October 21, 2008 Mr. Jaspal Walia Project Manager New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203 Re: Supplemental Groundwater Investigation Work Plan – MW-04 Area Former Buffalo Service Center and Related Sites (C915194, C915195, C915203, V00362) Buffalo, New York Dear Mr. Walia, On behalf of QLT Buffalo LLC, WSP Engineering of New York, P.C. (formerly ESC Engineering of New York, P.C.) has prepared this supplemental groundwater investigation work plan to develop additional information with respect to groundwater conditions in the vicinity of MW-04. The scope of the proposed investigation is consistent with discussions held with the New York State Department of Environmental Conservation (NYSDEC) during a meeting held on May 7, 2008. The information obtained through the execution of this work plan will be used to characterize conditions at this location and prepare a focused Alternatives Analysis Report that evaluates remedial options to address conditions at this location. The site layout and recent analytical data are shown on Figure 1. ### **Background Information for the MW-04 Area** During implementation of the field work related to consent order B9-0577-00-05(A), fill material (in the former Wilkeson Slip, east of the sheet pile wall installed along Fourth Street) and affected soil from beneath the Waterfront School was excavated. The sheet pile wall was installed to provide protection for the utility corridor located just to the west of the sheet pile wall. Post-excavation confirmation samples were collected in accordance with the NYSDEC-approved work plan. The excavation was conducted to ensure soils on the east side of the sheet pile wall achieved the site-specific action levels defined for this project as presented in the Interim Remedial Measures Work Plan dated March 25, 2005 (Work Plan). All soils east of the sheet pile wall exceeding the defined regulatory standard were removed as necessary to satisfy project objectives. Addressing conditions on the western side of the sheet pile wall is not within the scope of this work plan and consent order. QLT Buffalo is not responsible for environmental conditions west of the sheet pile wall. As the western limits of the excavation were reached, two dark colored seeps were identified flowing along the sheet pile wall. Dewatering activities during the excavation lowered the groundwater table, and groundwater flowed into the dewatered area. In correspondence addressed to National Fuel Gas Distribution Corp. (NFG), dated August 9, 2005, the NYSDEC expressed concern with the quality of groundwater flowing from the western side of the sheet pile wall. NYSDEC and NFG both acknowledged that the soil and groundwater conditions west of the wall were not within the scope of the project as presented in the approved Work Plan. In response to the NYSDEC's concern, however, WSP Engineering volunteered to provide groundwater collection and treatment in this area during field activities to address this temporary situation, caused by the dewatering of the site. A temporary sump was installed adjacent to the sheet pile wall (western end of OU-2A [School]). The sump consisted of an 18-inch HDPE vertical stand pipe surrounded with an envelope of coarse stone. To create a barrier against groundwater flow toward the east, a combination of flowable fill and clay was incorporated (Figure 2) into the backfill of OU-2A (School). The flowable fill and clay created a barrier to reduce future migration of groundwater from the west to the clean fill placed for the interim remedial measure (IRM). The flowable fill and clay barrier remain between MW-4 and the site to this day. To further stabilize conditions at this location, WSP Engineering volunteered to introduce an oxygen releasing compound into the groundwater. This was accomplished by filling the sump with potable water until equilibrium with local groundwater elevations was realized. Subsequently, the oxygen releasing compound was placed into the sump. The intent of the effort was to enhance/promote natural biodegradation in the area by increasing the oxygen content of the groundwater at this location during field activities. As part of demobilization, the sump was abandoned by filling with flowable fill. At the request of NYSDEC, and over the technical objections of QLT Buffalo, MW-04 was placed immediately east of the sheet pile wall ostensibly to evaluate groundwater conditions within the remediated area. Based on conditions observed during the excavation program, this specific location is more likely groundwater historically impacted by conditions west of the sheet pile wall than by current groundwater conditions at the remediated site. The location of the well is such that the flowable fill and clay is east of the well and the sheet pile wall. During execution of the first quarterly groundwater monitoring event, a light non-aqueous phase liquid (LNAPL) was identified at MW-04. As this was not expected during the first event, the thickness of the LNAPL is unknown. Since the first sampling event, an oil-water interface probe has been used to measure the thickness of any NAPL in the well. The NAPL thickness was not measureable and only a sheen was observed during the last two events. As discussed with you on May 7, 2008, the following investigation objectives were defined: - Determine if contamination just east of the sheet pile wall is groundwater contained to that specific location - Confirm the extent of the contamination in the vicinity of MW-04 The following information discusses the investigation approach proposed to satisfy these objectives. ### **Field Procedures** Groundwater samples will be collected from three direct-push boring locations (DP-08-01, DP-08-02, and DP-08-03 (Figure 3) and LNAPL thickness will be measured with an electric oil/water probe in MW-04. If no measurable thickness of LNAPL is present or if there is only a sheen present, a groundwater sample will be collected from MW-04. The field geologist has the authority to add sample locations on field conditions. Prior to the installation of the borings, a New York State-licensed surveyor will identify the location of the proposed sample locations and the former Wilkeson Slip, and sheet pile wall. In addition, underground utilities will be located in accordance with WSP SOP No. 23 (Attachment A). The borings will be advanced with a direct-push drill rig to approximately 22 feet below ground surface (ft-bgs) (approximate base elevation of MW-04) or refusal. Continuous soil samples will be collected from all borings with a Macro-Core® sampler (or similar) equipped with a disposable acetate liner. The soils will be screened with a portable flame ionization detector for organic vapors and logged using the USCS classification system. The soil cuttings will be placed into 55-gallon DOT-approved drums for characterization and offsite disposal. Groundwater samples from the borings will be collected with a screen point sampler. The sampler will be driven to the termination depth, at which point the outer sheath will be retracted, and the screen exposed. Grab groundwater samples will be collected directly from the screen point sampler using a bailer or a peristaltic pump set at a low flow rate after approximately 1 volume of groundwater is removed from the sampler and rods. If no measureable thickness of NAPL is present, MW-04 will also be sampled. The sample will be collected in a manner consistent with the quarterly groundwater sampling methods. To obtain a representative sample, MW-04 will be purged by removing a minimum of three well volumes. The well will be purged using a peristaltic pump set at a low flow rate. Water quality parameters (pH, specific conductance, turbidity, and temperature) will be measured before, during, and after purging. Purging will be considered complete when three volumes or more have been removed or the well was purged dry. Depth to water and water quality parameters will not be measured, except from MW-04 to determine well volumes if sampling is required. The groundwater samples will be placed in the appropriate, pre-preserved, laboratory provided container. The samples will be properly labeled and placed in an ice-filled