2 1	10 m	araysis
1	12:20	X 178,2 003	6	1 2 1] - -	
}	 	x r.g., 003	.w	2 1	<u></u>	
1 .	2:30	1		1 2 1	<u>)</u>	Ţ
	3.80	7 17.8.1 5		2 1	<u>لىرا</u> 	Π
50-6 1.250	4:30	T. B.	<i>w</i>	- - - - - - - - - -	<u></u>	М
		1	MEB			
·						
						-
	_ -		_ -		_	
Minay ing b	by i	Mil District by Min Min 726-5018:001	436KI	Killmay france by	134/40	13:55 May Kall
Relinquiened b	by1	Keckive	by:	Idelthquithed by	7110	80001000
asilnaulehed b	1 / 9	Dore/ Time: Mecalywood	106, 480 0715	1-		- (
	 	- 1	I OCH TO DAL			•

1.25 4.30 X T. B. 4 COY	DAVE HARDY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.25 4:30 X T. B. 4 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(716) 649=BJIQ	.00.
1.25 21:30 X 2003 1 1.25 20 1.30 1.30 1.30 X 1.20 X 1.20	30/1 3 3 1 5 3 3 0 1 0 1	2
1-25 1:30 X Test 000 1 1 1 1 1 1 1 1		Anslysis Requested/ Remerks
1.25 1:30 X T. B. 1 00/ 1 1.25 1:30 X T. B. 2 00.3 1 1 1.25 1:30 X T. B. 44 0.09 1 1 1.25 31:30 X T. B. 44 0.05 1 1 1.25 31 4:30 X T. B. 46 0.05 1 1 1.25 31 4:30 X T. B. 46 0.05 1 1 1.25 31 4:30 X T. B. 46 0.05 1 1 1.25 31 4:30 X T. B. 46 0.05 1 1 1.25 31 4:30 X T. B. 46 0.05 1 1 1.25 31 4:30 X T. B. 46 0.05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1.259 2.20 X T.B. 003 1 1.259 2:30 X T.B. 003 1 1.259 2:30 X T.B. 6 005 1 1.259 4:30 X T.B. 6 006 1 1.259 4:30 X T.B. 6 006 1		For Zalecsache CN Fe
1.25.30 X T. B.44 C09 1 1.25.30 X T. B.44 C09 1 1.25.30 X T. B.46 006 1	 	<u></u>
1.25.30 X T.8.44 COY 1 1.25.30 X T.8.46 U06 1 1.25.31 4:30 X T.8.46 U06 1		
1.2594 4:30 X T.846 005 1		
1.2594:30 X T.846 006 1	<u></u>	
\$3.		
		1
18 (May 16 by 1 Obser 1 Ine: 1 Precent by 1	Maurities of the sails	11 at 1 sept ved by oben
Ilme: Aecolved by:	Retinguished by: 0 Dete	Received By:

EMPIRE SOILS INVESTIGATIONS, INC. S-5167 SOUTH PARK AVENUE HAMBURG, NEW YORK 14075

APPENDIX E

7.3 REACTIVITY

7.3.1 Introduction

The regulation in 40 CFR 261.23 defines reactive wastes to include wastes that have any of the following properties: (1) readily undergo violent chemical change; (2) react violently or form potentially explosive mixtures with water; (3) generate toxic fumes when mixed with water or, in the case of cyanide- or sulfide-bearing wastes, when exposed to mild acidic or basic conditions; (4) explode when subjected to a strong initiating force; (5) explode at normal temperatures and pressures; or (6) fit within the Department of Transportation's forbidden explosives, Class A explosives, or Class B explosives classifications.

This definition is intended to identify wastes that, because of their extreme instability and tendency to react violently or explode, pose a problem at all stages of the waste management process. The definition is to a large extent a paraphrase of the narrative definition employed by the National Fire Protection Association. The Agency chose to rely on a descriptive, prose definition of reactivity because the available tests for measuring the variegated class of effects embraced by the reactivity definition suffer from a number of deficiencies.