cooler in preparation for transport, under strict chain-of-custody procedures, to STL Buffalo for analysis. Sample custody is controlled and maintained through a set of chain-of-custody procedures that track the possession and handling of the samples from the field to the laboratory. A sample is considered to be in an individual's custody if it is physically in their possession or stored in an appropriate shipping container that has been secured to prevent tampering. WSP Engineering field personnel will be responsible for the custody of samples from the time they are collected until they are transferred to the laboratory. The cooler will remain in the sampler's view or locked in the sampling vehicle for temporary storage. A copy of the chain-of-custody form will accompany each sample shipment. The sampling team will sign, date, and note the time on the chain-of-custody form before shipping the samples. The completed original chain-of-custody form will be placed in a plastic bag, sealed, and taped to the inside lid of the shipping container. If multiple shipping containers are used, separate chain-of-custody forms will be placed in each container. Signed and dated custody seals will be placed on each sample cooler before shipping to verify that the container was not opened or tampered with in transit. WSP Engineering will retain the carbon copy of the completed chain-of-custody form as part of the project file. The laboratory will assume custody of the samples upon receipt. After removal of the sampler and drill rods, the borehole will be backfilled with bentonite chips and capped with asphalt, concrete, or topsoil. All non-dedicated equipment (i.e., screen point
sampler) will be decontaminated before commencing site activities, and between locations, with a non-phosphate soap wash, followed by a potable water rinse. WSP will complete all field activities in accordance with WSP Engineering's Standard Operating Procedures (SOPs) (Attachment A) as well as the Site-specific Health and Safety Plan and Site Management Plan. ### **Laboratory Handling and Protocols** All groundwater samples will be analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) analysis by EPA Method 8260, polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270, turbidity by EPA Method 180.1, and total suspended solids (TSS) by EPA Method 160.2. The groundwater samples will be collected in the appropriate, pre-preserved, laboratory provided container. The samples will be properly labeled and placed in an ice-filled cooler in preparation for transport to STL Buffalo for analysis. WSP Engineering will handle samples under strict chain-of-custody procedures. ### **Data Summary** The data from the supplemental investigation will be tabulated and presented on a figure similar to Figure 3. A report will be submitted to NYSDEC. QLT is not responsible for investigating/responding to conditions to the west of the sheet pile wall. ### **Proposed Schedule** The schedule is dependent on obtaining access from Duke and the City of Buffalo. Two proposed sampling locations are situated on Duke property and one proposed sampling location (as well as MW-4) is situated on BURA property. After access is obtained, field work can begin in approximately two weeks. The investigation report will be submitted to NYSDEC within 3 weeks after receipt of the laboratory data. The focused AAR will be submitted to NYSDEC within 4 weeks after submittal of the investigation report. If you have any questions, please do not hesitate to contact me at (412) 604-1040. Sincerely, Glen E. Rieger Senior Project Director GER:EMH:eal K:\QLT Buffalo\080190\MW-04 Work Plan\WP MW-04 102108_rtc.doc ### **Enclosures** cc: Gordon Adkison, Duke Realty Tanya Alexander, National Fuel Gas Distribution Corp. Maura Desmond, Esq. NYSDEC Martin Doster, New York State Department of Environmental Conservation Morgan G. Graham, Esq., Phillips, Lytle, LLP Barry Gerstein, Esq., QLT of Buffalo, LLC Mr. Jaspal Walia Page 5 October 21, 2008 Dennis P. Harkawik, Esq., Jaeckle, Fleischmann & Mugel, LLP Cameron O'Connor, NYSDOH Robert Rua, Buffalo Board of Education Dennis Sutton, City of Buffalo Barbara L. Schifeling, Esq., Damon & Morey LLP Michael D. Spear, REM Ltd Reynolds Renshaw, Renshaw Consulting Group, LLC # Enclosures Figures # Attachment A ### Note Taking and Log Book Entries ### Materials: Permanently bound log book (no spiral-bound log books) Black or blue ballpoint pen (waterproof ink) ### Procedure: - 1. Use black or blue ballpoint pen with waterproof ink. Felt-tip pens should not be used. - 2. Reserve the inside front cover for business cards from key personnel who visit the site (including the person in charge of the log book). - 3. On the first page of the log book, place a return for reward notice, WSP Engineering's phone number, and the project manager's name. - 4. Enter the following on the second page of the log book: project name, project number, project manager's name, onsite contacts, onsite telephone number and address, telephone numbers for all key personnel, and emergency fire and medical telephone numbers. - 5. Number each page, initial each page, and put the date at the top of each page. Start a new page for each day. At the end of a day, summarize the day's activities, sign the page, and put a slash through the rest of the blank lines. Start the next day on a new page. - 6. Enter the time (in military time, e.g., 0830) in the left column of each page when an entry is recorded in the field notebook. - 7. If a mistake is made in an entry, cross out the mistake with one line and initial the end of the line. - 8. At all times, maintain the chain of custody on the field log book. ### Content: - 1. Be sure that log book entries are LEGIBLE and contain accurate and inclusive documentation of project field activities. - 2. Provide sufficient detail to enable others to reconstruct the activities observed. - 3. Thoroughly describe all field activities while onsite. Be objective, factual, and thorough. Language should be free of personal feelings or other terminology that might prove inappropriate. - 4. Describe problems, delays, and any unusual occurrences such as wrong equipment or breakdowns along with the resolutions and recommendations that resulted. - 5. Fully document any deviations from or changes in the work plan. - 6. Describe the weather and changes in the weather, particularly during sampling events. - 7. Sketch a map of the facility or areas onsite where activities are occurring, especially the location of sampling points. - 8. During sampling activities, record all information pertaining to the sampling event. Include descriptive locations and diagrams of the sample locations, time, sample media, analysis, sampling procedure, equipment used, sizes and types of containers, preservation and any resulting reactions, sampling identification (especially for duplicate samples), shipping procedures (record airbill numbers), and addresses. - 9. Note decontamination or disposal procedures for all equipment, samples, and protective clothing and how effectively each is performed. - 10. If possible, photograph all sample locations and areas of interest. Maintain a photographic log in the field log book and include: Date, time, photographer, name of site, general direction faced, description of the subject taken, and sequential number of the photograph and the roll number. - 11. Record the names and affiliations of key personnel onsite each day. - 12. List all field equipment used and record field measurements, including distances, monitoring and testing instrument readings (e.g., photoionization detector (PID), organic vapor analyzer (OVA), pH, conductivity, model numbers, etc.), and calibration activities. - 13. Record proposed work schedules and changes in current schedules in the log book. - 14. Describe site security measures. - 15. Include drum inventory for all investigation-derived waste (IDW) materials generated during site activities. Provide information on how IDW material was labeled. ### Sample Container, Preservatives, & Holding Times ### Scope: This operating procedure describes the ways and means of selecting the appropriate sampling containers for environmental sampling. ### Application: The purpose of this procedure is to assure that sample volumes and preservatives are sufficient for analytical services required under EPA-approved protocols. ### Materials: Sample containers Sample container labels Indelible (waterproof) markers or pens Clear tape ### Procedures: - 1. Refer to Table 1 for minimum sample volume and glassware types required for sampling a particular matrix and compound class. - 2. Select the appropriate glassware (i.e., bottles or jars) from those provided by the analytical laboratory. Verify that the analytical laboratory has provided the correct number of sample containers and the correct preservatives for the project per the sampling plan requirements. - 3. The analytical laboratory should always provide extra sample containers for all analytical parameters in case of breakage or other problems encountered in the field. This is particularly true for VOC sample containers (i.e., 40-ml vials). - 4. Report any discrepancies or non-receipt of specific types of sample containers to the Quality Assurance Officer immediately. Arrangements should be made with the laboratory to immediately ship the missing or additional sampling containers to the project site. - 5. Apply WSP Engineering sample labels to the sample containers. - 6. Information on the sample labels should contain the following data: Site/Project name Project/Task number Unique sample identification number Sample date Time of sample collection (military system, e.g., 0000 to 2400 hours) Analytical parameters Preservative Sampling personnel - 7. Once sample containers are properly labeled, the sample labels should be wrapped with clear tape to prevent deterioration of sample label. - 8. Proceed with the sample collection per the sampling plan requirements. - 9. Collected samples should be immediately placed in an iced cooler to maintain as close as possible a 4°C atmosphere for shipment to the analytical laboratory. Follow sample shipping procedures detailed in Sample Shipping Standard Operating Procedures. - 10. Recommended order of sample collection: *In-situ* measurements (e.g., temperature, pH, specific conductance) Volatile organic analytes (VOA) Purgeable organic carbon (POC) Purgeable organic halogens (POX) Total organic halogens (TOX) Total organic carbon (TOC) Extractable organics Total petroleum hydrocarbons (TPH) Total metals Dissolved metals Microbiologicals Phenols Cyanide Sulfate and chloride **Turbidity** Nitrate and ammonia Radionuclides $Table\ 1-Sample\ Containers,\ Preservatives,\ and\ Holding\ Times$ | Analytical | | | Maximum | | |--|---------------|--|----------------------------|---------------------| | <u>Parameter</u> | <u>Matrix</u> | Size and Type | Preservatives | Holding Time | | Metals, except mercury and hexavalent chromium | Solid | 8-oz. glass jar | Cool to 4o C | 180 days | | Mercury | Solid | 8-oz. glass jar | Cool to 4o C | 28 days | | Hexavalent chromium | Solid | 8-oz. glass jar | Cool to 4o C | 24 hours | | Metals, except mercury and hexavalent chromium | Aqueous | 500-ml plastic container with Teflon-lined plastic cap | HNO3, pH<2
Cool to 4o C | 180 days | | Mercury | Aqueous | 500-ml plastic container with Teflon-lined plastic cap | HNO3, pH<2
Cool to 4o C | 28 days | | Hexavalent chromium
| Aqueous | 500-ml plastic container with Teflon-lined plastic cap | Cool to 4o C | 24 hours | | Volatile organics | Solid | 4-oz. glass jar with Teflon-lined cap | Cool to 4o C | 14 days | | Volatile organics | Aqueous | Three 40-ml glass vials with Teflon-lined caps | HCl, pH<2
Cool to 4o C | 14 days | | Analytical
<u>Parameter</u> | <u>Matrix</u> | Sampling Container Size and Type | <u>Preservatives</u> | Maximum
<u>Holding Time</u> | |--------------------------------|---------------|---|------------------------------|---| | Semivolatile organics | Solid | 8-oz. amber glass jar with Teflon-lined cap | Cool to 4o C | 14 days to extraction
40 days from extraction
to analysis | | Semivolatile organics | Aqueous | Two 1,000-ml amber glass jars | Cool to 4o C | 7 days to extraction | | | | with Teflon-lined caps | | 40 days from extraction to analysis | | Cyanide | Solid | 8-oz. glass jar | Cool to 4o C | 14 days | | Cyanide | Aqueous | One 500-ml plastic container | NaOH, pH>12,
Cool to 4o C | 14 days | | TCLP Volatiles | Solid | 8-oz. glass jar with | Cool to 4o C | 14 days to TCLP extraction | | | | Teflon-lined cap | | 14 days from extraction to analysis | | TCLP Semivolatile | Solid | 8-oz. glass jar | Cool to 4o C | 14 days for TCLP extraction | | Organics | | | | 7 days for preparative extraction
40 days from extraction
to analysis | | TCLP Metals, except | Solid | 8-oz. glass jar | Cool to 4o C | 180 days for TCLP extraction | | Mercury | | | | 180 days from preparative extraction to analysis | | Analytical
<u>Parameter</u> | <u>Matrix</u> | Sampling Container Size and Type | <u>Preservatives</u> | Maximum
<u>Holding Time</u> | |---------------------------------------|---------------|----------------------------------|----------------------|---| | <u>1 urumeter</u> | Matrix | Size and Type | 11cscrvatives | Hording Time | | TCLP Mercury | Solid | 8-oz. glass jar | Cool to 4o C | 28 days for TCLP extraction
28 days from preparative
extraction to analysis | | Total Petroleum | Solid | 4-oz. glass jar with | Cool to 4o C | 14 days for extraction | | Hydrocarbons | | Teflon-lined cap | | 40 days for analysis | | Total Petroleum | Aqueous | 1-liter amber glass jar | Cool to 4o C | 14 days for extraction | | Hydrocarbons (EPA Method 418.1) | | | | 40 days for analysis | | Total Petroleum | Aqueous | 2 40-ml glass vials | Cool to 4o C | 14 days for extraction | | Hydrocarbons
(EPA Method 8015 GRO) | | | | 40 days for analysis | | Total Petroleum | Aqueous | 2 40-ml glass vials | Cool to 4o C | 14 days for extraction | | Hydrocarbons
(EPA Method 8015 DRO) | | | | 40 days for analysis | ### Decontamination of Sampling Equipment ### Materials: Field logbook Personal protective equipment (PPE) Deionized water 10% nitric acid solution Nylon brushes Containers (e.g., garbage cans, buckets, plastic tubs) Nonphosphate detergent (e.g., Liquinox or Alconox) Isopropanol Aluminum foil Polyethylene sheeting Plastic garbage bags Paper towels Spray bottles Duct tape Note: All sampling equipment must be decontaminated before shipment to the office. ### **Decontamination Procedure:** - 1. Use appropriate PPE as specified in the site-specific health and safety plan. - 2. Prepare a decontamination area by spreading polyethylene sheeting on a firm, flat surface (if possible). Create a berm around the decontamination area to contain inadvertent spillage. A berm can be created by rolling under the edges of the polysheeting or by draping the plastic over a wooden frame, etc. - 3. Prepare a solution of nonphosphate detergent and tap water in a container. - 4. Wipe sampling equipment with paper towels to remove residual soil or gross contamination. Heavy oils or grease may be removed with paper towels soaked with isopropanol. - 5. Disassemble sampling equipment (e.g., split-spoon samplers and bailers). Wash equipment thoroughly in a nonphosphate detergent and hot tap water (if available) solution. Teflon bailers must be disassembled and the inside washed with a long-handled bottle brush or short-handled brush pulled through the bailer with rope. - 6. Rinse the equipment with hot tap water (if available). - 7. If the equipment will be used to collect samples for metals analysis, follow the tap water rinse with a 10% nitric acid solution rinse. Carbon steel equipment (e.g., bucket augers, split-spoons) should be rinsed with 1% nitric acid solution to reduce the potential for oxidizing the metal surfaces. Collect the nitric acid rinse in a separate bucket for proper disposal. Rinse the equipment with tap water. - 8. Thoroughly rinse the equipment with deionized water. - 9. Spray the equipment with isopropanol and allow to completely air dry. The solvent rinse must be collected in a separate bucket. Isopropanol is the recommended solvent for organic contaminants because it is readily available and is not a Department of Transportation hazardous material. However, other solvents (e.g., acetone, hexane, methanol) may be more effective in removing certain contaminants, such as oils or PCBs. Please note that many state programs and USEPA regions specify the solvents to be used for equipment decontamination. - 10. Rinse the equipment with deionized water using at least five times the volume of solvent used in the previous step. - 11. After the equipment has been allowed to completely air dry, each piece must be individually wrapped with aluminum foil (shiny side out), and then wrapped in plastic. Note: Decontamination solvents may introduce contaminants to environmental samples. It is very important to ensure that the equipment has completely dried before use or storage. - 12. After the final decontamination event on a project, label each piece of equipment with the date of decontamination, the initials of decontamination personnel, and the type of decontamination solutions used. - 13. Note any discrepancies from standard decontamination procedures in the field logbook. - 14. Field decontamination presents unique problems in disposal of decontamination solutions. The spent wash water and rinse water can potentially be placed in the facility's waste water treatment system. However, field personnel should obtain approval from facility personnel and from the local POTW. If no wastewater treatment system is present onsite, or if approval cannot be obtained from the facility and local POTW, the wash water should be containerized for offsite disposal in accordance with state and federal requirements. The volume of spent solvent generated during field decontamination should be minimal. Solvents should be collected in separate buckets and allowed to evaporate. See SOP 26 for information on managing investigation-derived wastes. - 15. Paper towels soaked with solvent should be allowed to air dry and be disposed of with the general trash. Under no circumstances should any decontamination solution be disposed of on soil surfaces. ### Sample Shipping Procedures ### Materials: Suitable shipping container (e.g., plastic cooler or lab supplied styrofoam cooler) Chain-of-custody forms Custody seals WSP Engineering mailing labels Strapping, clear packing, or duct tape Ziploc® plastic bags Knife or scissors Permanent marker Latex or nitrile gloves Large plastic garbage bag Wet ice Bubble wrap or other packing material Universal sorbent materials Sample container custody seals (if required) Federal Express form (with WSP Engineering account number) Vermiculite (or commercially available cat litter) ### **Procedures:** For shipping purposes, samples are segregated into two classes; environmental samples and restricted articles (i.e., hazardous materials). Environmental samples can also be categorized based on expected or historical analyte levels (i.e., low or high). An environmental sample is one that is not defined as a hazardous material by the Department of Transportation (DOT, 49 CFR Part 171.8). The DOT defines a "hazardous material" as a substance which has been determined by the Secretary of Transportation to be capable of posing an unreasonable risk to health, safety, and property when transported in commerce, and which has been so designated. Any material of a suspected hazardous nature, previously characterized as hazardous, or known to be hazardous is considered a restricted article. In general, the two major concerns in shipping samples are protecting the samples from incidental breakage during shipment and complying with applicable DOT and courier requirements for restricted article shipments. Protecting the samples from incidental breakage can be achieved using "common sense." All samples should be packed in a manner that will not allow them to freely move about in the cooler or shipping container. Glass surfaces should not be allowed to contact each other. When possible, repack the samples in the same materials that they were originally received in from the laboratory. Each container should be cushioned with plastic bubble wrap, styrofoam, or other nonreactive cushioning material. Shipping hazardous materials should conform to the packaging, marking, labeling, and shipping instructions identified in 49 CFR Parts 172 & 173. Environmental samples shall be packed for shipment using the following procedures: - 1. Line the shipping container with a large, heavy-duty plastic garbage bag. Place universal sorbent materials (e.g., sorbent pads) between the cooler and the heavy-duty plastic bag. The amount of sorbent material should be sufficient to absorb the volume of wet ice and aqueous samples. If using a plastic cooler, securely tape the drain plug closed on the outside of the cooler. - 2. Place 2-4 inches of bubble wrap or other packing material inside the heavy-duty plastic bag in the bottom of the cooler. - 3. The
sample packer should wear latex or nitrile gloves when handling the samples during the packing process. - 4. Place the bottles in the cooler with sufficient space to allow for the addition of more bubble wrap or other packing material between the bottles. Large or heavy sample containers should be placed on the bottom of the cooler with lighter samples (i.e., VOAs) placed on top to eliminate breakage. - 5. Place the "wet ice" inside two sealed heavy-duty zipper-style plastic bags and package the bags of ice on top of or between the samples. Pack enough ice in the cooler to chill the samples during transit. If the cooler is shipped on a Friday or Saturday for Monday delivery, double the amount of ice placed in the cooler (Monday delivery should be used only as a last resort). Fill all remaining space with bubble wrap or other packing material. Securely close and seal with tape the top of the heavy-duty plastic bag. - 6. Place chain-of-custody form (and, if applicable, CLP traffic reports) into a Ziploc® plastic bag and affix to the cooler's inside lid, then close the cooler. Securely fasten the top of the cooler shut with tape. Place two signed and dated chain-of-custody seals on the top and sides of the cooler so that the cooler cannot be opened without breaking the seals. - 7. Once cooler is sealed, shake test the cooler to make sure that there are no loose sample containers in the cooler. If loose samples are detected, open the cooler and repack the samples. - 8. Using clear tape, affix a mailing label with WSP Engineering's return address to the top of the cooler. - 9. Ship samples via priority overnight express to the contracted analytical laboratory for next morning delivery. If applicable, check the appropriate box on the airbill for Saturday delivery. - 10. Declare value of samples on the shipping form for insurance purposes. The declared value should reflect the cost to recollect the samples. - 11. Record the tracking numbers from the Federal Express forms in the field notebook and on the chain of custody form. Also, retain the customer's copy of the Federal Express airbill. Hazardous materials should be packed according to the above procedures with the following additions: - 1. Place samples in individual Ziploc® plastic bags and secure with a plastic tie or tape. - 2. Place samples in paint cans in a manner which would prevent bottle breakage (i.e., do not place glass against glass). - 3. Place vermiculite or other absorbent packing material in the paint can around the samples. The amount of packing material used should be sufficient to absorb the entire contents of the sample if the container is broken during shipment. - 4. Secure a lid to the paint can with can clips and label the outside of the can with sample numbers and quantity. Mark the paint can with "This End Up" and arrow labels that indicate the proper upward position of the paint can. - 5. Package the paint cans in DOT-authorized boxes or coolers, with appropriate DOT shipping labels and markings on two adjacent sides of the box or cooler. - 6. Ship the restricted articles via overnight courier following the courier's documentation requirements. A special airbill must be completed for each shipment. Retain a copy of the airbill for WSP Engineering records and tracking purposes, if necessary. ### Field Quality Assurance/Quality Control Samples ### Materials: Field logbook Personal protective equipment (PPE) Sample