7.3.2 Regulatory Definition

7.3.2.1 Characteristic Of Reactivity Regulation

A solid waste exhibits the characteristic of reactivity if a representative sample of the waste has \underline{any} of the following properties:

- 1. It is normally unstable and readily undergoes violent change without detonating.
- 2. It reacts violently with water.
- 3. It forms potentially explosive mixtures with water.
- 4. When mixed with water, it generates toxic gases, vapors, or fumes in a quantity sufficient to present a danger to human health or to the environment.
- 5. It is a cyanide- or sulfide-bearing waste that, when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors, or fumes in a quantity sufficient to present a danger to human health or to the environment. (Interim Guidance for Reactive Cyanide and Reactive Sulfide, Sections 7.3.3 and 7.3.4 below, can be used to detect the presence of cyanide and sulfide in wastes.)

SEVEN - 4

- 6. It is capable of detonation or explosive reaction if it is subjected to a strong initiating source or if heated under confinement.
- 7. It is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure.
- 8. It is a forbidden explosive, as defined in 49 CFR 173.51, or a Class A explosive, as defined in 49 CFR 173.53, or a Class B explosive, as defined in 49 CFR 173.88.
- 9. A solid waste that exhibits the characteristic of reactivity, but is not listed as a hazardous waste in Subpart D, has the EPA Hazardous Waste Number of D003.

7.3.3 Interim Guidance For Reactive Cyanide

7.3.3.1 The current EPA action level is:

Total releasable cyanide: 250 mg HCN/kg waste.

7.3.3.2 <u>Test Method to Determine Hydrogen Cyanide Released</u> from Wastes

1.0 SCOPE AND APPLICATION

- 1.1 This method is applicable to all wastes, with the condition that wastes that are combined with acids do not form explosive mixtures.
- 1.2 This method provides a way to determine the specific rate of release of hydrocyanic acid upon contact with an aqueous acid.
- 1.3 This test measures only the hydrocyanic acid evolved at the test conditions. It is not intended to measure forms of cyanide other than those that are evolvable under the test conditions.

2.0 SUMMARY OF METHOD

2.1 An aliquot of the waste is acidified to pH 2 in a closed system. The gas generated is swept into a scrubber. The analyte is quantified. The procedure for quantifying the cyanide is Method 9010, Chapter Five, starting with Step 7.3.5 of that method.

SEVEN - 5

3.0 SAMPLE HANDLING AND PRESERVATION

- 3.1 Samples containing, or suspected of containing, sulfide or a combination of sulfide and cyanide wastes should be collected with a minimum of aeration. The sample bottle should be filled completely, excluding all head space, and stoppered. Analysis should commence as soon as possible, and samples should be kept in a cool, dark place until analysis begins.
- 3.2 It is suggested that samples of cyanide wastes be tested as quickly as possible. Although they can be preserved by adjusting the sample pH to 12 with strong base, this will cause dilution of the sample, increase the ionic strength, and, possibly, change other physical or chemical characteristics of the waste which may affect the rate of release of the hydrocyanic acid. Storage of samples should be under refrigeration and in the dark.
 - 3.3 Testing should be performed in a ventilated hood.

4.0 APPARATUS AND MATERIALS (See Figure 1)

- 4.1 Round-bottom flask: 500-mL, three-neck, with 24/40 ground-glass joints.
- 4.2 <u>Stirring apparatus</u>: To achieve approximately 30 rpm. This may be either a rotating magnet and stirring bar combination or an overhead motor-driven propellor stirrer.
- 4.3 <u>Separatory funnel</u>: With pressure-equalizing tube and 24/40 ground-glass joint and Teflon sleeve.
 - 4.4 Flexible tubing: For connection from nitrogen supply to apparatus.
 - 4.5 Water-pumped or oil-pumped nitrogen gas: With two-stage regulator.
 - 4.6 Rotometer: For monitoring nitrogen gas flow rate.

5.0 REAGENTS

- 5.1 Sulfuric acid, 0.005 M: Add 2.8 mL concentrated H_2SO_4 to Type II water and dilute to 1 L. Withdraw 100 mL of this solution and dilute to 1 L to make the 0.005 M H_2SO_4 .
- 5.2 <u>Cyanide reference solution</u>: Dissolve approximately 2.5 g of KOH and 2.51 g of KCN in 1 liter of distilled water. Cyanide concentration in this solution is 1 mg/mL.
- 5.3 NaOH solution, 1.25 N: Dissolve 50 g of NaOH in distilled water and dilute to 1 liter with distilled water.