containers Sample labels Clear tape Laboratory analyte free water Clean or dedicated sampling equipment ### Procedure: - 1. Use appropriate PPE as specified in the site-specific health and safety plan. - 2. Select the appropriate glassware for the field Quality Assurance/Quality Control (QA/QC) samples. Refer to the WSP Engineering Standard Operating Procedure for Sample Container, Preservatives, and Holding Times to determine the appropriate bottles to use. - 3. Field QA/QC samples include the following: trip blanks duplicate samples equipment blanks - 4. Trip blanks should be provided by the analytical laboratory for all projects where samples are being collected for analysis of volatile organic compounds (VOCs). Trip blanks should accompany the sample bottles from the analytical laboratory to the site, accompany the sample containers at all times during the sampling event, and return to the laboratory with the sample containers. One trip blank should be submitted to the analytical laboratory with each shipment containing samples for VOC analysis. The trip blank should be analyzed only for VOCs. - 5. One duplicate sample should be collected for every 20 samples of each matrix (e.g., soil and groundwater) collected during each sampling event. Duplicate samples of soil and other solid matrices should be collected by dividing the sample material in half and alternately filling the two sample bottle sets. Duplicate samples of groundwater and other aqueous matrices should be collected by alternately filling the two sample bottle sets from the same sampling vessel (e.g., bailer). The appropriate SOP should be followed for the collection of each sample type (soil, groundwater, sediment, sludge). Duplicate samples should be analyzed for all the analytes that are being analyzed for during the sampling event. - 6. One equipment blank should be collected in the field at a rate of one per type of equipment per decontamination event not to exceed one per day. If dedicated sampling equipment is used, the equipment blanks should be prepared in the field before sampling begins. If field decontamination of sampling equipment is required, the equipment blanks should be prepared after the equipment has been used and field-decontaminated at least once. Equipment blanks should be prepared by filling or rinsing the precleaned equipment with analyte-free water and collecting the rinsate in the appropriate sample containers. The samples should be labeled, preserved, and filtered (if required) in the same manner as the environmental samples. Equipment blanks should be analyzed for all the analytes for which the environmental samples are being analyzed. Decontamination of the equipment following equipment blank procurement is not required. 7. All QA/QC samples should be submitted to the analytical laboratory with unique sample numbers. Therefore, the QA/QC samples should be labeled as separate environmental samples following the same numbering scheme used during that particular sampling event. However, the QA/QC samples should be clearly identified on WSP Engineering's copy of the chain-of-custody form and in the field logbook. ### **Underground Utility Locating** ### Application: The purpose of this procedure is to ensure that all required and appropriate procedures are followed to locate and mark subsurface utilities (e.g., electrical lines, natural gas lines, communication lines) before initiating any intrusive field activities (e.g., drilling, test pits, trenching). Compliance with this procedure is mandatory before intrusive work can be conducted on a WSP Engineering project. This procedure is intended to allow the work to proceed safely and will minimize the potential for damaging underground utilities. Intrusive work includes all activities that require WSP Engineering's employees or their subcontractors to penetrate the ground surface. Examples of intrusive work include, but are not limited to probing, drilling, injection, test pit excavations, trenching, and remedial excavations. ### Materials: Record of the communication utility locating form (Attachment 1) Field logbook Wooden stakes Spray paint Flagging tape As-built drawings for sub grade utilities (if available) Hand auger or post-hole digger Hand-held magnetometer or cable locator (optional, if and only if private utility locator has cleared the area and personnel have been properly trained in the use of the equipment) ### Procedure: ### Pre-site Mobilization - 1. Gather the necessary information to complete the record of communication utility locating form (Attachment 1). - Contact the state utility locating service (e.g., One-Call, Miss-Dig). It is imperative to contact the locating service with sufficient lead-time to allow all utility providers to visit the site location. In each case, the state utility locating service will provide the caller with a legal dig date. Under no circumstances will intrusive work begin before the legal dig date provided by the call center. The telephone numbers for the locating service in selected states are listed in Table 1. However, the telephone number is typically listed in the area Yellow Pages. Provide the utility locating service with any information they request concerning the site and work activity in order to locate utilities at the site. Several states, including California, require that the proposed drilling locations be marked with white spray paint before contacting the locating services. The following information provided by the locating service should be documented in a record of communication utility locating form (Attachment 1): utility providers that will be contacted, and a utility clearance ticket number. The ticket number will be used by the various utility companies to reference the clearance request and to contact the caller with clearance verifications (see note below). Note 1: Generally, the public utility companies will mark underground lines up to the private property boundary. However, you should request that the utility companies mark their utilities in the work areas on the site. If the utility companies will not provide that service, a private utility locating service **MUST** be contracted. Note 2: Some utilities (e.g., sewer, water, cable TV) may not be included by the State locating service. The State locating service will provide you with a list of utilities that will be notified based on the information provided regarding the sites location. Compare this list with utilities generally expected at all sites (e.g.,
sewer, water, gas, communication, electric). If any expected utilities are absent from the contact list, you <u>MUST</u> contact the utilities directly for clearance before the start of intrusive activities. Record all contacts on the utility locating record of communication form. - 3. Identify a site contact familiar with the utilities on the property (e.g., plant manager, facility engineer, maintenance supervisor), and provide this individual with a site plan showing the proposed locations of all soil borings, monitoring wells, test pits, and other areas where intrusive activities will be conducted. Ask the site contact for all drawings concerning underground utilities in the proposed work areas. - 4. No intrusive work should be done before the legal dig date provided by the State utility locating service. No intrusive activities should be conducted along or near public right-of-ways until all utilities have been marked and visually verified in the area of investigation. In addition, **NO** field activities shall be conducted on private property unless the State locating service or a private utility locating service has confirmed the presence or clearance of onsite utilities. ### Site Mobilization - 1. Locate all proposed drilling and trenching locations, both onsite and offsite, with spray paint, stakes, or other appropriate markers. - 2. Verify that <u>ALL</u> utility companies listed by the municipal locating service, and any contacted directly by WSP Engineering, have either marked the underground lines in the specified work areas or have responded with "no conflict." Document on the utility record of communication form as each utility mark is visually confirmed. **Note:** When receiving verbal clearances by telephone from utility companies, or their subcontractors, it is imperative that you verify which utilities are being cleared, particularly when dealing with subcontractors that may be marking more than one utility. 