SEVEN - 6

Figure 1. Apparatus to Determine Hydrogen Cyanide Released from Wastes

SEVEN -7

- 5.4 NaOH solution, 0.25 N: Dilute 200 mL of sodium hydroxide solution (5.3) to 1 liter with distilled water.
- 5.5 Stock cyanide solution, 1 mg/mL: Dissolve 2.51 g of KCN and 2 g of KOH in 1 liter of distilled water. Standardize with 0.0192 N AgNO3. Dilute to appropriate concentration so that 1 mL = 1 mg CN.
- 5.6 <u>Intermediate cyanide solution</u>: Dilute 50 mL of stock solution to 1 liter with distilled water.
- 5.7 Standard cyanide solution, 5 mg/L: Prepare fresh daily by diluting 100 mL of intermediate solution to 1 liter with distilled water, and store in a glass-stoppered bottle.
- 5.8 <u>Silver nitrate solution</u>: Prepare by crushing approximately 5 g of AgNO₃ crystals and drying to constant weight at 40°C. Weigh 3.3 g of dried AgNO₃, dissolve in distilled water, and dilute to 1 liter.
- 5.9 Rhodanine indicator: Dissolve 20 mg of p-dimethylaminobenzal-rhodanine in 100 mL of acetone.
- 5.10 Methyl red indicator: Prepare by dissolving 0.02 g methyl red in 60 mL of distilled water and 40 mL of acetic acid.

6.0 SYSTEM CHECK

6.1 The operation of the system can be checked and verified using the cyanide reference solution (Paragraph 5.2). Perform the procedure using the reference solution as a sample and determine the percent recovery. A recovery of 50% is adequate to demonstrate proper system operation.

7.0 PROCEDURE

- 7.1 Add 500 mL of 0.25 N NaOH solution to a calibrated scrubber and dilute with distilled water to obtain an adequate depth of liquid.
- 7.2 Close the system and adjust the flow rate of nitrogen, using the rotometer. Flow should be 60 mL/min.
 - 7.3 Add to the system 10 g of the waste to be tested.
- 7.4 With the nitrogen flowing, add enough acid to fill the system half full. While starting the 30-min test period.
 - 7.5 Begin stirring while the acid is entering the round-bottom flask.
- 7.6 After 30 min, close off the nitrogen and disconnect the scrubber. Determine the amount of cyanide in the scrubber by Method 9010, Chapter Five, starting with Paragraph 7.3.5. of the method.

SEVEN - 8

- 8.1 Determine the specific rate of release of HCN, using the folparameters:
 - A = Concentration of HCN in scrubber (mg/L) (This is obtained from Method 9010.)
 - L = Volume of solution in scrubber (L)
 - W = Weight of waste used (kg)
 - S = Time of measurement = Time N₂ stopped Time N₂ started (sec)
 - R = specific rate of release = $\frac{A \cdot L}{W \cdot S}$

Total available HCN $(mg/kg) = R \times 1,800$.

7.3.4 <u>Interim Guidance For Reactive Sulfide</u>

7.3.4.1 The current EPA action level is:

Total releasable sulfide: 500 mg H₂S/kg waste.

7.3.4.2 <u>Test Method to Determine Hydrogen Sulfide Released</u> from Wastes

1.0 SCOPE AND APPLICATION

- 1.1 This method is applicable to all wastes, with the condition that waste that are combined with acids do not form explosive mixtures.
- 1.2 This method provides a way to determine the specific rate of release of hydrogen sulfide upon contact with an aqueous acid.
- 1.3 This procedure releases only the evolved hydrogen sulfide at the test conditions. It is not intended to measure forms of sulfide other then those that are evolvable under the test conditions.

2.0 SUMMARY OF METHOD

2.1 An aliquot of the waste is acidified to pH 2 in a closed system. The gas generated is swept into a scrubber. The analyte is quantified. The procedure for quantifying the sulfide is given in Method 9030, Chapter Five. SEVEN-9