3. Review all available as-built utility diagrams and plans with the site contact to identify potential areas where underground lines may be present. The review should confirm the locations marked by the locating services and identify utilities that may have been omitted by the locating services. If the as-built drawings do not confirm utilities marked by the locating services, follow instructions in Section 6. If possible, obtain a copy(s) of the utility plans for future reference in the field. Conduct a site walk with the site contact. During the site walk, attempt to obtain a general knowledge of the types of utilities present in the work areas. Furthermore, survey your surroundings to identify features that require electricity (e.g., parking lot lights, pad-mounted transformers) or suggest the presence of underground utilities, such as linear depressions in the ground. Check these items against the utility locating record of communication form checklist. For example, check to see whether major electrical lines are aboveground, or locate underground sewer lines by using the locations of manholes and storm water grates. Keep in mind that many sewer lines can be offset from catch basins. - 4. A minimum of 4 feet clearance should exist between utilities and proposed drilling locations, and a minimum of 6 feet between utilities and proposed trenching locations. A minimum distance of 15 feet should be maintained by heavy equipment (e.g., excavator buckets, drill rig towers and rods) from overhead power lines. A safe distance of 25 feet should be maintained from high tension overhead power lines. In the event that work must be conducted within 25 feet of high tension wires, the lines should be wrapped and insulated by the local utilities. If a utility conflict is identified, adjust the proposed location(s) using the criteria given above. These minimum distances should be increased whenever possible to offer additional assurance that utilities will not be encountered. - 5. A private utility locating service <u>MUST</u> be used for work on private property in cases where the public utility locating service does not mark utilities on the subject property. It is <u>NOT ACCEPTABLE</u> to rely on as-built drawings or verbal utility clearances. A private locator may not be necessary in rare instances; however, these cases must be discussed with the project manager **AND** a partner or executive partner of WSP Engineering before work may proceed. A listing of several private subsurface utility locating firms is provided in Table 2. In addition, a hand-held magnetometer or magnetic-cable locating device can be used to augment, but not replace, clearance for each work area. Use of this equipment is restricted to employees with proper training on the use of hand-held utility locating equipment. Proper training is defined as having working knowledge of the manufacturer's operating procedures, and the completion of at least one successful location under the supervision of a qualified person. - 6. In some cases, state and private locating services may not be able to identify all utilities. In areas where uncertainty still exists concerning the presence of underground utilities after clearance by state and private locating services, a hand auger or post-hole digger can be used to probe the shallow subsurface before using any heavy equipment (drill rig, backhoe). The probe hole should be advanced a minimum of 4 feet below ground surface at each proposed drilling or excavation location. A sufficient number of probe holes should be completed so that the area is cleared for the proposed intrusive activity. For drilling, a minimum of three holes installed in a triangular pattern should be advanced at each location. The use of hand digging methods in NO WAY replaces the need State and private utility locating services. Hand digging techniques should only be employed if uncertainty regarding the location of underground lines still exists after clearances by the State locating service and a private locating service. - 7. Discuss the site conditions with the subcontractor and recommend that care be used at the start of the intrusive activities. Field personnel should always consider the presence of unidentified utilities at each work area. In addition, field personnel have the authority and responsibility to postpone intrusive activities if insufficient information, as stipulated in this SOP, is available, or if onsite reconnaissance identifies inconsistencies in the findings of utility locators. In these instances, field personnel should contact the project manager or a member of the health and safety committee, and an executive partner or partner of WSP Engineering before proceeding with the proposed work. The first priority on every project is to ensure that the work is conducted safely. Again, it is the requirement of this SOP to obtain site utility clearances from the State utility locating service. If the State locating service does not provide onsite (i.e., work area) utility clearance, a private locating service must be contracted to clear the work areas before digging, drilling, or probing begins. Although certain instances and site conditions may appear to allow intrusive work without prior clearance, <u>ALL</u> deviations from this SOP <u>MUST</u> be approved by the project manager and a partner or executive partner <u>BEFORE</u> beginning intrusive work. 8. If the scope of the intrusive activity locations changes, the scope of intrusion expands or includes a new onsite or offsite area(s), review the existing information to determine whether the area(s) can be safely cleared of all potential underground utilities. If necessary, contact the state locating service and request another clearance for the new area(s) of investigation and retain a private locator in accordance with Item 5 above. Remember, the new request will provide a new legal dig date before which NO INTRUSVE WORK CAN BEGIN. Additionally, if a clearance ticket will expire while the work is ongoing (typically after 14 days), a new clearance must be requested at before the first ticket expires so that work can continue uninterrupted. Refer to the communication utility locating form for the legal dig date time frame required by the State locating service. # PUBLIC and PRIVATE UTILITY LOCATING FORM | Project: | Project Manager: | |---------------------------------------|---| | Project Number: | | | Project Start Date: | | | Project Location (Site Address): | | | | | | Project Site Description (complete | the following with all information available <u>before calling</u>): | | Work Being Done For: (Company of | or Individual Name): | | State:County: | City/Place: | | Street: | (Only one street per ticket) Zip Code: | | Nearest Intersecting Street: | | | Lat/Long: | Parcel/Tax map ID: | | Description of the area to be marke | ed (Provide the following: Street working on, which side of | | street, how far in which direction fr | rom nearest intersecting street; etc.): | | | | | | | | | | | | | | | | | | 1' ' ' 1 ('C' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' | | | digging identified with paint and/or stakes? (circle one): YES | | NO N/A | | | NOW MAKE THE CALL | | | NOW, MAKE THE CALL: | | | Call Placed to Phone No.: | | | D (CO II | T' (C) 11 | | Date of Call: | Time of Call:a.m. / p.m. | | | | | Ticket No. Assigned to Location 1 | Request: | | | | | Assigned Legal Dig Date:/_ | / Assigned Legal Dig Time: AM / PM | # **The Following Table Must Be Completed Before Work Can Begin:** | CALL BACK/FAX BACK INFORMATION RECORD | | | | | | | |---------------------------------------|-----|---------------|----------|-------|-------|-------| | | Gas | Communication | Electric | Water | Sewer | Other | | Responsible | | | | | | | | Company | | | | | | | | (provided | | | | | | | | by OneCall | | | | | | | | operator) | | | | | | | | Date | | | | | | | | Notified | | | | | | | | Time | | | | | |
| | Notified | | | | | | | | Notified By | | | | | | | | Phone | | | | | | | | Number | | | | | | | | Marks | | | | | | | | Complete | | | | | | | | No Conflict | | | | | | | | No | | | | | | | | Facilities | | | | | | | | Calls Made By: | Form Completed By: | |---|--------------------| | Project Manager Notified of Results (initia | l if completed): | # Onsite Underground and Overhead Utility Clearance Checklist # Visual Confirmation of Marked Public Utilities: | Utility Type | Visual Cues | Marks
Confirmed
(initial) | No Markings
Seen (initial) | |------------------------|--|---------------------------------|-------------------------------| | Water | Blue Markings, fire hydrant, manholes; water meter, sprinkler heads, AST, hose bib | | | | Gas | Yellow Markings, gas meter, manholes; yellow bollards | | | | Electric | Red Markings, parking lot lights, overhead lines (telephone poles), underground vaults, manholes; conduit on buildings | | | | Sewer (sanitary/storm) | White or Blue Markings, underground vaults, manholes, drain grates | | | | Communication | Red or White Markings, red bollards, telephone poles; manholes; conduit on buildings | | | # <u>Visual Confirmation of Marked Private Utilities (at onsite drilling/digging locations):</u> | Utility Type | Visual Cues | Marks
Confirmed | No
Markings
Seen
(initial) | Not
Applicable
(initial) | |----------------------------------|---|--------------------|-------------------------------------|--------------------------------| | Water | fire hydrant, manholes; water meter, ASTs, interior connections, hose bib, valve box | | | | | Irrigation | sprinkler heads, hose bibs | | | | | Gas | gas meter, manholes; yellow
bollards, interior connections,
valve box | | | | | Electric | parking lot lights, interior
connections, overhead lines,
underground vaults, manholes,
transformers/switchgear; conduit
on buildings | | | | | Sanitary/Storm/
Septic System | underground vaults, manholes,
drain grates, leach field, sand
mound, no evidence of sanitary
sewer (for septic system | | | | | Production
Equipment | USTs (fill pipes and vent pipes),
ASTs (overhead and underground
pipelines), manholes/valve pits;
pump islands | | | | | Communication | Red/orange bollards, telephone poles, interior connections; manholes; conduit on buildings | | | | If any Utilities have "No Marking Seen" checked, private locating must be conducted to clear each drilling/digging area. | Site Visit Made By: | | |---------------------|--| | | | | Form Completed By: | | ### Soil Sampling Using GeoProbe® System or Equivalent ### Application: To perform depth-discrete soil sampling with 2-foot or 4-foot long samplers using hydraulically-driven soil sampling equipment (GeoProbe® System or Equivalent). ### Materials: Stainless steel soil sampler (2-foot or 4-foot long) Clear acetate liners Tape measure or expandable ruler Utility knife Photoionization detector (PID) Stainless steel spoons Aluminum tray or stainless steel mixing bowl^a Nitrile or latex gloves Field notebook ### Procedure: - 1. Calibrate the PID in accordance to the manufacturer's instructions. Decontaminate all down-hole sampling equipment and the utility knife, spoons, and mixing bowl per SOP 19 before initiating any boring activities. Ensure that the location is clear of all underground utilities and pipelines. - 2. Attach a decontaminated 2-foot or 4-foot long stainless steel sampler fitted with a new, clear acetate liner and a decontaminated removable cutting shoe to small-diameter rods. Lower the stainless steel sampler to the top of the desired sampling depth. - 3. Advance the stainless steel sampler through the desired sample interval. Record in the dedicated field notebook the interval through which the sampler was pushed. - 4. After the sampler has reached the desired depth, retrieve the sampler by first removing the rods and then disconnecting the sampler. Remove the cutting shoe and acetate liner containing the soil column from the sampler. Measure the length of the material recovered relative to the interval the sampler was advanced, and record this information in the field notebook. - 5. Cut the acetate liner using a utility knife to expose the recovered soil. Quickly scan the recovered soil with the PID and if necessary, immediately collect samples for VOC analysis. If the plan indicates the collection of samples for headspace analysis, collect this sample after obtaining the sample for VOC analysis per SOP 22. Record the PID readings in the field notebook. - 6. For VOC samples, transfer soil directly from the acetate liner into the sample containers with a clean, stainless steel spoon. Fill the VOC sample container with a representative sample from the entire length of the recovered sample core, or other designated sample interval^a. Fill the VOC container completely, leaving no headspace. - 7. Describe the recovered soil using the Unified Soil Classification System or standard geological descriptions. Record the sample description in the field notebook. - 8. If it is necessary to mix the sample, transfer the soil from the acetate liner to a clean aluminum tray or decontaminated stainless steel mixing bowl with a decontaminated stainless steel spoon^b. - 9. Examine contents of the tray/bowl and remove rock fragments and organic debris, such as roots, grass, and woody material, with the stainless steel spoon. Use the same spoon to chop apart clumps of dirt and mix the contents of the tray to a homogeneous particle size and soil texture. Transfer the tray/bowl contents to the appropriate sample containers using the stainless steel spoon. - 10. The sample container(s) should be sealed, labeled, and placed in a cooler with ice or freezer packs to maintain 4° Celsius for shipment to the analytical laboratory. - 11. Complete the chain-of-custody form with the appropriate sampling information. - a) NJDEP's Field Sampling Procedures Manual requires the collection of soil samples for VOC analysis from the 0.5-foot interval that exhibits the highest reading during the field (PID) screening. - b) U.S. Environmental Protection Agency (EPA) Region 4 requires a glass bowl for homogenizing soil for sample collection. ### Groundwater Sampling Using Geoprobe® System or Equivalent ### Application: To perform groundwater sampling using hydraulically-driven screen point sampling equipment (GeoProbe® System or Equivalent). ### Materials: Stainless steel probe rods with treads sealed with Teflon® tape or O-rings Stainless steel screen point sampler Stainless steel mini-bailer Teflon®-coated stainless steel wire or thin nylon line Polyethylene tubing (3/8-inch) fitted with a stainless steel check valve Silicone tubing 0.45-micron filter Peristaltic pump Sample bottles, labels, indelible markers, and clear tape Nitrile or latex gloves ### Procedure: - 1. Decontaminate all down-hole equipment before conducting sampling activities at each location. Ensure that the sampling location has been cleared of all underground utilities. - 2. Drive the stainless steel point sampler into the subsurface material. The design of the sampler should allow the screen to remain retracted within the probe rods until it is driven to the appropriate sampling depth. - 3. After reaching the desired depth, pull back on the stainless steel sheath to expose the screen. The point on the probe rods will be displaced and is not recoverable^a. - 4. Purging is not required for probes that are sealed and opened at the target depth for sample collection. Exposed probes that are driven through the soil to the desired water sample depth must be purged of a minimum of three probe-rod volumes of water before sampling is conducted. - 5. Groundwater samples can be collected using a mini-bailer lowered on Teflon®-coated stainless steel wire or nylon line inside the probe rods. Another method of sample collection involves the use of a clean section of 3/8-inch polyethylene tubing fitted with a stainless steel bottom check valve. The polyethylene tubing is inserted down the probe rods to the desired sampling depth. Oscillate the polyethylene tubing up and down to drive a column of water to the surface. A peristaltic pump may be attached to the sample tubing and used to pump water to the surface. The peristaltic pump should not be used to collect samples for VOC analysis. - 6. Immediately collect samples for VOC analysis, if required. Transfer the groundwater directly form the sampling equipment (mini-bailer, polyethylene tubing) to the sample containers. If analyzing for dissolved metals, the sample must be filtered in the field. See note below with regards to field filtering of metal samples. - 7. Seal and label each sample container and place in a cooler with ice or freezer packs to maintain 4° Celsius for shipment to the analytical laboratory. - 8. Complete the chain-of-custody form with appropriate sampling information. - a) Where samples are collected from depths greater than 15-20 feet below the water table, a water level indicator may be inserted into the rods before exposing the screen to determine whether water is entering through the rod joints or disposable probe point. ### Field Filtering of Metal Samples: - 1. Assemble peristaltic pump per operating manual instructions that accompany the pump. Silicone tubing is generally used though the head of the pump. - 2. Attach polyethylene tubing to the inflow end of the silicone tubing. The polyethylene tubing should be long enough to extend to the bottom of the screen point. Attach a clean filter to the outflow end of the silicone tubing. - 3. Turn on the pump and slowly
draw the water from the sampling equipment, through the pump and filter, and into the sample container. If sediment is visible in the sample container, filter break-through has occurred and the sampling and filtering process will need to be repeated. - 4. Disassemble the pump head and discard the tubing and filter. ### Managing Investigation Derived Waste ### Application: The purpose of this SOP is to provide instructions for handling, storing, and sampling Investigation Derived Waste (IDW) pending disposal. *All IDW should be handled as hazardous waste unless information exists which would allow it to be classified as non-hazardous waste.* IDW generated during a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response action must be managed in compliance with applicable or relevant and appropriate requirements (ARARs) to the extent practicable and with applicable requirements of the CERCLA offsite policy. (EPA Guidance Document OERR Directive 9345.3-02) IDW includes soil cuttings, development water, purge water, drilling fluids, decontamination fluids, personal protective equipment, and sampling equipment. ### Materials: Non-Hazardous and Hazardous Waste Labels Investigation Derived Waste Log (Figure 1) Permanent Ink Marking Pen Paint Stick/Pen Sampling Equipment (Refer to Sampling SOPs) Sample Jars Chain of Custody Forms Cooler ### Procedure: ### Hazardous IDW 1. All IDW should be handled as hazardous waste unless information exists which would allow it to classified as non-hazardous waste. New or existing site data (i.e., soil and groundwater results) and generator knowledge can be used to classify the IDW. If site data or generator knowledge indicates that the IDW is determined to be hazardous the following procedures will apply: - The IDW must be placed in DOT approved containers (55-gallon drum, roll-off container, or temporary storage tank). - The containers must remain closed except when adding, sampling, or inspecting the material. - All containers must be labeled with the words "Hazardous Waste". - An accumulation start date and the contents of the container must be included on the label. - Investigation Derived Waste Logs (Figure 1) must be completed before leaving the site. One copy of the log should be presented to the site contact and the original provided to the project manager. Once the material has been removed from the site, the IDW log should be stamped "Removed" and placed in the project file. - The IDW containers must be stored in a secure onsite location (facility hazardous waste storage area if one exists). - Disposal of the IDW must be completed within **90 days** of the date the waste was generated. If the facility is a small quantity generator, 180 days is allowed for shipment of the waste offsite. - Onsite disposal may be allowed or appropriate under certain conditions. Refer to OERR Directive 9345.3-02 for guidance, especially for CERCLA sites. - WSP Engineering personnel should notify the site contact that weekly inspections of the IDW must be conducted and documented. - WSP Engineering personnel should also instruct the site contact that this waste must be included in the facilities annual or biannual reports. - 2. If the IDW is presumed to be hazardous and sampling is required to confirm its classification, it should be labeled Hazardous Waste-Pending Analysis. The waste should be sampled before leaving the site (See sampling SOPs). It should be noted that EPA methods 8260 and 8270 may be more cost effective than running the full Toxicity Characteristic Leaching Procedure (TCLP) scan. TSD Facilities will usually specify the required analysis for their waste profiles. ### Non-Hazardous IDW 1. If information exists to classify the IDW as non-hazardous waste, the following procedures can be implemented: ### Soil Cuttings - Spread around the borehole or other onsite location with the approval of facility personnel - Place back in the boring - Containerize and dispose offsite ### Groundwater - Pour onto ground next to well to allow infiltration - Containerize and dispose offsite - Discharge to POTW with approval of facility personnel - Discharge to onsite wastewater treatment plant with approval of facility personnel ### **Decontamination Fluids** - Pour onto ground (from containers) to allow infiltration - Containerize and dispose offsite - Discharge to POTW with approval of facility personnel - Discharge to onsite wastewater treatment plant with approval of facility personnel ### **PPE** - Double bag and deposit in site dumpster - Containerize and dispose offsite If the IDW is containerized and is non-hazardous, the following procedures will apply: - The non-hazardous IDW must be placed in DOT approved containers (55-gallon drum, roll-off container, or temporary storage tank). - The containers should remain closed except when adding, sampling, or inspecting the material. - All containers must be labeled with the words "Non-Hazardous Waste". - An accumulation date and the contents of the container should be included on the label. - Complete the IDW log (Figure 1). One copy of the log should be presented to your site contact and the original should be given to the project manager. - The IDW containers must be stored in a secure onsite location. - Arrangements for disposal *should* be completed within 90 days of the accumulation start date. # **Investigation Derived Waste Log** | Date: | | | | | | |------------|-------------------------|---------|-------------------------------------|-----------|--| | Site In | formation | | | | | | Site Name: | | | | | Site EPA ID #: | | Site Co | ontact: | | | | Site Address: | | Contac | t Telephone No: | | | | _ | | Waste | Identification | | | | | | Type o | f Waste Generated (| check | one of the followin | g): | | | | Soil Cuttings | | PPE | | Decontamination Water | | | Groundwater | | Storm Water | | Drilling Fluids | | | Other (Describe): | | | | | | Field A | Activities that generat | ed the | Waste: | | | | | Soil Borings | | Well Sampling | | Well Installation | | | Decon | | Excavation | | Pumping Tests | | | Other (Describe): | | | | | | Genera | tion Date: | | | 90- | Day Deadline: | | Quanti | ty of Waste Generate | d and | Container Type: - | | | | | | | | | | | Storage | | | | | | | | Identification (Check | | | | | | | Non Hazardous W | | | | | | | Non Hazardous W | aste (t | ased on site inform | nation o | or generator knowledge) | | | Hazardous Waste | | ng analysis)
on site informatior | or ger | perator knowledge) | | | | | | • | | | If gene | rator knowledge or s | ite inf | ormation was used | for ide | ntification, explain: | | | | | | | | | Type o | f Label Applied to C | ontain | er: Non Ha | z [| ☐ Hazardous ☐ PCB ☐ Used Oil | | WSP I | Engineering Inform | ation (| (Note: One copy to | o site co | ontact - the original in project file) | | Person | nel/Contact: | | | | Project No.: | | Teleph | one: | | | | |